Science.gov

Sample records for african monsoon circulation

  1. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    NASA Astrophysics Data System (ADS)

    Hagos, S.; Zhang, C.

    2008-12-01

    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  2. Diabatic heating, divergent circulation and moisture transport in the African monsoon system

    SciTech Connect

    Hagos, Samson M.; Zhang, Chidong

    2009-12-24

    The dynamics of the West African monsoon system is studied through the diagnosis of the roles of diabatic heating in the divergent circulation and moisture transport. The divergent circulation is partitioned into latent-heating and non-latent-heating (the sum of surface sensible heat flux and radiative heating) driven components based on its field properties and its relationship with diabatic heating profiles. Roles of latent and non-latent diabatic heating in the moisture transport of the monsoon system are thus distinguished. The gradient in surface sensible heat flux between the Saharan heat-low and the Gulf of Guinea drives a shallow meridional circulation, which transports moisture far into the continent on the northern side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence maximum is within the region of precipitation and thus enhances local monsoon precipitation. Meanwhile, latent heating also induces dry air advection from the north. The seasonal northward migration of precipitation is encouraged by neither of the two effects. On the other hand, the divergent circulation forced by remote latent heating influences local moisture distribution through advection. Specifically by bringing Saharan air from the north, and driving moisture to the adjacent oceans, global latent heating has an overall drying effect over the Sahel.

  3. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    NASA Astrophysics Data System (ADS)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2017-03-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  4. Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Asioli, A.; Minisini, D.; Maselli, V.; Dalla Valle, G.; Gamberi, F.; Langone, L.; Cattaneo, A.; Montagna, P.; Trincardi, F.

    2017-03-01

    The formation of Eastern Mediterranean sapropels has periodically occurred during intensification of northern hemisphere monsoon precipitation over North Africa. However, the large-scale response of the Eastern Mediterranean thermohaline circulation during these monsoon-fuelled freshening episodes is poorly constrained. Here, we investigate the formation of the youngest sapropel (S1) along an across-slope transect in the Adriatic Sea. Foraminifera-based oxygen index, redox-sensitive elements and biogeochemical parameters reveal - for the first time - that the Adriatic S1 was synchronous with the deposition of south-eastern Mediterranean S1 beds. Proxies of paleo thermohaline currents indicate that the bottom-hugging North Adriatic Dense Water (NAdDW) suddenly decreased at the sapropel onset simultaneously with the maximum freshening of the Levantine Sea during the African Humid Period. We conclude that the lack of the "salty" Levantine Intermediate Water hampered the preconditioning of the northern Adriatic waters necessary for the NAdDW formation prior to the winter cooling. Consequently, a weak NAdDW limited in turn the Eastern Mediterranean Deep Water (EMDWAdriatic) formation with important consequences for the ventilation of the Ionian basin as well. Our results highlight the importance of the Adriatic for the deep water ventilation and the interdependence among the major eastern Mediterranean water masses whose destabilization exerted first-order control on S1 deposition.

  5. Energetic constraints on monsoonal Hadley circulations

    NASA Astrophysics Data System (ADS)

    Merlis, T. M.; Schneider, T.; Bordoni, S.; Eisenman, I.

    2011-12-01

    The strength of monsoons is believed to have varied in the past in response to changes in the seasonal shortwave radiation distribution associated with orbital precession and is expected to vary during the coming century due to increases in greenhouse gas concentrations. Here, we examine the constraint that the moist static energy budget imposes on the response to radiative perturbations of the cross-equatorial, or monsoonal, Hadley circulations. Changes in the strength of the mass transport can occur in response to radiative perturbations, which has been frequently discussed in the past. An additional factor in the energetic balance, however, is the atmosphere's energy stratification, which is commonly known as the gross moist stability in tropical meteorology. Therefore, changes in the atmosphere's gross moist stability can play a fundamental role in determining changes in the mass transport of mean circulations. Also, the influence of spatial variations in surface heat capacity on the top-of-the-atmosphere energy balance, rather than its widely discussed role in determining surface temperature, is important in determining how radiative perturbations are energetically balanced by monsoonal Hadley circulations. We examine the importance of energetic constraints on monsoonal Hadley circulations in idealized general circulation model simulations that have either an aquaplanet slab-ocean boundary condition or a zonally symmetric subtropical continent. The radiative balance in the simulations is perturbed first by insolation variations associated with orbital precession and then by increased carbon dioxide concentration. The simulation results demonstrate that summertime changes in gross moist stability are important for understanding past and future monsoon variations.

  6. Potential Change in the Indian Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Williams, A. P.; Mishra, V.; Barlow, M. A.; Hoerling, M. P.; Hoell, A.

    2011-12-01

    In India and East Africa more than 350 million people face chronic undernourishment; population growth alone could bring this number to 500 million by 2030. Below normal rains have become more frequent as falling water tables, land degradation, warmer air temperatures, and rising fuel and fertilizer costs limit crop production growth. The Indian and East African boreal summer monsoons rely on large moisture transports from the southern Indian Ocean (SIO, 55-90°E, 0-15°S) and a low pressure cell over the north Indian Ocean (NIO, 55-90°E, 0-15°N). The relatively cloud free NIO warm pool receives a large excess of solar radiation, which the ocean transports south across the equator. While many factors influence this system, we present here observations and climate simulations linking preferential SIO-versus-NIO warming, evaporation and precipitation changes to weaker monsoon winds, weaker northward moisture transports, and warmer and drier weather in India and East Africa. Observations show that increasing SIO sea surface temperatures (SSTs) below rapid surface winds provide an 'evaporative window' (Fig. 1) that transfers energy and moisture to the atmosphere, increasing SIO rainfall. Climate simulations driven with i) observed SSTs and ii) mid-tropospheric SIO heating associate increased SIO rainfall with lower NIO rainfall. Given the empirical relationships between increasing SIO rainfall and reduced summer monsoon rains, continued warming in the Indian Ocean could lead to more frequent droughts in India, and perhaps, East Africa.

  7. The Role of African topography in the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Wei, H. H.; Bordoni, S.

    2014-12-01

    The Somali cross-equatorial jet is estimated to contribute up to half of the mass flux crossing the equator during the Asian monsoon season. Previous studies have argued that the Somali jet is strengthened by the East African Highlands, which act as a wall and accelerate the flow (e.g., Krishnamurti et al. 1976, Sashegyi and Geisler 1987). Besides, observational studies have shown a positive correlation between the strength of the Somali jet and the South Asian Monsoon (SAM) precipitation (e.g., Findlater 1969, Halpern and Woiceshyn 2001). These imply that the existence of the topography would relate to a stronger SAM. However, in a more recent study, Chakraborty et al. (2002) found that if the African topography is removed in a comprehensive general circulation model (GCM), the SAM strengthens. In this study, we use the GFDL AM2.1 GCM to conduct experiments with and without topography in Africa, to further examine its influence on the cross-equatorial Somali jet and the SAM. We find that when the African topography is removed, the SAM precipitation increases, consistent with the results in Chakraborty et al. (2002). Interestingly, our results also show that the cross-equatorial Somali jet does weaken in the absence of the African topography, in agreement with previous studies. The moisture budget shows that the increase in precipitation in the no-African topography experiment is primarily due to stronger wind convergence. The dynamics of the cross-equatorial Somali jet is investigated within the framework of the Potential Vorticity (PV) budget, showing the contribution of the changes in friction and diabatic heating to the circulation as the topography is removed. A backward trajectory analysis is also conducted to further examine the influence of topography on both the material tendencies of the PV budget and trajectories of parcels reaching the Indian subcontinent.

  8. The turbulence underside of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Lothon, M.; Lohou, F.; Saïd, F.; Campistron, B.; Canut, G.; Couvreux, F.; Durand, P.; Kalapureddy, M. C.; Lee, Y.; Madougou, S.; Serça, D.

    2009-09-01

    We present an experimental analysis of the sahelian Planetary Boundary Layer (PBL) processes in the context of the AMMA (African Monsoon Multidisciplinary Analysis) program and its extensive observational deployment in 2006. From May to October, two opposite flows are interacting in the first 5 thousands m over surface in Sahel: the moist southerly monsoon flow and the overlying northeasterly Saharan Air Layer (SAL) in which the African Easterly Jet (AEJ) is developing, generated by the contrast of surface moisture and temperature between Sahara and the Gulf of Guinea. Until the monsoon onset in mid-July, the low troposphere is slowly moistening through advection from the Guinea Gulf by the monsoon flow, especially during the night. During the day, the dry convection occurring within the PBL vertically redistributes part of the water vapour. After the onset, deep convection occurs much more frequently and the role played by the PBL completely changes. The relative position of the interface between monsoon and SAL and the PBL top inversion is crucial for the nature of the interaction and its impact on scalars, especially water vapour. We consider the role of the PBL processes in this context, and focus on four main aspects: (1) the diurnal cycle of the low troposphere, (2) the interaction between the PBL and the AEJ, (3) the entrainment at the PBL top (4) the impact of the PBL processes at surface. We base our analysis on long term profilers, radiosondes, and surface flux data, short term aircraft turbulence measurements made during the Special Observing Periods and Large Eddy Simulation. The network of wind profilers enables us to study the large scale circulation and highlight the consistence and extent of the nocturnal jet, and the importance of the diurnal cycle of the low troposphere for the West African Monsoon. During daytime, both the wind within the monsoon flow and the AEJ windspeed in the overlying SAL decrease, due to turbulent mixing within the PBL and

  9. Will the South Asian monsoon overturning circulation stabilize any further?

    NASA Astrophysics Data System (ADS)

    Krishnan, R.; Sabin, T. P.; Ayantika, D. C.; Kitoh, A.; Sugi, M.; Murakami, H.; Turner, A. G.; Slingo, J. M.; Rajendran, K.

    2013-01-01

    Understanding the response of the South Asian monsoon (SAM) system to global climate change is an interesting scientific problem that has enormous implications from the societal viewpoint. While the CMIP3 projections of future changes in monsoon precipitation used in the IPCC AR4 show major uncertainties, there is a growing recognition that the rapid increase of moisture in a warming climate can potentially enhance the stability of the large-scale tropical circulations. In this work, the authors have examined the stability of the SAM circulation based on diagnostic analysis of climate datasets over the past half century; and addressed the issue of likely future changes in the SAM in response to global warming using simulations from an ultra-high resolution (20 km) global climate model. Additional sensitivity experiments using a simplified atmospheric model have been presented to supplement the overall findings. The results here suggest that the intensity of the boreal summer monsoon overturning circulation and the associated southwesterly monsoon flow have significantly weakened during the past 50-years. The weakening trend of the monsoon circulation is further corroborated by a significant decrease in the frequency of moderate-to-heavy monsoon rainfall days and upward vertical velocities particularly over the narrow mountain ranges of the Western Ghats. Based on simulations from the 20-km ultra high-resolution model, it is argued that a stabilization (weakening) of the summer monsoon Hadley-type circulation in response to global warming can potentially lead to a weakened large-scale monsoon flow thereby resulting in weaker vertical velocities and reduced orographic precipitation over the narrow Western Ghat mountains by the end of the twenty-first century. Supplementary experiments using a simplified atmospheric model indicate a high sensitivity of the large-scale monsoon circulation to atmospheric stability in comparison with the effects of condensational heating.

  10. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    SciTech Connect

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  11. Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing

    NASA Astrophysics Data System (ADS)

    Beal, L. M.; Hormann, V.; Lumpkin, R.; Foltz, G. R.

    2014-12-01

    We use two decades of drifter and satellite data to examine the monthly evolution of the surface circulation of the Arabian Sea, which reverses annually in response to the Indian monsoon winds. Most significantly, we find that in the transition from winter to summer circulations, northward flow appears along the length of the western boundary as early as March or April, one or two months before the onset of the southwest monsoon winds. This reversal is initiated by annual Rossby waves, which in turn are initiated by wind curl forcing during the previous southwest monsoon. These results lead us to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Previous studies of monsoon circulations with lower temporal resolution have highlighted basin-wide currents and connections that are not found to exist in the monthly fields. In particular, we find that the Northeast Monsoon Current does not reach the western boundary and there is no counter-rotating gyre system during boreal winter. South of the equator, the eastward-flowing South Equatorial Counter Current (SECC) is present year-round, even though equatorial winds are strongly influenced by the monsoons. Semi-annual variability of the SECC is governed by Ekman pumping over the south equatorial gyre (or Seychelles dome) and, surprisingly, it is weakest during the northeast monsoon. This region has important influence on the atmosphere and its link to the monsoons deserves further investigation. The East African Coastal Current feeds into the SECC from the boundary. During the southwest monsoon it overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC after looping back across the equator. This apparent retroflection of the EACC is what was previously known as the southern gyre and is obscured at the surface by strong, locally wind-driven, cross-equatorial Ekman transport. Finally, there is broad, strong eastward flow at

  12. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a

  13. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Kaplan, Michael L.; Krishnan, R.; Lewis, John M.; Sabade, Sudhir; Deshpande, Nayana; Singh, Bhupendra B.; Madhura, R. K.; Rama Rao, M. V. S.

    2016-06-01

    Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979-2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.

  14. Role of inertial instability in the West African monsoon jump

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.

    2015-04-01

    The West African monsoon jump is a sudden shift in the latitude of the West African precipitation maximum from the Guinean coast near 4°N into Sahel near 12°N in late June or early July. An examination of reanalyses and observations indicates that the Sahel rainy season develops smoothly and the monsoon jump occurs because of an abrupt decrease in Guinean coast rainfall. We show that this abrupt end of the coastal rainy season occurs when inertial instability develops over the region, 1 month later than it develops in the vicinity of the marine Atlantic Intertropical Convergence Zone. The reason for this delay is the presence of the African easterly jet, which places strong negative meridional zonal wind gradients over the coast to preserve the inertially stable environment. When the African easterly jet moves farther north due to the seasonal solar forcing, these gradients weaken and then reverse to satisfy the threshold condition for inertial instability; the rapid end of the Guinean coast rainy season follows. The northward movement and intensity of the African easterly jet are controlled by the seasonal development of strong meridional land surface temperature gradients and are independent of the formation of the Atlantic cold tongue. This explanation for the West African monsoon jump relates the phenomenon to the shape and location of the African continent, including the low-latitude position of the Guinean coast and the large expanse of the continent to the north.

  15. Effects of cumulus convection on the simulated monsoon circulation in a general circulation model

    SciTech Connect

    Zhang, Guang Jun )

    1994-09-01

    The effect of cumulus convection on the Asian summer monsoon circulation is investigated, using a general circulation model. Two simulations for the summer months (June, July, and August) are performed, one parameterizing convection using a mass flux scheme and the other without convective parameterization. The results show that convection has significant effects on the monsoon circulation and its associated precipitation. In the simulation with the mass flux convective parameterization, precipitation in the western Pacific is decreased, together with a decrease in surface evaporation and wind speed. In the indian monsoon region it is almost the opposite. Comparison with a simulation using moist convective adjustment to parameterize convection shows that the monsoon circulation and precipitation distribution in the no-convection simulation are very similar to those in the simulation with moist convective adjustment. The difference in the large-scale circulation with and without convective parameterization is interpreted in terms of convective stabilization of the atmosphere by convection, using dry and moist static energy budgets. It is shown that weakening of the low-level convergence in the western Pacific in the simulation with convection is closely associated with the stabilization of the atmosphere by convection, mostly through drying of the lower troposphere; changes in low-level convergence lead to changes in precipitation. The precipitation increase in the Indian monsoon can be explained similarly. 29 refs., 12 figs.

  16. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation

  17. Examining Intraseasonal Variability in the West African Monsoon Using the Superparameterized Community Climate System Model

    NASA Astrophysics Data System (ADS)

    McCrary, Rachel; Randall, David; Stan, Cristiana

    2013-04-01

    In West Africa, the ability to predict intraseasonal variations in rainfall would have important social and economic impacts for local populations. In particular, such predictions might be useful for estimating the timing of the monsoon onset and break periods in monsoon rains. Current theory suggests that on 25-90 day timescales, the West African monsoon (WAM) is influenced by intraseasonal variations in the Indo-Pacific region, namely the Madden Julian Oscillation (MJO) and the Asian summer monsoon. Unfortunately, most general circulation models (GCMs) show weak skill in simulating the seasonal variations in the WAM as well as intraseasonal variability in the Indo-Pacific. These model limitations make it difficult to study the dynamical links in variability across the tropics. Unlike traditional GCMs, models that have implemented the superparameterization (where traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid box) have been shown to be able to represent the WAM, the MJO and the Asian Summer Monsoon with reasonable fidelity. These model advances may allow us to study the teleconnections between the Indo-Pacific and West Africa in more detail. This study examines the intraseasonal variability of the WAM in the Superparameterized Community Climate System model (SP-CCSM). Results from the SP-CCSM are consistent with observations where intraseasonal variability accounts for 15-20% of the total variability in rainfall over West Africa during the monsoon season. We also show that on 25-90 day timescales, increases in precipitation over West Africa correspond with a northward shift of the African easterly jet and an increase in African easterly wave activity. Lag-composite analysis indicates that intraseasonal variations in WAM precipitation correspond with the North-South propagation of the MJO during boreal summer as well as the active and breaking phases of the Asian summer monsoon. Preliminary

  18. Understanding the mechanisms behind the West African Monsoon northward extension during Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Messori, Gabriele; Zhang, Qiong; Flamant, Cyrille; Evan, Amato T.; Pausata, Francesco S. R.

    2016-04-01

    Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modelling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy is largely due to unrealistic imposed land surface cover and aerosols. Numerical experiments are conducted by imposing a "green Sahara", along with a reduced dust concentration in the atmosphere, coherently with the MH environment in the region, and the atmospheric dynamics response and impact on precipitation are investigated. The response of the WAM system to the imposed conditions shows a dramatic augmentation of the precipitation across West Africa up to the Mediterranean coast. This follows a substantial reorganization of the regional circulation, with some monsoonal circulation features (Saharan heat low, African easterly jet, African easterly waves) weakened in favour of deep convection development over land. The simulated response is dominated by land cover changes, and the reduction in dust concentration further enhances the changes induced by the "green Sahara". The intensity and meridional extent of the WAM is fully consistent with proxy evidence. The results for the MH WAM present important implications for understanding future climate scenarios in the region, in the perspective of projected wetter conditions in West Africa.

  19. Role of soil moisture-atmosphere interactions in model simulation of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin; Giannini, Alessandra

    2015-04-01

    Land-atmosphere interactions play a major role in climate characteristics over land. One of the key features of those interactions is the feedback of soil moisture on precipitation: driven by atmosphere variability, soil moisture variations in turn modulate land-atmosphere fluxes, altering surface climate and boundary layer conditions and potentially feeding back on precipitation, both through local and large-scale processes. Prior studies have highlighted West Africa as one of the regions where such interactions play an important role in precipitation variability. Here we investigate the role of soil moisture-atmosphere interactions on the West African Monsoon in the GFDL-ESM2M model, comparing simulations from the GLACE-CMIP5 experiment with prescribed (climatological seasonal cycle) and interactive soil moisture. Results indicate that total monsoon precipitation is enhanced in the prescribed case, suggesting that overall soil moisture-atmosphere interactions act to reduce precipitation. However, contrasting effects appear between the "core" of the monsoon (in a time- latitude sense) where precipitation is reduced with interactive soil moisture, and the "margins" (in a time-latitude view) where precipitation increases. We investigate the processes responsible for these differences, from changes in the surface energy budget and Bowen Ratio to changes in large-scale circulation and monsoon dynamics. Simulations from other GLACE-CMIP5 participating models are also analyzed to assess the inter-model robustness of the results.

  20. Influence of Arctic sea-ice and greenhouse gas concentration change on the West African Monsoon.

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    The Sahelian precipitation are projected to increase in the CNRM-CM5 coupled climate model due to a strengthening of the land-Sea temperature gradient, the increase in the North Atlantic temperature and the deepening of the Heat Low. Arctic Sea-Ice loss impacts the low-level atmospheric circulation through a decrease in the northward heat transport. Some authors have linked the sea-ice loss to a poleward shift of the InterTropical Convergence Zone. Within the CMIP5 models the effect of these mechanisms are not distinguishable and it is difficult to understand the effect of the Arctic sea-ice loss on the West African Monsoon so far. We performed several sensitivity experiments with the CNRM-CM5 coupled climate models by modifying the arctic sea-ice extent and/or the greenhouse gas concentration. We then investigated separately the impact of Arctic sea-ice loss and greenhouse gas concentration increases on the West African Monsoon. The increase in greenhouse gas explains the northward shift and the strengthening of the monsoon. Its effect is stronger with a sea-ice free Arctic that leads to an increase in North Atlantic temperature and in Sahelian precipitation at the end of the rainy season (September-October). We argue that the decrease in sea-ice extent, in the context of the global warming, may moistens the Sahel during the rainy season by changing the pressure, winds and moisture fluxes at low-level.

  1. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

    NASA Astrophysics Data System (ADS)

    Bosmans, J. H. C.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Lourens, L. J.

    2015-01-01

    We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.

  2. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  3. Seasonal forecasts for regional onset of the West African monsoon

    NASA Astrophysics Data System (ADS)

    Vellinga, Michael; Arribas, Alberto; Graham, Richard

    2013-06-01

    The West African monsoon has over the years proven difficult to represent in global coupled models. The current operational seasonal forecasting system of the UK Met Office (GloSea4) has a good representation of monsoon rainfall over West Africa. It reproduces the various stages of the monsoon: a coastal phase in May and June, followed by onset of the Sahelian phase in July when rainfall maxima shift northward of 10N until September; and a secondary coastal rainfall maximum in October. We explore the dynamics of monsoon onset in GloSea4 and compare it to reanalyses. An important difference is the change in the Saharan heat low around the time of Sahelian onset. In Glosea4 the deepening heat low introduces moisture convergence across an east-west Sahelian band, whereas in the reanalyses such an east-west organisation of moisture does not occur and moisture is transported northwards to the Sahara. Lack of observations in the southern Sahara makes it difficult to verify this process in GloSea4 and also suggests that reanalyses may not be strongly constrained by station observations in an area key to Sahelian onset. Timing of monsoon onset has socio-economic importance for many countries in West Africa and we explore onset predictability in GloSea4. We use tercile categories to calculate probabilities for onset occurring before, near and after average in four different onset indicators. Glosea4 has modest skill at 2-3 months' lead time, with ROC scores of 0.6-0.8. Similar skill is seen in hindcasts with models from the ENSEMBLES project, even in models with large rainfall biases over the Sahel. Forecast skill derives from tropical SST in June and many models capture at least the influence of the tropical Atlantic. This suggests that long-range skill for onset could be present in other seasonal forecasting systems in spite of mean rainfall biases.

  4. Half-precessional dynamics of monsoon rainfall near the East African Equator.

    PubMed

    Verschuren, Dirk; Sinninghe Damsté, Jaap S; Moernaut, Jasper; Kristen, Iris; Blaauw, Maarten; Fagot, Maureen; Haug, Gerald H

    2009-12-03

    External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions. Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-rich middle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few, especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional ( approximately 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low

  5. Influence of Aerosols on Monsoon Circulation and Hydroclimate

    NASA Technical Reports Server (NTRS)

    Lau, William K.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global water cycles and climate change. In the Asian monsoon regions, the response of the regional water cycle and climate to aerosol forcing is very complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. Up to now, besides the general notion that aerosols may significantly impact monsoon through altering large scale radiative heating gradients, there has been very little information regarding the specific signatures, and mechanisms of aerosol-monsoon water cycle interaction. In this talk, based on preliminary results from observations and climate model experiments, I will offer some insights into how aerosols may impact the Asian monsoon water cycle, in particular the effects of absorbing aerosols (dust and black carbon), and the role of the Tibetan Plateau. The influence of aerosol forcing relative to those due to sea surface temperature and land surface processes, and impact on potential predictability of the monsoon climate system will also be discussed.

  6. Influence of Aerosols on Monsoon Circulation and Hydroclimate

    NASA Technical Reports Server (NTRS)

    Lau, William K.M.

    2007-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global water cycles and climate change. In the Asian monsoon regions, the response of the regional water cycle and climate to aerosol forcing is very complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. Up to now, besides the general notion that aerosols may significantly impact monsoon through altering large scale radiative heating gradients, there has been very little information regarding the specific signatures, and mechanisms of aerosol-monsoon water cycle interaction. In this talk, based on preliminary results from observations and climate model experiments, I will offer some insights into how aerosols may impact the Asian monsoon water cycle, in particular the effects of absorbing aerosols (dust and black carbon), and the role of the Tibetan Plateau. The influence of aerosol forcing relative to those due to sea surface temperature and land surface processes, and impact on potential predictability of the monsoon climate system will also be discussed.

  7. Qualitative assessment of PMIP3 rainfall simulations across the eastern African monsoon domains during the mid-Holocene and the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Chevalier, Manuel; Brewer, Simon; Chase, Brian M.

    2017-01-01

    In this paper we compare a compilation of multiproxy records spanning the eastern African margin with general circulation model simulations of seasonal precipitation fields for the mid-Holocene and the Last Glacial Maximum (LGM) carried out as part of the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). Results show good agreement during the mid-Holocene (the '6K experiment'), with palaeodata and model outputs correlating well and indicating that changes in insolation drove a stronger northern African monsoon (north of ∼0-5°S) during the terminal "African Humid Period" and a weaker southeast African monsoon. For the LGM (the '21K experiment'), however, significant discrepancies exist both between model simulations, and between existing palaeodata and simulated conditions, both in terms of direction and amplitude of change. None of the PMIP3 simulations reflect the pattern inferred from the palaeodata. Two major discrepancies have been identified to explain this: 1) the limited sensitivity of the southern monsoon domain to the colder temperatures of the Indian Ocean (-2 °C), and 2) the absence of changes in the dynamic of the Indian Ocean Walker circulation over the entire basin, despite the exposure of the Sahul and Sunda shelves that weakened convection over the Indo-Pacific Warm Pool during the LGM. These results indicate that some major features of the atmospheric and oceanic teleconnections between the different monsoon regions require further consideration as models evolve.

  8. Future of West African Monsoon in A Warming Climate

    NASA Astrophysics Data System (ADS)

    Raj, Jerry; Kunhu Bangalath, Hamza; Stenchikov, Georgiy

    2016-04-01

    West Africa is the home of more than 300 million people whose agriculture based economy highly relies on West African Monsoon (WAM), which produces a mean annual rainfall of 150 - 2,500 mm and variability and change of which have devastating impact on the local population. The observed widespread drought in West Africa during the 1970s and 1980s was the most significant drought at regional scale during the twentieth century. In this study, a high resolution AGCM, High Resolution Atmospheric Model (HiRAM), is used to study the effects of anthropogenic greenhouse warming on WAM. HiRAM is developed at GFDL based on AM2 and employs a cubed-sphere finite volume dynamical core and uses shallow convective scheme (for moist convection and stratiform cloudiness) instead of deep convective parameterization. Future projections are done using two representative concentration pathways, RCP 4.5 and RCP 8.5 from 2007 to 2050 at C360 (~25 km) resolution. Both RCP 4.5 and RCP 8.5 scenarios predict warming over West Africa during boreal summer, especially over Western Sahara. Also, both scenarios predict southward shift in WAM rainfall pattern and drying over Southern Sahara, while RCP 8.5 predicts enhanced rainfall over Gulf of Guinea. The intensification of rainfall over tropical latitudes is caused by increased low level winds due to warm SST over Gulf of Guinea.

  9. Monsoon rainfall interannual variability over China and its association with the Euasian circulation

    SciTech Connect

    Samel, A.N.; Wang, Wei-Chyung

    1997-11-01

    This study has two goals. The first is to determine annual observed initial and final dates of east Asian summer monsoon rainfall. To accomplish this, a semi-objective analysis is developed and applied to daily rainfall station data throughout China. The resulting values are used to calculate monsoon duration and total rainfall. The second goal is to identify relationships between these rainfall characteristics and circulation features in the Eurasian sea level pressure. The analysis of the duration of monsoon rainfall events produced results that are consistent with those found in previous studies. Total monsoon rainfall over south China, the Yangtze River valley, and north China was then correlated with the Eurasian sea level pressure and 500 millibar height fields. The results indicate that summer rainfall interannual variability over each region is governed by the interaction of several circulation features. These findings are also consistent with those of other studies. 18 refs., 5 figs.

  10. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    DOE PAGES

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; ...

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  11. The West African Monsoon in the Regional Climate Model COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Kothe, S.; Ahrens, B.

    2010-09-01

    The West African Monsoon is in parts of Africa the exceedingly climatic process with a high influence on flora, fauna and economy. In this study we evaluated ECHAM5 and ERA-Interim driven CCLM regional climate simulations of Africa to analyze the reproduction of characteristics of the West African Monsoon in the model. As indicators for the monsoon we looked at the total precipitation and the outgoing long-wave radiation (OLR) as a hint for convective clouds. Additionally the West African Monsoon Index (WAMI) should give a view at the dynamical component of the monsoon. Compared to the large-scale driving models, CCLM was not able to achieve more accurate results. There were regional strong under- and overestimations in precipitation but the mean values showed quite good results with a maximum difference of about 20%. For the ECHAM5 driven CCLM simulation, the strongest overestimation of precipitation at the African West coast, was combined with a strong overestimation of OLR, which indicated too much convection in this area. The model caught the WAMI very well. In a next step we want to quantify the influence of the driving model and the impact of surface features like the surface albedo on the monsoon.

  12. Observational relationships between aerosol and Asian monsoon rainfall, and circulation

    NASA Astrophysics Data System (ADS)

    Lau, K.-M.; Kim, K.-M.

    2006-11-01

    Preliminary observational evidences are presented showing that the Indian subcontinent and surrounding regions are subject to heavy loading of absorbing aerosols, i.e., dust and black carbon, which possess spatial and temporal variability that are closely linked to those of the Asian monsoon water cycle. Consistent with the Elevated Heat Pump hypothesis, we find that increased loading of absorbing aerosols over the Indo-Gangetic Plain in the pre-monsoon season is associated with a) increased heating of the upper troposphere, with the formation of a warm-core upper level anticyclone over the Tibetan Plateau in April-May, b) an advance of the monsoon rainy season in northern India in May, and c) subsequent increased rainfall over the Indian subcontinent, and decreased rainfall over East Asia in June-July.

  13. Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Kinnison, Doug; Garcia, Rolando R.; Bandoro, Justin; Mills, Michael; Wilka, Catherine; Neely, Ryan R.; Schmidt, Anja; Barnes, John E.; Vernier, Jean-Paul; Höpfner, Michael

    2016-12-01

    Model simulations presented in this paper suggest that transport processes associated with the summer monsoons bring increased abundances of hydrochloric acid into contact with liquid sulfate aerosols in the cold tropical lowermost stratosphere, leading to heterogeneous chemical activation of chlorine species. The calculations indicate that the spatial and seasonal distributions of chlorine monoxide and chlorine nitrate near the monsoon regions of the northern hemisphere tropical and subtropical lowermost stratosphere could provide indicators of heterogeneous chlorine processing. In the model, these processes impact the local ozone budget and decrease ozone abundances, implying a chemical contribution to longer-term northern tropical ozone profile changes at 16-19 km.

  14. Revisiting the role of global SST anomalies and their effects on West African monsoon variability

    NASA Astrophysics Data System (ADS)

    Pomposi, Catherine; Kushnir, Yochanan; Giannini, Alessandra

    2016-04-01

    The West African Monsoon is a significant component of the global monsoon system, delivering the majority of annual precipitation for the Sahel and varying on timescales from seasons to decades and beyond. Much of the internal variability of this system is driven by sea surface temperature (SST) anomalies and their resulting atmospheric teleconnections linking oceanic changes to land-based precipitation. Previous idealized studies have identified the role of particular ocean basins in driving monsoon variations on a number of key timescales, including the Atlantic basin as the main driver behind decadal-scale changes and the Pacific basin for interannual variability. However, understanding of how the monsoon responds to global SSTs remains incomplete because the system can be affected by moisture availability locally as well as tropical atmospheric stability, both of which are influenced by ocean temperatures. Furthermore, the complexity of how the global ocean basins change in relation to one another (what we refer to as superposition of anomalies) can result in Sahel precipitation anomalies that are contrary to what one might posit when considering the state of a single basin alone (e.g. the 2015 El Niño event and a relatively wet Sahel). The aim of this work is to revisit the role of global SSTs in driving Sahel rainfall variability over the recent past using a blending of observations and new model output. We seek to disentangle the state of various basins in combination with each other in driving normal or anomalously dry or wet years, resolving the ways that remote and local ocean forcings affect the movement of convection from the Guinea coast inland and northward into the Sahel, and include the study of circulation and stability components of the atmosphere. Preliminary diagnostic work suggests that varying SST conditions across ocean basins could imprint distinctly different precipitation responses in the Sahel. For example, precipitation anomalies are

  15. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, Katharine; Grimm, Rosina; Mikolajewicz, Uwe; Marino, Gianluca; Rohling, Eelco

    2016-04-01

    The periodic deposition of organic rich layers or 'sapropels' in eastern Mediterranean sediments can be linked to orbital-driven changes in the strength and location of (east) African monsoon precipitation. Sapropels are therefore an extremely useful tool for establishing orbital chronologies, and for providing insights about African monsoon variability on long timescales. However, the link between sapropel formation, insolation variations, and African monsoon 'maxima' is not straightforward because other processes (notably, sea-level rise) may have contributed to their deposition, and because there are uncertainties about monsoon-sapropel phase relationships. For example, different phasings are observed between Holocene and early Pleistocene sapropels, and between proxy records and model simulations. To address these issues, we have established geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1, S3, S4, and S5 in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows us to examine in detail the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. Our records suggest that the onset of sapropel deposition and monsoon run-off was near synchronous, yet insolation-sapropel/monsoon phasings varied, whereby monsoon/sapropel onset was relatively delayed (with respect to insolation maxima) after glacial terminations. We suggest that large meltwater discharges into the North Atlantic modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. Hence, the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. We also surmise that both monsoon run-off and sea-level rise were important buoyancy-forcing mechanisms for

  16. Determination of summer monsoon onset and its related large-scale circulation characteristics over Pakistan

    NASA Astrophysics Data System (ADS)

    Latif, M.; Syed, F. S.

    2016-08-01

    The onset of summer monsoon over the Core Monsoon Region of Pakistan (CMRP) has been investigated in this study using observational daily rainfall and Precipitable Water (PW) data sets. An objective criterion is proposed to define monsoon onset dates by employing Precipitation Index and Normalized Precipitable Water Index techniques. The climatological mean summer monsoon onset dates over CMRP based on daily rainfall data sets are observed to be 1 July and 30 June in the station and gridded data sets, respectively. Whereas the daily PW-based climatological mean onset date is 30 June. The year-wise onset dates determined through station and gridded rainfall data sets are very similar but these dates differ in case of PW-based onsets. The evolution of large-scale circulation anomalies and thermodynamic structure leading monsoon onset over Pakistan shows that a strong positive temperature and geopotential height anomalies appear over the northwestern part of the core region in the upper atmosphere. This warm geopotential height anomaly gets strengthen as the monsoon onset approaches. The temperature anomalies are barotropic whereas the geopotential height anomalies are baroclinic with the presence of low level anticyclone over the Tibetan Plateau. A moisture convergence zone along the foothill of Himalayas and low level moisture convergence zone over the north Arabian Sea set the stage for the moisture carrying monsoon winds to blow inland towards CMRP. The moisture is mainly supplied from the Arabian Sea, as the low pressure system approaches CMRP from the Bay of Bengal.

  17. Connections between Pollution and the Asian Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Bauer, S.

    2015-12-01

    The Asian Monsoon leads to rapid vertical transport of gases and aerosols into the upper troposphere. Some of the pollution might be transported above cloud levels, which will allow it to spread globally and possibly at some occasions reach into the stratosphere. In this study we will use the GISS climate model to investigate the interactions between pollution and convective transport as well as secondary aerosol formation. Pollution resulting from anthropogenic activity as well as from natural sources such as small and large volcanic eruptions, dust storms and forest fires will be quantified. This modeling study will be accompanied by satellite observations from space that monitor aerosol optical thickness (AOT), and absorption AOT (AAOT) in two and three dimensions. Our goal is a better process level understanding of the evolution of natural and anthropogenic aerosol plumes in conjunction with the Asian Monsoon. Hence, we aim to explain their large-scale expansion, which eventually determines their impacts on climate.

  18. Uncertainties from above and below: West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-04-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African Monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, the ability of a 27-member mixed-physics ensemble of the Weather Research and Forecasting model to represent the WAM is investigated in a process-based manner in order to extract transferable information on parameterization influences. The uncertainties introduced by three cumulus (CU), microphysics (MP) and planetary boundary layer (PBL) parameterizations are analyzed to explore interdependencies of processes leading to a certain WAM regime during the wet year 1999. We identify the modification of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. It is predominantly altered by the PBL schemes because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation, weaker precipitation and a southward displaced African Easterly Jet and monsoon rainband. This identifies the representation of clouds as a critical "uncertainty from above" in simulating the WAM. The partitioning of sensible and latent heat fluxes is found to be another major source for the ensemble spread inducing "uncertainties from below" for the modeled monsoon regime. Finally, we show that regionally adapted simulations at convection-allowing scales with ingested dynamical land surface parameters improve the representation of convection, net radiation and surface flux partitioning.

  19. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  20. Atmospheric circulation processes contributing to a multidecadal variation in reconstructed and modeled Indian monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Wu, Qianru; Hu, Qi

    2015-01-01

    analysis of the recently reconstructed gridded May-September total precipitation in the Indian monsoon region for the past half millennium discloses significant variations at multidecadal timescales. Meanwhile, paleo-climate modeling outputs from the National Center for Atmospheric Research Community Climate System Model 4.0 show similar multidecadal variations in the monsoon precipitation. One of those variations at the frequency of 40-50 years per cycle is examined in this study. Major results show that this variation is a product of the processes in that the meridional gradient of the atmospheric enthalpy is strengthened by radiation loss in the high-latitude and polar region. Driven by this gradient and associated baroclinicity in the atmosphere, more heat/energy is generated in the tropical and subtropical (monsoon) region and transported poleward. This transport relaxes the meridional enthalpy gradient and, subsequently, the need for heat production in the monsoon region. The multidecadal timescale of these processes results from atmospheric circulation-radiation interactions and the inefficiency in generation of kinetic energy from the potential energy in the atmosphere to drive the eddies that transport heat poleward. This inefficiency creates a time delay between the meridional gradient of the enthalpy and the poleward transport. The monsoon precipitation variation lags that in the meridional gradient of enthalpy but leads that of the poleward heat transport. This phase relationship, and underlining chasing process by the transport of heat to the need for it driven by the meridional enthalpy gradient, sustains this multidecadal variation. This mechanism suggests that atmospheric circulation processes can contribute to multidecadal timescale variations. Interactions of these processes with other forcing, such as sea surface temperature or solar irradiance anomalies, can result in resonant or suppressed variations in the Indian monsoon precipitation.

  1. Paradox in South Asian summer monsoon circulation change: Lower tropospheric strengthening and upper tropospheric weakening

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Yu, Jin-Yi

    2014-04-01

    In the literature, there exist contradictory conclusions on the South Asian summer monsoon (SASM) precipitation and circulation changes: whether the circulation change contributes positively by strengthening or negatively by weakening to the rainfall enhancement, on a background of moisture content increase. Based on Representative Concentration Pathway 4.5 simulations by 18 Coupled Model Intercomparison Project phase 5 models, this study explains these puzzles by illustrating that the SASM circulation changes oppositely between the lower and upper troposphere, with tipping point at 450 hPa. However, this indicates a new paradox, created by competing mechanisms. By analyzing the intermodel variability, we determine that the mean advection of stratification change mechanism weakens the upper tropospheric circulation, while the enhanced surface land-sea thermal contrast strengthens the lower level and surface winds. Our moisture budget analysis shows that the SASM precipitation enhancement (8% K-1) attributes to moisture increase (5% K-1) and lower tropospheric circulation strengthening (3% K-1).

  2. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for

  3. Influence of radiative heating and cumulus convection on development of mean monsoon circulation in July

    NASA Technical Reports Server (NTRS)

    Kuo, H. L.; Qian, Y. F.; Chen, Y. J.

    1983-01-01

    Numerical simulations of July mean monsoon circulation in the tropics are described. The model used in the simulations was based on a series of primitive equations for the combined effects of variations of solar radiation, radiative diurnal warming, and large-scale and deep cumulus condensation, and the kinematic effects of topography. The initial states of the model were derived from the observed mean distributions of pressure and humidity. Analysis of the numerical results showed that the large-scale features of the mean July monsoon circulation in the tropics are created mainly by differential diabatic heating under the influence of the specific topography. The time necessary to establish the large scale features was only about 5 days when the diurnal variation of solar radiation was taken into account. Graphic illustrations of the simulated mean July flow conditions are provided.

  4. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y.

    PubMed

    Lachniet, Matthew S; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J; Vazquez-Selem, Lorenzo

    2013-06-04

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.

  5. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y

    PubMed Central

    Lachniet, Matthew S.; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J.; Vazquez-Selem, Lorenzo

    2013-01-01

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18–24 cal ka B.P.) monsoon with similar δ18O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9–11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka. PMID:23690596

  6. Potential for long-lead prediction of the western North Pacific monsoon circulation beyond seasonal time scales

    NASA Astrophysics Data System (ADS)

    Choi, Jung; Son, Seok-Woo; Seo, Kyong-Hwan; Lee, June-Yi; Kang, Hyun-Suk

    2016-02-01

    Although the western North Pacific (WNP) monsoon circulation significantly impacts the socioeconomic communities around Asia, its prediction is only limited to a few months. By examining the Coupled Model Intercomparison Project phase 5 decadal hindcast experiments, we explore a possibility of the extended prediction skill for the WNP monsoon circulation beyond seasonal time scales. It is found that the multimodel ensemble (MME) predictions, initialized in January, successfully predict the WNP circulation in spring and early summer. Somewhat surprisingly, a reliable prediction of the WNP circulation appears even in the following spring with a maximum lead time of 14 months. This unexpected prediction skill is likely caused by the improved El Niño-Southern Oscillation (ENSO) prediction and the exaggerated dynamical link between the ENSO and premonsoon circulation in the MME prediction. Although further studies are needed, this result may open up new opportunities for the multiseasonal prediction of the WNP monsoon circulation.

  7. Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate

    NASA Astrophysics Data System (ADS)

    Chen, Haishan; Zhang, Ye; Yu, Miao; Hua, Wenjian; Sun, Shanlei; Li, Xing; Gao, Chujie

    2016-07-01

    Impacts of large-scale urbanization over eastern China on East Asian summer monsoon circulation and climate are investigated by comparing three 25-year climate simulations with and without incorporating modified land cover maps reflecting two different idealized large-scale urbanization scenarios. The global atmospheric general circulation model CAM4.0 that includes an urban canopy parameterization scheme is employed in this study. The large-scale urbanization over eastern China leads to a significant warming over most of the expanded urban areas, characterized by an increase of 3 K for surface skin temperature, 2.25 K for surface air temperature, significant warming of both daily minimum and daily maximum air temperatures, and 0.4 K for the averaged urban-rural temperature difference. The urbanization is also accompanied by an increase in surface sensible heat flux, a decrease of the net surface shortwave and long-wave radiation, and an enhanced surface thermal heating to the atmosphere in most Eastern Asia areas. It is noted that the responses of the East Asian summer monsoon circulation exhibits an evident month-to-month variation. Across eastern China, the summer monsoon in early summer is strengthened by the large-scale urbanization, but weakened (intensified) over southern (northern) part of East Asia in late summer. Meanwhile, early summer precipitation is intensified in northern and northeastern China and suppressed in south of ~35°N, but late summer precipitation is evidently suppressed over northeast China, the Korean Peninsula and Japan with enhancements in southern China, the South China Sea, and the oceanic region south and southeast of the Taiwan Island. This study highlights the evidently distinct month-to-month responses of the monsoon system to the large-scale urbanization, which might be attributed to different basic states, internal feedbacks (cloud, rainfall) as well as a dynamic adjustment of the atmosphere. Further investigation is required

  8. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE PAGES

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; ...

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  9. Impact of cloud radiative heating on East Asian summer monsoon circulation

    SciTech Connect

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.

  10. Response of the African monsoon to orbital forcing and ocean feedbacks in the middle holocene

    SciTech Connect

    Kutzbach, J.E.; Liu, Z.

    1997-10-17

    Simulations with a climate model that asynchronously couples the atmosphere and the ocean showed that the increased amplitude of the seasonal cycle of insolation in the Northern Hemisphere 6000 years ago could have increased tropical Atlantic sea surface temperatures in late summer. The simulated increase in sea surface temperature and associated changes in atmospheric circulation enhanced the summer monsoon precipitation of northern Africa by more than 25 percent, compared with the middle Holocene simulation with prescribed modern sea surface temperatures, and provided better agreement with paleorecords of enhanced monsoons. 28 refs., 4 figs., 1 tab.

  11. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  12. The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review

    NASA Astrophysics Data System (ADS)

    Sanap, S. D.; Pandithurai, G.

    2015-10-01

    Aerosol, an uncertain component of the climate system, has attracted wide attention among the researchers due to its role in hydrological cycle and radiation budget in a changing climate. According to IPCC 5th assessment report, current understanding of aerosol-cloud-precipitation interaction is low to moderate, as a result they are not well represented in the climate models, and in turn are recognized as major uncertainties in the future climate projections. In South Asian monsoon regions, the aerosol forcing response to water cycle is even more complicated. Substantial amount of transported dust from Middle East countries and adjacent deserts get accumulated over Indian subcontinent (mainly North India and Indo Gangetic Plains; IGP) and further coated with black carbon (BC) produced from local emission, which make the atmospheric physics and chemistry of the aerosol more complex over the region. Here we review earlier studies and recapitulate our current understanding of absorbing aerosols on Indian monsoon circulation and rainfall from observational evidences and variety of numerical model simulations. This review begins with current understanding of the absorbing aerosols and interactions with Indian summer monsoon, followed by discussion on various working hypotheses, observational and modeling perspective, local and remote impacts. The key open questions and suggestions for future research priorities are delineated to improve the current understanding about the relationship between absorbing aerosols and Indian summer monsoon.

  13. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  14. Orbital forcing on West African monsoon system revealed by KZai 02 pollen record spectral analysis

    NASA Astrophysics Data System (ADS)

    Dalibard, Mathieu; Popescu, Speranta-Maria; Pittet, Bernard; Fernandez, Vincent; Marsset, Tania; Droz, Laurence; Suc, Jean-Pierre

    2013-04-01

    The present-day intertropical climate is forced by yearly fluctuations of insolation reorganizing pressure cells. They control, via the wind system, the variations of the precipitation front known as the InterTropical Convergence Zone (ITCZ). Its latitudinal oscillation drives a strong seasonality of rainfalls over Africa. However, connections between African climate during Pleistocene and orbital forcing are blurred by high-latitudes and local direct influence of insolation and need further investigations. The study of KZai 02 core pollen content provides a high-resolution record of changes in West African plant ecosystems during the last 160 kyrs. Spectral analyses were performed on pollen signals to identify periodicity in vegetation dynamics related to environmental fluctuations. The large range of frequencies detected testifies for the sensibility of African biotopes to past climate fluctuations. Milankovitch parameters, especially precession, are identified within variations of the ecological groups of KZai 02 pollen record and interpreted in terms of West African monsoon system variability. Asynchrony in the different plant ecosystem fluctuations suggests the out of step influence of several climatic parameters (precipitation, CO2, temperature) involving local insolation and high-latitude influence. Spectral analysis also reveals sub-Milankovitch periods related to (1) Heinrich and Dansgaard/Oeschger glacial pulsation events and (2) East Asian monsoon oscillations controlled by ice sheet pulses testifying for the strong relationship between low- and high-latitude climate changes.

