Science.gov

Sample records for african monsoon region

  1. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    characteristics (e.g. total precipitation and vertical reflectivity profiles) at the inland and maritime sites. The wave regime also resulted in an increased population of the largest observed mesoscale convective systems observed near the coast, which led to an increase in stratiform precipitation. Despite this increase, differentiation of convective strength characteristics was less obvious between wave and no-wave regimes at the coast. Due to the propagating nature of these advecting mesoscale convective systems, interaction with the regional thermodynamic and dynamic environment appears to result in more variability than enhancements due to the wave regime, independent of location. A 13-year (1998-2010) climatology of mesoscale convective characteristics associated with the West African monsoon are also investigated using precipitation radar and passive microwave data from the NASA Tropical Rainfall Measuring Mission satellite. Seven regions defined as continental northeast and northwest, southeast and southwest, coastal, and maritime north and south are compared to analyze zonal and meridional differences. Data are categorized according to identified African easterly wave (AEW) phase and when no wave is present. While some enhancements are observed in association with AEW regimes, regional differences were generally more apparent than wave vs. no-wave differences. Convective intensity metrics confirm that land-based systems exhibit stronger characteristics, such as higher storm top and maximum 30-dBZ heights and significant 85-GHz brightness temperature depressions. Continental systems also contain a lower fraction of points identified as stratiform. Results suggest that precipitation processes also varied depending upon region and AEW regime, with warm-rain processes more apparent over the ocean and the southwest continental region and ice-based microphysics more dominant over land, including mixed-phase processes. AEW regimes did show variability in stratiform fraction and

  2. Regional Climate Modeling of West African Summer Monsoon Climate: Impact of Historical Boundary Forcing

    NASA Astrophysics Data System (ADS)

    Kebe, I.

    2015-12-01

    In this paper, we analyze and intercompare the performance of an ensemble of three Regional Climate Models (RCMs) driven by three set of Global Climate Models (GCMs), in reproducing seasonal mean climatologies with their annual cycle and the key features of West African summer monsoon over 20 years period (1985-2004) during the present day. The results show that errors in lateral boundary conditions from the GCM members, have an unexpected way on the skill of the RCMs in reproducing regional climate features such as the West African Monsoon features and the annual cycle of precipitation and temperature in terms of outperforming the GCM simulation. It also shows the occurrence of the West African Monsoon jump, the intensification and northward shift of the Saharan Heat Low (SHL) as expressed in some RCMs than the GCMs. Most RCMs also capture the mean annual cycle of precipitation and temperature, including, single and double-peaked during the summer months, in terms of events and amplitude. In a series of RCMs and GCMs experiments between the Sahara region and equatorial Africa, the presence of strong positive meridional temperature gradients at the surface and a strong meridional gradients in the potential temperatures near the surface are obvious, indicating the region of strong vertical shear development enough to establish easterly flow such as the African easterly jet. In addition, the isentropic potential vorticity (IPV) gradient decreases northward in the lower troposphere across northern Africa, with the maximum reversal on the 315-K surface. The region with negative IPV gradient favors the potential instability which has been associated with the growth of easterly waves.

  3. Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models

    NASA Astrophysics Data System (ADS)

    Paxian, A.; Sein, D.; Panitz, H.-J.; Warscher, M.; Breil, M.; Engel, T.; Tödter, J.; Krause, A.; Cabos Narvaez, W. D.; Fink, A. H.; Ahrens, B.; Kunstmann, H.; Jacob, D.; Paeth, H.

    2016-02-01

    The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.

  4. Global and Regional-scale Sst Variability and West African Monsoon. The Role of The Indian Ocean : A Numerical Study

    NASA Astrophysics Data System (ADS)

    Trzaska, S.; Fontaine, B.; Janicot, S.

    Interannual to decadal variability of the West African Monsoon has been commonly linked to Tropical Atlantic and Pacific SST variabilities (so called "Atlantic Dipole" and ENSO). Tropical Atlantic is thought to affect West African Monsoon via modi- fication of low-level thermal gradients driving the monsoon thus the location of the rainbelt over the continent. Warm events in the easten Pacific may affect it via up- per level zonal circulation and eventual subsidence over West Africa. However the teleconnections seem to have modified through time : main association with tropi- cal Atlantic during 50's and 60's i.e. the wetter period vs stronger association with ENSO and relative disconnection with tropical Atlantic during recent, dry decades. The role of the Indian Ocean has not been much investigated so far. The variability of this basin is dominated by a slow warming trend which compares well with the global warming. This study is aimed at investigating the possible effects of the Indian Ocean warming on the West African Monsoon dynamics and its teleconnections to ENSO and Tropical Atlantic. It is shown that this warming can potentially modify circulation anomalies related to ENSO in the Atlantic-African region by limiting the zonal extent of the zonal circulation anomalies and shifting the main subsidence branch to Africa and central Atlantic. In non-ENSO case monsoon circulation seems also to have more zonal orientation. The results are documented in the divergent circulation frame since it allows to unify a regional view of the monsoon as a meridional overturning with the global effects of ENSO in the zonal circulation. Modifications in the low-level moisture flux are also presented.

  5. The West African Monsoon simulated by global and regional climate models

    NASA Astrophysics Data System (ADS)

    Nikulin, Grigory; Jones, Colin; Kjellström, Erik; Gbobaniyi, Emiola

    2013-04-01

    We present results from two ensembles of global and regional climate simulations with a focus on the West African Monsoon (WAM). The first ensemble includes eight coupled atmosphere ocean general circulation models (AOGCMs) from the CMIP5 project, namely: CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR. The second ensemble consists of corresponding downscaling of all 8 AOGCMs by a regional climate model - RCA4 produced at the Rossby Centre (SMHI) in the Africa-CORDEX activities. Spatial resolution varies from about 1° to 3° in the AOGCM ensemble while all regional simulations are at the same 0.44° resolution. To see what added value higher resolution can provide ability of the eight AOGCMs and the downscaled RCA4(AOGCMs) to simulate the key characteristics of the WAM rainy season are evaluated and then inter-compared between the global and regional ensembles. The main focus in our analysis is on the WAM rainy season onset, cessation, length, total precipitation, its mean intensity and intraseasonal variability. Future climate projections under the RCP45 and RCP85 scenarios are analyzed and again inter-compared for both ensembles in order to assess uncertainties in the future projections of the WAM rainy season from the global and regional ensembles.

  6. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  7. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  8. Climatology and dynamics of nocturnal low-level stratus over the southern West African monsoon region

    NASA Astrophysics Data System (ADS)

    Fink, A. H.; Schuster, R.; Knippertz, P.; van der Linden, R.

    2013-12-01

    The southern parts of West Africa, from the coast to about 10°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. We will present the first ever climatology of the diurnal cycle of the low cloud deck based on surface observations and satellite products. In addition, we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds as simulated by the model. The model configuration used for this study has been determined following an extensive sensitivity study, which has shown that at least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. The main conclusions are: (a) The observed stratus deck forms after sunset along the coast, spreads inland in the course of the night, reaches maximum poleward extent at about 10°N around 09-10 local time and dissipates in the early afternoon. (b) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (c) The cloud formation is related to a subtle balance between 'stratogenic' upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at

  9. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    NASA Astrophysics Data System (ADS)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2016-05-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  10. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    DOE PAGESBeta

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  11. Assessment of Uncertainties in the Response of the African Monsoon Precipitation to Land Use Change in Regional Model Simulations

    NASA Astrophysics Data System (ADS)

    Hagos, S. M.; Leung, L.; Xue, Y.; Boone, A. A.; Huang, M.; Yoon, J.

    2013-12-01

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to land use change and the climatologies of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between and therefore land-atmosphere interactions play a more significant role have stronger response to the land use and land cover changes. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.

  12. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    NASA Astrophysics Data System (ADS)

    Hagos, Samson; Leung, L. Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin-Ho

    2014-11-01

    Land use and land cover (LULC) over Africa have changed substantially over the last 60 years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties of model simulated response in the African monsoon system and Sahel precipitation due to LULC change using a set of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to LULC change and the climatologists of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between have stronger response to the LULC changes, showing a more significant role in land-atmosphere interactions. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.

  13. Simulation of the West African monsoon onset using the HadGEM3-RA regional climate model

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaïla; Bain, Caroline L.; Gaye, Amadou T.; Moufouma-Okia, Wilfran; Niang, Coumba; Dieng, Mame D. B.; Graham, Richard

    2014-08-01

    The performance of the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) in simulating the West African monsoon (WAM) is investigated. We focus on performance for monsoon onset timing and for rainfall totals over the June-July-August (JJA) season and on the model's representation of the underlying dynamical processes. Experiments are driven by the ERA-Interim reanalysis and follow the CORDEX experimental protocol. Simulations with the HadGEM3 global model, which shares a common physical formulation with HadGEM3-RA, are used to gain insight into the causes of HadGEM3-RA simulation errors. It is found that HadGEM3-RA simulations of monsoon onset timing are realistic, with an error in mean onset date of two pentads. However, the model has a dry bias over the Sahel during JJA of 15-20 %. Analysis suggests that this is related to errors in the positioning of the Saharan heat low, which is too far south in HadGEM3-RA and associated with an insufficient northward reach of the south-westerly low-level monsoon flow and weaker moisture convergence over the Sahel. Despite these biases HadGEM3-RA's representation of the general rainfall distribution during the WAM appears superior to that of ERA-Interim when using Global Precipitation Climatology Project or Tropical Rain Measurement Mission data as reference. This suggests that the associated dynamical features seen in HadGEM3-RA can complement the physical picture available from ERA-Interim. This approach is supported by the fact that the global HadGEM3 model generates realistic simulations of the WAM without the benefit of pseudo-observational forcing at the lateral boundaries; suggesting that the physical formulation shared with HadGEM3-RA, is able to represent the driving processes. HadGEM3-RA simulations confirm previous findings that the main rainfall peak near 10°N during June-August is maintained by a region of mid-tropospheric ascent located, latitudinally, between the cores of

  14. West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges

    NASA Astrophysics Data System (ADS)

    Poan, E. D.; Gachon, P.; Dueymes, G.; Diaconescu, E.; Laprise, R.; Seidou Sanda, I.

    2016-02-01

    The West African monsoon intraseasonal variability has huge socio-economic impacts on local populations but understanding and predicting it still remains a challenge for the weather prediction and climate scientific community. This paper analyses an ensemble of simulations from six regional climate models (RCMs) taking part in the coordinated regional downscaling experiment, the ECMWF ERA-Interim reanalysis (ERAI) and three satellite-based and observationally-constrained daily precipitation datasets, to assess the performance of the RCMs with regard to the intraseasonal variability. A joint analysis of seasonal-mean precipitation and the total column water vapor (also called precipitable water—PW) suggests the existence of important links at different timescales between these two variables over the Sahel and highlights the relevance of using PW to follow the monsoon seasonal cycle. RCMs that fail to represent the seasonal-mean position and amplitude of the meridional gradient of PW show the largest discrepancies with respect to seasonal-mean observed precipitation. For both ERAI and RCMs, spectral decompositions of daily PW as well as rainfall show an overestimation of low-frequency activity (at timescales longer than 10 days) at the expense of the synoptic (timescales shorter than 10 days) activity. Consequently, the effects of the African Easterly Waves and the associated mesoscale convective systems are substantially underestimated, especially over continental regions. Finally, the study investigates the skill of the models with respect to hydro-climatic indices related to the occurrence, intensity and frequency of precipitation events at the intraseasonal scale. Although most of these indices are generally better reproduced with RCMs than reanalysis products, this study indicates that RCMs still need to be improved (especially with respect to their subgrid-scale parameterization schemes) to be able to reproduce the intraseasonal variance spectrum adequately.

  15. Formation and maintenance of nocturnal low-level stratus over the southern West African monsoon region during AMMA 2006

    NASA Astrophysics Data System (ADS)

    Schuster, Robert; Fink, Andreas; Knippertz, Peter

    2013-04-01

    The southern parts of West Africa, from the coast to about 9°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season as shown by recent studies based on ground observations and new satellite products. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. Here we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds. The model configuration used for this study has been determined following an extensive sensitivity study. The main conclusions are: (a) At least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. (b) The simulated stratus deck forms after sunset along the coast, spreads inland in the course of the night, and dissipates in the early afternoon. (c) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (d) The cloud formation is related to a subtle balance between "stratogenic" upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at the windward side of orography, and radiative cooling on one hand, and "stratolytic" dry advection and latent heating on the other hand. Future work should focus on the influence

  16. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  17. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  18. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2014-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  19. Role of inertial instability in the West African monsoon jump

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.

    2015-04-01

    The West African monsoon jump is a sudden shift in the latitude of the West African precipitation maximum from the Guinean coast near 4°N into Sahel near 12°N in late June or early July. An examination of reanalyses and observations indicates that the Sahel rainy season develops smoothly and the monsoon jump occurs because of an abrupt decrease in Guinean coast rainfall. We show that this abrupt end of the coastal rainy season occurs when inertial instability develops over the region, 1 month later than it develops in the vicinity of the marine Atlantic Intertropical Convergence Zone. The reason for this delay is the presence of the African easterly jet, which places strong negative meridional zonal wind gradients over the coast to preserve the inertially stable environment. When the African easterly jet moves farther north due to the seasonal solar forcing, these gradients weaken and then reverse to satisfy the threshold condition for inertial instability; the rapid end of the Guinean coast rainy season follows. The northward movement and intensity of the African easterly jet are controlled by the seasonal development of strong meridional land surface temperature gradients and are independent of the formation of the Atlantic cold tongue. This explanation for the West African monsoon jump relates the phenomenon to the shape and location of the African continent, including the low-latitude position of the Guinean coast and the large expanse of the continent to the north.

  20. The global monsoon across timescales: coherent variability of regional monsoons

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-11-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently have regional monsoons been recognized as a global system. It remains a debated issue, however, as to what extent and at which timescales the global monsoon can be viewed as a major mode of climate variability. For this purpose, a PAGES (Past Global Changes) working group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various timescales, varying between interannual, interdecadal, centennial, millennial, orbital and tectonic timescales, conforming to the global monsoon concept across timescales. Within the global monsoon system, each subsystem has its own features, depending on its geographic and topographic conditions. Discrimination between global and regional components in the monsoon system is a key to revealing the driving factors in monsoon variations; hence, the global monsoon concept helps to enhance our understanding and to improve future projections of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various timescales, providing evidence of the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts in a warming world. The synthesis will be followed by a companion paper addressing driving mechanisms and outstanding issues in global monsoon studies.

  1. The pace of East African monsoon evolution during the Holocene

    NASA Astrophysics Data System (ADS)

    Weldeab, Syee; Menke, Valerie; Schmiedl, Gerhard

    2014-03-01

    African monsoon precipitation experienced a dramatic change in the course of the Holocene. The pace with which the African monsoon shifted from a strong early to middle to a weak late Holocene is critical for our understanding of climate dynamics, hydroclimate-vegetation interaction, and shifts of prehistoric human settlements, yet it is controversially debated. On the basis of planktonic foraminiferal Ba/Ca time series from the eastern Mediterranean Sea, here we present a proxy record of Nile River runoff that provides a spatially integrated measure of changes in East African monsoon (EAM) precipitation. The runoff record indicates a markedly gradual middle to late Holocene EAM transition that lasted over 3500 years. The timing and pace of runoff change parallels those of insolation and vegetation changes over the Nile basin, indicating orbitally forced variation of insolation as the main EAM forcing and the absence of a nonlinear precipitation-vegetation feedback. A tight correspondence between a threshold level of Nile River runoff and the timing of occupation/abandonment of settlements suggests that along with climate changes in the eastern Sahara, the level of Nile River and intensity of summer floods were likely critical for the habitability of the Nile Valley (Egypt).

  2. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene- comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2015-02-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the

  3. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene - comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2014-05-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene

  4. The Role of Vegetation in the Dynamics of West African Monsoons.

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyu; Eltahir, Elfatih A. B.

    1998-08-01

    The focus of this paper is the role of meridional distribution of vegetation in the dynamics of monsoons and rainfall over West Africa. A moist zonally symmetric atmospheric model coupled with a simple land surface scheme is developed to investigate these processes. Four primary experiments have been carried out to examine the sensitivity of West African monsoons to perturbations in the meridional distribution of vegetation. In the control experiment, the authors assume a distribution of vegetation that resembles the natural vegetation cover in West Africa. Each perturbation experiment is identical to the control experiment except that a change in vegetation cover is imposed for a latitudinal belt that is 10° in width. The results of the numerical experiments demonstrate that West African monsoons and therefore rainfall distribution depend critically on the location of the vegetation perturbations. Changes in vegetation cover along the border between the Sahara desert and West Africa (desertification) may have a minor impact on the simulated monsoon circulation. However, coastal deforestation may cause the collapse of the monsoon circulation and have a dramatic impact on the regional rainfall. The observed deforestation in West Africa is then likely to be a significant contributor to the observed drought.

  5. Future of West African Monsoon in A Warming Climate

    NASA Astrophysics Data System (ADS)

    Raj, Jerry; Kunhu Bangalath, Hamza; Stenchikov, Georgiy

    2016-04-01

    West Africa is the home of more than 300 million people whose agriculture based economy highly relies on West African Monsoon (WAM), which produces a mean annual rainfall of 150 - 2,500 mm and variability and change of which have devastating impact on the local population. The observed widespread drought in West Africa during the 1970s and 1980s was the most significant drought at regional scale during the twentieth century. In this study, a high resolution AGCM, High Resolution Atmospheric Model (HiRAM), is used to study the effects of anthropogenic greenhouse warming on WAM. HiRAM is developed at GFDL based on AM2 and employs a cubed-sphere finite volume dynamical core and uses shallow convective scheme (for moist convection and stratiform cloudiness) instead of deep convective parameterization. Future projections are done using two representative concentration pathways, RCP 4.5 and RCP 8.5 from 2007 to 2050 at C360 (~25 km) resolution. Both RCP 4.5 and RCP 8.5 scenarios predict warming over West Africa during boreal summer, especially over Western Sahara. Also, both scenarios predict southward shift in WAM rainfall pattern and drying over Southern Sahara, while RCP 8.5 predicts enhanced rainfall over Gulf of Guinea. The intensification of rainfall over tropical latitudes is caused by increased low level winds due to warm SST over Gulf of Guinea.

  6. The Global Monsoon across Time Scales: is there coherent variability of regional monsoons?

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-05-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently regional monsoons have been recognized as a global system. It remains a debated issue, however, as to what extent and at which time scales the global monsoon can be viewed as a major mode of climate variability. For this purpose a PAGES Working Group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various time scales, ranging from interannual, interdecadal, centennial and millennial, up to orbital and tectonics time scales, conforming the global monsoon concept across time scales. Within the global monsoon system each subsystem has its own features depending on its geographic and topographic conditions. Discrimination of global and regional components in the monsoon system is a key to reveal the driving factors of monsoon variations, hence the global monsoon concept helps to enhance our understanding and to improve future projection of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various time scales, providing evidence for the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts into a warming world. The synthesis will be followed by a companying paper to discuss driving mechanisms and outstanding issues in the global monsoon studies.

  7. Examining Intraseasonal Variability in the West African Monsoon Using the Superparameterized Community Climate System Model

    NASA Astrophysics Data System (ADS)

    McCrary, Rachel; Randall, David; Stan, Cristiana

    2013-04-01

    In West Africa, the ability to predict intraseasonal variations in rainfall would have important social and economic impacts for local populations. In particular, such predictions might be useful for estimating the timing of the monsoon onset and break periods in monsoon rains. Current theory suggests that on 25-90 day timescales, the West African monsoon (WAM) is influenced by intraseasonal variations in the Indo-Pacific region, namely the Madden Julian Oscillation (MJO) and the Asian summer monsoon. Unfortunately, most general circulation models (GCMs) show weak skill in simulating the seasonal variations in the WAM as well as intraseasonal variability in the Indo-Pacific. These model limitations make it difficult to study the dynamical links in variability across the tropics. Unlike traditional GCMs, models that have implemented the superparameterization (where traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid box) have been shown to be able to represent the WAM, the MJO and the Asian Summer Monsoon with reasonable fidelity. These model advances may allow us to study the teleconnections between the Indo-Pacific and West Africa in more detail. This study examines the intraseasonal variability of the WAM in the Superparameterized Community Climate System model (SP-CCSM). Results from the SP-CCSM are consistent with observations where intraseasonal variability accounts for 15-20% of the total variability in rainfall over West Africa during the monsoon season. We also show that on 25-90 day timescales, increases in precipitation over West Africa correspond with a northward shift of the African easterly jet and an increase in African easterly wave activity. Lag-composite analysis indicates that intraseasonal variations in WAM precipitation correspond with the North-South propagation of the MJO during boreal summer as well as the active and breaking phases of the Asian summer monsoon. Preliminary

  8. Linkages of remote sea surface temperatures and Atlantic tropical cyclone activity mediated by the African monsoon

    NASA Astrophysics Data System (ADS)

    Taraphdar, Sourav; Leung, L. Ruby; Hagos, Samson

    2015-01-01

    sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations demonstrates that warm NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower troposphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50°W-20°E; 10°N-20°N) of Atlantic TCs. By modulating multiple African monsoon processes, NAMED SST explains comparable and approximately one third of the interannual variability of Atlantic TC frequency as that explained by local wind shear and local SST, respectively, which are known key factors that influence Atlantic TC development.

  9. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  10. A mechanism for African monsoon breaks: Mediterranean cold air surges

    NASA Astrophysics Data System (ADS)

    Vizy, Edward K.; Cook, Kerry H.

    2009-01-01

    Surges of cold air from the Mediterranean into northern Africa during the boreal summer are documented, and their influence on monsoon breaks is analyzed using Tropical Rainfall Measuring Mission rainfall estimates and reanalysis products. Between 1998 and 2006, 6-10 cold air surges occurred each summer, with low-level temperature anomalies ranging from less than -1 K to over -6 K. Composite analysis indicates that cold air surges over northern Africa persist for 2-10 days and travel equatorward at approximately 5.5 m s-1, which is 0.5-1.5 m s-1 faster than the observed climatological low-level meridional flow. Northern African cold surges have characteristics similar to surges observed elsewhere in the world, including a hydrostatically induced ridge of surface pressure and an amplified upper tropospheric ridge/trough pattern. The African cold surge is preceded by the passage of a shortwave trough and an intensification of the upper tropospheric subtropical westerly jet streak over the Mediterranean Sea. These events are associated with increased confluence in the jet entrance region over the central Mediterranean, an enhanced direct secondary circulation, subsidence, and low-level ageostrophic northerly flow over northeastern Africa. Composite analysis shows that the passage of a cold surge is associated with an enhancement in convective activity over southern Algeria, western Niger, northern Mali, and Mauritania 2 to 5 days before the surge reaches the eastern Sahel (˜17.5°N), when northeasterly flow channeled between the Atlas and Ahaggar Mountains strengthens and transports relatively moist air from the western Mediterranean and eastern North Atlantic over the region and increases moisture convergence over western Africa north of 20°N. Over the eastern Sahel of Sudan and eastern Chad, the composite results reveal a break in convective activity and decrease in low-level convergence when the surge arrives that persists for about 6 days. These results offer

  11. The Role of African topography in the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Wei, H. H.; Bordoni, S.

    2014-12-01

    The Somali cross-equatorial jet is estimated to contribute up to half of the mass flux crossing the equator during the Asian monsoon season. Previous studies have argued that the Somali jet is strengthened by the East African Highlands, which act as a wall and accelerate the flow (e.g., Krishnamurti et al. 1976, Sashegyi and Geisler 1987). Besides, observational studies have shown a positive correlation between the strength of the Somali jet and the South Asian Monsoon (SAM) precipitation (e.g., Findlater 1969, Halpern and Woiceshyn 2001). These imply that the existence of the topography would relate to a stronger SAM. However, in a more recent study, Chakraborty et al. (2002) found that if the African topography is removed in a comprehensive general circulation model (GCM), the SAM strengthens. In this study, we use the GFDL AM2.1 GCM to conduct experiments with and without topography in Africa, to further examine its influence on the cross-equatorial Somali jet and the SAM. We find that when the African topography is removed, the SAM precipitation increases, consistent with the results in Chakraborty et al. (2002). Interestingly, our results also show that the cross-equatorial Somali jet does weaken in the absence of the African topography, in agreement with previous studies. The moisture budget shows that the increase in precipitation in the no-African topography experiment is primarily due to stronger wind convergence. The dynamics of the cross-equatorial Somali jet is investigated within the framework of the Potential Vorticity (PV) budget, showing the contribution of the changes in friction and diabatic heating to the circulation as the topography is removed. A backward trajectory analysis is also conducted to further examine the influence of topography on both the material tendencies of the PV budget and trajectories of parcels reaching the Indian subcontinent.

  12. Observation of cloud sytems during the African monsoon with METEOSAT

    NASA Astrophysics Data System (ADS)

    Sèze, G.; Szantai, A.; Desalmand, F.

    2003-04-01

    In the frame of the AMMA (African Monsoon Multidisciplinary Analyses) project and the related field experiments planned for 2005, satellite data are of prime importance to provide a good description of cloud systems. The simultaneous observations of low clouds associated with the monsoon flow and of cloud sytems associated with deep convection could bring useful information on the relation between these two processes. Using geostationnary satellite data, we have developed an approach allowing to classify clouds in cloud types, to study their evolution and their displacement. It is applied to METEOSAT-7 data during the JET2000 experiment ; it combines the cloud classification obtained from the LMD Dynamic Cluster Method developed by Sèze and Desbois (Sèze and Desbois, 1987; Sèze and Pawlowska, 2001), with the LMD cloud tracking method (Desalmand et al., 1999; Szantai et al., 2002). An analysis of the low cloud cover in the monsoon flow during the 10 day period of the experiment, is presented and the advantage of this combined study (cloud classification plus cloud tracking) is demonstrated. The improvements that the higher image frequency provided by the MSG (METEOSAT Second Generation) satellite will bring are illustrated with results obtained with the same kind of processing on METEOSAT-6 Rapid Scan data available over West Africa on 28 July 1999.

  13. West African Monsoon influence on the summer Euro-Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Pohl, Benjamin; Douville, Hervé; Fontaine, Bernard

    2011-05-01

    The West African Monsoon (WAM) influence on the interannual variability of the summer atmospheric circulation over North Atlantic and Europe is investigated over the period 1971-2000. A set of sensitivity experiments performed through the Arpege-Climat Atmospheric General Circulation Model is analyzed, using the so-called “grid-point nudging” technique, where the simulated atmospheric fields in the WAM region are relaxed towards the ERA40 reanalysis. Observations confirm that a sizable part of the Euro-Atlantic circulation variability is related to the WAM, with anomalies of reinforced convection in the Sudan-Sahel region associated with positive North Atlantic Oscillation (NAO) phases and subsidence over eastern Mediterranean. The nudged simulations highlights the role of the WAM in driving the mid-latitude circulation. A strong monsoon is related to high-pressure anomalies over the Azores and positive NAO phases.

  14. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

    NASA Astrophysics Data System (ADS)

    Bosmans, J. H. C.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Lourens, L. J.

    2015-01-01

    We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.

  15. The response to deforestation and desertification in a model of West African monsoons

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyu; Eltahir, Elfatih A. B.

    Since Charney proposed his theory on the dynamics of deserts and droughts in the Sahel [Charney, 1975], there has been significant scientific interest in the interaction between vegetation and climate in this region. The essence of this interaction is that the atmospheric circulation, and therefore rainfall, over this region may be sensitive to changes in vegetation cover near the desert border. Here we describe simulations of the West African monsoons with a simple zonally-symmetric model. The results suggest that the potential impact of human induced change of land cover on regional climate depends critically on the location of the change in vegetation cover. That is, desertification along the border with the Sahara (e.g., in Chad, Niger, Mali and Mauritania) leaves a relatively minor impact on monsoon circulation and regional rainfall; deforestation along the southern coast of West Africa (e.g., in Nigeria, Ghana and Ivory Coast) may result in complete collapse of monsoon circulation, and a significant reduction of regional rainfall.

  16. Role of soil moisture-atmosphere interactions in model simulation of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin; Giannini, Alessandra

    2015-04-01

    Land-atmosphere interactions play a major role in climate characteristics over land. One of the key features of those interactions is the feedback of soil moisture on precipitation: driven by atmosphere variability, soil moisture variations in turn modulate land-atmosphere fluxes, altering surface climate and boundary layer conditions and potentially feeding back on precipitation, both through local and large-scale processes. Prior studies have highlighted West Africa as one of the regions where such interactions play an important role in precipitation variability. Here we investigate the role of soil moisture-atmosphere interactions on the West African Monsoon in the GFDL-ESM2M model, comparing simulations from the GLACE-CMIP5 experiment with prescribed (climatological seasonal cycle) and interactive soil moisture. Results indicate that total monsoon precipitation is enhanced in the prescribed case, suggesting that overall soil moisture-atmosphere interactions act to reduce precipitation. However, contrasting effects appear between the "core" of the monsoon (in a time- latitude sense) where precipitation is reduced with interactive soil moisture, and the "margins" (in a time-latitude view) where precipitation increases. We investigate the processes responsible for these differences, from changes in the surface energy budget and Bowen Ratio to changes in large-scale circulation and monsoon dynamics. Simulations from other GLACE-CMIP5 participating models are also analyzed to assess the inter-model robustness of the results.

  17. Statistical postprocessing for precipitation forecasts during the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Vogel, Peter; Gneiting, Tilmann; Knippertz, Peter; Fink, Andreas; Schlüter, Andreas

    2016-04-01

    Statistical postprocessing for ensemble forecasts has undergone many improvements recently. Commonly used methods are Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), but have predominantly been applied over the midlatitudes (e.g. North America or Europe). The prediction of precipitation events during the wet period of the West African Monsoon (WAM) is highly challenging and ensemble forecasts for precipitation in West Africa during this period have low skill. The present contribution investigates for the first time how statistical postprocessing methods can improve precipitation forecasts to obtain calibrated and sharp predictive distributions. Perhaps surprisingly, the ECMWF ensemble is unable to outperform climatological forecasts. However, BMA and EMOS postprocessed forecasts can cope with the poor quality of the raw ensemble forecasts and yield predictive distributions that are as calibrated as, but sharper than, climatology.

  18. Strengthened African summer monsoon in the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Zhang, Zhongshi; Jiang, Dabang; Yan, Qing; Zhou, Xin; Cheng, Zhigang

    2016-09-01

    Using model results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) and four experiments with CAM4, the intensified African summer monsoon (ASM) in the mid-Piacenzian and corresponding mechanisms are analyzed. The results from PlioMIP show that the ASM intensified and summer precipitation increased in North Africa during the mid-Piacenzian, which can be explained by the increased net energy in the atmospheric column above North Africa. Further experiments with CAM4 indicated that the combined changes in the mid-Piacenzian of atmospheric CO2 concentration and SST, as well as the vegetation change, could have substantially increased the net energy in the atmospheric column over North Africa and further intensified the ASM. The experiments also demonstrated that topography change had a weak effect. Overall, the combined changes of atmospheric CO2 concentration and SST were the most important factor that brought about the intensified ASM in the mid-Piacenzian.

  19. Processes and Mechanisms in Simulations of the Mid-holocene African Summer Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Tomas, R. A.; Otto-Bliesner, B.

    2006-12-01

    Proxy reconstructions indicate that the Sahel and Sahara regions were considerably wetter during the early and middle Holocene (about 12 to 5 thousand years ago) than they are presently. Kutzbach (1981) and Kutzbach and Otto-Bliesner (1982) tested whether changes in the Earth's orbital parameters could have caused these climatic changes seen in the observed records. Using a low-resolution general circulation model and orbital parameters that describe conditions 9000 years ago, they found that the increased solar radiation during the summer months caused an intensified monsoon circulation over the African-Eurasian land mass. During the past 25 years, as general circulation models and coupled climate models have evolved, these experiments have been repeated, these results have been reconfirmed and our understanding of what parts of the climate system are important for the anomalous monsoon circulation has been refined. Yet, questions remain about the details of the processes and mechanisms that are important for producing the anomalous monsoon in climate model simulations and there are still some significant discrepancies between simulations and proxy records. We examine simulations of the African summer monsoon made using the latest version of the Community Climate System Model (CCSM3) developed at the National Center for Atmospheric Research (NCAR) forced with orbital parameters and greenhouse gas concentrations appropriate for 6 ka and pre-industrial periods following the protocols established by the Paleoclimate Modeling Intercomparison Project II (PMIP-2). Results from three sets of experiments are presented. In the first, we test to determine to what extent the SST's simulated by CCSM3 influence the anomalous monsoon circulation using a stand alone atmospheric model forced with 6ka orbital parameters but prescribed SST's taken from CCSM3 simulations of the 6ka and pre-industrial periods. In the second, we explore a more fundamental question regarding what

  20. Half-precessional dynamics of monsoon rainfall near the East African Equator.

    PubMed

    Verschuren, Dirk; Sinninghe Damsté, Jaap S; Moernaut, Jasper; Kristen, Iris; Blaauw, Maarten; Fagot, Maureen; Haug, Gerald H

    2009-12-01

    External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions. Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-rich middle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few, especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional ( approximately 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low

  1. The West African Monsoon: variability and teleconnection with ENSO during the years 1948-57

    NASA Astrophysics Data System (ADS)

    Stickler, Alexander; Brönnimann, Stefan

    2010-05-01

    The intensity of the West African Monsoon (WAM) has been shown to be influenced by different factors. Most important for the existence of the monsoon system is the land-sea thermal contrast between the North African landmass and the Gulf of Guinea. ENSO plays an important role for its interannual variability via an atmospheric teleconnection bridging the Pacific and Atlantic oceanic basins and favouring either descent/weak low-level monsoon flow or ascent/strong low-level monsoon flow over tropical West Africa. Most published studies on the WAM variability are based on reanalysis datasets. However, while reproducing quite well the interannual variability, reanalysis products have been found to contain major biases in certain tropical regions before 1968. These lead to an unrealistic low frequency behaviour and might be explained by the lack of observations assimilated into the reanalyses, as is the case e.g. for tropical Africa where only the much sparser radiosonde data have been assimilated into the NCEP/NCAR Reanalysis (NNR). Here we present an analysis of the interannual WAM variability and its teleconnection with ENSO for the years 1948-57 which is not based on a reanalysis, but on early pilot balloon observational wind data from the Comprehensive Historical Upper Air Network (CHUAN). We have examined wind data from all 36 stations located in the domain (10°S-30°N, 20°W-20°E) on 5 levels up to the mid troposphere (corresponding roughly to the 925, 850, 700, 600 and 500 hPa pressure levels). This analysis shows that 7 subregions can be defined which are characterised by similar vertical wind profiles as well as seasonality: the NW (Mauritania, northern Senegal), the SW (southern Senegal to coastal Guinea), central sub-Saharan West Africa (SSWA, from interior Guinea in the W to coastal Cameroon and southern Niger in the E), central and eastern Niger, western Chad, the western Central African Republic, and the southern coastal regions east of the Gulf of

  2. Variability of West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-11-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, we simulate the WAM for the wet year 1999 with a 27-member multi-physics ensemble of the Weather Research and Forecasting (WRF) model. We investigate the inter-member differences in a process-based manner in order to extract generalizable information on the behavior of the tested cumulus (CU), microphysics (MP), and planetary boundary layer (PBL) schemes. Precipitation, temperature and atmospheric dynamics are analyzed in comparison to the Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the Global Precipitation Climatology Centre (GPCC) gridded gauge-analysis, the Global Historical Climatology Network (GHCN) gridded temperature product and the forcing data (ERA-Interim) to explore interdependencies of processes leading to a certain WAM regime. We find that MP and PBL schemes contribute most to the ensemble spread (147 mm month-1) for monsoon precipitation over the study region. Furthermore, PBL schemes have a strong influence on the movement of the WAM rainband because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation and a weaker monsoon. Ultimately, we identify the differing intensities of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. The ensemble spread of Sahel precipitation and associated dynamics for August 1999 is comparable to the observed inter-annual spread (1979-2010) between dry and wet years, emphasizing the strong potential impact of regional processes and the need for a careful selection of model parameterizations.

  3. Mutual interaction between the West African Monsoon on the summer Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Gaetani, M.; Baldi, M.; Dalu, G. A.

    2009-04-01

    Many studies have show that the West African Monsoon (WAM) is teleconnected with neighbouring regions, as the Mediterranean (Med) basin and the Tropical Atlantic, but also it is sensitive to the perturbations occurring even in remote regions, as the Indian sub-continent and the Tropical Pacific, these teleconnections being active on several time-scales, from intraseasonal to multidecadal. The WAM plays also an active role in the regional atmospheric circulation, inducing significant changes in rainfall, moisture, temperature, and wind distribution up to the North Africa. Within this framework, recent works were focused on the teleconnection between WAM and Med. WAM is strengthened by the north-easterly advection of moisture from the Med Sea, and, since the subsiding monsoonal air often invades the Med, there is a 2-way interaction between WAM and Med summer circulation. We study these interactions, applying SVD analysis to global NCEP Reanalysis and to rainfall data from CMAP, during the extended monsoonal season from May to October, on interannual and on intraseasonal time-scale. Dynamical features are explored using composite analysis, focusing on the role of this connection in the heat waves occurrence in the Med. We find that a strong WAM intensifies the Hadley meridional circulation, with a strengthening of the north Atlantic anticyclone and a weakening, even blocking, of the westerly flow in the Med. A deep inland penetration of WAM produces a northern shift of the Libyan anticyclone, with subsidence and high pressure affecting mainly the western Med. The positive feedback is due to the intensification of north-easterly flow from the eastern Med, which, reaching the Sahara desert, intensifies the intertropical front, favouring abundant monsoonal precipitation because of the added moist air.

  4. Evolving the linkages between North American Monsoon Experiment research and services in the binational monsoon region

    NASA Astrophysics Data System (ADS)

    Ray, A. J.

    2007-05-01

    Multi-year drought, high interannual precipitation variability, and rapid population growth present major challenges to water resources and land managers in the U.S. Southwest and binational monsoon region. The NAME strategy to improve warm season precipitation forecasts is paying off in the understanding of the system and its potential predictability, illustrated by a special issue of the Journal of Climate with about 25 articles and numerous other published papers (e.g. Higgins and Gochis et al. 2006; Gutzler et al. 2004, Higgins et al. 2003). NOAA now has set a goal to NAME and other initiatives also have the potential to provide key insights, such as historic information regarding onset and overall strength of the monsoon as it affects stakeholder interests in flooding, soil moisture, vegetation health, and summer water demand. However, the usual avenues for scientific output, such as peer-reviewed publications and web sites designed for use by climate and weather experts, do not adequately support the flow of knowledge to operational decisionmakers. A recent workshop on Monsoon Region climate Applications in Guaymas, Sonora identified several areas in which monsoon science might contribute to reducing societal vulnerability, as well as some research findings that are suited to transition into model development and operations at service providers including NOAA and SMN. They recommended that products are needed that interpret climate forecasts for water resource management applications, and developing new regionally-tailored climate information products. This presentation will discuss how to enhance the flow of monsoon information and predictions to stakeholders by linking user-oriented perspectives with research results from NAME and other programs, including a new effort for a North American Monsoon Forecast Forum which plans to develop periodic consolidated North American Monsoon outlooks.

  5. Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.

    2008-12-01

    The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to

  6. African Monsoon Multidisciplinary Analysis (AMMA) : The Special Observing Period of 2006

    NASA Astrophysics Data System (ADS)

    Polcher, J.; Cairo, F.; Fierli, F.; Höller, H.; Law, K.; Mari, C.; Reeves, C.; Schlager, H.

    2006-12-01

    The AMMA project aims at enhancing our understanding of the West African monsoon and its underlying physical, chemical and biological processes. This enhanced knowledge of the processes involved in the establishment and variability of the monsoon will be used to improve our capacity to predict it and evaluate the impacts on land-productivity, management of water resources and public health. The objective is to provide societies in Africa with improved tools to manage their dependence on environmental conditions. In the framework of AMMA a dense observational network has been established both as routine and campaign- based facilities. The aim is to provide a complete picture of the physical, chemical and biological processes over the ocean, the continent and in the atmosphere. The base network has been established over the last few year and covers surface states and surface flux monitoring in a number catchments over the climatic gradient of the region. The upper-air sounding network was upgraded and enhanced to improve the data available for operational weather forecasting. During 2006 AMMA supported a large field campaign to cover the dry season (SOP0), the monsoon onset (SOP1) and the wet season (SOP2). The enhancement to the observing system in 2006 included balloon borne instruments, a lightning network over northern Benin, 3 research vessels and 5 research aircraft stationed in the Niamey and Ouagadougou. Most of SOP2 observations were dedicated to the intense mesoscale convective systems which are generated in the region and travel to the West. Their impact on the circulation in the troposphere and lower stratosphere, the water cycle in the region and the transport of trace gases and aerosols have been observed at different stages of the life cycle of these systems. This talk will provide a overview of the AMMA project and the observations carried out in 2006, focusing on the most relevant events.

  7. Daily characteristics of West African summer monsoon precipitation in CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Klutse, Nana Ama Browne; Sylla, Mouhamadou Bamba; Diallo, Ismaila; Sarr, Abdoulaye; Dosio, Alessandro; Diedhiou, Arona; Kamga, Andre; Lamptey, Benjamin; Ali, Abdou; Gbobaniyi, Emiola O.; Owusu, Kwadwo; Lennard, Christopher; Hewitson, Bruce; Nikulin, Grigory; Panitz, Hans-Jürgen; Büchner, Matthias

    2016-01-01

    We analyze and intercompare the performance of a set of ten regional climate models (RCMs) along with the ensemble mean of their statistics in simulating daily precipitation characteristics during the West African monsoon (WAM) period (June-July-August-September). The experiments are conducted within the framework of the COordinated Regional Downscaling Experiments for the African domain. We find that the RCMs exhibit substantial differences that are associated with a wide range of estimates of higher-order statistics, such as intensity, frequency, and daily extremes mostly driven by the convective scheme employed. For instance, a number of the RCMs simulate a similar number of wet days compared to observations but greater rainfall intensity, especially in oceanic regions adjacent to the Guinea Highlands because of a larger number of heavy precipitation events. Other models exhibit a higher wet-day frequency but much lower rainfall intensity over West Africa due to the occurrence of less frequent heavy rainfall events. This indicates the existence of large uncertainties related to the simulation of daily rainfall characteristics by the RCMs. The ensemble mean of the indices substantially improves the RCMs' simulated frequency and intensity of precipitation events, moderately outperforms that of the 95th percentile, and provides mixed benefits for the dry and wet spells. Although the ensemble mean improved results cannot be generalized, such an approach produces encouraging results and can help, to some extent, to improve the robustness of the response of the WAM daily precipitation to the anthropogenic greenhouse gas warming.

  8. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Messori, Gabriele; Zhang, Qiong

    2016-01-01

    The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the West African Monsoon (WAM) occurred between 15000-5000 yr BP, when increased summer rainfall led to the so-called "Green Sahara" and to a reduction in dust emissions from the region. However, model experiments are unable to fully reproduce the intensification and geographical expansion of the WAM during this period, even when vegetation over the Sahara is considered. Here, we use a fully coupled simulation for 6000 yr BP (Mid-Holocene) in which prescribed Saharan vegetation and dust concentrations are changed in turn. A closer agreement with proxy records is obtained only when both the Saharan vegetation changes and dust decrease are taken into account. The dust reduction strengthens the vegetation-albedo feedback, extending the monsoon's northern limit approximately 500 km further than the vegetation-change case only. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the WAM during the Mid-Holocene.