  15. Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations

    NASA Astrophysics Data System (ADS)

    Barret, B.; Ricaud, P.; Mari, C.; Attié, J.-L.; Bousserez, N.; Josse, B.; Le Flochmoën, E.; Livesey, N. J.; Massart, S.; Peuch, V.-H.; Piacentini, A.; Sauvage, B.; Thouret, V.; Cammas, J.-P.

    2008-06-01

    The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the

  16. Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations

    NASA Astrophysics Data System (ADS)

    Barret, B.; Ricaud, P.; Mari, C.; Attié, J.-L.; Bousserez, N.; Josse, B.; Le Flochmoën, E.; Livesey, N. J.; Massart, S.; Peuch, V.-H.; Piacentini, A.; Sauvage, B.; Thouret, V.; Cammas, J.-P.

    2008-02-01

    The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the

  17. Regional Climate Modeling of West African Summer Monsoon Climate: Impact of Historical Boundary Forcing

    NASA Astrophysics Data System (ADS)

    Kebe, I.

    2015-12-01

    In this paper, we analyze and intercompare the performance of an ensemble of three Regional Climate Models (RCMs) driven by three set of Global Climate Models (GCMs), in reproducing seasonal mean climatologies with their annual cycle and the key features of West African summer monsoon over 20 years period (1985-2004) during the present day. The results show that errors in lateral boundary conditions from the GCM members, have an unexpected way on the skill of the RCMs in reproducing regional climate features such as the West African Monsoon features and the annual cycle of precipitation and temperature in terms of outperforming the GCM simulation. It also shows the occurrence of the West African Monsoon jump, the intensification and northward shift of the Saharan Heat Low (SHL) as expressed in some RCMs than the GCMs. Most RCMs also capture the mean annual cycle of precipitation and temperature, including, single and double-peaked during the summer months, in terms of events and amplitude. In a series of RCMs and GCMs experiments between the Sahara region and equatorial Africa, the presence of strong positive meridional temperature gradients at the surface and a strong meridional gradients in the potential temperatures near the surface are obvious, indicating the region of strong vertical shear development enough to establish easterly flow such as the African easterly jet. In addition, the isentropic potential vorticity (IPV) gradient decreases northward in the lower troposphere across northern Africa, with the maximum reversal on the 315-K surface. The region with negative IPV gradient favors the potential instability which has been associated with the growth of easterly waves.

  18. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-11-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all-India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using the NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: (1) control with no aerosol, (2) aerosol radiative effect only and (3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol-monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large-scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. in Clim Dyn 26(7-8):855-864, 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India/northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into meso-scale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be

  19. Predictability of Indian Monsoon Circulation with High Resolution ECMWF Model in the Perspective of Tropical Forecast During the Tropical Convection Year 2008

    NASA Astrophysics Data System (ADS)

    De, S.; Sahai, A. K.

    2013-12-01

    To address some of the issues of project Year of Tropical Convection (YOTC) and the project ATHENA as ongoing international activities, an endeavor has been made for the first time to study the predictability of Indian summer monsoon in the backdrop of tropical predictability using 850 hPa atmospheric circulations with the high resolution (T1279) ECMWF model during the boreal summer of 2008 as one of the focus years of YOTC. The major findings obtained from the statistical forecast have been substantiated by the dynamical prediction in terms of the systematic error energy, its growth rate and the attribution of the dominant nonlinear dynamical processes to error growth. The systematic error energy of T1279 (16 km resolution) ECMWF model are generated in African landmass, India and its adjoining oceanic region, in near equatorial west Pacific and around the Madagascar region where the root mean square errors are observed and the zonal wind anomaly shows poor forecast skill. As far as the inadequate predictability of Indian summer monsoon by T1279 ECMWF model (revealed from the results of project ATHENA) is concerned, the systematic error energy and the error growth over Arabian Sea, in the eastern and western India due to the nonlinear convergence and divergence of error flux along with the erroneous Mascarene high may possibly be the determining factors for not showing any discernable improvement in Indian monsoon during the medium range forecast up to 240 h. This work suggests that the higher resolution of ECMWF model may not necessarily lead to the better forecast of Indian monsoon circulations during 2008 unless a methodology can be devised to isolate the errors due to the nonlinear processes that are inherent within the system.

  20. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  1. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2016-09-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  2. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Mujumdar, M.

    2015-07-01

    The evolution of the Asian summer monsoon (ASM) in a global warming environment is a serious scientific and socio-economic concern since many recent studies have demonstrated the weakening nature of large-scale tropical circulation under anthropogenic forcing. But, how such processes affect the ASM circulation and rainfall is still a matter of debate. This study examines the climate model projections from a selected set of Coupled Model Inter-comparison Project 5 (CMIP5) models to provide a unified perspective on the future ASM response. The results indicate a robust reduction in the large-scale meridional gradient of temperature (MGT) at upper levels (200 hPa) over the ASM region, associated with enhanced ascendance and deep tropospheric heating over the equatorial Pacific in the future climate. The differential heating in the upper troposphere, with concomitant increase (decrease) in atmospheric stability (MGT), weakens the ASM circulation, promotes a northward shift of the monsoon circulation and a widening of the local Hadley cell in the eastern Indian sector. An examination of the water vapour budget indicates the competing effects of the thermodynamic (moisture convergence) and dynamics processes (monsoon circulation) on future ASM rainfall changes. The former component wins out over the later one and leads to the intensification of Indian monsoon rainfall in the CMIP5 projections. However, the diagnostics further show a considerable offset due to the dynamic component.

  3. Precipitation Isotopes Reveal Intensified Indonesian Monsoon Circulation During the Dry Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.

    2014-12-01

    The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the region have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the late Pleistocene. Many of these proxies reconstruct the oxygen and hydrogen isotopic composition of rainfall (δ18Oprecip, δDprecip), a powerful tool for understanding changes in climate. However, an increasing number of studies from the region have highlighted the tendency for δ18Oprecip and δDprecip to reflect regional and/or remote circulation processes rather than local rainfall amounts, complicating the reconstruction of IPWP hydroclimate. To better understand high- and low-latitude drivers of late Pleistocene hydroclimate in the IPWP, precipitation isotopic reconstructions must be constrained with both modern observations and independent proxies for rainfall amount. We present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Sulawesi, from 60,000 years before present to today. We interpret our proxy record with the aid of a new precipitation isotopic dataset from our study site, with daily rainfall isotope measurements to constrain the processes controlling δDprecip. Our Lake Towuti δDwax record is strikingly similar to a speleothem δ18O record from southern Indonesia (Ayliffe et al., 2013) and shares features with other nearby records spanning the Last Glacial Maximum to present. Together, these records indicate that monsoon circulation was intensified in central and southern Indonesia during the glacial period. However, other independent rainfall proxies from Lake Towuti indicate that dry conditions accompanied the intensified monsoon. Regional-scale isotopic depletion during the dry glacial period may have arisen from dynamical and other fractionating processes that

  4. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  5. The Mid-Holocene West African Monsoon strength modulated by Saharan dust and vegetation

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Messori, G.; Zhang, Q.

    2015-12-01

    The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the WAM occurred between 15,000-5,000 years BP, when increased summer precipitation led to the so-called "Green Sahara" and to a reduction in dust emissions from the region. Previous studies have shown that variations in vegetation and soil type can have major impacts on precipitation. However, model simulations are still unable to fully reproduce the intensification and geographical expansion of the African monsoon during that period, even when vegetation over the Sahara is simulated. Here, we use a fully coupled simulation for 6000 years BP in which prescribed Saharan vegetation and dust concentrations are changed in turn. A close agreement with proxy records is obtained only when both Saharan vegetation and dust decrease are taken into account (Fig. 1). The dust reduction extends the monsoon's northern limit further than the vegetation-change case only (Fig. 2), by strengthening vegetation-albedo feedbacks and driving a deeper Saharan Heat Low. The dust reduction under vegetated Sahara conditions leads to a northward shift of the WAM extension that is about twice as large as the shift due to the changes in orbital forcing alone. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the MH WAM. The role of dust is also relevant when looking into the future, since Saharan dust emission may decrease owing to both direct and indirect anthropogenic impacts on land cover.

  6. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  7. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Schmiedl, Gerhard; Seidel, Martin; Krüger, Stefan; Schulz, Hartmut

    2016-03-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the eastern Mediterranean Sea (EMS). The record spans the last ca. 140 kyr. Smectite abundances indicate the influence of the Blue Nile and the Atbara River that have their headwaters in the volcanic rocks of the Ethiopian Highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major African humid periods (AHPs) with enhanced sediment discharge at 132 to < 126 (AHP 5), 116 to 99 (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (> 2 kyr), S4 (3.5 kyr), and S3 (5 kyr). During the last glacial period (Marine Isotope Stages (MISs) 4-2), the long-term changes in the monsoonal system were superimposed by millennial-scale changes in an intensified midlatitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African humid periods.

  8. The impact of a warmer climate on atmospheric circulation with implications for the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Shukla, Sonali Prabhat

    -tropics were largely blocked from the Indian Ocean region, and most of the energy generated by the SST patterns went into maintaining an anomalous atmospheric overturning circulation. This altered background circulation of the Indian Ocean region can impact the South Asian Summer Monsoon (SASM) system. In these simulations, the dynamic monsoon intensity experienced the greatest decrease with tropical warming alone. Lesser SASM weakening occurred when both tropical and high latitude warming were imposed. Given the potential Indo-Pacific SSTs changes under Pliocene and warm climate conditions, Chapters 3 and 4 focus on the implications these changes have for the South Asian Summer Monsoon circulation. Chapter 3 examines the GISS suite of GCMs' ability to reproduce the major features of the South Asian Summer Monsoon (SASM) system. The GISS Model E (atmosphere only), Middle Atmospheres Model 3 (atmosphere only) and the ocean-atmosphere coupled Model E were run using forcings from 1960--2008. Major indices and features of the SASM were evaluated and compared to NCEP/NCAR and ECMWF reanalysis data. It was found that the atmosphere-only Model E better simulated, both in magnitude and variability, the circulatory (wind, vorticity, etc.) components of the SASM, whereas the coupled ModelE better simulated the magnitude of rainfall over the Indian sub-continent. Chapter 3 highlighted the SASM features in the models that need improvement, specifically in the overproduction of rainfall and the underestimation of windspeeds. Given the relatively accurately modelE simulated SASM intensity variability, and acknowledging its underestimation of wind strength, continuing modelE studies of the SASM will focus on large-scale circulation processes, rather than the rainfall distribution and variability. Chapter 4 compares SASM changes under both Pliocene conditions and future climate projections, the latter dictated by the Representative Concentration Pathways (RCPs). A tropical SST forcing, in the

  9. A distal 145 ka sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, W.; Schmiedl, G.; Seidel, M.; Krüger, S.; Schulz, H.

    2015-09-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 145 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to < 122 ka (AHP 5), 113 to 104 ka (AHP 4), and 86 to 74 ka (AHP 3). They lasted much longer than the formation of the related sapropel layers S5, S4 and S3. During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.

  10. ­­­The Role of the Tibetan Plateau in the South Asian Monsoon Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Ortega Arango, S.; Webster, P. J.; Toma, V. E.

    2014-12-01

    The role of the Tibetan Plateau in the South Asian Monsoon circulation is the focus of this study. Typically, the Tibetan Plateau is thought to affect the circulation by acting as an elevated heat source (Molnar et al. 1993). Through radiative effects, the Tibetan Plateau would induce a meridional pressure gradient at upper levels initiating the monsoon circulation. Indeed, numerical experiments have shown that global orography affects the timing of the monsoon onset (Chakraborty et al. 2006), and observations have shown significant correlations between the moist static energy of the Tibetan Plateau's lower atmosphere and the summer monsoon rainfall around the onset and withdraw periods (Rajagopalan and Molnar 2013). Yet, this notion has been recently questioned, and the shielding effect of the orography has been suggested to be the dominant effect in the circulation. This latter theory is supported by numerical experiments suggesting that summer precipitation does not change considerably when removing the Plateau while retaining the Himalayas (Boos and Kuang 2010). Nonetheless, both the Himalayas and the Plateau are likely to play important roles, and further experiments are needed. In this study we construct numerical experiments to further study the role of the Tibetan Plateau in the atmospheric circulation. For the experiments we use SPEEDY, a global climate model of intermediate complexity developed at the Abdus Salam International Centre for Theoretical Physics (Molteni 2003). The experiments are conducted with different regional orographic conditions, so that we can evaluate the impact orography has in determining the characteristics of the monsoon circulation. In all experiments the atmosphere is started from a state of rest and we avoid using climatological fields for sea surface temperature, diabatic heating, and land temperature. This setup is particularly important as we wish to evaluate how the system evolves under different conditions without imposing

  11. Lake Mega-Chad, a West African Monsoon indicator and tipping element

    NASA Astrophysics Data System (ADS)

    Armitage, Simon; Bristow, Charlie; Drake, Nick

    2015-04-01

    From the deglacial period to the mid-Holocene, North Africa was characterised by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines and fluvio-lacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ~15 ka, followed by a return to relatively arid conditions. By 11.5 ka Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly non-linear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles since the northern (Bodélé) basin is currently the World's greatest single dust source, and possibly an important source of limiting nutrients for both the Amazon basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from Bodélé Basin cannot have occurred prior to 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.

  12. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad.

    PubMed

    Armitage, Simon J; Bristow, Charlie S; Drake, Nick A

    2015-07-14

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼ 15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼ 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world's greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.

  13. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad

    PubMed Central

    Armitage, Simon J.; Bristow, Charlie S.; Drake, Nick A.

    2015-01-01

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  14. Influence of Soil Moisture on the Asian and African Monsoons. Part II: Interannual Variability.

    NASA Astrophysics Data System (ADS)

    Douville, H.

    2002-04-01

    The relevance of soil moisture (SM) for simulating the interannual climate variability has not been much investigated until recently. Much more attention has been paid on SST anomalies, especially in the Tropics where the El Niño-Southern Oscillation represents the main mode of variability. In the present study, ensembles of atmospheric integrations based on the Action de Recherche Petit Echelle Grande Echelle (ARPEGE) climate model have been performed for two summer seasons: 1987 and 1988, respectively. The aim is to compare the relative impacts of using realistic boundary conditions of SST and SM on the simulated variability of the Asian and African monsoons. Besides control runs with interactive SM, sensitivity tests have been done in which SM is relaxed toward a state-of-the-art SM climatology, either globally or regionally over the monsoon domain. The simulations indicate that the variations of the Asian monsoon between 1987 and 1988 are mainly driven by SST anomalies. This result might be explained by the strong teleconnection with the ENSO and by a weak SM-precipitation feedback over south Asia (Part I of the study). The influence of SM is more obvious over Africa. The model needs both realistic SST and SM boundary conditions to simulate the observed variability of the Sahelian monsoon rainfall. The positive impact of the SM relaxation is not only due to a local mechanism whereby larger surface evaporation leads to larger precipitation. The best results are obtained when the relaxation is applied globally, suggesting that remote SM impacts also contribute to the improved simulation of the precipitation variability. A relationship between the Sahelian rainfall anomalies and the meridional wind anomalies over North Africa points out the possible influence of the Northern Hemisphere midlatitudes. The comparison of the low- and midtropospheric anomalies in the various pairs of experiments indicates that SM anomalies can trigger stationary waves over Europe, and

  15. Numerical study for characteristic change of Asian summer monsoon circulation and its influence mechanism during the El Nino period

    NASA Astrophysics Data System (ADS)

    Ni, Yunqi; Lin, Yuanbi

    1990-05-01

    In this paper, the relation between Asian summer monsoon circulation and sea surface temperature anomalies over equatorial central-eastern Pacific is investigated by using a global spectral model. This model has nine layers in the vertical and the model variables are represented in the horizontal as truncated expansions of the surface spherical harmonics with rhomboidal truncation at wave number 15. The model involves comparatively complete physical processes and parameterizations with mountains. Using the above model, two experimental schemes are designed, namely control case and anomalous sea surface temperature case. The above two schemes are respectively integrated for forty days and the simulated results are obtained from the last 30-day averaged simulations. The simulations show that positive SST anomalies over equatorial central-eastern Pacific weakens Indian monsoon circulation, decreases precipitation in Indian sub-continent whereas it intensifies East Asian monsoon circulation and increases precipitation in East Asian area. All these results reflect the characteristics of Asian summer monsoon during the El Nino period. In this paper, SST anomalies over equatorial central-eastern Pacific have a direct influence on the intensity and position of subtropical high via the wave train over Northern Hemisphere, which is similar to that suggested by Nitta(1987) and the wave train over Southern Hemisphere has an influence on the intensity of Mascarene high and Australia high resulting in affecting cross equatorial flow. As a result, atmospheric interior heat sources and sinks are redistributed because of the change of cross equatorial flow. And the response of atmosphere to the new heat source and sink has a significant influence on Asian summer monsoon.

  16. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    NASA Astrophysics Data System (ADS)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  17. Reduction of monsoon rainfall in response to past and future land use and land cover changes

    NASA Astrophysics Data System (ADS)

    Quesada, Benjamin; Devaraju, Narayanappa; Noblet-Ducoudré, Nathalie; Arneth, Almut

    2017-01-01

    Land use and land cover changes (LULCC) can have significant biophysical impacts on regional precipitation, including monsoon rainfall. Using global simulations with and without LULCC from five general circulation models, under the Representative Concentration Pathway 8.5 scenario, we find that future LULCC significantly reduce monsoon precipitation in at least four (out of eight) monsoon regions. While monsoon rainfalls are likely to intensify under future global warming, we estimate that biophysical effects of LULCC substantially weaken future projections of monsoons' rainfall by 9% (Indian region), 12% (East Asian), 32% (South African), and 41% (North African), with an average of 30% for projections across the global monsoon region. A similar strong contribution is found for biophysical effects of past LULCC to monsoon rainfall changes since the preindustrial period. Rather than remote effects, local land-atmosphere interactions, implying a decrease in evapotranspiration, soil moisture, and clouds along with more anticyclonic conditions, could explain this reduction in monsoon rainfall.

  18. Numerical simulation of the development of mean monsoon circulation in July

    NASA Technical Reports Server (NTRS)

    Kuo, H. L.; Qian, Y.-F.

    1982-01-01

    Eight different experiments are carried out, ranging from 8 to 20 days, with a primitive equation model consisting of five atmospheric layers and one oceanic layer. The purpose is to investigate the relative importance of radiative heating and deep cumulus condensation, orography, and initial conditions for the development of the mean monsoon circulation from June to July in the 0-180 deg E, 25 deg S - 55 deg N region. Two alternative initial states are used, one based on the observed monthly mean June pressure distribution, the other on the mean June zonal average pressure distribution. Whereas large-scale condensation and actual land and sea distributions are included in every experiment, deep cumulus cone condensation and radiative heating are always taken together. It is found that the means sea level pressure distribution and low-level flow pattern produced by these simulations are in the main determined by the diabatic heating distribution and are influenced somewhat by orography; they are, however, almost independent of the initial state. The low pressure systems are found to develop faster when diurnal variation of solar radiation is allowed for; this is thought to be due mainly to the more vigorous cumulus activity during the day.

  19. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia

    SciTech Connect

    Zhang, Y.; Fu, Rong; Yu, Hongbin; Qian, Yun; Dickinson, Robert; Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.; Fernandes, Katia

    2009-05-30

    Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth > 0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence occurs in northwestern Amazonia (5°S-5°N, 60°W-40 70°W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina.

  20. Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models

    NASA Astrophysics Data System (ADS)

    Paxian, A.; Sein, D.; Panitz, H.-J.; Warscher, M.; Breil, M.; Engel, T.; Tödter, J.; Krause, A.; Cabos Narvaez, W. D.; Fink, A. H.; Ahrens, B.; Kunstmann, H.; Jacob, D.; Paeth, H.

    2016-02-01

    The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.

  1. The representation of low-level clouds during the West African monsoon in weather and climate models

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  2. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K.-M.; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah Seidou; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siegfried; Dirmeyer, Paul; Ruby Leung, L.; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, Natalie M.; Zhang, Zhengqiu

    2016-12-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic

  3. Global wind patterns and associated snow anomalies over Eurasia: predictability and influence on large scale monsoon circulation.

    NASA Astrophysics Data System (ADS)

    Corti, S.; Molteni, F.; Brankovic, C.

    2003-04-01

    In this study we focus on (the relationship between): (i) the global long-lasting (persisting from winter to the early summer) upper tropospheric anomalous circulation; (ii) the tropical SST anomalies (which can determine the kind of flow (i)) (iii) the snow depth anomalies over Eurasia ( which can be determined by (ii) through (i)); (iv) and the large scale monsoon circulation in the following summer (related to (i), (ii) and (iii)). The dataset is the 40-year record (1958-98) of NCEP/NCAR re-analyses for sea surface temperatures and upper air fields, while, for snow depth fields, the Historical Soviet Daily Snow Depth dataset (based on observations at a series of 284 World Meteorological Organization (WMO) stations throughout the Former Soviet Union) is used. First the leading variability patterns of the atmospheric flow are searched for by calculating empirical orthogonal functions (EOFs) of seasonal anomalies. The Eurasian snow depth anomalies and SST anomalies associated with the leading circulation patterns are then identified by computing, for each season, the covariance between the principal components (associated with the EOFs) and the snow/SST anomaly time series. The relationship with the large scale monsoon circulation is evaluated through (lagged) correlations with the Webster and Yang index.

  4. Climatology and dynamics of nocturnal low-level stratus over the southern West African monsoon region

    NASA Astrophysics Data System (ADS)

    Fink, A. H.; Schuster, R.; Knippertz, P.; van der Linden, R.

    2013-12-01

    The southern parts of West Africa, from the coast to about 10°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. We will present the first ever climatology of the diurnal cycle of the low cloud deck based on surface observations and satellite products. In addition, we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds as simulated by the model. The model configuration used for this study has been determined following an extensive sensitivity study, which has shown that at least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. The main conclusions are: (a) The observed stratus deck forms after sunset along the coast, spreads inland in the course of the night, reaches maximum poleward extent at about 10°N around 09-10 local time and dissipates in the early afternoon. (b) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (c) The cloud formation is related to a subtle balance between 'stratogenic' upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at

  5. Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation

    NASA Astrophysics Data System (ADS)

    Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.

    2016-11-01

    Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.

  6. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Messori, Gabriele; Zhang, Qiong

    2016-01-01

    The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the West African Monsoon (WAM) occurred between 15000-5000 yr BP, when increased summer rainfall led to the so-called "Green Sahara" and to a reduction in dust emissions from the region. However, model experiments are unable to fully reproduce the intensification and geographical expansion of the WAM during this period, even when vegetation over the Sahara is considered. Here, we use a fully coupled simulation for 6000 yr BP (Mid-Holocene) in which prescribed Saharan vegetation and dust concentrations are changed in turn. A closer agreement with proxy records is obtained only when both the Saharan vegetation changes and dust decrease are taken into account. The dust reduction strengthens the vegetation-albedo feedback, extending the monsoon's northern limit approximately 500 km further than the vegetation-change case only. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the WAM during the Mid-Holocene.

  7. Associations Between South African Rainfall and The General Circulation

    NASA Astrophysics Data System (ADS)

    Tennant, W. J.

    The atmospheric energy cycle, as described by Lorenz, is fundamental to weather and climate. However, the question is how much of the climatic variability can be ascribed to fluctuations in the energy cycle. This study shows that there are indeed strong associations between summer rainfall in central and northern South Africa and the global energy cycle. These associations are manifest through fluctuations in the tropical Hadley circulations, that affect the baroclinicity of the mid-latitudes, that in turn force tropical and sub-tropical circulations. Twice-daily fields from the NCEP/NCAR reanalysis data are used to calculate at- mospheric available potential and kinetic energy and the conversions between these energy forms for mean and eddy components in time and space. Self-organizing maps (SOMs) are used to determine dominant modes within these atmospheric data. The rel- ative frequency of these modes are then assessed for periods of different rainfall char- acteristics. These include, among others, wet and dry seasons and the spatial spread of rainfall. These associations provide insight into the causes of rainfall variability in the African region and open new possibilities in the field of seasonal prediction. If General Circu- lation Models (GCMs) are able to capture fluctuations in the global energy cycle accu- rately, which does seem likely given some preliminary results, more accurate seasonal forecasts may be attempted. This despite the GCMs having difficulty in simulating the smaller-scale motion and associated non-linear interaction.

  8. Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Gong, Dao-Yi; Guo, Dong; Li, Sang; Kim, Seong-Joong

    2017-02-01

    This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979-2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S-5°N and descending over 15°-25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.

  9. Role of Atmospheric Circulation and Westerly Jet Changes in the mid-Holocene East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Kong, W.; Chiang, J. C. H.

    2014-12-01

    The East Asian Summer Monsoon (EASM) varies on inter-decadal to interglacial-glacial timescales. The EASM is stronger in the mid-Holocene than today, and these changes can be readily explained by orbitally-driven insolation increase during the boreal summer. However, a detailed understanding of the altered seasonal evolution of the EASM during this time is still lacking. In particular, previous work has suggested a close link between seasonal migration of the EASM and that of the mid-latitude westerlies impinging on the Tibetan Plateau. In this study, we explore, this problem in PMIP3 climate model simulations of the mid-Holocene, focusing on the role of atmospheric circulation and in particular how the westerly jet modulates the East Asia summer climate on paleoclimate timescales. Analysis of the model simulations suggests that, compared to the preindustrial simulations, the transition from Mei-Yu to deep summer rainfall occurs earlier in the mid-Holocene. This is accompanied by an earlier weakening and northward shift of westerly jet away from the Tibetan Plateau. The variation in the strength and the 3-D structure of the westerly jet in the mid-Holocene is summarized. We find that changes to the monsoonal rainfall, westerly jet and meridional circulation covary on paleoclimate timescales. Meridional wind changes in particular are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road' teleconnection pattern, riding along the westerly jet. Diagnostic analysis also reveals changes in moist static energy and eddy energy fluxes associated with the earlier seasonal transition of the EASM. Our analyses suggest that the westerly jet is critical to the altered dynamics of the East Asian summer monsoon during the mid-Holocene.

  10. The annual cycle of the West African Monsoon in a two-dimensional model:Mechanisms of the rainband migration

    NASA Astrophysics Data System (ADS)

    Peyrille, P.; Lafore, J. P.; Boone, A. A.

    2015-12-01

    The processes that drive the annual cycle of the West African Monsoon (WAM) are analysed using an idealized meridional-vertical numerical model that includes moist physics. Using the work by Peyrillé and Lafore (2007) as a starting point, the framework is adapted to studying the annual cycle. A suitable forcing methodology for temperature and humidity is derived allowing the 2D model to reproduce the main features of the WAM.A budget analysis of the simulated temperature and humidity variables leads to a picture of the ITCZ seasonal displacement, for which the moistening on the northern side of the ITCZ is key. It is due to the near surface moisture advection by the monsoon flow to the north of the ITCZ, in addition to the turbulent fluxes and shallow convection which transport humidity to the top of the PBL. On a larger scale, the warming of the Saharan Heat Low by turbulence and radiation and the cooling/moistening within the ITCZ by convective downdrafts reinforces the monsoon flow. The mechanism seems at play during the whole seasonal cycle, which is seen as a steady translation of these structures. Sensitivity experiments show the importance of the low level processes such as downdrafts, horizontal advection and water recycling. Although advection is the 1st order process, the water recycling appears as a key element by directly modulating the intensity of rainfall and by allowing the convective downdraft to feed back onto the WAM.

  11. The Response of the South Asian Summer Monsoon Circulation to Intensified Irrigation in Global Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.

    2013-01-01

    Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with

  12. Seasonal forecast quality of the West African monsoon rainfall regimes by multiple forecast systems

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luis Ricardo Lage; García-Serrano, Javier; Doblas-Reyes, Francisco

    2014-07-01

    A targeted methodology to study the West African monsoon (WAM) rainfall variability is considered where monthly rainfall is averaged over 10°W-10°E to take into account the latitudinal migration and temporal distribution of the WAM summer rainfall. Two observational rainfall data sets and a large number of quasi-operational forecast systems, among them two systems from the European Seasonal to Interannual Prediction initiative and six systems from the North American Multi-model Ensemble project, are used in this research. The two leading modes of the WAM rainfall variability, namely, the Guinean and Sahelian regimes, are estimated by applying principal component analysis (PCA) on the longitudinally averaged precipitation. The PCA is performed upon the observations and each forecast system and lead time separately. A statistical model based on simple linear regression using sea surface temperature indices as predictors is considered both as a benchmark and an additional forecast system. The combination of the dynamical forecast systems and the statistical model is performed using different methods of combination. It is shown that most forecast systems capture the main features associated with the Guinean regime, that is, rainfall located mainly south of 10°N and the northward migration of rainfall over the season. On the other hand, only a fraction of the forecast systems capture the characteristics of the rainfall signal north of 10°N associated with the Sahelian regime. A simple statistical model proves to be of great value and outperforms most state-of-the-art dynamical forecast systems when predicting the principal components associated with the Guinean and Sahelian regimes. Combining all forecast systems do not lead to improved forecasts when compared to the best single forecast system, the European Centre for Medium-Range Weather Forecasts System 4 (S4). In fact, S4 is far better than any forecast system when predicting the variability of the WAM rainfall

  13. Global aspects of monsoons

    NASA Technical Reports Server (NTRS)

    Murakami, T.

    1985-01-01

    Recent developments are studied in three areas of monsoon research: (1) global aspects of the monsoon onset, (2) the orographic influence of the Tibetan Plateau on the summer monsoon circulations, and (3) tropical 40 to 50 day oscillations. Reference was made only to those studies that are primarily based on FGGE Level IIIb data. A brief summary is given.

  14. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  15. Near-Surface Monsoonal Circulation of the Vietnam East Sea from Lagrangian Drifters

    DTIC Science & Technology

    2015-09-30

    We intend to make new Lagrangian and Eulerian observations to measure the seasonal circulation 1) in the coastal waters of Vietnam and 2) in the SCS...circulation models of the SCS and its coastal waters . APPROACH 1) Deploy SVP drifters in the SCS to resolve the seasonal basin scale near-surface

  16. Interannual- to multicentiennial-scale variability in the West African Monsoon during the Eemian

    NASA Astrophysics Data System (ADS)

    McKay, N. P.; Overpeck, J. T.; Shanahan, T. M.; Peck, J. A.; King, J. W.; Scholz, C. A.; Heil, C. W.

    2011-12-01

    The Eemian was the last interglacial period prior to the Holocene, lasting from 130 to 118 ka. Whereas annual insolation during the Eemian was comparable to the Holocene, the substantial differences in seasonal forcing and the reduced extent of continental ice sheets make the interval an important benchmark for understanding how altered climatic forcing drives changes in both global and regional climate. Climate variability during the period is, however, poorly understood, especially on annual to decadal timescales. Here we present the initial results of 4,000-yr-long annually-resolved varve record from the Lake Bosumtwi from the early Eemian (ca. 130 to 126 ka). Lake Bosumtwi (6.5°N, 1.4°W) is a 1.07 Ma impact crater lake in southern Ghana. The lake is hydrologically closed, and is relatively small, and consequently, is particularly sensitive to changes in effective moisture and the West African Monsoon (WAM). In 2004, an ICDP lake drilling expedition recovered the complete 291-m sediment sequence that spans the 1 Myr history of the lake. More than half of the 1 Myr sediment sequence appears to be annually laminated, including the late Holocene. This allows us the rare opportunity to compare long, annually-resolved records between interglacials. We analyzed the varve sequence for major element composition at 25-μm resolution using a high-resolution scanning X-ray fluorescence analyzer (or μXRF). The abundance of terrestrial elements (i.e., Al, Si, K, Ti) in the sediments, as inferred by XRF, has been shown to be a proxy for lake level at Lake Bosumtwi. During the Holocene, lake level in Lake Bosumtwi generally tracked summer insolation; for most of the early Holocene lake level was near the crater rim and the lake overflowed. Summer insolation was substantially higher during the early Eemian (up to 30 W m-2), however there is no evidence of comparably high lake level at Lake Bosumtwi during any part of last interglacial. In contrast, abundant evidence from the

  17. Interannual vs decadal SST forced responses of the West African monsoon

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fonseca, Belen

    2010-05-01

    One of the strongest interdecadal signals on the planet has been observed in the Sahelian rainfall during the second half of the XXth century, from wet conditions in the 50's and 60's to drier conditions after the 70's. Parallel to this, several decadal signals have experienced a change from the 70's, and also the influence of the global warming has increased from this decade. From a global perspective the West African rainfall variability is highly modulated by SST forced signals. Many works have pointed out to the Atlantic and Pacific equatorial modes influence on interannual timescales; and to the AMO and the Pacific and Indian Ocean at multidecadal timescales. In the AMMA-EU context the modulation of the interannual modes by the decadal variability together with the influence of the GW has been studied by analysing the interannual modes of variability before and after the 70's. The results indicate the presence of different interannual telecconections between these two periods and, hence, of different anomalous rainfall responses. The importance of the background state modulated by multidecadal variability in the interannual modes is stated in this work. Also, an interesting discussion appears if we wonder whether or not the background state is affected, in turn, by anthropogenic climate change. Recent observational and GCM studies have shown, following the results of Polo et al. (2008), how the Atlantic and Pacific Niños present a dynamical link during the last decades of the XX century (Rodriguez-Fonseca et al., 2009). In this way, the positive (negative) phase of the summer Pacific Niño signal has been found to be connected with a negative (positive) phase of the Equatorial Atlantic mode (EM or Atlantic Niño, Polo et al., 2008); a pattern which leads the summer Atlantic variability. The determinant impact of this connection on the WA monsoon has been addressed by defining a global summer tropical mode accounting for more than the 60% of the rainfall

  18. Meridional Circulation Cells Observed In The Upper Troposphere Over Suriname During The Monsoon Period

    NASA Astrophysics Data System (ADS)

    Fortuin, P.; Kelder, H.

    Since September 1999, weekly balloon sondes are released at tropical Paramaribo sta- tion (5.8N 55.2W), located at the northern coast of South America. The station lies approximately in the middle of the annual migration range of the ITCZ, and therefore experiences either a northeast or a southeast trade wind regime (ITCZ respectively to the south, north). The wet season corresponds with the period of northeasterly trade winds (December-July) and is normally interrupted by a short dry period (February- March) when the ITCZ lies farthest to the south. During this monsoon period a sys- tematic return flow to higher latitudes can be detected, centered around 12 km (200 hPa), which seems to constitute the upper branch of the Hadley cell. However, this upper branch of the Hadley cell seems to be flanked above and below by southward flow. On closer inspection, these meridional sub-cells persist in a domain of negative potential vorticity, brought about by the horizontal gradient in zonal wind near the Equator as the northern subtropical jet reaches its southern-most point. As predicted by Stevens (1982), this inertially unstable domain responds with vertically sctacked meridional flow cells, in order to restore a minimum horizontal shear in zonal wind near the Equator. These meridional cells continuously exhibit alternating periods of growth and decay, on a time-scale consistent with inertial instability. Their meridional extent is from the Equator to approcimately 10-12 degrees North, such that Paramaribo (at 5.8N) witnesses approximately the maximal merinional wind velocity near the cen- ter of these cells. Due to their persistent recurring nature in the monsoon period, they leave a signature on the water vapor distribution in the upper troposphere, which shows a dry layer sandwithced between wetter layers - with a spatial distribution similar to the sub-cellular flow.

  19. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    NASA Technical Reports Server (NTRS)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  20. West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges

    NASA Astrophysics Data System (ADS)

    Poan, E. D.; Gachon, P.; Dueymes, G.; Diaconescu, E.; Laprise, R.; Seidou Sanda, I.

    2016-11-01

    The West African monsoon intraseasonal variability has huge socio-economic impacts on local populations but understanding and predicting it still remains a challenge for the weather prediction and climate scientific community. This paper analyses an ensemble of simulations from six regional climate models (RCMs) taking part in the coordinated regional downscaling experiment, the ECMWF ERA-Interim reanalysis (ERAI) and three satellite-based and observationally-constrained daily precipitation datasets, to assess the performance of the RCMs with regard to the intraseasonal variability. A joint analysis of seasonal-mean precipitation and the total column water vapor (also called precipitable water— PW) suggests the existence of important links at different timescales between these two variables over the Sahel and highlights the relevance of using PW to follow the monsoon seasonal cycle. RCMs that fail to represent the seasonal-mean position and amplitude of the meridional gradient of PW show the largest discrepancies with respect to seasonal-mean observed precipitation. For both ERAI and RCMs, spectral decompositions of daily PW as well as rainfall show an overestimation of low-frequency activity (at timescales longer than 10 days) at the expense of the synoptic (timescales shorter than 10 days) activity. Consequently, the effects of the African Easterly Waves and the associated mesoscale convective systems are substantially underestimated, especially over continental regions. Finally, the study investigates the skill of the models with respect to hydro-climatic indices related to the occurrence, intensity and frequency of precipitation events at the intraseasonal scale. Although most of these indices are generally better reproduced with RCMs than reanalysis products, this study indicates that RCMs still need to be improved (especially with respect to their subgrid-scale parameterization schemes) to be able to reproduce the intraseasonal variance spectrum adequately.

  1. Stratospheric variability of wave activity and parameters in equatorial coastal and tropical sites during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Kafando, P.; Chane-Ming, F.; Petitdidier, M.

    2016-12-01

    Recent numerical studies in stratospheric dynamics and its variability as well as climate, have highlighted the need of more observational analyses to improve simulation of the West African monsoon (WAM). In this paper, activity and spectral characteristics of short-scale vertical waves (wavelengths <4 km) are analysed in equatorial coastal and tropical lower stratosphere during the WAM. A first detailed description of such waves over West Africa is derived from high-resolution vertical profiles of temperature and horizontal wind obtained during Intensive Observation Period of the African Monsoon Multidisciplinary Analyses (AMMA) Campaign 2006. Monthly variation of wave energy density is revealed to trace the progression of the inter-tropical convergence zone (ITCZ) over West Africa. Mesoscale inertia gravity-waves structures with vertical and horizontal wavelengths of 1.5-2.5 and 400-1100 km respectively and intrinsic frequencies of 1.1-2.2 f or periods <2 days are observed in the tropical LS with intense activity during July and August when the WAM is installed over the tropical West Africa. Over equatorial region, gravity waves with intrinsic frequencies of 1.4-4 f or periods <5.2 days, vertical wavelength of 2.1 km and long horizontal wavelengths of 1300 km are intense during the WAM coastal phase. From July to October, gravity waves with intrinsic frequencies of 1.2-3.8 f or periods <6 days, vertical wavelength of 2.1 km and horizontal wavelengths of 1650 km are less intense during the WAM Sahelian phase of the WAM, March-June. Unlike potential energy density, kinetic energy density is observed to be a good proxy for the activity of short-scale vertical waves during the WAM because quasi-inertial waves are dominant. Long-term wave activity variation from January 2001 to December 2009, highlights strong year-to-year variation superimposed on convective activity and quasi-biennial oscillation-like variations especially above tropical stations.

  2. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all

  3. Coupled marine productivity and salinity and West African monsoon variability over the last 30,000 years in the eastern equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marret, F.; Kim, S.-Y.; Scourse, J.; Kennedy, H.

    2009-04-01

    Marine cores collected off west equatorial Africa have highlighted transfer of terrigenous material in the close ocean that have had a deep influence on the marine productivity for the last 30,000 years. The strength of the West African Monsoon has varied though time, from weak during glacial periods to strong during interglacials. In consequence, the amount of precipitation on the continent had drastic effect on the vegetation cover and soil erosion. Studies of marine cores have enabled the observation of changes in vegetation cover, from extended equatorial rainforest to expansion of savannahs. In association with open grassland association, soil is open to erosion, although precipitation is less; conversely, during periods of extended rainforest in a context of strong monsoon, soil erosion is minimised to the presence of trees. In both cases, terrigenous material is flushed out to the adjacent marine domain and has a profound influence on the marine biota. Three marine cores were studied from a north south transect, from Cameroon to Angola (off Sanaga, off Ogouée, and off Congo rivers), for their palynomorph contents. All cores contain a robust chronology based on radiocarbon dates and two have stable isotope data, allowing comparison. Dinoflagellate cysts were studied for retracing sea-surface conditions such as temperature, salinity and productivity whereas pollen were used to assess changes in the vegetation on the close continent for the last 30,000 years (1). A number of pollen records from terrestrial sequences from equatorial central Africa document the dynamics of the lowland rainforest and savannah in relation to climatic changes during the Holocene. Prior to the Holocene, continental records are scarce in this vast region and/or only allow reconstruction of the local vegetation. In our records, terrestrial proxies (pollen, spores, and charred grass cuticles) signal changes in the expansion/regression of the lowland rainforest which we relate to the

  4. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene

    NASA Astrophysics Data System (ADS)

    Kutzbach, J.; Bonan, G.; Foley, J.; Harrison, S. P.

    1996-12-01

    FOSSIL pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1-4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5-7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.

  5. Simulation Study of Effects of Solar Irradiance and Sea Surface Temperature on Monsoons and Global Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Mehta, V.; Lau, W. K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A recent version of the GEOS 2 GCM was used to isolate the roles of the annual cycles of solar irradiation and/or sea-surface temperatures (SSTs) on the simulated circulation and rainfall. Four 4-year long integrations were generated with the GCM. The first integration, called Control Case, used daily-interpolated SSTs from a 30 year monthly SST climatology that was obtained from the analyzed SST-data, while the solar irradiation at the top of the atmosphere was calculated normally at hourly intervals. The next two cases prescribed the SSTs or the incoming solar irradiance at the top of the atmosphere at their annual mean values, respectively while everything else was kept the same as in the Control Case. In this way the influence of the annual cycles of both external forcings was isolated.

  6. Modeling bio-geophysical feedback in the African and Indian monsoon region

    NASA Astrophysics Data System (ADS)

    Claussen, M.

    An asynchronously coupled global atmosphere-biome model is used to assess the dynamics of deserts and drought in the Sahel, Saudi-Arabia and the Indian subcontinent. Under present-day conditions of solar irradiation and sea-surface temperatures, the model finds two solutions: the first solution yields the present-day distribution of vegetation and deserts and the second shows a northward spread of savanna and xerophytic shrub of some 600 km, particularly in the southwest Sahara. Comparison of atmospheric states associated with these solutions corroborates Charney's theory of a self-induction of deserts through albedo enhancement in the Sahel. Over the Indian subcontinent, changes in vegetation are mainly caused by a positive feedback between increased soil moisture and stronger summer monsoon.

  7. Circulation and haline structure of a microtidal bay in the Sea of Japan influenced by the winter monsoon and the Tsushima Warm Current

    NASA Astrophysics Data System (ADS)

    Itoh, Sachihiko; Kasai, Akihide; Takeshige, Aigo; Zenimoto, Kei; Kimura, Shingo; Suzuki, Keita W.; Miyake, Yoichi; Funahashi, Tatsuhiro; Yamashita, Yoh; Watanabe, Yoshiro

    2016-08-01

    Mooring and hydrographic surveys were conducted in Tango Bay, a microtidal region of freshwater influence (ROFI) in the Sea of Japan, in order to clarify the circulation pattern in the bay and its driving forces. Monthly mean velocity records at four stations revealed an inflow and outflow at the eastern and northern openings of the bay, respectively, indicating an anticyclonic circulation across the bay mouth. The circulation was significantly intensified in winter, in accordance with the prevailing NW wind component of the winter monsoon. The anticyclonic circulation at the bay mouth was connected to an estuarine circulation that was evident near the mouth of the Yura River at the bay head. Surface salinity just offshore of the river mouth was closely related to the Yura River discharge, whereas in lower layers the offshore water had a stronger influence on salinity. Prior to a seasonal increase in the Yura River discharge, summer salinity decreased markedly through the water column in Tango Bay, possibly reflecting intrusion of the Changjiang Diluted Water transported by the Tsushima Warm Current. In contrast with the traditional assumption that estuarine circulation is controlled mainly by river discharge and tidal forcing, the circulation in Tango Bay is strongly influenced by seasonal wind and the Tsushima Warm Current. The narrow shelf may be responsible for the strong influence of the Tsushima Warm Current on circulation and water exchange processes in Tango Bay.

  8. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  9. Seasonal Evolution and Variability Associated with the West African Monsoon System

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2003-01-01

    In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident

  10. African monsoon variations and persistence of the Megalake Chad during the late Pliocene

    NASA Astrophysics Data System (ADS)

    Contoux, Camille; Ramstein, Gilles; Jost, Anne; Sepulchre, Pierre; Schuster, Mathieu; Braconnot, Pascale

    2013-04-01

    Megalake Chad (MLC) occurrences are widely documented for the mid-Holocene period but also for the Mio-Pliocene (Schuster et al., 2009). From 7 to 3 Ma, analysis of sedimentary deposits of the Djurab desert region show desertic to full-lacustrine facies, suggesting an alternance of dry to wet climates (Schuster, 2002, Schuster et al., 2009), lacustrine conditions being associated to fauna dispersal and early hominid presence (e.g. Brunet et al., 1995, 2002). Some studies (e.g. Braconnot and Marti, 2003) suggest a control of precession on monsoon. Using late Pliocene climate simulations and different orbital configurations, can we constrain variations of the Megalake and reach the water volume of 350 000 km² proposed by several authors (Ghienne et al., 2002; Leblanc et al., 2006)? Can we propose a timing for the MLC occurrences? First, in order to better characterize the precession role on Megalake Chad occurrences during the late Pliocene, we use the IPSLCM5A coupled ocean atmosphere climate model forced with four different orbital configurations and mid-Pliocene boundary conditions. The four orbital configurations, all around 3 Ma, correspond to maximum and minimum insolations at 30°N at summer solstice or autumn equinox. We find important increases of precipitation in North Africa, controlled by insolation maxima at 30°N at summer solstice and autumn equinox, i.e. related to an angular precession between 270° and 10°. When used to force a surface routing model (HYDRA, Coe, 2000), these precipitation increases lead to MLC episodes, suggesting the MLC could be sustained during at least 5 kyr of a precession cycle. However, this method does not account for the lake feedback on climate. Indeed, during wet phases, the MLC becomes an important evaporation source, modifying the climate of the Chad basin. To investigate this aspect, we use the LMDZ4 atmospheric model including an open water surface module (Krinner, 2003). We find that deep convection is suppressed

  11. Past changes of the North African monsoon intensity between 5 and 6.2 My, impact of the Messinian Salinity Crisis (MSC)

    NASA Astrophysics Data System (ADS)

    Ségueni, F.; Colin, C.; Siani, G.; Frank, N.; Blamart, D.; Kissel, C.; Liu, Z.; Richter, T.; Suc, J.