  9. Revisiting the role of global SST anomalies and their effects on West African monsoon variability

    NASA Astrophysics Data System (ADS)

    Pomposi, Catherine; Kushnir, Yochanan; Giannini, Alessandra

    2016-04-01

    The West African Monsoon is a significant component of the global monsoon system, delivering the majority of annual precipitation for the Sahel and varying on timescales from seasons to decades and beyond. Much of the internal variability of this system is driven by sea surface temperature (SST) anomalies and their resulting atmospheric teleconnections linking oceanic changes to land-based precipitation. Previous idealized studies have identified the role of particular ocean basins in driving monsoon variations on a number of key timescales, including the Atlantic basin as the main driver behind decadal-scale changes and the Pacific basin for interannual variability. However, understanding of how the monsoon responds to global SSTs remains incomplete because the system can be affected by moisture availability locally as well as tropical atmospheric stability, both of which are influenced by ocean temperatures. Furthermore, the complexity of how the global ocean basins change in relation to one another (what we refer to as superposition of anomalies) can result in Sahel precipitation anomalies that are contrary to what one might posit when considering the state of a single basin alone (e.g. the 2015 El Niño event and a relatively wet Sahel). The aim of this work is to revisit the role of global SSTs in driving Sahel rainfall variability over the recent past using a blending of observations and new model output. We seek to disentangle the state of various basins in combination with each other in driving normal or anomalously dry or wet years, resolving the ways that remote and local ocean forcings affect the movement of convection from the Guinea coast inland and northward into the Sahel, and include the study of circulation and stability components of the atmosphere. Preliminary diagnostic work suggests that varying SST conditions across ocean basins could imprint distinctly different precipitation responses in the Sahel. For example, precipitation anomalies are

  10. The relationship between the equatorial westerlies, upper-level zonal flow and interannual variability of the West African monsoon

    NASA Astrophysics Data System (ADS)

    Nicholson, S. E.

    2013-12-01

    Two of the most important circulation features governing the interannual variability of the West African monsoon are the low-level African westerly jet and the upper tropospheric Tropical Easterly Jet. Both jets are abnormally intense during wet years over the Sahel/Soudan region. This paper examines four new aspects of these systems and their role in interannual variability. One is the extent to which these systems explain recent variability in the region. A second is their role in western equatorial regions. A third is possible teleconnections of the low-level jet to rainfall in eastern equatorial Africa. A fourth is the mechanism by which intensification of the two jets appears to occur in tandem.

  11. Uncertainties from above and below: West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-04-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African Monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, the ability of a 27-member mixed-physics ensemble of the Weather Research and Forecasting model to represent the WAM is investigated in a process-based manner in order to extract transferable information on parameterization influences. The uncertainties introduced by three cumulus (CU), microphysics (MP) and planetary boundary layer (PBL) parameterizations are analyzed to explore interdependencies of processes leading to a certain WAM regime during the wet year 1999. We identify the modification of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. It is predominantly altered by the PBL schemes because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation, weaker precipitation and a southward displaced African Easterly Jet and monsoon rainband. This identifies the representation of clouds as a critical "uncertainty from above" in simulating the WAM. The partitioning of sensible and latent heat fluxes is found to be another major source for the ensemble spread inducing "uncertainties from below" for the modeled monsoon regime. Finally, we show that regionally adapted simulations at convection-allowing scales with ingested dynamical land surface parameters improve the representation of convection, net radiation and surface flux partitioning.

  12. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for

  13. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  14. An Abrupt Change in the African Monsoon at the end of the Younger Dryas?

    NASA Astrophysics Data System (ADS)

    Talbot, M. R.; Filippi, M. L.; Jensen, N. B.; Tiercelin, J.

    2005-12-01

    A variety of proxy palaeoclimatic records from tropical Africa and the adjacent oceans suggest that a climatic event equivalent to the Younger Dryas (YD) also affected this region. To date however, little attention has been directed towards the end of the YD in Africa, even though it has been identified as a period of particularly rapid and profound climatic change in the circum-North Atlantic region. High-resolution studies of variations in the elemental and stable carbon- and nitrogen-isotope composition of organic matter in cores from Lakes Malawi, Tanganyika and Bosumtwi (tropical Africa) indicate an abrupt change in the wind-driven circulation of these lakes that, within the limits of available chronologies, was contemporaneous with the end of the YD in the northern hemisphere. The change was apparently coincident with the transition to humid conditions in the central Sahara, with shifts in surface winds recorded in cores from off the coasts of East and West Africa, and possibly also with the onset of the last phase of ice accumulation on Mt. Kilimanjaro. Together, the evidence suggests an abrupt northward translation of the African monsoon system at ca. 11.5 +/- 0.3 cal. ka BP.

  15. Aerosols and contrasting monsoon conditions over the Himalayan region

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Ganguly, Dilip; Dash, S. K.

    2016-05-01

    Impact of aerosols on the Indian summer monsoon (ISM) variability is well documented; however there are limited studies which have quantified the role of aerosols in modifying the amount of rainfall. To address this research problem, we make use of the remotely sensed data set of precipitation and aerosols from different observations. In the present study remotely sensed precipitation data set has been utilised to define contrasting monsoon conditions over the Himalayan region. As per the classical definition, active and break spells are defined over the central part of the Indian land region, and during the break spells over the central Indian region, the Himalayan region receives substantial amount of rainfall. It is found that accumulation of more dust over the Uttarakhand region significantly (negative correlation with rainfall; significant at 5% significance level) suppresses the rainfall during break spells. We propose that the substantial aerosol loading and its associated dynamical feedback over the Himalayan foothills may have considerable impact on the amount of rainfall over the mountainous regions of the Indian subcontinent. Results presented in this paper are supported by the statistically robust significance test and would be useful to develop the understanding of the role of aerosols in modulating the rainfall intensity during the summer monsoon season.

  16. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all

  17. Instrumental evidence of an unusually strong West African Monsoon in the 19th century

    NASA Astrophysics Data System (ADS)

    Gallego, David; Ordoñez, Paulina; Ribera, Pedro; Peña-Ortiz, Cristina; Garcia-Herrera, Ricardo; Vega, Inmaculada; Gomez, Francisco de Paula

    2016-04-01

    The precipitation in the Sahel -which is mainly controlled by the dynamics of the West African Monsoon-, has been in the spot of the climate community for the last three decades due to the persistence of the drought period that started in the 1970s. Unfortunately, reliable meteorological series in this area are only available since the beginning of the 20th Century, thus limiting our understanding of the significance of this period from a long term perspective. Currently, our knowledge of what happened in times previous to the 20th Century essentially relies in documentary or proxy sources. In this work, we present the first instrumental evidence of a 50 year-long period characterised by an unusually strong West African monsoon in the19th Century. Following the recent advances in the generation of climatic indices based on data from ship's logbooks, we used historical wind observations to compute a new index (the so-called ASWI) for characterising the strength of the West African Monsoon. The ASWI is based in the persistence of the southwesterly winds in the [29°W-17°W;7°N-13°N] area and it has been possible to compute it since 1790 for July and since 1839 for August and September. We show that the ASWI is a reliable measure of the monsoon's strength and the Sahelian rainfall. Our new series clearly shows the well-known drought period starting in the 1970s. During this dry period, the West African Monsoon was particularly weak and interestingly, we found that since then, the correlations with different climatic patterns such as the Pacific and Atlantic "El Niño" changed significantly in relation to those of the previous century. Remarkably, our results also show that the period 1839-1890 was characterised by an unusually strong and persistent monsoon. Notwithstanding, two of the few dry years within this period were concurrent with large volcanic eruptions in the Northern Hemisphere. This latter result supports the recently suggested relationship between major

  18. Sst and Ghg Impacts On The West African Monsoon Climate: A Superensemble Approach

    NASA Astrophysics Data System (ADS)

    Paeth, H.; Hense, A.

    West African rainfall has been subject to large interdecadal variations during the 20th century. The most prominent feature is a negative trend in annual precipitation after 1960, causing severe drought in the Sahel region and the southern part of West Africa, with some recoverage in recent years. We examine and quantify the influence of ob- served SST changes on low-frequency variability over the subcontinent and compare it with the additional impact of increasing GHG concentrations, as revealed by a su- perensemble of SST-driven experiments. SST is largely responsible for decadal and longer-term variability over the southern part of West Africa, accounting for almost 80 % of monsoonal rainfall variance. The additional impact of the enhanced green- house effect is weak but statistically significant by the year 1980, obviously associ- ated with a positive trend in annual precipitation. This positive trend is also found in GHG-induced coupled climate model projection into the future. The CO2 signal is again weak but statistically significant and consistent with different climate models, as revealed by a superensemble of coupled experiments.

  19. Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary

    NASA Astrophysics Data System (ADS)

    Tierney, Jessica E.; Russell, James M.; Sinninghe Damsté, Jaap S.; Huang, Yongsong; Verschuren, Dirk

    2011-04-01

    Both Atlantic and Indian Ocean climate dynamics exert influence over tropical African hydroclimate, producing complex patterns of convergence and precipitation. To isolate the Indian Ocean influence on African paleohydrology, we analyzed the deuterium/hydrogen ratio of higher plant leaf waxes ( δD wax) in a 25 000-year sediment record from Lake Challa (3° S, 38° E) in the easternmost area of the African tropics. Whereas both the seismic record of inferred lake level fluctuations and the Branched and Isoprenoidal Tetraether (BIT) index proxy record changes in hydrology within the Challa basin, δD wax, as a proxy for the isotopic composition of precipitation ( δD P) is interpreted as a tracer of large-scale atmospheric circulation that integrates the history of the moisture transported to the Lake Challa area. Specifically, based on modern-day isotope-rainfall relationships, we argue that Lake Challa δD wax reflects the intensity of East African monsoon circulation. The three hydrological proxy records show generally similar trends for the last 25 000 years, but there are important differences between them, primarily during the middle Holocene. We interpret this deviation of δD wax from local hydrological history as a decoupling of East African monsoon intensity - which heavily influences the isotopes of precipitation in East Africa today - from rainfall amount in the Challa basin. In combination, the hydrological proxy data from Lake Challa singularly highlight zonal gradients in tropical African climate that occur over a variety of timescales, suggesting that the Congo Air Boundary plays a fundamental role in controlling hydroclimate in the African tropics.

  20. Influence of Arctic sea-ice and greenhouse gas concentration change on the West African Monsoon.

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    The Sahelian precipitation are projected to increase in the CNRM-CM5 coupled climate model due to a strengthening of the land-Sea temperature gradient, the increase in the North Atlantic temperature and the deepening of the Heat Low. Arctic Sea-Ice loss impacts the low-level atmospheric circulation through a decrease in the northward heat transport. Some authors have linked the sea-ice loss to a poleward shift of the InterTropical Convergence Zone. Within the CMIP5 models the effect of these mechanisms are not distinguishable and it is difficult to understand the effect of the Arctic sea-ice loss on the West African Monsoon so far. We performed several sensitivity experiments with the CNRM-CM5 coupled climate models by modifying the arctic sea-ice extent and/or the greenhouse gas concentration. We then investigated separately the impact of Arctic sea-ice loss and greenhouse gas concentration increases on the West African Monsoon. The increase in greenhouse gas explains the northward shift and the strengthening of the monsoon. Its effect is stronger with a sea-ice free Arctic that leads to an increase in North Atlantic temperature and in Sahelian precipitation at the end of the rainy season (September-October). We argue that the decrease in sea-ice extent, in the context of the global warming, may moistens the Sahel during the rainy season by changing the pressure, winds and moisture fluxes at low-level.

  1. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K.-M.; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah Seidou; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siegfried; Dirmeyer, Paul; Ruby Leung, L.; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, Natalie M.; Zhang, Zhengqiu

    2016-06-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic

  2. Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Philippon, N.; Doblas-Reyes, F. J.; Ruti, P. M.

    2010-07-01

    In the framework of the ENSEMBLES FP6 project, an ensemble prediction system based on five different state-of-the-art European coupled models has been developed. This study evaluates the performance of these models for forecasting the West African monsoon (WAM) at the monthly time scale. From simulations started the 1 May of each year and covering the period 1991-2001, the reproducibility and potential predictability (PP) of key parameters of the WAM—rainfall, zonal and meridional wind at four levels from the surface to 200 hPa, and specific humidity, from July to September—are assessed. The Sahelian rainfall mode of variability is not accurately reproduced contrary to the Guinean rainfall one: the correlation between observations (from CMAP) and the multi-model ensemble mean is 0.17 and 0.55, respectively. For the Sahelian mode, the correlation is consistent with a low PP of about ~6%. The PP of the Guinean mode is higher, ~44% suggesting a stronger forcing of the sea surface temperature on rainfall variability over this region. Parameters relative to the atmospheric dynamics are on average much more skillful and reproducible than rainfall. Among them, the first mode of variability of the zonal wind at 200 hPa that depicts the Tropical Easterly Jet, is correlated at 0.79 with its “observed” counterpart (from the NCEP/DOE2 reanalyses) and has a PP of 39%. Moreover, models reproduce the correlations between all the atmospheric dynamics parameters and the Sahelian rainfall in a satisfactory way. In that context, a statistical adaptation of the atmospheric dynamic forecasts, using a linear regression model with the leading principal components of the atmospheric dynamical parameters studied, leads to moderate receiver operating characteristic area under the curve and correlation skill scores for the Sahelian rainfall. These scores are however much higher than those obtained using the modelled rainfall.

  3. Future changes in the African monsoon analysed with 8 CMIP5 models: contrasted rainfall dipole and delayed withdrawal

    NASA Astrophysics Data System (ADS)

    Monerie, P.

    2013-12-01

    Based on the approach of Fontaine et al. (2011) and Monerie et al. (2013) we study the African Monsoon (AM) future changes. We used 8 available CMIP5/AR5 AOGCMs from 8 different climate centres and the RCP4.5 emission scenario. Data are analysed with the 'one model one vote' concept and a multi-model approach. The results refer to the difference of a ';future horizon' (2031-2070) minus the ';present' period (1960-1999) and are discussed in terms of monsoon dynamics and climate change. CMIP5 AOGCMs produces a warmer world in the future, especially over land. The sea-band thermal gradient is enhanced and create therefore the basic energy conditions for a reinforced monsoon in the future. The future changes show a contrasted response with less (more) rainfall expected over the western (central-eastern) Sahel. The deficits are chiefly linked to subsidence anomalies in mid-troposphere preventing deep moist convection and precipitation due to modifications in the zonal circulation. The surplus are associated with a more intense monsoon circulation, an increasing of the mean moisture flux convergence over the continental Sahel favoured by the greater surface warming over the continent. An African Rainfall Pattern Index (ARPI), based on the standardized rainfall differences between these regions is defined for capturing the rainfall contrast over years 1900 to 2100. It has been compared to the thermal evolution on both the present and future periods. This allowed us to document the effect of the global warming on Sahelian rainfall patterns by extracting low-frequency signals (20-year-cut-off). The contrasted rainfall pattern change at Sahelian latitudes is therefore expected to occur more frequently in the future. These results are according to Fontaine et al. (2011) and Monerie et al. (2013) who shown through 12 CMIP3 models an increasing (decreasing) of rainfall amounts above the central part (western part) of the Sahel in a future period. In addition to these results we

  4. West African Monsoon dynamics in idealized simulations: the competitive roles of SST warming and CO2

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Hourdin, Frederic; Bastin, Sophie; Braconnot, Pascale; Bony, Sandrine

    2015-04-01

    The West African Monsoon (WAM) is affected by large climate variability at different timescales, from interannual to multidecadal, with strong environmental and socio-economic impacts associated to climate-related rainfall variability, especially in the Sahelian belt. State-of-the-art coupled climate models still show poor ability in correctly simulating the WAM past variability and also a large spread is observed in future climate projections. In this work, the July-to-September (JAS) WAM variability in the period 1979-2008 is studied in AMIP-like simulations (SST-forced) from CMIP5. The individual roles of global SST warming and CO2 concentration increasing are investigated through idealized experiments simulating a 4K warmer SST and a 4x CO2 concentration, respectively. Results show a dry response in Sahel to SST warming, with dryer conditions over western Sahel. On the contrary, wet conditions are observed when CO2 is increased, with the strongest response over central-eastern Sahel. The precipitation changes are associated to modifications in the regional atmospheric circulation: dry (wet) conditions are associated with reduced (increased) convergence in the lower troposphere, a southward (northward) shift of the African Easterly Jet, and a weaker (stronger) Tropical Easterly Jet. The co-variability between global SST and WAM precipitation is also investigated, highlighting a reorganization of the main co-variability modes. Namely, in the 4xCO2 simulation the influence of Tropical Pacific is dominant, while it is reduced in the 4K simulation, which also shows an increased coupling with the eastern Pacific and the Indian Ocean. The above results suggest a competitive action of SST warming and CO2 increasing on the WAM climate variability, with opposite effects on precipitation. The combination of the observed positive and negative response in precipitation, with wet conditions in central-eastern Sahel and dry conditions in western Sahel, is consistent with the

  5. Sensitivity of the simulated African monsoon of summers 1993 and 1999 to convective parameterization schemes in RegCM3

    NASA Astrophysics Data System (ADS)

    Tchotchou, L. A. Djiotang; Kamga, F. Mkankam

    2010-03-01

    In this study, the International Center for Theoretical Physics Regional Climate Model version 3 (RegCM3) was used to investigate the sensitivity of the simulation of the West African monsoon using four different cumulus and closures parameterization schemes of Anthes Kuo (AK), Grell and Fristish Chappell (GFC), Grell and Arakawa Schubert (GAS), and MIT-Emmanuel (EM) while maintaining other physical packages unchanged. The contrasting monsoon years of 1993 and 1999, which were dry and wet years, respectively, were simulated. The model was integrated from a period of 5 months, starting from May 1 to September 30 of each year using the European Centre for Medium-Range-Weather Forecast (ECMWF) Reanalysis data (ERA40) as input boundary conditions. The 6-hourly reanalysis data were used to provide the lateral boundary conditions, and the observed weekly Reynolds Sea Surface Temperature interpolated to 6 h was used as the lower boundary forcing. The results show that in West Africa, monsoon precipitations are sensitive to the choice of cumulus parameterization and closure schemes. None of the schemes is able to simulate the monsoon rainfall accurately, and furthermore, there is little difference in behavior among schemes between dry and wet years. The spatial features of precipitation are not identical among schemes, although they all show a northward shift of the rain bands, giving a very wet Sahel and dry Guinean Coast. The GFC and EM schemes are able to capture the diurnal cycle of precipitation and the zonal averages of stratiform rain fractions as observed in the Tropical Rainfall Measuring Mission (TRMM), although they overestimated rainfall amounts. The most important deficiencies, however, cannot be attributed to the schemes. In particular, the northward shift of both the rain band and the AEJ in RegCM3 is the result of unrealistic soil moisture resulting from the way albedo is parameterized, leading to an excessive northward penetration of monsoon flow. A

  6. Sensitivity of the African and Asian Monsoons to Mid-Holocene Insolation and Data-Inferred Surface Changes.

    NASA Astrophysics Data System (ADS)

    Texier, Delphine; de Noblet, Nathalie; Braconnot, Pascale

    2000-01-01

    Orbital forcing alone is not sufficient to explain the massive northward penetration of monsoon rains in Africa shown by data during the mid-Holocene (6000 yr ago). Feedbacks associated with changes in SSTs and land surface cover may be necessary to produce a sufficient increase in the monsoon. A step toward a better understanding of the respective role of oceans and land surfaces is to design sensitivity studies with prescribed forcings, inferred from observations. In the first study, SSTs are lowered in the upwelling regions offshore of West Africa and Somalia, and increased in the Bay of Bengal and South China Sea. In the second simulation, the modern Sahara desert is replaced by a combination of xerophytic woods/scrub and grassland.In both cases the amount of water vapor advected from oceanic sources is increased north of 10°N in Africa in response to the increased land-sea temperature contrast, thereby enhancing rainfall. But the magnitude of the simulated changes is much larger when land surface is modified. The lower albedo (compared to desert) increases the amount of radiation absorbed by the surface in northern Africa and warms it up, and the larger roughness length increases both the sensible and latent heat fluxes. Moreover, vegetation is more efficient in recycling water than a bare soil, and the release of latent heat in the atmosphere increases convection, which in turn helps maintain the onshore oceanic advection. The monsoon season is then lengthened by 1-2 months compared to all other simulations reported in the paper.The intensity of monsoon rains is also modified in Asia in both sensitivity experiments. Warmer SSTs in the Bay of Bengal and South China Sea reduce the land-sea contrast and therefore the inland penetration of monsoon rains. Changes in the position of the main large-scale convergence area in the case of a green Sahara enhances the precipitation in India.Changes are also discussed in terms of atmospheric circulation. For example, the

  7. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    PubMed Central

    Devaraju, N.; Bala, Govindasamy; Modak, Angshuman

    2015-01-01

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures. PMID:25733889

  8. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    PubMed

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures. PMID:25733889

  9. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  10. Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses 2006

    NASA Astrophysics Data System (ADS)

    Delonge, Marcia S.; Fuentes, Jose D.; Chan, Stephen; Kucera, Paul A.; Joseph, Everette; Gaye, Amadou T.; Daouda, Badiane

    2010-05-01

    In this study we investigate the development of a mesoscale convective system (MCS) as it moved from West Africa to the Atlantic Ocean on 31 August 2006. We document surface and atmospheric conditions preceding and following the MCS, particularly near the coast. These analyses are used to evaluate how thermodynamic and microphysical gradients influence storms as they move from continental to maritime environments. To achieve these goals, we employ observations from NASA African Monsoon Multidisciplinary Analyses (NAMMA) from the NASA S band polarimetric Doppler radar, a meteorological flux tower, upper-air soundings, and rain gauges. We show that the MCS maintained a convective leading edge and trailing stratiform region as it propagated from land to ocean. The initial strength and organization of the MCS were associated with favorable antecedent conditions in the continental lower atmosphere, including high specific humidity (18 g kg-1), temperatures (300 K), and wind shear. While transitioning, the convective and stratiform regions became weaker and disorganized. Such storm changes were linked to less favorable thermodynamic, dynamic, and microphysical conditions over ocean. To address whether storms in different life-cycle phases exhibited similar features, a composite analysis of major NAMMA events was performed. This analysis revealed an even stronger shift to lower reflectivity values over ocean. These findings support the hypothesis that favorable thermodynamic conditions over the coast are a prerequisite to ensuring that MCSs do not dissipate at the continental-maritime transition, particularly due to strong gradients that can weaken West African storms moving from land to ocean.

  11. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Schmiedl, Gerhard; Seidel, Martin; Krüger, Stefan; Schulz, Hartmut

    2016-03-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the eastern Mediterranean Sea (EMS). The record spans the last ca. 140 kyr. Smectite abundances indicate the influence of the Blue Nile and the Atbara River that have their headwaters in the volcanic rocks of the Ethiopian Highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major African humid periods (AHPs) with enhanced sediment discharge at 132 to < 126 (AHP 5), 116 to 99 (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (> 2 kyr), S4 (3.5 kyr), and S3 (5 kyr). During the last glacial period (Marine Isotope Stages (MISs) 4-2), the long-term changes in the monsoonal system were superimposed by millennial-scale changes in an intensified midlatitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African humid periods.

  12. KZai 02 pollen record, an insight into West African monsoon fluctuations during the Last Climatic Cycle

    NASA Astrophysics Data System (ADS)

    Dalibard, M.; Popescu, S.; Maley, J.; Suc, J.

    2012-12-01

    Climate of the circum-Atlantic intertropical zone is driven by the ocean/atmosphere dynamics in response to variations of yearly insolation. These latitudes correspond to the convergence of the Hadley cells expressed on earth surface by intense trade winds and in lower troposphere by the African easterly jet making the edges of the intertropical zone relatively dry, while humidity is concentrated near the Equator. This phenomenon generates a precipitation front, known as the InterTropical Convergence Zone (ITCZ), the oscillations of which regulate the latitudinal vegetation distribution. Pollen record of core KZai 02 (Guinea Gulf) allows high resolution reconstruction of variations of past ecosystems over Central Africa during the Last Climatic Cycle. Plant taxa recorded in pollen analyses have been clustered according to their ecological requirements and African phytogeography. Fluctuations of these groups inform on precipitation intensity and their distribution during the last 130 ka. During Glacials, an open vegetation made of Cyperaceae marshes developed in the central Zaire/Congo Basin, surrounded by savannah on borders and afromontane forests on reliefs. Composition and distribution of vegetation indicate a decrease in monsoon activity and the strengthening of the precipitation front in the center of the basin. Interglacial phases are characterized by rain forest expansion over Central Africa in response to a precipitation enhancement associated with a northward shift of the rainfall front. Replacement of afromontane forest and marsh ecosystems by savannah then lowland pioneering, warm-temperate and rain forests characterized glacial/interglacial transitions. This succession suggests the increasing influence of at least two climatic parameters: the water availability and temperature and/or CO2 fluctuation. Spectral analysis applied to vegetation groups evidences the forcing of insolation, mainly driven by precession, on the West African monsoon system. Sub

  13. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile

    NASA Astrophysics Data System (ADS)

    Oman, Luke; Robock, Alan; Stenchikov, Georgiy L.; Thordarson, Thorvaldur

    2006-09-01

    Nile River records indicate very low flow following the 1783-1784 Laki volcanic eruption, as well as after other high-latitude volcanic eruptions. As shown by climate model simulations of the Laki eruption, significant cooling (-1° to -3°C) of the Northern Hemisphere land masses during the boreal summer of 1783 resulted in a strong dynamical effect of weakening the African and Indian monsoon circulations, with precipitation anomalies of -1 to -3 mm/day over the Sahel of Africa, thus producing the low Nile flow. Future high-latitude eruptions would significantly impact the food and water supplies in these areas. Using observations of the flow of the Nile River, this new understanding is used to support a date of 939 for the beginning of the eruption of the Eldgjá volcano in Iceland, the largest high-latitude eruption of the past 1500 years.

  14. A distal 145 ka sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, W.; Schmiedl, G.; Seidel, M.; Krüger, S.; Schulz, H.

    2015-09-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 145 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to < 122 ka (AHP 5), 113 to 104 ka (AHP 4), and 86 to 74 ka (AHP 3). They lasted much longer than the formation of the related sapropel layers S5, S4 and S3. During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.

  15. Holocene biome shifts in the East Asian monsoon margin region

    NASA Astrophysics Data System (ADS)

    Dallmeyer, Anne; Claussen, Martin; Ni, Jian; Wang, Yongbo; Cao, Xianyong; Herzschuh, Ulrike

    2013-04-01

    East Asia is affected by three major atmospheric circulation systems determining the regional climate and vegetation distribution: The moisture advected by the Indian and East Asian monsoon support the growing of forest in large parts of Eastern China. The influence of the monsoon gets weaker further on the continent yielding a transition of forest to steppe and of steppe to desert in Central East Asia (e.g. Inner Mongolia) where the dry westerly winds prevail. Particularly in these transition zones, vegetation is supposed to be very sensitive to climate change and strong feedbacks are expected in case of climate and vegetation shifts due to large environmental changes (Feng et al., 2006). During mid-Holocene, cyclic variations in the Earth's orbit around the sun led to an enhancement of the Asian monsoon system probably causing strong shifts in the biome distribution. According to reconstructions, the steppe-forest margin moved to the northwest by about 500km (Yu et al., 2000) and the desert area in China and Inner Mongolia was substantially reduced compared to today (Feng et al., 2006). However, in the complex environment of Asia, the locally limited reconstructions may not portray the general vegetation change. To get a systematic overview on the spatial pattern of biome shifts in the Asian monsoon - westerly wind transition zone since mid-Holocene, we use the diagnostic vegetation model BIOME4 and force this model with climate anomalies from different transient Holocene climate simulations performed in coupled atmosphere-ocean-vegetation models. The main aims of this study are to a) get a consistent ensemble of possible changes in biome distribution since the mid-Holocene b) test the robustness of the simulated vegetation changes and quantify the differences between the models, and c) allow for a better comparison of simulated and reconstructed vegetation changes. Preliminary results confirm the general trend seen in the reconstructions. The simulations reveal

  16. Future changes in the West African Monsoon: A COSMO-CLM and RCA4 multimodel ensemble study

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Gbobaniyi, Emiola

    2014-05-01

    In this multi-model multi-ensemble study, we intercompare results from two regional climate simulation ensembles to see how well they reproduce the known main features of the West African Monsoon (WAM). Each ensemble was created under the ongoing CORDEX-Africa activities by using the regional climate models (RCA4 and COSMO-CLM) to downscale four coupled atmosphere ocean general circulation models (AOGCMs), namely, CNRM-CM5, HadGEM2-ES, EC-EARTH, and MPI-ESM-LR. Spatial resolution of the driving AOGCMs varies from about 1° to 3° while all regional simulations are at the same 0.44° resolution. Future climate projections from the RCP8.5 scenario are analyzed and inter-compared for both ensembles in order to assess deviations and uncertainties. The main focus in our analysis is on the projected WAM rainy season statistics. We look at projected changes in onset and cessation, total precipitation and temperature toward the end of the century (2071-2100) for different time scales spanning seasonal climatologies, annual cycles and interannual variability, and a number of spatial scales covering the Sahel, the Gulf of Guinea and the entire West Africa. Differences in the ensemble projections are linked to the parameterizations employed in both regional models and the influence of this is discussed.

  17. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad

    PubMed Central

    Armitage, Simon J.; Bristow, Charlie S.; Drake, Nick A.

    2015-01-01

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  18. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad.

    PubMed

    Armitage, Simon J; Bristow, Charlie S; Drake, Nick A

    2015-07-14

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼ 15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼ 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world's greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  19. Lake Mega-Chad, a West African Monsoon indicator and tipping element

    NASA Astrophysics Data System (ADS)

    Armitage, Simon; Bristow, Charlie; Drake, Nick

    2015-04-01

    From the deglacial period to the mid-Holocene, North Africa was characterised by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines and fluvio-lacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ~15 ka, followed by a return to relatively arid conditions. By 11.5 ka Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly non-linear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles since the northern (Bodélé) basin is currently the World's greatest single dust source, and possibly an important source of limiting nutrients for both the Amazon basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from Bodélé Basin cannot have occurred prior to 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.

  20. The Impact of Projected Changes in Monsoon Season Circulation and African Easterly Waves on Saharan Dust Transport

    NASA Astrophysics Data System (ADS)

    Skinner, C. B.; Diffenbaugh, N. S.

    2013-12-01

    The Sahara is the largest source region of mineral dust in the world. Each year, an estimated 100 to 700 million tons of dust are transported from the Sahara through atmospheric processes. Roughly 30 - 50% of this dust travels westward into the North Atlantic where it impacts the regional radiative balance, atmospheric dynamics, and biogeochemical cycles. During the boreal summer season, dust emissions and dust transport over North Africa are largely controlled by westward propagating synoptic-scale and mesoscale systems such as African easterly waves (AEWs) and mesoscale convective systems (MCSs). In particular, strong low-level winds, vertical motion, and convection associated with these systems drive dust mobilization and vertical mixing throughout the atmosphere. In this work we utilize the CMIP5 ensemble of general circulation models to explore the projected impact of enhanced radiative forcing, consistent with a high emissions scenario (RCP8.5), on atmospheric processes that may influence the emission and transport of dust over West Africa. In particular we focus on the simulation of AEWs during the months of the West African monsoon (June - September). Results from the CMIP5 ensemble indicate a robust increase in low-level (850mb) AEW activity along the Sahel/Sahara border in response to increasing greenhouse gas concentrations by the end of the 21st century. Across the CMIP5 ensemble, AEWs exhibit the strongest increase in low-level winds directly over the observed prolific dust sources within Mali, Mauritania and Algeria in the western Sahara. Enhanced AEW activity in this region is consistent with projected increases in low-level baroclinicity and increased ascent associated with a deepening Saharan Heat Low and stronger convergence along the Intertropical Front. We use a variety of observed and modeled relationships between atmospheric processes and dust as well as output from the available CMIP5 dust modules to explore the impact of the projected

  1. Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Li, R.; Jin, J.; Wang, S.-Y.; Gillies, R. R.

    2015-03-01

    Precipitation from the West African Monsoon (WAM) provides food security and supports the economy in the region. As a consequence of the intrinsic complexities of the WAM's evolution, accurate simulations of the WAM and its precipitation regime, through the application of regional climate models, are challenging. We used the coupled Weather Research and Forecasting (WRF) and Community Land Model (CLM) to explore impacts of radiation physics on the precipitation and dynamics of the WAM. Our results indicate that the radiation physics schemes not only produce biases in radiation fluxes impacting radiative forcing, but more importantly, result in large bias in precipitation of the WAM. Furthermore, the different radiation schemes led to variations in the meridional gradient of surface temperature between the north that is the Sahara desert and the south Guinean coastline. Climate diagnostics indicated that the changes in the meridional gradient of surface temperature affect the position and strength of the African Easterly Jet as well as the low-level monsoonal inflow from the Gulf of Guinea. The net result was that each radiation scheme produced differences in the WAM precipitation regime both spatially and in intensity. Such considerable variances in the WAM precipitation regime and dynamics, resulting from radiation representations, likely have strong feedbacks within the climate system and so have inferences when it comes to aspects of predicted climate change both for the region and globally.

  2. Transient Simulation of Oxygen Stable Isotopes over the Asian Monsoon Region with the Iloveclim Model

    NASA Astrophysics Data System (ADS)

    Caley, T.; Roche, D. M.; Renssen, H.

    2014-12-01

    The Asian summer monsoon affects the economical prosperity of vast, heavily populated regions (almost two-third of humanity). Asian summer monsoon dynamics at the orbital scale is a subject of considerable debate. Central in this debate is the interpretation of the Asian speleothem δ18O record as a valid proxy for summer monsoon intensity. In this study, we present a transient simulation of the last 150,000 years, performed with a numerical isotope-enabled fully coupled atmosphere-ocean-vegetation model (iLOVECLIM). This enables us to assess the nature of the δ18O signal in South Asian speleothems. We discuss the validity of Asian speleothem δ18O records as a proxy for summer monsoon intensity and the ultimate forcings of Asian monsoon precipitations at orbital scale.

  3. Catastrophic drought in East Asian monsoon region during Heinrich event 1

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Sun, Liguang; Chu, Yangxi; Xia, Zehui; Zhou, Xinying; Li, Xiangzhong; Chu, Zhuding; Liu, Xiangjun; Shao, Da; Wang, Yuhong

    2016-06-01

    Heinrich event 1 (H1) is an important millennial climate event during the last deglaciation. The substantial decreasing of monsoon strength in the East Asian monsoon region during the H1, as shown by stalagmite δ18O records, has been attributed to the southward shift of the intertropical convergence zone (ITCZ), which is caused by the slowdown/collapse of the Atlantic meridional overturning circulation (AMOC). However, records from different Asian monsoon regions show various trends in precipitation changes during the H1, and these trends cannot be solely interpreted by the southward shift of the ITCZ. In the present study, we reconstructed time-series of East Asian monsoon precipitation between 25,000 and 10,000 a BP from floodplain sediments in the Huai River Basin. A white sediment layer, distinct from other layers in the profile, contains significantly low TOC, tree pollen and fern spore contents, and more positive δ13Corg, and it is deposited during the H1 event. The determined TOC, pollen and δ13Corg time-series, together with previously reported stalagmite δ18O, indicate a catastrophic (severe) drought in Jianghuai Region, one of the East Asian monsoon regions, during the H1. The La Niña condition in tropical Pacific likely also contributes to the catastrophic drought in Jianghuai Region and the precipitation variations in the Asian monsoon region during the H1.

  4. An abrupt change in the African monsoon at the end of the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Talbot, Michael R.; Filippi, Maria Letizia; Jensen, Niels Bo; Tiercelin, Jean-Jacques

    2007-03-01

    High-resolution studies of variations in the elemental and stable carbon- and nitrogen-isotope composition of organic matter in cores from Lakes Malawi, Tanganyika, and Bosumtwi (tropical Africa) indicate an abrupt change in the wind-driven circulation of these lakes that, within the limits of available chronologies, was contemporaneous with the end of the Younger Dryas in the northern hemisphere. The change was also coincident with shifts in surface winds recorded in cores from off the west and northeast coasts of Africa. A range of other proxies indicate that these changes in wind regime were accompanied by a marked increase in precipitation in the northern tropics. Africa south of ˜5°-10°S, on the other hand, initially suffered drought conditions. Together, the evidence suggests an abrupt northward translation of the African monsoon system at circa 11.5 ± 0.25 ka B.P. The data assembled here contribute to a growing body of work showing that the Younger Dryas was a major climatic excursion in tropical Africa. Furthermore, they add substance to recent suggestions that climatic events in the southern hemisphere may have played a significant role in the abrupt demise of the Younger Dryas.

  5. Contribution of Monthly and Regional Rainfall to the Strength of Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Ali, M.; Bourassa, M. A.

    2015-12-01

    Indian Summer Monsoon Rainfall (ISMR: June-September) has both temporal and spatial variability causing floods/droughts in different seasons/locations leading to a strong or weak monsoon. Here, we present the contribution of all-India monthly, seasonal and regional rainfall to the ISMR, with special reference to the strong and weak monsoons. For this purpose, rainfall data provided by the India Meteorological Department (IMD: http://www.imd.gov.in/section/nhac/dynamic/Monsoon_frame.htm) for 1901-2013 have been used. The IMD divided the Indian sub-continent into four homogeneous regions of northwest India (NWI), northeast India (NEI), central India (CI), and south peninsula India (SPIN). Rainfall during July-August contributes the most to the total seasonal rainfall, whether it is a strong or weak monsoon. Although the NEI has the maximum area-weighted rainfall, its contribution is the least toward a strong or weak monsoon. The rainfall in the remaining three regions (NWI, CI, and SPIN) controls whether an ISMR is strong or weak. Compared to the monthly rainfall, the regional rainfall dominates the strong or weak rainfall periods.

  6. Intraseasonal Variability of the South Asian Summer Monsoon: Present-day Simulations with the Regional Atmospheric Model HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, F. S.; Rinke, A.; Dethloff, K.

    2014-12-01

    Since 1950, observations show a robust negative trend of the seasonal rainfall associated with the South Asian summer monsoon over India coinciding with a continuous decrease in surface solar radiation ("dimming") over South Asia due to an increase of local aerosol emissions. On the intraseasonal timescale the summer monsoon fluctuates between periods of enhanced and reduced rainfall. The frequency of occurrence of these active and breaks monsoon phases affects directly the seasonal monsoon rainfall. This study investigates the regional pattern and changes of the South Asian monsoon for the period 1979-2012 using the regional atmospheric model HIRHAM5 with a horizontal resolution of 0.25° forced at the lateral and lower boundaries with ERA-Interim reanalysis data. Despite the dry bias in the mean summer monsoon rainfall over the Indian landmass, the simulated temperature and atmospheric circulation patterns are in agreement with the ERA-Interim reanalysis indicating a realistic representation of important dynamical summer monsoon features. In addition, mechanisms which controls active and break phases within the summer monsoon season are analyzed using daily outgoing longwave radiation model data as an identification tool of monsoon breaks as proposed by Krishnan et al. (2000). Model results reveal an increasing trend of the cumulative monsoon break days of around 1.4 days per year during the last 30 years. The possible link between this increasing of cumulative monsoon break days and the observed decrease of seasonal South Asian monsoon rainfall will be the scope of further investigations.

  7. Aspects of Transport of Convected Regional Pollution from the Asian Monsoon Anticyclone based on CARIBIC observations

    NASA Astrophysics Data System (ADS)

    Brenninkmeijer, C. A.; Rauthe-Schöch, A.; Baker, A. K.; Schuck, T. J.; Zahn, A.; Hermann, M.; Stratmann, G.; Ziereis, H.; van Velthoven, P.

    2013-12-01

    The South Asian summer monsoon is one of the most important features of the boreal summer atmosphere in the tropics, and is characterized by a persistent large-scale anticyclonic structure in the upper troposphere centered over the Indian subcontinent. Strong convection associated with the monsoon causes upper tropospheric mixing ratios to be strongly linked to surface emissions from this densely populated region, and these polluted air masses can become trapped and accumulate inside the anticyclone, where they can be chemically isolated for several days. Outflow occurs predominantly westward towards Northern Africa and the Middle East, where a summertime ozone (O3) maximum due to ozone formation in monsoon outflow has been reported, and to the Mediterranean. While most observations in the monsoon anticyclone are from satellites, the CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) observatory probed the upper troposphere (9-13 km) in the South Asian monsoon region with in situ measurements between June and September 2008. Elevated levels of a range of atmospheric pollutants were measured within the monsoon anticyclone, among them CO, NOy, aerosols and several volatile organic compounds (VOCs), and trajectory calculations indicated that these air masses originated mainly from South Asia. These measurements yield a detailed description of the initial chemical composition of air in different parts of the monsoon anticyclone, particularly of ozone precursors. Using this information and the Lagrangian Particle Dispersion Model FLEXPART we investigate the characteristics of monsoon outflow and the chemical evolution of air masses during transport. Based on analysis of air mass forward trajectories several receptor regions were identified. In addition to the dominant transport to the West, we found evidence for transport to the Pacific and North America, particularly during June and September, and also of cross

  8. Indigenous vegetation burning practices and their impact on the climate of the northern Australian monsoon region

    NASA Astrophysics Data System (ADS)

    Wyrwoll, K.-H.; McRobie, F. H.; Notaro, M.; Chen, G.

    2013-08-01

    Here we pose the question: was there a downturn in summer monsoon precipitation over northern Australia due to Aboriginal vegetation practices over prehistoric time scales? In answering this question we consider the results from a global climate model incorporating ocean, land, ice, atmosphere and vegetation interactions, reducing the total vegetation cover over northern Australia by 20% to simulate the effects of burning. The results suggest that burning forests and woodlands in the monsoon region of Australia led to a shift in the regional climate, with a delayed monsoon onset and reduced precipitation in the months preceding the "full" monsoon. We place these results in a global context, drawing on model results from five other monsoon regions, and note that although the precipitation response is highly varied, there is a general but region specific climate response to reduced vegetation cover in all cases. Our findings lead us to conclude that large-scale vegetation modification over millennial time-scales due to indigenous burning practices, would have had significant impacts on regional climates. With this conclusion comes the need to recognise that the Anthropocene saw the impact of humans on regional-scale climates and hydrologies at much earlier times than generally recognized.

  9. Investigation of dominant modes of monsoon ISO in the northwest and eastern Himalayan region

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sandipan; Ballav, Srabanti; Soni, Sandeep; Kumar, Kireet; Kumar De, Utpal

    2016-08-01

    This study investigates the altitudinal variation of dominant modes of summer monsoon intra-seasonal oscillation (ISO) over the Northwest (NWH) and Eastern Himalayan (EH) region using (i) spatially scattered 133 number of station rainfall observations and (ii) latitudinal transect-wise (LT) rainfall variation, obtained from an observed interpolated gridded rainfall data for the period 1995-2004. The altitudinal variation of dominant modes of monsoon ISO were investigated by exploring the strong and weak phases of the principal components of 10-90 days bandpass rainfall data of June to September with respect to location specific station height. Investigation of frequency of days for light and moderate rainfall along with the occurrence of total seasonal rainy days has revealed existence of a rainfall maximum around 2100 m height for the NWH region. Similarly, the total seasonal rainy days of EH region was found to have maxima between 1100 and 1400 m height. Analyses of the spatially scattered station rainfall observation for the NWH region showed that the strong periods of ISO modes exist around 747.9 (±131.7) m and 2227.2 (±100.2) m heights. Over the EH region, the dominant modes of the monsoon ISO were found to be centred around 1200 m. Significant alterations of strong and weak phases of monsoon ISO as a response to altitudinal variation in the mountain surface were observed when latitudinal transect-wise variation of monsoon ISO modes were investigated.

  10. Understanding Dominant Tracks of Moisture for the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Jana, S.; Rajagopalan, B.; Ray, A. J.

    2014-12-01

    Summer monsoon rains contribute more than half of the total annual rainfall in the semi-arid region of Southwest United States, also providing important input to river systems like the Colorado River. The North American Monsoon region or Southwest United States experiences great climatic variability on a range of spatial and temporal scales. This region has also been experiencing significant climate and hydroclimate changes over the last few years. Understanding the interannual variability of moisture delivery in this region will help in natural resources management such as water resources, ecology, etc.. In this study, we investigate the major sources of moisture and their interannual variability during the monsoon season. To this end we selected eight locations in the region from the states of Arizona, New Mexico, Colorado and Utah to cover the monsoon region of U.S and generated backward moisture trajectories for each wet day during the monsoon season (Jun-Sep) over the historical period 1964-2013, using the HYSPLIT model developed by NOAA. The tracks show clear source preferences. Gulf of Mexico is the dominant source for south eastern part of the domain, Gulf of California is dominant for the south western domain, a combination of these for regions in between and the Pacific provides the source for northern part of the domain. Decreasing trends in the frequency of the dominant moisture source events corresponds well with the decreasing trends in the rainfall over the domain. The frequencies when correlated with large scale climate variables indicate coherent patterns in the tropical Pacific and Atlantic. Furthermore, the population means for each source during El Nino and La Nina years were found to be significantly different. Since the moisture from the dominant sources is also responsible for causing extreme rainfall in this region, these trajectories will provide potential predictability of monsoon rainfall and extremes.

  11. Applications of monsoon research: Opportunities to inform decisionmaking and reduce regional vulnerability

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Garfin, G. M.; Wilder, M.; Lenart, M.; Vásquez-León, M.; Comrie, A. C.

    2007-05-01

    This presentation will describe ongoing efforts to understand interactions between the North American Monsoon and society, in order to develop applications for monsoon research in a highly complex, multicultural and binational region. The North American Monsoon is an annual precipitation regime that begins in early June in Mexico and progresses northward to the southwestern United States. The region includes stakeholders in large urban complexes, productive agricultural areas, and sparsely populated arid and semi-arid ecosystems. The political, cultural, and socioeconomic divisions between the U.S. and Mexico create a broad range of sensitivities to climate variability as well as capacities to use forecasts and other information to cope with climate. We will highlight methodologies to link climate science with society and analyze opportunities for monsoon science to benefit society in four sectors: natural hazards management, agriculture, public health, and water management. We present a synthesized list of stakeholder needs and a calendar of decisions to help scientists link user needs to potential forecasts and products. To ensure usability of forecasts and other research products, we recommend iterative scientist-stakeholder interactions, through integrated assessments. These knowledge- exchange interactions can improve the capacity for stakeholders to use forecasts thoughtfully and inform the development of research, and for the research community to obtain feedback on climate-related products and receive insights to guide research direction. We expect that integrated assessments can capitalize on the opportunities for monsoon science to inform decisionmaking, in the best instances, reduce regional climate vulnerabilities and enhance regional sustainability

  12. Water vapor transport from the Indian monsoon region: the phenomenon of Atmospheric River

    NASA Astrophysics Data System (ADS)

    Raghav R., Sree; Mrudula, G.

    2016-05-01

    An Atmospheric/Tropospheric River (AR/TR) is a relatively narrow corridor of concentrated moisture where horizontal transport occurs in the lower atmosphere. They transport moisture from tropical regions towards the poles across the mid latitudes. Research of Atmospheric River over the Indian Monsoon region is not reported in literature. In this paper an attempt is made to examine the existence of AR in Indian Ocean and surrounding region. Meteorological parameters such as precipitable water, rainfall, air temperature and wind have been analyzed for the same. Analysis shows a clear evidence of the presence of Atmospheric River during the pre-monsoon and monsoon period. It is seen that there are variations in the origin, orientation, duration and also the formation of the river according to the vapor content in the Indian Ocean. During Elnino phase there is a pronounced transport of moisture through an Atmospheric River and also a high intensity transport occurs during monsoon period (JJA), even if moisture prevails over Indian monsoon region during other seasons also. Detailed results and extension to model forecasts will be presented in the paper.

  13. Satellite Observations of Fires, Aerosols, and Precipitation and their Relationships in Monsoon Regions

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Teng, W.; Chiu, L.; Rui, H.

    2006-05-01

    Monsoon regions are home of more than 50% of the world's population, with an annual growth rate of 2-4 percent. Understanding of regional environment is important in improving people's lives and reducing poverty. However, there are a number of issues that researchers are facing. First, there are sparse environmental data in those regions consisting mostly of developing countries. The lack of financial support makes difficult to deploy and conduct ground-based observations. Secondly, monsoon regions consist of large numbers of remote and unpopulated areas (e.g., forests), making observations difficult and expensive. In recent years, with the launches of NASA satellites (e.g., TRMM, Terra, etc.), large volumes of environmental data (e.g., fires, aerosols, and precipitation) have been collected over monsoon and other regions for research and applications. At the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC), a number of tools have been developed to facilitate data access and research. Among them, the TRMM Online Visualization and Analysis System (TOVAS, URL: http://disc2.nascom.nasa.gov/Giovanni/tovas/) and MODIS Online Visualization and Analysis System (MOVAS, URL: http://g0dup05u.ecs.nasa.gov/Giovanni/) are two user-friendly online tools allowing users to explore satellite data in both spatial and temporal dimensions and investigate their relationships. In this presentation, we will present recent results, including spatial and temporal distributions of fires, aerosols and precipitation in monsoon regions and their relationships.

  14. Regionalization of Tibetan Plateau precipitation and its relation to the Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Conroy, J. L.; Overpeck, J. T.

    2008-12-01

    Many paleoclimate records from the Tibetan Plateau link past changes in local precipitation to Southwest (SW, or Indian) and East (E) Asian Monsoon variability. However, few of these records are correlated with instrumental records of local or regional monsoon variability. And, although the majority of Tibetan precipitation occurs in the summer months, a dearth of station data limits the connection of instrumental precipitation variability across Tibet to the Asian Monsoon regimes. To properly interpret proxy climate records, a quantitative understanding of Asian Monsoon influences on the Tibetan Plateau is required. With this goal in mind, we investigated precipitation variability across the Tibetan Plateau using monthly gridded merged precipitation (CMAP) and outgoing longwave radiation (OLR) datasets to quantify the relationship between summer precipitation on the Tibetan Plateau and the SW and E Asian Monsoons. Average summer OLR and precipitation are significantly correlated at the 95% confidence level between southwest, northwest, southeast Tibet and the central Himalayas, but average summer OLR and precipitation in northeast Tibet is only significantly correlated with OLR and precipitation in southeastern Tibet. OLR over the central Himalayas, southwest Tibet, and northwest Tibet correlates at the 95% confidence level with the Indian Monsoon Index, and precipitation in the central Himalayas correlates at the 95% confidence level with the Webster-Yang Index of SW Monsoon variability. OLR and precipitation over the central Himalayas, southwest Tibet, and northwest Tibet also significantly correlate with OLR and precipitation over India, as well as surface wind speed, 850 mb zonal, and 850 mb meridional wind speeds over the southwest Arabian Sea. These significant correlations indicate precipitation variability over western Tibet and the central Himalayas is related to SW Asian Monsoon variability. Correlations between southeastern and northeastern Tibet OLR

  15. Seasonal Evolution and Variability Associated with the West African Monsoon System

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2003-01-01

    In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident

  16. Biomass Studies in Monsoon Regions Under the Coordinated Enhanced Observing Period (CEOP)

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2003-01-01

    CEOP is an international program sponsored by the World Climate Research Project (WCRP) aiming at an integrated approach towards better understanding and prediction of the global water cycle. I will discuss the scientific rationale and approach that underpin the program, especially with regard to the important implications on variability of climate and rainfall in monsoon regions around the world.

  17. Spatio-temporal variations in surface characteristics over the North American Monsoon region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper we summarize the surface characteristics for six locations in western Mexico and southwestern USA (from a subhumid climate in Jalisco, Mexico to the Sonoran Desert climate in Arizona, USA),that lie along a meridional transect within the North American Monsoon (NAM) core region using av...

  18. Effects of large scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    NASA Astrophysics Data System (ADS)

    Bala, G.; N, D.; Modak, A.

    2015-12-01

    In this study, we investigate the bio-geophysical effects of large-scale deforestation on monsoon regions using idealized deforestation simulations. The simulations are performed using the NCAR CAM5 atmospheric model coupled to a mixed layer ocean model. The four deforestation experiments are named Global, Boreal, Temperate and Tropical, respectively. In these deforestation experiments, trees are replaced by grasses around the globe, between 20oS and 20oN, between 20oN and 50oN and poleward of 50oN, respectively. We find that the remote forcing from large-scale deforestation in the Temperate and Boreal cases shift the Inter-tropical Convergence Zone (ITCZ) southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America and Australia). The magnitude of the monsoonal precipitation changes depend on the location of deforestation with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most with 18% decline in precipitation over India in the Global deforestation case. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation besides the large local impacts on temperatures and carbon sequestration benefits. Our results also demonstrate the linkages between any large scale forcing that causes large warming/cooling in the high latitudes and rainfall changes in tropical monsoonal regions via ITCZ shifts. Figure Caption: Changes in annual mean precipitation (mm/day) between the deforestation experiments and the control simulation. Hatched areas are regions where changes are statistically significant at the 95% confidence level. Shading in line plots represents the ±1 standard

  19. Changing Hydrological Cycle in Asian Monsoon Region in Relation to Water Resources

    NASA Astrophysics Data System (ADS)

    Kabat, P.

    2006-12-01

    Water is a key resource for sustainable development in the Monsoon Asian Region. Frequent occurrence of flood disasters related to increasing Asian monsoon climate variability, progressing land degradation associated with anomalous monsoon dry climate and land overexploitation, increasing water use due to rapid social/economic development, and water pollution under the development of industrialization, urbanization and intensive agriculture, all pose fundamental questions about mid- and long term future carrying capacity of water systems in this key-region of the globe. We review some of the most recent data and methodological insights about how the hydrological cycle and hydroclimate in monsoon Asia is changing or has already changed in association with the global warming (GHG increase). Next,we analyze how regional-scale anthropogenic impacts such land cover/use changes, forest fire, dust increase, affect the hydrological cycle and water resources in the monsoon Asia and Northern China. The issues addressed in the presentation include: (i)the current regional hydrological cycle, especially causal chains leading to observable changes in droughts and floods;(ii)how the water cycle and the extremes may respond to future drivers of global change;(iii) feedbacks in the coupled system as they affect the hydrological cycle; (iv)the uncertainties in the predictions of coupled climate-hydrological- land use models and (v)the future vulnerability of water as a resource. We argue for a substantial increase of international collaborative research efforts into integrated impact assessment of climate change and human activity on water systems in this region.

  20. The ICTP Regional System Model (RESM) to simulate the monsoon in the South Asia CORDEX domain

    NASA Astrophysics Data System (ADS)

    Di Sante, Fabio; Coppola, Erika; Farneti, Riccardo; Giorgi, Filippo

    2016-04-01

    South Asian climate is characterized mainly by the wet and dry dipole that divides the annual cycle in two seasons: the monsoon season and the dry season. The life and the economy of those regions is very much influenced by the climate variability and the monsoon variability therefore is crucial to understand the physical mechanism associated with them. The spatial and temporal representation of the monsoons over the South Asian region is one of the main challenge of global and regional climate models principally because they fail to represent the SST (sea surface temperature) induced rainfall when forced with observed SST resulting in a poor representation of the monsoon cycle (Fu et al. 2002). The coupling with the ocean is essential to be able to simulate the correct air-sea interaction; the results are in general much improved and the monsoon patterns and the time representation (like the onset for example) are closer to the observations (Fu et al. 2002; Fu et al. 2007; Ratnam et Al. 2008; Seo et Al. 2009). Here we present a Regional Earth System Model (RESM) composed by a regional climate model RegCM4 (Giorgi et al, 2012) coupled with the regional oceanic model MITgcm (Marshall et al, 1997) and two hydrological model: ChyM (Cetemps Hydrological Model, Coppola et al, 2007) and HD model (Max-Planck's HD model; Hagemann and Dümenil, 1998). We simulate the Southern Asian Climate taking into account the whole hydrological cycle. Wind stress, water fluxes and heat fluxes are exchanged from the atmosphere to the ocean, SST are exchanged from ocean to the atmosphere and in order to conserve mass, the river discharge is calculated from the Hydrological model and sent to the ocean. The main goal of this work is to evaluate the impacts of local air-sea interaction in the simulation of the interannual variability, over the Indian CORDEX (Giorgi et al, 2009) domain through regionally ocean-atmosphere-river coupled and uncoupled simulations, with a focus on monsoon season

  1. Understanding the regional anthropogenic signature in weakening of the south Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    TP, S.

    2014-12-01

    The evidence from observation shows that South Asia underwent a widespread drying from the last five to six decades during the summer. The underlying reasons are unclear, whether this trend is due to natural or anthropogenic activities. Using a state-of-the-art global variable resolution climate model with high-resolution zooming over South-Asia, we decomposed the regional factors responsible for the weakening of monsoon circulation and rainfall. To address this issue we conducted several long simulations from 1886 to 2095, with and without anthropogenic forcing. The simulation provides key information about the regional responses to changes in south Asian summer monsoon, which leads to the decline in mean monsoon, and enhancement in the occurrence of localized extreme precipitation events in a warming climate. Further the 21st century climate projection using the same high-resolution model indicates persistent decrease of monsoonal rains due to land-atmosphere feedbacks in a warming environment. This would have severe impacts on agriculture, water resources and ecosystem over South Asia.

  2. Development of an International Research Project of Monsoon Asia Integrated Regional Study (MAIRS)

    NASA Astrophysics Data System (ADS)

    Fu, C.

    2006-05-01

    Monson Asia has been recommended as one of the critical regions of integrated study of global change. Among a number of reasons, the most significant features of Monsoon Asia is that this is a region where the major features of landscape, such as vegetation, soil and water system are mainly developed under the most representative monsoon climate. On the other hand, the Monsoon Asia is a region with the most active human development. It has more than 5000 years long history of civilization and highest population density of the world, reaching 57 percent of word population. It also had the most rapid development in last decades and is projected to maintain its high growth rates in the foreseeable future. The human-monsoon system interactions and their linkages with the earth system dynamics could be a challenge issue of global change research and a sustainable Asia . A science plan of MAIRS is under drafting by SSC of MAIRS under the guidance of START and an international project office of MAIRS was formally opened in IAP/Chinese Academy of Sciences under the support of Chinese government. The overall objectives of the MAIRS that will combine field experiments, process studies, and modeling components are: 1) To better understand how human activities in regions are interacting with and altering natural regional variability of the atmospheric, terrestrial, and marine components of the environment; 2) To contribute to the provision of a sound scientific basis for sustainable regional development; 3) To develop a predictive capability of estimating changes in global-regional linkages in the Earth System and to recognize on a sound scientific basis the future consequences of such changes.

  3. Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Castro, C. L.

    2009-12-01

    The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the

  4. How to better link regional monsoon circulation to local hydroclimate for interpreting tree-ring chronologies in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.

    2013-12-01

    The Asian summer monsoon, consisting of 3 major subsystems, is characterized by a distinct seasonal precipitation onset that affects the regions of India, the Indochina peninsula, and East Asia. Current monsoon indices for Southeast Asia and the Indian subcontinent capture the large-scale circulation patterns and, in turn, the hydro-climate of the specified area affected by the Asian Monsoon System. However, their skill in representing regional circulation features and links to the local hydro-climate are less understood. Here, we assessed the variability within the Dynamical Indian Monsoon Index, the East Asian Western North Pacific Index, and the South Asian Monsoon Index and their links to regional climate features over Southeast Asia, from inter-annual to decadal timescales, using various observations and reanalysis products at monthly resolution and an extended 1300-yr pre-industrial control run with the Community Earth System Model (CESM). The monsoon indices in the model compared well with those in the reanalysis, with similar statistical properties. Furthermore, composites of precipitation, sea surface temperatures (SST), wind fields and moisture advection during years with an extreme monsoon index (i.e. top and bottom 10%) were explored for the three monsoon indices in the reanalyses and model, respectively. Composites demonstrate large-scale changes in Indo-Pacific SST, circulation, and moisture advection across Southeast Asia, consistent with effects on seasonal precipitation within the region as well as distinct Indian Ocean Dipole (IOD) and El Nino-Southern Oscillation (ENSO) signals. Anomalies in the monsoon indices are also linked to drought occurrence across the region, using the Monsoon Asia Drought Atlas (MADA), a network of hydroclimatically sensitive tree-ring chronologies. Our analysis further investigates the paleo-climate of Southeast Asia through the CESM run to identify periods of anomalous Indo-Pacific SST and their effects on circulation

  5. Effects of cloud types on cloud-radiation interaction over the Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Shukla, Bipasha Paul; Sathiyamoorthy, V.; Pal, P. K.; Joshi, P. C.

    2009-08-01

    This paper quantifies the sensitivity of radiation budget quantities to different cloud types over the Asian monsoon region using the International Satellite Cloud Climatology Project. Multiple regression was used to estimate the radiative effects of individual cloud type. It was observed that the regression performed better when the solution was constrained with clear sky fluxes, which is evident by an improvement in R 2 statistics. The sensitivity coefficients calculated for the Asian monsoon region reveal that, while the LWCRCF and SWCRF will be most vulnerable to changes in cloud cover of deep convective clouds, NETCRF will be susceptible to changes in the nimbostratus clouds. Although the cloud radiative forcing of individual cloud types are found to be similar in sign to previous global findings, their magnitudes are found to vary. It is seen that cirrus clouds play an important role in governing the radiative behavior of this region.

  6. Fingerprinting the Impacts of Aerosols on Long-Term Trends of the Indian Summer Monsoon Regional Rainfall

    NASA Technical Reports Server (NTRS)

    Laul, K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present corroborative observational evidences from satellites, in-situ observations, and re-analysis data showing possible impacts of absorbing aerosols (black carbon and dust) on subseasonal and regional summer monsoon rainfall over India. We find that increased absorbing aerosols in the Indo-Gangetic Plain in recent decades may have lead to long-term warming of the upper troposphere over northern India and the Tibetan Plateau, enhanced rainfall in northern India and the Himalayas foothill regions in the early part (may-June) of the monsoon season, followed by diminished rainfall over central and southern India in the latter part (July-August) of the monsoon season. These signals which are consistent with current theories of atmospheric heating and solar dimming by aerosol and induced cloudiness in modulating the Indian monsoon, would have been masked by conventional method of using al-India rainfall averaged over the entire monsoon season.

  7. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Pelon, J.; Formenti, P.; Bharmal, N.; Brooks, M.; Capes, G.; Chazette, P.; Chou, C.; Christopher, S.; Coe, H.; Cuesta, J.; Derimian, Y.; Desboeufs, K.; Greed, G.; Harrison, M.; Heese, B.; Highwood, E. J.; Johnson, B.; Mallet, M.; Marticorena, B.; Marsham, J.; Milton, S.; Myhre, G.; Osborne, S. R.; Parker, D. J.; Rajot, J.-L.; Schulz, M.; Slingo, A.; Tanré, D.; Tulet, P.

    2008-12-01

    The African Monsoon Multidisciplinary Analysis (AMMA) is a major international campaign investigating far-reaching aspects of the African monsoon, climate and the hydrological cycle. A special observing period was established for the dry season (SOP0) with a focus on aerosol and radiation measurements. SOP0 took place during January and February 2006 and involved several ground-based measurement sites across west Africa. These were augmented by aircraft measurements made by the Facility for Airborne Atmospheric Measurements (FAAM) aircraft during the Dust and Biomass-burning Experiment (DABEX), measurements from an ultralight aircraft, and dedicated modeling efforts. We provide an overview of these measurement and modeling studies together with an analysis of the meteorological conditions that determined the aerosol transport and link the results together to provide a balanced synthesis. The biomass burning aerosol was significantly more absorbing than that measured in other areas and, unlike industrial areas, the ratio of excess carbon monoxide to organic carbon was invariant, which may be owing to interaction between the organic carbon and mineral dust aerosol. The mineral dust aerosol in situ filter measurements close to Niamey reveals very little absorption, while other measurements and remote sensing inversions suggest significantly more absorption. The influence of both mineral dust and biomass burning aerosol on the radiation budget is significant throughout the period, implying that meteorological models should include their radiative effects for accurate weather forecasts and climate simulations. Generally, the operational meteorological models that simulate the production and transport of mineral dust show skill at lead times of 5 days or more. Climate models that need to accurately simulate the vertical profiles of both anthropogenic and natural aerosols to accurately represent the direct and indirect effects of aerosols appear to do a reasonable job

  8. African monsoon variations and persistence of the Megalake Chad during the late Pliocene

    NASA Astrophysics Data System (ADS)

    Contoux, Camille; Ramstein, Gilles; Jost, Anne; Sepulchre, Pierre; Schuster, Mathieu; Braconnot, Pascale

    2013-04-01

    Megalake Chad (MLC) occurrences are widely documented for the mid-Holocene period but also for the Mio-Pliocene (Schuster et al., 2009). From 7 to 3 Ma, analysis of sedimentary deposits of the Djurab desert region show desertic to full-lacustrine facies, suggesting an alternance of dry to wet climates (Schuster, 2002, Schuster et al., 2009), lacustrine conditions being associated to fauna dispersal and early hominid presence (e.g. Brunet et al., 1995, 2002). Some studies (e.g. Braconnot and Marti, 2003) suggest a control of precession on monsoon. Using late Pliocene climate simulations and different orbital configurations, can we constrain variations of the Megalake and reach the water volume of 350 000 km² proposed by several authors (Ghienne et al., 2002; Leblanc et al., 2006)? Can we propose a timing for the MLC occurrences? First, in order to better characterize the precession role on Megalake Chad occurrences during the late Pliocene, we use the IPSLCM5A coupled ocean atmosphere climate model forced with four different orbital configurations and mid-Pliocene boundary conditions. The four orbital configurations, all around 3 Ma, correspond to maximum and minimum insolations at 30°N at summer solstice or autumn equinox. We find important increases of precipitation in North Africa, controlled by insolation maxima at 30°N at summer solstice and autumn equinox, i.e. related to an angular precession between 270° and 10°. When used to force a surface routing model (HYDRA, Coe, 2000), these precipitation increases lead to MLC episodes, suggesting the MLC could be sustained during at least 5 kyr of a precession cycle. However, this method does not account for the lake feedback on climate. Indeed, during wet phases, the MLC becomes an important evaporation source, modifying the climate of the Chad basin. To investigate this aspect, we use the LMDZ4 atmospheric model including an open water surface module (Krinner, 2003). We find that deep convection is suppressed

  9. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  10. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  11. Transient simulation of oxygen stable isotopes over the Asian monsoon region with the iLOVECLIM model

    NASA Astrophysics Data System (ADS)

    Caley, Thibaut; Roche, Didier; Renssen, Hans

    2015-04-01

    The Asian summer monsoon affects the economical prosperity of vast, heavily populated regions (almost two-third of humanity). Asian summer monsoon dynamics at the orbital scale is a subject of considerable debate. Central in this debate is the interpretation of the Asian speleothem d18O record as a valid proxy for summer monsoon intensity. In this study, we present a transient simulation of the last 150,000 years, performed with a numerical isotope-enabled fully coupled atmosphere-ocean-vegetation model (iLOVECLIM). This enables us to assess the nature of the d18O signal in South Asian speleothems. We discuss the validity of Asian speleothem d18O records as a proxy for summer monsoon intensity and the ultimate forcings of Asian monsoon precipitations at orbital scale.

  12. Biologically-Effective Rainfall Pulses in Mediterranean and Monsoonal Regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semiarid regions rainfall pulses provide intermittent opportunities for biological activity. These pulses have been shown to affect the activity of microbes and plant differently, altering the net ecosystem exchange of carbon dioxide (NEE) from these ecosystems. We examine NEE and its components ...

  13. Effect of Gravity Waves Generated in the Monsoon Region on Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Thurairajah, B.; Bailey, S. M.; Carstens, J. N.; Siskind, D. E.

    2015-12-01

    Gravity Waves (GWs) play an important role in both the formation and destruction of polar mesospheric clouds. In summer, while vertically propagating GWs induce a residual circulation that cools the summer mesosphere and therefore supports the formation of PMCs, observation and modeling studies have also shown that short period GWs can additionally destroy PMCs. In this study we analyze the effect of non-vertical propagation of GWs on PMCs using temperature data from the SABER instrument on TIMED satellite and PMC occurrence frequency from the CIPS instrument on the AIM satellite. During the 2007 PMC season, time series of GWs over the monsoon region at 50 km and PMCs over the polar region at 84 km have a correlation coefficient of 0.9. SABER GW amplitude and momentum flux over the monsoon region show a poleward tilt with altitude. This slanted structure suggests a poleward, but non-vertical, propagation of GWs facilitated by the easterly winds associated with the monsoon circulation, thus indicating a possible source of high latitude middle atmospheric GWs.

  14. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Fu, Rong; Wang, Tao; Liu, Yimin

    2016-06-01

    The Asian monsoon region is the most prominent moisture center of water vapor in the lower stratosphere (LS) during boreal summer. Previous studies have suggested that the transport of water vapor to the Asian monsoon LS is controlled by dehydration temperatures and convection mainly over the Bay of Bengal and Southeast Asia. However, there is a clear geographic variation of convection associated with the seasonal and intra-seasonal variations of the Asian monsoon circulation, and the relative influence of such a geographic variation of convection vs. the variation of local dehydration temperatures on water vapor transport is still not clear. Using satellite observations from the Aura Microwave Limb Sounder (MLS) and a domain-filling forward trajectory model, we show that almost half of the seasonal water vapor increase in the Asian monsoon LS are attributable to geographic variations of convection and resultant variations of the dehydration center, of which the influence is comparable to the influence of the local dehydration temperature increase. In particular, dehydration temperatures are coldest over the southeast and warmest over the northwest Asian monsoon region. Although the convective center is located over Southeast Asia, an anomalous increase of convection over the northwest Asia monsoon region increases local diabatic heating in the tropopause layer and air masses entering the LS are dehydrated at relatively warmer temperatures. Due to warmer dehydration temperatures, anomalously moist air enters the LS and moves eastward along the northern flank of the monsoon anticyclonic flow, leading to wet anomalies in the LS over the Asian monsoon region. Likewise, when convection increases over the Southeast Asia monsoon region, dry anomalies appear in the LS. On a seasonal scale, this feature is associated with the monsoon circulation, convection and diabatic heating marching towards the northwest Asia monsoon region from June to August. The march of convection

  15. Do dynamic regional models add value to the global model projections of Indian monsoon?

    NASA Astrophysics Data System (ADS)

    Singh, Swati; Ghosh, Subimal; Sahana, A. S.; Vittal, H.; Karmakar, Subhankar

    2016-04-01

    Dynamic Regional Climate Models (RCMs) work at fine resolution for a limited region and hence they are presumed to simulate regional climate better than General Circulation Models (GCMs). Simulations by RCMs are used for impacts assessment, often without any evaluation. There is a growing debate on the added value made by the regional models to the projections of GCMs specifically for the regions like, United States and Europe. Evaluation of RCMs for Indian Summer Monsoon Rainfall (ISMR) has been overlooked in literature, though there are few disjoint studies on Indian monsoon extremes and biases. Here we present a comprehensive study on the evaluations of RCMs for the ISMR with all its important characteristics such as northward and eastward propagation, onset, seasonal rainfall patterns, intra-seasonal oscillations, spatial variability and patterns of extremes. We evaluate nine regional simulations from Coordinated Regional Climate Downscaling Experiment and compare them with their host Coupled Model Intercomparison Project-5 GCM projections. We do not find any consistent improvement in the RCM simulations with respect to their host GCMs for any of the characteristics of Indian monsoon except the spatial variation. We also find that the simulations of the ISMR characteristics by a good number of RCMs, are worse than those of their host GCMs. No consistent added value is observed in the RCM simulations of changes in ISMR characteristics over recent periods, compared to past; though there are few exceptions. These results highlight the need for proper evaluation before utilizing regional models for impacts assessment and subsequent policy making for sustainable climate change adaptation.

  16. Study of intraseasonal variability of Indian summer monsoon using a regional climate model

    NASA Astrophysics Data System (ADS)

    Maharana, P.; Dimri, A. P.

    2016-02-01

    The Indian summer monsoon season is very heterogeneous over Indian land mass from precipitation point of view. The intraseasonal variability of the rainfall during summer is marked by the active and break spells of the rainfall. The regional climate model version 4.0 (RegCM4.0) forced with European centre of medium range weather forecast interim reanalysis (ERA-Int) is used to examine the intraseasonal variability and meteorological processes associated with it. The model rightly represents the climatology of different fields such as the surface temperature, sea level pressure, lower level wind and the precipitation for monsoon season. The model captures the different active and break spells and the results are in agreement with the observed value and previous studies. The major features of the active/break periods, such as the positive/negative rainfall anomaly over the monsoon core region (MCR) and negative/positive rainfall anomaly over the foothills of Himalayas and southern part of India is nicely represented in the model. The model rightly reproduces the evolution of the active and break phase and also the revival from the break period by the northward propagation of active rainfall anomaly. The heat trough type of circulation is analysed in detail along with the atmospheric condition during active and break spell over the MCR. The atmospheric condition over MCR resembles the heat trough type circulation during break spells. The moisture availability, moisture-precipitation relation and their transition during active and break period over the MCR is established.

  17. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    PubMed Central

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  18. Classification of typical summer rainfall patterns in the East China monsoon region and their association with the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Zhao, Junhu; Feng, Guolin

    2016-06-01

    In this study, the summer rainfall patterns in the East China monsoon region during 1951-2015 were objectively classified into four typical categories: the northern China rainfall pattern (NCP), the intermediate rainfall pattern (IRP), the Yangtze River rainfall pattern (YRP), and the South China rainfall pattern (SCP). The periods of the four patterns show significant decadal characteristics. The NCP occurred mainly between the late 1950s and the early 1980s, and the IRP in the late 1950s to the early 1970s and the 2000s. The YRP occurred mainly between the 1980s and the 1990s, and the SCP between the mid-1990s and the early 21st century. The relationship between the East Asian summer monsoon index (EASM I WF) and the four rainfall patterns was comparatively analyzed. The results confirmed that the four rainfall patterns have obvious differences in the EASM. In the NCP, IRP, or SCP years, the EASM I WF primarily showed a positive phase and a strong summer monsoon; in the YRP years, the EASM I WF primarily showed a negative phase and a weak summer monsoon.

  19. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia

    NASA Astrophysics Data System (ADS)

    Yang, Bao; Kang, Shuyuan; Ljungqvist, Fredrik Charpentier; He, Minhui; Zhao, Yan; Qin, Chun

    2014-08-01

    The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625-1644 and 1975-1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975-1999 drought. Possible causes of the drought of 1625-1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea

  20. Simulation of West African monsoon circulation in four atmospheric general circulation models forced by prescribed sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Philippon, Nathalie; Fontaine, Bernard

    2004-12-01

    The mean evolution of the West African monsoon (WAM) circulation and its interannual variability have been studied using an ensemble of 21 simulations (common period 1961-1994) performed with four different atmospheric general circulation models (AGCMs) (European Center/Hamburg (ECHAM) 3, ECHAM 4, Action de Recherche Petite Echelle Grande Echelle (ARPEGE), and Goddard Institute for Space Studies (GISS)) and forced by the same observed sea surface temperature (SST) data set. The results have been compared with European Centre for Medium-Range Weather Forecasts reanalyses (ERA-40). The climatological means of WAM winds for the AGCMs are similar to the ERA-40 ones. However, the AGCMs tend to underestimate the southern wind component at low levels around 10°N compared to the ERA-40. The simulated Tropical Easterly Jet (TEJ) is usually shifted northward and also too weak for ECHAM 3 and ECHAM 4 compared to ERA-40. The interannual variability of an atmospheric WAM index (WAMI) is quite successfully reproduced (the correlations between the mean ensemble of each AGCM and ERA-40 time series over 1961-1994 range between 0.51 and 0.64). In particular, the four AGCMs reproduce quite well the mean teleconnection structure with El Niño-Southern Oscillation, i.e., a strong (weak) monsoon during La Niña (El Niño) events, even if the largest absolute correlations between WAMI and SST in the eastern and central equatorial Pacific are weaker than in ERA-40. On a yearly basis, WAMI is more predictable and skillful during the cold ENSO years than during the warm ENSO ones. The unskillful warm ENSO events are associated with a significant cooling over the equatorial Atlantic and Western Pacific Ocean and a significant warming in the tropical Indian Ocean.

  1. Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years

    NASA Astrophysics Data System (ADS)

    Li, Shu; Wang, Tijian; Solmon, Fabien; Zhuang, Bingliang; Wu, Hao; Xie, Min; Han, Yong; Wang, Xuemei

    2016-04-01

    In this work, we mainly simulate the effects of aerosols on regional climate in southern China (SC) and northern China (NC) and compare the differences of aerosol climatic effects in strong/weak summer monsoon years with a modified regional climate model RegCM4. The results show that the total climatic effects of aerosols cause the decline of averaged air temperature and precipitation of SC and NC in summer. In NC, the strength of temperature drop in strong summer monsoon years is higher than that in weak summer monsoon years, indicating the possible impact from the different changes of radiation, circulation, and precipitation. The decrease of precipitation is more significant in NC in weak summer monsoon years, while it is stronger in SC in strong summer monsoon years due to the difference of aerosol distribution as well as the effects on circulation and cloud microphysics processes. Besides, aerosol effects also cause a decrease of zonal wind at 850 hPa in SC and an increase in NC. The cooling center is more northerly and stronger in strong monsoon year, while it is more southerly and weaker in weak summer monsoon years, which results in the differences of vertical circulation anomaly and meridional wind anomaly at 850 hPa. In weak summer monsoon years, meridional wind at 850 hPa is increased in NC, while it is found to be decreased in SC. In strong summer monsoon years, meridional winds at 850 hPa in both NC and SC are weakened. However, the decrease in SC is much more distinct and clear.

  2. Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over northeast Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Choi, Suk-Jin; Choi, In-Jin

    2010-08-01

    We investigated the regional-scale relationships between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the regional-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anticyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies in July over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115°E and 30-35°N and by 120-140°E and 35-40°N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  3. Assessment of the Indian summer monsoon in the WRF regional climate model

    NASA Astrophysics Data System (ADS)

    Raju, Attada; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2014-08-01

    The performance of the regional climate model, Weather Research and Forecasting in simulating the three dimensional moist and thermodynamic structure of Indian summer monsoon (ISM) during 2001-2011 is examined in this study. The model could simulate monsoon elements and convective precipitation zones over ISM region with some overestimation. Statistical analysis of sub-regional precipitation indicates that model has better skill over the monsoon core region with correlation of 0.7 and root mean square error of 2.3 mm day-1 with respect to observations. The model simulated seasonal mean vertical structures of temperature and water vapour mixing ratio (WVMR) are consistent with the Atmospheric Infrared Sounder observations. However, the core of low level jet is shifted southward in the model due to unrealistic convective heating over the lower latitudes of Indian Ocean and southern peninsular India. The tropical easterly jet is confined to 15°N in the model, which is due to the midtropospheric cold bias over the Tibetan region. The meridional asymmetric bias of sea level pressure (SLP) in model leads to weaker vertical wind shear, limiting the northward migration of maximum rain band to south of 23°N. These discrepancies have marked effects on the proper simulation of monsoon climate. The large scale spatial patterns of SLP, precipitation and winds during active and break spells are well simulated by the model. The lead-lag evolution of vertical structure of model temperature shows baroclinic structure during the active phase. It is evident from the observations that enhanced (suppressed) convection is generally preceded by a low-level moist (dry) anomaly and followed by a low-level dry (moist) anomaly. The model is inadequately representing the temporal evolution of vertical moist and thermodynamic processes. The evolution of vertical structures of temperature and WVMR is better simulated in the break phase compared to that of active phase. The evolution of

  4. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  5. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: assessment of Asian summer monsoon simulation

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun

    2016-02-01

    In this study, a developed regional ocean-atmosphere coupled model FROALS was applied to the CORDEX East Asia domain. The performance of FROALS in the simulation of Asian summer monsoon during 1989-2010 was assessed using the metrics developed by the CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team. The results indicated that FROALS exhibited good performance in simulating Asian summer monsoon climatology. The simulated JJA mean SST biases were weaker than those of the CMIP5 multi-model ensemble mean (MMEM). The skill of FROALS approached that of CMIP5 MMEM in terms of the annual cycle of Asian summer monsoon. The simulated monsoon duration matched the observed counterpart well (with a spatial pattern correlation coefficient of 0.59). Some biases of CMIP5 MMEM were also found in FROALS, highlighting the importance of local forcing and model physics within the Asian monsoon domain. Corresponding to a strong East Asian summer monsoon, an anomalous anticyclone was found over western North Pacific in both observation and simulation. However, the simulated strength was weaker than the observed due to the responses to incorrect sea surface anomalies over the key regions. The model also accurately captured the spatial pattern of the intraseasonal variability variance and the extreme climate indices of Asian summer monsoons, although with larger amplitude. The results suggest that FROALS could be used as a dynamical downscaling tool nested within the global climate model with coarse resolution to develop high-resolution regional climate change projections over the CORDEX East Asia domain.

  6. Accuracy of TRMM precipitation data in the southwest monsoon region of China

    NASA Astrophysics Data System (ADS)

    Guofeng, Zhu; Dahe, Qin; Yuanfeng, Liu; Fenli, Chen; Pengfei, Hu; Dongdong, Chen; Kai, Wang

    2016-04-01

    Accurate, high-resolution precipitation data is important for hydrological applications and water resource management, particularly within mountainous areas about which data is presently scarce. The goal of the this study was to assess the accuracy of TRMM 3B43 precipitation data from the southwest monsoon region of China between 1998 and 2011 based on the correlation coefficients, regression, and geostatistical methods. We found a strong correlation between TRMM 3B43 data and observational data obtained from meteorological stations, but the TRMM 3B43 precipitation data was consistently lower than that obtained from the weather stations. The TRMM 3B43 data was significantly different from the data obtained by weather stations located in the northwest and northeast regions of the Hengduan Mountains. The spatial distribution of precipitation obtained from TRMM 3B43 was also different from meteorological data, but the deviation was predominantly distributed along the northern longitude and southern latitude. In addition, the TRMM data more accurately reflected the regional precipitation patterns. Our results indicate that the TRMM 3B43 data should be used for hydrological applications and water resource management at meteorological stations that have a sparse and uneven distribution of observation stations in the southwest monsoon region.

  7. A new regional, mid-Holocene palaeoprecipitation signal of the Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Strong, D.; Flecker, R.; Valdes, P. J.; Wilkinson, I. P.; Rees, J. G.; Michaelides, K.; Zong, Y. Q.; Lloyd, J. M.; Yu, F. L.; Pancost, R. D.

    2013-10-01

    The Dongge Cave speleothem δ18O record, which lies in the Pearl River basin (China), has been interpreted as recording a regional decline in Asian Summer Monsoon precipitation over the last 6.5 ka. The same overall trend is seen in the bulk sedimentary organic δ13Corg record from a core in the Pearl River Estuary. However, the two records differ in detail and the regional nature of the Dongge palaeoprecipitation signal has therefore been questioned. Our study re-evaluates both records by constructing, for the same estuarine core, biomarker and compound-specific δ13C records, which have better constrained terrestrial and marine end members than δ13Corg, providing additional insights into the evolution of the Asian Summer Monsoon. The Branched Isoprenoidal Tetraether (BIT) index reflects the ratio of soil versus marine organic matter. The BIT record from the estuarine core co-varies with the Dongge Cave δ18O record suggesting the two share a common control which is likely to be driven by regional climate. By contrast, the sterols, n-alcohols and n-fatty acid ratios show the same overall trend as Dongge, but parallel the δ13Corg record's variability between 6.5 and 2 ka indicating a partial decoupling between soil and land-plant organic matter fluxes in the Pearl River Basin. There is clear divergence between the biomarker and 13Corg records from 2 ka to present. Analysis of the leaf wax δ13C suggests that this results from an abrupt change in vegetation probably resulting from local, anthropogenic cultivation two thousand years ago. The basin scale of these estuarine records equates to up to 15 grid cells in typical Earth System Models used for simulating global climate. This permits comparison of Palaeoclimate Model Intercomparison Project simulations of the mid-Holocene with spatially equivalent data relating to the Summer Asian Monsoon, for the first time.

  8. Response of the North American monsoon to regional changes in ocean surface temperature

    USGS Publications Warehouse

    Barron, John A.; Metcalfe, Sarah E.; Addison, Jason A.

    2012-01-01

    The North American monsoon (NAM), an onshore wind shift occurring between July and September, has evolved in character during the Holocene largely due to changes in Northern Hemisphere insolation. Published paleoproxy and modeling studies suggest that prior to ∼8000 cal years BP, the NAM affected a broader region than today, extending westward into the Mojave Desert of California. Holocene proxy SST records from the Gulf of California (GoC) and the adjacent Pacific provide constraints for this changing NAM climatology. Prior to ∼8000 cal years BP, lower GoC SSTs would not have fueled northward surges of tropical moisture up the GoC, which presently contribute most of the monsoon precipitation to the western NAM region. During the early Holocene, the North Pacific High was further north and SSTs in the California Current off Baja California were warmer, allowing monsoonal moisture flow from the subtropical Pacific to take a more direct, northwesterly trajectory into an expanded area of the southwestern U.S. west of 114°W. A new upwelling record off southwest Baja California reveals that enhanced upwelling in the California Current beginning at ∼7500 cal year BP may have triggered a change in NAM climatology, focusing the geographic expression of NAM in the southwest USA into its modern core region east of ∼114°W, in Arizona and New Mexico. Holocene proxy precipitation records from the southwestern U.S. and northwestern Mexico, including lakes, vegetation/pollen, and caves are reviewed and found to be largely supportive of this hypothesis of changing Holocene NAM climatology.

  9. Moisture characteristics over Indian region during Summer Monsoon using RegCM3

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Rajanayagam, Lorna; Mohanakumar, Kesavapillai

    In this study, the spatial characteristics of the total Precipitable Water during monsoon season over Indian region, based on the sensitivity experiments performed by a regional climate model for an anomalously dry year. The present study uses a recent version (Version-III) of National Center for Atmospheric Research (NCAR) Regional Climate Model (RegCM3). RegCM3 has been integrated at 60 km horizontal resolution over the Indian domain. The planetary boundary layer scheme used is that of Holtslag, cumulus parameterization scheme Emanuel of MIT, SUBEX large scale precipitation scheme and BATS ocean flux parameterization scheme. The model is run from 1st May to 30th September. The first month is taken for the spin up. The next four months are taken to study the monsoon. The experiments are carried out by increasing the initial conditions of Sea Surface Temperature by steps of 0.1 degree ranging up to 1degree. The change in the Total Precipitable water and their spatial distribution are studied. The zonal and meridional moisture transports are also analysed. The features simulated by RegCM3 are compared with those of the NCEP/NCAR reanalysis. Key words:- Peninsular India, model integration, Monsoon Rainfall Reference: K. C. chow, Yiming Liu, Johnny C. L. Chan and Yihui Ding, Int. J. Climatol. 26: 1339-1359 (2006) K. C. Chow, Hang-Wai Tong and Johnny C. L. Chan, Clim. Dyn. DOI 10.1007/s00382-007- 0301-6 G. P. Singh, Jai-Ho Oh, Jin-Young Kim and Ok-Yeon Kim; ", SOLA, Vol. 2, pp.29-32 (2006) Dash S. K., Shekhar M. S., Singh G. P. Theoretical and Applied Climatology 86(1-4): 161 (2006)

  10. Effects of warm Arabian Sea Surface Temperature on the Summer Monsoon over Peninsular Indian Region

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Mohanakumar, Kesavapillai; Rajanayagam, Lorna

    This study investigates the characteristics of circulation and precipitation during monsoon season over peninsular Indian region, based on the sensitivity experiments performed by a regional climate model for the year 2002. The present study uses a recent version (Version-III) of National Center for Atmospheric Research (NCAR) Regional Climate Model (RegCM3). The planetary boundary layer scheme used is that of Holtslag, cumulus parameterization scheme Emanuel of MIT, SUBEX large scale precipitation scheme and BATS ocean flux parameterization scheme. The model is run from 1st May to 30th September. The first month is taken for the spin up. The next four months are taken to study the monsoon. RegCM3 has been integrated at 60 km horizontal resolution over the Indian domain. The experiments are carried out by changing the initial conditions of Sea Surface Temperature by 0.1 degree steps ie. 0.1, 0.2 etc. to 1 degree maximum. The sensitivity experiments showed that the wind strength increases significantly to the northeastern and central parts of India. The change in wind strength is pronounced over the southern peninsula when the Sea Surface Temperature increased by 0.4 degree. The response in precipitation over the peninsular Indian region is also studied. The monsoon circulation features simulated by RegCM3 are compared with those of the NCEP/NCAR reanalysis and the simulated rainfall is validated against observations from the Global Precipitation Climatology Centre (GPCC) Key words:- Peninsular India, model integration, Monsoon Rainfall Reference: K. C. chow, Yiming Liu, Johnny C. L. Chan and Yihui Ding, Int. J. Climatol. 26: 1339-1359 (2006) K. C. Chow, Hang-Wai Tong and Johnny C. L. Chan, Clim. Dyn. DOI 10.1007/s00382-007- 0301-6 G. P. Singh, Jai-Ho Oh, Jin-Young Kim and Ok-Yeon Kim; ", SOLA, Vol. 2, pp.29-32 (2006) Dash S. K., Shekhar M. S., Singh G. P. Theoretical and Applied Climatology 86(1-4): 161 (2006)

  11. Utilizing Higher Resolution Land Surface Remote Sensing Data for Assessing Recent Trends over Asia Monsoon Region

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory

    2010-01-01

    The slide presentation discusses the integration of 1-kilometer spatial resolution land temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS), with 8-day temporal resolution, into the NASA Monsoon-Asia Integrated Regional Study (MAIRS) Data Center. The data will be available for analysis and visualization in the Giovanni data system. It discusses the NASA MAIRS Data Center, presents an introduction to the data access tools, and an introduction of Products available from the service, discusses the higher resolution Land Surface Temperature (LST) and presents preliminary results of LST Trends over China.