    2006-12-01

    A high resolution multiproxy study by oxygen isotope record (δ18O) on benthic foraminifera (Cibicides wuellerstorfii), magnetic susceptibility, clay mineralogy (DRX), major - trace elements (XRF core scanner and ICPMS) and Rb/Sr - Nd isotopes was carried out from site ODP 659 along the Cape Verde off Africa. The aim was to reconstruct variations of African Monsoon during the Mio-Pliocene in the time interval from 5 My to 6,2 My. Chronology was established by linear interpolation between 3 bio-events based on calcareous nannoplancton zones, 2 glacial stages TG12 and TG22 identified on δ18O records and by tuning the δ18O and magnetic susceptibility records to the orbital parameter of obliquity and precession. Results indicate that between 5 to 6.2 My variability in the eolian input from Sahara and the coastal upwelling intensity are anti-correlated and make it possible to retrace the evolution of northern African Monsoon. The latter co- varies mainly with the insolation received by the earth at low latitude during the summer. Maximal insolation enhance summer monsoonal effects by increasing wetter conditions on Sahel and NE dominance wind system cause a reduced eolian input and an increased biogenic sea surface productivity by coastal upwelling. On the other hand, minimal insolation reinforce winter monsoon that create a more arid climate on Sahel and stronger westward winds that increase eolian flux on Cap Verde with a reduced upwelling effect on sea surface productivity. At a longer time scale, the end of the MSC is correlated with a major change of the African Monsoon intensity. Finally, the δ18O record on C.wuellerstorfii suggests that global eustatic processes didn't play a key role in the MSC history. Nevertheless, transition between glacial stage TG12 and the interglacial TG11 seems to correspond to a major event within the MSC, and associated to the beginning of the upper evaporite deposits. Thus, the facies of the Lago Mare of the upper evaporites would

  12. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    NASA Technical Reports Server (NTRS)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  13. Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Li, R.; Jin, J.; Wang, S.-Y.; Gillies, R. R.

    2015-03-01

    Precipitation from the West African Monsoon (WAM) provides food security and supports the economy in the region. As a consequence of the intrinsic complexities of the WAM's evolution, accurate simulations of the WAM and its precipitation regime, through the application of regional climate models, are challenging. We used the coupled Weather Research and Forecasting (WRF) and Community Land Model (CLM) to explore impacts of radiation physics on the precipitation and dynamics of the WAM. Our results indicate that the radiation physics schemes not only produce biases in radiation fluxes impacting radiative forcing, but more importantly, result in large bias in precipitation of the WAM. Furthermore, the different radiation schemes led to variations in the meridional gradient of surface temperature between the north that is the Sahara desert and the south Guinean coastline. Climate diagnostics indicated that the changes in the meridional gradient of surface temperature affect the position and strength of the African Easterly Jet as well as the low-level monsoonal inflow from the Gulf of Guinea. The net result was that each radiation scheme produced differences in the WAM precipitation regime both spatially and in intensity. Such considerable variances in the WAM precipitation regime and dynamics, resulting from radiation representations, likely have strong feedbacks within the climate system and so have inferences when it comes to aspects of predicted climate change both for the region and globally.

  14. African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Alonso-Pérez, S.; Pey, J.; Artíñano, B.; de Bustos, J. J.; Alastuey, A.; Querol, X.

    2014-07-01

    The occurrence of African dust outbreaks over different areas of the western Mediterranean Basin were identified on an 11-year period (2001-2011). The main atmospheric circulation patterns causing the transport of African air masses were characterized by means of an objective classification methodology of atmospheric variable fields. Next, the potential source areas of mineral dust, associated to each circulation pattern were identified by trajectory statistical methods. Finally, an impact index was calculated to estimate the incidence of the African dust outbreaks produced during each circulation pattern, in the areas of study. Four circulation types were obtained (I-IV) and three main potential source areas of African dust were identified (Western Sahara and Morocco; Algeria; northeastern Algeria and Tunisia). The circulation pattern I (24% of the total number of episodic days) produced the transport of dust mainly in summer from Western Sahara, southern Morocco and Tunisia. The circulation pattern IV (33%) brings dust mainly from areas of northern and southern Algeria in summer and autumn, respectively. The circulation pattern II (31%) favored the transport of dust predominantly from northern Algeria, both in spring and summer. Finally, the circulation type III was the less frequently observed (12%). It occurred mainly in spring and with less intensity in winter, carrying dust from Western Sahara and southern Morocco. Our findings point out that the most intense episodes over the western Mediterranean Basin were produced in the summer period by the circulation type I (over the western side of the Iberian Peninsula) and the circulation type IV (over the central and eastern sides of the Iberian Peninsula and the Balearic Islands).

  15. Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic

    PubMed Central

    Nakouné, Emmanuel; Kamgang, Basile; Berthet, Nicolas; Manirakiza, Alexandre; Kazanji, Mirdad

    2016-01-01

    Background Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated. Methodology/Principal Findings To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster. Conclusion and significance This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs. PMID:27760144

  16. African horse sickness in The Gambia: circulation of a live-attenuated vaccine-derived strain.

    PubMed

    Oura, C A L; Ivens, P A S; Bachanek-Bankowska, K; Bin-Tarif, A; Jallow, D B; Sailleau, C; Maan, S; Mertens, P C; Batten, C A

    2012-03-01

    African horse sickness virus serotype 9 (AHSV-9) has been known for some time to be circulating amongst equids in West Africa without causing any clinical disease in indigenous horse populations. Whether this is due to local breeds of horses being resistant to disease or whether the AHSV-9 strains circulating are avirulent is currently unknown. This study shows that the majority (96%) of horses and donkeys sampled across The Gambia were seropositive for AHS, despite most being unvaccinated and having no previous history of showing clinical signs of AHS. Most young horses (<3 years) were seropositive with neutralizing antibodies specific to AHSV-9. Eight young equids (<3 years) were positive for AHSV-9 by serotype-specific RT-PCR and live AHSV-9 was isolated from two of these horses. Sequence analysis revealed the presence of an AHSV-9 strain showing 100% identity to Seg-2 of the AHSV-9 reference strain, indicating that the virus circulating in The Gambia was highly likely to have been derived from a live-attenuated AHSV-9 vaccine strain.

  17. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon.

    PubMed

    Donnelly, Jeffrey P; Woodruff, Jonathan D

    2007-05-24

    The processes that control the formation, intensity and track of hurricanes are poorly understood. It has been proposed that an increase in sea surface temperatures caused by anthropogenic climate change has led to an increase in the frequency of intense tropical cyclones, but this proposal has been challenged on the basis that the instrumental record is too short and unreliable to reveal trends in intense tropical cyclone activity. Storm-induced deposits preserved in the sediments of coastal lagoons offer the opportunity to study the links between climatic conditions and hurricane activity on longer timescales, because they provide centennial- to millennial-scale records of past hurricane landfalls. Here we present a record of intense hurricane activity in the western North Atlantic Ocean over the past 5,000 years based on sediment cores from a Caribbean lagoon that contain coarse-grained deposits associated with intense hurricane landfalls. The record indicates that the frequency of intense hurricane landfalls has varied on centennial to millennial scales over this interval. Comparison of the sediment record with palaeo-climate records indicates that this variability was probably modulated by atmospheric dynamics associated with variations in the El Niño/Southern Oscillation and the strength of the West African monsoon, and suggests that sea surface temperatures as high as at present are not necessary to support intervals of frequent intense hurricanes. To accurately predict changes in intense hurricane activity, it is therefore important to understand how the El Niño/Southern Oscillation and the West African monsoon will respond to future climate change.

  18. Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation

    NASA Astrophysics Data System (ADS)

    Awasthi, Neeraj; Ray, Jyotiranjan S.; Singh, Ashutosh K.; Band, Shraddha T.; Rai, Vinai K.

    2014-10-01

    present a geochemical and Sr-Nd isotopic study on a sediment core collected from the Andaman Sea in an attempt to reconstruct the Late Quaternary weathering and erosion patterns in the watersheds of the river systems of Myanmar and understand their controlling factors. Age control is based on nine radiocarbon dates and δ18O stratigraphy. The rate of sedimentation was strongly controlled by fluctuations of the monsoon. We identify three major sediment provenances: (1) the Irrawaddy catchment, (2) the western slopes of the Indo-Burman-Arakan (IBA) mountain ranges and the Andaman Islands, and (3) the catchments of Salween and Sittang and the Bengal shelf, with the first two contributing 30-60% of the material. Enhanced contributions from juvenile sources and corresponding positive shifts of δ18O are observed at seven time periods (11-14, 20-23, 36, 45, 53, 57, and 62 ka) of which five are synchronous with cooling of the northern hemisphere, suggesting a link between the changes in sediment provenances and the shifting of the locus of the summer monsoon, southward from the Himalayas, without substantial reduction in intensity. Our data, and that from other cores in the region suggest that an eastward moving surface current disperses sediments, derived from the Bengal shelf and western margin of Myanmar, from the eastern Bay of Bengal into the western Andaman Sea and that its strength has increased since the LGM. The existence of this current during the LGM implies that the Andaman Sea and the Bay of Bengal were well connected during the last glacial period.

  19. Characterization of the impact of land degradation in the Sahel on the West African monsoon using an ensemble of climate models from the WAMME project

    NASA Astrophysics Data System (ADS)

    Boone, A. A.; Xue, Y.; Ruth, C.; De Sales, F.; Hagos, S.; Mahanama, S. P. P.; Schiro, K.; Song, G.; Wang, G.; Koster, R. D.; Mechoso, C. R.

    2014-12-01

    There is increasing evidence from numerical studies that anthropogenic land-use and land-cover changes (LULCC) can potentially induce significant variations on the regional scale climate. However, the magnitude of these variations likely depends on the local strength of the coupling between the surface and the atmosphere, the magnitude of the surface biophysical changes and how the key processes linking the surface with the atmosphere are parameterized within a particular model framework. One key hot-spot which has received considerable attention is the Sahelian region of West Africa, for which numerous studies have reported a significant increase in anthropogenic pressure on the already limited natural resources in this region, notably in terms of land use conversion and degradation. Thus, there is a pressing need to better understand the impacts of potential land degradation on the West African Monsoon (WAM) system. One of the main goals of the West African Monsoon Modeling andEvaluation project phase 2 (WAMMEII) is to provide basic understandingof LULCC on the regional climate over West Africa, and to evaluate thesensitivity of the seasonal variability of the WAM to LULCC. Theprescribed LULCC is based on recent 50 year period which represents amaximum feasible degradation scenario. In the current study, the LULCCis applied to five state of the art global climate models over afive-year period. The imposed LULCC results in a model-average 5-7%increase in surface albedo: the corresponding lower surface netradiation mainly results in a significant reduction in surfaceevaporation (upwards of 1 mm per day over a large part of the Sahel)which leads to less convective heating of the atmosphere, lowermoisture convergence, increased subsidence and reduced cloud coverover the LULCC zone. The overall impact can be characterized as asubstantial drought effect resulting in a reduction in annual rainfallof 20-40% in the Sahel and a southward shift of the monsoon. In

  20. Circulation controls on southern African precipitation in coupled models: The role of the Angola Low

    NASA Astrophysics Data System (ADS)

    Munday, Callum; Washington, Richard

    2017-01-01

    In southern Africa, models from the latest Coupled Model Intercomparison Project produce a wide variety of rainfall climatologies. Differences between models in rainfall amount reach 70% in the rainy season (December-February; DJF), and the median model overestimates rainfall by between 15 and 40% throughout the annual cycle. This paper investigates the role of an understudied regional circulation feature, the Angola Low, in differentiating between model estimates of precipitation. In austral spring, the Angola Low is a heat low, driven by strong surface heating whereas in DJF it is more similar to a tropical low and is associated with moist instability. In the austral summer, we find that the simulated strength of the Angola Low is associated with between 40 and 60% of the intermodel variability in model mean rainfall across the subcontinent. The relationship is particularly strong along a northwest, southeast axis aligned from Angola down to the Mozambican Channel. Along this axis, models with stronger Angola Lows simulate enhanced, by up to 50 g kg-1 ms-1, northeasterly and northwesterly moisture transport. The enhanced southward moisture flux in models with relatively deep Angola Lows increases the rate of moisture convergence in central areas of the subcontinent and reduces moisture divergence across the Mozambican coast. The results highlight the need to better understand the links between the Angola Low and southern African rainfall and suggest that improving the simulation of the Angola Low can help to constrain model estimates of southern African rainfall.

  1. Energetics and monsoon bifurcations

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2017-01-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  2. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 years: Insights into regional atmospheric circulation and dust-related climate impacts

    NASA Astrophysics Data System (ADS)

    McGee, D.; deMenocal, P. B.; Winckler, G.; Stuut, J. W.; Bradtmiller, L. I.; Mahowald, N. M.; Albani, S.

    2012-12-01

    Reconstructions of eolian dust accumulation in West African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in West African dust emissions over the last 20 ka, including high dust emissions during Heinrich Stadial 1 and the Younger Dryas and lower dust emissions during the African Humid Period, a period of enhanced monsoon precipitation from approximately 11.7-5 ka. The limited spatial extent of these records, as well as the lack of high-resolution flux data, do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 27°N to 19°N along the northwest African margin, as well as from cores in the western tropical Atlantic reflecting downwind deposition. By combining grain size endmember modeling with 230Th-normalized fluxes in these cores, we are able to document spatial and temporal changes in dust loads and grain size distributions within the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the AHP. Our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. Using these new records to tune dust loadings in a fully coupled model of 6 ka climate, we find that low dust fluxes during the AHP may have had a substantial positive feedback on regional precipitation by amplifying the northward displacement of the Atlantic and West African ITCZ.

  3. Gradients in precipitation and seasonality between Central and Eastern Asia (Mongolia, Northern Vietnam) during the Oligocene with implication for earlier monsoonal circulation

    NASA Astrophysics Data System (ADS)

    Boehme, Madelaine; Krings, Michael; Prieto, Jérome; Schneider, Simon

    2010-05-01

    Today Central and Eastern Asia are characterized by strong contrast in the amount and the annual distribution of rainfall as well as the seasonality in temperature, which is attributed to the uplifted Tibetian Plateau generating monsoonal circulation. Whereas Central Asia is characterized by strong continentality with cold winters and little rainfall concentrated in a short rainy season, the southern part of East Asia exhibit a paratropical climate with high amounts in precipitation distributed relatively even through the year. Palaeontological data (vertebrates and plant remains) from the Eocene and Oligocene of Mongolia and Northern Vietnam indicate that a strong gradient in precipitation and seasonality between Central Asia and East Asia was already established during the Oligocene, which emphasise the establishment of substantial monsoonal circulation at that time. Fossil amphibians and reptiles from Mongolia (45° N, 101° E; Böhme 2007) indicate a strong and abrupt drying and winter cooling at the Eocene-Oligocene boundary consistent with previous results (Dupont-Nivet et al. 2007). Late Eocene assemblages are characterized by crocodiles, salamanders and diverse aquatic turtles, whereas Early Oligocene faunas constitutes of pelobatid frogs, agamid and anguid squamates, diverse species of lizards, and an erycine boide snake. The environmental preferences of both contrasting assemblages point to a severe climate event around 34 myr ago, resulting in the lost of permanent freshwater bodies under humid and winter mild climate and the spread of open landscapes without permanent freshwater bodies under a dry arid to semi-arid climate with only a short rainy season. Oligocene reptiles, macro- and micro-botanical remains, as well as palaeosols from Northern Vietnam (22° N, 107° E; Böhme et al. subm.) suggest warm-humid, (para-) tropical climates with low seasonality in temperature and precipitation. Besides a high diversity in semi-aquatic turtles and the

  4. Monsoonal circulation and Central Asian aridity set by a high Eocene Himalaya and the mid-latitude westerlies: Stable isotopic evidence

    NASA Astrophysics Data System (ADS)

    Caves, J. K.; Winnick, M. J.; Graham, S. A.; Sjostrom, D. J.; Mulch, A.; Chamberlain, C. P.

    2014-12-01

    Despite a plethora of field studies and modeling efforts, there remains substantial debate concerning the relative roles of Tibetan Plateau uplift and of global climate change in pacing the Cenozoic evolution of climate in Asia. Distinguishing between these two mechanisms requires knowledge of both moisture transport pathways and topography in Asia through time. Here, we reconstruct the long-term spatial distribution of oxygen isotopes in precipitation in Asia since the early Eocene to examine the relative influence of changing topography and of global climate. We use both new paleosol δ18O data from Mongolia and a compilation of δ18O data from 2,650 paleosol and lacustrine carbonate samples and compare these data with modern precipitation/river δ18O. Across Asia, the spatial distribution of paleo-precipitation δ18O remains remarkably similar through time, with low δ18O in the lee of the Himalaya in southern Tibet, intermediate values in central Tibet, and constant, high δ18O in Central Asia. The long-term consistency in the spatial distribution of δ18O strongly suggests that the same atmospheric processes that today govern Asian climate have been operating since the early Eocene; in contrast, uplift of the Plateau over the Cenozoic has had little impact on moisture delivery to Asia. It thus seems that only a high, southern topographic barrier is necessary to both block southerly moisture and drive monsoonal circulation, supporting recent, modern GCM studies. We combine these results with an isotope-enabled reactive transport model to show that the mid-latitude westerlies have maintained extensive recycling of the cross-Eurasian moisture flux through evapotranspiration, which has kept Central Asia arid to semi-arid for more than 50 Ma. Further, any topographic δ18O signal due to uplift of the northern Plateau has been overprinted by this westerly evapotranspirative recycling flux. We conclude that the climatic impact of the India-Asia collision was set by

  5. Upper Ocean Mixing Processes and Circulation in the Arabian Sea during Monsoons using Remote Sensing, Hydrographic Observations and HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    Arabian Sea experiences more evaporation than precipitation and is connected to the warm and highly saline waters of the Persian Gulf and Red Sea...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Upper Ocean Mixing Processes and Circulation in the...and Ocean Sciences University of South Carolina Columbia, SC 29208 phone: (803) 777-2572 fax: (803) 777-6610 email: sbulusu@geol.sc.edu

  6. Ice-sheet influences on global Monsoon systems (Invited)

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; Elison Timm, O.; Friedrich, T.; Abe-Ouchi, A.; Menviel, L.; Tigchelaar, M.

    2013-12-01

    The waxing and waning of the northern Hemisphere ice-sheets on orbital and millennial timescales and corresponding changes in atmospheric and oceanic circulation played an essential role in modulating monsoon systems globally. Here we review the mechanisms by which changes in ice-sheet orography, global sea-level and freshwater input into the North Atlantic can influence global wind patterns and tropical moisture convergence. Our analysis is based on a series of transient model simulations conducted with the newly developed 3-dimensional coupled ice-sheet-climate model iLOVE. Forced by orbital and greenhouse gas concentrations over the past 80 ka, this model realistically simulates the evolution of Northern Hemisphere ice volume. It is demonstrated that orbital-scale changes in ice-sheet orography influence the South American and African Monsoons, but leave Asian Monsoon systems relatively unaltered. On millennial timescales the situation is very different. Freshwater forcing from calving ice-sheets causes variations of the thermohaline circulation, North Atlantic sea surface temperatures and global wind patterns. Using an earth system model hindcast for the period 30-50 ka in combination with high-resolution hydroclimate proxies, we demonstrate that this mechanism can explain for the bulk of MIS3 global Monsoon variability on millennial-timescales. In addition to these remote influences, rainfall intensity in the dominant Monsoon regions is also modulated by precessional forcing and corresponding shifts of the meridional surface temperature gradients. This presentation will conclude with a brief discussion of gaps in our understanding of how orbital forcing affected Monsoons and Intertropical Convergence Zones during the Pleistocene.

  7. Multi-Scale Predictions of the Asian Monsoons in the NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2013-12-01

    A comprehensive analysis of the major features of the Asian monsoon system in the NCEP Climate Forecast System version 2 (CFSv2) and predictions of the monsoon by the model has been conducted. The intraseasonal-to-interannual variations of both summer monsoon and winter monsoon, as well as the annual cycles of monsoon climate, are focused. Features of regional monsoons including the monsoon phenomena over South Asia, East Asia, and Southeast Asia are discussed. The quasi-biweekly oscillation over tropical Asia and the Mei-yu climate over East Asia are also investigated. Several aspects of monsoon features including the relationships between monsoon and ENSO (including different types of ENSO: eastern Pacific warming and central Pacific warming), extratropical effects, dependence on time leads (initial conditions), regional monsoon features, and comparison between CFSv2 and CFS version 1 (CFSv1) are particularly emphasized. Large-scale characteristics of the Asian summer monsoon including several major dynamical monsoon indices and their associated precipitation patterns can be predicted several months in advance. The skill of predictions of the monsoon originates mostly from the impact of ENSO. It is found that large predictability errors occur in first three lead months and they only change slightly as lead time increases. The large errors in the first three lead months are associated with the large errors in surface thermal condition and atmospheric circulation in the central and eastern Pacific and the African continent. In addition, the response of the summer monsoon to ENSO becomes stronger with increase in lead time. The CFSv2 successfully simulates several major features of the East Asian winter monsoon and its relationships with the Arctic Oscillation, the East Asian subtropical jet, the East Asian trough, the Siberian high, and the lower-tropospheric winds. Surprisingly, the upper-tropospheric winds over the middle-high latitudes can be better simulated

  8. Energetic and hydrological responses of Hadley circulations and the African Sahel to sea surface temperature perturbations

    NASA Astrophysics Data System (ADS)

    Hill, Spencer Alan

    Tropical precipitation is linked through the moist static energy (MSE) budget to the global distribution of sea surface temperatures (SSTs), and large deviations from the present-day SST distribution have been inferred for past climates and projected for global warming. We use idealized SST perturbation experiments in multiple atmospheric general circulation models (AGCMs) to examine the hydrologic and energetic responses in the zonal mean and in the African Sahel to SST perturbations. We also use observational data to assess the prospects for emergent constraints on future rainfall in the Sahel. The tropical zonal mean anomalous MSE fluxes in the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) AM2.1 AGCM due to SST anomalies caused by either historical greenhouse gas or aerosol forcing primarily occur through the time-mean, zonal mean (Hadley) circulation. Away from the Intertropical Convergence Zone (ITCZ), this largely stems from altered efficiency of the Hadley circulation energy transport, i.e. the gross moist stability (GMS). A thermodynamic scaling-based estimate that relates GMS change to the local climatological moisture and temperature change relative to the ITCZ captures most of the qualitative GMS responses. It also yields a heuristic explanation for the well known correlation between low-latitude MSE fluxes and the ITCZ latitude. Severe Sahelian drying with uniform SST warming in AM2.1 is eliminated when the default convective parameterization is replaced with an alternate. The drying is commensurate with MSE convergence due to suppressed ascent balanced by MSE divergence due to increased dry advection from the Sahara. These qualitative energetic responses to uniform warming are shared by five other GFDL models and ten CMIP5 models, although they do not translate into quantitative predictors of the Sahel rainfall response. Climatological values and interannual variability in observations and reanalyses suggest that drying in AM2.1 is exacerbated by

  9. Alongshore and cross-shore circulations and their response to winter monsoon in the western East China Sea

    NASA Astrophysics Data System (ADS)

    Huang, Daji; Zeng, Dingyong; Ni, Xiaobo; Zhang, Tao; Xuan, Jiliang; Zhou, Feng; Li, Jia; He, Shuangyan

    2016-02-01

    An array of four bottom-mounted acoustic Doppler current profilers (ADCPs) were deployed during the winter of 2008 (28 December 2008 to 12 March 2009) along a cross-shelf section in the western East China Sea to investigate the winter circulation and its response to wind. During the observation period, the observed subtidal currents exhibit coherent spatial structure and temporal variation in terms of their mean (seasonal), trend (intra-seasonal), and synoptic variability. The subtidal currents are polarized roughly in the alongshore direction parallel to local isobaths, and the weak cross-shore current is closely linked to the alongshore component. The temporal variation of the currents follows the rhythm of wind stress, sea level, and sea level difference at the synoptic scale. The mean currents are basically composed of two anti-parallel currents in the alongshore direction: the East China Sea coastal current (ECSCC) flows southwestward along the inner shelf and the Taiwan warm current (TWC) flows in the opposite direction along the outer-shelf. The strongest current occurs over the mid-shelf as a coastal jet. The intra-seasonal currents exhibit an expansion and intensification of the ECSCC along with shrinking and weakening the alongshore component of the TWC. There is a significant increase in onshore current particularly over the mid-shelf. The fluctuations of synoptic currents show a significant positive correlation with wind stress, and the fluctuations are negatively correlated with sea level and sea level difference. The coherent spatial structure of the currents indicates that the depth-independent column motion is related to the sea level difference through a barotropic pressure gradient. The vertical shear of currents is related to the density-related baroclinic pressure gradient in the whole water column and to the friction within the surface and bottom boundary layers.

  10. Impact of land surface conditions on the predictability of hydrologic processes and mountain-valley circulations in the North American Monsoon region

    NASA Astrophysics Data System (ADS)

    Xiang, T.; Vivoni, E. R.; Gochis, D. J.; Mascaro, G.

    2015-12-01

    Heterogeneous land surface conditions are essential components of land-atmosphere interactions in regions of complex terrain and have the potential to affect convective precipitation formation. Yet, due to their high complexity, hydrologic processes over mountainous regions are not well understood, and are usually parameterized in simple ways within coupled land-atmosphere modeling frameworks. With the improving model physics and spatial resolution of numerical weather prediction models, there is an urgent need to understand how land surface processes affect local and regional meteorological processes. In the North American Monsoon (NAM) region, the summer rainy season is accompanied by a dramatic greening of mountain ecosystems that adds spatiotemporal variability in vegetation which is anticipated to impact the conditions leading to convection, mountain-valley circulations and mesoscale organization. In this study, we present results from a detailed analysis of a high-resolution (1 km) land surface model, Noah-MP, in a large, mountainous watershed of the NAM region - the Rio Sonora (21,264 km2) in Mexico. In addition to capturing the spatial variations in terrain and soil distributions, recently-developed features in Noah-MP allow the model to read time-varying vegetation parameters derived from remotely-sensed vegetation indices; however, this new implementation has not been fully evaluated. Therefore, we assess the simulated spatiotemporal fields of soil moisture, surface temperature and surface energy fluxes through comparisons to remote sensing products and results from coarser land surface models obtained from the North American Land Data Assimilation System. We focus attention on the impact of vegetation changes along different elevation bands on the diurnal cycle of surface energy fluxes to provide a baseline for future analyses of mountain-valley circulations using a coupled land-atmosphere modeling system. Our study also compares limited streamflow

  11. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-06-01

    The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. Simulated long term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American Monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS as compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and be lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOx. This also affects the distribution of PAN in the UTLS. According to sensitivity simulations with and without lightning, increase in concentrations of PAN (~ 40%), HNO3 (75%), NOx (70%) and ozone (30%) over the regions of convective transport, especially over equatorial Africa and America and comparatively less over the ASM. This indicates that PAN in the

  12. IGF2R Genetic Variants, Circulating IGF2 Concentrations and Colon Cancer Risk in African Americans and Whites

    PubMed Central

    Hoyo, Cathrine; Murphy, Susan K.; Schildkraut, Joellen M.; Vidal, Adriana C.; Skaar, David; Millikan, Robert C.; Galanko, Joseph; Sandler, Robert S.; Jirtle, Randy; Keku, Temitope

    2012-01-01

    The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9–5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2. PMID:22377707

  13. The time-transgressive termination of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Shanahan, Timothy M.; McKay, Nicholas P.; Hughen, Konrad A.; Overpeck, Jonathan T.; Otto-Bliesner, Bette; Heil, Clifford W.; King, John; Scholz, Christopher A.; Peck, John

    2015-02-01

    During the African Humid Period about 14,800 to 5,500 years ago, changes in incoming solar radiation during Northern Hemisphere summers led to the large-scale expansion and subsequent collapse of the African monsoon. Hydrologic reconstructions from arid North Africa show an abrupt onset and termination of the African Humid Period. These abrupt transitions have been invoked in arguments that the African monsoon responds rapidly to gradual forcing as a result of nonlinear land surface feedbacks. Here we present a reconstruction of precipitation in humid tropical West Africa for the past 20,000 years using the hydrogen isotope composition of leaf waxes preserved in sediments from Lake Bosumtwi, Ghana. We show that over much of tropical and subtropical Africa the monsoon responded synchronously and predictably to glacial reorganizations of overturning circulation in the Atlantic Ocean, but the response to the relatively weaker radiative forcing during the African Humid Period was more spatially and temporally complex. A synthesis of hydrologic reconstructions from across Africa shows that the termination of the African Humid Period was locally abrupt, but occurred progressively later at lower latitudes. We propose that this time-transgressive termination of the African Humid Period reflects declining rainfall intensity induced directly by decreasing summer insolation as well as the gradual southward migration of the tropical rainbelt that occurred during this interval.

  14. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Bastin, Sophie; Janicot, Serge; Lavaysse, Christophe; Hourdin, Frederic; Braconnot, Pascale; Bony, Sandrine

    2017-02-01

    Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (-0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (-0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by

  15. Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation

    NASA Astrophysics Data System (ADS)

    Chan, R. Y.; Vuille, M.; Hardy, D. R.; Bradley, R. S.

    2008-08-01

    Atmospheric circulation anomalies, related to snowfall events on the Tanzanian volcano Kilimanjaro, were analyzed based on hourly snowfall data from an automated weather station (AWS), global precipitation and reanalysis products. Analysis of 5 years of data (2000 2005) shows that snowfall on Kilimanjaro is linked to large-scale circulation anomalies, which can be identified in global reanalysis products. During the long rains season (March May) snowfall on Kilimanjaro is associated with a west to east propagating wave of convective activity, which over East Africa merges with a precipitation-band maintained by steady easterly moisture influx due to cyclonic activity over northern Madagascar. Snowfall events tend to be associated with low wind speed, favorable for the development of surface radiative heating, thereby destabilizing the atmospheric column and initiating upward motion and deep convection. High near-surface specific humidity provides the necessary water vapor so that convection becomes moist. The short rains season (October December) is dominated by east to west moisture transport. This easterly flow extends vertically through much of the troposphere and horizontally from the western Indian Ocean westward across the African continent. An active center of vertical motion and deep convection located over the western Indian Ocean near the East African coastline is responsible for easterly moisture transport and spill-over of precipitation into the East African domain. During positive phases of the Indian Ocean Zonal Mode (IOZM) strong trade winds prevail across the Indian Ocean, which, in combination with enhanced westerlies over the continental interior, tend to enhance low-level wind and moisture convergence near Kilimanjaro. During the negative IOZM phase on the other hand, the trade winds across the Indian Ocean and the westerly flow from the Atlantic Ocean are weaker, moisture convergence is reduced and conditions to initiate deep convection over

  16. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets

    SciTech Connect

    Lin, Renping; Zhou, Tianjun; Qian, Yun

    2014-02-01

    With the motivation to identify whether or not a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data (NCEP2, ERA40, JRA25, ERA-Interim and MERRA) in reproducing the climatology, interannual variation and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. In order to better understand the variability and long-term trend of GM precipitation, we also examined the major components of water budget, including evaporation, water vapor convergence and the change in local water vapor storage, based on five reanalysis datasets. The results show that all five reanalysis data reasonably reproduce the climatology of GM precipitation. The ERA-Interim (NCEP2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979-2001 along with a strong interannual variability, which is reasonably reproduced by the five sets of reanalysis data. The observed increasing trend of GM precipitation is dominated by the contribution from the North African, North American and Australian monsoons. All five data fail in reproducing the increasing tendency of North African monsoon precipitation. The wind convergence term in water budget equation dominate the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

  17. Analysis of the linkages between rainfall and land surface conditions in the West African monsoon through CMAP, ERS-WSC, and NOAA-AVHRR data

    NASA Astrophysics Data System (ADS)

    Philippon, Nathalie; Mougin, Eric; Jarlan, Lionel; Frison, Pierre-Louis

    2005-12-01

    -vegetation water content over Guinea from winter to spring. Cross correlations and Granger causality analyses partly relate these winter to spring land surface anomalies to those recorded in precipitation during the previous autumn. Spring soil-vegetation water content anomalies strengthen the meridional gradient of soil-vegetation water content over the subcontinent. This gradient is thought to contribute to the gradient of entropy that drives the West African monsoon.

  18. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    NASA Technical Reports Server (NTRS)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  19. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  20. The impact of mineral dust on regional tropical circulation

    NASA Astrophysics Data System (ADS)

    Bangalath, H.; Stenchikov, G. L.

    2012-12-01

    Dust aerosols from the West Asian and African subtropical deserts likely play an important role in regional low-latitude circulation patterns. These aerosols both absorb solar and terrestrial radiation and reflect solar radiation and therefore both cool the surface and warm the lower troposphere. Since the distribution of dust is spatially non-uniform, its cooling/heating effect could significantly disturb regional temperature and pressure fields and affect tropical circulation patterns, including the Hadley and Walker Cells, as well as the Monsoon Circulation. Here, we investigate the direct radiative effect of desert dust on the circulation over the Middle East and North Africa (MENA) and South Asia regions using the high-resolution atmospheric general circulation model (HiRAM) developed at the NOAA Geophysical Fluid Dynamics Laboratory. We conducted simulations with and without dust aerosols with a spatial resolution of 25 km globally, which allowed investigation of the regional features of the tropical circulations and their interactions with global-scale processes. Our analysis of the 200 hPa velocity potential indicated that mineral dust increased the strength of the Hadley Cell. In general, the Hadley, Walker, and Monsoon circulations over the African continent and East Atlantic were intensified by the dust effect, whereas we observed the opposite response over the Pacific. An anomalous strengthening of the wind convergence at the northern border of the Hadley cell over the African continent and in the East Atlantic, especially in the summer, became evident from our simulations. We found that dust aerosols play an important role in the formation of the climate and circulation regimes over MENA and South Asia, suggesting that they should be accounted for in future climate projections.

  1. Interleukin-2 Therapy Induces CD4 Downregulation, Which Decreases Circulating CD4 T Cell Counts, in African Green Monkeys

    PubMed Central

    Mudd, Joseph C.; Perkins, Molly R.; DiNapoli, Sarah R.; Hirsch, Vanessa M.

    2016-01-01

    ABSTRACT African green monkeys (AGMs) are natural hosts of simian immunodeficiency virus (SIVAGM). Because these animals do not develop simian AIDS despite maintaining high viral loads, there is considerable interest in determining how these animals have evolved to avoid SIV disease progression. Unlike nonnatural hosts of SIV, adult AGMs maintain low levels of CD4+ T cells at steady states and also have a large population of virus-resistant CD8αα T cells that lack CD4 expression despite maintaining T helper cell functionalities. In recent work, we have shown that homeostatic cytokines can induce CD4 downregulation in AGM T cells in vitro. Through administering therapeutic doses of recombinant human interleukin-2 (IL-2) to AGMs, we show here that this mechanism is operative in vivo. IL-2 therapy induced transient yet robust proliferation in all major T cell subsets. Within the CD4+ T cell population, those that were induced into cycle by IL-2 exhibited characteristics of CD4-to-CD8αα conversion. In all animals receiving IL-2, circulating CD4+ T cell counts and proportions tended to be lower and CD4− CD8αα+ T cell counts tended to be higher. Despite reductions in circulating target cells, the viral load was unaffected over the course of study. IMPORTANCE The data in this study identify that homeostatic cytokines can downregulate CD4 in vivo and, when given therapeutically, can induce AGMs to sustain very low levels of circulating CD4+ T cells without showing signs of immunodeficiency. PMID:27053558

  2. Interannual variability of the Indian monsoon and the Southern Oscillation

    SciTech Connect

    Wu, M.; Hastenrath, S.

    1986-01-01

    Years with abundant Southwest monsoon rainfall in India are characterized by anomalously low pressure over South Asia and the adjacent waters, enhanced cross-equatorial flow in the western, and increased cloudiness over the northern portion of the Indian Ocean, continuing from the pre-monsoon through the post-monsoon season; positive temperature anomalies over land and in the Arabian Sea in the pre-monsoon season, changing to negative departures after the monsoon onset. The following causality chain is suggested: the anomalously warm surfaces of south Asia and the adjacent ocean in the pre-monsoon season induce a thermal low, thus enhancing the northward directed pressure gradient, and favoring a vigorous cross-equatorial flow over the Indian Ocean. After the monsoon onset the land surfaces are cooled by evaporation, and the Arabian Sea surface waters by various wind stress effects. However, latent heat release over South Asia can now maintain the meridional topography gradients essential to the monsoon circulation. The positive phase of the Southern Oscillation (high pressure over the Eastern South Pacific) is associated with circulation departures in the Indian Ocean sector similar to those characteristic of years with abundant India monsoon rainfall. Abundant rainfall over India during the northern summer monsoon leads the positive mode of the southern Oscillation, and this in turn leads Java rainfall, whose peak is timed about half a year after that of India. A rising Southern Oscillation tendency presages abundant India Southwest Monsoon rainfall but a late monsoon onset. 46 references, 9 figures, 4 tables.

  3. The Origins of ITCZs, Monsoons, and Monsoon Onset

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2009-01-01

    Intertropical convergence zones (ITCZs), monsoons and monsoon onset are among the most prominent of atmospheric phenomena. Understanding their origins is fundamental to a full understanding of the atmospheric general circulation and has challenged meteorologists for a very long time. There has been important progress in understanding these phenomena in recent years, and in this seminar, recent developments, to which the speaker has contributed, are reviewed. First, contrary to conventional belief, land-sea thermal contrast is not necessary for monsoons to form. Second, monsoon onset occurs when there is a sudden poleward jump of an ITCZ during its annual cycle of latitudinal movement. A monsoon, then, is an ITCZ after its poleward jump. Third, the SST latitudinal maximum is not the most significant, or even a necessary, factor in the formation of an ITCZ; there are other important, if not more important, factors. These factors are the interaction between convection and surface fluxes, the interaction between convection and radiation, and the earth's rotation. Finally, the recent understanding of how ITCZs form has led to a conceptual explanation for the origin of the double ITCZ bias in GCM simulations.

  4. Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Parekh, Anant; Kakatkar, Rashmi; Gnanaseelan, C.; Srinivas, G.; Singh, Prem; Roxy, M. K.

    2016-08-01

    This study investigates the response of tropical Indian Ocean (TIO) sea surface temperature (SST) to El Niño decay phase and its impacts on South and East Asian summer monsoon in the National Centers for Environmental Prediction Climate Forecast System version 2 free run. The TIO basin-wide warming induced by El Niño at its peak phase (winter; DJF) and next spring (MAM + 1) are reasonably well captured by the model but with weak magnitude. This TIO basin-wide SST warming persists until summer (JJA + 1) and exert strong impact on summer monsoon rainfall and circulation as revealed in the observations. However, TIO SST anomalies are very weak in the model during the El Niño decaying summers. Though El Niño decay is delayed by 2 months in the model, decay of TIO SST warming is faster than the observations. Anomalous latent heat loss from ocean and a feeble southern TIO Rossby waves associated with weak wind response to El Niño are mainly accountable for rapid decay of TIO SST warming by mid-summer in the model. This suggests that JJA + 1 TIO SST response to El Niño decay phase in the model is poorly represented. The model is able to capture the SST anomalies associated with the northwest Pacific anticyclone at the peak phase of El Niño but fail to maintain that during the decay phase in MAM + 1 and JJA + 1. It is found that precipitation and circulation anomalies associated with TIO SST warming over the South and East Asian regions are disorganized in the model during the decay phase of El Niño. Rainfall anomalies over the southwest TIO, west coast of India, northern flank of northwest Pacific anticyclone and over Japan in JJA + 1 are poorly represented by the model. Analysis of lower troposphere stream function and rotational wind component reveals that northwest Pacific anticyclone shifted far eastward to the date line in the model during JJA + 1 unlike in the observations. Anomalous divergence observed over the western TIO and convergence in the northwest

  5. Drivers and risk factors for circulating African swine fever virus in Uganda, 2012-2013.

    PubMed

    Kabuuka, T; Kasaija, P D; Mulindwa, H; Shittu, A; Bastos, A D S; Fasina, F O

    2014-10-01

    We explored observed risk factors and drivers of infection possibly associated with African swine fever (ASF) epidemiology in Uganda. Representative sub-populations of pig farms and statistics were used in a case-control model. Indiscriminate disposal of pig viscera and waste materials after slaughter, including on open refuse dumps, farm-gate buyers collecting pigs and pig products from within a farm, and retention of survivor pigs were plausible risk factors. Wire mesh-protected windows in pig houses were found to be protective against ASF infection. Sighting engorged ticks on pigs, the presence of a lock for each pig pen and/or a gate at the farm entrance were significantly associated with infection/non-infection; possible explanations were offered. Strict adherence to planned within-farm and community-based biosecurity, and avoidance of identified risk factors is recommended to reduce infection. Training for small-scale and emerging farmers should involve multidimensional and multidisciplinary approaches to reduce human-related risky behaviours driving infection.

  6. Basic mechanism for abrupt monsoon transitions

    PubMed Central

    Levermann, Anders; Schewe, Jacob; Petoukhov, Vladimir; Held, Hermann

    2009-01-01

    Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R c, no conventional monsoon can develop; above R c, two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R c for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation. PMID:19858472

  7. Basic mechanism for abrupt monsoon transitions.

    PubMed

    Levermann, Anders; Schewe, Jacob; Petoukhov, Vladimir; Held, Hermann

    2009-12-08

    Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R(c), no conventional monsoon can develop; above R(c), two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R(c) for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.

  8. Eocene monsoons

    NASA Astrophysics Data System (ADS)

    Huber, Matthew; Goldner, Aaron

    2012-01-01

    A prominent example of climate-tectonic coupling is the Asian monsoon and the uplift of the Tibetan Plateau. Here we review some of what is known about the history of the monsoon, within a global context and present results from fully coupled Eocene simulations in which Tibetan Plateau height is varied. Peak elevations were doubled from 2000 m to 4000 m whereas mean elevations increased from 750 to 1500 m. The fully coupled Eocene simulations show that introducing a higher Tibetan Plateau into Asian topography intensifies rainfall over southwest Asia, but induces drying over and behind the Plateau. This atmospheric response is controlled by increases in heating over the Plateau region which drives increases in moisture convergence inducing shifts in lower level atmospheric moisture flux. With Eocene boundary conditions aspects of the canonical response from prior work remain the same: cooling over the uplifted region, a large stationary wave response emanating from the plateau and extending into North America, and a large increase in precipitation in summer in the regions with strongest relief, with a rain shadow behind it. But some important local responses are different from similar studies with modern boundary conditions, such as a warming behind the uplifted mountains, and southward advection of warm, moist air from Paratethys onto the Plateau. These results demonstrate that simulations with fully interactive ocean-atmosphere coupled models with a realistic history of paleogeographic boundary conditions will increase the realism of the resulting climatic simulations and increase the body of available proxy evidence for comparison. More generally we find that a global monsoon distribution of precipitation exists in the Eocene regardless of Tibetan Plateau height. Changing Plateau height has minor global impacts, which include a slight drying of midlatitude and cooling of the North Pacific. The results are robust to changes in climate model resolution and

  9. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-10-01

    The Asian summer monsoon involves complex transport patterns with large-scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species peroxyacetyl nitrate (PAN), NOx and HNO3 from various monsoon regions, to the UTLS over southern Asia and vice versa. Simulated long-term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere (UT). Remote transport also occurs in the extratropical UT where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. Sensitivity experiments with ECHAM5-HAMMOZ for simultaneous NOx and non-methane volatile organic compounds (NMVOCs) emission change (-10 %) over ASM, NAM and WAM confirm similar transport. Our analysis shows that a 10 % change in Asian emissions transports ~ 5-30 ppt of PAN in the UTLS over Asia, ~ 1-10 ppt of PAN in the UTLS of northern subtropics and mid-latitudes, ~ 7-10 ppt of HNO3 and ~ 1-2 ppb of ozone in UT over Asia. Comparison of emission change over Asia, North

  10. Onset of the summer monsoon during the FGGE 1979 experiment off the East African Coast: A comparison of wind data collected by different means

    SciTech Connect

    Schott, F.; Partagas, J.F.

    1981-05-20

    During FGGE 1979, from March to July, an extensive oceanographic experiment with ships and moored stations was carried out in the Somali Current. The development of the monsoon winds off Somalia during the time of that experiment is described in a comparative analysis of standard ship wind observations, moored buoy wind measurements, low-level cloud winds, and winds from land stations. The onset 1979 is found to be of the multiple type, with northward winds off Somalia beginning around May 5 but dying down into early June; the real onset of sustained high winds starts around June 10. Cloud level wind observation numbers off Somalia decrease drastically with the monsoon onset because of lack of clouds over the quickly developing cold upwelling areas. An intercomparison of cloud level and ship winds for the period May 16 to July 6 at five offshore points shows good agreement in directions but reduction of ship wind speeds against cloud level winds off northern Somalia after the onset, which may explained by the increased vertical wind shear due to high air stability over the upwelled water and by geostrophic shear due to the strong gradients of sea surface temperature. A comparison of 3-day averages of buoy winds measured at 3-m height 30 km offshore, but still inland from the ship lane, with ship winds for the period March 3 to June 10 showed good agreement in directions but lower buoy wind speeds, which could partly be due to sensor height difference and partly due to horizontal wind shear towards the coast. Coastal stations and wind buoys near the coast are found not to be good indicators of the monsoon onset further out in the open ocean.

  11. The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Levine, Richard C.; Turner, Andrew G.; Martin, Gill M.; Woolnough, Steven J.; Schiemann, Reinhard; Mizielinski, Matthew S.; Roberts, Malcolm J.; Vidale, Pier Luigi; Demory, Marie-Estelle; Strachan, Jane

    2016-02-01

    The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world's population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200-40 km at the equator (N96-N512, 1.9°-0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.

  12. Modeling Circulation along the Vietnamese Coast Influenced by Monsoon Variability in Meteorology, River Discharge and Interactions with the Vietnamese East Sea

    DTIC Science & Technology

    2013-09-30

    of robust ocean modeling systems suited to exploring interactions between submesoscale circulation on continental shelves and mesoscale variability...mesoscale to submesoscale dynamics of the South China Sea – with an emphasis on the environs of Luzon Strait so as to complement interpretation of...observational studies of the Submesoscale Dynamics of the South China Sea (SDSCS) ONR project team. It remains a secondary objective to also use the

  13. Influence of dynamic and thermodynamic features on Indian summer monsoon

    SciTech Connect

    Babu, C.A.; Leena, P.; Priya, P.

    1996-12-31

    Indian summer monsoon plays vital role in the economy of the country. Being an agricultural country, the onset phase of monsoon is important since beginning of cultivation depends on rain-fed irrigation. Summer heating of the Asian land mass and subsequent differential heating between peninsular and north India are considered to be the principal cause for the summer monsoon. An east-west synoptic scale zonal circulation is observed over the Indian region during monsoon period which is similar to the planetary scale circulation. The ascending branch of this circulation is over northwest India and the descending branch is over the northeast India. This east-west zonal circulation is closely related to the monsoon activity. During the onset phase of monsoon spectacular changes occur in the dynamical and thermodynamic structure of the atmosphere. In this paper an attempt is made to diagnose the features of the atmosphere over the Indian region employing dynamical and thermodynamical parameters to as to bring out the relationship between structure of atmosphere and strength of monsoon. Preliminary results indicate that the strength of monsoon and its various epochs are influenced by dynamic and thermodynamic features of the atmosphere.

  14. Aerosol and monsoon climate interactions over Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from

  15. On the association between pre-monsoon aerosol and all-India summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Preethi, B.; Bansod, S. D.; Singh, H. N.; Revadekar, J. V.; Munot, A. A.

    2013-09-01

    Summer monsoon rainfall which gives 75-90% of the annual rainfall plays vital role in Indian economy as the food grain production in India is very much dependent on the summer monsoon rainfall. It has been suggested by recent studies that aerosol loading over the Indian region plays significant role in modulating the monsoon circulation and consequent rainfall distribution over the Indian sub-continent. Increased industrialization and the increasing deforestation over past few decades probably cause a gradual increase in the aerosol concentration. A significant negative relationship between pre-monsoon (March-May i.e. MAM) aerosol loading over BOB and IGP regions and the forthcoming monsoon rainfall have been observed from the thorough analysis of the fifteen years (1997-2011) monthly Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) and All-India Summer Monsoon Rainfall (AISMR) data. Composite analysis revealed that AI anomalies during pre-monsoon season are negative for excess year and positive for deficient monsoon years over the Indian subcontinent, with strong variation over Bay of Bengal (BOB) and Indo-Gangetic Plain (IGP) regions from the month of March onwards. The correlation coefficients between AISMR and pre-monsoon AI over BOB and IGP regions are found to be negative and significant at 5% level. The study clearly brings out that the pre-monsoon aerosol loading over the BOB and IGP regions has a significant correlational link with the forthcoming monsoon intensity; however a further study of the aerosol properties and their feedback to the cloud microphysical properties is asked for establishing their causal linkage.

  16. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    SciTech Connect

    Li, Zhanqing; Lau, W. K. -M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S. -S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  17. Potential Predictability of the Monsoon Subclimate Systems

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Chang, Y.; Schubert, S.

    1999-01-01

    While El Nino/Southern Oscillation (ENSO) phenomenon can be predicted with some success using coupled oceanic-atmospheric models, the skill of predicting the tropical monsoons is low regardless of the methods applied. The low skill of monsoon prediction may be either because the monsoons are not defined appropriately or because they are not influenced significantly by boundary forcing. The latter characterizes the importance of internal dynamics in monsoon variability and leads to many eminent chaotic features of the monsoons. In this study, we analyze results from nine AMIP-type ensemble experiments with the NASA/GEOS-2 general circulation model to assess the potential predictability of the tropical climate system. We will focus on the variability and predictability of tropical monsoon rainfall on seasonal-to-interannual time scales. It is known that the tropical climate is more predictable than its extratropical counterpart. However, predictability is different from one climate subsystem to another within the tropics. It is important to understand the differences among these subsystems in order to increase our skill of seasonal-to-interannual prediction. We assess potential predictability by comparing the magnitude of internal and forced variances as defined by Harzallah and Sadourny (1995). The internal variance measures the spread among the various ensemble members. The forced part of rainfall variance is determined by the magnitude of the ensemble mean rainfall anomaly and by the degree of consistency of the results from the various experiments.

  18. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  19. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Richards, Keith

    2016-09-01

    Understanding climate variations over the Qinghai-Tibetan plateau has become essential because the high plateau sustains various ecosystems and water sources, and impacts on the Asian monsoon system. This paper provides new information from isotopic signals in meteoric water and atmospheric water vapour on the Qinghai-Tibetan Plateau using high frequency observation data over a relatively short period. The aim is to explore temporal moisture changes and annual variations at the onset and during the summer monsoon season at a transitional site with respect to the monsoon influence. Data show that high frequency and short period observations can reveal typical moisture changes from the pre-monsoon to the monsoon seasons (2010), and the large variation in isotopic signals in different years with respect to active/inactive periods during a mature phase of the monsoon (2011), especially inferring from the temporal changes in the d-excess of precipitation and its relationship with δ18O values, when higher d-excess is found in the pre-monsoon precipitation. In this transition zone on a daily basis, δ18O values in precipitation are controlled mainly by the amount of rainfall during the monsoon season, while temperature seems more important before the onset of monsoon. Furthermore, the ;amount effect; is significant for night-time rain events. From comparison of signals in both the precipitation and water vapour, an inconsistent relationship between d-excess values suggests various moisture fluxes are active in a short period. The temporal pattern of isotopic signal change from the onset of the monsoon to the mature monsoon phase provides information about the larger circulation dynamics of the Asian monsoon.

  20. Numerical Simulation of the Large-Scale North American Monsoon Water Sources

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Sud, Yogesh C.; Schubert, Siegfried D.; Walker, Gregory K.

    2002-01-01

    A general circulation model (GCM) that includes water vapor tracer (WVT) diagnostics is used to delineate the dominant sources of water vapor for precipitation during the North American monsoon. A 15-year model simulation carried out with one-degree horizontal resolution and time varying sea surface temperature is able to produce reasonable large-scale features of the monsoon precipitation. Within the core of the Mexican monsoon, continental sources provide much of the water for precipitation. Away from the Mexican monsoon (eastern Mexico and Texas), continental sources generally decrease with monsoon onset. Tropical Atlantic Ocean sources of water gain influence in the southern Great Plains states where the total precipitation decreases during the monsoon onset. Pacific ocean sources do contribute to the monsoon, but tend to be weaker after onset. Evaluating the development of the monsoons, soil water and surface evaporation prior to monsoon onset do not correlate with the eventual monsoon intensity. However, the most intense monsoons do use more local sources of water than the least intense monsoons, but only after the onset. This suggests that precipitation recycling is an important factor in monsoon intensity.

  1. The effect of Eurasian snow cover on the Indian monsoon

    SciTech Connect

    Vernekar, A.D.; Zhou, J.; Shukla, J.

    1995-02-01

    More than a century ago, Blanford suggested the inverse relation between Himalayan winter and spring snow accumulation and subsequent summer monsoon rainfall over India. This relation was later substantiated with additional data by Walker. Because of an inadequate observational network to obtain the spatial variation of snow cover over the Himalayan region, little progress was made until the availability of satellite measurements. Snow cover data derived from satellite observations was used to show that the correlation between winter Eurasian snow cover south of 52{degrees}N and the following Indian summer monsoon rainfall is negative and statistically significant. This result was further supported by additional research. The relationship between snow cover and monsoon circulation is consistent with a suggestion that the Indian monsoon circulation is a dynamically stable system and its interannual variations are largely determined by slowly varying surface boundary conditions. 64 refs., 22 figs.

  2. B Lymphocyte Stimulator Levels in Systemic Lupus Erythematosus: Higher Circulating Levels in African American Patients and Increased Production after Influenza Vaccination in Patients with Low Baseline Levels

    PubMed Central

    Ritterhouse, Lauren L.; Crowe, Sherry R.; Niewold, Timothy B.; Merrill, Joan T.; Roberts, Virginia C.; Dedeke, Amy B.; Neas, Barbara R.; Thompson, Linda F.; Guthridge, Joel M.; James, Judith A.

    2011-01-01

    Objective Examine the relationship between circulating B lymphocyte stimulator (BLyS) levels and humoral responses to influenza vaccination in systemic lupus erythematosus (SLE) patients, as well as the effect of vaccination on BLyS levels. Clinical and serologic features of SLE that are associated with elevated BLyS levels will also be investigated. Methods Clinical history, disease activity measurements and blood specimens were collected from sixty SLE patients at baseline and after influenza vaccination. Sera were tested for BLyS levels, lupus-associated autoantibodies, serum IFN-α activity, 25-hydroxyvitamin D, and humoral responses to influenza vaccination. Results Thirty percent of SLE patients had elevated BLyS levels, with African American patients having higher BLyS levels than European American patients (p=0.006). Baseline BLyS levels in patients were not correlated with humoral responses to influenza vaccination (p=0.863), and BLyS levels increased post-vaccination only in the subset of patients in the lowest quartile of BLyS levels (p=0.0003). Elevated BLyS levels were associated with increased disease activity as measured by SLEDAI, PGA, and SLAM in European Americans (p=0.035, p=0.016, p=0.018, respectively), but not in African Americans. Elevated BLyS levels were also associated with anti-nRNP (p=0.0003) and decreased 25(OH)D (p=0.018). Serum IFN-α activity was a significant predictor of elevated BLyS in a multivariate analysis (p=0.002). Conclusion African American SLE patients have higher BLyS levels regardless of disease activity. Humoral response to influenza vaccination is not correlated with baseline BLyS levels in SLE patients and only those patients with low baseline BLyS levels demonstrate an increased BLyS response after vaccination. PMID:22127709

  3. Effects of mountain uplift on global monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Lee, June-Yi; Wang, Bin; Seo, Kyong-Hwan; Ha, Kyung-Ja; Kitoh, Akio; Liu, Jian

    2015-08-01

    This study explores the role of the global mountain uplift (MU), which occurred during the middle and late Cenozoic, in modulating global monsoon precipitation using the Meteorological Research Institute atmosphere-ocean coupled model experiments. First, the MU causes changes in the annual mean of major monsoon precipitation. Although the annual mean precipitation over the entire globe remains about the same from the no-mountain experiment (MU0) to the realistic MU (MU1), that over the Asian-Australian monsoon region and Americas increases by about 16% and 9%, respectively. Second, the MU plays an essential role in advancing seasonal march, and summer-monsoon onset, especially in the Northern Hemisphere, by shaping pre-monsoon circulation. The rainy seasons are lengthened as a result of the earlier onset of the summer monsoon since the monsoon retreat is not sensitive to the MU. The East Asian monsoon is a unique consequence of the MU, while other monsoons are attributed primarily to land-sea distribution. Third, the strength of the global monsoon is shown to be substantially affected by the MU. In particular, the second annual cycle (AC) mode of global precipitation (the spring-autumn asymmetry mode) is more sensitive to the progressive MU than the first mode of the AC (the solstice mode), suggesting that the MU may have a greater impact during transition seasons than solstice seasons. Finally, the MU strongly modulates interannual variation in global monsoon precipitation in relation to El Niño and Southern Oscillation (ENSO). The Progressive MU changes not only the spatial distribution but also the periodicity of the first and second AC mode of global precipitation on interannual timescale.

  4. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  5. Warm Indian Ocean, Weak Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Koll Roxy, Mathew; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Nath Goswami, Buphendra

    2015-04-01

    There are large uncertainties looming over the status and fate of the South Asian monsoon in a changing climate. Observations and climate models have suggested that anthropogenic warming in the past century has increased the moisture availability and the land-sea thermal contrast in the tropics, favoring an increase in monsoon rainfall. In contrast, we notice that South Asian subcontinent experienced a relatively subdued warming during this period. At the same time, the tropical Indian Ocean experienced a nearly monotonic warming, at a rate faster than the other tropical oceans. Using long-term observations and coupled model experiments, we suggest that the enhanced Indian Ocean warming along with the suppressed warming of the subcontinent weaken the land-sea thermal contrast throughout the troposphere, dampen the monsoon Hadley circulation, and reduce the rainfall over South Asia. As a result, the summer monsoon rainfall during 1901-2012 shows a significant weakening trend over South Asia, extending from Pakistan through central India to Bangladesh.

  6. Advanced Asian summer monsoon onset in recent decades

    NASA Astrophysics Data System (ADS)

    Kajikawa, Y.; Yasunari, T.; Yoshida, S.; Fujinami, H.

    2011-12-01

    Anthropogenic climate change in the Asian monsoon area is one of the most important issues due to the maximum population over the world. Many studies have revealed the long-term change of the Asian summer monsoon rainfall, especially over the China. It is suggested that the trend of monsoonal rainfall in China and India has been attributed to increase in the black carbon and sulphate aerosol. Most of the previous studies assessed the rainfall trend in boreal summer mean. Meanwhile, the seasonal march of the Asian summer monsoon displays a stepwise northward and northeastward migration of rainfall with abrupt onset during boreal spring and summer. Because of large seasonal variability, the long-term trend of the Asian monsoon would exhibit seasonally dependent features which we have to take a consideration of. Here, we analyze the trend of the Asian monsoon rainfall, wind circulation and water vapor flux during 1979-2008 on a monthly mean basis to clarify its seasonality. The transition phase from boreal spring to summer is specially focused. Significant increasing rainfall trend in May is remarkable over the Asian Sea, Bay of Bengal and southeastern monsoon region, which corresponds to advanced monsoon onset in recent decades. The trends are, however, nearly reversed in June over the abovementioned region. Of interest is that the Asian monsoonal rainfall in July and August does not show clear significant trend. Thus, the Asian monsoon has significant trend during the transient phase from boreal spring to summer in particular. The advanced monsoon onset and weakening of the monsoon during early summer are most likely to be attributed to the heat contrast between the Asian landmass and the tropical Indian Ocean. The heating trend over the Asian landmass contributes to the heat contrast variability, because of the persistent SST increase in the Indian Ocean throughout the season. Warming trends in the mid-upper troposphere over the landmass area in May is suggested to

  7. The simulated Indian monsoon: A GCM sensitivity study

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Kinter, J. L., III; Kirtman, B.; Marx, L.; Nigam, S.; Schneider, E.; Shukla, J.; Straus, D.; Vernekar, A.; Xue, Y.

    1994-01-01

    A series of sensitivity experiments are conducted in an attempt to understand and correct deficiencies in the simulation of the seasonal mean Indian monsoon with a global atmospheric general circulation model. The seasonal mean precipitation is less than half that observed. This poor simulation in seasonal integrations is independent of the choice of initial conditions and global sea surface temperature data used. Experiments are performed to test the sensitivity of the Indian monsoon simulation to changes in orography, vegetation, soil, wetness, and cloudiness. The authors find that the deficiency of the model precipitation simulation may be attributed to the use of an enhanced orography in the integrations. Replacement of this orography with a mean orography results in a much more realistic simulation of Indian monsoon circulation and rainfall. Experiments with a linear primitive equation model on the sphere suggest that this striking improvement is due to modulations of the orographically forced waves in the lower troposphere. This improvement in the monsoon simulation is due to the kinematic and dynamical effects of changing the topography, rather than the thermal effects, which were minimal. The magnitude of the impact on the Indian monsoon of the other sensitivity experiments varied considerably, but was consistently less than the impact of using the mean orography. However, results from the soil moisture sensitivity experiments suggest a possibly important role for soil moisture in simulating tropical precipitation, including that associated with the Indian monsoon.

  8. On the Feasibility of Tracking the Monsoon History by Using Ancient Wind Direction Records

    NASA Astrophysics Data System (ADS)

    Gallego, D.; Ribera, P.; Peña-Ortiz, C.; Vega, I.; Gómez, F. D. P.; Ordoñez-Perez, P.; Garcia-Hererra, R.

    2015-12-01

    In this work, we use old wind direction records to reconstruct indices for the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). Since centuries ago, ships departing from the naval European powers circumnavigated Africa in their route to the Far East. Most of these ships took high-quality observations preserved in logbooks. We show that wind direction observations taken aboard ships can be used to track the seasonal wind reversal typical of monsoonal circulations. The persistence of the SW winds in the 20W-17W and 7N-13N region is highly correlated with the WAM strength and Sahel's precipitation. It has been possible to build a WAM index back to the 19th Century. Our results show that in the Sahel, the second half of the 19thCentury was significantly wetter than present day. The relation of the WAM with the ENSO cycle, and the Atlantic Multidecadal Oscillation was low and instable from the 1840s to the 1970s, when they abruptly suffered an unprecedented reinforcement which last up to the present day. The persistence of the SSW wind in the 60E-80E and 8N-12N area has been used to track the ISM onset since the 1880s. We found evidences of later than average onset dates during the 1900-1925 and 1970-1990 periods and earlier than average onset between 1940 and 1965. A significant relation between the ISM onset and the PDO restricted to shifts from negative to positive PDO phases has been found. The most significant contribution of our study is the fact that we have shown that it is possible to build consistent monsoon indices of instrumental character using solely direct observations of wind direction. Our indices have been generated by using data currently available in the ICOADS 2.5 database, but a large amount of wind observations for periods previous to the 20thcentury still remain not explored in thousands of logbooks preserved in British archives. The interest of unveil these data to track the monsoons for more than 200 -or even 300 years- it is

  9. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  10. Circulating transforming growth factor-β1 levels and the risk for kidney disease in African-Americans

    PubMed Central

    Suthanthiran, Manikkam; Gerber, Linda M.; Schwartz, Joseph E.; Sharma, Vijay K.; Medeiros, Mara; Marion, RoseMerie; Pickering, Thomas G.; August, Phyllis

    2013-01-01

    Transforming growth factor-β1 (TGF-β1) is well known to induce progression of experimental renal disease. Here we determined whether there is an association between serum levels of TGF-β1 and the risk factors for progression of clinically relevant renal disorders in 186 black and 147 white adults none of whom had kidney disease or diabetes. Serum TGF-β1 protein levels were positively and significantly associated with plasma renin activity along with the systolic and diastolic blood pressure in blacks but not whites after controlling for age, gender and body mass index. These TGF-β1 protein levels were also significantly associated with body mass index and metabolic syndrome and more predictive of microalbuminuria in blacks than in whites. The differential association between TGF-β1 and renal disease risk factors in blacks and whites suggests an explanation for the excess burden of end-stage renal disease in the black population but this requires validation in an independent cohort. Whether these findings show that it is the circulating levels of TGF-β1 that contributes to renal disease progression or reflects other unmeasured factors will need to be tested in longitudinal studies. PMID:19279557

  11. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010–2011)

    PubMed Central

    Jori, Ferran; Alexander, Kathleen A.; Mokopasetso, Mokganedi; Munstermann, Suzanne; Moagabo, Keabetswe; Paweska, Janusz T.

    2015-01-01

    Rift Valley fever (RVF) is endemic in many countries in Sub-Saharan Africa and is responsible for severe outbreaks in livestock characterized by a sudden onset of abortions and high neonatal mortality. During the last decade, several outbreaks have occurred in Southern Africa, with a very limited number of cases reported in Botswana. To date, published information on the occurrence of RVF in wild and domestic animals from Botswana is very scarce and outdated, despite being critical to national and regional disease control. To address this gap, 863 cattle and 150 buffalo sampled at the interface between livestock areas and the Chobe National Park (CNP) and the Okavango Delta (OD) were screened for the presence of RVF virus (RVFV) neutralizing antibodies. Antibodies were detected in 5.7% (n = 863), 95% confidence intervals (CI) (4.3–7.5%) of cattle and 12.7% (n = 150), 95% CI (7.8–19.5%) of buffalo samples. The overall prevalence was significantly higher (p = 0.0016) for buffalo [12.7%] than for cattle [5.7%]. Equally, when comparing RVF seroprevalence in both wildlife areas for all pooled bovid species, it was significantly higher in CNP than in OD (9.5 vs. 4%, respectively; p = 0.0004). Our data provide the first evidence of wide circulation of RVFV in both buffalo and cattle populations in Northern Botswana and highlight the need for further epidemiological and ecological investigations on RVF at the wildlife–livestock–human interface in this region. PMID:26664990

  12. Near-linear response of mean monsoon strength to a broad range of radiative forcings.

    PubMed

    Boos, William R; Storelvmo, Trude

    2016-02-09

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a "tipping point." Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation's ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo.

  13. Sea Surface Temperature Forcing of the Late Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.; Cassou, C.

    2002-12-01

    This paper uses recent historical data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. The focus is on the predictability of ISM rainfall and circulation, and its links to local (Indian Ocean) and remote (Pacific Ocean) SST forcing. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The whole three-dimensional monsoon circulation, i.e., the east-west Walker and local Hadley circulations, fluctuates during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM in this study. It is found that southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly

  14. Shifting covariability of North American summer monsoon precipitation with antecedent winter precipitation

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.

    2006-01-01

    Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.

  15. Topographic development in the late Neogene and the impact on African vegetation

    NASA Astrophysics Data System (ADS)

    Jung, Gerlinde; Prange, Matthias; Schulz, Michael

    2014-05-01

    Hominid evolution, specifically the split of the hominid-chimpansee lineages in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa in the late Miocene. A main cause for the climatic and vegetation change often considered was uplift of Africa but also uplift of the Himalaya and the Tibetan Plateau was suggested to have contributed to an intensification of the African-Asian monsoon system and hence impacted rainfall distribution over Eastern Africa. In contrast, more recent proxy data suggest that open grassland habitats were available to human ancestors and apes long before their divergence and that there is no evidence for a closed rainforest in the late Miocene. We use the coupled global circulation model CCSM3 with an online coupled dynamic vegetation module to investigate the impact of the uplift processes on the African-Asian monsoon circulation and consequent changes in tropical African vegetation. The model is run with a resolution of T85 (~1.4°) for the atmosphere and land surface and a variable resolution for the computation of ocean and sea ice down to a meridional grid spacing of 0.3° around the equator. We performed a set of sensitivity experiments, altering elevations of the Himalaya and the Tibet Plateau and of East and South Africa separately and in combination from half to full present day level. The simulations confirm the dominant impact of the East and South African uplift for climate and vegetation development of the African tropics. Only a weak, but significant, impact of the prescribed Asian Uplift on African monsoon and vegetation development could be detected. Himalaya/Tibet Plateau uplift lead to slightly dryer conditions in Central Africa and small increases in rainfall over East Africa. According to the model simulations topographic uplift of Africa significantly altered rainfall in Central Africa, which coincides with proxy records from the Congo basin showing a change towards

  16. Sea surface temperature associations with the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.

    2003-04-01

    This paper uses recent gridded data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly linked to subtropical Indian Ocean dipole events, studied by Behera and Yamagata (2001), and to the El Niño-Southern Oscillation phenomenon. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal summer may also enhance the east-west Walker circulation and the monsoon.

  17. Global monsoon precipitation responses to large volcanic eruptions

    PubMed Central

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  18. Global monsoon precipitation responses to large volcanic eruptions.

    PubMed

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  19. Effect of dust on the iNdian summer monsoon

    NASA Astrophysics Data System (ADS)

    Maharana, Pyarimohan; Priyadarshan Dimri, Ashok

    2015-04-01

    The atmospheric dust plays a major role in deciding the radiation balance over the earth. The dust scatters the light, acts as cloud condensation nuclei, and hence helps in the formation of different types of clouds. This property of the dust has a long term effect on the Indian summer monsoon and its spatial distribution. India receives around 80% of its annual rainfall during summer monsoon and around 50% of the Indian population depends upon the monsoonal rain for the agricultural activities. The rain also has an important contribution to the industry, water resource management, ground water recharge, provide relief from the heat and also play a major role in deciding the socio-economic condition of a major part of the population. Two sets of simulations (control and dust chemistry simulation) are made to analyze the effect of dust on the Indian summer monsoon. Both the simulations nicely represent the spatial structure of different meteorological parameters. The magnitude of the pressure gradient, circulation and the precipitation is more during the JJAS for the dust chemistry simulation except for the temperature climatology. The analysis of the pre-monsoon and May temperature climatology reflects that the heating of the land mass is more in the dust chemistry simulation as compared to the control simulation, which is providing the strength to the monsoon flow during JJAS. The dust simulation shows that it increases the hydrological cycle over the Indian land mass.

  20. Intraseasonal Variability of the South Asian Summer Monsoon: Present-day Simulations with the Regional Atmospheric Model HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, F. S.; Rinke, A.; Dethloff, K.

    2014-12-01

    Since 1950, observations show a robust negative trend of the seasonal rainfall associated with the South Asian summer monsoon over India coinciding with a continuous decrease in surface solar radiation ("dimming") over South Asia due to an increase of local aerosol emissions. On the intraseasonal timescale the summer monsoon fluctuates between periods of enhanced and reduced rainfall. The frequency of occurrence of these active and breaks monsoon phases affects directly the seasonal monsoon rainfall. This study investigates the regional pattern and changes of the South Asian monsoon for the period 1979-2012 using the regional atmospheric model HIRHAM5 with a horizontal resolution of 0.25° forced at the lateral and lower boundaries with ERA-Interim reanalysis data. Despite the dry bias in the mean summer monsoon rainfall over the Indian landmass, the simulated temperature and atmospheric circulation patterns are in agreement with the ERA-Interim reanalysis indicating a realistic representation of important dynamical summer monsoon features. In addition, mechanisms which controls active and break phases within the summer monsoon season are analyzed using daily outgoing longwave radiation model data as an identification tool of monsoon breaks as proposed by Krishnan et al. (2000). Model results reveal an increasing trend of the cumulative monsoon break days of around 1.4 days per year during the last 30 years. The possible link between this increasing of cumulative monsoon break days and the observed decrease of seasonal South Asian monsoon rainfall will be the scope of further investigations.

  1. Aerosol interactions with African/Atlantic climate dynamics

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2014-07-01

    Mechanistic relationships exist between variability of dust in the oceanic Saharan air layer (OSAL) and transient changes in the dynamics of Western Africa and the tropical Atlantic Ocean. This study provides evidence of possible interactions between dust in the OSAL region and African easterly jet-African easterly wave (AEJ-AEW) system in the climatology of boreal summer, when easterly wave activity peaks. Synoptic-scale changes in instability and precipitation in the African/Atlantic intertropical convergence zone are correlated with enhanced aerosol optical depth (AOD) in the OSAL region in response to anomalous 3D overturning circulations and upstream/downstream thermal anomalies at above and below the mean-AEJ level. Upstream and downstream anomalies are referred to the daily thermal/dynamical changes over the West African monsoon region and the Eastern Atlantic Ocean, respectively. Our hypothesis is that AOD in the OSAL is positively correlated with the downstream AEWs and negatively correlated with the upstream waves from climatological perspective. The similarity between the 3D pattern of thermal/dynamical anomalies correlated with dust outbreaks and those of AEWs provides a mechanism for dust radiative heating in the atmosphere to reinforce AEW activity. We proposed that the interactions of OSAL dust with regional climate mainly occur through coupling of dust with the AEWs.

  2. Atlantic effects on recent decadal trends in global monsoon

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Li, Xichen; Xie, Shang-Ping; Ueda, Hiroaki

    2017-01-01

    Natural climate variability contributes to recent decadal climate trends. Specifically the trends during the satellite era since 1979 include Atlantic and Indian Ocean warming and Pacific cooling associated with phase shifts of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation, and enhanced global monsoon (GM) circulation and rainfall especially in the Northern Hemisphere. Here we evaluate effects of the oceanic changes on the global and regional monsoon trends by partial ocean temperature restoring experiments in a coupled atmosphere-ocean general circulation model. Via trans-basin atmosphere-ocean teleconnections, the Atlantic warming drives a global pattern of sea surface temperature change that resembles observations, giving rise to the enhanced GM. The tropical Atlantic warming and the resultant Indian Ocean warming favor subtropical deep-tropospheric warming in both hemispheres, resulting in the enhanced monsoon circulations and precipitation over North America, South America and North Africa. The extratropical North Atlantic warming makes an additional contribution to the monsoon enhancement via Eurasian continent warming and resultant land-sea thermal gradient over Asia. The results of this study suggest that the Atlantic multidecadal variability can explain a substantial part of global climate variability including the recent decadal trends of GM.

  3. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene

    PubMed Central

    Ramisch, Arne; Lockot, Gregori; Haberzettl, Torsten; Hartmann, Kai; Kuhn, Gerhard; Lehmkuhl, Frank; Schimpf, Stefan; Schulte, Philipp; Stauch, Georg; Wang, Rong; Wünnemann, Bernd; Yan, Dada; Zhang, Yongzhan; Diekmann, Bernhard

    2016-01-01

    Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions. PMID:27173918

  4. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene.

    PubMed

    Ramisch, Arne; Lockot, Gregori; Haberzettl, Torsten; Hartmann, Kai; Kuhn, Gerhard; Lehmkuhl, Frank; Schimpf, Stefan; Schulte, Philipp; Stauch, Georg; Wang, Rong; Wünnemann, Bernd; Yan, Dada; Zhang, Yongzhan; Diekmann, Bernhard

    2016-05-13

    Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [~36°N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.

  5. Asian Monsoon Variability from the Monsoon Asia Drought Atlas (MADA) and Links to Indo-Pacific Climate

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; D'Arrigo, Rosanne; Anchukaitis, Kevin; Hernandez, Manuel; Buckley, Brendan; Cook, Edward

    2014-05-01

    Drought patterns across monsoon and temperate Asia over the period 1877-2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June-August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Variations in the strength of the South Asian monsoon can also be linked to the Strange Parallels Drought (1756-1768) affecting much of Southeast Asia and the Indian subcontinent in the mid-18th Century. Large-scale climate anomalies across the wider region during years with an anomalously strengthened/weakened South Asian monsoon are discussed with implications for severe droughts prior to the instrumental period. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the

  6. On the anomalous precipitation enhancement over the Himalayan foothills during monsoon breaks

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Krishnan, R.; Pendharkar, Jayant; Choudhury, Ayantika Dey; Sabin, T. P.

    2014-10-01

    An intriguing feature associated with `breaks' in the Indian summer monsoon is the occurrence of intense/flood-producing precipitation confined to central-eastern parts of the Himalayan (CEH) foothills and north-eastern parts of India. Past studies have documented various large-scale circulation aspects associated with monsoon-breaks, however the dynamical mechanisms responsible for anomalous precipitation enhancement over CEH foothills remain unclear. This problem is investigated using diagnostic analyses of observed and reanalysis products and high-resolution model simulations. The present findings show that the anomalous precipitation enhancement over the CEH foothills during monsoon-breaks emerges as a consequence of interactions between southward intruding mid-latitude westerly troughs and the South Asian monsoon circulation in its weak phase. These interactions facilitate intensification of mid-tropospheric cyclonic vorticity and strong ascending motion over the CEH foothills, so as to promote deep convection and concentrated rainfall activity over the region during monsoon-breaks. Mesoscale orographic effects additionally tend to amplify the vertical motions and precipitation over the CEH foothills as evidenced from the high-resolution model simulations. It is further noted from the model simulations that the coupling between precipitation and circulation during monsoon-breaks can produce nearly a threefold increase of total precipitation over the CEH foothills and neighborhood as opposed to active-monsoon conditions.

  7. Dirtier Air from a Weaker Monsoon

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2012-01-01

    The level of air pollution in China has much increased in the past decades, causing serious health problems. Among the main pollutants are aerosols, also known as particulate matter: tiny, invisible particles that are suspended in the air. These particles contribute substantially to premature mortality associated with cardiopulmonary diseases and lung cancer1. The increase of the aerosol level in China has been commonly attributed to the fast rise in pollutant emissions from the rapid economic development in the region. However, writing in Geophysical Research Letters, Jianlei Zhu and colleagues2 tell a different side of the story: using a chemical transport model and observation data, they show that the decadal scale weakening of the East Asian summer monsoon has also contributed to the increase of aerosol concentrations in China. The life cycle of atmospheric aerosols starts with its emission or formation in the atmosphere. Some aerosol components such as dust, soot and sea salt are emitted directly as particles to the atmosphere, but others are formed there by way of photochemical reactions. For example, sulphate and nitrate aerosols are produced from their respective precursor gases, sulphur dioxide and nitrogen oxides. Aerosol particles can be transported away from their source locations by winds or vertical motion of the air. Eventually, they are removed from the atmosphere by means of dry deposition and wet scavenging by precipitation. Measurements generally show that aerosol concentrations over Asia are lowest during the summer monsoon season3, because intense rainfall efficiently removes them from the air. The East Asian summer monsoon extends over subtropics and mid-latitudes. Its rainfall tends to concentrate in rain belts that stretch out for many thousands of kilometres and affect China, Korea, Japan and the surrounding area. Observations suggest that the East Asian summer monsoon circulation and precipitation have been in decline since the 1970s4. In

  8. Signature of a southern hemisphere extratropical influence on the summer monsoon over India

    NASA Astrophysics Data System (ADS)

    Viswambharan, Nithin; Mohanakumar, K.

    2013-07-01

    The weakening relationship of El Nino with Indian summer monsoon reported in recent years is a major issue to be addressed. The altered relationships of Indian monsoon with various parameters excite to search for other dominant modes of variability that can influence the precipitation pattern. Since the Indian summer monsoon circulation originates in the oceanic region of the southern hemisphere, the present study investigates the association of southern extratropical influence on Indian summer monsoon using rainfall and reanalysis parameters. The effect of Southern Annular Mode (SAM) index during the month of June associated with the onset phase of Indian summer monsoon and that during July-August linked with the active phase of the monsoon were analysed separately for a period from 1951 to 2008. The extra-tropical influence over the monsoon is illustrated by using rainfall, specific humidity, vertical velocity, circulation and moisture transport. The June high SAM index enhances the lower level wind flow during the onset phase of monsoon over Indian sub-continent. The area of significant positive correlation between precipitation and SAM in June also shows enhancement in both ascending motion and specific humidity during the strong phase of June SAM. On the other hand, the June high SAM index adversely affects July-August monsoon over Indian subcontinent. The lower level wind flow weakens due to the high SAM. Enhancement of divergence and reduction in moisture transport results in the Indian monsoon region due to the activity of this high southern annular mode. The effect is more pronounced over the southwest region where the precipitation spell has high activity during the period. Significant correlation exists between SAM and ISMR, even after removing the effect of El Nino. It indicates that the signals of Indian summer monsoon characteristics can be envisaged to a certain extend using the June SAM index.

  9. Potential of space-borne GNSS reflectometry to constrain simulations of the ocean circulation. A case study for the South African current system

    NASA Astrophysics Data System (ADS)

    Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik

    2015-11-01

    The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations

  10. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    SciTech Connect

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A

    2008-09-16

    including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Without aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting the current and future behavior of monsoons.

  11. Anomalies in the South American Monsoon Induced by Aerosols

    NASA Technical Reports Server (NTRS)

    Lau, K. M. William; Kyu-Mong, Kim

    2007-01-01

    We have investigated the direct effects of aerosols on the water cycle of the South American monsoon using the NASA finite-volume general circulation model (fvGCM). Global aerosol forcings are computed from radiative transfer functions derived from global distributions of five species of aerosols, i.e., dust, black carbon, organic carbon, sulphate and sea salt from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model. Comparing fvGCM experiments without aerosol forcing, and with different combinations of aerosol forcing, we evaluate the impacts of aerosol direct heating on the onset, maintenance and evolution of the South American summer monsoon. We find that during the pre-monsoon season (September-October-November) Saharan dust contribute to heating of the atmosphere over the central and eastern equatorial Atlantic/Africa region through the elevated heat pump mechanism. The heating generates an anomalous Walker circulation with sinking motion, and low level northeasterlies over the Caribbean and northwestern South America. The low level flow is blocked by the Andes, and turn south and southeastward, increasing the low level jet (LLJ) along the eastern slope of the Andes. The increased LLJ transports more moisture from the Atlantic and the Amazon, enhancing the moisture convergence over subtropical land regions of South America. The moisture convergence was further accelerated by atmospheric heating by biomass burning over the Amazon. The net results of the dust and biomass heating are: a) an advance of the monsoon rainy season, b) an enhanced LLJ and c) a shifting the South America monsoon land precipitation equatorward, with increased rain over southern Brazil and reduced rain over the La Plata basin. ramifications of this elevated heating heat pump mechanism in aerosol monsoon water cycle on climate variability and change will be discussed. The ramifications of this "elevated heating heat pump" mechanism in aerosol monsoom water cycle on climate

  12. Examining Impact of Global warming on the summer monsoon system using regional Climate Model (PRECIS)

    NASA Astrophysics Data System (ADS)

    Patwardhan, S. K.; Kundeti, K.; Krishna Kumar, K.

    2011-12-01

    -permanent systems related to the monsoon climate over India viz. monsoon circulation, heat low over northwest India, mean sea level pressures along monsoon trough region, towards the end of the 21st century. The analysis of the model outputs indicate the weakening of monsoon circulation in the future. The mean sea level pressures in head bay of Bengal regions may be higher in future indicating the less frequent cyclonic disturbances in the Bay of Bengal region, under the effect of global warming.

  13. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model.

    PubMed

    Caley, Thibaut; Roche, Didier M; Renssen, Hans

    2014-11-06

    The Asian summer monsoon dynamics at the orbital scale are a subject of considerable debate. The validity of Asian speleothem δ(18)O records as a proxy for summer monsoon intensity is questioned together with the ultimate forcing and timing of the monsoon. Here, using the results of a 150,000-year transient simulation including water isotopes, we demonstrate that Asian speleothem δ(18)O records are not a valid proxy for summer monsoon intensity only at the orbital timescale. Rather, our results show that these records reflect annual variations in hydrologic processes and circulation regime over a large part of the Indo-Asian region. Our results support the role of internal forcing, such as sea surface temperature in the equatorial Pacific, to modulate the timing of monsoon precipitation recorded in paleo-proxies inside the Asian region.

  14. Monsoon failure enhances drought in southwestern North America

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Stahle, D. W.

    2012-12-01

    The North American monsoon has emerged as a research frontier for paleoclimatology. Precisely dated tree-ring latewood (summer growth) offers unparalleled promise for studying interannual- to decadal-scale monsoon variability over past centuries. From the new network of latewood chronologies in the southwestern U.S., we present a high-quality, 470-year long reconstruction of June-August (monsoon) precipitation for the Arizona-Sonora sub-region of the North American monsoon. For comparison, we developed a companion reconstruction of October-April (cool-season) precipitation from chronologies of earlywood (spring growth). Foremost, these reconstructions demonstrate that many of the well-known southwestern droughts were not just cool-season events, but were also characterized by concurrent failure of the summer monsoon. The early 21st century drought, the late 19th century drought, the 17th century Puebloan drought, and even the 16th century megadrought each contain notable runs of consecutive years with below average monsoon rainfall. The reconstructions also reveal that the interannual relationship between winter and summer precipitation has been unstable through time and that the tendency for dry (wet) winters to be followed by wet [dry] summers was anomalously high during the mid-late 20th century. Cool-season and monsoon moisture variability in this region can be linked to patterns of ocean-atmosphere circulation. However, our understanding of the climate dynamics that would facilitate persistence of dual-season drought and transience in the winter-summer precipitation relationship is far from complete.

  15. Intraseasonal oscillations in East Asian and South Asian monsoons

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2016-11-01

    This study has investigated the relation between the East Asian monsoon and the South Asian monsoon at intraseasonal time scale during the boreal summer. Applying a data adaptive method on daily anomalies of precipitation, two leading intraseasonal oscillations (ISOs) were extracted separately in the regions of South Asia, tropical East Asia and subtropical East Asia. The first ISO has a period of about 45 days and propagates northward and eastward over the South Asian and tropical East Asian regions. The second ISO, with a period of about 26 days, propagates northeastward over South Asia and northwestward over tropical East Asia. Although both the ISOs are also present over the subtropical East Asia, the variance is low while no propagation is evident. The circulation patterns associated with the ISOs were found to be consistent with the corresponding precipitation patterns of the ISOs. The two ISOs also reveal consistency with the space-time evolution of diabatic heating, convection, vertical motion, upper-level divergence and moisture transport. The zonal and meridional propagation of the ISOs provide a strong link between the South Asian monsoon and East Asian monsoon regions. The subtropical East Asian region seems to have a weaker link with the other monsoon regions.

  16. The effects of radiative transfer in maintaining the Indian summer monsoon

    SciTech Connect

    Leach, M.J.; Raman, S.

    1995-04-01

    Atmospheric radiative transfer is an important thermodynamic forcing for the Indian summer monsoon. The monsoon is a component of a larger scale circulation system the principal components of which are the Hadley cell and the Walker Circulation. The Hadley cell is a thermally direct circulation that transports heat toward the poles. In the northern hemispheric summer, the ascending branch of the Hadley cell moves northward, due to heating of the land masses. This ascending branch of the Hadley cell is referred to as the Intertropical Convergence Zone (ITCZ). The return branch of the Hadley cell is characterized by southwesterly surface winds. At the surface, the ITCZ is marked by convergence of southwesterly surface winds from the south and northeasterly surface winds from the north. As the ITCZ moves northward, the southern extent of the northerly surface winds also moves northward, and southerly surface winds from the south side of the ITCZ also move northward. The surface convergence at the ITCZ is a driving mechanism for the summer monsoon circulation. The northward drift of the Hadley cell in the northern summer ITCZ is the deep convection over the warm pool of water in the western tropical Pacific ocean, located at about 160E. The latent heating in the deep convection drives another direct circulation, known as the Walker Circulation. The upper branch of the Walker Circulation over south Asia is easterly winds created by the deep convection in the western tropical Pacific. Convective activity over the Indian peninsula interacts with the Walker Circulation, creating a jet structure over the western part of India and the eastern Arabian Sea. This structure is known as the Tropical Easterly Jet (TEJ). Secondary circulations associated with the Indian convection also help to maintain the baroclinicity, which is essential to the development of monsoon depression, the maintenance of the monsoon trough, and the circulation and hydrology of the region in general.

  17. Mesoscale model forecast verification during monsoon 2008

    NASA Astrophysics Data System (ADS)

    Ashrit, Raghavendra; Mohandas, Saji

    2010-08-01

    There have been very few mesoscale modelling studies of the Indian monsoon, with focus on the verification and intercomparison of the operational real time forecasts. With the exception of Das et al (2008), most of the studies in the literature are either the case studies of tropical cyclones and thunderstorms or the sensitivity studies involving physical parameterization or climate simulation studies. Almost all the studies are based on either National Center for Environmental Prediction (NCEP), USA, final analysis fields (NCEP FNL) or the reanalysis data used as initial and lateral boundary conditions for driving the mesoscale model. Here we present a mesoscale model forecast verification and intercomparison study over India involving three mesoscale models: (i) the Weather Research and Forecast (WRF) model developed at the National Center for Atmospheric Research (NCAR), USA, (ii) the MM5 model developed by NCAR, and (iii) the Eta model of the NCEP, USA. The analysis is carried out for the monsoon season, June to September 2008. This study is unique since it is based entirely on the real time global model forecasts of the National Centre for Medium Range Weather Forecasting (NCMRWF) T254 global analysis and forecast system. Based on the evaluation and intercomparison of the mesoscale model forecasts, we recommend the best model for operational real-time forecasts over the Indian region. Although the forecast mean 850 hPa circulation shows realistic monsoon flow and the monsoon trough, the systematic errors over the Arabian Sea indicate an easterly bias to the north (of mean flow) and westerly bias to the south (of mean flow). This suggests that the forecasts feature a southward shift in the monsoon current. The systematic error in the 850 hPa temperature indicates that largely the WRF model forecasts feature warm bias and the MM5 model forecasts feature cold bias. Features common to all the three models include warm bias over northwest India and cold bias over

  18. Desert Dust and Monsoon Rain

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2014-01-01

    For centuries, inhabitants of the Indian subcontinent have know that heavy dust events brought on by strong winds occur frequently in the pre-monsoon season, before the onset of heavy rain. Yet scientists have never seriously considered the possibility that natural dust can affect monsoon rainfall. Up to now, most studies of the impacts of aerosols on Indian monsoon rainfall have focused on anthropogenic aerosols in the context of climate change. However, a few recent studies have show that aerosols from antropogenic and natural sources over the Indian subcontinent may affect the transition from break to active monsoon phases on short timescales of days to weeks. Writing in Nature Geoscience, Vinoj and colleagues describe how they have shown that desert dust aerosols over the Arabian Sea and West Asia can strenghten the summer monsoon over the Indial subcontinent in a matter of days.

  19. The meteorology of the Western Indian Ocean, and the influence of the East African Highlands.

    PubMed

    Slingo, Julia; Spencer, Hilary; Hoskins, Brian; Berrisford, Paul; Black, Emily

    2005-01-15

    This paper reviews the meteorology of the Western Indian Ocean and uses a state-of-the-art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44-year re-analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter-annual variability are described, associated with El Nino and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re-analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea-surface temperatures.

  20. The South Asian Monsoon and the Tropospheric Biennial Oscillation.

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.

    1997-08-01

    A mechanism is described that involves the south Asian monsoon as an active part of the tropospheric biennial oscillation (TBO) described in previous studies. This mechanism depends on coupled land-atmosphere-ocean interactions in the Indian sector, large-scale atmospheric east-west circulations in the Tropics, convective heating anomalies over Africa and the Pacific, and tropical-midlatitude interactions in the Northern Hemisphere. A key element for the monsoon role in the TBO is land-sea or meridional tropospheric temperature contrast, with area-averaged surface temperature anomalies over south Asia that are able to persist on a 1-yr timescale without the heat storage characteristics that contribute to this memory mechanism in the ocean. Results from a global coupled general circulation model show that soil moisture anomalies contribute to land-surface temperature anomalies (through latent heat flux anomalies) for only one season after the summer monsoon. A global atmospheric GCM in perpetual January mode is run with observed SSTs with specified convective heating anomalies to demonstrate that convective heating anomalies elsewhere in the Tropics associated with the coupled ocean-atmosphere biennial mechanism can contribute to altering seasonal midlatitude circulation. These changes in the midlatitude longwave pattern, forced by a combination of tropical convective heating anomalies over East Africa, Southeast Asia, and the western Pacific (in association with SST anomalies), are then able to maintain temperature anomalies over south Asia via advection through winter and spring to set up the land-sea meridional tropospheric temperature contrast for the subsequent monsoon. The role of the Indian Ocean, then, is to provide a moisture source and a low-amplitude coupled response component for meridional temperature contrast to help drive the south Asian monsoon. The role of the Pacific is to produce shifts in regionally coupled convection-SST anomalies. These regions

  1. Climate variability in a coupled GCM. Part II: The Indian Ocean and monsoon

    SciTech Connect

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1994-10-01

    We have investigated the seasonal cycle and the interannual variability of the tropical Indian Ocean circulation and the Indian summer monsoon simulated by a coupled ocean-atmosphere general circulation model in a 26-year integration. Although the model exhibits significant climate drift, overall, the coupled GCM simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian summer monsoon. The amplitudes of the seasonal changes, however, are underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation, which is partly related to the El Nino/Southern Oscillation phenomenon and the associated changes in the Walker circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in monsoon rainfall, simulated by the coupled GCM, is only about half as strong as observed. The reason for this is that the simulated interannual variability in the Indian monsoon appears to be related to internal processes within the atmosphere only. In contrast, an investigation based on observations shows a clear lead-lag relationship between interannual variations in the monsoon rainfall and tropical Pacific SST anomalies. Furthermore, the atmospheric GCM also fails to reproduce this lead-lag relationship between monsoon rainfall and tropical Pacific SST when run in a stand-alone integration with observed SSTs prescribed during the period 1970-1988. These results indicate that important physical processes relating tropical Pacific SST to Indian monsoon rainfall are not adequately modeled in our atmospheric GCM. Monsoon rainfall predictions appear therefore premature. 24 refs., 13 figs, 2 tabs.

  2. Asian monsoon transport of pollution to the stratosphere.

    PubMed

    Randel, William J; Park, Mijeong; Emmons, Louisa; Kinnison, Doug; Bernath, Peter; Walker, Kaley A; Boone, Chris; Pumphrey, Hugh

    2010-04-30

    Transport of air from the troposphere to the stratosphere occurs primarily in the tropics, associated with the ascending branch of the Brewer-Dobson circulation. Here, we identify the transport of air masses from the surface, through the Asian monsoon, and deep into the stratosphere, using satellite observations of hydrogen cyanide (HCN), a tropospheric pollutant produced in biomass burning. A key factor in this identification is that HCN has a strong sink from contact with the ocean; much of the air in the tropical upper troposphere is relatively depleted in HCN, and hence, broad tropical upwelling cannot be the main source for the stratosphere. The monsoon circulation provides an effective pathway for pollution from Asia, India, and Indonesia to enter the global stratosphere.

  3. See-saw relationship of the Holocene East Asian-Australian summer monsoon.

    PubMed

    Eroglu, Deniz; McRobie, Fiona H; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F M; Marwan, Norbert; Kurths, Jürgen

    2016-09-26

    The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could 'lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see-saw relationship over the last 9,000 years-with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime.