  12. Predictability of Indian summer monsoon weather during active and break phases using a high resolution regional model

    NASA Astrophysics Data System (ADS)

    Taraphdar, S.; Mukhopadhyay, P.; Goswami, B. N.

    2010-11-01

    As the active and break phases of Indian monsoon are associated with different large scale background regimes, the predictability of monsoon weather is expected to be different during these phases. In the present study, an ensemble of ‘identical twin’ perturbation experiments are carried out using Weather Research Forecast model at 15 km resolution to demonstrate the predictability of weather during these phases. The initial conditions are taken from the 9 years (2001-2009) control simulations during periods of strong intra-seasonal oscillations events. The study revealed that the background estimates are different in these two contrasting regimes with more errors in the active phases confined mostly along the monsoon trough region. As a consequence, the predictability of active (break) period is found to be around 4 (10) days. Thus, the rapid (sluggish) error growth indicates that the monsoon weather such as lows are less (more) predictable during active (break) phases.

  13. Vegetation response to Holocene climate change in monsoon-influenced region of China

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Zicheng; Chen, Fahu; Zhang, Jiawu; Yang, Bao

    2009-12-01

    Fossil pollen records from 31 sites with reliable chronologies and high-resolution data in the monsoonal region of China were synthesized to document Holocene vegetation and climate change and to understand the large-scale controls on these changes. The reconstruction of moisture histories was based on a four-class ordinal wetness index at 200-year time slices at individual sites. The vegetation experienced diverse changes over the Holocene in different regions: (1) between tropical seasonal rain forest and more open forest in tropical seasonal rain forest region; (2) from mixed evergreen and deciduous broadleaved forest to more deciduous or Pinus-dominated forest in subtropical region; (3) from mixed evergreen and deciduous broadleaved forest to deciduous forest in temperate deciduous forest region; (4) from deciduous broadleaved forest to conifer-deciduous forest in conifer-deciduous mixed forest region; (5) from steppe forest to steppe in temperate steppe region; and (6) from steppe forest/meadow to meadow/steppe in highland meadow/steppe region. Despite various vegetation sequences in different regions, our synthesis results show that a humid climate generally characterized the early and middle Holocene, and a drier climate prevailed during the late Holocene, with an abrupt shift at ca. 4.5 ka (1 ka = 1000 cal yr BP). Abrupt palynological changes based on a squared-chord distance of pollen assemblages occurred at 11-10, 6-5 and 2-1 ka from most sites. The synthesized pattern of moisture change is similar to the ones inferred from other independent climate proxies; however, gradual vegetation changes in the early Holocene lagged about 1000 yr behind the summer monsoon maximum as indicated by speleothem isotope records from Dongge and Sanbao caves. Human activities likely affected vegetation change greatly during the late Holocene, but the magnitude and precise timing are less clear and require further investigation.

  14. Coupled marine productivity and salinity and West African monsoon variability over the last 30,000 years in the eastern equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marret, F.; Kim, S.-Y.; Scourse, J.; Kennedy, H.

    2009-04-01

    Marine cores collected off west equatorial Africa have highlighted transfer of terrigenous material in the close ocean that have had a deep influence on the marine productivity for the last 30,000 years. The strength of the West African Monsoon has varied though time, from weak during glacial periods to strong during interglacials. In consequence, the amount of precipitation on the continent had drastic effect on the vegetation cover and soil erosion. Studies of marine cores have enabled the observation of changes in vegetation cover, from extended equatorial rainforest to expansion of savannahs. In association with open grassland association, soil is open to erosion, although precipitation is less; conversely, during periods of extended rainforest in a context of strong monsoon, soil erosion is minimised to the presence of trees. In both cases, terrigenous material is flushed out to the adjacent marine domain and has a profound influence on the marine biota. Three marine cores were studied from a north south transect, from Cameroon to Angola (off Sanaga, off Ogouée, and off Congo rivers), for their palynomorph contents. All cores contain a robust chronology based on radiocarbon dates and two have stable isotope data, allowing comparison. Dinoflagellate cysts were studied for retracing sea-surface conditions such as temperature, salinity and productivity whereas pollen were used to assess changes in the vegetation on the close continent for the last 30,000 years (1). A number of pollen records from terrestrial sequences from equatorial central Africa document the dynamics of the lowland rainforest and savannah in relation to climatic changes during the Holocene. Prior to the Holocene, continental records are scarce in this vast region and/or only allow reconstruction of the local vegetation. In our records, terrestrial proxies (pollen, spores, and charred grass cuticles) signal changes in the expansion/regression of the lowland rainforest which we relate to the

  15. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; Pan, S.; Liu, J.; McGuire, A.D.; Moore, B., III

    2003-01-01

    Data on three major determinants of the carbon storage in terrestrial ecosystems are used with the process-based Terrestrial Ecosystem Model (TEM) to simulate the combined effect of climate variability, increasing atmospheric CO2 concentration, and cropland establishment and abandonment on the exchange of CO2 between the atmosphere and monsoon Asian ecosystems. During 1860-1990, modeled results suggest that monsoon Asia as a whole released 29.0 Pg C, which represents 50% of the global carbon release for this period. Carbon release varied across three subregions: East Asia (4.3 Pg C), South Asia (6.6 Pg C), and Southeast Asia (18.1 Pg C). For the entire region, the simulations indicate that land-use change alone has led to a loss of 42.6 Pg C. However, increasing CO2 and climate variability have added carbon to terrestrial ecosystems to compensate for 23% and 8% of the losses due to land-use change, respectively. During 1980-1989, monsoon Asia as a whole acted as a source of carbon to the atmosphere, releasing an average of 0.158 Pg C per year. Two of the subregions acted as net carbon source and one acted as a net carbon sink. Southeast Asia and South Asia were sources of 0.288 and 0.02 Pg C per year, respectively, while East Asia was a sink of 0.149 Pg C per year. Substantial interannual and decadal variations occur in the annual net carbon storage estimated by TEM due to comparable variations in summer precipitation and its effect on net primary production (NPP). At longer time scales, land-use change appears to be the important control on carbon dynamics in this region. ?? 2003 Elsevier Science B.V. All rights reserved.

  16. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    NASA Astrophysics Data System (ADS)

    Jin, L.; Peng, Y.; Chen, F.; Ganopolski, A.

    2008-12-01

    The impacts of various scenarios of snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP-0 kyr BP) are studied by using the coupled climate model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases, especially in the northern parts of Europe, Asia, and North America. At the same time, with the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP-0 kyr BP), the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. Imposed gradually increased snow and glacier cover over the Tibetan Plateau causes temperature increases in South Asia and it decreases in North Africa and Southeast Asia during 6 kyr BP to 0 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results show that the response of climate change in African-Asian monsoon region to snow and glacier cover over the Tibetan Plateau is in the way that the snow and glaciers amplify the effect of vegetation feedback and, hence, further amplify orbital forcing.

  17. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices

    NASA Astrophysics Data System (ADS)

    Hong, Ja-Young; Ahn, Joong-Bae; Jhun, Jong-Ghap

    2016-03-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The fields regressed onto the indices that resemble the composite strong winter monsoon pattern are simulated more or less weakly in CMIP5 compared to the observation. However, the regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1 to 5 °C under RCP4.5 and from 3 to 7 °C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal

  18. Regional Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Implications for Water Resources

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Tsering, K.; Rinzin, T.; Dorji, C.; Johnson, E. S.; Cook, E. R.

    2014-12-01

    The rapid retreat of many glaciers in the monsoonal Himalaya is of potential societal concern. However, the retreat pattern in the region has been very heterogeneous, likely due in part to the inherent heterogeneity of climate and glaciers within the region. Assessing the impacts of glacier change on water resources, hydroelectric power, and hazard potential requires a detailed understanding of this potentially complex spatial pattern of glacier sensitivity to climate change. Here we quantify glacier surface-mass balance and meltwater flux across the entire glacierized region of the Bhutanese watershed using a full surface-energy and -mass balance model validated with field data. We then test the sensitivity of the glaciers to climatic change and compare the results to a thirty-year record of glacier volume changes. Bhutan is chosen because it (1) sits in the bulls-eye of the monsoon, (2) has >600 glaciers that exhibit the extreme glacier heterogeneity typical of the Himalayas, and (3) faces many of the economic and hazard challenges associated with glacier changes in the Himalaya. Therefore, the methods and results from this study should be broadly applicable to other regions of the monsoonal Himalaya. Our modeling results show a complex spatial pattern of glacier sensitivity to changes in climate across the Bhutanese Himalaya. However, our results also show that <15% of the glaciers in Bhutan account for >90% of the total meltwater flux, and that these glaciers are uniformly the glaciers most sensitive to changes in temperature (and less sensitive to other climate variables). We compare these results to a thirty-year record of glacier volume changes over the same region. In particular, we extract DEMs and orthorectified imagery from 1976 historical spy satellite images and 2006 ASTER images. DEM differencing shows that the glaciers that have changed most over the past thirty years also have the highest modeled temperature sensitivity. These results suggest that

  19. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  20. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Bastin, Sophie; Janicot, Serge; Lavaysse, Christophe; Hourdin, Frederic; Braconnot, Pascale; Bony, Sandrine

    2016-04-01

    Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (-0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (-0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by

  1. Process-based characterization of evapotranspiration sources over the North American monsoon region

    NASA Astrophysics Data System (ADS)

    Bohn, Theodore J.; Vivoni, Enrique R.

    2016-01-01

    Evapotranspiration (ET) is a poorly constrained flux in the North American monsoon (NAM) region, leading to potential errors in land-atmosphere feedbacks. We quantified the spatiotemporal variations of ET using the Variable Infiltration Capacity (VIC) model, modified to account for soil evaporation (Esoil), irrigated agriculture, and the variability of land surface properties derived from the Moderate Resolution Imaging Spectroradiometer during 2000-2012. Simulated ET patterns were compared to field observations at 59 eddy covariance towers, water balance estimates in nine basins, and six available gridded ET products. The modified VIC model performed well at eddy covariance towers representing the natural and agricultural land covers in the region. Simulations revealed that major sources of ET were forested mountain areas during the summer season and irrigated croplands at peak times of growth in the winter and summer, accounting for 22% and 9% of the annual ET, respectively. Over the NAM region, Esoil was the largest component (60%) of annual ET, followed by plant transpiration (T, 32%) and evaporation of canopy interception (8%). Esoil and T displayed different relationships with P in natural land covers, with Esoil tending to peak earlier than T by up to 1 month, while only a weak correlation between ET and P was found in irrigated croplands. Based on the model performance, the VIC-based estimates are the most realistic to date for this region. Furthermore, spatiotemporal patterns reveal new information on the magnitudes, locations, and timing of ET in the North American monsoon region with implications on land-atmosphere feedbacks.

  2. The representation of low-level clouds during the West African monsoon in weather and climate models

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  3. Prediction and Monitoring of Monsoon Intraseasonal Oscillations over Indian Monsoon Region in an Ensemble Prediction System using CFSv2

    NASA Astrophysics Data System (ADS)

    Borah, N.; Abhilash, S.; Sahai, A. K.; Chattopadhyay, R.; Joseph, S.; Sharmila, S.; de, S.; Goswami, B.; Kumar, A.

    2013-12-01

    An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISOs) of Indian summer monsoon (ISM) using NCEP Climate Forecast System model version2 at T126 horizontal resolution. The EPS is formulated by producing 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio becomes unity by about18 days and the predictability error saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are observed even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of amplitude of large scale MISO as well as the initial conditions related to the different phases of MISO. Categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.

  4. Prediction and Monitoring of Monsoon Intraseasonal Oscillations over Indian Monsoon Region in an Ensemble Prediction System using CFSv2

    NASA Astrophysics Data System (ADS)

    Borah, Nabanita; Sukumarpillai, Abhilash; Sahai, Atul Kumar; Chattopadhyay, Rajib; Joseph, Susmitha; De, Soumyendu; Nath Goswami, Bhupendra; Kumar, Arun

    2014-05-01

    An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using NCEP Climate Forecast System model version2 at T126 horizontal resolution. The EPS is formulated by producing 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio becomes unity by about18 days and the predictability error saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are observed even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of amplitude of large scale MISO as well as the initial conditions related to the different phases of MISO. Categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.

  5. Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2

    NASA Astrophysics Data System (ADS)

    Abhilash, S.; Sahai, A. K.; Borah, N.; Chattopadhyay, R.; Joseph, S.; Sharmila, S.; De, S.; Goswami, B. N.; Kumar, Arun

    2014-05-01

    An ensemble prediction system (EPS) is devised for the extended range prediction (ERP) of monsoon intraseasonal oscillations (MISO) of Indian summer monsoon (ISM) using National Centers for Environmental Prediction Climate Forecast System model version 2 at T126 horizontal resolution. The EPS is formulated by generating 11 member ensembles through the perturbation of atmospheric initial conditions. The hindcast experiments were conducted at every 5-day interval for 45 days lead time starting from 16th May to 28th September during 2001-2012. The general simulation of ISM characteristics and the ERP skill of the proposed EPS at pentad mean scale are evaluated in the present study. Though the EPS underestimates both the mean and variability of ISM rainfall, it simulates the northward propagation of MISO reasonably well. It is found that the signal-to-noise ratio of the forecasted rainfall becomes unity by about 18 days. The potential predictability error of the forecasted rainfall saturates by about 25 days. Though useful deterministic forecasts could be generated up to 2nd pentad lead, significant correlations are found even up to 4th pentad lead. The skill in predicting large-scale MISO, which is assessed by comparing the predicted and observed MISO indices, is found to be ~17 days. It is noted that the prediction skill of actual rainfall is closely related to the prediction of large-scale MISO amplitude as well as the initial conditions related to the different phases of MISO. An analysis of categorical prediction skills reveals that break is more skillfully predicted, followed by active and then normal. The categorical probability skill scores suggest that useful probabilistic forecasts could be generated even up to 4th pentad lead.

  6. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2011-01-01

    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  7. Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics

    NASA Astrophysics Data System (ADS)

    Umakanth, U.; Kesarkar, Amit P.; Raju, Attada; Vijaya Bhaskar Rao, S.

    2016-08-01

    The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40-50 day scale is captured by all models with a slight change in amplitude, however, the 40-50 day peak in precipitation is completely absent in RegCM-EG. The space-time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20 days. Except Reg

  8. Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics

    NASA Astrophysics Data System (ADS)

    Umakanth, U.; Kesarkar, Amit P.; Raju, Attada; Vijaya Bhaskar Rao, S.

    2015-11-01

    The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40-50 day scale is captured by all models with a slight change in amplitude, however, the 40-50 day peak in precipitation is completely absent in RegCM-EG. The space-time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20 days. Except Reg

  9. Vertical variations in the influence of the amount effect: South American Summer Monsoon Region

    NASA Astrophysics Data System (ADS)

    Samuels-Crow, K. E.; Galewsky, J.; Worden, J. R.

    2014-12-01

    Recent theoretical studies have shown that convective recycling of atmospheric water vapor gives rise to the isotope "amount effect" in which d values are lower than predicted by simple Rayleigh distillation processes (i.e. (DdD = dDvapor ­- dDRayleigh < 0‰). Several studies have linked isotopes in precipitation [e.g. Vimeux et al., 2009] and atmospheric water vapor [e.g. Samuels-Crow et al., 2014] in the tropical Andes to upwind convection associated with the South American Summer Monsoon (SASM). The vertical structure of this convective influence, however, remains unknown. Understanding the vertical structure of the amount effect over South America is essential for improving theoretical constraints and developing better models of the influence of the SASM on southern hemisphere humidity. Additionally, evaluating the vertical and lateral extent of the SASM's convective influence can provide important constraints for interpreting paleoclimate proxies in the region. We use data from the Tropospheric Emission Spectrometer (TES) to examine the vertical structure of the amount effect associated with the SASM and relate these results to regional convective precipitation and local subcloud equivalent potential temperature. Preliminary results show that DdD is below 0‰ from the boundary layer through the mid-troposphere over tropical South America during austral summer, and meridional averages show that convective precipitation is highest over these areas where DdD < 0‰ extends higher in the atmosphere. We hypothesize that the depth of convection in the monsoon region controls the vertical structure of DdD, which should also be coherently linked to local equivalent potential temperature. References Vimeux et al. (2009), Palaeogeogr Palaeocl, 281(3-4), 229-241, doi:10.1016/j.palaeo.2008.03.054. Samuels-Crow et al. (2014), J Geophys Res-Atmos, doi:10.1002/(ISSN)2169-8996.

  10. Simulation of the Diurnal Cycle of Integrated Precipitable Water in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Ochoa, C. A.; Quintanar, A.; Adams, D. K.; Martinez-lopez, B.

    2015-12-01

    Organized deep convection over the North American monsoon region (NAM) is a salient climatic feature that has been the subject of several experimental campaigns and modeling efforts. Recently, however, in Mexico and the Caribbean, there has been mounting interest towards implementing low-cost, low-maintenance GPS-meteorological networks (TLALOCNet and COCOnet) that provide near real-time Integrated Precipitable Water data (IPW) into the assimilation cycle of regional models. A wealth of interesting new observational results concerning the link between the diurnal cycle of deep convection and the processes that could alter it at the surface and aloft has open up opportunities of model verification and improvements to the physics that are specific to subtropical deep convection. In this work, the diurnal cycle of IPW is studied using observational data collected during the North American Monsoon GPS Transect Experiment 2013 experiment and numerical simulations with the Weather Research and Forecasting model (WRF). WRF was run in climate mode to generate a simulation for the entire experiment using ECMWF ERA-Interim analysis data for initial and boundary conditions and spectral nudging. We classified the days during the experiment, according to type of mesoscale phenomena present each day and averaged days with same weather types in both data sets (observed and simulated). Preliminary results show that the simulated diurnal cycle of IPW is very sensitive to Land Use/Land Cover data and to initial and the boundary conditions. Preliminary results show that the simulated amplitude and phase of the diurnal cycle of IPW is well represented only when a more up-to-date LULC is used (MODIS v.s. 99 USGS LULC) and the Thompson mycrophysics scheme is used. In agreement with the previous results, modeled precipitation time series agree better with observed GPS-meterological station reports during the NAM 2013 experiment.

  11. Multi-Scale Interactions Associated with the Monsoon Onset Over South China Sea and Adjacent Regions during SCSMEX-98

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Li, X.; Wu, H.-T.

    1999-01-01

    Using data collected during The South China Sea Monsoon Experiment (SCSMEX) (1998) as well as from the TRMM Microwave-Imager (TMI) and precipitation radar (PR), we have studied the multi-scale interactions (meso-synoptic-intraseasonal) associated with monsoon onset over South China Sea (SCS) and its subsequent evolution. Results show that the monsoon onset (defined by development of steady wind direction and heavy precipitation) over the northern SCS occurred around May 15 -17. Prevailing southerlies and southwesterlies developed over the central SCS after May 20. Shortly after, monsoon convection developed over the whole SCS region around May 23-27. The entire onset process appeared to be delayed by about a week to 10 days compared with climatology. During late spring of 1998, mid-latitude frontal systems were particularly active. These systems strongly impacted the northern SCS convection and may have been instrumental in triggering the onset of the SCS monsoon. The Tropical Oceans and Global Atmosphere (TOGA) and Bureau of Meteorology Research Centre (BMRC) radar showed a wide variety of convective systems over the Intensive Flux Array, from frontal bands to shear-banded structure, deep convection, pop-corn type shallow convection, slow moving "fine lines" to water spout. Analysis of SSM/I wind and moisture data suggested that the delayed convective activity over the SCS may be linked to the weakened northward propagation of monsoon rain band, hence contributing to a persistence of the rainband south of the Yangtze River and the disastrous flood that occurred over this region during mid to late June, 1998.

  12. An improved approach for rainfall estimation over Indian summer monsoon region using Kalpana-1 data

    NASA Astrophysics Data System (ADS)

    Mahesh, C.; Prakash, Satya; Sathiyamoorthy, V.; Gairola, R. M.

    2014-08-01

    In this paper, an improved Kalpana-1 infrared (IR) based rainfall estimation algorithm, specific to Indian summer monsoon region is presented. This algorithm comprises of two parts: (i) development of Kalpana-1 IR based rainfall estimation algorithm with improvement for orographic warm rain underestimation generally suffered by IR based rainfall estimation methods and (ii) cooling index to take care of the growth and decay of clouds and thereby improving the precipitation estimation. In the first part, a power-law based regression relationship between cloud top temperature from Kalpana-1 IR channel and rainfall from Tropical Rainfall Measuring Mission (TRMM) - precipitation radar specific to the Indian region is developed. This algorithm tries to overcome the inherent orographic issues of the IR based rainfall estimation techniques. Over the windward sides of the Western Ghats, Himalayas and Arakan Yoma mountain chains, separate regression coefficients are generated to take care of the orographically produced warm rainfall. Generally global rainfall retrieval methods fail to detect the warm rainfall over these regions. Rain estimated over the orographic region is suitably blended with the rain retrieved over the entire domain comprising of the Indian monsoon region and parts of the Indian Ocean using another regression relationship. While blending, a smoothening function is applied to avoid rainfall artefacts and an elliptical weighting function is introduced for the purpose. In the second part, a cooling index to distinguish rain/no-rain conditions is developed using Kalpana-1 IR data. The cooling index identifies the cloud growing/decaying regions using two consecutive half-hourly IR images of Kalpana-1 by assigning appropriate weights to growing and non-growing clouds. Intercomparison of estimated rainfall from the present algorithm with TRMM-3B42/3B43 precipitation products and Indian Meteorological Department (IMD) gridded rain gauge data are found to be

  13. Regional Dispersal of Fukushima-derived Fission Nuclides by East Asia Monsoon

    NASA Astrophysics Data System (ADS)

    Huh, Chih-An; Lin, Chuan-Yao; Hsu, Shih-Chieh

    2013-04-01

    Since the Fukushima nuclear accident happened on 12 March 2011, there have been a plethora of publications about the dispersion of radioactive material from the damaged reactors. Most of these works dealt with global transport of Fukushima-derived radionuclides in the northern hemisphere and local transport in the vicinity of Fukushima and around Japan. In contrast, few works investigated into dispersal of radiation plumes from Japan to other areas on regional scales. This is because regional dispersal out of Japan in the springtime is most likely dominated by the northeastern monsoon, whereas there are few monitoring stations downwind in the southeastern Asia region. In this respect, we are only aware of the data in Vietnam published by Long et al (2012) in addition to our own data obtained in and around Taiwan (Huh et al., 2012; Hsu et al., 2012). By integrating the data published in the literature plus those that can be searched from relevant websites, we try to further elucidate the dispersal of Fukushima-derived radiation toward the southeastern Asia region. The WRF/Chem tracer model is employed to simulate the dispersal of radiation plumes from the damaged Fukushima Daiichi Nuclear Power Plant. From a vis-à-vis comparison between the model simulation and the time-series of Fukushima-derived fission nuclides monitored around the southeastern Asia, we can distinguish between global transport by the Westerlies in the free troposphere and regional transport by the northeast monsoon in the planetary boundary layer. In general, regional (mainly meridional) transport carried more weight than global (mainly zonal) transport in contributing Fukushima-derived radioactivity to the area covered in this review, particularly at the ground-level sites. References 1. Hsu, S.C., Huh, C.A., Chan, C.Y., Lin, S.H., Lin, F.J. and Liu, S.C. (2012). Hemispheric dispersion of radioactive plume laced with fission nuclides from the Fukushima nuclear event. Geophys. Res. Lett. 39, L00

  14. Influence of SSTs over Nino-3.4 Region on the Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Wilson, S. S.; Gleixner, S.; K, M.

    2014-12-01

    Indian Summer Monsoon Rainfall (ISMR) is sensitive to SST variations in the Pacific Ocean. In this study, the correlation coefficients between the SST in the Nino-3.4 region of season (June-August) and ISMR are evaluated using the datasets ERSST v3b and ISMR data (www.tropmet.res.in). An analysis of the mean monthly data of 64 years (1955-2013) reveals that the relationship between the SST in the Nino-3.4 region in June-August and the ISMR is changed after 1983. Seven drought years were reported between 1955 and 1983 and the warmest SST is in the equatorial eastern Pacific. After 1983, the warmest SST is shifted towards the central Pacific region during drought years. The coldest region in the central Pacific during wet years is shifted towards the eastern Pacific after 1983. The position of the sensitive area in the Pacific Ocean thus influences the drought/wet which is found to be changed in the recent epoch.

  15. Simulated impact of vegetation on climate across the North American monsoon region in CCSM3.5

    NASA Astrophysics Data System (ADS)

    Notaro, Michael; Gutzler, David

    2012-02-01

    The influence of prescribed changes in vegetation on the climate of the North American monsoon region is examined using the National Center for Atmospheric Research Community Climate System Model Version 3.5 (NCAR CCSM3.5). Initial value ensemble experiments are performed in which the vegetation cover fraction over the North American monsoon region is reduced by 0.2 and the intra-annual climatic response is assessed probabilistically in each one-year ensemble experiment. Changes in the surface radiation budget include decreases in sensible and latent heat fluxes and increases in upward longwave and downward shortwave radiation fluxes, with small net changes in surface albedo. The climatic responses to reduced vegetation cover fraction include year-round increases in ground and surface air temperature, a dampened hydrologic cycle with decreased springtime evaporation, springtime and autumnal precipitation, and autumnal cloud cover, and enhanced atmospheric subsidence in late autumn. Decreased vegetation shifts the monsoon season over the Southwest United States earlier in the year. Within the North American monsoon region, the most robust vegetation feedbacks to climate are found over woody landscapes.

  16. Simulation of 1986 South China Sea Monsoon with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Lau, W. K.-M.; Jia, Y.; Juang, H.; Wetzel, P.; Qian, J.; Chen, C.

    1999-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea

  17. Interannual variability and predictability over the Arabian Penuinsula Winter monsoon region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Muhammad; Kucharski, Fred; Almazroui, Mansour; Kang, In-Sik

    2016-04-01

    Interannual winter rainfall variability and its predictability are analysed over the Arabian Peninsula region by using observed and hindcast datasets from the state-of-the-art European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal prediction System 4 for the period 1981-2010. An Arabian winter monsoon index (AWMI) is defined to highlight the Arabian Peninsula as the most representative region for the Northern Hemispheric winter dominating the summer rainfall. The observations show that the rainfall variability is relatively large over the northeast of the Arabian Peninsula. The correlation coefficient between the Nino3.4 index and rainfall in this region is 0.33, suggesting potentially some modest predictability, and indicating that El Nino increases and La Nina decreases the rainfall. Regression analysis shows that upper-level cyclonic circulation anomalies that are forced by El Nino Southern Oscillation (ENSO) are responsible for the winter rainfall anomalies over the Arabian region. The stronger (weaker) mean transient-eddy activity related to the upper-level trough induced by the warm (cold) sea-surface temperatures during El Nino (La Nina) tends to increase (decrease) the rainfall in the region. The model hindcast dataset reproduces the ENSO-rainfall connection. The seasonal mean predictability of the northeast Arabian rainfall index is 0.35. It is shown that the noise variance is larger than the signal over the Arabian Peninsula region, which tends to limit the prediction skill. The potential predictability is generally increased in ENSO years and is, in particular, larger during La Nina compared to El Nino years in the region. Furthermore, central Pacific ENSO events and ENSO events with weak signals in the Indian Ocean tend to increase predictability over the Arabian region.

  18. A Study on the Influence of the Land Surface Processes on the Southwest Monsoon Simulations using a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Bhaskar Rao, D. V.; Hari Prasad, D.; Hari Prasad, K. B. R. R.; Baskaran, R.; Venkatraman, B.

    2015-10-01

    Influence of the land surface processes as an important mechanism in the development of the Indian Summer Monsoon is studied by performing simulations with a regional atmospheric model. Seasonal scale simulations are conducted for two contrasting summer monsoons (MJJAS months) in 2008 & 2009 with the Weather Research and Forecasting-Advanced Research regional model at a high resolution of 15 km using the boundary conditions derived from the National Centers for Environmental Prediction (NCEP) reanalysis data and using the NOAH land surface parameterization scheme. Simulations are evaluated by comparison of precipitation with 0.5° India Meteorological Department gridded rainfall data over land, atmospheric circulation fields with 1° resolution NCEP global final analysis, and surface fluxes with 0.75° resolution Era-Interim reanalysis. Results indicated significant variation in the evolution of the surface fluxes, air temperatures and flux convergence in the 2 contrasting years. A lower albedo, higher heating (sensible, latent heat fluxes), higher air temperatures, stronger flow and higher moisture flux convergence are noted over the subcontinent during the monsoon 2008 relative to the monsoon 2009. The simulated surface fluxes are in good comparison with observations. The stronger flow in 2008 is found to be associated with stronger heat flux gradients as well as stronger north-south geopotential/pressure gradients. The simulations revealed notable differences in many features such as zonal and meridional surface sensible heat gradients which, in turn, influenced the low-level pressure gradients, wind flow, and moisture transport. The present study reveals that, even at a regional scale, the physical processes of land-surface energy partitioning do influence the regional behavior of the monsoon system to a certain extent.

  19. Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century

    NASA Astrophysics Data System (ADS)

    Dash, Sushil K.; Mishra, Saroj K.; Pattnayak, Kanhu C.; Mamgain, Ashu; Mariotti, Laura; Coppola, Erika; Giorgi, Filippo; Giuliani, Graziano

    2015-11-01

    In this study, we present the projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century under the representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios using the regional model RegCM4 driven by the global model GFDL-ESM2M. RegCM4 is integrated from 1970 to 2099 at 50 km horizontal resolution over the South Asia CORDEX domain. The simulated mean summer monsoon circulation and associated rainfall by RegCM4 are validated against observations in the reference period 1975 to 2004 based on the Global Precipitation Climatology Project (GPCP) and India Meteorological Department (IMD) data sets. Regional model results are also compared with those of the global model GFDL which forces the RegCM4, showing that the regional model in particular improves the simulation of precipitation trends during the reference period. Future projections are categorized as near future (2010-2039), mid future (2040-2069), and far future (2070-2099). Comparison of projected seasonal (June-September) mean rainfall from the different time slices indicate a gradual increase in the intensity of changes over some of the regions under both the RCP4.5 and RCP8.5 scenarios. RegCM4 projected rainfall decreases over most of the Indian land mass and the equatorial and northern Indian Ocean, while it increases over the Arabian Sea, northern Bay of Bengal, and the Himalayas. Results show that the monsoon circulation may become weaker in the future associated with a decrease in rainfall over Indian land points. The RegCM4 projected decrease in June, July, August, September (JJAS) rainfall under the RCP8.5 scenario over the central, eastern, and peninsular India by the end of the century is in the range of 25-40 % of their mean reference period values; it is significant at the 95 % confidence level and it is broadly in line with patterns of observed change in recent decades. Surface evaporation is projected to increase over the Indian Ocean, thereby

  20. Radiosonde Observations of Turbulence in the Troposphere and Lower Stratosphere over Indian Monsoon Region

    NASA Astrophysics Data System (ADS)

    Muhammed, M.; Sunilkumar, S. V.; Ratnam, M. V.; Parameswaran, K.; Krishna Murthy, B. V.; Ramkumar, G.; Rajeev, K.

    2014-12-01

    Altitude structure of turbulence in the troposphere and lower stratosphere at Trivandrum (8.5°N, 76.9°E) and Gadanki (13.5°N, 79.2°E) are studied using GPS-radiosonde observations (~1000 profiles) during the period December 2010 to March 2014 as part of the Tropical Tropopause Dynamics (TTD) Experiment under CAWSES-India program. In the this study, the turbulence in the troposphere and stratosphere were delineated by applying the raw data of temperature, pressure and humidity obtained from radiosondes to Thorpe analysis by taking into account the effect of saturation in the temperature profiles and also the instrument noise. The study shows that turbulence strength decreases with altitude in the troposphere and is found to be high during the Indian summer monsoon season in the altitude region 2 to 10 km. Thin layers of turbulence are persistently observed within the Tropical Tropopause layer (TTL). This study also showed that, the occurrence of turbulence is relatively large in the altitude region 10-15 km than in altitude region of 3 to 8 km. In the TTL region, occurrence of turbulence is very small and least in the stratosphere. The gross structure of turbulence in the troposphere and stratosphere at the two stations are similar. The mean structure of occurrence of the turbulence are closely associated with altitude structure of stability parameters. This study indicates that, the mechanisms responsible for the generation of turbulence in the troposphere at the two stations are the same. While the turbulence in the 10-15 km region is mainly governed by the convective instabilities, the turbulence in the TTL region is caused by both dynamic and convective instabilities. The generation of turbulence in the lower stratosphere could be due to strong wind shear. These features of turbulence will have different implications in determining the distribution of minor constituents and alter the composition and microphysics in that region.

  1. Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport

    NASA Astrophysics Data System (ADS)

    Ojha, Narendra; Pozzer, Andrea; Rauthe-Schöch, Armin; Baker, Angela K.; Yoon, Jongmin; Brenninkmeijer, Carl A. M.; Lelieveld, Jos

    2016-03-01

    We compare in situ measurements of ozone (O3) and carbon monoxide (CO) profiles from the CARIBIC program with the results from the regional chemistry transport model (WRF-Chem) to investigate the role of local and regional emissions and long-range transport over southern India during the summer monsoon of 2008. WRF-Chem successfully reproduces the general features of O3 and CO distributions over the South Asian region. However, absolute CO concentrations in the lower troposphere are typically underestimated. Here we investigate the influence of local relative to remote emissions through sensitivity simulations. The influence of 50 % increased CO emissions over South Asia leads to a significant enhancement (upto 20 % in July) in upper tropospheric CO in the northern and central Indian regions. Over Chennai in southern India, this causes a 33 % increase in surface CO during June. However, the influence of enhanced local and regional emissions is found to be smaller (5 %) in the free troposphere over Chennai, except during September. Local to regional emissions are therefore suggested to play a minor role in the underestimation of CO by WRF-Chem during June-August. In the lower troposphere, a high pollution (O3: 146.4 ± 12.8, CO: 136.4 ± 12.2 nmol mol-1) event (15 July 2008), not reproduced by the model, is shown to be due to transport of photochemically processed air masses from the boundary layer in southern India. A sensitivity simulation combined with backward trajectories indicates that long-range transport of CO to southern India is significantly underestimated, particularly in air masses from the west, i.e., from Central Africa. This study highlights the need for more aircraft-based measurements over India and adjacent regions and the improvement of global emission inventories.

  2. Drought analysis according to shifting of climate zones to arid climate zone over Asia monsoon region

    NASA Astrophysics Data System (ADS)

    Son, Kyung-Hwan; Bae, Deg-Hyo

    2015-10-01

    When a humid region is affected by arid climate, significant changes in drought characteristics occur due to imbalance of water budget. In this study, change in drought characteristics according to shift of different climates i.e. tropical, warm temperate, cold and polar to Arid Climate (SAC) was analyzed over the Asia monsoon region. Climate zones and the SAC regions were identified by applying the Köppen climate classification on hydro-meteorological data for the period of 1963-2006. The analysis of hydro-meteorological parameters revealed that the annual precipitation and runoff in the SAC regions appeared to decrease about 12.1% and 27.3%, respectively, while annual average temperature increased about 0.5 °C. Standardized runoff index (SRI) was calculated using model-driven runoff data. The trend and change point analyses of SRI were performed to evaluate the changes in drought characteristics (frequency, duration, severity) before and after shifting of the different climates to arid climate. The results revealed strong decreasing trend of SRI and hence intensified drought conditions for the SAC regions. A change point year of drought occurred about 3-5 years earlier than the shifting time of the SAC region. Frequency and duration of droughts in the SAC regions were observed to increase about 9.2 and 1.5 months, respectively, and drought severity index intensified to about -0.15. It can be concluded that analysis of shifting to arid climate zones should be considered together with changes in drought characteristics, because the drought characteristics and changing arid climate zones are closely related to each other.

  3. TRMM observations of latent heat distribution over the Indian summer monsoon region and associated dynamics

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Kandula V.; Kishore Kumar, Karanam

    2016-05-01

    The latent heat released/absorbed in the Earth's atmosphere due to phase change of water molecule plays a vital role in various atmospheric processes. It is now well established that the latent heat released in the clouds is the secondary source of energy for driving the atmosphere, the Sun being the primary. In this context, studies on latent heat released in the atmosphere become important to understand the some of the physical processes taking place in the atmosphere. One of the important implications of latent heat release is its role in driving the circulations on various temporal and spatial scales. Realizing the importance of latent heat released in the clouds, a comprehensive study is carried out to understand its role in driving the mesoscale circulation. As Indian summer monsoon (ISM) serves as natural laboratory for studying the clouds and their microphysics, an attempt is made to explore the latent heat distribution over this region using 13 years of Tropical Rainfall Measuring Mission (TRMM) observations. The observed profiles of latent heating over ISM region showed large spatial and temporal variability in the magnitude thus reflecting the presence of organization of convection on mesoscale. The latent profiles in convective and stratiform regions are segregated to study the differences in their interaction with large-scale environment. Various re-analysis dataset were used to examine the role of latent heating distribution on the mesoscale circulation. The significance of the present study lies in establishing the vertical distribution of latent heating and their impact on the background circulation.

  4. Sensitivity of Domain Size of a Regional Climate Model on the Indian Summer Monsoon Simulations

    NASA Astrophysics Data System (ADS)

    Pattnayak, K. C.; Panda, S. K.; Vaddi, D.; Mamgain, A.; Dash, S. K.

    2013-12-01

    The characteristics of Indian Summer Monsoon circulation and rainfall simulated by Regional Climate Model version 4.2 (RegCM4.2) using two domains: the smaller domain over India and the larger one over South Asia (SA) domain have been examined. The larger domain over the South Asia has been identified in the framework of World Climate Research Programme (WCRP) coordinated experiment known as the COordinated Regional climate Downscaling Experiment (CORDEX). This study is made over a period of 36 years starting from 1st January 1970 to 31st December 2005 at 50 km horizontal resolution of the model over both the domains using RegCM version 4.2. The UK Met Office Hadley Centre Global Circulation Model Version 2.0 (HadGEM2) outputs obtained from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) for IPCC AR5 have been used as the initial and lateral boundary conditions. The model simulated precipitation has been compared with the IMD 0.5°x0.5° gridded rainfall which is available over the Indian land mass. Results show that the total precipitation is reduced significantly when the domain size is reduced from South Asia to smaller Indian domain. The simulated Indian precipitation obtained in the South Asian domain has a good agreement with the corresponding IMD observations. It is also seen that the domain size has dominant impact on the convective precipitation simulated by the model whereas there is no significant change in the non-convective precipitation. The wind field at 850hPa over the Arabian Sea is close to the NCEP/NCAR reanalysis in SA domain as compared against that obtained in the Indian domain. The cross-equatorial flow and the Somali Jet are better simulated in the SA than the Indian domain. Thus both the wind and rainfall fields' simulated by RegCM4 over India in case of SA domain are closer to the respective observations as compared to those obtained using the Indian domain. Since, the vertically integrated moisture flux over the Arabian Sea is

  5. Latitudinal Expansion of the Holocene Optimum in the East Asian Monsoon Region

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Sun, L.; Zhan, T.; Huang, W.; Zhou, X.; Hao, Q.; He, X.; Zhao, C.; Zhang, J.; Qiao, Y.; Ge, J.; Yan, P.; Shao, D.; Chu, Z.; Yang, W.

    2014-12-01

    With increasingly abundant high resolution and high precision records of East Asian monsoon, its spatial and temporal dynamics during the Holocene have been extensively studied. However, partly due to the lack of records in high latitude areas and the age uncertainties, these studies characterized a wide range of spatial-temporal patterns of Holocene Optimum (HO). We reconstructed a 14,000-year record of vegetation using sediments from a crater lake in Northeast China. Analyses of the vegetation time series show that HO began around 6,000 a BP in Northeast China, significantly later than generally recognized. By comparison with Holocene records of vegetation in other regions of the East Asia, we found a marked northward shift of initial time of HO from 10,600 a BP in South China to 6,000 a BP in Northeast China, which appeared to be forced by the shrinkage of the northern hemisphere ice-sheet (NHIS) during early to mid Holocene. Finally, we fitted a regression model of initial HO time on latitude, which allows us to make prediction of initial HO time based on their geographical locations. This study reveals a strong relationship between latitude and initial HO times and provides a window towards understanding the joint forcing of high and low latitude factors on regional climate.

  6. Ecosystem Rain-Use Efficiency in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Forzieri, G.; Catani, F.; Castelli, F.; Vivoni, E. R.

    2010-12-01

    The study of the climate change impacts on vegetation and its spatiotemporal patterns can improve our understanding of the interactions between ecologic, hydrologic and atmospheric dynamics. Due to its marked plant phenology driven by precipitation, the North American Monsoon System (NAMS) can serve to reveal ecological responses to climate change in water-controlled ecosystems. Oceanographic anomalies, related to interannual variability in the Pacific, affect the seasonal evolution of the NAMS via remote forcing of the synoptic-scale circulation, which in turn controls warm season climate over much of southwestern North America. To elucidate the effects of climate on vegetation dynamics during the NAMS, we analyze long-term rain-use efficiency (RUE) in the region. RUE is defined in this study as the ratio between satellite-derived net primary production (from AVHRR NDVI composites at 16-day, 8-km resolution) and precipitation (from CPC NOAA daily 1° gridded dataset) occurring during the summer greenness periods, from 1981 to 2006. We identify the following for a set of six diverse ecosystems in the region: (1) the long-term RUE and its interannual variability, (2) its variations with geographic position and topographic attributes, and (3) the correlation structure between RUE and Sea Surface Temperature anomalies in the Pacific. Results reveal ecosystem-specific variations with location and terrain characteristics, corroborating that topography strongly influences plant rain-use strategies in response to hydrologic variations. Linear trends in RUE, compared with vegetation phenology and precipitation dynamics, suggest a long-term signal imposed on the interannual variability. Rain-use efficiency shows modest but statistically significant influences of the El Niño-Southern Oscillation in the region. Spatiotemporal correlation patterns appear to be prevalently modulated by ecosystem-based biophysical memory and by regional climatic effects. Improved

  7. Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport

    NASA Astrophysics Data System (ADS)

    Ojha, N.; Pozzer, A.; Rauthe-Schöch, A.; Baker, A. K.; Yoon, J.; Brenninkmeijer, C. A. M.; Lelieveld, J.

    2015-08-01

    We compare in situ measurements of ozone (O3) and carbon monoxide (CO) profiles from the CARIBIC program with the results from the regional chemistry transport model (WRF-Chem) to investigate the role of local/regional emissions and long-range transport over southern India during the summer monsoon of 2008. WRF-Chem successfully reproduces the general features of O3 and CO distributions over the South Asian region. However, the absolute CO concentrations in lower troposphere are typically underestimated. Here we investigate the influence of local relative to remote emissions through sensitivity simulations. The influence of 50 % enhanced CO emissions over South Asia is found to be 33 % increase in surface CO during June. The influence of enhanced local emissions is found to be smaller (5 %) in the free troposphere, except during September. Local to regional emissions are therefore suggested to play a minor role in the underestimation of CO by WRF-Chem during June-August. In the lower troposphere, ahigh pollution (O3: 146.4 ± 12.8 nmol mol-1, CO: 136.4 ± 12.2 nmol mol-1) event (15 July 2008), not reproduced by the model, is shown to be due to transport of photochemically processed air masses from the boundary layer into southern India. Sensitivity simulation combined with backward trajectories indicates that long-range transport of CO to southern India is significantly underestimated, particularly in air masses from the west, i.e. from Central Africa. This study highlights the need for more aircraft-based measurements over India and adjacent regions and the improvement of emission inventories.