  4. Multi-decadal Variation of the Indian Monsoon Rainfall: Implications of ENSO

    NASA Astrophysics Data System (ADS)

    Pothuri, D.; Nuernberg, D.; Mohtadi, M.

    2014-12-01

    Scientific consensus exists on the inverse relationship between the El Nino Southern Oscillation (ENSO) and the Indian Monsoon Rainfall. Conversely, recent historical records of 140 years revealed that the relationship between Indian Monsoon and ENSO has broken down (Kumar et al., 1999). Indian Monsoon rainfall variability on decadal time scale was reconstructed by using seawater oxygen isotopes (d18Ow) estimated from oxygen isotopes and Mg/Ca ratios of Globigerinoides ruber from a sediment core in the Bay of Bengal. A comparison of Indian Monsoon rainfall variability on decadal time scale with the number of ENSO events over last 2000 years reveals an inverse relationship between the monsoon rainfall in the Indian Subcontinent and ENSO Events. Furthermore, d18Ow variations reveal increased monsoon rainfall during Roman Warm Period (RWP) and Medieval Warm Period (MWP) and larger monsoon rainfall fluctuations during the Little Ice Age (LIA). Therefore, our study suggests that on decadal time scale ENSO affects the Indian Monsoon Rainfall through the stronger Walker Circulation and associated tropical convection process.

  5. See–saw relationship of the Holocene East Asian–Australian summer monsoon

    PubMed Central

    Eroglu, Deniz; McRobie, Fiona H.; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F. M.; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    The East Asian–Indonesian–Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian–Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could ‘lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see–saw relationship over the last 9,000 years—with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime. PMID:27666662

  6. Indo-China monsoon indices.

    PubMed

    Tsai, ChinLeong; Behera, Swadhin K; Waseda, Takuji

    2015-01-29

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  7. Indo-China Monsoon Indices

    NASA Astrophysics Data System (ADS)

    Tsai, Chinleong; Behera, Swadhin K.; Waseda, Takuji

    2015-01-01

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  8. High Resolution Atmospheric Model (HiRAM) Projection of Global Warming Impact on the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Hsu, H. H.; Tu, C. Y.; Lin, S. J.; Freychet, N.; Chiu, P. G.

    2014-12-01

    By investigating the Geophysical Fluid Dynamics Laboratory (GFDL) global High Resolution Atmospheric Model (HiRAM), following the most extreme one of the Representative Concentration Pathway scenarios (RCP8.5), we explore a possible modulation of the Asian summer monsoon under global warming. At about 23km horizontal grid size, more realistic topographic effects included in the HiRAM benefit the monsoon modeling; for example, a substantial effect of the mesoscale mountain ranges in South Asia (includes Southeast Asia) on anchoring and enhancing precipitation as well as the monsoon circulation. The projected changes of the monsoon subsystems are significant in South Asia, East Asia, and the western North Pacific (WNP), and the changes are likely related. The monsoon response to global warming provides an avenue for exploring the monsoon internal connection. However, details about the potential interaction between various monsoon subsystems remain unclear; in particular, what it is sensitive to, and how it is connected to large-scale circulation. We also focus on the modulation of the monsoon seasonality. In South Asia, direction of the monsoon precipitation response in the early summer (reduced) is opposite to in the late summer (enhanced). The projected precipitation changes of South Asia could be connected to the projected changes of the monsoon subseasons in the East Asia-WNP domain. The latter can be primarily characterized by the Meiyu-Baiu rainy season and the WNP monsoon. We are also finding that the changes of thermal and dynamical condition under global warming alter the extreme precipitation and the tropical cyclone formation. Mechanism leading to the regional and subseasonal contrast of the monsoon is being investigated.

  9. Trace gas transport out of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst

    2016-04-01

    The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the

  10. Sea breeze Initiated Rainfall over the east Coast of India during the Indian Southwest Monsoon

    SciTech Connect

    Simpson, M; Warrior, H; Raman, S; Aswathanarayana, P A; Mohanty, U C; Suresh, R

    2006-09-05

    Sea breeze initiated convection and precipitation is investigated along the east coast of India during the Indian southwest monsoon season. The sea breeze circulations are observed approximately 70 to 80% of the days during the summer months (June to August) along the Chennai coast. Observations of average sea breeze wind speeds are stronger at a rural location as compared to the wind speeds observed inside the urban region of Chennai. The sea breeze circulation is shown to be the dominant mechanism for initiating rainfall during the Indian southwest monsoon season. Roughly 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to the convection initiated by sea breeze circulation.

  11. Comparison of East Asian winter monsoon indices

    NASA Astrophysics Data System (ADS)

    Hui, Gao

    2007-04-01

    Four East Asian winter monsoon (EAWM) indices are compared in this paper. In the research periods, all the indices show similar interannual and decadal-interdecadal variations, with predominant periods centering in 3-4 years, 6.5 years and 9-15 years, respectively. Besides, all the indices show remarkable weakening trends since the 1980s. The correlation coefficient of each two indices is positive with a significance level of 99%. Both the correlation analyses and the composites indicate that in stronger EAWM years, the Siberian high and the higher-level subtropical westerly jet are stronger, and the Aleutian low and the East Asia trough are deeper. This circulation pattern is favorable for much stronger northwesterly wind and lower air temperature in the subtropical regions of East Asia, while it is on the opposite in weaker EAWM years. Besides, EAWM can also exert a remarkable leading effect on the summer monsoon. After stronger (weaker) EAWM, less (more) summer precipitation is seen over the regions from the Yangtze River valley of China to southern Japan, while more (less) from South China Sea to the tropical western Pacific.

  12. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    SciTech Connect

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, Lai-Yung R.; Dominguez, Francina

    2015-04-01

    We analyze a suite of Global Climate Models from the 5th Phase of Coupled Models Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the 21st century despite a robust weakening of dynamics governing the monsoon circulation. Combining the future changes in the contributions from various sources, which contribute to the moisture supply over South Asia, with those in monsoon dynamics and atmospheric moisture content, we establish a pathway of understanding that partly explains these counteracting responses to increase in radiative forcing. Our analysis suggests that both regional (local recycling, Arabian Sea, Bay of Bengal) and remote (mainly Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. Increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period, but is also the net driver of the positive summer monsoon precipitation response in the 21st century. Our results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the non-stationary moisture driven South Asian summer monsoon precipitation response in the 21st century.

  13. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    DOE PAGES

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; ...

    2015-04-07

    This study analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal)more » and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. Finally, the results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.« less

  14. Dominating Controls for Wetter South Asian Summer Monsoon in the Twenty-First Century

    SciTech Connect

    Mei, Rui; Ashfaq, Moetasim; Rastogi, Deeksha; Leung, L. Ruby; Dominguez, Francina

    2015-04-07

    This study analyzes a suite of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) archives to understand the mechanisms behind a net increase in the South Asian summer monsoon precipitation in response to enhanced radiative forcing during the twenty-first century. An increase in radiative forcing fuels an increase in the atmospheric moisture content through warmer temperatures, which overwhelms the weakening of monsoon circulation and results in an increase of moisture convergence and therefore summer monsoon precipitation over South Asia. Moisture source analysis suggests that both regional (local recycling, the Arabian Sea, the Bay of Bengal) and remote (including the south Indian Ocean) sources contribute to the moisture supply for precipitation over South Asia during the summer season that is facilitated by the monsoon dynamics. For regional moisture sources, the effect of excessive atmospheric moisture is offset by weaker monsoon circulation and uncertainty in the response of the evapotranspiration over land, so anomalies in their contribution to the total moisture supply are either mixed or muted. In contrast, weakening of the monsoon dynamics has less influence on the moisture supply from remote sources that not only is a dominant moisture contributor in the historical period but is also the net driver of the positive summer monsoon precipitation response in the twenty-first century. Finally, the results also indicate that historic measures of the monsoon dynamics may not be well suited to predict the nonstationary moisture-driven South Asian summer monsoon precipitation response in the twenty-first century.

  15. Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October-December) season

    NASA Astrophysics Data System (ADS)

    Sadhuram, Y.; Maneesha, K.

    2016-10-01

    In this study, an attempt has been made to examine the relationship between summer monsoon rainfall (June-September) and the total number of depressions, cyclones and severe cyclones (TNDC) over Bay of Bengal during the post-monsoon (October-December) season. The seasonal rainfall of the subdivisions (located in south India) (referred as rainfall index - RI), is positively and significantly correlated ( r=0.59; significant at >99% level) with the TNDC during the period, 1984-2013. By using the first differences (current season minus previous season), the correlations are enhanced and a remarkably high correlation of 0.87 is observed between TNDC and RI for the recent period, 1993-2013. The average seasonal genesis potential parameter (GPP) showed a very high correlation of 0.84 with the TNDC. A very high correlation of 0.83 is observed between GPP and RI for the period, 1993-2013. The relative vorticity and mid-tropospheric relative humidity are found to be the dominant terms in GPP. The GPP was 3.5 times higher in above (below) normal RI in which TNDC was 4 (2). It is inferred that RI is playing a key role in TNDC by modulating the environmental conditions (low level vorticity and relative humidity) over Bay of Bengal during post-monsoon season which could be seen from the very high correlation of 0.87 (which explains 76% variability in TNDC). For the first time, we show that RI is a precursor for the TNDC over Bay of Bengal during post-monsoon season. Strong westerlies after the SW monsoon season transport moisture over the subdivisions towards Bay of Bengal due to cyclonic circulation. This circulation favours upward motion and hence transport moisture vertically to mid-troposphere which causes convective instability and this in turn favour more number of TNDC, under above-normal RI year.

  16. Possible causes of the Central Equatorial African long-term drought

    NASA Astrophysics Data System (ADS)

    Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Raghavendra, Ajay; Jiang, Yan

    2016-12-01

    Previous studies found that Central Equatorial Africa (CEA) has experienced a long-term drying trend over the past two decades. To further evaluate this finding, we investigate possible mechanisms for this drought by analyzing multiple sources of observations and reanalysis data. We examine the atmospheric circulation changes related to sea surface temperature (SST) variations that control the equatorial African rainfall. Our results indicate that the long-term drought during April, May and June over CEA may reflect the large-scale response of the atmosphere to tropical SST variations. Likely the drought results primarily from SST variations over Indo-Pacific associated with the enhanced and westward extended tropical Walker circulation. These are consistent with the weakened ascent over Central Africa that is associated with the reduced low-level moisture transport. The large-scale atmospheric circulation changes associated with a weaker West African monsoon also have some contribution. These results reinforce the notion that tropical SSTs have large impacts on rainfall over equatorial Africa and highlight the need to further distinguish the contribution of SSTs changes (e.g., La Niña-like pattern and Indian Ocean warming) due to natural variability and anthropogenic forcing to the drought.

  17. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M. B.; Siringan, F. P.; Banner, J. L.; lin, K.; Taylor, F. W.

    2012-12-01

    The response of the Asian-Australian monsoon system to changes in summer insolation over the Holocene is recorded in many monsoon-sensitive paleoclimate reconstructions. The response is commonly direct; more summer insolation leads to increased monsoon rainfall over land as captured in stalagmite δ18O records from Oman and China. We evaluate this direct response using a maritime stalagmite record from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the stalagmite δ18O record from Palawan, a proxy of rainfall, to have a similar trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in stalagmite δ18O is opposite to that expected: rainfall increases over the Holocene. Our explanation for the Holocene trend observed at Palawan is that the increase in the maritime monsoon balances the reduction in the land monsoon; an explanation that is consistent with previously published coupled ocean-atmosphere general circulation model results. Seawater δ18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. However, the decrease in maritime monsoon rainfall during the Younger Dryas at Palawan matches that observed in Chinese stalagmite records, meeting our original expectation of a similar wet season response in the various Asian-Australian monsoon records. One explanation for the similar Younger Dryas response in these monsoon records is the influence of seasonal changes in sea ice coverage, as previously suggested. A stalagmite δ18O record from Borneo (~800 km SE of Palawan), which lacks evidence of the Younger Dryas, provides supporting evidence for this explanation.

  18. Western North Pacific monsoon depressions: Transitions to pre-tropical cyclone seedlings

    NASA Astrophysics Data System (ADS)

    Beattie, Jodi C.; Elsberry, Russell L.

    2016-11-01

    The objective of this study is to describe how a monsoon depression in the western North Pacific, which typically has a diameter of 1000 km, may be transitioned into a tropical cyclone with an inner core of strong winds and deep convection on the order of 100 km. Our previous case study of the pre-Typhoon Man-Yi monsoon depression formation is extended to show that the same cross-equatorial airstream continued and led to enhanced equatorial westerlies on the equatorward side of the pre-Man-Yi circulation, and a surge in the trade easterlies was also present on the poleward side. As these surges in the near-equatorial flow are inertially unstable, inward-directed wave-activity fluxes then led to flux convergence over the eastern vorticity maximum of the monsoon depression, which resulted in a scale contraction to that of a pretropical cyclone seedling. Eight case studies of the transitions of monsoon depressions during 2009 are presented that document persistent inward-directed wave-activity fluxes over a vorticity maximum within the monsoon depression is a key feature of each transition. In some transitions, the same cross-equatorial airstream as led to the monsoon depression formation continues as the primary airstream, and in other transitions another airstream to the west or enhanced tropical easterlies become the primary airstream. Analysis of 10 non-transitioning monsoon depressions during 2009 indicated the airstream wave-activity flux did not persist after the formation of the monsoon depression. In another 11 non-transitioning monsoon depressions, the inward-directed wave-activity flux was small and no region of wave-activity flux convergence was associated with the vorticity maximum in the monsoon depression.

  19. 250 years of SW Indian Monsoon Variability from Red Sea Corals

    NASA Astrophysics Data System (ADS)

    Bryan, S.; Hughen, K. A.; Karnauskas, K. B.; Farrar, J. T.

    2015-12-01

    During the northern hemisphere summer, strong dust storms develop in the Tokar Delta region of Sudan. These massive dust storms are funneled through a gap in the coastal mountains and blow out across the Red Sea. The generation and transport of these dust storms is driven by the large-scale atmospheric pressure gradient across the Red Sea, which is a component of the Southwest Indian Monsoon. Dust deposited on the Red Sea is recorded in skeletal geochemistry of corals that live on the Saudi Arabian coast, and provides an opportunity to reconstruct variability in the monsoon system prior to instrumental records. We have generated annually-resolved records of coral Ba/Ca, which display strong correlations to the zonal pressure gradient across the Red Sea during the instrumental period. Our coral-based monsoon records show an increasing trend in the strength of SW Indian Monsoon circulation since the Little Ice Age, in agreement with lower-resolution Arabian Sea upwelling based records. Our records also show strong decadal-scale variability, which was strongest during the late 19th century and has declined during the past century. In this presentation, we will discuss the decadal-scale variability in the SW Indian Monsoon circulation over the past 250 years as revealed by Red Sea Corals and the implications of the relationships and trends observed in this study for projections of future monsoon variability.

  20. Increase of global monsoon area and precipitation under global warming: A robust signal?

    NASA Astrophysics Data System (ADS)

    Hsu, Pang-chi; Li, Tim; Luo, Jing-Jia; Murakami, Hiroyuki; Kitoh, Akio; Zhao, Ming

    2012-03-01

    Monsoons, the most energetic tropical climate system, exert a great social and economic impact upon billions of people around the world. The global monsoon precipitation had an increasing trend over the past three decades. Whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation models that were forced by different future sea surface temperature (SST) warming patterns. The results show that the global monsoon area, precipitation and intensity all increase consistently among the model projections. This indicates that the strengthened global monsoon is a robust signal across the models and SST patterns explored here. The increase of the global monsoon precipitation is attributed to the increases of moisture convergence and surface evaporation. The former is caused by the increase of atmospheric water vapor and the latter is due to the increase of SST. The effect of the moisture and evaporation increase is offset to a certain extent by the weakening of the monsoon circulation.

  1. On the decreasing trend of the number of monsoon depressions in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Vishnu, S.; Francis, P. A.; Shenoi, S. S. C.; Ramakrishna, S. S. V. S.

    2016-01-01

    This study unravels the physical link between the weakening of the monsoon circulation and the decreasing trend in the frequency of monsoon depressions over the Bay of Bengal. Based on the analysis of the terms of Genesis Potential Index, an empirical index to quantify the relative contribution of large scale environmental variables responsible for the modulation of storms, it is shown here that the reduction in the mid-tropospheric relative humidity is the most important reason for the decrease in the number of monsoon depressions. The net reduction of relative humidity over the Bay of Bengal is primarily due to the decrease in the moisture flux convergence, which is attributed to the weakening of the low level jet, a characteristic feature of monsoon circulation. Further, the anomalous moisture convergence over the western equatorial Indian Ocean associated with the rapid warming of the sea surface, reduces the moisture advection into the Bay of Bengal and hence adversely affect the genesis/intensification of monsoon depressions. Hence, the reduction in the number of monsoon depression over the Bay of Bengal could be one of the manifestations of the differential rates in the observed warming trend of the Indian Ocean basin.

  2. The climatology of East Asian winter monsoon and cold surges from 1979--1995 NCEP/NCAR reanalyses

    SciTech Connect

    Yi Zhang; Sperber, K.; Boyle, J.

    1996-04-01

    The East Asian winter monsoon, which is associated with the Siberian high and active cold surges, is one of the most energetic monsoon circulation systems. The dramatic shift of northeasterlies and the outbreak of cold surges dominate the winter weather and local climate in the East Asian region, and may exert a strong impact on the extratropical and tropical planetary-scale circulations and influence the SSTs in the tropical western Pacific. General characteristics of the winter monsoon and cold surges and their possible link with tropical disturbances are revealed in many observational studies. Little attention has been given to the climatological aspects of the winter monsoon and cold surges. The purpose of this study is to compile and document the East Asian mean winter circulation, and present the climatology of cold surges and the Siberian high based on the 1979--1995 NCEP/NCAR reanalyses. Of particular interest is the interannual variation of winter monsoon circulation and cold surge events. Given that the cold surge activity and the Indonesian convection are much reduced during the 1982--83 period, one of the goals is to determine whether there exists a statistically significant relationship between ENSO and the interannual variation of winter monsoon and cold surges.

  3. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    PubMed

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  4. Global warming and South Indian monsoon rainfall—lessons from the Mid-Miocene

    PubMed Central

    Reuter, Markus; Kern, Andrea K.; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E.

    2013-01-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3–4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall. PMID:27087778

  5. Observational Evidence of Impacts of Aerosols on Seasonal-to-Interannual Variability of the Asian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Kim, K.-M.; Hsu, N. C.

    2006-01-01

    Observational evidences are presented showing that the Indian subcontinent and surrounding regions are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle. Increased loading of absorbing aerosols over the Indo-Gangetic Plain in April-May is associated with a) increased heating of the upper troposphere over the Tibetan Plateau, b) an advance of the monsoon rainy season, and c) subsequent enhancement of monsoon rainfall over the South Asia subcontinent, and reduction over East Asia. Also presented are radiative transfer calculations showing how differential solar absorption by aerosols over bright surface (desert or snow cover land) compared to dark surface (vegetated land and ocean), may be instrumental in triggering an aerosol-monsoon large-scale circulation and water cycle feedback, consistent with the elevated heat pump hypothesis (Lau et al. 2006).

  6. Aridity changes in the Sahel and their relation to Atlantic-Ocean circulation

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Mulitza, Stefan; Zabel, Matthias; Prange, Matthias

    2010-05-01

    Life in the semiarid Sahel belt of tropical North Africa strongly depends on the availability of water and has, at least since the Pliocene, been frequently affected by shifts to more arid climate. A recent example of abrupt droughts occurred in the early 70's and 80's of the last century. Here we present grain-size distribution data, analysed with an end-member modelling algorithm (Weltje 1997) as well as bulk chemical data of a sediment core collected from the continental slope offshore Senegal, covering the last 57 kyr. These data suggest that during this time interval there were several periods where a relatively humid climate changed abruptly to dry conditions. These dry conditions, which lasted up to several millennia, occurred synchronously with cold sea surface temperatures (SSTs) in the North Atlantic and reductions in the meridional overturning circulation in the Atlantic Ocean, suggesting that Atlantic Ocean circulation could be closely related to climate conditions in the Sahel. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.

  7. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2017-03-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  8. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  9. Empirical prediction of the summer monsoon rainfall over India

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mooley, D. A.

    1987-01-01

    Forty-six years (1939-1984) of observed data were examined to study synoptic and statistical relationships between the summer monsoon rainfall over India, the Southern Oscillation, and the midtropospheric circulation over India. The change in Darwin pressure from January to April and the latitudinal position of the April 500-mb ridge along 75 deg E are taken as two quasi-independent predictor parameters to develop a regression equation to predict the summer monsoon rainfall. Verification of predictions on independent data shows that the root-mean-square error for predicted rainfall is 36 mm, which is less than half of the standard deviation and only about 4 percent of the mean rainfall (857 mm).

  10. Near-linear response of mean monsoon strength to a broad range of radiative forcings

    PubMed Central

    Boos, William R.; Storelvmo, Trude

    2016-01-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a “tipping point.” Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation’s ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  11. Simulation of the northern summer monsoon in the ECMWF model: Sensitivity to horizontal resolution

    SciTech Connect

    Sperber, K.R.; Potter, G.L.; Boyle, J.S.; Hameed, S.

    1994-11-01

    The ability of the ECMWF model (cycle 33) to simulate the Indian and East Asian summer monsoons is evaluated at four different horizontal resolutions: T21, T42, T63, and T106. Generally, with respect to the large-scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high-frequency temporal variability serve as a further critical test of the model`s ability to simulate the monsoon. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian monsoons, whereas T42 fails to correctly simulate the sequence and development of synoptic-scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India, which results in an underestimate of precipitation over the Burma-Thailand region. This early establishment of the monsoon trough affects the evolution of the East Asian monsoon and yields excessive preseason rainfall over the Mei-yu-region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability, which is associated with an oscillation of the rainband that gives rise to periods of Mei-yu mode of variability, which is associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangtze River valley. The coarse resolution of T21 precludes simulation of the aforementioned regional-scale monsoon flows. 43 refs., 14 figs.

  12. Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons

    NASA Astrophysics Data System (ADS)

    Gera, Anitha; Mitra, A. K.; Mahapatra, D. K.; Momin, I. M.; Rajagopal, E. N.; Basu, Swati

    2016-09-01

    Recent research emphasizes the importance of the oceanic feedback to monsoon rainfall over the Asian landmass. In this study, we investigate the differences in the sea surface height anomaly (SSHA) and upper ocean temperature over the tropical Indian Ocean during multiple strong and weak monsoons. Analysis of satellite derived SSHA, sea surface temperature (SST) and ocean reanalysis data reveals that patterns of SSHA, SST, ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin and Rossby waves differ during strong and weak monsoon years. During strong monsoons positive SSH, SST and UOHC anomalies develop over large parts of north Indian Ocean whereas during weak monsoons much of the north Indian Ocean is covered with negative anomalies. These patterns can be used as a standard tool for evaluating the performance of coupled and ocean models in simulating & forecasting strong and weak monsoons. The rainfall over central India is found to be significantly correlated with SSHA over the regions (Arabian Sea and West central Indian Ocean and Bay of Bengal) where SSHA is positively large during strong monsoons. The SST-SSHA correlation is also very strong over the same area. The study reveals that much convection takes place over these regions during strong monsoons. In contrast during weak monsoons, convection takes place over eastern equatorial region. These changes in SST are largely influenced by oceanic Kelvin and Rossby waves. The Rossby waves initiated in spring at the eastern boundary propagate sub-surface heat content in the ocean influencing SST in summer. The SST anomalies modulate the Hadley circulation and the moisture transport thereby contributing to rainfall over central India. Therefore oceanic Kelvin and Rossby waves influence the rainfall over central India.

  13. West Indian Ocean variability and East African fish catch.

    PubMed

    Jury, M; McClanahan, T; Maina, J

    2010-08-01

    We describe marine climate variability off the east coast of Africa in the context of fish catch statistics for Tanzania and Kenya. The time series exhibits quasi-decadal cycles over the period 1964-2007. Fish catch is up when sea surface temperature (SST) and atmospheric humidity are below normal in the tropical West Indian Ocean. This pattern relates to an ocean Rossby wave in one phase of its east-west oscillation. Coastal-scale analyses indicate that northward currents and uplift on the shelf edge enhance productivity of East African shelf waters. Some of the changes are regulated by the south equatorial current that swings northward from Madagascar. The weather is drier and a salty layer develops in high catch years. While the large-scale West Indian Ocean has some impact on East African fish catch, coastal dynamics play a more significant role. Climatic changes are reviewed using 200 years of past and projected data. The observed warming trend continues to increase such that predicted SST may reach 30 degrees C by 2100 while SW monsoon winds gradually increase, according to a coupled general circulation model simulation with a gradual doubling of CO(2).

  14. Studies of African wave disturbances with the GISS GCM

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Hall, Timothy M.

    1994-01-01

    Simulations made with the general circulation model of the NASA/Goddard Institute for Space Studies (GISS GCM) run at 4 deg latitude by 5 deg longitude horizontal resolution are analyzed to determine the model's representation of African wave disturbances. Waves detected in the model's lower troposphere over northern Africa during the summer monsoon season exhibit realistic wavelengths of about 2200 km. However, power spectra of the meridional wind show that the waves propagate westward too slowly, with periods of 5-10 days, about twice the observed values. This sluggishness is most pronounced during August, consistent with simulated 600-mb zonal winds that are only about half the observed speeds of the midtropospheric jet. The modeled wave amplitudes are strongest over West Africa during the first half of the summer but decrease dramatically by September, contrary to observational evidence. Maximum amplitudes occur at realistic latitudes, 12 deg - 20 deg N, but not as observed near the Atlantic coast. Spectral analyses suggest some wave modulation of precipitation in the 5-8 day band, and compositing shows that precipitation is slightly enhanced east of the wave trough, coincident with southerly winds. Extrema of low-level convergence west of the wave troughs, coinciding with northerly winds, were not preferred areas for simulated precipitation, probably because of the drying effect of this advection, as waves were generally north of the humid zone. The documentation of African wave disturbances in the GISS GCM is a first step toward considering wave influences in future GCM studies of Sahel drought.

  15. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases.

  16. On the decadal scale correlation between African dust and Sahel rainfall: The role of Saharan heat low–forced winds

    PubMed Central

    Wang, Weijie; Evan, Amato T.; Flamant, Cyrille; Lavaysse, Christophe

    2015-01-01

    A large body of work has shown that year-to-year variations in North African dust emission are inversely proportional to previous-year monsoon rainfall in the Sahel, implying that African dust emission is highly sensitive to vegetation changes in this narrow transitional zone. However, such a theory is not supported by field observations or modeling studies, as both suggest that interannual variability in dust is due to changes in wind speeds over the major emitting regions, which lie to the north of the Sahelian vegetated zone. We reconcile this contradiction showing that interannual variability in Sahelian rainfall and surface wind speeds over the Sahara are the result of changes in lower tropospheric air temperatures over the Saharan heat low (SHL). As the SHL warms, an anomalous tropospheric circulation develops that reduces wind speeds over the Sahara and displaces the monsoonal rainfall northward, thus simultaneously increasing Sahelian rainfall and reducing dust emission from the major dust “hotspots” in the Sahara. Our results shed light on why climate models are, to date, unable to reproduce observed historical variability in dust emission and transport from this region. PMID:26601301

  17. Monsoon low-level jet over the gateway of Indian summer monsoon: a comparative study for two distinct monsoon years

    NASA Astrophysics Data System (ADS)

    Narayanan, Suresh; Kottayil, Ajil; Mohanakumar, K.

    2016-12-01

    High-resolution radiosonde measurements are used to study the characteristics and dynamics of monsoon low-level jet at the monsoon onset region of Cochin (10.04°N; 76.32°E) in India under two contrasting monsoon years, 2013 and 2015. The core speed and core height of the low-level jet is significantly higher during the strong monsoon year of 2013 than for the monsoon-deficient year of 2015. The average core heights for these years are seen to exist at 2.03 and 2.20 km, respectively. The low-level jet-modulated parameters such as moisture flux, momentum flux and kinetic energy flux show higher values during monsoon of 2013 as compared to 2015. Among the monsoon low-level jet parameters, the moisture flux has the strongest influence on the observed rainfall over Cochin. Also, an exponential function is seen to best explain the moisture flux-rainfall relationship. The weakening of monsoon during 2015 is attributed most likely to an eastward shift of the core convective activity from the Indian subcontinent as revealed from satellite observation of the upper tropospheric humidity. A close association is seen between the rainfall over Cochin and the convective activity over the Indian subcontinent. Observational studies such as this, which links monsoon rainfall, monsoon low-level jet parameters and convective activity, are expected to enhance the understanding of monsoon processes in general and subsequently improve the forecasting skill of models.

  18. Numerical prediction of the monsoon depression of 5-7 July 1979. [Monsoon Experiment (MONEX)

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Atlas, R.; Baker, W. E.

    1981-01-01

    A well defined monsoon depression was used for two assimilation and forecast experiments: (1) using conventional surface and upper air data, (2) using these data plus Monex data. The data sets were assimilated and used with a general circulation model to make numerical predictions. The model, the analysis and assimilation procedure, the differences in the analyses due to different data inputs, and the differences in the numerical predictions are described. The MONEX data have a positive impact, although the differences after 24 hr are not significant. The MONEX assimilation does not agree with manual analysis location of depression center. The 2.5 x 3 deg horizontal resolution of the prediction model is too coarse. The assimilation of geopotential height data derived from satellite soundings generated gravity waves with amplitudes similar to the meteorologically significant features investigated.

  19. Analysis of intraseasonal convective variability modes over West Africa during the monsoon season

    NASA Astrophysics Data System (ADS)

    Ceratto, Jeffrey

    Intraseasonal variability of rainfall within the West African Monsoon has been shown to be an important factor in the weather of this region. Multiple factors have been found to contribute to variability at this timescale. Mounier, et al (2008) use EOF analysis to uncover and describe a quasi-stationary dipole of precipitation between the West African Monsoon system and the West Atlantic/Caribbean Sea. This mode, termed the Quasi Biweekly Zonal Dipole mode, operates on timescales of roughly 13 days. The stationary nature of this dipole is focused upon in their work, while the role of Kelvin waves in the mode are considered secondary. In this work, the role of Kelvin waves in the dipole mode is considered. Regression analyses are performed with time lags to observe how the dipole evolves with time. Kelvin waves are observed to dominate the timing and the phase of the dipole mode. Dynamical regressions indicate a possible source region for these Kelvin waves, over the South American continent, as well as the effects the Kelvin waves have on the West African Monsoon system as they enter and exit the region. Impacts on the strength of the Saharan Heat Low and on African Easterly Wave activity are observed. A case study highlighting Kelvin wave activity in relation to the QBZD is also considered. The second EOF pattern is also examined with lagged regressions; a relationship is found between it and the first EOF pattern.

  20. Predictability of the 1997 and 1998 South Asian Summer Monsoons

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfred D.; Wu, Man Li

    2000-01-01

    The predictability of the 1997 and 1998 south Asian summer monsoon winds is examined from an ensemble of 10 Atmospheric General Circulation Model (AGCM) simulations with prescribed sea surface temperatures (SSTs) and soil moisture, The simulations are started in September 1996 so that they have lost all memory of the atmospheric initial conditions for the periods of interest. The model simulations show that the 1998 monsoon is considerably more predictable than the 1997 monsoon. During May and June of 1998 the predictability of the low-level wind anomalies is largely associated with a local response to anomalously warm Indian Ocean SSTs. Predictability increases late in the season (July and August) as a result of the strengthening of the anomalous Walker circulation and the associated development of easterly low level wind anomalies that extend westward across India and the Arabian Sea. During these months the model is also the most skillful with the observations showing a similar late-season westward extension of the easterly CD wind anomalies. The model shows little predictability or skill in the low level winds over southeast Asia during, 1997. Predictable wind anomalies do occur over the western Indian Ocean and Indonesia, however, over the Indian Ocean they are a response to SST anomalies that were wind driven and they show no skill. The reduced predictability in the low level winds during 1997 appears to be the result of a weaker (compared with 1998) simulated anomalous Walker circulation, while the reduced skill is associated with pronounced intraseasonal activity that is not well captured by the model. Remarkably, the model does produce an ensemble mean Madden-Julian Oscillation (MJO) response that is approximately in phase with (though weaker than) the observed MJ0 anomalies. This is consistent with the idea that SST coupling may play an important role in the MJO.

  1. Sahel megadrought during Heinrich Stadial 1: evidence for a three-phase evolution of the low- and mid-level West African wind system

    NASA Astrophysics Data System (ADS)

    Bouimetarhan, Ilham; Prange, Matthias; Schefuß, Enno; Dupont, Lydie; Lippold, Jörg; Mulitza, Stefan; Zonneveld, Karin

    2012-12-01

    Millennial-scale dry events in the Northern Hemisphere monsoon regions during the last Glacial period are commonly attributed to southward shifts of the Intertropical Convergence Zone (ITCZ) associated with an intensification of the northeasterly (NE) trade wind system during intervals of reduced Atlantic meridional overturning circulation (AMOC). Through the use of high-resolution last deglaciation pollen records from the continental slope off Senegal, our data show that one of the longest and most extreme droughts in the western Sahel history, which occurred during the North Atlantic Heinrich Stadial 1 (HS1), displayed a succession of three major phases. These phases progressed from an interval of maximum pollen representation of Saharan elements between ˜19 and 17.4 kyr BP indicating the onset of aridity and intensified NE trade winds, followed by a millennial interlude of reduced input of Saharan pollen and increased input of Sahelian pollen, to a final phase between ˜16.2 and 15 kyr BP that was characterized by a second maximum of Saharan pollen abundances. This change in the pollen assemblage indicates a mid-HS1 interlude of NE trade wind relaxation, occurring between two distinct trade wind maxima, along with an intensified mid-tropospheric African Easterly Jet (AEJ) indicating a substantial change in West African atmospheric processes. The pollen data thus suggest that although the NE trades have weakened, the Sahel drought remained severe during this time interval. Therefore, a simple strengthening of trade winds and a southward shift of the West African monsoon trough alone cannot fully explain millennial-scale Sahel droughts during periods of AMOC weakening. Instead, we suggest that an intensification of the AEJ is needed to explain the persistence of the drought during HS1. Simulations with the Community Climate System Model indicate that an intensified AEJ during periods of reduced AMOC affected the North African climate by enhancing moisture

  2. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, Sarat C.

    2017-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  3. Red Sea circulation during marine isotope stage 5e

    NASA Astrophysics Data System (ADS)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  4. Responses of East Asian Summer Monsoon to Natural and Anthropogenic Forcings in the 17 Latest CMIP5 Models

    SciTech Connect

    Song, Fengfei; Zhou, Tianjun; Qian, Yun

    2014-01-31

    In this study, we examined the responses of East Asian Summer Monsoon (EASM) to natural (solar variability and volcanic aerosols) and anthropogenic (greenhouse gasses and aerosols) forcings simulated in the 17 latest Coupled Model Intercomparison Program phase 5 (CMIP5) models with 105 realizations. The observed weakening trend of low-level EASM circulation during 1958-2001 is partly reproduced under all-forcing runs. A comparison of separate forcing experiments reveals that the aerosol-forcing plays a primary role in driving the weakened low-level monsoon circulation. The preferential cooling over continental East Asia caused by aerosol affects the monsoon circulation through reducing the land-sea thermal contrast and results in higher sea level pressure over northern China. In the upper-level, both natural-forcing and aerosol-forcing contribute to the observed southward shift of East Asian subtropical jet through changing the meridional temperature gradient.

  5. The South American monsoon variability over the last millennium in climate models

    NASA Astrophysics Data System (ADS)

    Rojas, Maisa; Arias, Paola A.; Flores-Aqueveque, Valentina; Seth, Anji; Vuille, Mathias

    2016-08-01

    In this paper we assess South American monsoon system (SAMS) variability in the last millennium as depicted by global coupled climate model simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly and a stronger monsoon during the Little Ice Age (LIA). Due to the small external forcing during the past 1000 years, model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, in contrast with the rainfall reconstructions in South America. Therefore, we used an ad hoc definition of these two periods for each model simulation in order to account for model-specific signals. Thereby, several coherent large-scale atmospheric circulation anomalies are identified. The models feature a stronger monsoon during the LIA associated with (i) an enhancement of the rising motion in the SAMS domain in austral summer; (ii) a stronger monsoon-related upper-tropospheric anticyclone; (iii) activation of the South American dipole, which results in a poleward shift of the South Atlantic Convergence Zone; and (iv) a weaker upper-level subtropical jet over South America. The diagnosed changes provide important insights into the mechanisms of these climate anomalies over South America during the past millennium.

  6. Record of the North American southwest monsoon from Gulf of Mexico sediment cores

    USGS Publications Warehouse

    Poore, R.Z.; Pavich, M.J.; Grissino-Mayer, H. D.

    2005-01-01

    Summer monsoonal rains (the southwest monsoon) are an important source of moisture for parts of the southwestern United States and northern Mexico. Improved documentation of the variability in the southwest monsoon is needed because changes in the amount and seasonal distribution of precipitation in this semiarid region of North America influence overall water supply and fire severity. Comparison of abundance variations in the planktic foraminifer Globigerinoides sacculifer in marine cores from the western and northern Gulf of Mexico with terrestrial proxy records of precipitation (tree-ring width and packrat-midden occurrences) from the southwestern United States indicate that G. sacculifer abundance is a proxy for the southwest monsoon on millennial and submillennial time scales. The marine record confirms the presence of a severe multicentury drought centered ca. 1600 calendar (cal.) yr B.P. as well as several multidecadal droughts that have been identified in a long tree-ring record spanning the past 2000 cal. yr from westcentral New Mexico. The marine record further suggests that monsoon circulation, and thus summer rainfall, was enhanced in the middle Holocene (ca. 6500-4500 14C yr B.P.; ca. 6980-4710 cal. yr B.P.). The marine proxy provides the potential for constructing a highly resolved, well-dated, and continuous history of the southwest monsoon for the entire Holocene. ?? 2005 Geological Society of America.

  7. Catastrophic drought in East Asian monsoon region during Heinrich event 1

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Sun, Liguang; Chu, Yangxi; Xia, Zehui; Zhou, Xinying; Li, Xiangzhong; Chu, Zhuding; Liu, Xiangjun; Shao, Da; Wang, Yuhong

    2016-06-01

    Heinrich event 1 (H1) is an important millennial climate event during the last deglaciation. The substantial decreasing of monsoon strength in the East Asian monsoon region during the H1, as shown by stalagmite δ18O records, has been attributed to the southward shift of the intertropical convergence zone (ITCZ), which is caused by the slowdown/collapse of the Atlantic meridional overturning circulation (AMOC). However, records from different Asian monsoon regions show various trends in precipitation changes during the H1, and these trends cannot be solely interpreted by the southward shift of the ITCZ. In the present study, we reconstructed time-series of East Asian monsoon precipitation between 25,000 and 10,000 a BP from floodplain sediments in the Huai River Basin. A white sediment layer, distinct from other layers in the profile, contains significantly low TOC, tree pollen and fern spore contents, and more positive δ13Corg, and it is deposited during the H1 event. The determined TOC, pollen and δ13Corg time-series, together with previously reported stalagmite δ18O, indicate a catastrophic (severe) drought in Jianghuai Region, one of the East Asian monsoon regions, during the H1. The La Niña condition in tropical Pacific likely also contributes to the catastrophic drought in Jianghuai Region and the precipitation variations in the Asian monsoon region during the H1.

  8. Understanding land surface response to changing South Asian monsoon in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Krishnan, R.; Sanjay, J.; Sabin, T. P.

    2015-05-01

    Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental panel on Climate Change (IPCC), using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century, in response to climate change. While these monsoon hydrological changes have profound socioeconomic implications, the robustness of the high-resolution simulations provides deeper insights and enhances our understanding of the regional land surface response to the changing South Asian monsoon.

  9. Understanding land surface response to changing South Asian monsoon in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Krishnan, R.; Sanjay, J.; Sabin, T. P.

    2015-09-01

    Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental Panel on Climate Change (IPCC), using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century in response to climate change. Given that these monsoon hydrological changes have profound socio-economic implications the present findings provide deeper insights and enhance our understanding of the regional land surface response to the changing South Asian monsoon. While this study is based on a single model realization, it is highly desirable to have multiple realizations to establish the robustness

  10. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Fu, Rong; Wang, Tao; Liu, Yimin

    2016-06-01

    The Asian monsoon region is the most prominent moisture center of water vapor in the lower stratosphere (LS) during boreal summer. Previous studies have suggested that the transport of water vapor to the Asian monsoon LS is controlled by dehydration temperatures and convection mainly over the Bay of Bengal and Southeast Asia. However, there is a clear geographic variation of convection associated with the seasonal and intra-seasonal variations of the Asian monsoon circulation, and the relative influence of such a geographic variation of convection vs. the variation of local dehydration temperatures on water vapor transport is still not clear. Using satellite observations from the Aura Microwave Limb Sounder (MLS) and a domain-filling forward trajectory model, we show that almost half of the seasonal water vapor increase in the Asian monsoon LS are attributable to geographic variations of convection and resultant variations of the dehydration center, of which the influence is comparable to the influence of the local dehydration temperature increase. In particular, dehydration temperatures are coldest over the southeast and warmest over the northwest Asian monsoon region. Although the convective center is located over Southeast Asia, an anomalous increase of convection over the northwest Asia monsoon region increases local diabatic heating in the tropopause layer and air masses entering the LS are dehydrated at relatively warmer temperatures. Due to warmer dehydration temperatures, anomalously moist air enters the LS and moves eastward along the northern flank of the monsoon anticyclonic flow, leading to wet anomalies in the LS over the Asian monsoon region. Likewise, when convection increases over the Southeast Asia monsoon region, dry anomalies appear in the LS. On a seasonal scale, this feature is associated with the monsoon circulation, convection and diabatic heating marching towards the northwest Asia monsoon region from June to August. The march of convection

  11. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m)

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Wu, Tongwen; Yang, Song; Jie, Weihua; Nie, Suping; Li, Qiaoping; Cheng, Yanjie; Liang, Xiaoyun

    2015-08-01

    This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC CSM1.1(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Ni˜no3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and El Ni˜no-Southern Oscillation.

  12. The role of peninsular India in the South Asian monsoon

    NASA Astrophysics Data System (ADS)

    Turner, A. G.; Martin, G.

    2012-04-01

    Several studies have examined the role of the Tibetan Plateau and Himalayas in the initiation and maintenance of the South Asian summer monsoon, but few have looked at the impact of the Indian peninsula itself. In this study we describe the results of a series of novel experiments with the Met Office Unified Model HadGEM3 run in atmosphere-only configuration, in which the role of the Indian peninsula is assessed. The contributions of the topography, orography and land surface properties to the monsoon circulation and distribution of precipitation in the tropical Indo-Pacific region are examined. While the model usually features a wet bias over the Western Ghats and Himalaya and a dry bias over the northern part of the peninsula, initial results in experiments removing the Indian peninsula and replacing it with sea surface boundary conditions suggest a large re-distribution of precipitation in the northern Indian Ocean: the region at Indian longitudes featuring enhanced precipitation. This may relate simply to the availability of moisture at the surface, however the diurnal cycle of sensible heating will also be reduced in the absence of the land surface. In a further experiment, the land surface characteristics of the peninsula are altered such that, while the land is present, there are no limitations to the supply of moisture to the monsoon. We speculate that this will help isolate the impact of the moisture constraint from that of the diurnal cycle of sensible heating.

  13. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  14. Indian Monsoon Depression: Climatology and Variability

    SciTech Connect

    Yoon, Jin-Ho; Huang, Wan-Ru

    2012-03-09

    The monsoon climate is traditionally characterized by large seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system, with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June - August with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern and central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall. Various weather systems such as tropical cyclones and weak disturbances contribute to monsoon rainfall (Ramage 1971). Among these systems, the most efficient rain-producing system is known as the Indian monsoon depression (hereafter MD). This MD is critical for monsoon rainfall because: (i) it occurs about six times during each summer monsoon season, (ii) it propagates deeply into the continent and produces large amounts of rainfall along its track, and (iii) about half of the monsoon rainfall is contributed to by the MDs (e.g., Krishnamurti 1979). Therefore, understanding various properties of the MD is a key towards comprehending the veracity of the Indian summer monsoon and especially its hydrological process.

  15. Genetic Assessment of African Swine Fever Isolates Involved in Outbreaks in the Democratic Republic of Congo between 2005 and 2012 Reveals Co-Circulation of p72 Genotypes I, IX and XIV, Including 19 Variants

    PubMed Central

    Mulumba–Mfumu, Leopold K.; Achenbach, Jenna E.; Mauldin, Matthew R.; Dixon, Linda K.; Tshilenge, Curé Georges; Thiry, Etienne; Moreno, Noelia; Blanco, Esther; Saegerman, Claude; Lamien, Charles E.; Diallo, Adama

    2017-01-01

    African swine fever (ASF) is a devastating disease of domestic pigs. It is a socioeconomically important disease, initially described from Kenya, but subsequently reported in most Sub-Saharan countries. ASF spread to Europe, South America and the Caribbean through multiple introductions which were initially eradicated—except for Sardinia—followed by re‑introduction into Europe in 2007. In this study of ASF within the Democratic Republic of the Congo, 62 domestic pig samples, collected between 2005–2012, were examined for viral DNA and sequencing at multiple loci: C-terminus of the B646L gene (p72 protein), central hypervariable region (CVR) of the B602L gene, and the E183L gene (p54 protein). Phylogenetic analyses identified three circulating genotypes: I (64.5% of samples), IX (32.3%), and XIV (3.2%). This is the first evidence of genotypes IX and XIV within this country. Examination of the CVR revealed high levels of intra-genotypic variation, with 19 identified variants. PMID:28218698

  16. Genetic Assessment of African Swine Fever Isolates Involved in Outbreaks in the Democratic Republic of Congo between 2005 and 2012 Reveals Co-Circulation of p72 Genotypes I, IX and XIV, Including 19 Variants.

    PubMed

    Mulumba-Mfumu, Leopold K; Achenbach, Jenna E; Mauldin, Matthew R; Dixon, Linda K; Tshilenge, Curé Georges; Thiry, Etienne; Moreno, Noelia; Blanco, Esther; Saegerman, Claude; Lamien, Charles E; Diallo, Adama

    2017-02-18

    African swine fever (ASF) is a devastating disease of domestic pigs. It is a socioeconomically important disease, initially described from Kenya, but subsequently reported in most Sub-Saharan countries. ASF spread to Europe, South America and the Caribbean through multiple introductions which were initially eradicated-except for Sardinia-followed by re‑introduction into Europe in 2007. In this study of ASF within the Democratic Republic of the Congo, 62 domestic pig samples, collected between 2005-2012, were examined for viral DNA and sequencing at multiple loci: C-terminus of the B646L gene (p72 protein), central hypervariable region (CVR) of the B602L gene, and the E183L gene (p54 protein). Phylogenetic analyses identified three circulating genotypes: I (64.5% of samples), IX (32.3%), and XIV (3.2%). This is the first evidence of genotypes IX and XIV within this country. Examination of the CVR revealed high levels of intra-genotypic variation, with 19 identified variants.

  17. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  18. Plio-pleistocene African climate

    SciTech Connect

    deMenocal, P.B.

    1995-10-06

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated. 65 refs., 6 figs.

  19. Plio-Pleistocene African Climate

    NASA Astrophysics Data System (ADS)

    Demenocal, Peter B.

    1995-10-01

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated.

  20. Transport pathways from the Asian monsoon anticyclone to the stratosphere

    NASA Astrophysics Data System (ADS)

    Garny, Hella; Randel, William

    2016-04-01

    The upper tropospheric Asian monsoon anticyclone emerges in response to persistent deep convection over India and southeast Asia in northern summer. The monsoon circulation is associated with rapid transport from the surface to the upper troposphere within convective updrafts, leading to tracer anomalies within the anticyclone. Possibly air is transported further into the stratosphere, but the exact pathways of air from the upper tropospheric anticyclone to the stratosphere are currently under debate. While air is thought to be confined to the anticyclone by its surrounding wind jets, large variability in the anticyclone results in shedding of air from the anticyclone to its surrounding, and possibly air might reach the extratropical lower stratosphere by isentropic mixing. On the other hand, positive vertical velocities in the anticyclone region suggests upward transport of air into the tropical lower stratosphere. In this study, we investigate transport pathways of air originating in the upper tropospheric Asian monsoon anticyclone based on isentropic and three-dimensional trajectories. Trajectories are driven by ERA-Interim reanalysis data, and three-dimensional results are based both on kinematic and diabatic transport calculations. Isentropic calculations show that air parcels are typically confined within the anticyclone for 10-20 days, and spread over the tropical belt within a month of their initialization. However, only few parcels (3 % at 360 K, 8 % at 380 K) reach the extratropical stratosphere by isentropic transport. When considering vertical transport we find that 31 % (48 %) of the trajectories reach the stratosphere within 60 days when using vertical velocities or diabatic heating rates to calculate vertical transport, respectively. In both cases, most parcels that reach the stratosphere are transported upward within the anticyclone and enter the stratosphere in the tropics, typically 10-20 days after their initialization at 360 K. This suggests

  1. The East Asian subtropical summer monsoon: Recent progress

    NASA Astrophysics Data System (ADS)

    He, Jinhai; Liu, Boqi

    2016-04-01

    The East Asian subtropical summer monsoon (EASSM) is one component of the East Asian summer monsoon system, and its evolution determines the weather and climate over East China. In the present paper, we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55 (Japanese 55-yr Reanalysis) data and CMAP (CPC Merged Analysis of Precipitation), GPCP (Global Precipitation Climatology Project), and TRMM (Tropical Rainfall Measuring Mission) precipitation data. The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April, with the establishment of strong southerly wind in situ. The EASSM rainfall, which is composed of dominant convective and minor stratiform precipitation, is always accompanied by a frontal system and separated from the tropical summer monsoon system. It moves northward following the onset of the South China Sea summer monsoon. Moreover, the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated, including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes. In addition, we reveal a possible reason for the subtropical climate difference between East Asia and East America. Finally, the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal, interannual, and interdecadal variability of the EASSM and their importance in climate prediction.

  2. African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C; Reale, Oreste; Schubert, Siegfried D.; Suarez, Max J.; Thorncroft, Chris D.

    2012-01-01

    This study investigates the structure of the African easterly jet, focusing on instability processes on a seasonal and subseasonal scale, with the goal of identifying features that could provide increased predictability of Atlantic tropical cyclogenesis. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used as the main investigating tool. MERRA is compared with other reanalyses datasets from major operational centers around the world and was found to describe very effectively the circulation over the African monsoon region. In particular, a comparison with precipitation datasets from the Global Precipitation Climatology Project shows that MERRA realistically reproduces seasonal precipitation over that region. The verification of the generalized Kuo barotropic instability condition computed from seasonal means is found to have the interesting property of defining well the location where observed tropical storms are detected. This property does not appear to be an artifact of MERRA and is present also in the other adopted reanalysis datasets. Therefore, the fact that the areas where the mean flow is unstable seems to provide a more favorable environment for wave intensification, could be another factor to include-in addition to sea surface temperature, vertical shear, precipitation, the role of Saharan air, and others-among large-scale forcings affecting development and tropical cyclone frequency. In addition, two prominent modes of variability are found based on a spectral analysis that uses the Hilbert-Huang transform: a 2.5-6-day mode that corresponds well to the African easterly waves and also a 6-9-day mode that seems to be associated with tropical- extratropical interaction.

  3. Mechanisms for Annual Cycle Changes in Monsoons in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Seth, Anji

    2014-05-01

    Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) experiments show that the global monsoon is expected to increase in area, precipitation, and intensity as the climate system responds to anthropogenic forcing. Concurrently, detailed analyses for several individual monsoons indicate a re-distribution of rainfall from early to late in the rainy season. This presentation will further examine CMIP5 projected changes in the annual cycle of precipitation in monsoon regions, and use a moist static energy framework to evaluate competing mechanisms identified to be important in precipitation changes over land. In the presence of sufficient surface moisture, the local response to the increase in downwelling energy is characterized by increased evaporation, increased low-level moist static energy, and decreased stability with consequent increases in precipitation. A remote mechanism begins with warmer oceans and operates on land regions via a warmer tropical troposphere, increased stability, and decreased precipitation. The remote mechanism controls the projected changes during winter, and the local mechanism appears to control the switch to increased precipitation during summer in several monsoon regions. During the early summer transition, regions where boundary layer moisture availability is reduced due to decreases in evaporation and moisture convergence experience an enhanced convective barrier. This enhanced convective barrier leads to a redistribution of rainfall from early to late summer, and is robust in the American and African monsoons but not seen in Asia.

  4. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.

    2017-01-01

    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  5. Confronting the "Indian summer monsoon response to black carbon aerosol" with the uncertainty in its radiative forcing and beyond

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Mahajan, Salil

    2016-07-01

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. We analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India and adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. The increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.

  6. Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaïla; Giorgi, Filippo; Deme, Abdoulaye; Tall, Moustapha; Mariotti, Laura; Gaye, Amadou T.

    2016-12-01

    We use two CORDEX-Africa simulations performed with the regional model RegCM4 to characterize the projected changes in extremes and hydroclimatic regimes associated with the West African Monsoon (WAM). RegCM4 was driven for the period 1970-2100 by the HadGEM2-ES and the MPI-ESM Global Climate Models (GCMs) under the RCP8.5 greenhouse gas concentration pathway. RegCM4 accurately simulates the WAM characteristics in terms of seasonal mean, seasonal cycle, interannual variability and extreme events of rainfall. Overall, both RegCM4 experiments are able to reproduce the large-scale atmospheric circulation for the reference period (i.e. present-day), and in fact show improved performance compared to the driving GCMs in terms of precipitation mean climatology and extreme events, although different shortcomings in the various models are still evident. Precipitation is projected to decrease (increase) over western (eastern) Sahel, although with different spatial detail between RegCM4 and the corresponding driving GCMs. Changes in extreme precipitation events show patterns in line with those of the mean change. The models project different changes in water budget over the Sahel region, where the MPI projects an increased deficit in local moisture supply (E < P) whereas the rest of models project a local surplus (E > P). The E-P change is primarily precipitation driven. The precipitation increases over the eastern and/or central Sahel are attributed to the increase of moisture convergence due to increased water vapor in the boundary layer air column and surface evaporation. On the other hand, the projected dry conditions over the western Sahel are associated with the strengthening of moisture divergence in the upper level (850-300 hPa) combined to both a southward migration of the African Easterly Jet (AEJ) and a weakening of rising motion between the core of the AEJ and the Tropical Easterly Jet.

  7. Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoon

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-12-20

    The Earth's monsoon systems are the life-blood of more than two-thirds of the world's population through the rainfall they provide to the mainly agrarian societies they influence. More than 60 experts gathered to assess the current understanding of monsoon variability and to highlight outstanding problems simulating the monsoon.

  8. GCM Study of Interannual Variability of Indian Summer Monsoon: the Impact of Anomalous Spring Eurasian Snow Cover.

    NASA Astrophysics Data System (ADS)

    Zhou, Jiayu

    A recently improved version of the COLA GCM, which simulates the Indian monsoon circulation and precipitation pattern closely, together with snow data derived from SMMR observations, were used to investigate the effect of anomalous spring Eurasian snow cover on the interannual variability of the Indian summer monsoon. We have successfully simulated the observed evidence that excessive winter/spring Eurasian snow cover is associated with a delay in monsoon onset, weak monsoon circulation, and an extended monsoon withdrawal period. JJAS simulated precipitation shows a reduction of about one standard deviation of model natural variation over the Indian region as well as a significant increase over the eastern portion of China. A study of the physical mechanisms involved reveals: (1) Energy used in melting excessive snow reduces the surface temperature over a broad region centered on the Tibetan Plateau. Reduced surface sensible heat flux reduces the mid-tropospheric temperature gradient between Tibet and equatorial Indian Ocean, resulting in a weakening of the Indian summer monsoon circulation. (2) North of Tibet, an anomalous low induced by the excessive springtime Mongolian snow cover is superimposed on the summertime central Asian trough, resulting in the deepening of the trough and the creation of a stronger-than-normal east Asian westerly jet. South of this jet, an upper-tropospheric anomalous anticyclonic circulation provides favorable conditions for convective precipitation over the southeastern part of China. Due to heating anomalies, weaker secondary circulation is accompanied by mass readjustment. Abnormal stationary wave propagation induced by an anomalous divergence field has an abnormal impact on remote regions. The use of the Plumb flux is extended to indicate the propagation of the stationary wave anomaly. Results clearly demonstrate that North America can be influenced by Tibetan anomalous snow cover via atmospheric teleconnection during the spring and

  9. Predictability of Java Monsoon Rainfall Anomalies: A Case Study.

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    1987-01-01

    A substantial portion of the interannual variability of rainfall at Jakarta, Java, can be predicted from antecedent pressure anomalies at Darwin, northern Australia; the pressure persistence, the concurrent correlation of pressure and rainfall, and the predictability of rainfall from antecedent pressure are all largest during the `east' monsoon (June-November). Because of the relatively simple large-scale circulation setting, warranting a single predictor (Darwin pressure), this region is chosen for a series of experiments aimed at exploring the seasonality and secular variations of predictability, optimal length of dependent record, and updating of the regression base period used for predictions on the independent data set.The major features of pressure-rainfall relationships are common through much of the 1911-83 record, namely sign and general magnitude of correlations and the closer relationships during the east, as compared to the west monsoon. Considerable differences are, however, apparent between decades. Them may stem from both sampling deficiencies (noise) and real long-term changes of the pressure-rainfall couplings due to secular alterations in the large-scale circulation setting. The competition between these two factors is relevant concerning the optimal length of the dependent record used for predictions into the independent data set, as well as the updating of the regression base period.

  10. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  11. Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2015-10-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  12. Trace gas variability within the Asian monsoon anticyclone on intraseasonal and interannual timescales

    NASA Astrophysics Data System (ADS)

    Nützel, Matthias; Dameris, Martin; Fierli, Federico; Stiller, Gabriele; Garny, Hella; Jöckel, Patrick

    2016-04-01

    The Asian monsoon and the associated monsoon anticyclone have the potential of substantially influencing the composition of the UTLS (upper troposphere/lower stratosphere) and hence global climate. Here we study the variability of the Asian summer monsoon anticyclone in the UTLS on intraseasonal and interannual timescales using results from long term simulations performed with the CCM EMAC (ECHAM5/MESSy Atmospheric Chemistry). In particular, we focus on specified dynamics simulations (Newtonian relaxation to ERA-Interim data) covering the period 1980-2013, which have been performed within the ESCiMo (Earth System Chemistry integrated Modelling) project (Jöckel et al., GMDD, 2015). Our main focus lies on variability of the anticyclone's strength (in terms of potential vorticity, geopotential and circulation) and variability in trace gas signatures (O3, H2O) within the anticyclone. To support our findings, we also include observations from satellites (MIPAS, MLS). Our work is linked to the EU StratoClim campaign in 2016.

  13. Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events

    NASA Astrophysics Data System (ADS)

    Raghavan, Krishnan; Panickal, Swapna

    2010-05-01

    A majority of positive Indian Ocean Dipole (IOD) events in the last 50-years were accompanied by enhanced summer-monsoon circulation and above-normal precipitation over central-north India. Given that IODs peak during boreal-autumn following the summer-monsoon season, this study examines the role of the summer-monsoon flow on the Indian Ocean (IO) response using a suite of ocean model experiments and supplementary data-diagnostics. The present results indicate that if the summer-monsoon Hadley-type circulation strengthens during positive-IOD events, then the strong off-equatorial south-easterly winds over the northern flanks of the intensified Australian High can effectively promote upwelling in the south-eastern tropical Indian Ocean and amplify the zonal-gradient of the IO heat-content response. While it is noted that a strong-monsoon cross-equatorial flow by itself may not generate a dipole-like response, a strengthening (weakening) of monsoon easterlies to the south-of-equator during positive-IOD events tends to reinforce (hinder) the zonal-gradient of the upper-ocean heat-content response. The findings show that an intensification of monsoonal-winds during positive-IOD periods produces nonlinear amplification of easterly wind-stress anomalies to the south-of-equator due to the nonlinear dependence of wind-stress on wind-speed. It is noted that such an off-equatorial intensification of easterlies over SH enhances upwelling in the eastern IO off Sumatra-Java; and the thermocline shoaling provides a zonal pressure-gradient which drives anomalous eastward equatorial under-currents (EUC) in the sub-surface. Furthermore, the combination of positive-IOD and stronger-than-normal monsoonal flow favors intensification of shallow transient meridional-overturning circulation in the eastern IO; and enhances the feed of cold subsurface off-equatorial waters to the EUC. References: P. Swapna and R. Krishnan 2008: Geophy. Res. Lett. 35, L14S04, doi: 10.1029/ 2008GL033430 R

  14. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

    DOE PAGES

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; ...

    2016-09-19

    Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. Ultimately, these results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less

  15. Investigation of the snow-monsoon relationship in a warming atmosphere using Hadley Centre climate model

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Dash, S. K.; Bhaskaran, B.; Pattnayak, K. C.

    2016-12-01

    Several studies based on observed data and models show that there is an inverse relationship between the strength of the Indian summer monsoon and the extent/depth of Eurasian snow in the preceding season. Perturbed Physics Ensemble (PPE) simulations of Hadley Centre Coupled Model version 3 (HadCM3) have been used in this study to re-examine the snow-monsoon relationship in the longer time scale. The PPE monthly precipitation values during June, July, August and September (JJAS) have been compared with the corresponding values of Climatic Research Unit (CRU) of the University of East Anglia (UEA), UK for the period 1961-1990. The PPEs which simulated the Indian summer monsoon reasonably well have been used for examining snow-monsoon relationship. Atmospheric fields such as wind, geopotential height, velocity potential and stream function from the PPE simulations have been examined in detail. Results show that because of the west Eurasian snow depth anomalies, the mid-latitude circulation undergoes significant changes, which in turn lead to weak/strong monsoon circulation during deficient/excess Indian Summer Monsoon Rainfall (ISMR) respectively. The first Empirical Orthogonal Function (EOF1) of winter snow depth for the period 1961-1990 over the whole of Eurasia explains 13% variability. Thus the significant correlation patterns are consistent with the most dominant EOF of snow depth, in which the first mode describes a dipole type structure as observed. The study confirms that snow depth in the western part of Eurasia (20°E-65°E and 45°N-65°N) has negative correlation with the ISMR.

  16. A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall.

    PubMed

    Mishra, Vimal; Smoliak, Brian V; Lettenmaier, Dennis P; Wallace, John M

    2012-05-08

    The dominant patterns of Indian Summer Monsoon Rainfall (ISMR) and their relationships with the sea surface temperature and 850-hPa wind fields are examined using gridded datasets from 1900 on. The two leading empirical orthogonal functions (EOFs) of ISMR over India are used as basis functions for elucidating these relationships. EOF1 is highly correlated with all India rainfall and El Niño-Southern Oscillation indices. EOF2 involves rainfall anomalies of opposing polarity over the Gangetic Plain and peninsular India. The spatial pattern of the trends in ISMR from 1950 on shows drying over the Gangetic Plain projects onto EOF2, with an expansion coefficient that exhibits a pronounced trend during this period. EOF2 is coupled with the dominant pattern of sea surface temperature variability over the Indian Ocean sector, which involves in-phase fluctuations over the Arabian Sea, the Bay of Bengal, and the South China Sea, and it is correlated with the previous winter's El Niño-Southern Oscillation indices. The circulation anomalies observed in association with fluctuations in the time-varying indices of EOF1 and EOF2 both involve distortions of the low-level monsoon flow. EOF1 in its positive polarity represents a southward deflection of moist, westerly monsoon flow from the Arabian Sea across India, resulting in a smaller flux of moisture to the Himalayas. EOF2 in its positive polarity represents a weakening of the monsoon trough over northeastern India and the westerly monsoon flow across southern India, reminiscent of the circulation anomalies observed during break periods within the monsoon season.

  17. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

    SciTech Connect

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Touma, Danielle; Ruby Leung, L.

    2016-09-19

    Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. Ultimately, these results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.

  18. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Touma, Danielle; Ruby Leung, L.

    2016-09-01

    Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land-atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land-atmosphere interactions in the development and maintenance of SAM.

  19. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  20. POPULATION DYNAMICS OF GREEN NOCTILUCA SCINTILLANS (DINOPHYCEAE) ASSOCIATED WITH THE MONSOON CYCLE IN THE UPPER GULF OF THAILAND(1).

    PubMed

    Sriwoon, Rujinard; Pholpunthin, Pornsilp; Lirdwitayaprasit, Thaithaworn; Kishino, Motoaki; Furuya, Ken

    2008-06-01

    Population dynamics of Noctiluca scintillans (Macartney) Kof. et Swezy containing the photosynthetic endosymbiont Pedinomonas noctilucae (Subrahman.) Sweeney was investigated in relation to environmental conditions in the upper Gulf of Thailand. A clear association was observed between the abundance of N. scintillans and the monsoon cycle, with its blooms occurring during the southwest (SW) monsoon from May to September, and low abundance during the northeast (NE) monsoon from November to February. Nutrient concentrations were higher during the SW monsoon than during the NE monsoon due to the combined effect of increased river discharge into the northern upper gulf and the transport of the riverine inputs by the prevailing clockwise circulation of the water. These nutrient conditions favored the growth of both phytoplankton and the endosymbiont. Correlation analysis revealed that the higher abundance of N. scintillans in the SW monsoon was manifested primarily by higher growth through both sexual and asexual reproduction supported by phagotrophy. However, the dependence of N. scintillans on the nutrient concentration was not significant, probably because the nutrient supply for the endosymbiont was sufficient due to intracellular accumulation of nutrients within the host cells. Sexual reproduction occurred only during the SW monsoon, and its potential importance in population growth was suggested. These findings showed the bottom-up control of the population dynamics of N. scintillans through growth of phytoplankton as prey. The seasonal shift in the circulation pattern associated with the monsoon cycle played a crucial role in blooming of N. scintillans by producing favorable food conditions.

  1. Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.- M.; Kim, K.-M.; Yang, S.

    1998-01-01

    In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of

  2. Monsoon-related transport processes: HCFC-22 as a tracer for East-Asian pollution transport

    NASA Astrophysics Data System (ADS)

    Stiller, Gabriele; von Clarmann, Thomas; Kellmann, Sylvia; Chirkov, Maksym; Vogel, Bärbel; Müller, Rolf

    2016-04-01

    East-Asian pollution from Southern China or India was shown to be uplifted effectively by the Asian monsoon system to levels just below the tropopause. HCFC-22 nowadays has it strongest source region within East Asia. Due to its long lifetime in the troposphere, it is a very well suited transport tracer. We compare observations from MIPAS/Envisat of HCFC-22 with results from pollution transport modelling by the Lagrangian chemistry-transport model CLaMS. We find that East Asian pollution (and HCFC-22) is uplifted into the Asian monsoon anticyclone at the Eastern flank of the monsoon system. However, we do not find any indication of a significant transport through the tropopause of the Asian monsoon anticyclone into the stratosphere. In contrast, HCFC-22 is transported southwards into the tropics during the end phase and the break-down of the Asian monsoon anticyclone and distributed zonally in the tropics. By this a maximum layer of HCFC-22 just below the tropical tropopause is formed. Further transport into the stratosphere happens mainly by uplift within the upwelling branch of the Brewer-Dobson circulation.

  3. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2017-02-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  4. Future Projection and Associated Uncertainty of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Chen, J.; Bordoni, S.

    2014-12-01

    The regional climate change of the East Asian summer monsoon is investigated in the Coupled Model Inter-comparison Project - Phase 5 (CMIP5) archive in the context of the moist static energy budget. In the greenhouse gas forcing scenario, the reduction of radiative cooling and the increase of continental surface temperature occur much more rapidly than changes in sea surface temperatures (SSTs). Without changes in SSTs, the rainfall in the oceanic monsoon region decreases, despite an increase in the land-sea thermal contrast traditionally considered as a fundamental driver of monsoons. The reduction in precipitation is robust amongst all CMIP5 models and is primarily attributable to a weakening of the subtropical westerly jet. The weakening of the jet, in turn, can be explained by changes in upper-level eddy momentum flux convergence and thermal wind balance. On longer time scales, SSTs increase, as does monsoon rainfall. This delayed precipitation increase is primarily driven by the thermodynamic contribution to precipitation changes, by which wet regions get wetter and dry regions get drier. Dynamical changes due to changes in circulation play a secondary effect. These results clearly highlight deficits of commonly proposed geo-engineering schemes as climate mitigation strategies, which, by reducing the surface warming without sequestration of CO2, might still result in dramatic changes in rainfall, especially in heavily populated monsoonal regions. Similar analyses will be applied to other subtropical convergence zones in the Earth's atmosphere.

  5. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Waliser, D.

    2003-01-01

    This study was examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant 'to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on sub-seasonal time scales associated with the meridional propagation of the ISO/MJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISO/MJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISO/MJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISO/MJO variability should provide useful skill of monsoon breaks and surges on sub-seasonal time scales.

  6. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Bacmeister, J.; Waliser, D.

    2004-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on subseasonal time scales associated with the meridional propagation of the ISOMJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISOMJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISOMJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISOM0 variability should provide useful skill of monsoon breaks and surges on subseasonal time scales.

  7. Impacts of absorbing aerosols on interannual and intraseasonal variability of the South Asian monsoon

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Kim, K. M.; Shi, J. J.; Tao, W. K.

    2015-12-01

    Aerosol-monsoon interactions on the interannual and intraseasonal variability of the South Asian monsoon are investigated from observations and modeling. On interannual time scales, we found from observations, and confirm with coupled ocean-atmosphere climate modeling, that absorbing aerosols (mainly desert dust and BC), can significantly amplifying the ENSO impact on the Indian monsoon, through precipitation and circulation feedback induced by the EHP effect. On intraseasonal time scales, modeling studies with the high-resolution WRF regional climate model demonstrated that EHP combined with the semi-direct and microphysics effects, associated with enhanced desert dust transported from the Middle East deserts across the Arabian Sea to the Indian subcontinent, may alter the moisture transport pathways, suppress the development of monsoon depression over northeastern India, resulting in development of intense convective cells, and extreme heavy rain along the Himalayan foothills in central and northwestern India. The implications of these feedback processes on climate change in the South Asian monsoon region will be discussed.

  8. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  9. Hydroclimate variations in central and monsoonal Asia over the past 700 years.

    PubMed

    Fang, Keyan; Chen, Fahu; Sen, Asok K; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki

    2014-01-01

    Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia.

  10. Hydroclimate Variations in Central and Monsoonal Asia over the Past 700 Years

    PubMed Central

    Fang, Keyan; Chen, Fahu; Sen, Asok K.; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki

    2014-01-01

    Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia. PMID:25119567

  11. Simulation of the Indian and East-Asian summer monsoon in the ECMWF model: Sensitivity to horizontal resolution

    SciTech Connect

    Sperber, K.R.; Potter, G.L.; Boyle, J.S.; Hameed, S.

    1993-11-01

    The ability of the ECMWF model (Cycle 33) to simulate the Indian and East Asian summer monsoon is evaluated at four different horizontal resolutions: T21, T42, T63, and T106. Generally, with respect to the large scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high frequency temporal variabilitY serve as a further critical test of the model`s ability to simulate the monsoon. More generally, the results indicate the importance of evaluating high frequency time scales as a component of the climate system. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian Monsoon, while T42 fails to correctly simulate the sequence and development of synoptic scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India which results in an underestimate of precipitation over the Burma/Thailand region. This early establishment of the monsoon trough affects the evolution of the East-Asian monsoon and yields excessive preseason rainfall over the Mei-yu region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangize River Valley. The coarse resolution of T21 precludes simulation of the aforementioned regional scale monsoon flows.

  12. Thermal controls on the Asian summer monsoon.

    PubMed

    Wu, Guoxiong; Liu, Yimin; He, Bian; Bao, Qing; Duan, Anmin; Jin, Fei-Fei

    2012-01-01

    The Asian summer monsoon affects more than sixty percent of the world's population; understanding its controlling factors is becoming increasingly important due to the expanding human influence on the environment and climate and the need to adapt to global climate change. Various mechanisms have been suggested; however, an overarching paradigm delineating the dominant factors for its generation and strength remains debated. Here we use observation data and numerical experiments to demonstrates that the Asian summer monsoon systems are controlled mainly by thermal forcing whereas large-scale orographically mechanical forcing is not essential: the South Asian monsoon south of 20°N by land-sea thermal contrast, its northern part by the thermal forcing of the Iranian Plateau, and the East Asian monsoon and the eastern part of the South Asian monsoon by the thermal forcing of the Tibetan Plateau.

  13. Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene

    NASA Astrophysics Data System (ADS)

    Braconnot, P.; Marzin, C.; Grégoire, L.; Mosquet, E.; Marti, O.

    2008-11-01

    Monsoon is the major manifestation of the seasonal cycle in the tropical regions, and there is a wide range of evidence from marine and terrestrial data that monsoon characteristics are affected by changes in the Earth's orbital parameters. We consider 3 periods in the Eemian and 3 in the Holocene that present some analogy in the Earth's orbital configuration in terms of obliquity and precession. Simulations with the IPSL_CM4 ocean-atmosphere coupled model allow us to discuss the response of the Indian and African monsoon in terms of amplitude and response to the insolation forcing. Results show that precession plays a large role in shaping the seasonal timing of the monsoon system. Differences are found in the response of the two sub-systems. They result from the phase relationship between the insolation forcing and the seasonal characteristics of each sub-system. Also the response of the Indian Ocean is very different in terms of temperature and salinity when the change in insolation occurs at the summer solstice or later in the year. Monsoon has a large contribution to heat and water transports. It is shown that the relative importance of monsoon on the change in the energetic of the tropical regions also vary with precession.

  14. Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene

    NASA Astrophysics Data System (ADS)

    Braconnot, P.; Marzin, C.; Grégoire, L.; Mosquet, E.; Marti, O.

    2008-04-01

    Monsoon is the major manifestation of the seasonal cycle in the tropical regions, and there is a wide range of evidence from marine and terrestrial data that monsoon characteristics are affected by changes in the Earth's orbital parameters. We consider 3 periods in the Eemian and in the Holocene that present some analogy in the Earth's orbital configuration in terms of obliquity and precession. Simulations with the IPSL_CM4 ocean-atmosphere coupled model allow us to discuss the response of the Indian and African monsoon in terms of amplitude and response to the insolation forcing. Results show that precession plays a large role in shaping the seasonal timing of the monsoon system. Differences are found in the response of the two sub-systems. They result from the phase relationship between the insolation forcing and the seasonal characteristics of each sub-system. Also the response of the Indian Ocean is very different in terms of temperature and salinity when the change in insolation occurs at the summer solstice or later in the year. Monsoon has a large contribution to heat and water transports. It is shown that the relative importance of monsoon on the change in the energetic of the tropical regions also vary with precession.

  15. Linking hemispheric radiation budgets, ITCZ shifts, and monsoons

    NASA Astrophysics Data System (ADS)

    McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D.

    2014-12-01

    We explore the relationship between the Intertropical Convergence Zone (ITCZ), hemispheric heat budgets, and monsoon strength in past climates. Modern seasonal and interannual variability in the globally-averaged position of the ITCZ (as estimated by the tropical precipitation centroid) reflects the interhemispheric heat balance, with the ITCZ's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that ITCZ shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean (annually and zonally averaged) ITCZ require large changes in hemispheric heat budgets, placing tight bounds on mean ITCZ shifts in past climates. To test this energetic argument, we use the observed relationship between mean ITCZ position and tropical sea surface temperature (SST) gradients in combination with proxy-based estimates of past SST gradients to show that mean ITCZ shifts for the mid-Holocene, Heinrich Stadial 1 and Last Glacial Maximum are not likely to have been more than 1 degree latitude from its present mean position. In exploring these results, we provide brief descriptions of the estimated radiation budgets of past climates that help demonstrate how different climate forcings change the interhemispheric heat balance and thus the ITCZ's global-mean position. We also address the seeming inconsistency between the small ITCZ shifts indicated by energetic constraints and the large changes in monsoon rainfall suggested by proxy data. We compare global-average and regional-scale tropical precipitation in observations and explore their responses to a variety of forcings (orbital changes, ice sheets, hosing) in models. These comparisons make clear that monsoon precipitation can change substantially even in the

  16. Teleconnections between Eurasian snow cover and the Maldives monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Zahid, Zahid; Sturman, Andrew; Hart, Deirdre; Zawar-Reza, Peyman

    2010-05-01

    Anomalous snow cover over Eurasia can influence monsoon circulation through changes in surface energy balance. Much of the research on the snow-monsoon relationship has focused on the Indian or Chinese monsoon, without examining possible links between the snow-monsoon relationship and summer rainfall over other parts of Asia. Although the Maldives lies in the Indian Ocean (southwest of India), the Asian monsoon flow influences the circulation patterns over the Maldives. However, no previous studies have directly examined possible relationships between Eurasian snow and Maldives monsoon rainfall (MMR: June-September). This paper describes a first attempt to explore the possible relationships between Eurasian snow cover (ESC) and the MMR. The possible relationships between Eurasian snow and the rainfall over the Maldives has been investigated using composite and correlation analyses. The relationship between ESC and monsoon rainfall was also examined using lag-lead correlations. Anomalies of an area-weighted MMR index have been correlated with anomalies of ESC for October-December of the previous year and January-May of the current year. Correlations have also been carried out between MMR and snow cover anomalies for winter (December-January), spring (March-May) and with snowmelt (snow cover difference between February and May). The time series were de-trended to minimize the influence of trends on the strength and significance of the correlations between variables. Relatively very weak correlations were found between the MMR and ESC anomalies for January-May of the current year and October-December of the previous year. The highest correlation between MMR and ESC (r = -0.15, insignificant at 5% level) was found for the month of February. Significant positive correlations were found between ESC in subsequent months, with the highest correlation (r = 0.80) between April and May, significant at the 1% level. Correlations between MMR and snow cover anomaly for winter

  17. Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Jeong; Ha, Kyung-Ja; Jhun, Jong-Ghap

    2014-05-01

    The interdecadal and the interannual variability of the global monsoon (GM) precipitation over the area which is chosen by the definition of Wang and Ding (Geophys Res Lett 33: L06711, 2006) are investigated. The recent increase of the GM precipitation shown in previous studies is in fact dominant during local summer. It is evident that the GM monsoon precipitation has been increasing associated with the positive phase of the interdecadal Pacific oscillation in recent decades. Against the increasing trend of the GM summer precipitation in the Northern Hemisphere, its interannual variability has been weakened. The significant change-point for the weakening is detected around 1993. The recent weakening of the interannual variability is related to the interdecadal changes in interrelationship among the GM subcomponents around 1993. During P1 (1979-1993) there is no significant interrelationship among GM subcomponents. On the other hand, there are significant interrelationships among the Asian, North American, and North African summer monsoon precipitations during P2 (1994-2009). It is noted that the action center of the interdecadal changes is the Asian summer (AS) monsoon system. It is found that during P2 the Western North Pacific summer monsoon (WNPSM)-related variability is dominant but during P1 the ENSO-related variability is dominant over the AS monsoon region. The WNPSM-related variability is rather related to central-Pacific (CP) type ENSO rather than the eastern-Pacific (EP) type ENSO. Model experiments confirm that the CP type ENSO forcing is related to the dominant WNPSM-related variability and can be responsible for the significant interrelationship among GM subcomponents.

  18. Atlantic ITCZ: A Wall or a Leaky Barrier for African Aerosol?

    NASA Astrophysics Data System (ADS)

    Adams, A.; Zhang, C.

    2012-12-01

    In order to evaluate the role of the ITCZ in aerosol distributions over Africa and the tropical Atlantic Ocean, we derived three-dimensional seasonal occurrence probabilities of aerosol from the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Vertical Feature Mask (VFM) product. Our frequency of occurrence structures, when combined with rainfall and wind fields, illustrate aerosol transport pathways, boundaries, and external mixing states. There are clear separation boundaries of pure dust and smoke in the ITCZ vicinity during boreal summer (JJA); dust is confined north of the ITCZ while smoke is bounded to its south. Polluted dust, an external mixture of dust and smoke, is prevalent in this area. The structure of the atmospheric circulation is the reason for the apparent separation of dust and smoke. Three distinct meridional regimes are present: over Africa, Africa in the north and the Atlantic in the south, and over the Atlantic. In the presence of deep convection, precipitation washes out the majority of transported dust and smoke no matter the regime. Over Africa in the absence of deep convection, a shallow meridional circulation associated with the Indian Monsoon transports smoke northward, while outflow of the Saharan heat low transports dust southward. To the west, with Africa in the north and the Atlantic to the south, the Saharan low outflow is still present, but the shallow meridional circulation is associated with the West African Monsoon instead of the Indian Monsoon. Over ocean, there are two shallow meridional circulations: one north of the ITCZ transporting dust southward and one south of the ITCZ transporting smoke northward. In all regimes, the area of the dust/smoke intersection, and thus their lowest frequency of occurrence, is the most probable location of polluted dust created from the external mixing of the two. Interestingly, no smoke is observed north of the ITCZ, but dust is observed to its south. The altitude of

  19. Monsoon Variability in the Arabian Sea from Global 0.08 deg HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Monsoon Variability in the Arabian Sea from Global 0.08...the sequence of events leading up to the early reversal of the western boundary current (WBC) circulation, we are using an existing forced global ...hybrid vertical coordinate system. The model simulation was forced with 0.5° Navy Operational Global Atmospheric Prediction (NOGAPS) fluxes for

  20. The global monsoon definition using the difference of local minimum and maximum pentad precipitation rates associated with cross-equatorial flow reversal

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Jiang, Ning

    2016-05-01

    Since most previous attempts to establish monsoon indices have been limited to specific regions, they have lacked the applicability to universally describe the global monsoon domain. In this paper, we first review the history of global monsoon study and then identify the climatology of global precipitation associated with major systems of the atmospheric general circulation. A new index, based on the annual and semiannual harmonic precipitation rate difference between two local calendar maximal and minimal precipitation pentads, is used to identify the global monsoon domain focusing on where experienced and what caused the climatic dry-wet alteration. The global monsoon domain is defined by the regions where two pentad-mean precipitation difference exceeds 4 mm ṡday-1, which is also influenced by the low-level prevailing wind reversal associated with the cross-equatorial flow. This definition not only confirmed previous results of the classical global monsoon domain from the tropical Africa to Asia-Australia and non-classical monsoon region in the tropical America but also solved an issue of missing local summer monsoon spots.

  1. Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability

    NASA Astrophysics Data System (ADS)

    Chakravorty, Soumi; Gnanaseelan, C.; Pillai, P. A.

    2016-11-01

    The combined influence of tropical Indian Ocean (TIO) and Pacific Ocean (TPO) sea surface temperature (SST) anomalies on Indian summer monsoon rainfall (ISMR) variability is studied in the context of mid-1970s regime shift. The rainfall pattern on the various stages of monsoon during the developing and decaying summer of El Niño is emphasized. Analysis reveals that ISMR anomalies during El Niño developing summer in epoch-1 (1950-1979) are mainly driven by El Niño forcing throughout the season, whereas TIO SST exhibits only a passive influence. On the other hand in epoch-2 (1980-2009) ISMR does not show any significant relation with Pacific during the onset phase of monsoon whereas withdrawal phase is strongly influenced by El Niño. Again the eastern Indian Ocean cooling and westward shift in northwest Pacific (NWP) cyclonic circulation during epoch-2 have strong positive influence on the rainfall over the central and eastern India during the matured phase of monsoon. ISMR in the El Niño decaying summer does not show any significant anomalies in epoch-1 as both Pacific and Indian Ocean warming dissipate by the summer. On the other hand in epoch-2 ISMR anomalies are significant and display strong variability throughout the season. In the onset phase of monsoon, central and east India experience strong negative precipitation anomalies due to westward extension of persistent NWP anticyclone (forced by persisting Indian Ocean warming). The persistent TIO warming induces positive precipitation anomalies in the withdrawal phase of monsoon by changing the atmospheric circulation and modulating the water vapour flux. Moisture budget analysis unravels the dominant processes responsible for the differences between the two epochs. The moisture convergence and moisture advection are very weak (strong) over Indian land mass during epoch-1 (epoch-2) in El Niño decaying summer. The changing moisture availability and convergence play important role in explaining the weakening

  2. Transport pathways from the Asian monsoon anticyclone to the stratosphere

    NASA Astrophysics Data System (ADS)

    Garny, Hella; Randel, William J.

    2016-03-01

    Transport pathways of air originating in the upper-tropospheric Asian monsoon anticyclone are investigated based on three-dimensional trajectories. The Asian monsoon anticyclone emerges in response to persistent deep convection over India and southeast Asia in northern summer, and this convection is associated with rapid transport from the surface to the upper troposphere and possibly into the stratosphere. Here, we investigate the fate of air that originates within the upper-tropospheric anticyclone from the outflow of deep convection, using trajectories driven by ERA-interim reanalysis data. Calculations include isentropic estimates, plus fully three-dimensional results based on kinematic and diabatic transport calculations. Isentropic calculations show that air parcels are typically confined within the anticyclone for 10-20 days and spread over the tropical belt within a month of their initialization. However, only few parcels (3 % at 360 K, 8 % at 380 K) reach the extratropical stratosphere by isentropic transport. When considering vertical transport we find that 31 % or 48 % of the trajectories reach the stratosphere within 60 days when using vertical velocities or diabatic heating rates to calculate vertical transport, respectively. In both cases, most parcels that reach the stratosphere are transported upward within the anticyclone and enter the stratosphere in the tropics, typically 10-20 days after their initialization at 360 K. This suggests that trace gases, including pollutants, that are transported into the stratosphere via the Asian monsoon system are in a position to enter the tropical pipe and thus be transported into the deep stratosphere. Sensitivity calculations with respect to the initial altitude of the trajectories showed that air needs to be transported to levels of 360 K or above by deep convection to likely (≧ 50 %) reach the stratosphere through transport by the large-scale circulation.

  3. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  4. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  5. Enhancement of inland penetration of monsoon depressions in the Bay of Bengal due to prestorm ground wetness

    NASA Astrophysics Data System (ADS)

    Kishtawal, C. M.; Niyogi, Dev; Rajagopalan, Balaji; Rajeevan, M.; Jaiswal, N.; Mohanty, U. C.

    2013-06-01

    Observations of 408 monsoon low-pressure systems (MLPSs) including 196 monsoon depressions (MDs) that formed in the Bay of Bengal during the 1951-2007 period, and the gridded analysis of daily rainfall fields for the same period, were used to identify the association of antecedent rainfall (1 week average rainfall prior to the genesis of MLPS) with the genesis of MLPS and length of inland penetration by MDs. Prestorm rainfall is treated as a surrogate to prestorm ground wetness conditions due to unavailability of historical soil-moisture data over the monsoon region. These observations were analyzed using self-organizing maps (SOMs) to group nine different prestorm monsoon rainfall patterns into different transition states like active, active-to-break, break-to-active, break, etc. The analysis indicates that MLPS are four times more likely to form on a day during active monsoon state compared to break state. Analysis of MLPSs linked to each monsoon state represented by SOM nodes shows that MDs with higher inland penetration were associated with higher antecedent rainfall. On the other hand, there was no significant difference in low-level atmospheric circulation for MDs with shortest and longest inland penetration.

  6. Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium

    PubMed Central

    Asmerom, Yemane; Polyak, Victor J.; Rasmussen, Jessica B. T.; Burns, Stephen J.; Lachniet, Matthew

    2013-01-01

    Late Holocene climate in western North America was punctuated by periods of extended aridity called megadroughts. These droughts have been linked to cool eastern tropical Pacific sea surface temperatures (SSTs). Here, we show both short-term and long-term climate variability over the last 1,500 y from annual band thickness and stable isotope speleothem data. Several megadroughts are evident, including a multicentury one, AD 1350–1650, herein referred to as Super Drought, which corresponds to the coldest period of the Little Ice Age. Synchronicity between southwestern North American, Chinese, and West African monsoon precipitation suggests the megadroughts were hemispheric in scale. Northern Hemisphere monsoon strength over the last millennium is positively correlated with Northern Hemisphere temperature and North Atlantic SST. The megadroughts are associated with cooler than average SST and Northern Hemisphere temperatures. Furthermore, the megadroughts, including the Super Drought, coincide with solar insolation minima, suggesting that solar forcing of sea surface and atmospheric temperatures may generate variations in the strength of Northern Hemisphere monsoons. Our findings seem to suggest stronger (wetter) Northern Hemisphere monsoons with increased warming. PMID:23716648

  7. Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium.

    PubMed

    Asmerom, Yemane; Polyak, Victor J; Rasmussen, Jessica B T; Burns, Stephen J; Lachniet, Matthew

    2013-06-11

    Late Holocene climate in western North America was punctuated by periods of extended aridity called megadroughts. These droughts have been linked to cool eastern tropical Pacific sea surface temperatures (SSTs). Here, we show both short-term and long-term climate variability over the last 1,500 y from annual band thickness and stable isotope speleothem data. Several megadroughts are evident, including a multicentury one, AD 1350-1650, herein referred to as Super Drought, which corresponds to the coldest period of the Little Ice Age. Synchronicity between southwestern North American, Chinese, and West African monsoon precipitation suggests the megadroughts were hemispheric in scale. Northern Hemisphere monsoon strength over the last millennium is positively correlated with Northern Hemisphere temperature and North Atlantic SST. The megadroughts are associated with cooler than average SST and Northern Hemisphere temperatures. Furthermore, the megadroughts, including the Super Drought, coincide with solar insolation minima, suggesting that solar forcing of sea surface and atmospheric temperatures may generate variations in the strength of Northern Hemisphere monsoons. Our findings seem to suggest stronger (wetter) Northern Hemisphere monsoons with increased warming.

  8. The abrupt onset of the modern South Asian Monsoon winds.

    PubMed

    Betzler, Christian; Eberli, Gregor P; Kroon, Dick; Wright, James D; Swart, Peter K; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A; Alonso-García, Montserrat; Bialik, Or M; Blättler, Clara L; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M; Pratiwi, Santi D; Reijmer, John J G; Reolid, Jesús; Slagle, Angela L; Sloss, Craig R; Su, Xiang; Yao, Zhengquan; Young, Jeremy R

    2016-07-20

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  9. Surface circulation and upwelling patterns around Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2014-10-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 3 years to examine the seasonal and shorter-term (~10 days) variability. The results reproduced correctly the reversing current system, between the Equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the southwest (SW) monsoon transporting 11.5 Sv (mean over 2010-2012) and the westward flowing Northeast Monsoon Current (NMC) transporting 9.6 Sv during the NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the southern coast. During the SW monsoon, the island deflects the eastward flowing SMC southward, whilst along the eastern coast, the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the southern coast, resulting from southward flow converging along the southern coast and subsequent divergence associated with the offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the

  10. Surface circulation and upwelling patterns around Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2013-09-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS) configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days) variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE) monsoon the flow along the

  11. Impact of the Desert Dust on the Summer Monsoon System over Southwestern North America

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.

    2012-04-24

    The radiative forcing of dust emitted from the Southwest United States (US) deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM) region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem) for 15 years (1995-2009). During the monsoon season, dust has a cooling effect (-0.90 W m{sup -2}) at the surface, a warming effect (0.40 W m{sup -2}) in the atmosphere, and a negative top-of-the-atmosphere (TOA) forcing (-0.50 W m{sup -2}) over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day{sup -1} over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August) show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to {approx}40% over the eastern slope of the Mountains (Arizona-New Mexico-Texas regions). This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the megadrought conditions projected for the future.

  12. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Bookhagen, Bodo; Thiede, Rasmus C.; Strecker, Manfred R.

    2005-02-01

    The intensity of the Asian summer-monsoon circulation varies over decadal to millennial time scales and is reflected in changes in surface processes, terrestrial environments, and marine sediment records. However, the mechanisms of long-lived (2 5 k.y.) intensified monsoon phases, the related changes in precipitation distribution, and their effect on landscape evolution and sedimentation rates are not yet well understood. The arid high-elevation sectors of the orogen correspond to a climatically sensitive zone that currently receives rain only during abnormal (i.e., strengthened) monsoon seasons. Analogous to present-day rainfall anomalies, enhanced precipitation during an intensified monsoon phase is expected to have penetrated far into these geomorphic threshold regions where hillslopes are close to the angle of failure. We associate landslide triggering during intensified monsoon phases with enhanced precipitation, discharge, and sediment flux leading to an increase in pore-water pressure, lateral scouring of rivers, and oversteepening of hillslopes, eventually resulting in failure of slopes and exceptionally large mass movements. Here we use lacustrine deposits related to spatially and temporally clustered large landslides (>0.5 km3) in the Sutlej Valley region of the northwest Himalaya to calculate sedimentation rates and to infer rainfall patterns during late Pleistocene (29 24 ka) and Holocene (10 4 ka) intensified monsoon phases. Compared to present-day sediment-flux measurements, a fivefold increase in sediment-transport rates recorded by sediments in landslide-dammed lakes characterized these episodes of high climatic variability. These changes thus emphasize the pronounced imprint of millennial-scale climate change on surface processes and landscape evolution.

  13. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2002-01-01

    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  14. A Record of Changes in the Indian Monsoon From ~29 ka to 11 ka Based on a Stalagmite from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Shakun, J. D.; Burns, S. J.; Fleitmann, D.; Kramers, J.; Matter, A.; Al-Subary, A.