  8. Precipitation-aerosol relationship over the Indian region during drought and excess summer monsoon years

    NASA Astrophysics Data System (ADS)

    Surendran, Sajani; Rajendran, Kavirajan; V. B., Arya

    2016-05-01

    This study investigates the aerosols-rainfall interaction during Indian summer monsoon and characterizes their difference in drought and excess summer monsoon years, based on MODIS (MODerate Resolution Imaging Spectro-radiometer) derived Aerosol Optical Depth (AOD) at 550 nm. AOD has been estimated using Level-2 MODIS Terra Data Version 6. AOD in drought years is found to be higher over India compared to excess monsoon years. The total effect of aerosols causes reduction of summer rainfall but with distinct differences in their impact during strong and weak summer monsoon years, due to the changes in clouds, radiation, large-scale circulation, and convection. Aerosol and cloud characteristics exhibit strong association to rainfall variability in interannual time scales. Variability in cloud effective radius and cloud optical thickness is found to be consistent with aerosol effect.

  9. Role of vertical structure of cloud microphysical properties on cloud radiative forcing over the Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Ravi Kiran, V.; Rajeevan, M.; Gadhavi, H.; Rao, S. Vijaya Bhaskara; Jayaraman, A.

    2015-12-01

    Five years (2006-2010) of clouds and earth's radiant energy system (CERES) and CloudSat data have been analyzed to examine the role of vertical structure of cloud microphysical properties on cloud radiative forcing (CRF) parameters at the top-of-the atmosphere over the Asian monsoon region during the summer monsoon season (June-September) and the Pacific warm pool region during April. Vertical profile of cloud properties (optical depth, cloud liquid water content and cloud ice water content) derived from CloudSat data has been used for the present analysis. Shortwave, longwave and net CRF derived from the CERES data have been used. The results suggest an imbalance between shortwave cloud radiative forcing and longwave cloud radiative forcing over the Asian monsoon region consistent with the results reported earlier. The present analysis suggests that over the Bay-of-Bengal (BoB), vertical profile of cloud microphysical properties determine more than 50 % of variance in CRF. However, over the Pacific warm pool region, cloud microphysical property profiles does not contribute significantly to variance in net CRF (<10 %). Over the BoB, large asymmetry between shortwave and longwave CRF is caused by large amounts of cloud liquid water content in the layer between the surface and 9 km. The present study highlights the importance of accurate representation of cloud microphysical properties in determining the influence of clouds on the radiative balance over the top-of-the atmosphere.

  10. Linkages between MJO and summer monsoon rainfall over India and surrounding region

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj Kanta; Sahany, Sandeep; Salunke, Popat

    2016-06-01

    Satellite retrievals show a dipole-like pattern in composites of summer monsoon rainfall anomalies between the Indian region and the equatorial Indian Ocean (EIO) during the active (RMM phases 3, 4, 5, and 6) and suppressed phases (7, 8, 1, and 2) of the Madden Julian Oscillation (MJO). The north-eastern part of India shows an out-of-phase relationship with rest of the Indian land during different MJO phases. Moisture convergence anomalies largely explain the rainfall anomalies seen during the various MJO phases. Cyclonic wind anomalies are seen over eastern Arabian sea and the Bay of Bengal during active MJO phases. Positive (negative) rainfall anomalies are associated with positive (negative) CAPE anomalies over most parts of the Indian land, whereas there is an inverse relationship over the east coast of India. Timings of diurnal rainfall peaks are fairly robust across various MJO phases; however, the amplitudes vary significantly depending on the MJO phase and location. Some of the previously reported diurnal features, such as the propagation of convective systems over the Bay of Bengal from the west coast into the central and south Bay, are fairly robust across MJO phases. Convective systems forming over Sumatra and propagating into the eastern EIO are prominent during the suppressed and weak MJO periods, but not during the active period.

  11. Mechanism of high rainfall over the Indian west coast region during the monsoon season

    NASA Astrophysics Data System (ADS)

    Maheskumar, R. S.; Narkhedkar, S. G.; Morwal, S. B.; Padmakumari, B.; Kothawale, D. R.; Joshi, R. R.; Deshpande, C. G.; Bhalwankar, R. V.; Kulkarni, J. R.

    2014-09-01

    The mechanism responsible for high rainfall over the Indian west coast region has been investigated by studying dynamical, thermodynamical and microphysical processes over the region for the monsoon season of 2009. The European Centre for Medium-Range Weather Forecasts wind and NCEP flux data have been used to study the large scale dynamical parameters. The moist adiabatic and multi-level inversion stratifications are found to exist during the high and low rainfall spells, respectively. In the moist adiabatic stratification regime, shallow and deep convective clouds are found coexisting. The Cloud Aerosol Interaction and Precipitation Enhancement EXperiment aircraft data showed cloud updraft spectrum ranging from 1 to 10 m s-1 having modal speed 1-2.5 m s-1. The low updrafts rates provide sufficient time required for warm rain processes to produce rainfall from shallow clouds. The low cloud liquid water is observed above the freezing level indicating efficient warm rain process. The updrafts at the high spectrum end go above freezing level to generate ice particles produced due to mixed-phase rainfall process from deep convective clouds. With aging, deep convection gets transformed into stratiform type, which has been inferred through the vertical distribution of the large scale omega and heating fields. The stratiform heating, high latent heat flux, strong wind shear in the lower and middle tropospheric levels and low level convergence support the sustenance of convection for longer time to produce high rainfall spell. The advection of warm dry air in the middle tropospheric regions inhibits the convection and produce low rainfall spell. The mechanisms producing these spells have been summarized with the block diagram.

  12. A regional climate study of aerosol impacts on Indian monsoon and precipitations over the Himalayas

    NASA Astrophysics Data System (ADS)

    Solmon, F.; Von Hardenberg, J.; Nair, V.; Palazzi, E.

    2013-12-01

    In the context of the PAPRIKA program we are studying the potential effects of aerosol particle on Indian climate and Himalayan region. Using the RegCM4 regional climate model we performed some experiments including on-line representation of natural and anthropogenic aerosols for present day and future conditions over the CORDEX-India domain. Dynamical boundary forcing is taken for ERAI-Interim over the period 2000-2010, and chemical boundary-conditions are prescribed as a monthly climatology form an ECEARTH/CAM simulation for present day. Different set of anthropogenic emissions (SO2, carbonaceous aerosols) are considered (IPCC RCP4.5 and REAS) whereas natural aerosol (dust and sea-salt) are calculated on line. In order to account for aerosol radiative feedback on surface energy budget over the oceans, we also implemented a 'q-flux' slab ocean model as an alternative to pure SST forcing. After a step of validation of aerosol simulation against observations, we investigate through a series of experiments the dynamical feedback of direct radiative effect of aerosol over this domain, focusing specifically on Indian Monsoon and precipitation over the Himalayas. We discriminate the effect of anthropogenic vs. natural aerosol while outlining the main mechanism of the regional climate response, as well as the sensitivity to emissions inventory. Our results will be discussed notably against previous GCM based studies. Finally we will possibly discuss future projections based on RCP4.5 EC-EARTH forcing and including aerosol effects, as well as the potential radiative effects of absorbing aerosol deposition on the Himalayan snow covers.

  13. Long-term variations in the South Asian monsoon annual cycle: the role of regional anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Bollasina, Massimo; Ming, Yi

    2013-04-01

    Detection and attribution of long-term variations of the South Asian monsoon is of extreme importance. Indeed, even small changes in the onset and duration of the monsoon season or in the spatial distribution of the seasonal mean precipitation may severely impact agriculture, health, water availability, ecosystems, and economy for a substantial fraction of the world's population. In the past decades emissions of aerosols have dramatically increased over South Asia due to rapid urbanization and population growth. As a result, the study of the impact of anthropogenic aerosols on the monsoon has recently emerged as one of the topics of highest priority in the scientific community. This study makes use of a state-of-the-art coupled climate model, the GFDL CM3, to investigate two aspects of the aerosol influence on the 20th-century changes in the monsoon. The model has fully-interactive aerosols and a representation of both direct and indirect effects. Aerosols are responsible for the advancement of the monsoon onset over India, leading, in agreement with observations, to enhanced precipitation in June over most parts of the subcontinent. Our experiments show that the earlier onset is preceded in early spring by a strong aerosol forcing over the Bay of Bengal and Indonesia and associated atmospheric circulation anomalies. The latter triggers thermodynamical changes over the northwestern part of the Subcontinent in May and June, including enhanced surface heating, which in turn drive the movement of the monsoon to the west. We also performed historical experiments with time-evolving radiative forcings aimed at isolating the contribution of regional versus remote anthropogenic aerosol emissions on the observed 20th century widespread drying of the Indian monsoon. Indian-only aerosol sources are found to play a predominant role in generating suppressed rainfall over the subcontinent, especially during early summer. Remote aerosols contribute, although in a minor way, to

  14. Varying responses to Indian monsoons during the past 220 kyr recorded in deep-sea sediments in inner and outer regions of the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Isaji, Yuta; Kawahata, Hodaka; Ohkouchi, Naohiko; Ogawa, Nanako O.; Murayama, Masafumi; Inoue, Kazuki; Tamaki, Kensaku

    2015-11-01

    Although the climate in the Arabian Sea is controlled primarily by the southwest monsoon, the southwest monsoon has little influence in the Gulf of Aden. To examine the different responses to monsoons between the Gulf of Aden and areas outside the gulf, a comprehensive data set of bulk organic and inorganic geochemistry, sea surface temperature, and δ15N of pheopigments was obtained from deep-sea sediment cores recovered from inner and outer regions of the gulf. The results indicated that during the past 220 kyr, the influence of the southwest monsoon was stronger in the outer region of the gulf than in the inner region, which implies that the southwest monsoon trajectory has not changed substantially during that time period. Furthermore, influxes of O2-depleted water from the Southern Ocean and the lateral advection of upwelled seawater also had limited influence in the inner region. In contrast, concentrations of lithogenic materials transported by the southwest monsoon were similar in the two regions. δ15N of pheopigments indicated that during the last glacial maximum, the southwest monsoon was weaker and the northeast monsoon was stronger than at present. A stronger southwest monsoon during interglacials enhanced primary productivity and may have caused anoxic conditions to develop in the Arabian Sea, as indicated by redox proxies in the outer region. Anoxic conditions also formed during MIS 3, but no increase in the primary productivity is indicated; therefore, another mechanism, such as an influx of O2-depleted water from the Southern Ocean, may have been the cause.

  15. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen

    NASA Astrophysics Data System (ADS)

    Murari, Madhav K.; Owen, Lewis A.; Dortch, Jason M.; Caffee, Marc W.; Dietsch, Craig; Fuchs, Markus; Haneberg, William C.; Sharma, Milap C.; Townsend-Small, Amy

    2014-03-01

    Mapping and thirty-eight 10Be terrestrial cosmogenic nuclide (TCN) ages help define the timing of glaciation in the monsoon-influenced Greater Himalaya in central Garwhal, India. Glacial landforms in central Garwhal are present only within a few kilometers of the present glaciers and all date to less than ˜12.5 ka. This suggests that the Lateglacial and/or Holocene glacial advances were more extensive than their predecessors and hence destroyed or buried evidence for earlier glaciation or that other processes, such as intensive fluvial erosion and/or hillslope mass movements, have destroyed evidence of earlier glaciation. Prominent laterofrontal moraines date to the Lateglacial, the Early Holocene, and the Neoglaciation. Moraines next to the active ice and boulders on contemporary glaciers date to 101-102 years before present. This suggests only a minor glacial advance during the Little Ice Age occurred in central Garhwal. These young ages indicate that inheritance of TCNs in areas that were recently glaciated is very small and likely has little effect when considering TCN ages on moraines older than the global Last Glacial Maximum. The new 10Be ages are combined with 1081 recalculated 10Be ages from previous studies to develop a regional framework of glaciation across the monsoon-influenced and adjacent regions of the Himalayan-Tibetan orogen. We separate what appears to be continuous glaciation into 27 regional glacial stages (plus 2 tentative glacial stages) that are termed monsoonal Himalayan-Tibetan stages (MOHITS). The regional glacial stages cover a wide chronologic range that includes: five regional glacial stages older than the Last Glacial cycle (MOHITS 13 at 483 ± 38 ka to MOHITS 5E at 122 ± 15 ka); thirteen regional glacial stages within the Last Glacial cycle (MOHITS 5B at 91 ± 15 ka to MOHITS 2A at 12.9 ± 0.9 ka); and eleven regional glacial stages during the Holocene (MOHITS 1k at 11.4 ± 0.7 ka to MOHITS 1A at 0.4 ± 0.1 ka). There are strong

  16. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    NASA Astrophysics Data System (ADS)

    Malik, A.; Fernandes, C. E. G.; Gonsalves, M.-J. B. D.; Subina, N. S.; Mamatha, S. S.; Krishna, K.; Varik, S.; Kumari, R.; Gauns, M.; Cejoice, R. P.; Pandey, S. S.; Jineesh, V. K.; Kamaleson, A. S.; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.; LokaBharathi, P. A.

    2015-01-01

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May-September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions between bacteria, phytoplankton, and zooplankton in upwelling and non-upwelling regions. During cruise # 267 on FORV Sagar Sampada, water samples were analysed for environmental and biological parameters from two transects, one upwelling region off Trivandrum (TVM) (8°26‧N, 76°20‧E-8°30‧N, 76°50‧E), and the other non-upwelling region off Calicut (CLT) (11°11‧N, 75°30‧E-11°14‧N,74°54‧E), about 230 nmi to the north. Meteorological, hydrological, and nutrient profiles confirmed upwelling off TVM. Bacteria, phytoplankton and zooplankton significantly responded. Primary and bacterial productivity enhanced together with increase in the percentage of viable bacteria (TVC). Pearson's correlation analysis pointed out the differences in bacterial interactions with other trophic levels at both transects. TVC played a prominent role in trophic interactions off TVM by depending on phytoplankton for substrate (r = 0.754). This contrasted with CLT where total counts (TC) played an important role. However, most interrelationships were less pronounced. Principal component analysis (PCA) confirmed the correlation analysis and further showed that the factor loadings of the biotic and abiotic parameters differed in strength and direction in the two regions. More importantly, the processes of mineralization by bacteria and uptake by phytoplankton are obviously more coupled off TVM as evidenced by the clustering of the related parameters in the PCA biplot. Canonical correspondence analysis also complements these findings and demonstrated that the abiotic factors influenced phytoplankton and bacteria similarly at TVM but differently at CLT. The impact on the trophic interrelationships is evident by the close association

  17. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    NASA Astrophysics Data System (ADS)

    De Sales, F.; Xue, Y.; Okin, G. S.

    2014-12-01

    This study presents an investigation of the impact of burned areas on the surface energy balance and monthly precipitation in the northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS approximate date of burning product were implemented in a set of 1-year long WRF/NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was temporarily imposed through lower ground albedo for a period of 10 days after burning. In general, wildfire-induced vegetation and ground degradation increased surface albedo by exposing the brighter bare ground of the region, which in turn caused a decrease in surface net radiation and evapotranspiration in northern sub-saharan Africa. A decrease in atmospheric moisture flux convergence was simulated in the burned area experiments, which plays a dominant role in reducing precipitation over the area, especially in the months preceding the West African monsoon onset. The areas with largest impacts were those covered by forests and savanna, where annual precipitation decreased by 4.2% and 3.6%, respectively. This study suggests the cooling and drying of atmosphere induced by burned areas led to strengthening of subsidence during pre-onset and weakening of upward motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Monthly vertical wind over the area showed a strengthening of downward motion in winter and spring seasons, and weakening of upward movement during the rainy months. Furthermore, precipitation energy analysis revealed that most of precipitation decrease originated from convective events, especially for those with daily precipitation rates above 2.0 mm day-1, which substantiates the hypothesis of convective

  18. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    NASA Astrophysics Data System (ADS)

    De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.

    2015-02-01

    This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early

  19. Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and on the extratropical lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M.

    2015-04-01

    The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by CLaMS simulations using artificial emission tracers. Our simulations show that the Asian monsoon anticyclone is highly variable in location and shape and oscillates between 2 states: first a symmetric anticyclone and second, an asymmetric anticyclone either elongated or split in two smaller anticyclones. A maximum in the distribution of air originating from Indian/Chinese boundary layer sources is usually found in the core of the symmetric anticyclone, in contrast the asymmetric state is characterised by a double peak structure in the horizontal distribution of air originating from India and China. The simulated horizontal distribution of artificial emission tracers for India/China is in agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). The contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed, but in general the highest contributions are from North India and Southeast Asia at 380 K. In the early (June to mid-July) and late (mid-August to October) period of the monsoon 2012, contributions of emissions from Southeast Asia are highest and in the intervening period (≈ mid-July to mid-August) emissions from North India have the largest impact. Further, our simulations confirm that the thermal tropopause above the anticyclone constitutes a vertical transport barrier. Enhanced contributions of emission tracers for Asia are found at the northern flank of the Asian monsoon anticyclone between double tropopauses indicating an isentropic transport from the anticyclone into the lowermost stratosphere. After the breakup of the anticyclone, significant contributions of air masses originating in India

  20. Modulation of Summer Monsoon Circulation over Peninsular India by Western Ghats- A regional Climate modeling study

    NASA Astrophysics Data System (ADS)

    Rajanayagam, Lorna; Janardanan, Rajesh; Ram Mohan, H. S.

    The aim of the study is to understand the wind pattern over the Peninsular India with the modification of Orography over the region using Regional climate model. The model used in this study is the recent version (Version III) of the National Centre for Atmospheric Research (NCAR) Regional Climate Model RegCM3. The model integration is done on a horizontal resolution of 60 km. . The planetary boundary layer scheme used is that of Holtslag, cumulus parameterization scheme Emanuel of MIT, SUBEX large scale precipitation scheme and BATS ocean flux parameterization scheme. The model is run from 1st May to 30th September. The first month is taken for the spin up. The next four months are taken to study the monsoon. The simulation has been carried out for the 100%, 90%, 60% and 30% Orography (hereafter 100%o,90%o, 60%o, and 30%o) cases with RegCM3. The Zonal wind pattern for the 100%o and 90%o are similar, whereas the pattern changed for the 60% and 30%o. For the 60% and 30%o cases, the Zonal wind strengthened over the south peninsular India gradually increasing towards north. The Meridional component of the wind has a maximum over the Western Ghats between the latitudes 10o N and 15o N for the 100%o. Similar pattern has been observed for the 90%o also. For the 60%o and 30%o, the core has shifted to the northeast of India. The magnitude has decreased for the 30%o and the magnitude of meridional component is zero over the region south of 10o N. Keywords: Orography, Zonal and Meridional wind. References: Giorgi F, Mon. Wea Rev. 121: 2794 (1993) Giorgi F, Marinucci M R and Bates G T , Mon. Wea Rev. 121: 2794 (1993) K. C. Chow, Timing Liu, Johnny C. L. Chan and Yihui Ding, Int. J. Climatol. 26:1339-1359 (2006) K. C. Chow, Hang-Wai Tong and Johnny C. L. Chan, Clim. Dyn. DOI 10.1007/s00382-007- 0301-6

  1. Macrophysical and microphysical properties of monsoon clouds over a rain shadow region in India from ground-based radiometric measurements

    NASA Astrophysics Data System (ADS)

    Harikishan, G.; Padmakumari, B.; Maheskumar, R. S.; Pandithurai, G.; Min, Q. L.

    2014-04-01

    The important radiative properties of clouds such as cloud optical depth (COD) and droplet effective radii (Re) are retrieved from the simultaneous measurements by ground-based multifilter rotating shadowband radiometer (MFRSR) and microwave radiometric profiler (MWRP), colocated at Mahabubnagar, a rain shadow region in southern Indian peninsula. Min and Harisson's (1996) retrieval algorithm is used for the first time to derive monsoon cloud properties in India. COD and liquid water path (LWP) retrieved from two independent instruments of MFRSR and MWRP showed reasonably good correlation. During monsoon (July to September) and postmonsoon (October) months, the maximum probability of occurrence of COD for overcast sky is 20. The maximum probability of occurrence of LWP is 100 gm-2 for water clouds during monsoon months, while October showed maximum occurrence at a lower value of 50 gm-2, where most of the times the cloud bases are above freezing level indicating mixed phase clouds. Maximum Re varied from 14-16 µm (10-12%) to 12 µm (9%) during monsoon to postmonsoon transition with very less probability of occurrence indicating the characteristic feature of this region. A case study showed that the mean Re from ground-based and aircraft measurements are 12.0 ± 3.7 µm and 8.14 ± 1.4 µm, respectively, indicating a fairly good agreement within the experimental constraints. Intercomparison of ground-based and Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra and MODIS-Aqua-derived COD, LWP and Re over the observational site for overcast and warm clouds indicates that on an average, MODIS-retrieved mean COD and LWP are underestimated, while mean Re is overestimated as compared to ground retrievals.

  2. Improving the Knowledge of Summer Monsoon Storm Genesis on the Mumbai Region

    NASA Astrophysics Data System (ADS)

    Lomazzi, M.; Entekhabi, D.; Pinto, J. G.; Roth, G.; Rudari, R.

    2009-09-01

    Over the Indian Subcontinent, almost 75% of the annual precipitation is expected to fall during the South Asia Monsoon (SAM) season, conventionally defined between June 1 and September 30. While precipitation patterns show a very strong spatial heterogeneity, the maximum annual values (which may exceed 4000 mm) occur in the Western Coast of Indian Peninsula. This is mainly associated with orographic forcing, in particular of the Western Ghats and the Ganges and Brahmaputra valleys. Extreme rainfall events during the SAM season may be particularly intense and long-lasting, causing great damages both in terms of life and economic losses. We aim at identifying large-scale meteorological patterns associated with the triggering of extreme rainfall events affecting the Mumbai area (approximately 18-20°N, 72.5-73.5°E), a very highly populated region (around 20 million people), during the SAM season. Seventy years of daily rainfall data are analyzed and compared to a database of damage-causing precipitations. Event days are selected with a twin-threshold function related to daily rainfall height and soil moisture content. To detect typical large-scale features, event days are compared to non-event days by analyzing MSLP, SST, and vertical wind profiles. Further, the storm-related processes are analyzed with moisture sources (via backtracing) and moisture flux convergence fields. First results on selected event days show that they are typically characterized by remote moisture sources (from S-W Arabian Sea) and increased lower level westerly winds which cause enhanced moisture flux convergence, leading to precipitable water’s enhancement.

  3. Impact of different Asian source regions on the composition of the Asian monsoon anticyclone and of the extratropical lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M.

    2015-12-01

    The impact of different boundary layer source regions in Asia on the chemical composition of the Asian monsoon anticyclone, considering its intraseasonal variability in 2012, is analysed by simulations of the Chemical Lagrangian Model of the Stratosphere (CLaMS) using artificial emission tracers. The horizontal distribution of simulated CO, O3, and artificial emission tracers for India/China are in good agreement with patterns found in satellite measurements of O3 and CO by the Aura Microwave Limb Sounder (MLS). Using in addition, correlations of artificial emission tracers with potential vorticity demonstrates that the emission tracer for India/China is a very good proxy for spatial distribution of trace gases within the Asian monsoon anticyclone. The Asian monsoon anticyclone constitutes a horizontal transport barrier for emission tracers and is highly variable in location and shape. From the end of June to early August, a northward movement of the anticyclone and, during September, a strong broadening of the spatial distribution of the emission tracer for India/China towards the tropics are found. In addition to the change of the location of the anticyclone, the contribution of different boundary source regions to the composition of the Asian monsoon anticyclone in the upper troposphere strongly depends on its intraseasonal variability and is therefore more complex than hitherto believed. The largest contributions to the composition of the air mass in the anticyclone are found from northern India and Southeast Asia at a potential temperature of 380 K. In the early (mid-June to mid-July) and late (September) period of the 2012 monsoon season, contributions of emissions from Southeast Asia are highest; in the intervening period (early August), emissions from northern India have the largest impact. Our findings show that the temporal variation of the contribution of different convective regions is imprinted in the chemical composition of the Asian monsoon

  4. Monsoon precipitation in the AMIP runs

    NASA Astrophysics Data System (ADS)

    Gadgil, S.; Sajani, S.

    We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer

  5. Evolution of Vertical Moist Thermodynamic Structure Associated with the Indian Summer Monsoon 2010 in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Raju, A.; Parekh, Anant; Gnanaseelan, C.

    2014-07-01

    The 2010 boreal summer marked a worldwide abnormal climate. An unprecedented heat wave struck East Asia in July and August 2010. In addition to this, the tropical Indian Ocean was abnormally warm during the summer of 2010. Several heavy rainfall events and associated floods were also reported in the Indian monsoon region. During the season, the monsoon trough (an east-west elongated area of low pressure) was mostly located south of its normal position and monsoon low pressure systems moved south of their normal tracks. This resulted in an uneven spatial distribution with above-normal rainfall over peninsular and Northwest India, and deficient rainfall over central and northeastern parts of India, thus prediction (and simulation) of such anomalous climatic summer season is important. In this context, evolution of vertical moist thermodynamic structure associated with Indian summer monsoon 2010 is studied using regional climate model, reanalysis and satellite observations. This synergised approach is the first of its kind to the best of our knowledge. The model-simulated fields (pressure, temperature, winds and precipitation) are comparable with the respective in situ and reanalysis fields, both in intensity and geographical distribution. The correlation coefficient between model and observed precipitation is 0.5 and the root-mean-square error (RMSE) is 4.8 mm day-1. Inter-comparison of model-simulated fields with satellite observations reveals that the midtropospheric temperature [Water vapour mixing ratio (WVMR)] has RMSE of 0.5 K (1.6 g kg-1), whereas the surface temperature (WVMR) has RMSE of 3.4 K (2.2 g kg-1). Similarly, temporal evolution of vertical structure of temperature with rainfall over central Indian region reveals that the baroclinic nature of monsoon is simulated by the model. The midtropospheric warming associated with rainfall is captured by the model, whereas the model failed to capture the surface response to high and low rainfall events. The

  6. Commonalities of carbon dioxide exchange in semiarid regions with monsoon and Mediterranean climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiarid ecosystems with monsoon climates receive precipitation during the warm season while Mediterranean systems are characteristically wet in the cool season and dry in the summer. Comparing biosphere-atmosphere carbon exchange across these two climate regimes can yield information about the int...

  7. Water flow paths in a forested catchment of the East Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Payeur-Poirier, Jean-Lionel; Hopp, Luisa; Peiffer, Stefan

    2015-04-01

    The climate of South Korea is strongly influenced by the East Asian summer monsoon. It is hypothesized that the high precipitation regime of the summer monsoon causes significant changes in the hydrological behaviour of forested catchments, namely in water quantity, quality and flow paths. We conducted high frequency hydrometric, isotopic, hydrochemical and meteorological measurements in a forested catchment before, during and after the 2013 summer monsoon season. The catchment is located within the Lake Soyang watershed, where recent trends of increasing eutrophication, sediment load and organic carbon load have been observed. We studied the temporal variability of catchment runoff and the spatial and temporal variability of water flow paths in relation with the hydrological conditions of the hillslope, toeslope and riparian elements of the catchment. For the summer monsoon season, the runoff coefficient approximated 68%. During this period, for the 16 monitored individual storm events ranging between 13 mm and 126 mm in precipitation, the runoff coefficient greatly varied and a threshold relationship with soil moisture was observed. Analyses of hysteresis loops of catchment runoff also revealed threshold relationships with precipitation and soil moisture, as water flow paths were activated or not in different parts of the catchment. The variation of the electrical conductivity of catchment runoff through the summer monsoon also revealed the occurrence of threshold relationships. A principal component analysis (PCA) and an end-member mixing analysis (EMMA) were performed in order to quantify the contribution of the different landscape elements to catchment runoff. The combination of the hydrometric, isotopic and hydrochemical approaches allowed us to test our hypothesis and to shed light on the threshold relationships observed at the catchment. The findings of this study could be useful for the estimation of the water balance of the Lake Soyang watershed as well

  8. Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wang, Nai'ang; Chen, Hongbao; Li, Zhuolun; Zhou, Xuehua; Zhang, Chengqi

    2012-09-01

    The Asian summer monsoon and the westerly winds interact in the mid-latitude regions of East Asia, so that climate change there is influenced by the combined effect of the two climate systems. The Holocene millennial-scale Asian summer monsoon change shows the out-of-phase relationship with the moisture evolution in arid Central Asia. Although much research has been devoted to the long-term climate change, little work has been done on the mechanism. Summer precipitation, in the marginal regions of the Asian monsoon, is strongly affected by the monsoon and the westerly winds. The purpose of this paper is to examine the mechanism of the millennial-scale out-of-phase relationship by modern summer precipitation analysis in the northwest margin of the Asian monsoon (95-110°E, 35-45°N). First, the method of Empirical Orthogonal Function (EOF) analysis was carried out to the 1960-2008 summer rainfall data from 64 stations in that region; then the water vapor transportation and geopotential height field data were studied, in order to explain and understand the factors that influence the summer precipitation; lastly, the East Asian Summer Monsoon Index (EASMI), South Asian Summer Monsoon Index (SASMI), Summer Westerly Winds Index (SWI) were compared with the EOF time series. The results indicate the complicated interannual-scale interaction between the Asian summer monsoon and the westerly winds, which can result in the modern out-of-phase relationship in the study area. This study demonstrates that the interaction between the two climate systems can be considered as a factor for the millennial-scale out-of-phase relationship.

  9. Cloud properties during active and break spells of the West African summer monsoon from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Efon, E.; Lenouo, A.; Monkam, D.; Manatsa, D.

    2016-07-01

    High resolution of daily rainfall dataset from the Tropical Rainfall Measuring Mission (TRMM) was used to identify active and break cloud formation periods. The clouds were characterized based on CloudSat-CALIPSO satellite images over West Africa during the summer monsoon during the period 2006-2010. The active and break periods are defined as the periods during the peak monsoon months of June to August when the normalized anomaly of rainfall over the monsoon core zone is greater than 0.9 or less than -0.9 respectively, provided the criteria is satisfied for at least three consecutive days. It is found that about 90% of the break period and 66.7% of the active spells lasted 3-4 days. Active spells lasting duration of about a week were observed while no break spell had such a long span. Cloud macrophysical (cloud base height (CBH), cloud top height (CTH) and cloud geometric depth (∆H), microphysical (cloud liquid water content, (LWC), liquid number concentration (LNC), liquid effective radius, ice water content (IWC), ice number concentration (INC) and ice effective radius) and radiative (heating rate properties) over South Central West Africa (5-15°N; 15°W-10°E) during the active and break spells were also analyzed. High-level clouds are more predominant during the break periods compared to the active periods. Active spells have lower INC compared to the break spells. Liquid water clouds are observed to have more radiative forcing during the active than break periods while ice phase clouds bring more cooling effect during the break spells compared to the active spells.

  10. Analysis of a Monsoon Flood Event Effect on Surface and Groundwater Interactions in a Regional Semiarid Watershed

    NASA Astrophysics Data System (ADS)

    Bowman, R. S.; Vivoni, E. R.; Wyckoff, R.; Jakubowski, R.; Richards, K.

    2004-12-01

    Although sporadic and infrequent, flooding events in ephemeral watersheds are a critical component to the water, sediment and biogeochemical cycles in arid and semiarid regions. In the Southwestern United States, intense thunderstorms during the summer monsoon season interact with landscapes characterized by topographic complexity and soils of low infiltration capacity to produce large magnitude floods and flash floods. In this study, we examine the hydrometeorological conditions and hydrologic response of an extreme monsoon flood event in the Río Puerco watershed of north-central New Mexico and its downstream effects in the Río Grande, a major continental-scale river basin. The summer storm in early September 4-11, 2003 generated flash flooding in headwater basins and river flooding extending through the semiarid basin and downstream into the Río Grande for several tens of kilometers. We characterize the hydrometeorological conditions prior to the flood event using precipitation estimates from rain gauge records, NEXRAD radar data, and synoptic weather conditions over the 18,000 km2 Río Puerco basin. Then, we present the spatial and temporal variability in hydrologic response based on a set of nested stream gauges in river channels and irrigation canals as well as a network of instrumented well transects installed along the Río Grande alluvial aquifer. Our analysis illustrates the propagation, dampening, and attenuation of a large monsoonal storm through a semiarid ephemeral tributary into a regional river system from both a surface and groundwater hydrology perspective, including the water exchanges observed between the two systems. By estimating the frequency of the rainfall and flood event in the system relative to the historical record and known shifts in climate regime, we discuss the importance of extreme flood events in semiarid tributary systems and their downstream effects in the surface and groundwater interactions of regional river basins.

  11. Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Tan, Ming

    2014-02-01

    Inter-annual variation in the ratio of 18O to 16O of precipitation (δ18Op) in the monsoon regions of China (MRC, area approximately east of 100°E) has not yet been fully analyzed. Based on an analysis of the relationships between the time series of amount-weighted mean annual δ18O in precipitation (δ18Ow) and meteorological variables such as temperature, precipitation as well as atmospheric/oceanic circulation indices, it is recognized that the El Niño-Southern Oscillation (ENSO) cycle appears to be the dominant control on the inter-annual variation in δ18Op in the MRC. Further analysis shows that the trade wind plays a role in governing δ18Ow through affecting the intensity of the different summer monsoon circulations which are closely linked to the weakening (weaker than normal) and strengthening (stronger than normal) of the trade wind and gives the δ18Ow different values at or over inter-annual timescales. The southwest monsoon (SWM) drives long-distance transport of water vapor from Indian Ocean to the MRC, and along this pathway increasing rainout leads to more negative δ18Ow via Rayleigh distillation processes. In contrast, the southeast monsoon (SEM), which is consistent with the changes in the strength of the West Pacific subtropical high, drives short-distance water vapor transport from the West Pacific Ocean to the MRC and leads to less negative δ18Ow. Therefore, the δ18Ow value directly reflects the differences in influence between the SWM, which is strong when the SE trade wind is strong, and the SEM, which is strong when the SE trade wind is weak. In addition, the South China Sea Monsoon also transports local water vapor as well as plays a role in achieving the synchronization between the δ18Ow and ENSO. The author thus terms the δ18Op rhythm in the MRC the "circulation effect". In turn, the δ18Op variation in the MRC has the potential to provide information on atmospheric circulation and the signal of δ18Op recorded in natural archives

  12. Prediction of Indian Summer Monsoon Rainfall: A comparison of SST indices in the Indo-Pacific region

    NASA Astrophysics Data System (ADS)

    Boschat, Ghyslaine; Terray, Pascal; Masson, Sébastien

    2010-05-01

    The focus of this study is to document and discuss the variability and predictability of the Indian Summer Monsoon (ISM) rainfall at interannual time scales. Various SST indices have already been proposed in literature in order to understand the variability of ISM rainfall (Ashok et al. 2004; Goswami et al. 2005, Terray et al. 2007; Yang et al. 2007). However, the forecast skills and dynamics of these different indices have never been compared in detail. The present analysis is based on monthly mean rainfall fields from the CPC Merged Analysis of precipitation (CMAP), SST fields from the Hadley Centre Global Sea Surface Temperature data set (HadISST), and atmospheric data from NCEP-DOE Reanalysis 2, for the period 1979-2007. Four SST indices are computed in different regions of the Indian and Pacific oceans - Nino3.4 SST index in December-January, South East Indian Ocean SST (SEIO) in February-March, the Indian Ocean Basin Mode (IOB) in April-May, the Indian Ocean Dipole (IOD) averaged from September to November - and compared through composite analyses of SST and atmospheric fields, and correlation with ISM rainfall, onset and withdrawal. The results show that SEIO SSTs during late boreal winter or IOB SSTs during boreal spring are significant precursors for both the late ISM (August-September) and withdrawal of the monsoon, while the early part of the monsoon (June-July) and the monsoon onset are mostly influenced by a late ENSO withdrawal and equatorial Pacific variability during spring. Furthermore, correlation and regression analyses show that the IOB index is associated with the decay of ENSO events in one hand, while the SEIO index is linked to developing El Nino/La Nina episodes on the other. Despite different spatio-temporal definitions and relationships with ENSO, IOB and SEIO SSTs can thus both impact ISM rainfall, mainly through air-sea interactions within the Indian Ocean. With comparable predicting skills, the choice of the better index then hinges on

  13. An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2

    NASA Astrophysics Data System (ADS)

    Zhang, Lixia; Zhou, Tianjun

    2014-01-01

    The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulating global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-s1, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negative pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Niña years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Niña years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical ascent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMP, especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon.

  14. The Effects of Black Carbon and Sulfate Aerosols in ChinaRegions on East Asia Monsoons

    SciTech Connect

    Yang, Bai; Liu, Yu; Sun, Jiaren

    2009-01-01

    In this paper we examine the direct effects of sulfate and black carbon aerosols in China on East Asia monsoons and its precipitation processes by using the CAM3.0 model. It is demonstrated that sulfate and black carbon aerosols in China both have the effects to weaken East Asia monsoons in both summer and winter seasons. However, they certainly differ from each other in affecting vertical structures of temperature and atmospheric circulations. Their differences are expected because of their distinct optical properties, i.e., scattering vs. absorbing. Even for a single type of aerosol, its effects on temperature structures and atmospheric circulations are largely season-dependent. Applications of T-test on our results indicate that forcing from black carbon aerosols over China is relatively weak and limited. It is also evident from our results that the effects of synthetic aerosols (sulfate and black carbon together) on monsoons are not simply a linear summation between these two types of aerosols. Instead, they are determined by their integrated optical properties. Synthetic aerosols to a large degree resemble effects of sulfate aerosols. This implies a likely scattering property for the integration of black carbon and sulfate aerosols in China.

  15. Effect of ENSO on regional monsoonal rains -- a case study for central India

    SciTech Connect

    Sastri, A.S.R.A.S.

    1996-12-31

    The regular onset of warm ocean temperatures off Peru during the calendar months of December and January has long been known as El Nino. Years with abnormally warm ocean surface temperatures along the Peruvian coast are associated with abnormally warm ocean surface temperatures up and down the Pacific coast. The changes in the equatorial Pacific ocean surface temperatures influence the distribution of precipitation and give rise to a pattern of abnormal surface pressures that spans the tropics, the Southern Oscillation. These two phenomena, i.e., El Nino and Southern oscillation combined are known as ENSO which emphasize the importance of the interaction between the oceans and atmosphere. It has been found that ENSO has a great influence on Indian summer monsoons. However, there are several studies to examine the influence of ENSO and sea surface temperatures (SST) on the quantum and distribution of monsoonal rainfall. It was observed that during the El Nino years the monsoonal rainfall gets reduced and causes drought conditions in some parts of India.

  16. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  17. A link between North Atlantic cooling and dry events in the core SW monsoon region in Lonar Lake, central India

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Gaye, Birgit; Prasad, Sushma; Plessen, Birgit; Stebich, Martina; Anoop, Ambili; Riedel, Nils; Basavaiah, Nathani

    2014-05-01

    A sediment core from Lonar Lake in central India covers the complete Holocene and was used to reconstruct the monsoon history of the core SW-monsoon region. We compare C/N ratios, stable carbon and nitrogen isotopes, grain size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. Several phases of shorter term climate alteration that superimpose the general climate trend correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred between 6.2 - 5.2, 4.65 - 3.9, and 2.05 - 0.55 cal ka BP. The strong dry phase between 4.65 - 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP.

  18. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Jijun; Guo, Benhong; Ma, Zhenhua; Li, Xiaomiao; Ye, Xiyan; Yu, Hao; Liu, Jia; Yang, Cheng; Zhang, Shengda; Song, Chunhui; Hui, Zhengchuang; Peng, Tingjiang

    2016-05-01

    The loess-paleosol sequences of the Chinese Loess Plateau (CLP) are major paleoclimatic archives which document the evolution of the East Asian Monsoon (EAM) and changes in the Northern Hemisphere ice sheets during the Quaternary glacial-interglacial cycles. However, the mechanisms regulating the trend of EAM variations on a tectonic scale are unclear. The loess deposits of the western CLP, which have a close relationship with tectonics and climate, are much better-suited to exploring these mechanisms than those of the central CLP. However, studies of long-term EAM evolution from the western CLP have been hindered by the lack of long, accurately-dated sequences with high sediment accumulation rates. Here, we address this problem via high resolution magnetostratigraphic, magnetic susceptibility and grain-size analyses of a 416.2 m-long drill core located at Xijin Village, near Lanzhou. Paleomagnetic dating indicates that the basal age of the Xijin loess is ∼2.2 Ma. The χ and grain-size records reveal that the East Asian Summer Monsoon (EASM) and East Asian Winter Monsoon (EAWM) strengthened synchronously at ∼1.24 Ma. Subsequently, during interglacial periods, the EASM began to penetrate, and then dominate, in the Lanzhou region. This was followed by two stepwise uptrends, commencing at ∼0.87 and ∼0.62 Ma, which resulted in an increasingly moist interglacial climate in the region. We suggest that the uplift of the Tibetan Plateau was largely responsible for these three stepwise enhancements of the EASM. Overall, however, the long-term trend of strengthening in EAWM in the area may have been primarily caused by long-term global cooling from the Late Pliocene onwards.

  19. A regional climate model simulation of summer monsoon over east asia: a case study of 1991 flood in yangtze-huai river valley

    NASA Astrophysics Data System (ADS)

    Wei, Helin; Wang, Wei-Chyung

    1998-12-01

    The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Regional Climate Models should be a better way to simulate the summer monsoon evolution, because not only they can reflect the large-scale forcing through boundary condition, theirs high resolution can also catch regional-scale forcing in detail. To evaluate the ability of SUNYA-ReCM to simulate the evolution of the summer monsoon over East Asia especially in the extreme climate, a simulation of the East Asian flood that occurred during 1991 summer was performed. This simulation was driven by large-scale atmospheric background derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tropic Ocean Global Atmospheric (TOGA) analysis. The model is capable of reproducing the major features of the monthly mean monsoon circulation, anomalous rainfall in the Yangtze-Huai River Valley and the two northward jumps of rainfall belt as well as the other large-scale components of the monsoon. The changes of the large-scale circulation during the evolution of summer monsoon are also well simulated, which include: (1) the wind direction changes from southeasterly to southwesterly in the South China Sea. (2) The northward shift of the upper westerly over East China and the Tibetan Plateau. (3) The northward shift of the western Pacific subtropic high at 500 hPa. The model also has a good simulation on the evolution of the regional-scale components of the monsoon, including Meiyu front and southwest (SW) vortex in Sichuan Basin.

  20. Impact of Soil Moisture Conditions on Interannual Variability of the Water Balance over the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Xu, J.; Small, E.; Lakshmi, V.

    2001-12-01

    In this study, the effects of soil moisture conditions on interannual variability of the water balance over the North American monsoon (NAM) region was investigated using NCAR's MM5/OSU model. Observations and modeling studies suggest that a positive soil moisture-rainfall feedback may be important in magnifying and prolonging hydroclimatic anomalies in a variety of regions. Our preliminary modeling experiments show that the soil moisture-rainfall feedback is strong in the North American Monsoon System (NAMS) region and may contribute to variability of summertime precipitation in this area. However, this result is based on sensitivity experiments using extreme forcing - soil moisture was held at field capacity or wilting point throughout season long simulations. Here we use the MM5 model linked to the OSU land surface scheme to assess the strength of soil moisture-rainfall feedbacks in the NAMS region that result from realistic soil moisture forcing. Simulations are driven by NCEP reanalysis. The horizontal resolution of the finest grid is 30 km. Three member ensemble experiments begin on June 1 and end on October 1. First, we use the coupled MM5/OSU model to simulate NAMS climate and soil moisture in wet (1999) and dry (2000) monsoon seasons. Second, we repeat these two experiments but constrain the precipitation rate in July over the entire NAM region so that it approximates the mean state. This is accomplished by scaling the simulated precipitation at each point so that it is equal to mean observed precipitation at that location. Third, we repeat the 1999 and 2000 experiments but constrain the soil moisture field in July to the climatological mean value from the NCEP reanalysis. Both types of sensitivity experiments preserve the temporal variability of sea surface temperature (SST) in the surrounding oceans. We compare the atmosphere and land surface state in the control and sensitivity experiments. This isolates the effects of soil moisture anomalies on the

  1. Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Dobler, A.; Ahrens, B.

    2011-12-01

    This paper discusses projections of the Indian summer monsoon (ISM) by the regional climate model COSMO-CLM, highlighting similarities to and differences from its driving model, the global atmosphere-ocean model ECHAM5/MPIOM. The ISM is quantified using the all-Indian monsoon rainfall (AIMR) index and two vertical wind shear indices. To investigate the impacts of greenhouse gas emissions on the ISM, four emission scenarios for the time period 1960-2100 (Special Report on Emissions Scenarios A2, A1B, B1, and commitment) are considered. The COSMO-CLM simulations show significantly weakening ISM trends in all indices for emission scenarios A2, A1B, and B1. Parts of northwestern India are projected to face a decrease in the monsoon rainfall amount of over 70% within this century. For the wind shear indices, the projected decreases are mainly due to changes in the upper troposphere winds. The weakening of the dynamics in the COSMO-CLM is in agreement with the weakening in the driving ECHAM5/MPIOM model. The two models further agree in significantly positive trends of atmospheric water vapor contents and rain day intensities. However, ECHAM5/MPIOM shows no decrease in AIMR. The different AIMR trends in the two models are found to be due to different changes in the residence time of water in the atmosphere: In the COSMO-CLM projections, the residence time is more prolonged than in ECHAM5/MPIOM. This again is the consequence of a decrease in the number of depressions moving toward the northwestern parts of India.

  2. Validating the Sensitivity of a Regional Climate Model to Land Surface Parameterization Schemes for East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Li, W.; Guo, W.; Xue, Y.; Fu, C.; Qiu, B.

    2015-12-01

    Land surface processes play an important role in East Asian Summer Monsoon (EASM), and its parameterization schemes may cause uncertainty of dynamic downscaling in regional climate model (RCM) for EASM. In this study we investigated the sensitivity of RCM to land surface parameterization (LSP) schemes for long-term simulations of EASM. Simulations for 22-year EASM using Weather Research and Forecasting (WRF) Model coupled with four different LSP schemes (Noah-MP, CLM4, Pleim-Xiu and SSiB; Four simulations are named Sim-Noah, Sim-CLM, Sim-PX and Sim-SSiB respectively) were conducted. The 22-year averaged spatial distribution and intensity of downscaling large-scale circulation, precipitation and 2-m temperature were compared with ERA-Interim/ observations. Results show that the downscaling ability of RCM for EASM is sensitive to LSP scheme. Furthermore, RCM does add more information than reanalysis/GCM-products. And Sim-PX and Sim-SSiB show closer to observation than Sim-Noah and Sim-CLM for monsoon precipitation and 2-m temperature. To clarify the physical and dynamic mechanisms of the sensitivity, the differences of energy budgets and their atmospheric effects between Ens-Noah-CLM (ensemble mean averaging Sim-Noah and Sim-CLM) and Ens-PX-SSiB (ensemble mean averaging Sim-PX and Sim-SSiB) were compared. We found that the intensity of SH flux over Asian continent in Ens-Noah-CLM is stronger than that in Ens-PX-SSiB, which induces the higher tropospheric temperature over land. The land-sea thermal contrast will be influenced. Then the adaptive modulation of GHT gradients affects wind flow (through geostrophic balance), especially at lower-level. As a result, the simulation of large-scale circulation, monsoon precipitation and 2-m temperature are influenced accordingly.

  3. Simulating Extreme Summer Precipitation Patterns in the North American Monsoon Region using the CCM3/HRBATS Model

    NASA Astrophysics Data System (ADS)

    Hahmann, A. N.

    2001-12-01

    Current climate integrations with the National Center for Atmospheric Research Community Climate Model (CCM3) show a very pronounced dry bias in summer precipitation over the North American Monsoon System (NAMS) region. Additionally, summer precipitation totals in this region show a smaller than observed interannual variability and a weak response to changes in SSTs. To understand the reasons behind the CCM3 misrepresentation of monsoonal processes in the NAMS region, we have chosen to examine model simulation during two extreme years: 1984 (wet) and 1993 (dry). These two years were selected according to observed precipitation totals in the northernmost portion, i.e. Arizona and New Mexico, of the NAMS region. Ensemble AMIP-type simulations with CCM3 in its standard configuration (i.e., at T42 resolution and coupled to its standard land surface model; LSM) show only small differences in precipitation over the NAMS region between the two chosen extreme years. When CCM3 is coupled to BATS and integrated over several years with SSTs for the two contrasting years, the differences in summer precipitation remain much smaller than the observed differences. In a final experiment, CCM3 is coupled to the fine-mesh version of BATS (named HRBATS), which is described in Hahmann and Dickinson (2001). This model allows for explicit representation of sub-grid variations in vegetation and soils and the inclusion of fractional ocean areas. In these simulations, a very pronounced difference in precipitation, comparable to the observed precipitation differences, is seen between the two contrasting years. The possible physical mechanisms that might explain these differences are explored in this talk. Possible reasons include the presence of the waters of the Gulf of California, which might provide a moisture source, and the better representation of snow cover over the prior winter and spring seasons.

  4. Severe weather during the North American monsoon and its response to rapid urbanization and a changing global climate within the context of high resolution regional atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Luong, Thang Manh

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. With sufficient atmospheric instability and moisture, monsoon convection initiates during daytime in the mountains and later may organize, principally into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. The overarching theme of this dissertation research is to investigate simulation of monsoon severe weather due to organized convection within the use of regional atmospheric modeling. A commonly used cumulus parameterization scheme has been modified to better account for dynamic pressure effects, resulting in an improved representation of a simulated MCS during the North American monsoon experiment and the climatology of warm season precipitation in a long-term regional climate model simulation. The effect of urbanization on organized convection occurring in Phoenix is evaluated in model sensitivity experiments using an urban canopy model (UCM) and urban land cover compared to pre-settlement natural desert land cover. The presence of vegetation and irrigation makes Phoenix a "heat sink" in comparison to its surrounding desert, and as a result the modeled precipitation in response to urbanization decreases within the Phoenix urban area and increase on its periphery. Finally, analysis of how monsoon severe weather is changing in association with observed global climate change is considered within the context of a series of retrospectively simulated severe weather events during the period 1948-2010 in a numerical weather prediction paradigm. The individual severe weather events are identified by favorable thermodynamic conditions of instability and atmospheric moisture (precipitable water). Changes in precipitation extremes are evaluated with extreme value statistics. During the last several decades, there has been

  5. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a

  6. Monitoring Southern African Rainfall Season Utilizing Growing Regions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Magadzire, T.

    2005-12-01

    Variability in timing and amount of rainfall during the growing season in southern Africa can have a dramatic impact on livelihoods in the region. This research integrates satellite model rainfall amounts with expectations for the remainder of the season to provide an envelope of likely outcomes for different growing regions. Satellite information combined with station observations combine to make the African Rainfall Climatology (ARC), which is used to estimate the start of season (SOS) and monitor the season-to-date rainfall accumulations at a pixel level. The Collaborative Historical African Rainfall Model (CHARM) - a 36-year climatology based on available station fields, global climate models and an orographic component - is used to estimate various scenarios for the remainder of the season. The season length is defined by location specific length of growing period provided by the Southern African Development Community (SADC). Once the SOS is observed according to the ARC, seasonal accumulations for each pixel begin and are evaluated at a dekadal interval. These accumulations can be compared to historical accumulations after an equal number of dekads to evaluate the progression of the season as a percentage of historical season-to-date totals for each pixel. Rainfall accumulations for the remainder of the growing period can be tallied for each year of the CHARM dataset, and Gamma probability distribution parameters can be fit to these values. Using these distribution parameters, it is possible to evaluate scenarios for the remainder of the season and combine them with the accumulations from the ARC to arrive at total rainfall accumulated during a growing period. Analysis of these totals can be compared with long-term mean accumulations for the growing period to estimate how crops will fare relative to past performance. Evaluation of various wet and dry scenarios for the remainder of the season, defined here as the 80th percentile and 20th percentile, provide an

  7. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological

  8. Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India

    NASA Astrophysics Data System (ADS)

    Tiwari, Suresh; Kulshrestha, U. C.; Padmanabhamurty, B.

    Studies on monsoon precipitation chemistry were carried out to understand the nature of rainwater and sources of pollution at eight different locations in and around the National Capital Region (NCR) of Delhi during southwest monsoon in the years 2003-2005. These sites were Bulandshahr (BUL), Garhmuktesar (GAR), Muradnagar (MUR), Sardhana (SAR), Panipat (PAN), Charkhi Dadri (CHA), Hodal (HOD) and Bahror (BAH). The rainwater samples, collected at these locations, were analyzed for major anions, cations and pH. The data were assessed for its quality. In general, the order of concentrations of major ions was observed to be: Ca 2+>SO 42->HCO 3->NH 4+>Cl ->NO 3->Na +>Mg 2+>K +>F -. The average pH of rainwater at these stations was observed to be 6.39, ranging from 5.77 to 6.62, indicating alkaline nature. However, a few rain events, 31% at Panipat, 12% at Muradnagar and 29% at Sardhana, were observed to be acidic (pH<5.6). Acidity observed at Panipat and Muradnagar is attributed to industrial influence but at Sardhana to weak organic acids contributed by surrounding vegetation. No definite trends are found for most of the components at all the sites. However, concentrations of Cl - at Bulandshahr; NO 3- at Muradnagar and Hodal; F - at Panipat and Bahror; Na + at Bulandshahr; K + at Bahror and Bulandshahr; Ca 2+ at Bulandshahr, Muradnagar, Charkhi Dadri and Sardhana; Mg 2+ at Panipat, Bahror, Bulandshahr, Hodal and Sardhana have increased from 2003 to 2005. For source identification, principal component analysis (PCA) was made, which showed that in general, at all the sites; suspended soil-dust and sea salts which are natural sources, were identified as the most dominating. Sources like agriculture including cattle, brick kilns and industries were reflected in third or fourth PC indicating moderate influence of anthropogenic activities in this region.

  9. Moisture variability over the Indo-Pacific region and its influence on the Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ratna, Satyaban B.; Cherchi, Annalisa; Joseph, P. V.; Behera, S. K.; Abish, B.; Masina, Simona

    2016-02-01

    The Indo-Pacific Ocean (i.e. region between 30°E and 150°E) has been experiencing a warming since the 1950s. At the same time, the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study, we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related to the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951-2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes to modulate the western Pacific-Indian Ocean Walker circulation. At the same time, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Contrary to previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian Sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and this has been contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats.

  10. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-06-01

    The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. Simulated long term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American Monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS as compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and be lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOx. This also affects the distribution of PAN in the UTLS. According to sensitivity simulations with and without lightning, increase in concentrations of PAN (~ 40%), HNO3 (75%), NOx (70%) and ozone (30%) over the regions of convective transport, especially over equatorial Africa and America and comparatively less over the ASM. This indicates that PAN in the

  11. Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation

    NASA Astrophysics Data System (ADS)

    Li, Wenkai; Guo, Weidong; Xue, Yongkang; Fu, Congbin; Qiu, Bo

    2015-12-01

    Land surface processes play an important role in the East Asian Summer Monsoon (EASM) system. Parameterization schemes of land surface processes may cause uncertainties in regional climate model (RCM) studies for the EASM. In this paper, we investigate the sensitivity of a RCM to land surface parameterization (LSP) schemes for long-term simulation of the EASM. The Weather Research and Forecasting (WRF) Model coupled with four different LSP schemes (Noah-MP, CLM4, Pleim-Xiu and SSiB), hereafter referred to as Sim-Noah, Sim-CLM, Sim-PX and Sim-SSiB respectively, have been applied for 22-summer EASM simulations. The 22-summer averaged spatial distributions and strengths of downscaled large-scale circulation, 2-m temperature and precipitation are comprehensively compared with ERA-Interim reanalysis and dense station observations in China. Results show that the downscaling ability of RCM for the EASM is sensitive to LSP schemes. Furthermore, this study confirms that RCM does add more information to the EASM compared to reanalysis that imposes the lateral boundary conditions (LBC) because it provides 2-m temperature and precipitation that are with higher resolution and more realistic compared to LBC. For 2-m temperature and monsoon precipitation, Sim-PX and Sim-SSiB simulations are more consistent with observation than simulations of Sim-Noah and Sim-CLM. To further explore the physical and dynamic mechanisms behind the RCM sensitivity to LSP schemes, differences in the surface energy budget between simulations of Ens-Noah-CLM (ensemble mean averaging Sim-Noah and Sim-CLM) and Ens-PX-SSiB (ensemble mean averaging Sim-PX and Sim-SSiB) are investigated and their subsequent impacts on the atmospheric circulation are analyzed. It is found that the intensity of simulated sensible heat flux over Asian continent in Ens-Noah-CLM is stronger than that in Ens-PX-SSiB, which induces a higher tropospheric temperature in Ens-Noah-CLM than in Ens-PX-SSiB over land. The adaptive

  12. Regional environmental simulation of African cattle herding societies

    SciTech Connect

    Krummel, J.R.; Markin, J.B.; O'Neill, R.V.

    1986-03-01

    Regional analyses of the interaction between human populations and natural resources must integrate landscape scale environmental problems. An approach that considers human culture, environmental processes, and resource needs offers an appropriate methodology. With this methodology, we analyze problems of food availability in African cattle-keeping societies. The analysis interrelates cattle biomass, forage availability, milk and blood production, crop yields, gathering, food subsidies, population, and variable precipitation. While an excess of cattle leads to overgrazing, cattle also serve as valuable food storage mechanisms during low rainfall periods. Food subsidies support higher population levels but do not alter drought-induced population fluctuations. Variable precipitation patterns require solutions that stabilize year-to-year food production and also address problems of overpopulation.

  13. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  14. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically

  15. Phenology Analysis of Forest Vegetation to Environmental Variables during - and Post-Monsoon Seasons in Western Himalayan Region of India

    NASA Astrophysics Data System (ADS)

    Khare, S.; Latifi, H.; Ghosh, K.

    2016-06-01

    To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous

  16. Assessing how seasonal hydrological balance has changed during the warming 20th century in the montane forests of Southeast Asian monsoon region using a stable isotope dendroclimatology approach

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Stott, L. D.

    2010-12-01

    Tropical montane forests act as water catchment and host of biodiversity in the Southeast Asian monsoon region, and understanding how their hydrological conditions change with global warming is vitally important. Global climate model simulations project enhanced moisture cycle in the tropics, which would cause stronger summer monsoon precipitations, but on the other hand the adiabatic lapse rate would be shifted towards a moister condition (amplification of warming at high elevation), inhibiting dry season orographic lifting cloud/fog formation (lifting cloud base hypothesis), enhancing evapo-transpiration, and leading to a net moisture loss during winter dry season. In this study, we have attempted to investigate how the seasonal moisture balance in Southeast Asia has evolved in response to these influences through the 20th century using the oxygen isotopic composition (δ18O) of subannual tree cellulose samples extracted from the annual rings of pine trees that grow in Doi Chiang Dao, a limestone mountain in northern Thailand. At this location the δ18O of cellulose exhibits distinctive annual cycles of up to 12‰, which is primarily a reflection of both the so-called ‘isotope amount effect’ that is associated with the strong monsoon precipitation during summer wet season and the moisture availability from different sources during winter dry season. We have demonstrated that tree cellulose δ18O could be used as a proxy for regional monsoon strength by showing that the annual mean cellulose δ18O correlate significantly with All India Rainfall, Webster-Yang monsoon index, as well as with both local and regional monsoon precipitation. ENSO is the dominant influence on interannual rainfall variability and this is well expressed in the interannual cellulose δ18O record. Using a 21-year moving window correlation analysis we find a weakening of ENSO influence after 1980, coinciding with the most rapid atmospheric warming. We expect to analyze older trees to

  17. Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon

    NASA Astrophysics Data System (ADS)

    Meyer, Jonathan D. D.; Jin, Jiming

    2016-05-01

    This study investigates how a form of bias correction using linear regression improves the limitations of the community climate system model (CCSM) version 4 when it is dynamically downscaled with the Weather Research and Forecasting (WRF) model for the North American monsoon (NAM). Long-term biases in the CCSM dataset were removed using the climate forecast system reanalysis (CFSR) dataset as a baseline, from which a physically consistent set of bias-corrected variables were created. To quantitatively identify the effects of CCSM data on the NAM simulations, three 32-year climatologies were generated with WRF driven by (1) CFSR, (2) original CCSM, and (3) bias-corrected CCSM data. The WRF-CFSR simulations serve as a baseline for comparison. With the bias correction, onset dates simulated by WRF bias-corrected CCSM data were generally within a week of the WRF-CFSR climatology, while WRF using the original CCSM data occur up to 3-4 weeks too early over the core of the NAM. Additionally, bias-correction led to improvements in the mature phase of the NAM, reducing August root-mean-square-error values by 26 % over the core of the NAM and 36 % over the northern periphery. Comparison of the CFSR and the bias-corrected CCSM climatologies showed marked consistency in the general evolution of the NAM system. Dry biases in the NAM precipitation existed in each climatology with the original CCSM performing the poorest when compared to observations. The poor performance of the original CCSM simulations stem from biases in the thermodynamic profile supplied to the model through lateral boundary conditions. Bias-correction improved the excessive capping inversions, and mid-level mixing ratio dry biases (2-3 g kg-1) present in the CCSM simulations. Improvements in the bias-corrected CCSM data resulted in greater convective activity and a more representative seasonal distribution of precipitation.

  18. Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon

    NASA Astrophysics Data System (ADS)

    Meyer, Jonathan D. D.; Jin, Jiming

    2015-07-01

    This study investigates how a form of bias correction using linear regression improves the limitations of the community climate system model (CCSM) version 4 when it is dynamically downscaled with the Weather Research and Forecasting (WRF) model for the North American monsoon (NAM). Long-term biases in the CCSM dataset were removed using the climate forecast system reanalysis (CFSR) dataset as a baseline, from which a physically consistent set of bias-corrected variables were created. To quantitatively identify the effects of CCSM data on the NAM simulations, three 32-year climatologies were generated with WRF driven by (1) CFSR, (2) original CCSM, and (3) bias-corrected CCSM data. The WRF-CFSR simulations serve as a baseline for comparison. With the bias correction, onset dates simulated by WRF bias-corrected CCSM data were generally within a week of the WRF-CFSR climatology, while WRF using the original CCSM data occur up to 3-4 weeks too early over the core of the NAM. Additionally, bias-correction led to improvements in the mature phase of the NAM, reducing August root-mean-square-error values by 26 % over the core of the NAM and 36 % over the northern periphery. Comparison of the CFSR and the bias-corrected CCSM climatologies showed marked consistency in the general evolution of the NAM system. Dry biases in the NAM precipitation existed in each climatology with the original CCSM performing the poorest when compared to observations. The poor performance of the original CCSM simulations stem from biases in the thermodynamic profile supplied to the model through lateral boundary conditions. Bias-correction improved the excessive capping inversions, and mid-level mixing ratio dry biases (2-3 g kg-1) present in the CCSM simulations. Improvements in the bias-corrected CCSM data resulted in greater convective activity and a more representative seasonal distribution of precipitation.

  19. Evolution of South China Sea Summer Monsoon During SCSMEX-98: An Application of TRMM Data for Regional Hydro-Climate Studies

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Li, Xiaofan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Evolution of South China Sea (SCS) summer monsoon in May-June, 1998 is investigated by using NASA/Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) data and the SCS Monsoon Experiment (SCSMEX) data. The five-day mean moisture budget over the SCS region, and TMI surface rain rate, winds and divergence are calculated for the periods of pre-monsoon, onset, mature, and break. Results show that the SCS monsoon onset is triggered by the southward-propagating mid-latitude frontal system and the eastward-propagating intraseasonal oscillations. The disastrous flooding over the Yangtze River Basin in 1998 is caused mainly by the massive moisture transport by the lower-tropospheric prevailed westerly winds associated with the depression over the Bay of Bengal. The TRMM PR data are used to calculate the vertical distribution of fractional cover of Corrected Z-factor. Before the onset, the fractional cover 1-2% of 20-30 dBz appears around 2 km, indicating marine status clouds, During the monsoon onset and mature, the factional cover 34% of 25-35 dBz occurs below 6 km, indicating strong convection. The factional cover 5% of 20 dBz is around 8 km, which is indicative of large stratiform ice clouds. Yangtze River (YR) floods occurred as a part of the evolution of the East Asian summer monsoon. The rain rate over the YR shows out of phase with rainfall over the SCS. The vertical structures and statistical properties of clouds over the YR are compared with those over the SCS.

  20. Relationship between tropical cyclone activities in the Northwest Pacific area and the summer monsoon rainfall in the Northeast Asian region

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yu-Mi; Kang, Sung-Dae; Kim, Hae-Dong

    2015-07-01

    The study surveys the tropical cyclone (TC) activities in the Northwestern Pacific region during the summer monsoon season (SMS) (June-July) in the Northeast Asian region (North China, Korea, and Japan). The positive (negative) SMS rainfall years in the region show that not only the TC genesis frequency, but also the TC frequency which affects the Northeast Asian countries, are low (high) in the tropical and subtropical northwest Pacific. That is, the TCs mainly move to the southern part of China or up to the east sea far from Japan in the positive SMS rainfall years. The study analyzes the difference between the two groups in the 500 hPa streamline to investigate TC activities for the groups. The large-scale anomalous anticyclone and the anomalous cyclone were enlarged in the tropical and subtropical Northwestern Pacific and from Manchuria to the eastern Japan, respectively. Due to such anomalous pressure system patterns being strengthened during the positive SMS rainfall years, the tropical Northwestern Pacific below 20°N fortified anomalous easterlies, causing a lot of TCs during those years to move to the southern part of China along with these anomalous steering flows (anomalous easterlies). In addition, the anomalous anticyclone that is located in the tropical and subtropical Northwestern Pacific caused a low TC genesis frequency during the positive SMS rainfall years.

  1. Simulations of summer monsoon climate over East Asia with a Regional Climate Model (RegCM) using Tiedtke convective parameterization scheme (CPS)

    NASA Astrophysics Data System (ADS)

    Bao, Yan

    2013-12-01

    In this study, we implemented the Tiedtke convective parameterization scheme (CPS) into the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3) and simulated the East Asian Summer Monsoon (EASM) climate. A 6-year experiment was completed, from September 1996 through August 2002, and compared with an analogous experiment employing the Grell CPS option available in RegCM3. The ability of the model to represent the average climatology was investigated. Our results indicate that the Tiedtke CPS shows a generally good performance in describing surface climate and large-scale circulation throughout the summer monsoon period. Compared to the simulation with Grell CPS, the simulation with Tiedtke scheme shows a number of improvements, including a better distribution of summer monsoon precipitation due to a better positioning of the Western Pacific Subtropical High (WPSH) in the middle troposphere and the southwesterly jet in the lower troposphere, and more realistic seasonal evolution of the monsoon precipitation. The cold surface air temperature bias characteristic frequently seen in Grell scheme over this region is also reduced. Generally, the Tiedtke scheme simulates warm and wet atmospheric conditions in the middle and lower tropospheres, a result more in agreement with the European Centre for Medium-Range Weather Forecasts (ECMWF) 40 Years analysis (ERA-40). The Tiedtke scheme is more prone to activate convection in the lower troposphere than the Grell scheme due to more moist static energy available for activating and supporting the development of convection systems.

  2. Extreme events evaluation over African cities with regional climate simulations

    NASA Astrophysics Data System (ADS)

    Bucchignani, Edoardo; Mercogliano, Paola; Simonis, Ingo; Engelbrecht, Francois

    2013-04-01

    The warming of the climate system in recent decades is evident from observations and is mainly related to the increase of anthropogenic greenhouse gas concentrations (IPCC, 2012). Given the expected climate change conditions on the African continent, as underlined in different publications, and their associated socio-economic impacts, an evaluation of the specific effects on some strategic African cities on the medium and long-term is of crucial importance with regard to the development of adaptation strategies. Assessments usually focus on averages climate properties rather than on variability or extremes, but often these last ones have more impacts on the society than averages values. Global Coupled Models (GCM) are generally used to simulate future climate scenarios as they guarantee physical consistency between variables; however, due to the coarse spatial resolution, their output cannot be used for impact studies on local scales, which makes necessary the generation of higher resolution climate change data. Regional Climate Models (RCM) describe better the phenomena forced by orography or by coastal lines, or that are related to convection. Therefore they can provide more detailed information on climate extremes that are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws. The normal bias of the RCM to represent the local climatology is reduced using adequate statistical techniques based on the comparison of the simulated results with long observational time series. In the framework of the EU-FP7 CLUVA (Climate Change and Urban Vulnerability in Africa) project, regional projections of climate change at high resolution (about 8 km), have been performed for selected areas surrounding five African cities. At CMCC, the regional climate model COSMO-CLM has been employed: it is a non-hydrostatic model. For each domain, two simulations have been performed, considering the RCP4.5 and RCP8.5 emission

  3. Late Holocene South American and Indian summer monsoon variability: Assessing the regional significance of the Medieval Climate Anomaly and Little Ice Age

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Rudloff, O. M.; Escobar, J.; Polissar, P. J.; Steinman, B. A.; Thompson, L. G.; Yao, T.

    2014-12-01

    The response of Earth's major climate systems to natural forcings during the last 2000 years can provide valuable insight into the affect that ongoing climate change may have on these systems. Understanding the relationship between temperature, monsoonal hydroclimate and radiative forcing is of particular interest because hydrologic responses in these systems have the ability to impact over half of the global population. Here, late Holocene variability in the South American and Indian summer monsoon regions is examined using sedimentological, geochemical and isotopic proxies from high altitude lake sediment archives from the Colombian Andes and the southeastern Tibetan Plateau. New results from Laguna de Ubaque, a small moraine dammed lake at 2060 m ASL in the Eastern Cordillera of the Colombian Andes, suggest a reduction in Andean South American summer monsoon (SASM) rainfall during the Medieval Climate Anomaly (MCA; 900 to 1200 CE) that is consistent with other records from the Andes. During the Little Ice Age (LIA; 1450 to 1900 CE), Ubaque shows wet conditions between 1450 and 1600 CE and drier conditions from1600 to 1900 CE. This pattern is similar to accumulation at the Quelccaya Ice Cap, but differs from ice core, speleothem and lake sediment oxygen isotope records of synoptic-scale monsoonal precipitation, suggesting that Andean rainfall anomalies may have differed from upstream monsoonal trends over the Amazon. In contrast, results from Badi Namco and Paru Co on the southeastern Tibetan Plateau suggest that the MCA and LIA were relatively minor hydroclimate events superimposed on a larger millennial scale variation in Indian summer monsoon precipitation (1200 to 200 cal yr B.P.) that was associated with changes in the position of the ITCZ, surface air temperature over the Tibetan Plateau and sea surface temperatures in the western tropical Pacific. The unique hydroclimate variations in the ISM and SASM regions supports the idea that while spatially

  4. Projections of African drought extremes in CORDEX regional climate simulations

    NASA Astrophysics Data System (ADS)

    Gbobaniyi, Emiola; Nikulin, Grigory; Jones, Colin; Kjellström, Erik

    2013-04-01

    We investigate trends in drought extremes for different climate regions of the African continent over a combined historical and future period 1951-2100. Eight CMIP5 coupled atmospheric global climate models (CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR) under two forcing scenarios, the relative concentration pathways (RCP) 4.5 and 8.5, with spatial resolution varying from about 1° to 3° are downscaled to 0.44° resolution by the Rossby Centre (SMHI) regional climate model RCA4. We use data from the ensuing ensembles of CORDEX-Africa regional climate simulations to explore three drought indices namely: standardized precipitation index (SPI), moisture index (MI) and difference in precipitation and evaporation (P-E). Meteorological and agricultural drought conditions are assessed in our analyses and a climate change signal is obtained for the SPI by calculating gamma functions for future SPI with respect to a baseline present climate. Results for the RCP4.5 and RCP8.5 scenarios are inter-compared to assess uncertainties in the future projections. We show that there is a pronounced sensitivity to the choice of forcing GCM which indicates that assessments of future drought conditions in Africa would benefit from large model ensembles. We also note that the results are sensitive to the choice of drought index. We discuss both spatial and temporal variability of drought extremes for different climate zones of Africa and the importance of the ensemble mean. Our study highlights the usefulness of CORDEX simulations in identifying possible future impacts of climate at local and regional scales.

  5. A possible link between North Atlantic cooling and dry events in the core SW monsoon region identified from Lonar Lake in central India: Indication of a connection between solar output and monsoon variability

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Prasad, S.; Plessen, B.; Stebich, M.; Anoop, A.; Riedel, N.; Basavaiah, N.

    2013-12-01

    Former comparison of climate sensitive proxies from natural archives of the northern monsoon domain with proxy data from mid and high latitude archives have proven a correlation between the proxies of both regions. But still some ambiguities concerning the mechanisms that drive this correlation exist. During our investigation of a sediment core from Lonar Lake in central India, which covers the complete Holocene sedimentation history of the lake, we could identify several phases of centennial scale climate alteration on the basis of stable carbon and nitrogen isotope ratios, mineralogy, and amino acid derived degradation proxies. These phases correlate with climate sensitive proxies from the North Atlantic region as well as with 14C nuclide production rate, which indicates changes in solar output. The results from this first continuous, high resolution record of Holocene climate history from central India indicate sensitivity of monsoon climate to solar forcing. Additionally, a connection between North Atlantic climate and the climate of a region that is not affected by the Westerlies or shifts of the summer ITCZ to a position south of the investigation site could be identified.

  6. Evaluating Diurnal Variations of Summer Precipitation over the Asian Monsoon Region based on TRMM Satellite Data and Coupled model outputs

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wu, G.

    2013-12-01

    Climatological characteristics of diurnal variations in summer precipitation over the entire Asian monsoon region are comprehensively investigated based on the Tropical Rainfall Measuring Mission (TRMM) satellite data during 1998-2008. The amplitude and phase of diurnal precipitation show a distinct geographical pattern. Significant diurnal variations occur over most of continental and coastal areas including the Maritime Continent, with the relative amplitude exceeding 40%, indicating that the precipitation peak is 1.4 times the 24-h mean. Although the diurnal variations of summer precipitation over the continental areas are characterized by an afternoon peak (1500-1800 Local Solar Time (LST)), over the central Indochina Peninsula and central and southern Indian Peninsula the diurnal phase is delayed to after 2100 LST, suggesting the diurnal behaviors over these areas different from the general continental areas. The weak diurnal variations with relative amplitudes less than 40% exist mainly over oceanic areas in the western Pacific and most of Indian Ocean, with the rainfall peak mainly occurring from midnight to early morning (0000-0600 LST), indicating a typical oceanic regime characterized by an early morning peak. However, apparent exceptions occur over the South China Sea (SCS), Bay of Bengal (BOB), and eastern Arabian Sea, with the rainfall peak occurring in daytime (0900-1500 LST). Prominent meridional propagations of the diurnal phase exist in South Asia and East Asia. The diurnal precipitation variations are also evaluated using the simulated outputs from several coupled general circulation models (CGCMs) participating in CMIP3 (such as CNRM-CM3 and MRI-GCGM2.3.2) and CMIP5 (FGOALS-g2). As compared with those from TRMM data, current state-of-the-art CGCMs still have significant problems in simulating the diurnal variability of the Asian summer monsoon. Although most models can capture the amplitude and phase of the diurnal rainfall cycle over continental

  7. Progress toward measles preelimination--African Region, 2011-2012.

    PubMed

    Masresha, Balcha G; Kaiser, Reinhard; Eshetu, Messeret; Katsande, Reggis; Luce, Richard; Fall, Amadou; Dosseh, Annick R G A; Naouri, Boubker; Byabamazima, Charles R; Perry, Robert; Dabbagh, Alya J; Strebel, Peter; Kretsinger, Katrina; Goodson, James L; Nshimirimana, Deo

    2014-04-01

    In 2008, the 46 member states of the World Health Organization (WHO) African Region (AFR) adopted a measles preelimination goal to reach by the end of 2012 with the following targets: 1) >98% reduction in estimated regional measles mortality compared with 2000, 2) annual measles incidence of fewer than five reported cases per million population nationally, 3) >90% national first dose of measles-containing vaccine (MCV1) coverage and >80% MCV1 coverage in all districts, and 4) >95% MCV coverage in all districts by supplementary immunization activities (SIAs). Surveillance performance objectives were to report two or more cases of nonmeasles febrile rash illness per 100,000 population, one or more suspected measles cases investigated with blood specimens in ≥80% of districts, and 100% completeness of surveillance reporting from all districts. This report updates previous reports and describes progress toward the measles preelimination goal during 2011-2012. In 2012, 13 (28%) member states had >90% MCV1 coverage, and three (7%) reported >90% MCV1 coverage nationally and >80% coverage in all districts. During 2011-2012, four (15%) of 27 SIAs with available information met the target of >95% coverage in all districts. In 2012, 16 of 43 (37%) member states met the incidence target of fewer than five cases per million, and 19 of 43 (44%) met both surveillance performance targets. In 2011, the WHO Regional Committee for AFR established a goal to achieve measles elimination by 2020. To achieve this goal, intensified efforts to identify and close population immunity gaps and improve surveillance quality are needed, as well as committed leadership and ownership of the measles elimination activities and mobilization of adequate resources to complement funding from global partners. PMID:24699765

  8. Sensitivity of systematic biases in South Asian summer monsoon simulations to regional climate model domain size and implications for downscaled regional process studies

    NASA Astrophysics Data System (ADS)

    Karmacharya, J.; Levine, R. C.; Jones, R.; Moufouma-Okia, W.; New, M.

    2015-07-01

    Global climate models (GCMs) have good skill in simulating climate at the global scale yet they show significant systematic errors at regional scale. For example, many GCMs exhibit significant biases in South Asian summer monsoon (SASM) simulations. Those errors not only limit application of such GCM output in driving regional climate models (RCMs) over these regions but also raise questions on the usefulness of RCMs derived from those GCMs. We focus on process studies where the RCM is driven by realistic lateral boundary conditions from atmospheric re-analysis which prevents remote systematic errors from influencing the regional simulation. In this context it is pertinent to investigate whether RCMs also suffer from similar errors when run over regions where their parent models show large systematic errors. Furthermore, the general sensitivity of the RCM simulation to domain size is informative in understanding remote drivers of systematic errors in the GCM and in choosing a suitable RCM domain that minimizes those errors. We investigate Met Office Unified Model systematic errors in SASM by comparing global and regional model simulations with targeted changes to the domain and forced with atmospheric re-analysis. We show that excluding remote drivers of systematic errors from the direct area of interest allows the application of RCMs for process studies of the SASM, despite the large errors in the parent global model. The findings in this study are also relevant to other models, many of which suffer from a similar pattern of systematic errors in global model simulations of the SASM.

  9. Multi-Scale Predictions of the Asian Monsoons in the NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2013-12-01

    A comprehensive analysis of the major features of the Asian monsoon system in the NCEP Climate Forecast System version 2 (CFSv2) and predictions of the monsoon by the model has been conducted. The intraseasonal-to-interannual variations of both summer monsoon and winter monsoon, as well as the annual cycles of monsoon climate, are focused. Features of regional monsoons including the monsoon phenomena over South Asia, East Asia, and Southeast Asia are discussed. The quasi-biweekly oscillation over tropical Asia and the Mei-yu climate over East Asia are also investigated. Several aspects of monsoon features including the relationships between monsoon and ENSO (including different types of ENSO: eastern Pacific warming and central Pacific warming), extratropical effects, dependence on time leads (initial conditions), regional monsoon features, and comparison between CFSv2 and CFS version 1 (CFSv1) are particularly emphasized. Large-scale characteristics of the Asian summer monsoon including several major dynamical monsoon indices and their associated precipitation patterns can be predicted several months in advance. The skill of predictions of the monsoon originates mostly from the impact of ENSO. It is found that large predictability errors occur in first three lead months and they only change slightly as lead time increases. The large errors in the first three lead months are associated with the large errors in surface thermal condition and atmospheric circulation in the central and eastern Pacific and the African continent. In addition, the response of the summer monsoon to ENSO becomes stronger with increase in lead time. The CFSv2 successfully simulates several major features of the East Asian winter monsoon and its relationships with the Arctic Oscillation, the East Asian subtropical jet, the East Asian trough, the Siberian high, and the lower-tropospheric winds. Surprisingly, the upper-tropospheric winds over the middle-high latitudes can be better simulated

  10. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  11. Regional view of a Trans-African Drainage System.

    PubMed

    Abdelkareem, Mohamed; El-Baz, Farouk

    2015-05-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  12. Lassa fever in West African sub-region: an overview.

    PubMed

    Ogbu, O; Ajuluchukwu, E; Uneke, C J

    2007-03-01

    Lassa fever is an acute viral zoonotic illness caused by Lassa virus, an arenavirus known to be responsible for a severe haemorrhagic fever characterised by fever, muscle aches, sore throat, nausea, vomiting and, chest and abdominal pain. The virus exhibits persistent, asymptomatic infection with profuse urinary virus excretion in the ubiquitous rodent vector, Mastomys natalensis. Lassa fever is endemic in West Africa and has been reported from Sierra Leone, Guinea, Liberia, and Nigeria. Some studies indicate that 300,000 to 500,000 cases of Lassa fever and 5000 deaths occur yearly across West Africa. Studies reported in English, that investigated Lassa fever with reference to West Africa were identified using the Medline Entrez-PubMed search and were used for this review. The scarcity of resources available for health care delivery system and the political instability that characterise the West African countries would continue to impede efforts for the control of Lassa fever in the sub-region. There is need for adequate training of health care workers regarding diagnostics, intensive care of patients under isolation, contact tracing, adequate precautionary measures in handling infectious laboratory specimens, control of the vector as well as care and disposal of infectious waste. PMID:17378212

  13. African-American Materials Project Experiment in Regional Cooperation. Final Report.

    ERIC Educational Resources Information Center

    Hall, Carol J.

    The African-American Materials Project was a three year venture in bibliographic control of African-American materials. It was a regional project, designed to locate and describe materials in six Southern states. The project was divided into three periods. Phase I was devoted to locating existing collections through the use of a questionnaire,…

  14. Climatic Changes and Evaluation of Their Effects on Agriculture in Asian Monsoon Region- A project of GRENE-ei programs in Japan

    NASA Astrophysics Data System (ADS)

    Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.

    2015-12-01

    It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to

  15. Environmental controls on leaf wax δD ratios in surface peats across the monsoonal region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Xue, J.; Wang, X.; Meyers, P. A.

    2015-09-01

    Leaf wax molecular and isotopic ratios are generally considered robust isotopic paleohydrologic proxies. Here we evaluate the proxy value of the molecular distributions and hydrogen isotopic compositions of long chain n-alkanes (δDalk) in surface peats collected from peatlands across a range of annual air temperatures from 1 to 15 °C and a range of annual mean precipitation from 720 to 2070 mm in the monsoonal region of China. The alkane ratios (ACL and CPI) and δDalk values show relatively large variations in multiple samples from a single site, highlighting the complexity of these ratios at a small spatial scale. In the montane Zoigê peatland, the apparent fractionation between precipitation and δDalk is more positive than in the other six sites, which is possibly an effect of the higher conductivity of the water in this high elevation site (3500 m a.s.l.). At a larger spatial scale, the site-averaged CPI ratios and the δDalk values of n-C29 and n-C31 alkanes show significant correlation with the air temperature and precipitation. These results support the application of the CPI ratio and the δDalk ratios of n-C29 and n-C31 alkanes as sensitive paleohydrologic proxies on millennial and larger timescales.

  16. Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Bhat, G. S.; Kumar, Shailendra

    2015-03-01

    The vertical structure of radar reflectivity factor in active convective clouds that form during the South Asian monsoon season is reported using the 2A25 version 6 data product derived from the precipitation radar measurements on board the Tropical Rainfall Measuring Mission satellite. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective cells (ICCs). CbT is defined referring to a reflectivity threshold of 20 dBZ at 12 km altitude and is at least 9 km thick. ICCs are constructed referring to reflectivity thresholds at 8 km and 3 km altitudes. Cloud properties reported here are based on 10 year climatology. It is observed that the frequency of occurrence of CbTs is highest over the foothills of Himalayas, plains of northern India and Bangladesh, and minimum over the Arabian Sea and equatorial Indian Ocean west of 90°E. The regional differences depend on the reference height selected, namely, small in the case of CbTs and prominent in 6-13 km height range for ICCs. Land cells are more intense than the oceanic ones for convective cells defined using the reflectivity threshold at 3 km, whereas land versus ocean contrasts are not observed in the case of CbTs. Compared to cumulonimbus clouds elsewhere in the tropics, the South Asian counterparts have higher reflectivity values above 11 km altitude.

  17. Statistical and Scaling Properties of Remotely-Sensed Soil Moisture in Two Contrasting Domains in the North American Monsoon Region

    NASA Technical Reports Server (NTRS)

    Mascaro, Giuseppe; Vivoni, Enrique

    2009-01-01

    Characterizing soil moisture (theta) variability is important for inferring high-resolution information from coarse estimates provided by remote sensors. In this study, we analyze the spatial variability and scale invariance of high-resolution theta estimates collected in two contrasting semiarid areas, Arizona (AZ) and Sonora (SON), during the Soil Moisture Experiment - North American Monsoon in 2004 (SMEX04- NAME). Results reveal that as the mean theta condition () becomes drier, the spatial standard deviation becomes smaller in both domains. The coefficient of variation of theta decreases with in SON, but does not display a clear tendency with in AZ. We also found the presence of scale invariance and multifractality in the range of support scales from 51.2 km to 0.8 km for all soil moisture fields in the two regions. The multifractal properties of theta are clearly linked to in SON, while the relation is affected by more dispersion in AZ. We argue this is due to differences in the dynamic (rainfall) and static (vegetation) controls on theta in the two domains.

  18. Indo-China Monsoon Indices

    NASA Astrophysics Data System (ADS)

    Tsai, Chinleong; Behera, Swadhin K.; Waseda, Takuji

    2015-01-01

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  19. Evaluating Changes in Extreme Weather During the North American Monsoon in the Southwest U.S. Using High Resolution, Convective-Permitting Regional Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Chang, H. I.; Luong, T. M.; Lahmers, T.; Jares, M.; Mazon, J.; Carrillo, C. M.; Adams, D. K.

    2015-12-01

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical

  20. Seasonality of the mean age in the UTLS region: Hemispheric differences and impact of the Asian monsoon

    NASA Astrophysics Data System (ADS)

    Konopka, Paul; Ploeger, Felix; Vogel, Bärbel; Tao, Mengchu; Müller, Rolf

    2014-05-01

    The seasonality of the composition of air in the UTLS region is determined by the seasonality of different transport processes like convection, Brewer-Dobson circulation (BDC) and two-way irreversible isentropic transport across the tropopause. Whereas during winter (seasons are related to the northern hemisphere), the subtropical jets form a strong transport barrier between the tropics and extratropics, this barrier weakens significantly in the northern hemisphere during summer. This is a result of the hemispheric asymmetry of the land-sea distribution and of the orography, which leads to hemispheric differences in the distribution and intensity of the wave drag driving the BDC. Based on a multi-annual CLaMS simulation covering the period from 2001 to 2012 with the model transport driven by the ECMWF ERA-Interim reanalysis, we discuss the seasonality of the mean age (measuring the mean transport time of an air parcel traveling from the boundary layer) in the tropical tropopause layer (TTL) and in the extratropical lowermost stratosphere (LMS). During the considered period, the simulated trace gases (like CH4, N2O, F11, CO2, CO, H2O and O3) are in fairly good agreement with in-situ and satellite observations, especially in the lower stratosphere and around the tropopause. In the TTL, the mean age shows a pronounced annual cycle that is driven by the seasonality in tropical upwelling and horizontal transport from the extratropics (inmixing) with youngest air during late boreal winter and oldest air during late boreal summer, respectively. On the other side, strong hemispheric differences can be diagnosed in the polar high latitude LMS. Here, air in the northern hemisphere is much younger during summer than during the same season on the southern hemisphere. A regionally resolved climatology of the mean age further shows youngest air in the TTL in winter above the West Pacific warm pool, whereas in summer the Asian summer monsoon forms the key pathway for transport

  1. The effect of modification of Orography on the Summer Monsoon over Peninsular India in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Rajanayagam, Lorna; Janardanan, Rajesh; Ram Mohan, H. S.