    2005-12-01

    Stalagmite M1-5 from Socotra Island, Yemen in the northwest Indian Ocean provides a robust, high-resolution paleoclimate record from 28.5-11.1 ka based on 681 stable isotope and 28 234U/ 230Th measurements. Variations in M1-5 oxygen isotope ratios are interpreted to be primarily driven by an amount effect and to principally reflect changes in the mean position and/or intensity of convection of the intertropical convergence zone. Migration of the ITCZ over the region is the island's source of precipitation. The M1-5 d18O time series is strongly correlated to the Greenland ice cores, similar to an earlier Socotra speleothem record from 53-40 ka (Burns et al., 2003), indicating a North Atlantic-Indian Ocean cold-dry/warm-wet teleconnection persisted through the end of the last glacial period. D/O events 1, 2, 3, Heinrich events 0 and 1, and the Holocene onset are well expressed in M1-5, and the Last Glacial Maximum occurs at ~23 ka, consistent with northern hemisphere ice volume and temperature forcing. M1-5 correlates well with Arabian Sea monsoon-driven productivity and denitrification records as well as the Hulu and Dongge Cave speleothem records from China over decadal to millennial timescales, indicating the entire East African-Asian monsoon system behaved as a cohesive unit during the last deglaciation. M1-5 is also highly coherent with records from the Cariaco Basin during the Bolling/Allerod period, and generally coherent over longer timescales as well, suggesting the intertropical convergence zone fluctuated in unison in the Indian and Atlantic Ocean basins. Significant antiphasing is seen between M1-5 and the Byrd ice core from Antarctica throughout the entire length of the speleothem record, implying the operation of the bipolar seesaw during this interval. In fact, M1-5 is more strongly anticorrelated with Antarctica than is Greenland, suggesting a potential bipolar seesaw mechanism (or feedback) other than the Atlantic thermohaline circulation, perhaps

  15. North Equatorial Indian Ocean Convection and Indian Summer Monsoon June Progression: a Case Study of 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Yadav, Ramesh Kumar; Singh, Bhupendra Bahadur

    2017-02-01

    The consecutive summer monsoons of 2013 and 2014 over the Indian subcontinent saw very contrasting onsets and progressions during the initial month. While the 2013 monsoon saw the timely onset and one of the fastest progressions during the recent decades, 2014 had a delayed onset and a slower progression phase. The monthly rainfall of June 2013 was +34 %, whereas in 2014 it was -43 % of its long-period average. The progress/onset of monsoon in June is influenced by large-scale circulation and local feedback processes. But, in 2013 (2014), one of the main reasons for the timely onset and fastest progression (delayed onset and slower progression) was the persistent strong (weak) convection over the north equatorial Indian Ocean during May. This resulted in a strong (weak) Hadley circulation with strong (weak) ascent and descent over the north equatorial Indian Ocean and the South Indian Ocean, respectively. The strong (weak) descent over the south Indian Ocean intensified (weakened) the Mascarene High, which in turn strengthened (weakened) the cross-equatorial flow and hence the monsoonal circulation.

  16. The spectrum of Asian monsoon variability

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2014-12-01

    The Indian monsoon is the critical source of freshwater for over one billion people. Variability in monsoon precipitation occurs on all time scales and has severe consequences for the people who depend on monsoon rains. Extreme precipitation events have increased in the 20th century and are predicted to continue to become more frequent with anthropogenic global warming. The most recent models project that both monsoon precipitation and variability of precipitation will increase over the 21st century leading to increased flooding and possibly severe droughts. Although current models are able to capture the risk of relatively short droughts (1-5 years) reasonably well, they tend to underestimate the risk of longer, decadal- multidecadal droughts. I use observational records over the last 100 years in conjunction with cave, tree ring, and lake data from the NOAA paleoclimate database to reconstruct Holocene monsoon variability. I am able to show that the Asian monsoon has more low frequency variability than is projected by current climate models. The growing evidence for this discrepancy in hydroclimate variability between models and observational/paleoclimate records is of grave concern. If these models fail to capture the decadal-multidecadal droughts of the past it is likely they will underestimate the possibility of such droughts in the future.

  17. Land-Climate Feedbacks in Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Asharaf, Shakeel; Ahrens, Bodo

    2016-04-01

    In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely

  18. Asian Monsoon Changes and the Role of Aerosol and Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Ting, M.; Li, X.

    2015-12-01

    Changes in Asian summer (June to August) monsoon in response to aerosol and greenhouse gas forcing are examined using observations and the Coupled Model Intercomparison Project - Phase 5 (CMIP5) multi-model, multi-realization ensemble. Results show that during the historical period, CMIP5 models show a predominantly drying trend in Asian monsoon, while in the 21st Century under representative concentration pathway 8.5 (rcp8.5) scenario, monsoon rainfall enhances across the entire Asian domain. The thermodynamic and dynamic mechanisms causing the changes are evaluated using the moisture budget analysis. The drying trend in the CMIP5 historical simulations and the wetting trend in the rcp8.5 projections can be explained by the relative importance of dynamical and thermodynamical contributions to the total moisture convergence. While thermodynamic mechanism dominates in the future, the historical rainfall changes are dominated by the changes in circulation. The relative contributions of aerosols and greenhouse gases (GHGs) on the historical monsoon change are further examined using CMIP5 single-forcing simulations. Rainfall reduces under aerosol forcing and increases under greenhouse gas (GHG) forcing. Aerosol forcing dominates over the greenhouse effect during the historical period, leading to the general drying trend in the all-forcing simulations. While the thermodynamic change of mean moisture convergence in the all-forcing case is dominated by the GHG forcing, the dynamic change in mean moisture convergence in the all-forcing case is dominated by the aerosol forcing. Further analysis using atmospheric GCM with prescribed aerosol and GHG radiative forcing versus those with the prescribed sea surface temperature (SST) warming suggests that the weak circulation changes due to GHG forcing is a result of the cancellation between CO2 radiative forcing and the SST warming, while aerosol radiative effect tends to enhance the circulation response due to SST forcing.

  19. Response of Asian summer monsoon duration to orbital forcing under glacial and interglacial conditions: Implication for precipitation variability in geological records

    NASA Astrophysics Data System (ADS)

    Shi, Zhengguo

    2016-05-01

    The responses of Asian summer monsoon and associated precipitation to orbital forcing have been intensively explored during the past 30 years, but debate still exists regarding whether or not the Asian monsoon is controlled by northern or southern summer insolation on the precessional timescale. Various modeling studies have been conducted that support the potential roles played by the insolation in both hemispheres. Among these previous studies, however, the main emphasis has been on the Asian monsoon intensity, with the response of monsoon duration having received little consideration. In the present study, the response of the rainy season duration over different monsoon areas to orbital forcing and its contribution to total annual precipitation are evaluated using an atmospheric general circulation model. The results show that the durations of the rainy seasons, especially their withdrawal, in northern East Asia and the India-Bay of Bengal region, are sensitive to precession change under interglacial-like conditions. Compared to those during stronger boreal summer insolation, the Asian monsoon-associated rainy seasons at weaker insolation last longer, although the peak intensity is smaller. This longer duration of rainfall, which results from the change in land-ocean thermal contrast associated with atmospheric diabatic heating, can counterbalance the weakened intensity in certain places and induce an opposite response of total annual precipitation. However, the duration effect of Asian monsoon is limited under glacial-like conditions. Nevertheless, monsoon duration is a factor that can dominate the orbital-scale variability of Asian monsoon, alongside the intensity, and it should therefore receive greater attention when attempting to explain orbital-scale monsoon change.

  20. A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Ploeger, F.; Gottschling, C.; Griessbach, S.; Grooß, J.-U.; Guenther, G.; Konopka, P.; Müller, R.; Riese, M.; Stroh, F.; Tao, M.; Ungermann, J.; Vogel, B.; von Hobe, M.

    2015-11-01

    The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from a local maximum in the gradient of potential vorticity (PV), following methods developed for the polar vortex (e.g., Nash et al., 1996). The monsoon anticyclone is dynamically highly variable and the maximum in the PV gradient is weak, such that additional constraints are needed (e.g., time averaging). Nevertheless, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and satellite observations from the Microwave Limb Sounder (MLS) instrument. Hence, the PV-based transport barrier reflects the separation between air inside the core of the anticyclone and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.

  1. Atlantic and Pacific Ocean synergistic forcing of the Mesomerican monsoon over the last two millennia

    NASA Astrophysics Data System (ADS)

    Lachniet, M. S.; Asmerom, Y.; Polyak, V. J.; Bernal, J. P.

    2015-12-01

    We present a new replicated, high resolution (~2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years. Our new reconstruction is based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval, and are calibrated to instrumental rainfall variations in the Basin of Mexico. Such data complement existing dendroclimatic reconstructions of early wet season and winter drought severity. Comparisons to indices of ocean-atmosphere circulation show a combined forcing by the North Atlantic Oscillation and the El Niño/Southern Oscillation. Monsoon strengthening coincided with synergistic forcing of a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Although drought is commonly invoked as an stressor leading to societal change, the role of intensified monsoon onto cultural development is rarely explored. We observe that prominent transitions from drought to pluvial conditions are associated with population increases in three of the major highland Mexico civilizations of Teotihuacan, Tula Grande, and the Aztecs. These data suggest a role for ocean-atmosphere dynamics arising from the Atlantic and Pacific Oceans on Mesoamerican monsoon strength.

  2. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation.

    PubMed

    Ayliffe, Linda K; Gagan, Michael K; Zhao, Jian-xin; Drysdale, Russell N; Hellstrom, John C; Hantoro, Wahyoe S; Griffiths, Michael L; Scott-Gagan, Heather; St Pierre, Emma; Cowley, Joan A; Suwargadi, Bambang W

    2013-01-01

    Recent studies have proposed that millennial-scale reorganization of the ocean-atmosphere circulation drives increased upwelling in the Southern Ocean, leading to rising atmospheric carbon dioxide levels and ice age terminations. Southward migration of the global monsoon is thought to link the hemispheres during deglaciation, but vital evidence from the southern sector of the vast Australasian monsoon system is yet to emerge. Here we present a 230thorium-dated stalagmite oxygen isotope record of millennial-scale changes in Australian-Indonesian monsoon rainfall over the last 31,000 years. The record shows that abrupt southward shifts of the Australian-Indonesian monsoon were synchronous with North Atlantic cold intervals 17,600-11,500 years ago. The most prominent southward shift occurred in lock-step with Heinrich Stadial 1 (17,600-14,600 years ago), and rising atmospheric carbon dioxide. Our findings show that millennial-scale climate change was transmitted rapidly across Australasia and lend support to the idea that the 3,000-year-long Heinrich 1 interval could have been critical in driving the last deglaciation.

  3. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions.

    PubMed

    Wang, Bin; Xiang, Baoqiang; Lee, June-Yi

    2013-02-19

    Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = -0.92), the total TS days over the subtropical western North Pacific (r = -0.81), and the total number of TSs impacting East Asian coasts (r = -0.76) during 1979-2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH-ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability.

  4. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo

    2017-01-01

    The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.

  5. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions

    PubMed Central

    Wang, Bin; Xiang, Baoqiang; Lee, June-Yi

    2013-01-01

    Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = –0.92), the total TS days over the subtropical western North Pacific (r = –0.81), and the total number of TSs impacting East Asian coasts (r = –0.76) during 1979–2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH–ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability. PMID:23341624

  6. The relationship between Arabian Sea upwelling and Indian Monsoon revisited in a high resolution ocean simulation

    NASA Astrophysics Data System (ADS)

    Yi, Xing; Hünicke, Birgit; Tim, Nele; Zorita, Eduardo

    2017-03-01

    Studies based on sediment records, sea-surface temperature and wind suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer Monsoon. We examine this relationship directly in an eddy-resolving global ocean simulation STORM driven by atmospheric reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyse the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analysis reveals high interannual correlations between coastal upwelling and along-shore wind-stress (r = 0.73) as well as with sea-surface temperature (r = -0.83). However, the correlation between the upwelling and the Monsoon is small. We find an atmospheric circulation pattern different from the one that drives the Monsoon as the main modulator of the upwelling variability. In spite of this, the patterns of temperature anomalies that are either linked to Arabian Sea upwelling or to the Monsoon are spatially quite similar, although the physical mechanisms of these links are different. In addition, no long-term trend is detected in our modelled upwelling in the Arabian Sea.

  7. A correlated shortening of the North and South American monsoon seasons in the past few decades

    NASA Astrophysics Data System (ADS)

    Arias, Paola A.; Fu, Rong; Vera, Carolina; Rojas, Maisa

    2015-12-01

    Our observational analysis shows that the wet seasons of the American monsoon systems have shortened since 1978 due to correlated earlier retreats of the North American monsoon (NAM) and late onsets of the southern Amazon wet season, an important part of the South American monsoon (SAM). These changes are related to the combination of the global sea surface temperature (SST) warming mode, the El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), the westward shift of the North Atlantic subtropical high (NASH), and the enhancement of Pacific South American and Pacific North American wave train patterns, which induces variations of the regional circulation at interannual and decadal scales. The joint contributions from these forcing factors are associated with a stronger and more equatorward regional Hadley cell, which enhances convergence towards the equator, strengthening and possibly delaying the retreat of the tropical part of the NAM. This in turn accelerates the demise of the northern NAM and delays the reversal of the cross-equatorial flow over South America, reducing moisture transport to the SAM and delaying its onset. In addition, the thermodynamic response to warming appears to cause local drier land conditions over both regions, reinforcing the observed changes in these monsoons. Although previous studies have identified the isolated influence of the regional Hadley cell, ENSO, AMO, global SST warming, and NASH on the NAM, the correlated changes between NAM and SAM through variations of the cross-equatorial flow had not been established before.

  8. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    SciTech Connect

    Kovilakam, Mahesh; Mahajan, Salil

    2016-06-28

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India and adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.

  9. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil

    2016-06-28

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  10. The First Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-07-27

    In 2004 the Joint Scientific Committee (JSC) that provides scientific guidance to the World Climate Research Programme (WCRP) requested an assessment of (1) WCRP monsoon related activities and (2) the range of available observations and analyses in monsoon regions. The purpose of the assessment was to (a) define the essential elements of a pan-WCRP monsoon modeling strategy, (b) identify the procedures for producing this strategy, and (c) promote improvements in monsoon observations and analyses with a view toward their adequacy, and addressing any undue redundancy or duplication. As such, the WCRP sponsored the ''1st Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons'' at the University of California, Irvine, CA, USA from 15-17 June 2005. Experts from the two WCRP programs directly relevant to monsoon studies, the Climate Variability and Predictability Programme (CLIVAR) and the Global Energy and Water Cycle Experiment (GEWEX), gathered to assess the current understanding of the fundamental physical processes governing monsoon variability and to highlight outstanding problems in simulating the monsoon that can be tackled through enhanced cooperation between CLIVAR and GEWEX. The agenda with links to the presentations can be found at: http://www.clivar.org/organization/aamon/WCRPmonsoonWS/agenda.htm. Scientific motivation for a joint CLIVAR-GEWEX approach to investigating monsoons includes the potential for improved medium-range to seasonal prediction through better simulation of intraseasonal (30-60 day) oscillations (ISO's). ISO's are important for the onset of monsoons, as well as the development of active and break periods of rainfall during the monsoon season. Foreknowledge of the active and break phases of the monsoon is important for crop selection, the determination of planting times and mitigation of potential flooding and short-term drought. With a few exceptions simulations of ISO are typically poor in all classes of

  11. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  12. South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations

    SciTech Connect

    Annamalai, H; Hamilton, K; Sperber, K R

    2005-09-07

    In this paper we use the extensive integrations produced for the IPCC Fourth Assessment Report (AR4) to examine the relationship between ENSO and the monsoon at interannual and decadal timescales. We begin with an analysis of the monsoon simulation in the 20th century integrations. Six of the 18 models were found to have a reasonably realistic representation of monsoon precipitation climatology. For each of these six models SST and anomalous precipitation evolution along the equatorial Pacific during El Nino events display considerable differences when compared to observations. Out of these six models only four (GFDL{_}CM{_}2.0, GFDL{_}CM{_}2.1, MRI, and MPI{_}ECHAM5) exhibit a robust ENSO-monsoon contemporaneous teleconnection, including the known inverse relationship between ENSO and rainfall variations over India. Lagged correlations between the all-India rainfall (AIR) index and Nino3.4 SST reveal that three models represent the timing of the teleconnection, including the spring predictability barrier which is manifested as the transition from positive to negative correlations prior to the monsoon onset. Furthermore, only one of these three models (GFDL{_}CM{_}2.1) captures the observed phase lag with the strongest anticorrelation of SST peaking 2-3 months after the summer monsoon, which is partially attributable to the intensity of simulated El Nino itself. We find that the models that best capture the ENSO-monsoon teleconnection are those that correctly simulate the timing and location of SST and diabatic heating anomalies in the equatorial Pacific, and the associated changes to the equatorial Walker Circulation during El Nino events. The strength of the AIR-Nino3.4 SST correlation in the model runs waxes and wanes to some degree on decadal timescales. The overall magnitude and timescale for this decadal modulation in most of the models is similar to that seen in observations. However, there is little consistency in the phase among the realizations

  13. Fetal Circulation

    MedlinePlus

    ... Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection of a Heart Defect - Fetal Circulation • Care & Treatment • Tools & Resources Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Target Heart Rates 4 Heart Attack Symptoms in Women ...

  14. The relationship between intraseasonal and interannual variability during the asian summer monsoon

    SciTech Connect

    Sperber, K. R.; Slingo, J. M.; Annamalai, H.

    1999-04-21

    The purpose of this paper is to investigate intraseasonal (30-70 days) and higher frequency (5-30 days) variability and its relationship to interannual variability. Various modelling studies have suggested a link between intraseasonal and interannual variability of the Asian summer monsoon. This relationship has been mainly based upon the similar spatial structures of the dominant EOF patterns of the monsoon circulation on intraseasonal and interannual time scales from simulations with simple models and atmospheric general circulation models. Here we investigate these relationships using 40 years of NCEP/NCAR Reanalysis. Motivation for this study is embodied in the suggestions of Charney and Shukla (1981) that boundary forcing (e.g., sea surface temperature) may predispose the monsoon system towards a dry or wet state, and the result of Palmer (1994), using the Lorenz (1963) model, that the probability of being in one regime of phase space or another is no longer equally probable in the presence of external forcing. To investigate the influence of the boundary forcing, the probability distribution functions (PDFs) of the principal components are given.

  15. Effect of Gravity Waves Generated in the Monsoon Region on Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Thurairajah, B.; Bailey, S. M.; Carstens, J. N.; Siskind, D. E.

    2015-12-01

    Gravity Waves (GWs) play an important role in both the formation and destruction of polar mesospheric clouds. In summer, while vertically propagating GWs induce a residual circulation that cools the summer mesosphere and therefore supports the formation of PMCs, observation and modeling studies have also shown that short period GWs can additionally destroy PMCs. In this study we analyze the effect of non-vertical propagation of GWs on PMCs using temperature data from the SABER instrument on TIMED satellite and PMC occurrence frequency from the CIPS instrument on the AIM satellite. During the 2007 PMC season, time series of GWs over the monsoon region at 50 km and PMCs over the polar region at 84 km have a correlation coefficient of 0.9. SABER GW amplitude and momentum flux over the monsoon region show a poleward tilt with altitude. This slanted structure suggests a poleward, but non-vertical, propagation of GWs facilitated by the easterly winds associated with the monsoon circulation, thus indicating a possible source of high latitude middle atmospheric GWs.

  16. Intraseasonal Variability of Summer Monsoon Rainfall and Droughts over Central India

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani

    2017-02-01

    Rainfall over Madhya Pradesh (MP) in central India has large intra-seasonal variability causing droughts and floods in many years. In this study, rainfall variability in daily and monthly scale over central India has been examined using observed data. Consistency among various datasets such as rainfall, surface temperature, soil moisture and evapotranspiration has been examined. These parameters are from various different sources and critical for drought monitoring and prediction. It is found that during weak phases of monsoon, central India receives deficit rainfall with weaker monsoon circulation. This phase is characterized by an anticyclonic circulation at 850 hPa centered on MP. The EOF analysis of daily rainfall suggests that the two leading modes explain about 23-24% of rainfall variability in intraseasonal timescale. These two modes represent drought/flood conditions over MP. Relationship of weak phases of rainfall over central India with real-time multivariate (RMM) indices of Madden Julian Oscillation (MJO) has been examined. It is found that RMM-6, RMM-7, RMM-1 and RMM-2 describe the weak monsoon conditions over central India. However, frequency of drought occurrence over MP is more during RMM-7 phase. Surface temperature increases by about 0.5°-1° during weak phases of rainfall over this region. Soil moisture and evapotranspiration gradually reduce when rainfall reduces over the study region. Soil moisture and evapotranspiration anomalies have positive pattern during good rainfall events over central India and gradually reduce and become negative anomalies during weak phases.

  17. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region

  18. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Kushnir, Yochanan; Enzel, Yehouda; Haug, Gerald; Stein, Mordechai

    2015-02-01

    Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at ∼725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5). The results document both a more intense aridity during MIS5 than during the Holocene, and the moderating impacts derived from the intense MIS5e African Monsoon. Early MIS5e (∼133-128 ka) was dominated by hyperarid conditions in the Eastern Mediterranean-Levant, indicated by thick halite deposition triggered by a lake-level drop. Halite deposition was interrupted however, during the MIS5e peak (∼128-122 ka) by sequences of flood deposits, which are coeval with the timing of the intense precession-forced African monsoon that generated Mediterranean sapropel S5. A subsequent weakening of this humidity source triggered extreme aridity in the Dead Sea watershed and resulting in the biggest known lake level drawdown in its history, reflected by the deposition of thick salt layers, and a capping pebble layer corresponding to a hiatus at ∼116-110 ka. The DSDDP core provides the first evidence for a direct association of the African monsoon with mid subtropical latitude climate systems effecting the Dead Sea watershed. Combined with coeval deposition of Arabia and southern Negev speleothems, Arava travertines, and calcification of Red Sea corals, the evidence points to a climatically wet corridor that could have facilitated homo sapiens migration "out of Africa" during the MIS5e peak. The hyperaridity documented during MIS5e may provide an important analogue for future warming of arid regions of the Eastern Mediterranean-Levant.

  19. The Sensitivity of African Easterly Waves to Eastern Tropical Atlantic Sea-Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew

    2011-01-01

    The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3 K at every ocean grid point between 0 and 15 N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.

  20. Tracking moisture pathways to Asia since the late Cretaceous: The competing influences of westerly and monsoonal dynamics

    NASA Astrophysics Data System (ADS)

    Caves, Jeremy; Bayshashov, Bolat; Zhamangara, Aizhan; Ritch, Andrea; Ibarra, Daniel; Gao, Yuan; Sjostrom, Derek; Page Chamberlain, C.

    2016-04-01

    There remains substantial debate concerning how uplift of the Tibetan Plateau and the greater India-Asia collisional orogenic system has impacted the strength of the Asian monsoonal systems. Deciphering the extent of the Asian monsoons through time requires knowledge of the relative influence of the major circulation systems that today deliver moisture to Asia, including the Southeast Asian Monsoon, the East Asian Monsoon, and the mid-latitude westerlies. Oxygen isotopes (δ18O) in precipitation provide a promising method to evaluate these systems through time, because δ18O in precipitation records both the moisture source as well as the relative importance of rainout and evapotranspiration; as a result, δ18O can be used to track the extent of monsoonal versus westerly moisture. Presently, southern Tibet receives depleted 18O monsoonal moisture from distillation over the Himalayas, while northern Tibet and Central Asia receive enriched 18O moisture borne by the mid-latitude westerlies. Remarkably, a compilation of nearly 3,000 Cenozoic paleosol and lacustrine carbonate samples from across Asia demonstrates that this spatial distribution has remained constant for approximately the past 50 million years. Since the early Eocene, southern Tibet has received low δ18O moisture, while Central Asia has received high δ18O moisture. A constant spatial distribution through time suggests that the relative extents of the monsoon and the westerlies have remained approximately constant since the early Eocene, despite substantial paleogeographic changes, including retreat of the Paratethys and uplift of the northern Tibetan Plateau, Tian Shan, and Altai. To extend these records back in time and further explore the role of the monsoon and westerlies in supplying moisture to Asia, we present new records of stable isotopes from late Cretaceous paleosol carbonates from the Songliao Basin (NE China) and the Gobi Desert (Mongolia), and a long, late Cretaceous to Pliocene record of

  1. CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate

    NASA Astrophysics Data System (ADS)

    Dong, Guangtao; Zhang, H.; Moise, A.; Hanson, L.; Liang, P.; Ye, H.

    2016-01-01

    A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST

  2. Characterization of southwest monsoon onset over Myanmar

    NASA Astrophysics Data System (ADS)

    Mie Sein, Z. M.; Islam, A. R. M. Towfiqul; Maw, K. W.; Moya, T. B.

    2015-10-01

    The aim of this paper was to characterize the southwest monsoon onset over Myanmar based on the model. The Regional Climate Model (RegCM3) was run for a period of 10 years (2000-2009) to simulate the meteorological fields which focused on April to July season. The model input data were obtained from the reanalyzed datasets of the National Center for Environmental Prediction (NCEP) and National Centre for Atmospheric Research (NCAR). Grell scheme with Arakawa closure for cumulus parameterization assumption was used for simulation with 45 km horizontal resolution. The results revealed that southwest monsoon onset was confirmed when the prevailing wind direction up to 600 hPa level had shifted from northeasterly to westerly or southwesterly. The southwest monsoon first arrived at southernmost Kawthoung station of Myanmar and progressed through the Deltaic and Central parts until it reached at northernmost Putao station. Over the simulation periods, the southwest monsoon onset progressed from the southernmost to northernmost parts of the country in 19 ± 10 days. The position of Intertropical Convergence Zone (ITCZ) appeared (23°N-28°N) over the Northern part of the country before the onset. Furthermore, 500 hPa ridge appeared consistently over the Deltaic area of Myanmar from 6 to 10 days before the monsoon onset. Its position is about 6° to the south of the ITCZ.

  3. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    SciTech Connect

    Zhu, Chunmei; Leung, Lai R.; Gochis, David; Qian, Yun; Lettenmaier, Dennis P.

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most of the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.

  4. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations

    NASA Astrophysics Data System (ADS)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll

    2016-10-01

    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  5. Atmospheric processes sustaining a multidecadal variation in reconstructed and model-simulated Indian monsoon precipitation during the past half millennium

    NASA Astrophysics Data System (ADS)

    Wu, Qianru

    Analyses of recently reconstructed and model-simulated Indian May-September precipitation disclose a statistically significant multidecadal variation at the frequency of 40-50 year per cycle during the last half millennium. To understand the mechanism of this variation, we examined the energy and dynamic processes in the atmosphere, and the potential forcings from the sea surface temperature (SST) variations around the globe. Comparisons of paleo-SST and the paleo-precipitation simulations suggest that the SST is not a significant forcing of the multidecadal variation found in the Indian monsoon precipitation. Instead, analyses suggest that atmospheric processes characterized by phase differences between the meridional enthalpy gradient and poleward eddy enthalpy transport are important to sustain this variation. In this phase relationship, the meridional enthalpy gradient is strengthened by radiative loss in high latitudes. Driven by this enlarged gradient and associated changes in baroclinicity in the mid-latitude atmosphere, more energy is generated in the tropical and subtropical (monsoon) regions and transported poleward. The monsoon is strengthened to allow more energy being transported poleward. The increased enthalpy transport, in turn, weakens the meridional enthalpy gradient and, subsequently, softens the demand for energy production in the monsoon region. The monsoon weakens and the transport decreases. The variation in monsoon precipitation lags that in the meridional enthalpy gradient, but leads that in the poleward heat transport. This phase relationship and underlining chasing process by the heat transport to the gradient sustain this variation at the multidecadal timescale. This mechanism suggests that atmospheric circulation processes can contribute to multidecadal timescale variations in the Indian monsoon precipitation.

  6. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China from space

    NASA Astrophysics Data System (ADS)

    Hao, N.; Ding, A.; Valks, P.; Safieddine, S.; Clerbaux, C.; Trautmann, T.

    2013-12-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. Due to huge consumption of fossil fuels and rapid increase of traffic emissions in the past decades, many regions in China have been experiencing heavy air pollution. In China, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Publicly available in situ observations cannot provide sufficient spatial coverage and high consistence in data quality for a long-term period. Therefore, knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. Satellite retrievals with high spatial coverage and high consistence for a long period can well document the change of air pollution with monsoon. We apply multi-platform satellite observations by the GOME, SCIAMACHY, GOME-2, IASI, GOMOS, MIPAS and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NOx, HCHO and CH4) and other related trace gases over China. The potential of using the current generation of satellite instruments to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  7. Monsoon extremes and society over the past millennium on mainland Southeast Asia

    NASA Astrophysics Data System (ADS)

    Buckley, Brendan M.; Fletcher, Roland; Wang, Shi-Yu Simon; Zottoli, Brian; Pottier, Christophe

    2014-07-01

    The early 21st century has seen vigorous scientific interest in the Asian monsoon and significant development of paleo-proxies of monsoon strength. These include the Monsoon Asian Drought Atlas - a 700-year, gridded reconstruction of hydroclimate derived from 327 tree ring records - and several long speleothem records from China and India. Similar progress has been made on the study of monsoon climate dynamics through re-analysis data products and General Circulation Model diagnostics. The story has emerged of a variable monsoon over the latter Holocene, with extended droughts and anomalously wet episodes that occasionally and profoundly influenced the course of human history. We focus on Southeast Asia where an anomalous period of unstable climate coincided with the demise of the capital of the Khmer Empire at Angkor between the 14th and the 16th centuries, and we suggest that protracted periods of drought and deluge rain events, the latter of which damaged Angkor's extensive water management systems, may have been a significant factor in the subsequent transfer of the political capital away from Angkor. The late 16th and early 17th century experienced climate instability and the collapse of the Ming Dynasty in China under a period of drought, while Tonkin experienced floods and droughts throughout the 17th century. The 18th century was a period of great turmoil across Southeast Asia, when all of the region's polities saw great unrest and rapid realignment during one of the most extended periods of drought of the past millennium. New paleo-proxy records and the incorporation of historical documentation will improve future analyses of the interaction between climate extremes, social behavior and the collapse or disruption of regional societies, a subject of increasing concern given the uncertainties surrounding projections for future climate.

  8. The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective

    NASA Astrophysics Data System (ADS)

    Ge, Fei; Sielmann, Frank; Zhu, Xiuhua; Fraedrich, Klaus; Zhi, Xiefei; Peng, Ting; Wang, Lei

    2017-03-01

    The thermal forcing of the Tibetan Plateau (TP) is analyzed to investigate the formation and variability of Tibetan Plateau Summer Monsoon (TPSM), which affects the climates of the surrounding regions, in particular the Indian summer monsoon precipitation. Dynamic composites and statistical analyses indicate that the Indian summer monsoon precipitation is less/greater than normal during the strong/weak TPSM. Strong (weak) TPSM is associated with an anomalous near surface cyclone (anticyclone) over the western part of the Tibetan Plateau, enhancing (reducing) the westerly flow along its southern flank, suppressing (favoring) the meridional flow of warm and moist air from the Indian ocean and thus cutting (providing) moisture supply for the northern part of India and its monsoonal rainfall. These results are complemented by a dynamic and thermodynamic analysis: (i) A linear thermal vorticity forcing primarily describes the influence of the asymmetric heating of TP generating an anomalous stationary wave flux. Composite analysis of anomalous stationary wave flux activity (after Plumb in J Atmos Sci 42:217-229, 1985) strongly indicate that non-orographic effects (diabatic heating and/or interaction with transient eddies) of the Tibetan Plateau contribute to the generation of an anomalous cyclone (anti-cyclone) over the western TP. (ii) Anomalous TPSM generation shows that strong TPSM years are related to the positive surface sensible heating anomalies over the eastern TP favoring the strong diabatic heating in summer. While negative TPSM years are associated with the atmospheric circulation anomalies during the preceding spring, enhancing northerly dry-cold air intrusions into TP, which may weaken the condensational heat release in the middle and upper troposphere, leading to a weaker than normal summer monsoon over the TP in summer.

  9. A coupled model study on the intensification of the Asian summer monsoon in IPCC SRES Scenarios

    NASA Astrophysics Data System (ADS)

    Wei, Min

    2005-11-01

    The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered. Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakićenović et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.

  10. Rapid weakening of Typhoon Chan-Hom (2015) in a monsoon gyre

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Wu, Liguang; Gu, Guojun; Liu, Qingyuan

    2016-08-01

    A monsoon gyre is a low-frequency cyclonic circulation over the western North Pacific, which plays important roles in tropical cyclone formation and motion. This study shows that the interaction between a monsoon gyre and a tropical cyclone can lead to a sudden weakening of the tropical cyclone through an observational analysis of Typhoon Chan-Hom (2015). Typhoon Chan-Hom (2015) initially moved westward along ~10°N and sharply turned northeastward in the Philippine Sea at 0000 UTC 3 July. Its intensity decreased by 10.3 m s-1 within 12 h during the sudden northward turn. Such a rapid weakening event was failed to predict in all of the operational forecasts. It is found that Chan-Hom was coalescing with a large-scale monsoon gyre on the intraseasonal (15-30 day) timescale, while it experienced the sudden track change and rapid intensity weakening. The weak and loosely organized convection on the eastern side of the monsoon gyre at 1200 UTC 2 July rapidly enhanced into the well-organized convection within 6 h. The strong convection maintaining from 1800 UTC 2 July to 0600 UTC 3 July enhanced inflows outside the radius of 500 km from the tropical cyclone center, which prevented the inward transportation of mass and moisture into Chan-Hom, leading to the collapsing of the eastern part of the eyewall. As a result, Chan-Hom underwent the rapid weakening even under a large-scale environment favorable for intensification. The study suggests that the rapid weakening of a tropical cyclone can result from its interaction with a monsoon gyre.

  11. Getting a grip on Indian Ocean monsoons

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    An improved understanding of the Indian Ocean monsoon season could help researchers to better forecast floods and the associated spread of cholera in low-lying Bangladesh.In a joint effort by the University of Colorado at Boulder, the Asian Disaster Preparedness Center, and the Bangladesh government, researchers are using a variety of monitoring and forecast modeling tools to better understand and characterize the monsoon season's active and calm periods. By studying Indian Ocean climatic conditions and probabilities that lead to regular flooding of the Bangladesh delta, researchers also can provide probabilities concerning outbreaks of cholera, an intestinal disease that infects large segments of that country's population.

  12. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M.; Siringan, F. P.; Hori, M.; Okumura, Y.; Banner, J. L.; Lin, K.; Jiang, X.; Taylor, F. W.

    2013-12-01

    Many monsoon-sensitive paleoclimate archives capture the response of the Asian-Australian monsoon system to changes in summer insolation, as well as abrupt climate changes such as the Younger Dryas (YD). The response is commonly a direct one in Holocene and YD archives. In the case of insolation, increased summer insolation leads to increased monsoon rainfall over land, as captured in stalagmite δ18O records from Oman and China. We evaluate this direct response using maritime stalagmite records from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the Palawan stalagmite δ18O record, a proxy of rainfall, to have a similar response to changing insolation and hence, a trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in two partially replicated stalagmite δ18O records is opposite to that expected: rainfall increases over the Holocene, despite the decrease of summer insolation over the Holocene. We interpret the Holocene trend observed at Palawan to be the result of an increase in the maritime monsoon that balances the reduction in the land monsoon; an interpretation that is consistent with previously published results from coupled ocean-atmosphere general circulation model runs. Seawater δ18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. The direct relationship between monsoon rainfall over land as recorded in the YD interval in Chinese stalagmite records is also observed in maritime monsoon rainfall during the YD at Palawan: both records get drier during the YD cold interval. This agreement between YD stalagmite records from China and Palawan contrasts sharply with the inverse relationship between these records over the Holocene. We further investigate the nature of

  13. Synchronous decadal changes between Asian monsoon and Greenland climates during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Wu, J. Y.; Wang, Y. J.; Cheng, H.; Edwards, R.

    2008-12-01

    An annually laminated stalagmite from Hulu Cave in Southern China grew for about 3000 years starting at 21345 aBP (±85 a) as determined by lamina counting and U-Th dating. The stalagmite δ 18O time series provides a continuous history of the Asian monsoon precipitation and δ 13C may reflect the soil biogenic production, which is linked to climatic factors such as temperature and humidity. The annual layer thickness (LT) from this stalagmite can not be regarded as a direct indicator of precipitation. LT and gray level (GL) may indicate the changes in the relative humidity of the cave environment. The δ 18O record with average 3.7-year resolution precisely anchored the timing of IS2 event which was well expressed in the Greenland ice core δ 18O records. The timing of IS2 in GISP2 is close to the chronology of the stalagmite records within the uncertainty of U/Th dates. Our record, in combination with the previously-published record between 17 and 15 kaBP also from Hulu Cave, indicated that the monsoon events (H1 and H2), in terms of their structure, are quite different from the cold events in North Atlantic, which were well presented in the Greenland ice core δ 18O records. For both of the H1 and H2, the monsoon precipitation records show a rapid transition from dry to wet conditions, followed by a stepwise increasing trend, with a total duration of more than 600 years. In contrast, the Greenland δ 18O records display abrupt changes either into or out of the events. The H98 δ 18O record shows a teleconnection between the density of East Asia monsoon and polar temperature on centennial to multi-decade scales during the LGM. However, the different structure of climatic events between the low and high latitude areas also suggests that changes of East Asian monsoon were triggered not only by the North Atlantic themorhaline circulation but also by some other factors. The coupled oceanic- atmospheric circulation from tropical Pacific may be a possible forcing, it

  14. Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-03-01

    Using observation-based analyses, this study identifies the leading interannual pattern of the Indian summer monsoon rainfall (ISMR) independent of ENSO and examines the potential mechanisms of its formation. For this purpose, an objective procedure is used to isolate the variability of the summer precipitation associated with the contemporary ENSO state and in previous winter-spring, which influence the Indian summer monsoon (ISM) region in opposite ways. It is shown that the leading pattern of these ENSO-related monsoon rainfall anomalies reproduces some major ISMR features and well represents its connections to the global-scale ENSO features in both lower and upper troposphere. On the other hand, the leading pattern derived from the precipitation anomalies with the ENSO component removed in the ISM and surrounding region also accounts for a substantial amount of the monsoon precipitation centered at the eastern coast of the subtropical Arabian Sea, extending into both the western Indian Ocean and the Indian subcontinent. The associated atmospheric circulation change is regional in nature, mostly confined in the lower to mid troposphere centered in the Arabian Sea, with a mild connection to an opposite tendency centered at the South China Sea. Further analyses show that this regional pattern is associated with a thermodynamic air-sea feedback during early to mid summer season. Specifically, before the monsoon onset, an anomalous atmospheric high pressure over the Arabian Sea causes excessive shortwave radiation to the sea surface and increases SST in May. The warm SST anomalies peak in June and reduce the sea level pressure. The anomalous cyclonic circulation generates regional convection and precipitation, which also induces subsidence and anticyclonic circulation over the South China Sea. The combined cyclonic-anticyclonic circulation further transport moisture from the western Pacific into the Indian Ocean and causes its convergence into the Arabian Sea. As a

  15. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang

    2016-12-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  16. A new centennial index to study the Western North Pacific Monsoon decadal variability

    NASA Astrophysics Data System (ADS)

    Vega, Inmaculada; Gómez-Delgado, F. de Paula; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; García-Herrera, Ricardo

    2016-04-01

    The concept of the Western North Pacific Summer Monsoon (WNPSM) appeared for the first time in 1987. It is, unlike the Indian Summer Monsoon (ISM) and the East Asian summer monsoon (EASM), an oceanic monsoon mostly driven by the meridional gradient of sea surface temperature. Its circulation is characterized by a northwest-southeast oriented monsoon trough with intense precipitation and low-level southwesterlies and upper-tropospheric easterlies in the region [100°-130° E, 5°-15°N]. Up to now, the primary index to characterize the WNPSM has been the Western North Pacific Monsoon Index (WNPMI) which covers the 1949-2013 period. The original WNPMI was defined as the difference of 850-hPa westerlies between two regions: D1 [5°-15°N, 100°-130°E] and D2 [20°-30°N, 110°-140°E]. Both domains are included in the main historical ship routes circumnavigating Asia for hundreds of years. Many of the logbooks of these ships have been preserved in historical archives and they usually contain daily observations of wind force and direction. Therefore, it has been possible to compute a new index of instrumental character, which reconstructs the WNPSM back to the middle of the 19th Century, by using solely historical wind direction records preserved in logbooks. We define the monthly Western North Pacific Directional Index (WNPDI) as the sum of the persistence of the low-level westerly winds in D1 and easterly winds in D2. The advantages of this new index are its nature (instrumental) and its length (1849-2013), which is 100 years longer than the WNPMI (which was based on reanalysis data). Our WNPDI shows a high correlation (r=+0.87, p<0.01) with the previous WNPMI in summer for the 1949-2009 period, thus allowing to study the multidecadal variability of the WNPSM in a more robust way. Our results show that the WNPDI has a strong impact on the precipitation in densely populated areas in South-East Asia, such as the Philippines or the west coast of Myanmar where the

  17. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    USGS Publications Warehouse

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  18. Study of snow-monsoon relationship and changes in rainfall and temperature characteristics in India

    NASA Astrophysics Data System (ADS)

    Mamgain, Ashu

    of Indian summer monsoon circulation and rainfall. In this thesis, multi-member simulations are performed to identify and remove the systematic errors in the model. Changes in the frequency of extreme rainfall events simulated by RegCM3 are also examined. RegCM3 has well simulated rainfall over the Central India. Dry bias is observed over Central India and wet over Northwest and Peninsular India. Shift in mean sea level pressure is observed over the foothills of the Himalayas and Tibet. Summer monsoon active events in the model are of shorter life span that those actually observed. There are a number of years in which monsoon exhibited contrasting characteristics so far as total rainfall over India is concerned. Active and breaks in Indian summer monsoon during these contrasting years are examined in this thesis. The characteristics of model simulated active and break phases of monsoon contribute to less summer monsoon rainfall in Central India by the model. The differences in the frequency distribution between RegCM3 simulated and IMD observed rainfall explains the wet bias over Northwest, Peninsula and dry bias over Central India. Results indicate significant decrease in the frequency of occurrence of cold nights in the winter months in India and in its homogeneous regions in the north except in Western Himalaya. Southern regions show drastic decrease in the frequency of cold nights relative to the period 1969--1975. A significant increasing trend in the number of warm days in summer is noticed only in the Interior Peninsula. In the entire country and in East Coast and West Coast, maximum number of warm days in summer have been noticed only during the last decade 1996--2005. Further, in the whole country maximum number of intense warm days and nights in summer are observed in the last decade. Significant increase in the number of cold days in winter is observed in the North Central and North East. Changes in the frequency of warm and cold exceedences indicate

  19. Land surface coupling in regional climate simulations of tropical monsoon systems

    NASA Astrophysics Data System (ADS)

    Steiner, A. L.; Pal, J. S.; Bell, J. L.; Diffenbaugh, N. S.; Rauscher, S. A.; Giorgi, F.; Sloan, L. C.

    2007-12-01

    Simulations with the ICTP Regional Climate Model version 3 coupled to the Common Land Model version 3 (RegCM3-CLM3) show significant improvement in the simulation of summer monsoon precipitation and temperature. A ten-year simulation (1992-2001) over Europe and northern Africa driven by reanalysis boundary conditions indicates that timing and magnitude of the African monsoon more closely match observations when a new land surface scheme is implemented. The RegCM3-CLM3 improves the timing of the monsoon advance and retreat across the Guinean Coast and reduces the precipitation bias in the Sahel and Northern Africa. As a result, simulated temperatures are higher, thereby reducing the cool temperature bias noted in northern Africa in RegCM3. The complex treatment of soil in CLM3 leads to a more accurate representation of interannual soil moisture and land surface albedo in RegCM3-CLM, which may lead to the strong land-atmosphere feedback.

  20. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  1. Palaeoclimatic insights into forcing and response of monsoon rainfall.

    PubMed

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-12

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth's population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  2. Palaeoclimatic insights into forcing and response of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-01

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  3. Bay of Bengal: coupling of pre-monsoon tropical cyclones with the monsoon onset in Myanmar

    NASA Astrophysics Data System (ADS)

    Fosu, Boniface O.; Wang, Shih-Yu Simon

    2015-08-01

    The pre-monsoon tropical cyclone (TC) activity and the monsoon evolution in the Bay of Bengal (BoB) are both influenced by the Madden-Julian Oscillation (MJO), but the two do not always occur in unison. This study examines the conditions that allow the MJO to modulate the monsoon onset in Myanmar and TC activity concurrently. Using the APHRODITE gridded precipitation and the ERA-Interim reanalysis datasets, composite evolutions of monsoon rainfall and TC genesis are constructed for the period of 1979-2010. It is found that the MJO exhibits a strong interannual variability in terms of phase and intensity, which in some years modulate the conditions for BoB TCs to shortly precede or form concurrently with the monsoon onset in Myanmar. Such a modulation is absent in years of weaker MJO events. Further understanding of the interannual variability of MJO activity could facilitate the prediction of the monsoon onset and TC formation in the BoB.

  4. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  5. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  6. The MONSOON Generic Pixel Server software design

    NASA Astrophysics Data System (ADS)

    Buchholz, Nick C.; Daly, Philip N.

    2004-09-01

    MONSOON is the next generation OUV-IR controller development project being conducted at NOAO. MONSOON was designed from the start as an "architecture" that provides the flexibility to handle multiple detector types, rather than as a set of specific hardware to control a particular detector. The hardware design was done with maintainability and scalability as key factors. We have, wherever possible chosen commercial off-the-shelf components rather than use in-house or proprietary systems. From first principles, the software design had to be configurable in order to handle many detector types and focal plane configurations. The MONSOON software is multi-layered with simulation of the hardware built in. By keeping the details of hardware interfaces confined to only two libraries and by strict conformance to a set of interface control documents the MONSOON software is usable with other hardware systems with minimal change. In addition, the design provides that focal plane specific details are confined to routines that are selected at load time. At the top-level, the MONSOON Supervisor Level (MSL), we use the GPX dictionary, a defined interface to the software system that instruments and high-level software can use to control and query the system. Below this are PAN-DHE pairs that interface directly with portions of the focal plane. The number of PAN-DHE pairs can be scaled up to increase channel counts and processing speed or to handle larger focal planes. The range of detector applications supported goes from single detector LAB systems, four detector IR systems like NEWFIRM, up to 500 CCD focal planes like LSST. In this paper we discuss the design of the PAN software and it's interaction with the detector head electronics.

  7. Long-term change of precipitation in summer monsoon with a quasi bi-weekly (QBW) period over and around the Tibet-Himalaya region and its association to the climate change in monsoon Asia

    NASA Astrophysics Data System (ADS)

    Yasunari, T.; Fujinami, H.; Morimoto, A.

    2010-12-01

    The Asian summer monsoon has intraseasonal variability in precipitation and associated atmospheric circulations with two dominant time scales: one is 30-50 day period, and the other is 10-20 day period or quasi-biweekly (QBW) period. Some recent studies (e.g., Fujinami and Yasunari, 2004, 2009; Fujinami et al., 2010; Murata et al., 2008) have revealed that particularly the QBW oscillation is dominant over and around the Tibet-Himalaya region including the northeast India (the Assam/Meghalaya) and Bangladesh. An essential issue is that this QBW oscillation plays a key role in the maintaining the heaviest monsoon rainfall region in the world. This oscillation also plays a dominant role in determining interannual activity of monsoon precipitation over this region (Fujinami et al., 2010). The atmospheric circulation of the QBW oscillation has also proved to involve the modulation of the East Asian monsoon activitiy (Meiyu/Baiu) (Fujinami and Yasunari, 2009). However, why and how the QBW oscillation is so dominant over this particularly region, and the origin and dynamics of the QBW oscillation are still an open question. Our preliminary analysis has suggested that the dynamical effect of the Tibet-Himalayan mountain range may play a key role, including the interaction between tropical and mid-latitude circulation over and around there. This study will report our further analysis on the the dynamics of the QBW oscillation, and its association to the recent climate change in the Asian monsoon region. References: Fujinami, H. and T. Yasunari, 2004: Fujinami H. and T. Yasunari, 2004: Submonthly Variability of Convection and Circulation over and around the Tibetan Plateau during the Boreal Summer. J. Meteor. Soc. Japan, 82, 1545-1564. Fujinami, H. and T. Yasunari, 2009: H. Fujinami and T. Yasunari 2009: The Effects of Midlatitude Waves over and around the Tibetan Plateau on Submonthly Variability of the East Asian Summer Monsoon, Monthly Weather Review, 137, 2286

  8. The Monsoon as a Self-regulating Coupled Ocean-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Clark, C.; Cherikova, G.; Fasullo, J.; Han, W.; Loschnigg, J.; Sahami, K.