    This study attempts to understand the rainfall and vertically integrated moisture (VIM) distribution using Regional climate model (RegCM) over Peninsular India with the modification of Orography. The model used in this study is the recent version (Version III) of the National Centre for Atmospheric Research (NCAR) Regional Climate Model RegCM3. The model integration is done on a horizontal resolution of 60 km.. Sensitivity experiments were carried out for the 100%, 90%, 60% and 30% Orography cases (100%o, 90%o etc). The anomalies of rainfall and moisture are calculated as 90%o-100%o, 60%o-100%o and 30%o-100%o (hereafter 100%o, 90%o, 60%o, and 30%o). The rainfall distribution along the Western Ghats has been simulated well for the 100%o. The rainfall anomaly has decreased with the decrease in the height of Orography for all other cases. The maximum decrease in rainfall has been observed for the 30%o case. The distribution of VIM over the peninsular India has a noticeable change for the modified Orography cases. The VIM has a slight increase in the magnitude for the 90%o case. The increase in the amount of VIM has attained a peak for the 30%o case. The VIM distributed along the Western Ghats for the 100%o case moved inland in the northeast direction and the pattern has significantly changed for the 30%o case. Thus as the height of the Orography decreases the rainfall decreases but the VIM increases. Keywords: Orography, Summer Monsoon Rainfall, Vertically Integrated Moisture. References: Giorgi F, Mon. Wea Rev. 121: 2794 (1993 Giorgi F, Marinucci M R and Bates G T , Mon. Wea Rev. 121: 2794 (1993) K. C. Chow, Timing Liu, Johnny C. L. Chan and Yihui Ding, Int. J. Climatol. 26:1339-1359 (2006) K. C. Chow, Hang-Wai Tong and Johnny C. L. Chan, Clim. Dyn. DOI 10.1007/s00382-007- 0301-6

  2. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    NASA Astrophysics Data System (ADS)

    Jin, L.; Peng, Y.; Chen, F.; Ganopolski, A.

    2009-08-01

    The impacts of various scenarios of a gradual snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP-0 kyr BP) are studied by using the Earth system model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases over most of Eurasia but in the Southern Asia temperature response is opposite. With the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP-0 kyr BP), the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 kyr BP to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results suggest that the development of snow and ice cover over Tibetan Plateau represents an additional important climate feedback, which amplify orbital forcing and produces a significant synergy with the positive vegetation feedback.

  3. Assessing the Effects of Burned Areas on the Northern and Southern African Seasonal Climates: a Regional Modeling Study

    NASA Astrophysics Data System (ADS)

    De Sales, F.; Okin, G. S.; Xue, Y.; Dintwe, K.

    2015-12-01

    The occurrence of wildfires, whether natural or anthropogenic, is an important disturbance of the terrestrial ecosystems as it plays an essential role in shaping global and regional vegetation. This study presents an investigation of the impact of burned areas on the surface energy balance and precipitation in northern and southern Africa as simulated by a state-of-the-art regional modeling system. Mean burned area fraction derived from MODIS date-of-burning product was implemented in a set of WRF/SSiB2 simulations. Vegetation cover and LAI were degraded based on mean burned area fraction and survival rate for each vegetation land cover type. Additionally, ground darkening associated with ash and charcoal deposition was imposed by temporarily lowering the ground albedo after burning. Wildfire-induced vegetation and ground degradation increased the surface albedo by exposing the brighter bare ground of the region, which in turn caused a decrease in surface net radiation and evapotranspiration. Overall, post-fire land condition resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned areas, which played a dominant role in reducing precipitation. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8% and 3.3%, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early spring. This study suggests that the cooling and drying of atmosphere induced by the burned areas led to strengthening of subsidence during pre-onset and weakening of upward motion during onset and mature stages of the monsoon leading to a waning of convective instability and precipitation. Vertical air movement over the

  4. Controls on oxygen isotope variability in precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Tan, Ming

    2015-04-01

    Cave monitoring is important to fully understand the climatic significance of stalagmite δ18O records. Most previous studies focus on one cave, or several caves in one area. A large regional-scale investigation on the isotopic composition of precipitation and drip water is scarce. To investigate the regional-scale climate forcing on the oxygen isotopic composition of precipitation in the monsoon regions of China (MRC) and how the isotopic signals are transmitted to various drip sites, a three-year-long (2011-2014) on-site rainfall and drip water monitoring program has been carried out with approximately monthly sampling at 37 drip sites in eight caves in the MRC. Neither rainfall amount nor air temperature are the predominant controls on the oxygen isotopic composition of monthly precipitation. The rain in the wet season (May to October), with relatively low δ18O values, is sourced from tropical air masses, whereas the rainfall in the dry season (November to April), with relatively high δ18O values, is mostly sourced from continental air masses. Additionally, the weighted summer rainwater δ18O values decrease from coastal southwest China to inland northeast China, which suggests that the moisture of monsoon rainfall in China originates mainly from Indian Ocean, and transports to the north along the southwest-northeast path. 28 of the 37 drip sites are constant drips with little discernable variation in drip water δ18O through the whole study period. For most of the constant drips, the mean value of each drip water δ18O is nearly identical to or slightly higher than the three-year weighted mean value of the corresponding local rainwater δ18O, indicating these drips may be mainly recharged by none-evaporated or slightly evaporated, well-mixed older water stored in the vadose zone. 7 of all the 37 drip sites are seasonal drips, for which, although the amplitude of drip water δ18O is narrower than that of rainfall, the monthly response of drip water δ18O to

  5. Roughness Lengths at Four Stations Within the Micrometeorological Network over the Indian Monsoon Region

    NASA Astrophysics Data System (ADS)

    Reddy, N. Narendra; Rao, Kusuma G.

    2016-01-01

    The aerodynamic roughness length (z0) is estimated here for four locations, Bangalore, Ranchi, Hyderabad and Tirunelveli of the Indian region, using micrometeorological measurements from the instrumentation network established during the programme, " Prediction of Regional Weather using Observational meso- Network and Atmospheric Modelling (PRWONAM)". The average z0 values estimated are 0.04 ± 0.02 and 0.06 ± 0.03 m for Bangalore for the summer and the winter seasons respectively; and 0.009 ± 0.007 and 0.04 ± 0.02 m for Ranchi. For Hyderabad and Tirunelveli locations, average z0 values for the summer season are 0.8 ± 0.1 and 0.02 ± 0.02 m respectively. This value of z0 for Hyderabad is consistent with the range 0.2-2.1 m quoted for fetches mainly covered with trees. The z0 values for Bangalore, Ranchi and Tirunelveli are consistent with similar terrain pattern in the prevailing wind sectors at the experiment locations and are also in the range 0.006-0.08 m quoted in the literature for homogeneous land surfaces.

  6. Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique

    NASA Astrophysics Data System (ADS)

    Cha, Dong-Hyun; Lee, Dong-Kyou

    2009-07-01

    In this study, the systematic errors in regional climate simulation of 28-year summer monsoon over East Asia and the western North Pacific (WNP) and the impact of the spectral nudging technique (SNT) on the reduction of the systematic errors are investigated. The experiment in which the SNT is not applied (the CLT run) has large systematic errors in seasonal mean climatology such as overestimated precipitation, weakened subtropical high, and enhanced low-level southwesterly over the subtropical WNP, while in the experiment using the SNT (the SP run) considerably smaller systematic errors are resulted. In the CTL run, the systematic error of simulated precipitation over the ocean increases significantly after mid-June, since the CTL run cannot reproduce the principal intraseasonal variation of summer monsoon precipitation. The SP run can appropriately capture the spatial distribution as well as temporal variation of the principal empirical orthogonal function mode, and therefore, the systematic error over the ocean does not increase after mid-June. The systematic error of simulated precipitation over the subtropical WNP in the CTL run results from the unreasonable positive feedback between precipitation and surface latent heat flux induced by the warm sea surface temperature anomaly. Since the SNT plays a role in decreasing the positive feedback by improving monsoon circulations, the SP run can considerably reduce the systematic errors of simulated precipitation as well as atmospheric fields over the subtropical WNP region.

  7. Gaseous and particulate pollutants in the upper troposphere and lower stratosphere (UTLS) of the Asian Monsoon region simulated by the CCM EMAC

    NASA Astrophysics Data System (ADS)

    Brühl, Christoph; Tost, Holger; Höpfner, Michael

    2016-04-01

    Results of a transient simulation for 2002 to 2011 using the chemistry climate model EMAC with interactive tropospheric and stratospheric aerosol processes are presented. The simulation includes anthropogenic gaseous emissions based on EDGAR but also more than 100 volcanic SO2 injections into the UTLS using estimates from satellite data. The lower boundary conditions for the different aerosol types are based on AEROCOM. We demonstrate that in the Asian monsoon region CO and organic and black carbon are strongly enhanced in the UTLS. We also show that the monsoon circulation transports anthropogenic SO2, originating in China, to the lower stratosphere, as well as volcanic SO2 injected into the upper troposphere in East Africa and Indonesia. The results are compared with MIPAS/ENVISAT observations.

  8. Relationship of the South Asian Monsoon and Regional Drought with Distinct Equatorial Pacific SST Patterns on Interannual and Decadal Timescales

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.

    2014-12-01

    The Asian monsoon system influences the lives of over 60% of the planet's population, with widespread socioeconomic effects resulting from weakening or failure of monsoon rains. Spatially broad and temporally extended drought episodes have been known to dramatically influence human history, including the Strange Parallels Drought in the mid-18th century. Here, we explore the dynamics of sustained monsoon failure using the Monsoon Asia Drought Atlas - a high-resolution network of hydro-climatically sensitive tree-ring records - and a 1300-year pre-industrial control run of the Community Earth System Model (CESM). Spatial drought patterns in the instrumental and model-based Palmer Drought Severity Index (PDSI) during years with extremely weakened South Asian monsoon are similar to those reconstructed during the Strange Parallels Drought in the MADA. We further explore how the large-scale Indo-Pacific climate during weakened South Asian monsoon differs between interannual and decadal timescales. The Strange Parallels Drought pattern is observed during March-April-May primarily over Southeast Asia, with decreased precipitation and reduced moisture fluxes, while anomalies in June-July-August are confined to the Indian subcontinent during both individual and decadal events. Individual years with anomalous drying exhibit canonical El Niño conditions over the eastern equatorial Pacific and associated shifts in the Walker circulation, while decadal events appear to be related to anomalous warming around the dateline in the equatorial Pacific, typical of El Niño Modoki events. The results suggest different dynamical processes influence drought at different time scales through distinct remote ocean influences.

  9. Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998

    NASA Technical Reports Server (NTRS)

    Lau, William K.-M.; Li, Xiao-Fan

    2001-01-01

    In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the

  10. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951-2005 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; Chase, Thomas N.; Nath Goswami, Bhupendra

    2016-05-01

    Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1-1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over central India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1-1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over

  11. Cloud and aerosol occurrences in the UTLS region across Pakistan during summer monsoon seasons using CALIPSO and CloudSat observations

    NASA Astrophysics Data System (ADS)

    Chishtie, Farrukh

    2016-04-01

    As part of the A-train NASA constellation, Coudsat and CALIPSO provide an unprecedented vertical observation of clouds and aerosols. Using observational data from both of these satellites, we conduct a multi-year analysis from 2006-2014, of the UTLS (Upper Troposphere and the Lower Stratosphere) region. We map out cloud and aerosol occurrences in this region across Pakistan, specifically around the summer monsoon season. Over the past five years, Pakistan has faced tremendous challenges due to massive flooding as well as earlier brief monsoon seasons of low precipitation and short drought periods. Hence, this motivates the present study towards understanding the deep convective and related dynamics in this season which can possibly influence cloud and aerosol transport in the region. Further, while global studies are conducted, the goal of this study is to conduct a detailed study of cloud, aerosols and their interplay, across Pakistan. Due to a dearth of ground observations, this study provides a dedicated focus on the UTLS domain. Vertical profiling satellites in this region are deemed important as there are no ground observations being done. This is important as both the properties and dynamics of clouds and aerosols have to be studied in a wider context in order to better understand the monsoon season and its onset in this region. With the CALIPSO Vertical Feature Mask (VFM), Total Attenuated Backscatter (TAB) and Depolarization Ratio (DR) as well as the combined CloudSat's 2B-GEOPROF-LIDAR (Radar-Lidar Cloud Geometrical Profile) and 2B-CLDCLASS-LIDAR (Radar-Lidar Cloud Classification) products, we find the presence of thin cirrus clouds in the UTLS region in the periods of June-September from the 2006-2014 period. There are marked differences in day observations as compared to night in both of these satellite retrievals, with the latter period finding more occurrences of clouds in the UTLS region. Dedicated CloudSat products 2B-CLDCLASS (cloud classification

  12. Projecting Future Changes in Extreme Weather During the North American Monsoon in the Southwest with High Resolution, Convective-Permitting Regional Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Chang, H. I.; Castro, C. L.; Luong, T. M.; Lahmers, T.; Jares, M.; Carrillo, C. M.

    2014-12-01

    Most severe weather during the North American monsoon in the Southwest U.S. occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. Our objective is to project how monsoon severe weather is changing due to anthropogenic global warming. We first consider a dynamically downscaled reanalysis (35 km grid spacing), generated with the Weather Research and Forecasting (WRF) model during the period 1948-2010. Individual severe weather events, identified by favorable thermodynamic conditions of instability and precipitable water, are then simulated for short-term, numerical weather prediction-type simulations of 24h at a convective-permitting scale (2 km grid spacing). Changes in the character of severe weather events within this period likely reflect long-term climate change driven by anthropogenic forcing. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future and if these changes correspond with what is already occurring per the downscaled renalaysis and available observational data. The CMIP5 models we are downscaling (HadGEM and MPI-ECHAM6) will be included as part of North American CORDEX. The regional model experimental design for severe weather event projection reasonably accounts for the known operational forecast prerequisites for severe monsoon weather. The convective-permitting simulations show that monsoon convection appears to be reasonably well captured with the use of the dynamically downscaled reanalysis, in comparison to Stage IV precipitation data. The regional model tends to initiate convection too early, though correctly simulates the diurnal maximum in convection in the afternoon and subsequent westward propagation of thunderstorms. Projected changes in extreme event precipitation will be described in relation to the long-term changes in

  13. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    PubMed

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late. PMID:25305325

  14. Monsoon low-level jet over the gateway of Indian summer monsoon: a comparative study for two distinct monsoon years

    NASA Astrophysics Data System (ADS)

    Narayanan, Suresh; Kottayil, Ajil; Mohanakumar, K.

    2016-05-01

    High-resolution radiosonde measurements are used to study the characteristics and dynamics of monsoon low-level jet at the monsoon onset region of Cochin (10.04° N; 76.32° E) in India under two contrasting monsoon years, 2013 and 2015. The core speed and core height of the low-level jet is significantly higher during the strong monsoon year of 2013 than for the monsoon-deficient year of 2015. The average core heights for these years are seen to exist at 2.03 and 2.20 km, respectively. The low-level jet-modulated parameters such as moisture flux, momentum flux and kinetic energy flux show higher values during monsoon of 2013 as compared to 2015. Among the monsoon low-level jet parameters, the moisture flux has the strongest influence on the observed rainfall over Cochin. Also, an exponential function is seen to best explain the moisture flux-rainfall relationship. The weakening of monsoon during 2015 is attributed most likely to an eastward shift of the core convective activity from the Indian subcontinent as revealed from satellite observation of the upper tropospheric humidity. A close association is seen between the rainfall over Cochin and the convective activity over the Indian subcontinent. Observational studies such as this, which links monsoon rainfall, monsoon low-level jet parameters and convective activity, are expected to enhance the understanding of monsoon processes in general and subsequently improve the forecasting skill of models.

  15. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  16. Evolution of the Indian Summer Monsoon and terrestrial vegetation in the Bengal region during the past 18 ka

    NASA Astrophysics Data System (ADS)

    Contreras-Rosales, L. A.; Jennerjahn, T.; Tharammal, T.; Meyer, V.; Lückge, A.; Paul, A.; Schefuß, E.

    2014-10-01

    The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (δD and δ13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the δD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the δD and δ13C alkane records

  17. Impact of potential large-scale and medium-scale irrigation on the West African Monsoon and its dependence on location of irrigated area

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; IM, E. S.

    2014-12-01

    This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and

  18. Inter-comparison of deep convection over the Tibetan Plateau-Asian Monsoon Region and subtropical North America in boreal summer using CloudSat/CALIPSO data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2010-12-01

    Deep convection at the Tibetan Plateau-Southern Asian Monsoon Region (TP-SAMR) is analyzed using CloudSat and CALIPSO data for the boreal summer season (June-August) from 2006 to 2009. Three sub-regions - the Tibetan Plateau (TP), southern slope of the Plateau (PSS), and southern Asian monsoon region (SAMR) - are defined and deep convection properties are compared among these sub-regions. To cast them in a broader context, we also bring in four additional regions that bear some similarity to the TP-SAMR: East Asia (EA), tropical northwestern Pacific (NWP), west and east North America (WNA, ENA). The principal findings are as follows: 1) Compared to the other two sub-regions of the TP-SAMR, deep convection at the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection at the TP are closely related to the significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context where all seven regions are brought together, deep convection at the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. Similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo, and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed. Hence, the difference between TP and SAMR is more of a general contrast between subtropical land regions and tropical oceanic regions during the boreal summer. 3) Deep convection at the PSS possesses some uniqueness of its own because of the distinctive terrain (slopes) and moist low-level monsoon flow. 4) Results from comparison between the daytime and the

  19. Monsoon circulation and atmospheric ozone

    NASA Astrophysics Data System (ADS)

    Khrgian, A. Kh.; Nguyen, Van Thang

    1991-01-01

    The effect of the Indonesian-Australian winter monsoon, proceeding from the Asian continent to the south, on the atmospheric ozone is examined. It is shown that large-scale atmospheric circulation phenomena caused by monsoons in the tropical regions of Australia and in south-eastern Asia can cause significant falls in atmospheric ozone concentrations. The common occurrence of such phenomena might explain the higher-than-average incidence of skin cancer in Australia.

  20. Effects of Land Use on the Predictability of Land-Atmosphere Fluxes and Moisture Transport in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Mascaro, G.; White, D. D.; Vivoni, E. R.

    2014-12-01

    Southern Arizona and New Mexico receive 40-60% of their annual rainfall in the summer, as part of the North American Monsoon (NAM). Modeling studies suggest that 15-25% of this rainfall first falls on Mexican land, is transpired by vegetation, and subsequently is transported northward across the border to the US. The main source regions in Mexico include two primary landcover types in Sonora and Sinaloa: subtropical scrub and tropical deciduous forests in the foothills of the Sierra Madre Occidental; and large expanses of irrigated agriculture along the Gulf of California. The foothill ecosystems, known for their rapid greening and large transpiration rates at the onset of the monsoon, are under threat from deforestation for grazing activities. On the other hand, irrigated agriculture in both the winter and summer has shifted the seasonality of evaporative fluxes and introduced socio-economic factors into their interannual variability and predictability. In this study, we examine the differences in spatial and temporal characteristics of evapotranspiration yielded by current and pre-industrial land cover / land use. To this end, we employ the Variable Infiltration Capacity (VIC) land surface model at 1/16 degree resolution, driven by gridded meteorological observations and MODIS LAI, NDVI, and albedo products, across the NAM region (Arizona, New Mexico, and northern Mexico). We compare the magnitude and timing of land-atmosphere fluxes given by both pre-industrial and current land cover/use, as well as the land cover under several possible alternative land use scenarios. We identify the regions where the largest changes in magnitude and timing of evapotranspiration have occurred, as well as the regions and land use changes that could produce the largest changes in future evapotranspiration under different scenarios. Finally, we explore the consequences these effects have for the predictability of monsoon moisture transport.

  1. Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing

    NASA Astrophysics Data System (ADS)

    Beal, L. M.; Hormann, V.; Lumpkin, R.; Foltz, G. R.

    2014-12-01

    We use two decades of drifter and satellite data to examine the monthly evolution of the surface circulation of the Arabian Sea, which reverses annually in response to the Indian monsoon winds. Most significantly, we find that in the transition from winter to summer circulations, northward flow appears along the length of the western boundary as early as March or April, one or two months before the onset of the southwest monsoon winds. This reversal is initiated by annual Rossby waves, which in turn are initiated by wind curl forcing during the previous southwest monsoon. These results lead us to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Previous studies of monsoon circulations with lower temporal resolution have highlighted basin-wide currents and connections that are not found to exist in the monthly fields. In particular, we find that the Northeast Monsoon Current does not reach the western boundary and there is no counter-rotating gyre system during boreal winter. South of the equator, the eastward-flowing South Equatorial Counter Current (SECC) is present year-round, even though equatorial winds are strongly influenced by the monsoons. Semi-annual variability of the SECC is governed by Ekman pumping over the south equatorial gyre (or Seychelles dome) and, surprisingly, it is weakest during the northeast monsoon. This region has important influence on the atmosphere and its link to the monsoons deserves further investigation. The East African Coastal Current feeds into the SECC from the boundary. During the southwest monsoon it overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC after looping back across the equator. This apparent retroflection of the EACC is what was previously known as the southern gyre and is obscured at the surface by strong, locally wind-driven, cross-equatorial Ekman transport. Finally, there is broad, strong eastward flow at

  2. Transport of dust particles from the Bodele region to the monsoon layer. Case study of the 9-14 june 2006

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Pierre, T.; Garcia-Carreras, L.; Gomes, L.; Flamant, C.; Parker, D. J.; Matsuki, A.; Schwarzenboeck, A.; Formenti, P.

    2010-12-01

    Within the framework of the AMMA project, state-of-the-art aerosol in-situ instrumentation has been deployed on the French ATR-42 research aircraft. In particular, measurements taken on-board allowed us to study physical and chemical properties of aerosol particles. This present study is based on two different flight missions over source regions in Niger and along the meridian Niamey/Cotonou. Objectives of this study are 1. to improve the aerosol size distribution over West Africa, 2. to quantify the sedimentation process of mineral dust aerosols from the sahelian layer to the monsoon layer (ML). Based on the Alfaro and Gomes 2001 (AG01) parameterisation and on ATR-42 measurements, a new scheme of dust size distribution has been constructed by summing 3 modes (a coarse mode derived from AG01, a finer mode derived from observations, and a mode in-between common to observations and AG01). This multimodal log-normal distribution has been developed and implemented to model an intense African dust event that has been observed over Niger from 9 to14 June 2006. The results indicate that the modelled emission and transport yield a mass and number concentration distribution as well as an aerosol optical thickness much closer to observations. In the ML, the evolution of the concentration of particles (Dp >0.5µm) and of the aerosol scattering coefficients measured as a function of latitude show a maximum at 11°. In this area the vegetation cover is too important to allow local dust production. These measurements confirm that observed dust particles are not generated at the surface but their presence in this zone is only due to long-range transport. Between 10°N to 12°N, the forest/shrub cover diminishes and the surface temperature increases, thus the boundary layer (BL) height reaches maximum values. This coupling between the surface and the BL dynamics occurs exactly in the same area of high dust content. To complement the observations, a simulation exercise was carried

  3. Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)

    2001-01-01

    This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a

  4. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  5. Land-Use and Land-Cover Change and Associated Changes in Hydrological Cycle and Energy Exchange Processes in Monsoon Asian Region (Invited)

    NASA Astrophysics Data System (ADS)

    Jain, A.; Liang, M.; Barman, R.; Erickson, M.; Cao, L.; Bala, G.

    2009-12-01

    The climate system is affected by land-use and land-cover changes (LULCC) through changes in hydrological cycle, energy exchange processes and soil biogeochemistry. These changes affect climate both at global and regional scales. Here, we use the terrestrial component of the Integrated Science Assessment Model (ISAM), with satellite data to examine the effects of LULCC and other terrestrial ecosystem processes on variability in soil hydrology and energy fluxes in monsoon Asian region. ISAM’s energy and hydrology processes have been adapted from the Common Land Model (CoLM) and the Community Land Model (CLM 3.5), respectively. CoLM uses a two-big-leaf scheme for modeling canopy temperature, photosynthesis and stomatal conductance, improving CO2 and water flux estimates. The soil/snow hydrology, incorporated from CLM3.5 (10 layers for soil and up to 5 layers for snow) improves runoff and ground water table predictions. This talk will focus on describing the results of a series of modeling experiments investigating the influence of LULCC on terrestrial moisture flux, latent and sensible heat fluxes, and continental runoff (surface & subsurface) in monsoon Asian region. These experiments were conducted based on measured activities of LULCC and observed atmospheric forcings over the last century.

  6. Role of regional thermal contrast over West Asia in interannual variation in atmospheric moisture transportation over the Indian Ocean and neighboring areas at summer monsoon onset

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi

    2015-12-01

    The low-level temperature contrast over West Asia influences the interannual variation in water vapor transportation over the northern and equatorial Indian Ocean and neighboring monsoon area. A composite analysis that takes into account the thermal contrast over West Asia during the monsoon seasonal transition is performed based on the reanalysis and merged observational precipitation data sets. The positive (negative) low-level thermal contrast anomaly over the Iranian Plateau (IP) strengthens (weakens) the thermal contrast over the Arabian Sea. The low-level westerly anomaly develops earlier in the positive IP thermal contrast years than in the negative years. As a result, water vapor transport varies. This variation in water vapor transport in turn has an influence on the abrupt increase in precipitation over South Asia and the Arabian Sea and the decrease over equatorial East Africa. The variation in low-level temperature over the IP precedes the variation of precipitation over these regions by a few pentads. A numerical experiment using the Lagrangian particle dispersion model agrees with the results of the composite analysis. Particles are emitted from the western tropical Indian Ocean region from the preonset to onset period. Results of numerical experiments concerning positive IP thermal contrast years show that particles can be transported into South Asia and the Arabian Sea before the climatological Asian summer monsoon onset pentad. However, small amounts of particles arrive in South Asia and the Arabian Sea at the onset period in negative IP years. The transport into equatorial East Africa becomes weak earlier in positive IP years.

  7. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Zhou, Tianjun

    2015-11-01

    Significant uncertainties in the projected South Asian summer monsoon (SASM) have been observed in the released Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) data set. Knowing what factors dominate the uncertainties is critical to constraining the local climate changes. Analyzing state-of-the-art climate model simulations under the RCP8.5 scenario, we find that uncertainties in the circulation primarily result from the divergent global mean warming across models. In contrast, the compensation between dynamic and thermodynamic effects makes the spread in monsoon rainfall independent of the global temperature change. Via a suite of sensitivity experiments, we identify that the uncertainties in the SASM rainfall are dominated by the Indo-Pacific sea surface temperature (SST) warming pattern, especially around the western central Pacific. The SST warming pattern plays its role by changing the zonal temperature gradient over the SASM region and modulating the interhemispheric moisture transport. We highlight that the SST warming patterns require more attention in constraining the projected regional rainfall changes.

  8. Role of deep convection on the tropical tropopause characteristics at sub-daily scales over the South India monsoon region

    NASA Astrophysics Data System (ADS)

    Hemanth Kumar, A.; Venkat Ratnam, M.; Sunilkumar, S. V.; Parameswaran, K.; Krishna Murthy, B. V.

    2015-07-01

    The role of deep convection on the tropical tropopause parameters at sub-daily scales using radiosonde observations at two locations in South-India affected by monsoon has been investigated. Special experiments were conducted under the Tropical Tropopause Dynamics (TTD) campaigns from two stations, (Gadanki (13.5°N, 79.2°E) and Trivandrum (8.5°N, 76.9°E) as a part of CAWSES India Phase-II programme during December 2010 to September 2013. In addition, data from regular radiosonde launches available from April 2006 to September 2013 are also utilized in the present study. Using satellite based infrared brightness temperature data, convection is classified into six categories based on the life cycle of the convection prevailing 3 h before and after the balloon reaching the tropical tropopause. Cold-point and lapse rate tropopause altitudes (CPH, LRH) and temperatures (CPT, LRT), convective outflow level (COH) and tropical tropopause layer (TTL) thickness extracted from individual soundings are grouped into six convection categories. Large amount of water vapour with diabatic cooling prevailed near the CPH during active convection leading to STE processes. At the same time, decrease in TTL thickness is observed not only because of pushing up of the COH but also due to decrease of CPH. On an annual basis a decrease (increase) in CPH and LRH (CPT and LRT) is noticed during active convection. This feature is more significant at Gadanki compared to Trivandrum. During the monsoon and pre-monsoon periods when the convection is rather widespread, CPH (CPT) shows a decrease (increase) at Gadanki while it increases (decreases) over Trivandrum. Large seasonal variation is noticed in the tropopause parameters even when they are segregated into different convective categories mainly due to intensity of the convection being different. During active convection, diabatic and adiabatic processes seem to be dominant at Gadanki and Trivandrum, respectively.

  9. Monsoon definition discrepancies in Bangladesh

    NASA Astrophysics Data System (ADS)

    Reeve, M. A.; Chu, P.-S.

    2012-04-01

    This study applies different definitions of what previous authors have called the monsoon over Bangladesh. The aim is to identify the definitions that most resemble the perceptions of the local rural communities and how they define the monsoon. Considering how the local communities define the monsoon is extremely important since these populations are most vulnerable to future changes in climate and more specifically monsoon rainfall. It has been pointed out previously that the monsoon research community had not reached a consensus on a unified definition of the monsoon rainy season. This problem seems to be profound in Bangladesh where results from the application of different definitions show very large discrepancies. Since these discrepancies exist, confusing terms such as monsoon, summer rainy season, and monsoon rainy season can have large implications for impact studies and interpretations of future climate projections. The results in this paper show that these terms need to be explicitly and carefully defined with regards to Bangladesh. Wind-, rain- and OLR-based definitions are applied to several different datasets to show how large these discrepancies can be over Bangladesh. Differences in onset dates are found to be around 8-9 pentads (40-45 days) in some regions of the country. The largest differences are seen in the north-east region, where rain-based definitions give much earlier onsets than wind- or OLR-based definitions. The results show that mesoscale phenomena could be influencing the climate in the north-east part of Bangladesh and causing much earlier summer rainfall. According to the results from a previous social study, the local communities in fact consider this early rainfall as the monsoon onset. By identifying the definition that best resembles the local community perceptions through out Bangladesh, then future information can be constructed, so that it is more easily understood by and applicable to the millions of people climate change will

  10. Monsoon research

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Forecasting monsoons is one of four research areas proposed as part of an expanded program of collaborative projects by U.S. and Indian scientists and engineers, according to George A. Keyworth, II, science advisor to President Reagan and director of the Office of Science and Technology Policy (OSTP). The other proposed research areas are health, agriculture and biomass production, and decentralized electrical power sources.During the next 6 months, scientists will ‘scope out research projects’ and detail specific research activities, according to Roger Doyon, head of the Africa and Asia section of the National Science Foundation's (NSF) Directorate for Scientific, Technological, and International Affairs. Most of the actual research will begin with the advent of fiscal 1984.

  11. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-10-01

    The Asian summer monsoon involves complex transport patterns with large-scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species peroxyacetyl nitrate (PAN), NOx and HNO3 from various monsoon regions, to the UTLS over southern Asia and vice versa. Simulated long-term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere (UT). Remote transport also occurs in the extratropical UT where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. Sensitivity experiments with ECHAM5-HAMMOZ for simultaneous NOx and non-methane volatile organic compounds (NMVOCs) emission change (-10 %) over ASM, NAM and WAM confirm similar transport. Our analysis shows that a 10 % change in Asian emissions transports ~ 5-30 ppt of PAN in the UTLS over Asia, ~ 1-10 ppt of PAN in the UTLS of northern subtropics and mid-latitudes, ~ 7-10 ppt of HNO3 and ~ 1-2 ppb of ozone in UT over Asia. Comparison of emission change over Asia, North

  12. Validation of the TEC2F2 model over the African equatorial region

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas

    2016-06-01

    In this paper a statistical method, TEC2F2, of estimating critical F2 layer frequency (foF2) from Global Positioning System (GPS) Vertical Total Electron content (VTEC) is extended from Africa's mid-latitudes to the equatorial region, and the results validated. The equatorial region is one of the most dynamic yet under-represented over Africa in ionospheric studies. The TEC2F2 method was first considered for the South African region (mid-latitudes). This region is covered by a network of ionosondes that provided a validation platform for the TEC2F2 method before being applied to other parts of Africa. The results show that over the African equatorial region, the TEC2F2 method is a potential candidate in more accurately estimating the foF2 parameter than the most recent version of the International Reference Ionosphere (IRI-2012) model.

  13. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    NASA Astrophysics Data System (ADS)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  14. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  15. Region of birth, migration and homicide rates of African Americans.

    PubMed

    Greenberg, M; Schneider, D

    1997-08-01

    A study was made of all homicide deaths among black Americans during the period 1979-1991 in order to test two competing hypotheses about region of birth and region of death. One hypothesis was that Southern-born blacks had the highest homicide rates in every region of the US. The competing hypothesis was that blacks who did not migrate out of their region of birth had the highest homicide rates. We found that Southern-born blacks had the highest homicide rates among the population 35+ years old in the Northeast, Midwest, South and West. Yet non-migrants (region-born population) had higher rates than their Southern-born counterparts among the population 15-34 years old. Long distance migrants who were born in the Northeast, West or were foreign-born had the lowest homicide rates, by far. The distressing implications of these findings for public health efforts to prevent violent death are discussed. PMID:9426984

  16. Possible roles of regional SST anomalies in long-term changes in the relationship between the Indian and Australian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Wu, Renguang

    2016-05-01

    The present study investigates long-term changes in the relationship between interannual variations of the Indian monsoon rainfall (IMR) and the Australian monsoon rainfall (AMR) during the period 1900-2010. It is found that the relationship between austral summer AMR and the following boreal summer IMR (denoted as the AMR-IMR relationship) is negative during 1900-1930 and 1960-1990, but weak positive during 1930-1960. This long-term change in the AMR-IMR relationship is more prominent than the change in the relationship between boreal summer IMR and the succeeding austral summer AMR (denoted as the IMR-AMR relationship). The impact of regional sea surface temperature (SST) anomalies north of Australia on the IMR to AMR transition has experienced obvious changes during the analysis period. The long-term change in the IMR-AMR relationship is attributed to the change in impacts of regional SST anomalies north of Australia and their coherence with equatorial Pacific and tropical Indian Ocean SST anomalies. It is found that the east-west SST anomaly gradient in the North Indian Ocean is an important factor in the IMR variations. The impact of the North Indian Ocean zonal SST anomaly gradient on the AMR to IMR transition has changed largely during the analysis period. This appears to be a major reason for the long-term change in the AMR-IMR relationship. The changes in the impacts of regional SST anomaly or SST anomaly gradient are associated with changes in the amplitude of regional SST anomalies that are likely due to the change in the El Niño-Southern Oscillation (ENSO)-related SST anomaly pattern.

  17. Palaeoclimatic insights into forcing and response of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-01

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  18. Boreal summer continental monsoon rainfall and hydroclimate anomalies associated with the Asian-Pacific Oscillation

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Wang, Bin; Zhou, Xiuji

    2012-09-01

    With the twentieth century analysis data (1901-2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land-ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies

  19. The Southern African Regional Science Initiative (SAFARI 2000). Dry-Season Campaign: An Overview

    NASA Technical Reports Server (NTRS)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international science project investigating the southern African earth-atmosphere-human system. The experiment was conducted over a two-year period March 1999 - March 2001. The dry season field campaign (August-Steptember 2000) was the most intensive activity and involving over 200 scientists from 18 different nations. The main objectives of this campaign were to characterize and quantify the biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate the NASA Earth Observing System (EOS) satellite Terra within a scientific context. Five aircraft, namely two South African Weather Service aircraft, University of Washington CV-580, the UK Meteorological Office C-130 and the NASA ER-2, with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses that had moved downwind of the subcontinent was conducted by the CSIRO over Australia. Multiple observations were taken in various sectors for a variety of synoptic conditions. Flight missions were designed to maximize synchronous over-flights of the NASA TERRA satellite platform, above regional ground validation and science targets. Numerous smaller-scale ground validation activities took place throughout the region during the campaign period.

  20. Intercomparison of Deep Convection over the Tibetan Plateau-Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2012-04-01

    Deep convection in the Tibetan Plateau-southern Asian monsoon region (TP-SAMR) is analyzed using CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data for the boreal summer season (June-August) from 2006 to 2009. Three subregions are defined—the TP, the southern slope of the plateau (PSS), and the SAMR—and deep convection properties (such as occurrence frequency, internal vertical structure, system size, and local environment) are compared among these subregions. To cast them in a broader context, four additional regions that bear some similarity to the TP-SAMR are also discussed: East Asia (EA), tropical northwestern Pacific (NWP), and western and eastern North America (WNA and ENA, respectively). The principal findings are as follows: 1) Compared to the other two subregions of the TP-SAMR, deep convection over the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection over the TP are closely related to the unique local environment, namely, a significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context in which all seven regions are brought together, deep convection in the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. A similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo (e.g., 0 and 10 dBZ), and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed.Hence, the difference between the TP and SAMRismore of a general contrast between subtropical land regions and tropical oceanic regions during the

  1. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region

  2. Ionospheric Current System over the African Region and East Asian Region as Observed by MAGDAS Stations (Invited)

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Yamazaki, Y.; Rabiu, A.; Mahrous, A.; Meloni, A.; Baki, P.; Makundi, N.; Afullo, T.; McKinnell, L. A.; Badi, K.; Mweene, H.; Macamo, A.; Abe, S.; Ikeda, A.; Fujimoto, A.; Tokunaga, T.; Fujita, Y.; Matsuyama, K.

    2010-12-01

    The MAGnetic Data Acquisition System (MAGDAS) is the global real-time magnetometer array operated by the Space Environment Research Center (SERC), Kyushu University. This array includes two latitudinal chains; one is along the 210-degree magnetic meridian (210MM in the East Asian region since 2005). And the other is along the 96-degree magnetic meridian (96MM in the African region since 2008). The objective of this paper is to describe the longitudinal difference of the ionospheric current system using the MAGDAS data observed along the two different longitudinal chains. We analyzed the data recorded during the latest solar minimum (2008-2010) when the Sun was abnormally quiet. Our analysis shows some important characteristics of the equivalent current system over the African region: (1) From May to September, the current vortex in the Northern Hemisphere penetrates into the Southern Hemisphere in the morning hours as deeply as 40-degree at the dip latitude. (2) During this period, the strength of the equatorial electrojet becomes weaker than during other periods. These features are seen only in the current system over the African region. In the presentation, we will explain more details of the longitudinal difference of the ionospheric current system.

  3. Assessment of the performance of CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan region during present climate: part I

    NASA Astrophysics Data System (ADS)

    Ghimire, S.; Choudhary, A.; Dimri, A. P.

    2015-07-01

    Analysis of regional climate simulations to evaluate the ability of 11 Coordinated Regional Climate Downscaling Experiment in South Asia experiments (CORDEX-South Asia) along with their ensemble to produce precipitation from June to September (JJAS) over the Himalayan region have been carried out. These suite of 11 combinations come from 6 regional climate models (RCMs) driven with 10 initial and boundary conditions from different global climate models and are collectively referred here as 11 CORDEX South Asia experiments. All the RCMs use a similar domain and are having similar spatial resolution of 0.44° (~50 km). The set of experiments are considered to study precipitation sensitivity associated with the Indian summer monsoon (ISM) over the study region. This effort is made as ISM plays a vital role in summertime precipitation over the Himalayan region which acts as driver for the sustenance of habitat, population, crop, glacier, hydrology etc. In addition, so far the summer monsoon precipitation climatology over the Himalayan region has not been studied with the help of CORDEX data. Thus this study is initiated to evaluate the ability of the experiments and their ensemble in reproducing the characteristics of summer monsoon precipitation over Himalayan region, for the present climate (1970-2005). The precipitation climatology, annual precipitation cycles and interannual variabilities from each simulation have been assessed against the gridded observational dataset: Asian Precipitation-Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources for the given time period. Further, after the selection of the better performing experiment the frequency distribution of precipitation was also studied. In this study, an approach has also been made to study the degree of agreement among individual experiments as a way to quantify the uncertainty among them. The experiments though show a wide variation among themselves and individually over

  4. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  5. Assessing the effects of the Great Eastern China urbanization on the East Asian summer monsoon by coupling an urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Xue, Y.; Liu, S.; Oleson, K. W.

    2012-12-01

    The urbanization causes one of the most significant land cover changes. Especially over the eastern China from Beijing to Shanghai, the great urbanization occurs during the past half century.It modifies the physical characteristics of land surface, including land surface albedo, surface roughness length and aerodynamicresistanceand thermodynamic conduction over land. All of these play very important role in regional climate change. Afteremploying several WRF/Urban models to tests land use and land cover change(LUCC) caused by urbanization in East Asia, we decided to introducea urban canopy submodule,the Community Land surface Model urban scheme(CLMU)to the WRF and coupled with the WRF-SSiB3 regional climate model. The CLMU and SSIB share the similar principal to treat the surface energy and water balances and aerodynamic resistance between land and atmosphere. In the urban module, the energy balances on the five surface conditions are considered separately: building roof, sun side building wall, shade side building wall, pervious land surface and impervious road. The surface turbulence calculation is based on Monin-Obukhov similarity theory. We have made further improvements for the urban module. Over each surface condition, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value for SVF. Our approach along with other improvement in short and long wave radiation transfer improves the accuracy of long-wave and shortwave radiation processing over urban surface. The force-restore approximation is employed to calculate the temperature of each outer surfaces of building. The inner side temperature is used as the restore term and was assigned as a tuning constant. Based on the nature of the force-restore method and our tests, we decide to employ the air mean temperature of last 72 hours as a restore term, which substantially improve the surface energy balance. We evaluate the

  6. Global Monsoon Rainfall - What the future holds?

    NASA Astrophysics Data System (ADS)

    Endo, H.; Kitoh, A.; Kumar, K.; Cavalcanti, I. F.; Goswami, P.; Zhou, T.

    2012-12-01

    We provide a latest view of global as well as regional monsoonal rainfall and their changes in the twenty-first century as projected by state-of-the-art climate models participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The global monsoon area (GMA) defined based on the annual range in precipitation will expand mainly over the central to eastern tropical Pacific, the southern Indian Ocean, and eastern Asia. The global monsoon intensity (GMI) and the global monsoon total precipitation (GMP) are likely to increase, implying that monsoon-related precipitation will remarkably increase in a warmer climate. Heavy precipitation indices are projected to increase much more than the mean precipitation, and their percentage changes depend more on the emission scenario compared to those for mean precipitation. Over the Asian monsoon domain, median increase rate for precipitation is larger than that over other monsoon domains, indicating that the sensitivity of Asian monsoon to global warming is stronger than that of other monsoons. For seasonal progress of monsoon rainfall, CMIP5 models project that the monsoon retreat dates will delay, while the onset dates will either advance or show no change, resulting in lengthening of the monsoon season. It is found that the increase of the global monsoon precipitation can be attributed to the increases of moisture convergence due to increased water vapor in the air column and surface evaporation, offset to a certain extent by the weakening of the monsoon circulation (Figure 1).Figure 1: Time series of anomalies during summer season (%; 20 years running mean) relative to the base period average (1986-2005) over the land global monsoon domain for (a) precipitation (mm day-1), (b) evaporation (mm day-1), (c) water vapor flux convergence in the lower (below 500hPa) troposphere (mm day-1), and (d) wind convergence in the lower troposphere (10-3 kg m-2 s-1), based on 23 CMIP5 model monthly outputs. Historical (grey

  7. Global diversity and genetic contributions of chicken populations from African, Asian and European regions.

    PubMed

    Lyimo, C M; Weigend, A; Msoffe, P L; Eding, H; Simianer, H; Weigend, S

    2014-12-01

    Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST ) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour-Net genetic clustering and structure analysis revealed two main groups of Asian and north-west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north-west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds. PMID:25315897

  8. The monsoon experiment MONEX

    NASA Technical Reports Server (NTRS)

    Das, P. K.

    1979-01-01

    The effects of monsoons in different parts of the world on the Earth's atmosphere were studied by MONEX, India's Monsoon Experiment program. Data were gathered from meteorological satellites, sounding rockets, aircraft, land and shipborne stations.

  9. African Regional Seminar for Advanced Training In Systematic Curriculum Development and Evaluation. (Achimota, Ghana, 14 July--15 August 1975). Report.

    ERIC Educational Resources Information Center

    Swedish International Development Authority (SIDA).

    This report summarizes the African Regional Seminar for Advanced Training in Systematic Curriculum Development and Evaluation that was held at Achimota, Ghana, July 14-August 15 1975. Attending the seminar were 67 participants from 12 African countries, including Cameroon, Gambia, Ghana, Kenya, Liberia, Malawi, Nigeria, Sierra Leone, Swaziland,…

  10. A Late Glacial Environmental Reconstruction performed on Lacustrine Sediments from the Southern Tibetan Plateau identifies regional Monsoon Variations

    NASA Astrophysics Data System (ADS)

    Henkel, K.; Ahlborn, M.; Haberzettl, T.; Alivernini, M.; Kasper, T.; Thiele, A.; St-Onge, G.; Daut, G.; Frenzel, P.; Gleixner, G.; Wang, J.; Zhu, L.; Maeusbacher, R.