    INTRODUCTION REGULATION OF THE MONSOON ANNUAL CYCLE The Climatological Annual Cycle Processes Determining the Annual Cycle of the Monsoon Role of Ocean Dynamics in the Annual Heat Balance of the Indian - Ocean Regulation of the Annual Cycle of the Monsoon: an Ocean-Atmosphere - Feedback System INTERANNUAL VARIABILITY OF THE MONSOON Modes of Interannual Variability in the Monsoon Interannual Modes in Ocean Heat Transport Interannual Regulation of the Monsoon GENERAL THEORY OF REGULATION OF THE COUPLED OCEAN-ATMOSPHERIC MONSOON - SYSTEM CONCLUSIONS REFERENCES

  9. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  10. Inter-linkages of SE Asian, Indian and Indonesian-Australian monsoonal subsystems on orbital and suborbital timescales

    NASA Astrophysics Data System (ADS)

    Holbourn, A. E.; Kuhnt, W.; Tada, R.; Murray, R. W.; Alvarez Zarikian, C. A.; Clemens, S. C.

    2014-12-01

    The SE Asian, Indian and Indonesian-Australian monsoonal subsystems are closely inter-linked, but show substantial differences in the spatial and temporal distribution of precipitation, mainly due to contrasting land-sea distribution and high latitude control. We explore changes in these subsystems in relation to high latitude climate variability on suborbital and orbital timescales, focusing on the last deglaciation and the long-term Miocene evolution. Our main proxies are δ18O and Mg/Ca based salinity and temperature reconstructions in combination with sedimentary and geochemical runoff signatures. Key issues are the synchroneity of monsoonal precipitation changes in relation to northern and southern hemisphere insolation and the response of individual subsystems to atmospheric CO2 and global ice volume variations. In contrast to northern hemisphere monsoonal records, the deglacial intensification of the Australian summer monsoon paralleled southern hemisphere climate evolution. We hypothesize that intensification of the summer heat low over the Australian continent through enhanced greenhouse forcing accentuated the southward pull of the Intertropical Convergence Zone (ITCZ). Additional forcing mechanisms including the variability of the Walker circulation and Indian Ocean Dipole, the heat and moisture transfer from the tropical Indian Ocean and deglacial sea-level changes remain highly debated. High-resolution Miocene records from the South China Sea (ODP Site 1146) indicate that the latitudinal displacement of the ITCZ also impacted the long-term development of the SE Asian summer monsoon. Antarctic ice growth episodes at 14.6, 14.2, 13.9, and 13.1 Ma coincided with surface warming and freshening, implying high sensitivity of tropical rain belts to the inter-hemispheric temperature gradient. However, comparable records of the long-term evolution of the Indian and Indonesian-Australian monsoonal subsystems that would allow testing of this hypothesis are still

  11. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming

  12. Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport.

    PubMed

    Bourassa, Adam E; Robock, Alan; Randel, William J; Deshler, Terry; Rieger, Landon A; Lloyd, Nicholas D; Llewellyn, E J Ted; Degenstein, Douglas A

    2012-07-06

    The Nabro stratovolcano in Eritrea, northeastern Africa, erupted on 13 June 2011, injecting approximately 1.3 teragrams of sulfur dioxide (SO(2)) to altitudes of 9 to 14 kilometers in the upper troposphere, which resulted in a large aerosol enhancement in the stratosphere. The SO(2) was lofted into the lower stratosphere by deep convection and the circulation associated with the Asian summer monsoon while gradually converting to sulfate aerosol. This demonstrates that to affect climate, volcanic eruptions need not be strong enough to inject sulfur directly to the stratosphere.

  13. Local and Global Views of Systematic Errors of Atmosphere-Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Mechoso, C. Roberto; Wang, Chunzai; Lee, Sang-Ki; Zhang, Liping; Wu, Lixin

    2014-05-01

    Coupled Atmosphere-Ocean General Circulation Models (CGCMs) have serious systematic errors that challenge the reliability of climate predictions. One major reason for such biases is the misrepresentations of physical processes, which can be amplified by feedbacks among climate components especially in the tropics. Much effort, therefore, is dedicated to the better representation of physical processes in coordination with intense process studies. The present paper starts with a presentation of these systematic CGCM errors with an emphasis on the sea surface temperature (SST) in simulations by 22 participants in the Coupled Model Intercomparison Project phase 5 (CMIP5). Different regions are considered for discussion of model errors, including the one around the equator, the one covered by the stratocumulus decks off Peru and Namibia, and the confluence between the Angola and Benguela currents. Hypotheses on the reasons for the errors are reviewed, with particular attention on the parameterization of low-level marine clouds, model difficulties in the simulation of the ocean heat budget under the stratocumulus decks, and location of strong SST gradients. Next the presentation turns to a global perspective of the errors and their causes. It is shown that a simulated weak Atlantic Meridional Overturning Circulation (AMOC) tends to be associated with cold biases in the entire Northern Hemisphere with an atmospheric pattern that resembles the Northern Hemisphere annular mode. The AMOC weakening is also associated with a strengthening of Antarctic bottom water formation and warm SST biases in the Southern Ocean. It is also shown that cold biases in the tropical North Atlantic and West African/Indian monsoon regions during the warm season in the Northern Hemisphere have interhemispheric links with warm SST biases in the tropical southeastern Pacific and Atlantic, respectively. The results suggest that improving the simulation of regional processes may not suffice for a more

  14. Dynamical response of the oceanic circulation and temperature to interdecadal variability in the surface winds over the Indian Ocean

    SciTech Connect

    Reason, C.J.C.; Allan, R.J.; Lindesay, J.A.

    1996-01-01

    A global ocean general circulation model (OGCM) is used to investigate the sensitivity of the circulation and temperature fields to observed interdecadal variability in Indian Ocean winds for the austral summer. Focus is placed on the dynamical response of the model to the imposed winds. These comprise the observed winds from COADS for the region 46{degrees}S-30{degrees}N, 17{degrees}-152{degrees}E organized into four 21-yr epochs. During the first two epochs, the southern Indian anticyclone, African monsoonal flow, and associated trades were anomalously weak, whereas during the 1963-1983 period the reverse was true. The 1942-1962 epoch appears to be a transition. The model indicates an overall decrease (increase) in the transports of the southern Indian and tropical Indian gyres for the 1900-1920, 1921-1941 cases in dynamical response to the variability in the surface winds over the Indian Ocean. Sea surface temperature (SST) perturbations in the southern Indian Ocean have the same sign as the observed anomalies but are smaller in magnitude. The model SST patterns are restricted to the southern Indian Ocean midlatitudes, whereas observations indicate anomalies throughout the Indian Ocean basin. Analysis of the streamfunction anomalies induced by the epoch winds in the model indicates that the JEBAR term is important in modulating Indian gyre transports. While it is noted that thermodynamic effects not explicitly included in the model may contribute toward the observed SST variability in certain regions and that previous model studies have shown that SST in the southern Indian Ocean is sensitive to variations in the Indonesian throughflow and the Pacific trade winds, the results lend support to the hypothesis that changes in the basin-scale ocean circulation driven by the Indian Ocean epoch winds may contribute significantly toward the observed interdecadal variability in SST in the southern regions of this ocean. 29 refs., 17 figs.

  15. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Wang, Lei; Chen, Deliang; Tu, Kai; Ruan, Chengqing; Hu, Zengyun

    2016-06-01

    The relationship between the large-scale circulation dynamics and regional precipitation regime in the Tibetan Plateau (TP) has so far not been well understood. In this study, we classify the circulation types using the self-organizing maps based on the daily field of 500 hPa geopotential height and link them to the precipitation climatology in the eastern and central TP. By virtue of an objective determining method, 18 circulation types are quantified. The results show that the large amount of precipitation in summer is closely related to the circulation types in which the enhanced and northward shifted subtropical high (SH) over the northwest Pacific and the obvious cyclconic circulation anomaly over the Bay of Bengal are helpful for the Indian summer monsoon and East Asian summer monsoon to take abundant low-latitude moisture to the eastern and southern TP. On the contrary, the dry winter in the central and eastern Tibet corresponds to the circulation types with divergence over the central and eastern TP and the water vapor transportations of East Asian winter monsoon and mid-latitude westerly are very weak. Some circulation types are associated with some well-known circulation patterns/monsoons influencing the TP (e.g. East Atlantic Pattern, El Niño Southern Oscillation, Indian Summer Monsoon and the mid-latitude westerly), and exhibit an overall good potential for explaining the variability of regional seasonal precipitation. Moreover, the climate shift signals in the late 1970s over the eastern Pacific/North Pacific Oceans could also be reflected by both the variability of some circulation types and their correspondingly composite precipitations. This study extends our understandings for the large-scale atmospheric dynamics and their linkages with regional precipitation and is beneficial for the climate change projection and related adaptation activities in the highest and largest plateau in the world.

  16. Evolving the linkages between North American Monsoon Experiment research and services in the binational monsoon region

    NASA Astrophysics Data System (ADS)

    Ray, A. J.

    2007-05-01

    Multi-year drought, high interannual precipitation variability, and rapid population growth present major challenges to water resources and land managers in the U.S. Southwest and binational monsoon region. The NAME strategy to improve warm season precipitation forecasts is paying off in the understanding of the system and its potential predictability, illustrated by a special issue of the Journal of Climate with about 25 articles and numerous other published papers (e.g. Higgins and Gochis et al. 2006; Gutzler et al. 2004, Higgins et al. 2003). NOAA now has set a goal to NAME and other initiatives also have the potential to provide key insights, such as historic information regarding onset and overall strength of the monsoon as it affects stakeholder interests in flooding, soil moisture, vegetation health, and summer water demand. However, the usual avenues for scientific output, such as peer-reviewed publications and web sites designed for use by climate and weather experts, do not adequately support the flow of knowledge to operational decisionmakers. A recent workshop on Monsoon Region climate Applications in Guaymas, Sonora identified several areas in which monsoon science might contribute to reducing societal vulnerability, as well as some research findings that are suited to transition into model development and operations at service providers including NOAA and SMN. They recommended that products are needed that interpret climate forecasts for water resource management applications, and developing new regionally-tailored climate information products. This presentation will discuss how to enhance the flow of monsoon information and predictions to stakeholders by linking user-oriented perspectives with research results from NAME and other programs, including a new effort for a North American Monsoon Forecast Forum which plans to develop periodic consolidated North American Monsoon outlooks.

  17. Relationship of the South Asian Monsoon and Regional Drought with Distinct Equatorial Pacific SST Patterns on Interannual and Decadal Timescales

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.

    2014-12-01

    The Asian monsoon system influences the lives of over 60% of the planet's population, with widespread socioeconomic effects resulting from weakening or failure of monsoon rains. Spatially broad and temporally extended drought episodes have been known to dramatically influence human history, including the Strange Parallels Drought in the mid-18th century. Here, we explore the dynamics of sustained monsoon failure using the Monsoon Asia Drought Atlas - a high-resolution network of hydro-climatically sensitive tree-ring records - and a 1300-year pre-industrial control run of the Community Earth System Model (CESM). Spatial drought patterns in the instrumental and model-based Palmer Drought Severity Index (PDSI) during years with extremely weakened South Asian monsoon are similar to those reconstructed during the Strange Parallels Drought in the MADA. We further explore how the large-scale Indo-Pacific climate during weakened South Asian monsoon differs between interannual and decadal timescales. The Strange Parallels Drought pattern is observed during March-April-May primarily over Southeast Asia, with decreased precipitation and reduced moisture fluxes, while anomalies in June-July-August are confined to the Indian subcontinent during both individual and decadal events. Individual years with anomalous drying exhibit canonical El Niño conditions over the eastern equatorial Pacific and associated shifts in the Walker circulation, while decadal events appear to be related to anomalous warming around the dateline in the equatorial Pacific, typical of El Niño Modoki events. The results suggest different dynamical processes influence drought at different time scales through distinct remote ocean influences.

  18. A PV-based determination of the transport barrier in the Asian summer monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Ploeger, F.; Gottschling, C.; Griessbach, S.; Grooß, J.-U.; Günther, G.; Konopka, P.; Müller, R.; Riese, M.; Stroh, F.; Ungermann, J.; Vogel, B.; von Hobe, M.

    2015-04-01

    The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from the potential vorticity (PV) field, following the polar vortex criterion by Nash et al. (1996). Due to large dynamic variability of the anticyclone, the corresponding maximum in the PV gradient is weak and additional constraints are needed (e.g., time averaging). Notwithstanding, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and MLS satellite observations. Hence, the PV-based transport barrier reflects the separation between air inside the anticyclone core and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.

  19. Role of stratiform heating on the organization of convection over the monsoon trough

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.; Deng, Qiang

    2016-12-01

    It has been recently demonstrated that stratiform heating plays a critical role in the scale-selection of organized tropical convection, in an aquaplanet version of a coarse-resolution atmospheric general circulation model coupled to a stochastic multicloud cumulus parameterization scheme. It is shown that Madden-Julian oscillation-like organization dominates when the model is tuned to produce strong and long lived stratiform heating while it gives rise to mostly convectively coupled waves in the case of weak and short lived stratiform clouds. The study is extended here to the case of an asymmetric forcing mimicking the migration of the intertropical convergence zone (ITCZ) during summer to understand the impact of changes in stratiform heating on the monsoon dynamics. Consistent with the equatorial ITCZ case, strong and long lived stratiform heating promotes northward and eastward moving intraseasonal disturbances while weak and short lived stratiform heating yields mostly westward propgating synoptic scale low pressure systems. Moreover, the underlying intraseasonal versus low pressure system activity seems to impact the strength and extend of the monsoon trough (MT). In the regime with intraseasonal activity the MT is much stronger and extends northward while in the low pressure system case MT is some what weaker in strength but extends further westward. In the low pressure dominated regime, the background vorticity and zonal wind profiles over the monsoon trough are consistent with the observations.

  20. Southern Bay of Bengal currents and salinity intrusions during the northeast monsoon

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Jensen, T. G.; Jarosz, E.; Teague, W. J.; Metzger, E. J.; Wang, D. W.; Jinadasa, S. U. P.; Arulananthan, K.; Centurioni, L. R.; Fernando, H. J. S.

    2015-10-01

    Shipboard velocity and hydrographic profiles collected in December 2013 along with drifter observations, satellite altimetry, global ocean nowcast/forecast products, and coupled model simulations were used to examine the circulation in the southern Bay of Bengal as part of ongoing international research efforts in the region. The observations captured the southward flowing East India Coastal Current (EICC) off southeast India and east of Sri Lanka. The EICC was approximately 100 km wide, with speeds exceeding 1 m s-1 in the upper 75 m. East of the EICC, a subsurface-intensified 300 km-wide, northward current was observed, with maximum speeds as high as 1 m s-1 between 50 m and 75 m. The EICC moved low-salinity water out of the bay and the subsurface northward flow carried high-salinity water into the bay during typical northeast monsoon conditions during a time period when the central equatorial Indian Ocean was experiencing a westerly wind burst related to the Madden-Julian Oscillation (MJO) event. While the northward subsurface high-salinity flow has previously been observed during the southwest monsoon, it was observed during the northeast monsoon. The observations are consistent with northward high-salinity subsurface flow in numerical model solutions. The analysis suggests that direct forcing along the equator may play a significant role for high-salinity intrusions east of Sri Lanka.

  1. Simulation of monsoon intraseasonal oscillations in a coarse-resolution aquaplanet GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.

    2014-08-01

    The skill of the global climate models (GCMs) to realistically simulate the monsoon intraseasonal oscillations (MISOs) is related to the sensitivity of their convective parameterization schemes. Here we show that by coupling a simple multicloud parameterization to a coarse-resolution aquaplanet GCM, realistic MISOs can be simulated. We conduct three different simulations with a fixed nonhomogeneous sea surface temperature mimicking the Indian Ocean/western Pacific warm pool (WP) centered at the three latitudes 5°N, 10°N, and 15°N, respectively, to replicate the seasonal migration of the Tropical Convergence Zone (TCZ). This results in the generation of mean circulation resembling the monsoonal flow pattern in boreal summer. Succession of eastward propagating Madden-Julian Oscillation (MJO) disturbances with phase speed, amplitude, and structure similar to summer MJOs are simulated when the WP is at 5°N. When the WP is located over 10°N, northward and eastward propagating MISOs are simulated. This case captures the meridional seesaw of convection between continental and oceanic TCZ observed during boreal summer over South Asia. Westward propagating Rossby wave-like disturbances are simulated when the WP is over 15°N congruous with the synoptic disturbances seen over the monsoon trough. The initiation of intraseasonal oscillations in the model can occur internally through organization of convective events above the WP associated with internal dynamics.

  2. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  3. Southern Indian Ocean SST as a modulator for the progression of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Shahi, Namendra Kumar; Rai, Shailendra; Mishra, Nishant

    2016-11-01

    This study explores the possibility of southern Indian Ocean (SIO) sea surface temperature (SST) as a modulator for the early phase of Indian summer monsoon and its possible physical mechanism. A dipole-like structure is obtained from the empirical orthogonal function (EOF) analysis which is similar to an Indian Ocean subtropical dipole (IOSD) found earlier. A subtropical dipole index (SDI) is defined based on the SST anomaly over the positive and negative poles. The regression map of rainfall over India in the month of June corresponding to the SDI during 1983-2013 shows negative patterns along the Western Ghats and Central India. However, the regression pattern is insignificant during 1952-1982. The multiple linear regression models and partial correlation analysis also indicate that the SDI acts as a dominant factor to influence the rainfall over India in the month of June during 1983-2013. The similar result is also obtained with the help of composite rainfall over the land points of India in the month of June for positive (negative) SDI events. It is also observed that the positive (negative) SDI delays (early) the onset dates of Indian monsoon over Kerala during the time domain of our study. The study is further extended to identify the physical mechanism of this impact, and it is found that the heating (cooling) in the region covering SDI changes the circulation pattern in the SIO and hence impacts the progression of monsoon in India.

  4. Holocene biome shifts in the East Asian monsoon margin region

    NASA Astrophysics Data System (ADS)

    Dallmeyer, Anne; Claussen, Martin; Ni, Jian; Wang, Yongbo; Cao, Xianyong; Herzschuh, Ulrike

    2013-04-01

    East Asia is affected by three major atmospheric circulation systems determining the regional climate and vegetation distribution: The moisture advected by the Indian and East Asian monsoon support the growing of forest in large parts of Eastern China. The influence of the monsoon gets weaker further on the continent yielding a transition of forest to steppe and of steppe to desert in Central East Asia (e.g. Inner Mongolia) where the dry westerly winds prevail. Particularly in these transition zones, vegetation is supposed to be very sensitive to climate change and strong feedbacks are expected in case of climate and vegetation shifts due to large environmental changes (Feng et al., 2006). During mid-Holocene, cyclic variations in the Earth's orbit around the sun led to an enhancement of the Asian monsoon system probably causing strong shifts in the biome distribution. According to reconstructions, the steppe-forest margin moved to the northwest by about 500km (Yu et al., 2000) and the desert area in China and Inner Mongolia was substantially reduced compared to today (Feng et al., 2006). However, in the complex environment of Asia, the locally limited reconstructions may not portray the general vegetation change. To get a systematic overview on the spatial pattern of biome shifts in the Asian monsoon - westerly wind transition zone since mid-Holocene, we use the diagnostic vegetation model BIOME4 and force this model with climate anomalies from different transient Holocene climate simulations performed in coupled atmosphere-ocean-vegetation models. The main aims of this study are to a) get a consistent ensemble of possible changes in biome distribution since the mid-Holocene b) test the robustness of the simulated vegetation changes and quantify the differences between the models, and c) allow for a better comparison of simulated and reconstructed vegetation changes. Preliminary results confirm the general trend seen in the reconstructions. The simulations reveal

  5. A Comparison of Pre-monsoonal and Monsoonal Radiative Forcing by Anthropogenic Aerosols over South Asia

    NASA Astrophysics Data System (ADS)

    Lee, S.; Cohen, J. B.; Wang, C.

    2012-12-01

    Radiative forcing by anthropogenic aerosols after monsoon onset is often considered unimportant compared to forcing during the pre-monsoonal period, due to precipitation scavenging. We tested this assumption for the South Asian monsoon using three model runs with forcing prescribed during the pre-monsoonal period (March-May), monsoon period (June-September) and both periods. The forcing represents the direct radiative effects of sulfate, organic carbon and black carbon. It was derived from a set of Kalman filter-optimised black carbon emissions from a modelling system based on the CAM3 GCM, a two-moment multi-scheme aerosol and radiation model, and a coupled urban scale processing package; we expect it to be reliable within its given error bounds. The monthly climatological forcing values were prescribed over South Asia every year for 100 years to CESM 1.0.4, a coupled atmosphere-ocean model. We shall compare the three resultant climatologies with climatologies from a no aerosol model and a full aerosol model.

  6. Indonesian Throughflow and Australasian Monsoon Variability Over the Last two Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Kuhnt, W.; Holbourn, A.; Xu, J.; Nuernberg, D.; Bolliet, T.; Duerkop, A.; Zuraida, R.; Kawamura, H.

    2007-12-01

    The climate and hydrography of the tropical Indian Ocean are strongly influenced by the intensity and vertical profile of the Indonesian Throughflow (ITF) and seasonal changes in wind direction associated with the southward migration of the Intertropical Convergence Zone (ITCZ) during austral summer. We use a multiproxy approach to reconstruct monsoonal wind and circulation patterns along the NW Australian continental margin as well as changes in the vertical profile of the Indonesian Throughflow on glacial, precessional and suborbital timescales. Our records from the Timor Passage and Timor Sea (Sonne 185 and IMAGES WEPAMA cruises) closely track changes in the structure of the upper water column within one of the main outflow passages of the ITF. We use (1) XRF scanning records to reconstruct continental runoff and eolian dust transport, (2) paleoproductivity proxy data related to vertical mixing of the upper water column by monsoonal winds, (3) SST, SSS and mixed layer thickness estimates from combined oxygen isotope and Mg/Ca analyses of surface and thermocline dwelling planktonic foraminifers. XRF-scanner derived terrigenous flux and paleoproductivity fluctuations over the last 460 ky were strongly influenced by monsoonal wind patterns offshore NW Australia (23 and 19 ky), the position of the ITCZ (southward shift during precession minima) and were also modulated by sea-level related variations in the intensity of the ITF (100 ky). Our results indicate that the intensity of the Australian summer monsoon over the last two glacial cycles was controlled both by summer insolation over NW Australia and by the strength of the boreal winter monsoon, as the southward migration of the ITCZ is closely linked to northern hemisphere cooling. A comparison of water mass properties within the main outflow in the Timor Strait and within the mixing zone between ITF and eastern Indian Ocean waters reveals a higher thermocline temperature gradient between the eastern Indian Ocean

  7. The effect of global-scale divergent circulation on the atmospheric water vapor transport and maintenance

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang

    1988-01-01

    The detection, distribution, and dynamics of atmospheric water on Earth was examined. How the high levels of water vapor and precipitation that occur over the tropics during the monsoon season result from the development of a strong divergent atmospheric circulation is discussed.

  8. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)

    NASA Astrophysics Data System (ADS)

    Park, Mijeong; Randel, William J.; Emmons, Louisa K.; Livesey, Nathaniel J.

    2009-04-01

    Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ˜12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (˜16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.

  9. The Misnomer of East Asia Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode

    2004-01-01

    The terminology East Asian summer monsoon is used to refer to the heavy rainfall in southeast China including the Yangtze River Valley starting in May and ending in August (e.g., Chen and Chang 1980, Tao and Chen 1987, Ding 1992, Chang et al. 2000a.) This rainfall region is associated with the Mei-Yu front, which extends to Japan and its neighborhood and is called Baiu there. The Mei-Yu front becomes prominent in May and has a slow northward movement. From May to July the elongated rain belt moves from the southeast coast of China to the Yangtze River Valley. The rain belt extends north-east-ward to south of Japan in May and later covers Korea also. The purpose of this note is to point out that the terminology of East Asian summer monsoon is a misnomer to refer to the portion of this rainbelt residing over East Asia, in the sense that it is not a monsoon.

  10. Heterogeneity in pre-monsoon aerosol characteristics over the Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Srivastava, A. K.; Singh, A. K.

    2013-10-01

    Heterogeneity in aerosol characteristics was studied at five different locations over the Indo-Gangetic Basin (IGB) region during the pre-monsoon period (April-June 2011) using concurrent measurements from sun/sky radiometer, which is hypothesized to affect the Indian monsoon circulation and also the global climate system. Based on the measured aerosol products, distribution of aerosols and the associated optical properties were examined over the entire region. The pre-monsoon mean aerosol optical depth (AOD) was found to be maximum at Lahore (0.78) and Kanpur (0.68); however, a minimum AOD (∼0.6) was observed at Karachi, Jaipur and Gandhi College, with relatively high variability at Karachi and low at Gandhi College. On the other hand, a significant gradient in Angstrom exponent (AE) from Karachi (0.30) in the west to Gandhi College (0.98) in the east IGB region suggests relative dominance of coarse particles over the western part and fine particles at the eastern part of the IGB. Results are confirmed with the aerosol size distribution and the air mass back-trajectory analysis at all the stations. The corresponding pre-monsoon mean single scattering albedo (SSA) shows relatively higher value at Karachi (0.94), suggests relative dominance of scattering type particles. On the other hand, lower SSA, ranging from 0.85 to 0.92, was observed at the other stations, with the lowest value at Gandhi College (0.85), which suggests absorbing aerosol distributions over the region.

  11. Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun

    2015-06-01

    The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways (RCP) scenario in which anthropogenic emissions continue to rise throughout the 21st century (i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May. A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore, and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific, enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal (near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations.

  12. Evaluation of CMIP5 Models for post-1950 Weakening of Indian Monsoon

    NASA Astrophysics Data System (ADS)

    Saha, Anamitra; Saheer, Sahana; Ghosh, Subimal; Rao Emmela, Panakala

    2015-04-01

    Indian summer monsoon rainfall (ISMR) impacts the life of more than one billion people; the mean seasonal (from June to September) rainfall contributes to 80% of total annual rainfall in India; and the intraseasonal to interannual variability controls the agricultural productivity and the gross domestic product (GDP) of the country. ISMR has been found to have a decreasing trend in the recent decades (post-1950), which poses a major threat to water and food security of India. In order to adapt to such changes, reliable projection of ISMR by General Circulation Models (GCM) is required. But majority of new generation climate models from Coupled Model Inter-comparison Project phase5 (CMIP5) fail to simulate the observed decreasing trend of ISMR; most of the models show either no trend or increasing trend. The reason behind such failure is investigated and it has been found that large scale geophysical processes, which are responsible for weakening of Indian monsoon, are not very well simulated by the climate models. The decreasing trend of ISMR is associated with the warming of Southern Indian Ocean (SIO) and anomalous cyclonic formation in the western tropical Pacific Ocean. Increase in sea surface temperature (SST) and expansion of warm pool in SIO in recent decades has decreased the meridional SST gradient and weakened the monsoon south-westerly winds. On the other hand, increasing SST and strengthening anomalous cyclonic formation in Pacific Ocean has set a favourable condition for increasing local precipitation, which brings cold and dry wind from continental subtropics to south Asian monsoon region by teleconnection. Both of these large scale changes are not properly captured by CMIP5 models, with few exceptions, which is responsible for their failure. Proper representation of these highlighted geophysical processes in next generation models, may improve the reliability of ISMR projections. Findings of this study alert the water resource planners to evaluate

  13. Interannual Variability, Global Teleconnection, and Potential Predictability Associated with the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Li, J. Y.

    2001-01-01

    In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.

  14. Meridional Propagation of the MJO/ISO and Asian Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Suarez, Max; Pegion, Phil; Waliser, D.

    2003-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the Asian monsoon. We are particularly interested in isolating the nature of the poleward propagation of the ISO/MJO in the monsoon region. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the idealized 10-member ensemble simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. In order to understand the impact of SST on the off equatorial convection (or Rossby-wave response), a second set of 10-member ensemble simulations is carried out with the climatological SSTs shifted in time by 6-months. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. This includes the well-known meridional propagation that affects the summer monsoons of both hemispheres. The AGCM experiments with the idealized eastward propagating MJO-like heating reproduce the observed meridional propagation including the observed seasonal differences. The impact of the SSTs are to enhance the magnitude of the propagation into the summer hemispheres. The results suggest that the winter/summer differences associated with the MJO/ISO are auxiliary features that depend on the MJO's environment (basic state and boundary conditions) and are not the result of fundamental differences in the MJO itself.

  15. Southeast Asian Monsoon variability may have assisted the rise and fall of the Khmer Empire

    NASA Astrophysics Data System (ADS)

    Kweku Kyei Afrifa, Yamoah; Chabangborn, Akkaneewut; Chawchai, Sakonvan; Wohlfarth, Barbara; Smittenberg, Rienk

    2014-05-01

    Climate shifts with links to human migration and social change have contributed to the global rise and fall of ancient civilizations (Weiss et al 2001; Haug et al. 2003). At the same time, these civilizations also tend to influence their environment significantly (Buckley et. al, 2010). Here we use δ13C and δD data of long-chained n-alkanes to unravel the drivers of monsoon intensity and their potential effects on the Angkor civilization. Strong Sea Surface Temperature (SST) variability from the Indo Pacific Warm Pool (IPWP), coupled to dramatic changes in the Pacific Walker Circulation (PWC) is suggested as a potential driver of the monsoon variability in Southeast Asia over the last two millennia. Our dataset provides independent evidence that past vegetation in Southeast Asia was greatly influenced by the activities of the Angkor people at about AD 834 to 1431 when agricultural activities and extensive hydrological systems may have contributed immensely to change the vegetation type. The massive agricultural boom as a result of increase in monsoon intensity, along with an extensive hydrological system, may have contributed significantly to the rise of the Khmer Empire. However, a prolonged drought as a result of the gradual weakening of the monsoon intensity over time (AD 1375-2000) may have caused the water management system to fail thus contributing significantly to the demise of the Khmer empire. References B. M. Buckley et al., Proc. Natl. Acad. Sci. U.S.A. 107, 6748 (2010). G. H. Haug et al., Science 299, 1731 (2003). H. Weiss, R. S. Bradley, Science 291, 609 (2001).

  16. Indian summer monsoon simulations with CFSv2: a microphysics perspective

    NASA Astrophysics Data System (ADS)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Saha, Subodh K.; Dhakate, Ashish; Pokhrel, Samir

    2016-07-01

    The present study explores the impact of two different microphysical parameterization schemes (i.e. Zhao and Carr, Mon Wea Rev 125:1931-1953, 1997:called as ZC; Ferrier, Amer Meteor Soc 280-283, 2002: called as BF) of National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) on Indian summer monsoon (ISM). Critical relative humidity (RHcrit) plays a crucial role for the realistic cloud formation in a general circulation model (GCM). Hence, impact of RHcrit along with microphysical scheme on ISM is evaluated in the study. Model performance is evaluated in terms of simulation of rainfall, lower and upper tropospheric circulations, cloud fraction, cloud condensate and outgoing longwave radiation (OLR). Climatological mean features of rainfall are better represented by all the sensitivity experiments. Overall, ZC schemes show relatively better rainfall patterns as compared to BF schemes. BF schemes along with 95 % RHcrit (called as BF95) show excess precipitable water over Indian Ocean basin region, which seems to be unrealistic. Lower and upper tropospheric features are well simulated in all the sensitivity experiments; however, upper tropospheric wind patterns are underestimated as compared to observation. Spatial pattern and vertical profile of cloud condensate is relatively better represented by ZC schemes as compared to BF schemes. Relatively more (less) cloud condensate at upper level has lead to relatively better (low) high cloud fraction in ZC (BF) simulation. It is seen that OLR in ZC simulation have great proximity with observation. ZC (BF) simulations depict low (high) OLR which indicates stronger (weaker) convection during ISM period. It implies strong (weak) convection having stronger (weaker) updrafts in ZC (BF). Relatively more (less) cloud condensate at upper level of ZC (BF) may produce strong (weak) latent heating which may lead to relatively strong (weak) convection during ISM. The interaction among microphysics

  17. The abrupt onset of the modern South Asian Monsoon winds

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-07-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  18. The abrupt onset of the modern South Asian Monsoon winds

    PubMed Central

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-01-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system. PMID:27436574

  19. The Origin of Monsoon Onset. Part 2; Rotational ITCZ Attractors

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Through various specially designed numerical experiments with an aqua-planet general circulation model and theoretical arguments. Chao showed the existence of multiple quasi-equilibria of the intertropical convergence zone (ITCZ). He also showed that monsoon onset could be interpreted as an abrupt transition between the quasi-equilibria of the ITCZ. He further showed that the origin of these quasi-equilibria is related to two different types of attraction pulling the ITCZ in opposite directions. One type of attraction on the ITCZ is due to earth's rotation, which pulls the ITCZ toward the equator or two equatorial latitudes symmetric with respect to the equator depending on the choice of convection scheme, and the other due to the peak of the sea surface temperature (SST, which is given in the experiments a Gaussian profile in latitude and is uniform in longitude), which pulls the ITCZ toward a latitude just poleward of the SST peak. The strength of the attraction due to the earth's rotation has a highly nonlinear dependence on the latitude and that due to the SST peak has a linear (at least in a relative sense) dependence on the latitude.

  20. Summer climate of Madagascar and monsoon pulsing of its vortex

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2016-02-01

    This study analyzes the climate of Madagascar (12°-26°S, 43°-50°E) and its relation to the Indian Ocean during austral summer (Dec-Mar). Moisture converges onto a standing easterly wave and floods are prevalent in late summer. All-island daytime land temperatures exceed 38 °C in October and are ~4 °C above sea temperatures during summer. Analysis of thermally induced diurnal convection and circulation revealed inflow during the afternoon recirculated from the southeastern mountains and the warm Mozambique Channel. Summer rainfall follows latent and sensible heat flux during the first half of the day, and gains a surplus by evening via thunderstorms over the western plains. At the inter-annual time-scale, 2.3 years oscillations in all-island rainfall appear linked with the stratospheric quasi-biennial oscillation and corresponding 80 Dobson Unit ozone fluctuations during flood events. Wet spells at frequencies from 11-27 days derive from locally-formed tropical cyclones and NW-cloud bands. Flood case studies exhibit moisture recycling in the confluence zone between the sub-tropical anticyclone and the lee-side vortex. Hovmoller analysis of daily rainfall reinforces the concept of local generation and pulsing by cross-equatorial (Indian winter) monsoon flow rather than zonal atmospheric waves. Since the surface water budget is critical to agriculture in Madagascar, this study represents a further step to understand its meso-scale summer climate.

  1. Investigating the Impacts of Climate, Hydrology, and Asian Monsoon Intensity on a 13 kyr Speleothem Record from Laos

    NASA Astrophysics Data System (ADS)

    Yang, Hongying

    I present a high- resolution record of Southeast Asian Monsoon (SEAM) evolution compiled from delta18O measurements conducted on five U-Th dated speleothems from Tham Mai Cave in northern Laos (20.75N, 102.65E), a key site at the interface between the Indian and East Asian monsoon systems. The speleothem oxygen isotope records are tied to robust uranium-series dates and indicate the records span from 0.79 to 13 kyr BP with sub-decadal resolution. During the Holocene, the Tham Mai speleothem delta18O records are characterized by lower values during the early to mid-Holocene with increasing values towards the late Holocene. This is similar to trends seen throughout the Asian monsoon region, reflecting the strong insolation control on monsoon strength and ITCZ position. The Younger Dryas is characterized by an abrupt delta 18O increase and is synchronous with the even observed in Chinese speleothem records and Greenland ice cores within age uncertainties. This suggests that the SEAM weakened in sync with high-latitude abrupt cooling events. Four speleothems from Tham Mai cave grew contemporaneously from 4,300 years BP to 9,000 years BP. These four samples show a similar delta 18O pattern, despite a 1.2‰ between sample delta18 O variability is observed. A lumped parameter forward model method (KarstFor model) is used to assess to which extent this 1.2‰ discrepancy can be attributed to hydrological variability. Results suggested that this 1.2‰ discrepancy can be generated due to hydrological variability within one cave. To better interpret interannual delta18O variability in high-resolution oxygen isotope records in the Asian Monsoon region, I utilize existing simulations from a spectrally nudged isotope-enabled general circulation model (IsoGSM) to investigate the climatic controls on delta18 Op at four cave locations along the Asian monsoon region. Results show that delta18Op at the four cave sites reflects large-scale ocean-atmosphere processes, instead of

  2. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Bookhagen, Bodo; Thiede, Rasmus C.; Strecker, Manfred R.

    2005-02-01

    The interplay between topography and Indian summer monsoon circulation profoundly controls precipitation distribution, sediment transport, and river discharge along the Southern Himalayan Mountain Front (SHF). The Higher Himalayas form a major orographic barrier that separates humid sectors to the south and arid regions to the north. During the Indian summer monsoon, vortices transport moisture from the Bay of Bengal, swirl along the SHF to the northwest, and cause heavy rainfall when colliding with the mountain front. In the eastern and central parts of the Himalaya, precipitation measurements derived from passive microwave analysis (SSM/I) show a strong gradient, with high values at medium elevations and extensive penetration of moisture along major river valleys into the orogen. The end of the monsoonal conveyer belt is near the Sutlej Valley in the NW Himalaya, where precipitation is lower and rainfall maxima move to lower elevations. This region thus comprises a climatic transition zone that is very sensitive to changes in Indian summer monsoon strength. To constrain magnitude, temporal, and spatial distribution of precipitation, we analyzed high-resolution passive microwave data from the last decade and identified an abnormal monsoon year (AMY) in 2002. During the 2002 AMY, violent rainstorms conquered orographic barriers and penetrated far into otherwise arid regions in the northwest Himalaya at elevations in excess of 3 km asl. While precipitation in these regions was significantly increased and triggered extensive erosional processes (i.e., debris flows) on sparsely vegetated, steep hillslopes, mean rainfall along the low to medium elevations was not significantly greater in magnitude. This shift may thus play an important role in the overall sediment flux toward the Himalayan foreland. Using extended precipitation and sediment flux records for the last century, we show that these events have a decadal recurrence interval during the present-day monsoon

  3. Pacific freshening drives Pliocene cooling and Asian monsoon intensification.

    PubMed

    Nie, Junsheng; Stevens, Thomas; Song, Yougui; King, John W; Zhang, Rui; Ji, Shunchuan; Gong, Lisha; Cares, Danielle

    2014-06-27

    The monsoon is a fundamental component of Earth's climate. The Pliocene warm period is characterized by long-term global cooling yet concurrent monsoon dynamics are poorly known. Here we present the first fully quantified and calibrated reconstructions of separate Pliocene air temperature and East Asian summer monsoon precipitation histories on the Chinese Loess Plateau through joint analysis of loess/red clay magnetic parameters with different sensitivities to air temperature and precipitation. East Asian summer monsoon precipitation shows an intensified trend, paradoxically at the same time that climate cooled. We propose a hitherto unrecognized feedback where persistently intensified East Asian summer monsoon during the late Pliocene, triggered by the gradual closure of the Panama Seaway, reinforced late Pliocene Pacific freshening, sea-ice development and ice volume increase, culminating in initiation of the extensive Northern Hemisphere glaciations of the Quaternary Ice Age. This feedback mechanism represents a fundamental reinterpretation of the origin of the Quaternary glaciations and the impact of the monsoon.

  4. Asian monsoon failure and megadrought during the last millennium.

    PubMed

    Cook, Edward R; Anchukaitis, Kevin J; Buckley, Brendan M; D'Arrigo, Rosanne D; Jacoby, Gordon C; Wright, William E

    2010-04-23

    The Asian monsoon system affects more than half of humanity worldwide, yet the dynamical processes that govern its complex spatiotemporal variability are not sufficiently understood to model and predict its behavior, due in part to inadequate long-term climate observations. Here we present the Monsoon Asia Drought Atlas (MADA), a seasonally resolved gridded spatial reconstruction of Asian monsoon drought and pluvials over the past millennium, derived from a network of tree-ring chronologies. MADA provides the spatiotemporal details of known historic monsoon failures and reveals the occurrence, severity, and fingerprint of previously unknown monsoon megadroughts and their close linkages to large-scale patterns of tropical Indo-Pacific sea surface temperatures. MADA thus provides a long-term context for recent monsoon variability that is critically needed for climate modeling, prediction, and attribution.

  5. Influence of local land-surface processes on the Indian monsoon - A numerical study

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1985-01-01

    Integrations made with general circulation models to investigate the influence of changes in the land-surface fluxes, over the Indian subcontinent, on the monsoon circulation and rainfall are presented. The experiments conducted include: (1) a control, (2) increased land-surface albedo, (3) increased land-surface albedo and reduced land-surface roughness, and (4) increased land-surface albedo, reduced surface roughness, and no evapotranspiration. A comparison of ensemble means of the data is provided; a decrease in rainfall is observed when the surface albedo is increased and the surface roughness reduced. Low surface roughness makes the horizontal transport of planetary boundary layer (PBL) westerly, reducing cross-isobaric moisture and thereby rainfall. Evapotranspiration had no influence on rainfall because of the PBL motion and moisture convergence. The correlation between surface albedo, surface roughness and vegetation is examined.

  6. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y.

    PubMed

    Cai, Yanjun; Fung, Inez Y; Edwards, R Lawrence; An, Zhisheng; Cheng, Hai; Lee, Jung-Eun; Tan, Liangcheng; Shen, Chuan-Chou; Wang, Xianfeng; Day, Jesse A; Zhou, Weijian; Kelly, Megan J; Chiang, John C H

    2015-03-10

    A speleothem δ(18)O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial-interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the "land bridge" in the Maritime continents in the western equatorial Pacific.

  7. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y

    PubMed Central

    Cai, Yanjun; Fung, Inez Y.; Edwards, R. Lawrence; An, Zhisheng; Cheng, Hai; Lee, Jung-Eun; Tan, Liangcheng; Shen, Chuan-Chou; Wang, Xianfeng; Day, Jesse A.; Zhou, Weijian; Kelly, Megan J.; Chiang, John C. H.

    2015-01-01

    A speleothem δ18O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial–interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the “land bridge” in the Maritime continents in the western equatorial Pacific. PMID:25713347

  8. Twenty-first century projected summer mean climate in the Mediterranean interpreted through the monsoon-desert mechanism

    NASA Astrophysics Data System (ADS)

    Cherchi, Annalisa; Annamalai, H.; Masina, Simona; Navarra, Antonio; Alessandri, Andrea

    2016-10-01

    The term "monsoon-desert mechanism" indicates the relationship between the diabatic heating associated with the South Asian summer monsoon rainfall and the remote response in the western sub-tropics where long Rossby waves anchor strong descent with high subsidence. In CMIP5 twenty-first century climate scenarios, the precipitation over South Asia is projected to increase. This study investigates how this change could affect the summer climate projections in the Mediterranean region. In a linear framework the monsoon-desert mechanism in the context of climate change would imply that the change in subsidence over the Mediterranean should be strongly linked with the changes in South Asian monsoon precipitation. The steady-state solution from a linear model forced with CMIP5 model projected precipitation change over South Asia shows a broad region of descent in the Mediterranean, while the results from CMIP5 projections differ having increased descent mostly in the western sector but also decreased descent in parts of the eastern sector. Local changes in circulation, particularly the meridional wind, promote cold air advection that anchors the descent but the barotropic Rossby wave nature of the wind anomalies consisting of alternating northerlies/southerlies favors alternating descent/ascent locations. In fact, the local mid-tropospheric meridional wind changes have the strongest correlation with the regions where the difference in subsidence is largest. There decreased rainfall is mostly balanced by changes in moisture, omega and in the horizontal advection of moisture.

  9. Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012

    NASA Astrophysics Data System (ADS)

    Müller, Stefan; Hoor, Peter; Bozem, Heiko; Gute, Ellen; Vogel, Bärbel; Zahn, Andreas; Bönisch, Harald; Keber, Timo; Krämer, Martina; Rolf, Christian; Riese, Martin; Schlager, Hans; Engel, Andreas

    2016-08-01

    The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ = 380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV > 8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.

  10. Projected changes in African easterly wave intensity and track in response to greenhouse forcing.

    PubMed

    Skinner, Christopher Bryan; Diffenbaugh, Noah S

    2014-05-13

    Synoptic-scale African easterly waves (AEWs) impact weather throughout the greater Atlantic basin. Over the African continent, AEWs are instrumental in initiating and organizing precipitation in the drought-vulnerable Sahel region. AEWs also serve as the precursors to the most intense Atlantic hurricanes, and contribute to the global transport of Saharan dust. Given the relevance of AEWs for the climate of the greater Atlantic basin, we investigate the response of AEWs to increasing greenhouse gas concentrations. Using an ensemble of general circulation models, we find a robust increase in the strength of the winds associated with AEWs along the Intertropical Front in West Africa by the late 21st century of the representative concentration pathway 8.5. AEW energy increases directly due to an increase in baroclinicity associated with an enhanced meridional temperature gradient between the Sahara and Guinea Coast. Further, the pattern of low-level warming supports AEW development by enhancing monsoon flow, resulting in greater convergence and uplift along the Intertropical Front. These changes in energetics result in robust increases in the occurrence of conditions that currently produce AEWs. Given relationships observed in the current climate, such changes in the location of AEW tracks and the magnitude of AEW winds carry implications for the relationship between AEWs and precipitation in the Sahel, the mobilization of Saharan dust, and the likelihood of cyclogenesis in the Atlantic. Our results therefore suggest that changes in AEW characteristics could play a critical role in shaping the response of Atlantic basin climate to future increases in greenhouse gas concentrations.

  11. Projected changes in African easterly wave intensity and track in response to greenhouse forcing

    PubMed Central

    Skinner, Christopher Bryan; Diffenbaugh, Noah S.

    2014-01-01

    Synoptic-scale African easterly waves (AEWs) impact weather throughout the greater Atlantic basin. Over the African continent, AEWs are instrumental in initiating and organizing precipitation in the drought-vulnerable Sahel region. AEWs also serve as the precursors to the most intense Atlantic hurricanes, and contribute to the global transport of Saharan dust. Given the relevance of AEWs for the climate of the greater Atlantic basin, we investigate the response of AEWs to increasing greenhouse gas concentrations. Using an ensemble of general circulation models, we find a robust increase in the strength of the winds associated with AEWs along the Intertropical Front in West Africa by the late 21st century of the representative concentration pathway 8.5. AEW energy increases directly due to an increase in baroclinicity associated with an enhanced meridional temperature gradient between the Sahara and Guinea Coast. Further, the pattern of low-level warming supports AEW development by enhancing monsoon flow, resulting in greater convergence and uplift along the Intertropical Front. These changes in energetics result in robust increases in the occurrence of conditions that currently produce AEWs. Given relationships observed in the current climate, such changes in the location of AEW tracks and the magnitude of AEW winds carry implications for the relationship between AEWs and precipitation in the Sahel, the mobilization of Saharan dust, and the likelihood of cyclogenesis in the Atlantic. Our results therefore suggest that changes in AEW characteristics could play a critical role in shaping the response of Atlantic basin climate to future increases in greenhouse gas concentrations. PMID:24778244