    2014-12-01

    The Tibetan Plateau (TP) is very sensitive to climate variations and is therefore an ideal study site to investigate past climate changes. Influenced by the Asian Monsoon system, the numerous lake systems on the TP serve as valuable archives for past hydrological changes, which are assumed to be caused by variations in strength and extent of the monsoonal impact. The lacustrine record from the terminal lake Tangra Yumco (4540 m a.s.l., 31°13'N, 86°43'E) consists of an interbedding of fine-grained silty sediments with laminations of different thicknesses (sub-mm to cm) and partly intercalated blackish sandy layers. Thin section analysis in the laminated areas reveals cyclic laminations composed of a carbonate and a detrital layer. Homogenous intervals represent turbidite deposits which are further detected based on lithology, radiography as well as changes in the water content, grain size, Ti-values (XRF) and in the paleomagnetic parameter median destructive field. The chronology is based on 27 AMS-radiocarbon ages on bulk organic matter and one piece of wood, which is of terrestrial origin. To determine a possible carbon reservoir effect, additional surface sediment samples and one modern aquatic plant were measured. The calculated reservoir effect of 2,120 +110/-90 years is assumed to be constant over the time and thus the base of the record reveals a corrected radiocarbon age of 17,270 +325/-310 cal BP. Additionally, investigations on paleomagnetic secular variations were carried out, showing that since 15,900 cal BP the record preserved a well-defined magnetization recording a genuine paleomagnetic signal. Regarding the geochemical (organic and inorganic), sedimentological, mineralogical and micropaleontological analyses, a low lake level with a high terrestrial input is observed for the Late Glacial. At 15.6 ka cal BP, a change in the sediment accumulation rate, increased allochthoneous input and changing ostracod fauna point to an increasing lake level. In

  11. Increase in African dust flux at the onset of commercial agriculture in the Sahel region.

    PubMed

    Mulitza, Stefan; Heslop, David; Pittauerova, Daniela; Fischer, Helmut W; Meyer, Inka; Stuut, Jan-Berend; Zabel, Matthias; Mollenhauer, Gesine; Collins, James A; Kuhnert, Henning; Schulz, Michael

    2010-07-01

    The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s (ref. 2), a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region approximately 170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years. PMID:20613839

  12. Impact of disaster-related mortality on gross domestic product in the WHO African Region

    PubMed Central

    Kirigia, Joses M; Sambo, Luis G; Aldis, William; Mwabu, Germano M

    2004-01-01

    Background Disaster-related mortality is a growing public health concern in the African Region. These deaths are hypothesized to have a significantly negative effect on per capita gross domestic product (GDP). The objective of this study was to estimate the loss in GDP attributable to natural and technological disaster-related mortality in the WHO African Region. Methods The impact of disaster-related mortality on GDP was estimated using double-log econometric model and cross-sectional data on various Member States in the WHO African Region. The analysis was based on 45 of the 46 countries in the Region. The data was obtained from various UNDP and World Bank publications. Results The coefficients for capital (K), educational enrolment (EN), life expectancy (LE) and exports (X) had a positive sign; while imports (M) and disaster mortality (DS) were found to impact negatively on GDP. The above-mentioned explanatory variables were found to have a statistically significant effect on GDP at 5% level in a t-distribution test. Disaster mortality of a single person was found to reduce GDP by US$0.01828. Conclusions We have demonstrated that disaster-related mortality has a significant negative effect on GDP. Thus, as policy-makers strive to increase GDP through capital investment, export promotion and increased educational enrolment, they should always keep in mind that investments made in the strengthening of national capacity to mitigate the effects of national disasters expeditiously and effectively will yield significant economic returns. PMID:15113453

  13. Impact of disaster-related mortality on gross domestic product in the WHO African Region.

    PubMed

    Kirigia, Joses M; Sambo, Luis G; Aldis, William; Mwabu, Germano M

    2004-03-15

    BACKGROUND: Disaster-related mortality is a growing public health concern in the African Region. These deaths are hypothesized to have a significantly negative effect on per capita gross domestic product (GDP). The objective of this study was to estimate the loss in GDP attributable to natural and technological disaster-related mortality in the WHO African Region. METHODS: The impact of disaster-related mortality on GDP was estimated using double-log econometric model and cross-sectional data on various Member States in the WHO African Region. The analysis was based on 45 of the 46 countries in the Region. The data was obtained from various UNDP and World Bank publications. RESULTS: The coefficients for capital (K), educational enrolment (EN), life expectancy (LE) and exports (X) had a positive sign; while imports (M) and disaster mortality (DS) were found to impact negatively on GDP. The above-mentioned explanatory variables were found to have a statistically significant effect on GDP at 5% level in a t-distribution test. Disaster mortality of a single person was found to reduce GDP by US$0.01828. CONCLUSIONS: We have demonstrated that disaster-related mortality has a significant negative effect on GDP. Thus, as policy-makers strive to increase GDP through capital investment, export promotion and increased educational enrolment, they should always keep in mind that investments made in the strengthening of national capacity to mitigate the effects of national disasters expeditiously and effectively will yield significant economic returns. PMID:15113453

  14. Effects of maternal mortality on gross domestic product (GDP) in the WHO African region.

    PubMed

    Kirigia, Joses M; Oluwole, Doyin; Mwabu, Germano M; Gatwiri, Doris; Kainyu, Lenity H

    2006-01-01

    WHO African region has got the highest maternal mortality rate compared to the other five regions. Maternal mortality is hypothesized to have significantly negative effect on the gross domestic product (GDP). The objective of the current study was to estimate the loss in GDP attributable to maternal mortality in the WHO African Region. The burden of maternal mortality on GDP was estimated using a double-log econometric model. The analysis is based on cross-sectional data for 45 of the 46 Member States in the WHO African Region. Data were obtained from UNDP and the World Bank publications. All the explanatory variables included in the double-log model were found to have statistically significant effect on per capita gross domestic product (GDP) at 5 % level in a t-distribution test. The coefficients for land (D), capital (K), educational enrollment (EN) and exports (X) had a positive sign; while labor (L), imports (M) and maternal mortality rate (MMR) were found to impact negatively on GDP. Maternal mortality of a single person was found to reduce per capita GDP by US $ 0.36 per year. The study has demonstrated that maternal mortality has a statistically significant negative effect on GDP. Thus, as policy-makers strive to increase GDP through land reform programs, capital investments, export promotion and increase in educational enrollment, they should always remember that investment in maternal mortality-reducing interventions promises significant economic returns. PMID:17348747

  15. Evaluation of Regional Climate Simulations of the 1998 and 1999 East Asian Summer Monsoon Using the GAME/HUBEX Observational Data

    SciTech Connect

    Leung, Lai R; Zhong, Shiyuan; Qian, Yun; Liu, Yiming

    2004-12-01

    A regional climate model based on the Penn State/NCAR Mesoscale Model (MM5) was used to simulate the 1998 and 1999 East Asian summer monsoon conditions. Simulations were performed for 1 April – 31 August of each year, with initial and lateral boundary conditions provided by the ECMWF analysis. Observations from the 1998 and 1999 GAME/HUBEX experiments were used to evaluate the regional climate simulations. Based on observations, large differences can be found between the 1998 and 1999 meteorological conditions and surface energy budgets at the Shouxian station during the IOPs, with much higher rain intensity but only slightly higher rain frequency in 1998 than 1999. For 1998, although the regional climate model was able to reproduce the general spatial distribution of monthly mean rainfall quite well during the summer monsoon season, large discrepancies can be found in comparing the observed and simulated surface climate and energy fluxes in the HUBEX region. By using Four Dimensional Data Assimilation (FDDA) technique, which constrains the simulated large-scale circulation with observations from 21 soundings in the HUBEX α-scale region, both the root mean square error and mean bias in rainfall were greatly reduced. The improvements in simulating rainfall were related to both reduction in errors of precipitation amount and timing. In the control simulation, a mean bias of -63 W/m² (-36%) was found in the simulated surface net radiation at Shouxian, which suggest large errors in simulating clouds in the region. With FDDA, the bias was significantly reduced to -23 W/m² (-13%), with corresponding reduction of bias in the latent heat flux. This suggests that at least part of the model bias in simulating net radiation is related to errors in simulating the large-scale circulation, which can affect cloud amount and vertical distribution. Comparing the 1998 and 1999 simulations, both without FDDA, smaller biases were found in the surface fluxes during 1999

  16. Improving Regional Climate Modeling of the North American Monsoon Through Physically Consistent Bias Corrected CCSM4 Output

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Jin, J.

    2014-12-01

    The Weather Research and Forecasting (WRF) model was used to simulate a 32-year climatology of the North American Monsoon (NAM) using forcing data provided by 1) the Climate Forecast System Reanalysis (CFSR), and 2) the Community Climate System Model version 4 (CCSM). Systematic biases in the CCSM output such as significant dry biases in the tropics are transmitted into the WRF model through the lateral boundary conditions and degrade the performance of the model when compared to both observations and simulations forced with the CFSR dataset. To improve the ability of CCSM output to appropriately prescribe the NAM, we introduce a process using simple linear regression and the CFSR dataset to perform a mean bias correction that also maintains the physical dependencies across variables. A third NAM climatology was simulated using this bias corrected CCSM output, which showed marked improvement to the NAM precipitation, most notably in the Mexican core of the NAM. Additionally, the climatology of NAM evolutionary characteristics (i.e. onset, intensity, decay) are much better represented in the bias corrected CCSM WRF model than in the original CCSM WRF model, and closely resemble the CFSR simulations. NAM precipitation simulated by each of the three forcing datasets show the bias corrected CCSM simulations produce the most consistent trends when compared to observations, providing confidence for future projections of the NAM.

  17. Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector

    NASA Astrophysics Data System (ADS)

    Oryema, B.; Jurua, E.; D'ujanga, F. M.; Ssebiyonga, N.

    2015-11-01

    This paper presents the annual, seasonal and diurnal variations in ionospheric TEC along the African equatorial region. The study also investigated the effects of a geomagnetic storm on ionospheric TEC values. Dual-frequency GPS derived TEC data obtained from four stations within the African equatorial region for the high solar activity year 2012 were used in this study. Annual variations showed TEC having two peaks in the equinoctial months, while minima values were observed in the summer and winter solstices. The diurnal pattern showed a pre-dawn minimum, a steady increase from about sunrise to an afternoon maximum and then a gradual fall after sunset to attain a minimum just before sunrise. Nighttime enhancements of TEC were observed mostly in the equinoctial months. There was comparably higher percentage TEC variability during nighttime than daytime and highest during equinoxes, moderate in winter and least during summer solstice. TEC was observed to exhibit a good correlation with geomagnetic storm indices.

  18. Tropical convective systems life cycle characteristics from geostationary satellite and precipitating estimates derived from TRMM and ground weather radar observations for the West African and South American regions

    NASA Astrophysics Data System (ADS)

    Fiolleau, T.; Roca, R.; Angelis, F. C.; Viltard, N.

    2012-12-01

    In the tropics most of the rainfall comes in the form of individual storm events embedded in the synoptic circulations (e.g., monsoons). Understanding the rainfall and its variability hence requires to document these highly contributing tropical convective systems (MCS). Our knowledge of the MCS life cycle, from a physical point of view mainly arises from individual observational campaigns heavily based on ground radar observations. While this large part of observations enabled the creation of conceptual models of MCS life cycle, it nevertheless does not reach any statistically significant integrated perspective yet. To overcome this limitation, a composite technique, that will serve as a Day-1 algorithm for the Megha-Tropiques mission, is considered in this study. this method is based on a collocation in space and time of the level-2 rainfall estimates (BRAIN) derived from the TMI radiometer onboard TRMM with the cloud systems identified by a new MCS tracking algorithm called TOOCAN and based on a 3-dimensional segmentation (image + time) of the geostationary IR imagery. To complete this study, a similar method is also developed collocating the cloud systems with the precipitating features derived from the ground weather radar which has been deployed during the CHUVA campaign over several Brazilian regions from 2010 up to now. A comparison of the MCSs life cycle is then performed for the 2010-2012 summer seasons over the West African, and South American regions. On the whole region of study, the results show that the temporal evolution of the cold cloud shield associated to MCSs describes a symmetry between the growth and the decay phases. It is also shown that the parameters of the conceptual model of MCSs are strongly correlated, reducing thereby the problem to a single degree of freedom. At the system scale, over both land and oceanic regions, rainfall is described by an increase at the beginning (the first third) of the life cycle and then smoothly decreases

  19. Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A highly industrialised region in South China influenced by seasonal monsoons

    NASA Astrophysics Data System (ADS)

    Chen, Laiguo; Liu, Ming; Xu, Zhencheng; Fan, Ruifang; Tao, Jun; Chen, Duohong; Zhang, Deqiang; Xie, Donghai; Sun, Jiaren

    2013-10-01

    Studies on atmospheric mercury in the Pearl River Delta (PRD) region are important because of the economic relevance of this region to China, because of its economic developmental pattern and because it is a highly industrialised area influenced by the strong seasonal monsoons. Total gaseous mercury (TGM), meteorological parameters and criteria pollutant concentrations were measured at Mt. Dinghu (DH, a regional monitoring site) and Guangzhou (GZ, an urban monitoring site) in the PRD region from October 2009 to April 2010 and from November 2010 to November 2011, respectively. The ranges of daily average TGM concentrations at the DH and GZ sites were 1.87-29.9 ng m-3 (5.07 ± 2.89 ng m-3) and 2.66-11.1 ng m-3 (4.60 ± 1.36 ng m-3), respectively, which were far more significant than the background values in the Northern Hemisphere (1.5-1.7 ng m-3), suggesting that the atmosphere in the PRD has suffered from mercury pollution. Similar TGM seasonal distributions at the two sites were observed, with a descending order of spring, winter, autumn and summer. The different seasonal monsoons were the dominant factor controlling the seasonal variability of the TGM, with variations in the boundary layer and oxidation also possibly partially contributing. Different diurnal patterns of the TGM at two sites were observed. TGM levels during the daytime were higher than those during the nighttime and were predominantly influenced by mountain and valley winds at the DH site, whereas the opposite trend was evident at the GZ site, which was primarily influenced by the boundary-layer height and O3 concentration. During the monitoring period, the correlations between the daily TGM levels and the SO2 and NO2 levels at the DH site were significant (r = 0.36, p < 0.001; r = 0.29, p < 0.001), suggesting that coal-fired emission is an important source of mercury for this regional monitoring site. At the GZ site, the correlations between the daily TGM level and the NO, NO2, CO levels were

  20. Cloud characteristics over the rain-shadow region of North Central peninsular India during monsoon withdrawal and post-withdrawal periods

    NASA Astrophysics Data System (ADS)

    Morwal, S. B.; Narkhedkar, S. G.; Padmakumari, B.; Maheskumar, R. S.; Kothawale, D. R.; Dani, K. K.; Burger, R.; Bruintjes, R. T.; Kulkarni, J. R.

    2016-01-01

    Cloud characteristics over the rain-shadow region of the north central peninsular India has been studied using C-band radar data for the period 21 September-30 October 2011. The period covers withdrawal and post-withdrawal periods of monsoon 2011. Though the study has been carried out for one season, it has been shown that it is representative of climatic feature over the region. The cloud characteristics have been discussed in the context of large scale dynamical and thermodynamical conditions over the region using NCEP wind data and radiosonde data, respectively. The large scale dynamic and thermodynamical conditions were found favorable for occurrence of widespread and deep convection. The cloud top heights show tri-modal distribution with peaks at 2-3, 4-6 and 8-12 km which are associated with cumulus, congestus and cumulonimbus clouds, respectively. The tops of these three types of the clouds are found to be associated with the stable layers in the atmosphere. The frequency of congestus clouds was the highest. The cloud characteristics over the region differ from other tropical land and oceanic regions in respect of maximum height, mean duration and cumulative frequency distribution. Distribution of cloud top height and duration show deviation from lognormality in the lower ends. It indicates that the cloud growth mechanism is different than that observed over other tropical land and oceanic regions and also due to the large wind shear prevailed over the region. During the period, a large number of suitable clouds were found available for hygroscopic and glaciogenic cloud seeding.

  1. Southern African Phanerozoic marine invertebrates: Biogeography, pal˦oecology, climatology and comments on adjacent regions

    NASA Astrophysics Data System (ADS)

    Boucot, A. J.

    The Palaeozoic marine invertebrate fossil record in southern Africa is characterised by extensive data for the Early and Middle Devonian but extremely limited or absent for other Palaeozoic Periods. The Mesozoic Era is lacking in marine invertebrate fossils for the Triassic, Late Jurassic, and Cretaceous. For the Cenozoic Era there is limited marine megafossil information. Overall, in benthic, cool waters, Palaeozoic, marine megafossils from southern Africa appear to represent relatively low diversity communities, when compared to ecologically comparable warm water environments elsewhere. However, the marine benthic Cretaceous and Cenozoic faunas of southwestern Africa are typically diverse warm water types, until the later Miocene when cool waters again prevailed. The Benguela Current clearly influenced lower diversity faunas. Climatically, it can be inferred from the marine megabenthic pal˦ontological evidence, thatwarm conditions were present from Early Cambrian until mid-Ordovician times, followed by a much cooler climate that persisted well into the Middle Devonian. The Late Palaeozoic evidence thus indicates cool to cold conditions. In contrast, the Late Permian fossils are consistent with warmer conditions, continuing through Late Jurassic and Cretaceous times along the East African and West African coasts, until the Late Miocene. Within the Gondwanan framework, a Central African region can be envisaged that was subject to non-marine conditions during the entire Phanerozoic Eon. Peripheral to this central African region were marine environments of various ages. The geological history of these peripheral regions was fairly unique. Some features in southern Africa are similar of those found in the Paraná Basin and the Falkland Islands. Most of North Africa from central Senegal to Libya contains a Phanerozoic marine cover extending from the Early Cambrian through to the Carboniferous, characterised by warm water faunas, except for the Ordovician which yields

  2. Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Jeong; Ha, Kyung-Ja; Jhun, Jong-Ghap

    2014-05-01

    The interdecadal and the interannual variability of the global monsoon (GM) precipitation over the area which is chosen by the definition of Wang and Ding (Geophys Res Lett 33: L06711, 2006) are investigated. The recent increase of the GM precipitation shown in previous studies is in fact dominant during local summer. It is evident that the GM monsoon precipitation has been increasing associated with the positive phase of the interdecadal Pacific oscillation in recent decades. Against the increasing trend of the GM summer precipitation in the Northern Hemisphere, its interannual variability has been weakened. The significant change-point for the weakening is detected around 1993. The recent weakening of the interannual variability is related to the interdecadal changes in interrelationship among the GM subcomponents around 1993. During P1 (1979-1993) there is no significant interrelationship among GM subcomponents. On the other hand, there are significant interrelationships among the Asian, North American, and North African summer monsoon precipitations during P2 (1994-2009). It is noted that the action center of the interdecadal changes is the Asian summer (AS) monsoon system. It is found that during P2 the Western North Pacific summer monsoon (WNPSM)-related variability is dominant but during P1 the ENSO-related variability is dominant over the AS monsoon region. The WNPSM-related variability is rather related to central-Pacific (CP) type ENSO rather than the eastern-Pacific (EP) type ENSO. Model experiments confirm that the CP type ENSO forcing is related to the dominant WNPSM-related variability and can be responsible for the significant interrelationship among GM subcomponents.

  3. Influence of convective parameterization on the systematic errors of Climate Forecast System (CFS) model over the Indian monsoon region from an extended range forecast perspective

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Abhilash, S.; De, S.; Sahai, A. K.; Phani, R.; Goswami, B. N.

    2013-07-01

    This study investigates the influence of Simplified Arakawa Schubert (SAS) and Relax Arakawa Schubert (RAS) cumulus parameterization schemes on coupled Climate Forecast System version.1 (CFS-1, T62L64) retrospective forecasts over Indian monsoon region from an extended range forecast perspective. The forecast data sets comprise 45 days of model integrations based on 31 different initial conditions at pentad intervals starting from 1 May to 28 September for the years 2001 to 2007. It is found that mean climatological features of Indian summer monsoon months (JJAS) are reasonably simulated by both the versions (i.e. SAS and RAS) of the model; however strong cross equatorial flow and excess stratiform rainfall are noted in RAS compared to SAS. Both the versions of the model overestimated apparent heat source and moisture sink compared to NCEP/NCAR reanalysis. The prognosis evaluation of daily forecast climatology reveals robust systematic warming (moistening) in RAS and cooling (drying) biases in SAS particularly at the middle and upper troposphere of the model respectively. Using error energy/variance and root mean square error methodology it is also established that major contribution to the model total error is coming from the systematic component of the model error. It is also found that the forecast error growth of temperature in RAS is less than that of SAS; however, the scenario is reversed for moisture errors, although the difference of moisture errors between these two forecasts is not very large compared to that of temperature errors. Broadly, it is found that both the versions of the model are underestimating (overestimating) the rainfall area and amount over the Indian land region (and neighborhood oceanic region). The rainfall forecast results at pentad interval exhibited that, SAS and RAS have good prediction skills over the Indian monsoon core zone and Arabian Sea. There is less excess rainfall particularly over oceanic region in RAS up to 30 days of

  4. Regional health governance: A suggested agenda for Southern African health diplomacy

    PubMed Central

    Penfold, Erica Dale; Fourie, Pieter

    2015-01-01

    Regional organisations can effectively promote regional health diplomacy and governance through engagement with regional social policy. Regional bodies make decisions about health challenges in the region, for example, the Union of South American Nations (UNASUR) and the World Health Organisation South East Asia Regional Office (WHO-SEARO). The Southern African Development Community (SADC) has a limited health presence as a regional organisation and diplomatic partner in health governance. This article identifies how SADC facilitates and coordinates health policy, arguing that SADC has the potential to promote regional health diplomacy and governance through engagement with regional social policy. The article identifies the role of global health diplomacy and niche diplomacy in health governance. The role of SADC as a regional organisation and the way it functions is then explained, focusing on how SADC engages with health issues in the region. Recommendations are made as to how SADC can play a more decisive role as a regional organisation to implement South–South management of the regional social policy, health governance and health diplomacy agenda. PMID:26635498

  5. Can countries of the WHO African Region wean themselves off donor funding for health?

    PubMed

    Kirigia, Joses Muthuri; Diarra-Nama, Alimata J

    2008-11-01

    More than 20% of total health expenditure in 48% of the 46 countries in the WHO African Region is provided by external sources. Issues surrounding aid effectiveness suggest that these countries ought to implement strategies for weaning off aid dependency. This paper broaches the following question: what are some of the strategies that countries of the region can employ to wean off donor funding for health? Five strategies are discussed: reduction in economic inefficiencies; reprioritizing public expenditures; raising additional tax revenues; increased private sector involvement in health development; and fighting corruption. PMID:19030696

  6. The Southern African Regional Science Initiative (SAFARI 2000): Overview of the Dry Season Field Campaign

    NASA Technical Reports Server (NTRS)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Helmlinger, M. C.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international project investigating the earth atmosphere -human system in southern Africa. The programme was conducted over a two year period from March 1999 to March 2001. The dry season field campaign (August-September 2000) was the most intensive activity involved over 200 scientist from eighteen countries. The main objectives were to characterize and quantify biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate NASA's Earth Observing System's Satellite Terra within a scientific context. Five aircraft-- two South African Weather Service Aeorcommanders, the University of Washington's CV-880, the U.K. Meteorological Office's C-130, and NASA's ER-2 --with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses, that had moved downwind of the subcontinent, was conducted by the CSIRO over Australia. Multiple Observations were made in various geographical sections under different synoptic conditions. Airborne missions were designed to optimize the value of synchronous over-flights of the Terra Satellite platform, above regional ground validation and science targets. Numerous smaller scale ground validation activities took place throughout the subcontinent during the campaign period.

  7. Summertime nitrate aerosol in the upper troposphere and lower stratosphere over the Tibetan Plateau and the South Asian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Gu, Yixuan; Liao, Hong; Bian, Jianchun

    2016-06-01

    We use the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to examine the contribution of nitrate aerosol to aerosol concentrations in the upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau and the South Asian summer monsoon (TP/SASM) region during summertime of year 2005. Simulated surface-layer aerosol concentrations are compared with ground-based observations, and simulated aerosols in the UTLS are evaluated by using the Stratospheric Aerosol and Gas Experiment II satellite data. Simulations show elevated aerosol concentrations of sulfate, nitrate, ammonium, black carbon, organic carbon, and PM2.5 (particles with diameter equal to or less than 2.5 µm, defined as the sum of sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols in this study) in the UTLS over the TP/SASM region throughout the summer. Nitrate aerosol is simulated to be of secondary importance near the surface but the most dominant aerosol species in the UTLS over the studied region. Averaged over summertime and over the TP/SASM region, CNIT (the ratio of nitrate concentration to PM2.5 concentration) values are 5-35 % at the surface, 25-50 % at 200 hPa, and could exceed 60 % at 100 hPa. The mechanisms for the accumulation of nitrate in the UTLS over the TP/SASM region include vertical transport and the gas-to-aerosol conversion of HNO3 to form nitrate. The high relative humidity and low temperature associated with the deep convection over the TP/SASM region are favorable for the gas-to-aerosol conversion of HNO3.

  8. Modeling Interannual Variations of Summer Monsoons.

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.; Brankovi, .; Viterbo, P.; Miller, M. J.

    1992-05-01

    Results from a set of 90-day integrations, made with a T42 version of the ECMWF model and forced with a variety of specified sea surface temperature (SST) datasets, are discussed. Most of the integrations started from data for 1 June 1987 and 1 June 1988. During the summer of 1987, both the Indian and African monsoons were weak, in contrast with the summer of 1988 when both monsoons were much stronger. With observed SSTs, the model is able to simulate the interannual variations in the global-scale velocity potential and stream-function fields on seasonal time scales. On a regional basis, rainfall over the Sahel and, to a lesser extent, India showed the correct sense of interannual variation, though in absolute terms the model appears to have an overall dry bias in these areas.Additional integrations were made to study the impact of the observed SST anomalies in individual oceans. Much of the interannual variation in both Indian and African rainfall can be accounted for by the remote effect of the tropical Pacific SST anomalies only. By comparison with the effect of the Pacific, interannual variability in Indian Ocean, tropical Atlantic Ocean, or extratropical SSTs had a relatively modest influence on tropical large-scale flow or rainfall in the areas studied.Integrations run with identical SSTs but different initial conditions indicated that for large-scale circulation diagnostics, the impact of anomalous ocean forcing dominated the possible impact of variations in initial conditions. In terms of local rainfall amounts, on the other hand, the impact of initial conditions is comparable with that of SST anomaly over parts of India and Southeast Asia, less so over the Sahel. While this may suggest that a nonnegligible fraction of the variance of month-to-seasonal mean rainfall on the regional scale in the tropics may not be dynanamically predictable, it is also quite possible that the disparity in the apparent predictability of rainfall and circulation anomalies is a

  9. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  10. Potential Regions of Strong Land-atmosphere Coupling Based on the S2S Project Database: Implications for the Indian Summer Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Halder, S.; Dirmeyer, P.; Cash, B. A.; Adams, J. A.

    2015-12-01

    Advancing the understanding of land-ocean-atmosphere coupled processes and improving the prediction on the sub-seasonal to seasonal (S2S) time scale is important for several sectors such as agriculture, health, disaster management etc. The multi-model S2S database provides an ideal test bed for inter-comparison of model performance in this time scale and improving the understanding of coupled processes. Soil moisture and snow cover have been recognized as potential sources of predictability for temperature and precipitation on this time scale. They can play a crucial role through better initialization and improved representation of land surface processes. In this study, we focus on the identification of potential regions of strong land-atmosphere coupling during March-April-May (MAM) and June-July-August (JJA). A quantification of the land-atmosphere coupling strength in the models is also made on the basis of several coupling indices. Comparison with earlier studies helps us identify the regions where biases in the terrestrial and/or atmospheric segments may affect the overall land-atmosphere coupling strength in individual models. Better representation of land surface processes and accurate initialization of the land surface states during MAM has important implications for variability of Indian summer monsoon rainfall on sub-seasonal time scales, which is also addressed in this study.

  11. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains

    NASA Astrophysics Data System (ADS)

    Gasse, Françoise; Van Campo, Elise

    1994-09-01

    Regions beyond the present or past penetration of the Indian and African monsoons have experienced several large and abrupt climatic fluctuations over the past 13 14C kyr. Pollen and lake records from West Asia (Western Tibet and Rajasthan), East Africa (Ethiopia) and West Africa (Western Sahara, Sahel and subequatorial Africa) were selected on the basis of chronological control, sensitivity of both site and environmental indicators to climate change, the continuity of the record, and interdisciplinary control of the palaeoclimatic interpretation. Conditions wetter than those of today prevailed during the early-mid-Holocene period, but major dry spells are recorded at all sites during the intervals ˜ 11.0-9.5 kyr BP, ˜ 8-7 kyr BP and 3-4 kyr BP. Several records also suggest dry events of minor amplitude around 6 kyr BP. Potential boundary forcings of insolation and sea surface and tropical land surface conditions are discussed. The solar radiation accounts for the general envelop of the post-glacial monsoon fluctuations, but explains neither the timing nor the amplitude of the short-term changes. In spite of apparent covariation between fluctuations in sea surface conditions in the North Atlantic and the monsoon record, no direct mechanism could be found relating the intensity of the oceanic thermohaline conveyor belt to the monsoon strength. Changes in tropical land surface conditions (soil moisture negative feedback, and changes in CH 4 production from wetlands) provide a more satisfactory hypothesis for explaining abrupt reversal events.

  12. Impact of the Aerosol Direct Radiative Forcing on the Asian summer monsoon using ICTP-Regional Climate Model (RegCM)

    NASA Astrophysics Data System (ADS)

    Zakey, Ashraf; Giorgi, Filippo; Bi, Xunqiang

    2010-05-01

    The direct radiative forcing of aerosol over Asia play a significant impact on climate. Eleven types of aerosols (Anthropogenic, Biogenic and Natural sources) are implemented into Aerosol Module in ICTP-Regional Climate Model framework, these aerosols are Black Carbon (hydrophobic and hydrophilic), Organic Carbon (hydrophobic and hydrophilic), Sulfate, Sea-Salt (fine and accumulation modes), and dust (4-size bins). The results shown that during five year study 2002-2006, the surface radiative forcing is about -160 W/m2 over the western part of China and -20 W/m2 over the eastern part. This cooling of the surface radiative forcing reduced the temperature from -3.5C to -3.0C over the western part and eastern part of China, respectively. Surface cooling (1.5C) is recorded over India as well. Negative impact in Wind speed values are decreased (- 1.5 m/s) over the eastern part of China, while there is a positive impact over the Tibetan Plateau ( 2 m/s). The most dominant aerosols in the pre-monsoon are dust particles, because during the pre-monsoon season of March-April, dusts from the deserts of western China, and the Middle East are transported into the northern and southern slopes of the Tibetan Plateau causing strong surface cooling in the radiative forcing. Warming effects are noticed in the TOA radiative forcing at the Tibetan Plateau, this because the effects of the 'elevated heat-bump' where the absorption of solar radiation by dust heats up the elevated surface air and then the heated air rises via dry convection creating a positive temperature anomaly in the mid-to-upper troposphere over the Tibetan Plateau relative to the region to the south. No clear event is recorded on precipitation over the continent, but there is increasing is recorded close to the India over the Indian Ocean (3.5 mm ) during December-February (DJF) and March-May (MAM) seasons.

  13. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951-2005 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Halder, S.; Saha, S. K.; Dirmeyer, P. A.; Chase, T. N.; Goswami, B. N.

    2015-07-01

    Daily moderate rainfall events, that constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 till 2005. Mean and extreme near surface daily temperature during the monsoon season have also increased by a maximum of 1-1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) with prescribed vegetation cover of 1950 and 2005, it is demonstrated that part of the above observed changes in moderate rainfall events and temperature have been caused by land-use land-cover change (LULCC) which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over central India coincides with the region of decreased (increased) forest (crop) cover. The results also show that land-use land-cover alone causes warming in the extremes of daily mean and maximum temperatures by maximum of 1-1.2 °C, that is comparable with the observed increasing trend in the extremes. Decrease (increase) in forest (crop) cover reduces the evapotranspiration over land and large-scale convective instability, apart from decreasing the moisture convergence. These factors act together not only in reducing the moderate rainfall events over central India but also the amount of rainfall in that category, significantly. This is the most interesting result of this study. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures. As a result, there is enhanced warming at the surface and decrease in moderate rainfall events over central India. Results from the additional experiments corroborate our initial findings and confirm the contribution of land-use land-cover change on increase in daily mean and extreme temperature and decrease in moderate rainfall events. This study not only demonstrates the important implications of LULCC over India, but also shows the necessity for inclusion of projected anthropogenic

  14. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors - A review.

    PubMed

    Pavela, Roman; Benelli, Giovanni

    2016-08-01

    Mosquitoes (Diptera: Culicidae) represent a huge threat for millions of humans and animals worldwide, since they act as vectors for important parasites and pathogens, including malaria, filariasis and important arboviruses, such as dengue, West Nile and Zika virus. No vaccines or other specific treatments are available against the arboviruses transmitted by mosquitoes, and avoidance of mosquito bites remains the best strategy. African regions are usually hit most whose inhabitants are poor, and the use of repellent plants is the only efficient protection against vectors they have. Ethnobotanical knowledge of such plants and their use is usually passed on orally from one generation to another. However, it is also important to preserve this information in a written form, as well. Ethnobotanical research projects carried out in the regions of today's Ethiopia, South Africa, Nigeria, Kenya, and Tanzania indicate that the native inhabitants of the African study regions traditionally use 64 plant species, belonging to 30 families. Aromatic plants (i.e., Citrus spp., Eucalyptus spp., Lantana camara, Ocimum spp. and Lippia javanica) the most commonly used in all the study regions. Native people know three major methods of using repellent plants: (i) production of repellent smoke from burning plants, (ii) hanging plants inside the house or sprinkling leaves on the floor, (iii) the use of plant oils, juices from crushed fresh parts of the plants, or various prepared extracts applied on uncovered body parts. Overall, this review covers studies conducted only in a limited part of the African continent, highlighting the importance to undertake further research efforts to preserve the unique knowledge and traditions of the native tribes. PMID:27260568

  15. Marine protected areas in the eastern African Region: how successful are they?

    PubMed

    Francis, Julius; Nilsson, Agneta; Waruinge, Dixon

    2002-12-01

    This article reviews the governance and management of Marine Protected Areas (MPAs), and the coral reefs they contain, in the eastern African Region. This includes the Comoros, Kenya, Madagascar, Mauritius, Mozambique, Tanzania, and the Seychelles. Three generations or categories of MPAs are distinguished: i) small areas for protection of a single species or unique marine habitat; iii) large multiple use MPAs designed for coastal development as well as biodiversity protection; and iii) MPAs managed by a nongovernmental organization (NGO) or the private sector. Each of these MPA types is examined according to the policies, legislation, and management systems they entail as well as the economic and community situation they operate within. The paper also provides a review of some eastern African MPAs in terms of their size and location, the type of MPA, zonation schemes, and financial status. The successes of the different types of MPAs are discussed based on specific indicators, such as changes in biodiversity, infrastructure, compliance to regulations and the level of involvement of primary stakeholders in the management. From the review it is clear that a fourth generation of MPAs may be forthcoming; community-based MPAs. Although lack of data makes it difficult to assess the effectiveness of these different categories of MPAs, it is clear that no MPA can succeed without support of the local communities. Generally, the results of the analysis are promising for MPAs, however a lack of data is hampering a deeper analysis. The major issues facing MPAs in the region are highlighted, as well as some regional initiatives striving to address these issues. A number of recommendations are made, aiming to strengthen the establishment and management of MPAs in the eastern African region. PMID:12572815

  16. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  17. Association studies in QTL regions linked to bovine trypanotolerance in a West African crossbred population.

    PubMed

    Dayo, G K; Gautier, M; Berthier, D; Poivey, J P; Sidibe, I; Bengaly, Z; Eggen, A; Boichard, D; Thevenon, S

    2012-04-01

    African animal trypanosomosis is a parasitic blood disease transmitted by tsetse flies and is widespread in sub-Saharan Africa. West African taurine breeds have the ability, known as trypanotolerance, to limit parasitaemia and anaemia and remain productive in enzootic areas. Several quantitative trait loci (QTL) underlying traits related to trypanotolerance have been identified in an experimentally infected F(2) population resulting from a cross between taurine and zebu cattle. Although this information is highly valuable, the QTL remain to be confirmed in populations subjected to natural conditions of infection, and the corresponding regions need to be refined. In our study, 360 West African cattle were phenotyped for the packed cell volume control under natural conditions of infection in south-western Burkina Faso. Phenotypes were assessed by analysing data from previous cattle monitored over 2 years in an area enzootic for trypanosomosis. We further genotyped for 64 microsatellite markers mapping within four previously reported QTL on BTA02, BTA04, BTA07 and BTA13. These data enabled us to estimate the heritability of the phenotype using the kinship matrix between individuals computed from genotyping data. Thus, depending on the estimators considered and the method used, the heritability of anaemia control ranged from 0.09 to 0.22. Finally, an analysis of association identified an allele of the MNB42 marker on BTA04 as being strongly associated with anaemia control, and a candidate gene, INHBA, as being close to that marker. PMID:22404348

  18. Orbital control of the western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Chiang, John C. H.; Hsu, Huang-Hsiung; Lee, Shih-Yu

    2016-02-01

    Orbital forcing exerts a strong influence on global monsoon systems, with higher summer insolation leading to stronger summer monsoons in the Northern Hemisphere. However, the associated regional and seasonal changes, particularly the interaction between regional monsoon systems, remain unclear. Simulations using the Community Earth System Model demonstrate that the western North Pacific (WNP) summer monsoon responds to orbital forcing opposite to that of other major Northern Hemisphere monsoon systems. Compared with its current climate state, the simulated WNP monsoon and associated lower-tropospheric trough is absent in the early Holocene when the precession-modulated Northern Hemisphere summer insolation is higher, whereas the summer monsoons in South and East Asia are stronger and shift farther northward. We attribute the weaker WNP monsoon to the stronger diabatic heating of the summer Asian monsoon—in particular over the southern Tibetan Plateau and Maritime Continent—that in turn strengthens the North Pacific subtropical high through atmospheric teleconnections. By contrast, the impact of the midlatitude circulation changes on the WNP monsoon is weaker when the solar insolation is higher. Prior to the present WNP monsoon onset, the upper-tropospheric East Asian jet stream weakens and shifts northward; the monsoon onset is highly affected by the jet-induced high potential vorticity intrusion. In the instance of the extreme perihelion-summer, the WNP monsoon is suppressed despite a stronger midlatitude precursor than present-day, and the midlatitude circulation response to the enhanced South Asian precipitation is considerable. These conditions indicate internal monsoon interactions of an orbital scale, implying a potential mechanistic control of the WNP monsoon.

  19. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  20. Roles of the tropical convective activities over different regions in the earlier onset of the South China Sea summer monsoon after 1993

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Chen, Wen

    2013-07-01

    The South China Sea summer monsoon (SCSSM) onset experiences evidently an interdecadal change around mid-1990s. Generally, the SCSSM broke out half a month earlier during 1994-2010 than IN 1978-1993. Possible causes are analyzed in this study. The results suggest that the earlier onset of the SCSSM is due to earlier retreat of the subtropical high (STH) over the western Pacific, which is closely related to enhanced intraseasonal oscillations of tropical convections. The enhanced convective activities can be found in three regions: the eastern tropical Indian Ocean (TIO), the equatorial SCS-Kalimantan (ESK) and the tropical western Pacific (TWP). Both convections in the TIO and the ESK are greatly influenced by the interaction of the westerly wind from the TIO and the easterly wind from the TWP. The convections in the TIO are never found to propagate to the east of 100°E, while those in the ESK are usually quite weak and not great help to the SCSSM onset. Our results suggest that the earlier retreat of the STH is mainly caused by the enhanced convections in the TWP, while the later may be the consequence of warming over the TWP on the interdecadal timescale. Therefore, the La Niña-like interdecadal change of the sea surface temperature (SST) in the Pacific is likely to be responsible for the interdecadal advance of the SCSSM onset.

  1. Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L.A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species–environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  2. Regional Distribution Models with Lack of Proximate Predictors: Africanized Honeybees Expanding North

    NASA Technical Reports Server (NTRS)

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L. A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species-environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  3. Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Douville, Hervé

    2011-10-01

    The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.

  4. Impact of assimilation of INSAT-3D retrieved atmospheric motion vectors on short-range forecast of summer monsoon 2014 over the South Asian region

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Deb, Sanjib K.; Kishtawal, C. M.; Pal, P. K.

    2016-01-01

    The Weather Research and Forecasting (WRF) model and its three-dimensional variational data assimilation system are used in this study to assimilate the INSAT-3D, a recently launched Indian geostationary meteorological satellite derived from atmospheric motion vectors (AMVs) over the South Asian region during peak Indian summer monsoon month (i.e., July 2014). A total of four experiments were performed daily with and without assimilation of INSAT-3D-derived AMVs and the other AMVs available through Global Telecommunication System (GTS) for the entire month of July 2014. Before assimilating these newly derived INSAT-3D AMVs in the numerical model, a preliminary evaluation of these AMVs is performed with National Centers for Environmental Prediction (NCEP) final model analyses. The preliminary validation results show that root-mean-square vector difference (RMSVD) for INSAT-3D AMVs is ˜3.95, 6.66, and 5.65 ms-1 at low, mid, and high levels, respectively, and slightly more RMSVDs are noticed in GTS AMVs (˜4.0, 8.01, and 6.43 ms-1 at low, mid, and high levels, respectively). The assimilation of AMVs has improved the WRF model of produced wind speed, temperature, and moisture analyses as well as subsequent model forecasts over the Indian Ocean, Arabian Sea, Australia, and South Africa. Slightly more improvements are noticed in the experiment where only the INSAT-3D AMVs are assimilated compared to the experiment where only GTS AMVs are assimilated. The results also show improvement in rainfall predictions over the Indian region after AMV assimilation. Overall, the assimilation of INSAT-3D AMVs improved the WRF model short-range predictions over the South Asian region as compared to control experiments.

  5. Observational Analysis of Two Contrasting Monsoon Years

    NASA Astrophysics Data System (ADS)

    Karri, S.; Ahmad, R.; Sujata, P.; Jose, S.; Sreenivas, G.; Maurya, D. K.

    2014-11-01

    The Indian summer monsoon rainfall contributes about 75 % of the total annual rainfall and exhibits considerable interannual variations. The agricultural economy of the country depends mainly on the monsoon rainfall. The long-range forecast of the monsoon rainfall is, therefore of significant importance in agricultural planning and other economic activities of the country. There are various parameters which influence the amount of rainfall received during the monsoon. Some of the important parameters considered by the Indian Meteorological Department (IMD) for the study of monsoon are Outgoing Longwave Radiation (OLR), moisture content of the atmosphere, zonal wind speed, low level vorticity, pressure gradient etc. Compared to the Long Period Average (LPA) value of rain fall, the country as a whole received higher amount of rainfall in June, 2013 (34 % more than LPA). The same month showed considerable decrease next year as the amount of rainfall received was around 43 % less compared to LPA. This drastic difference of monsoon prompted to study the behaviour of some of the monsoon relevant parameters. In this study we have considered five atmospheric parameters as the indicators of monsoon behaviour namely vertical relative humidity, OLR, aerosol optical depth (AOD), wind at 850 hPa and mean sea level pressure (MSLP). In the initial analysis of weekly OLR difference for year 2013 and 2014 shows positive values in the month of May over north-western parts of India (region of heat low). This should result in a weaker monsoon in 2014. This is substantiated by the rainfall data received for various stations over India. Inference made based on the analysis of RH profiles coupled with AOD values is in agreement with the rainfall over the corresponding stations.

  6. The First Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-07-27

    In 2004 the Joint Scientific Committee (JSC) that provides scientific guidance to the World Climate Research Programme (WCRP) requested an assessment of (1) WCRP monsoon related activities and (2) the range of available observations and analyses in monsoon regions. The purpose of the assessment was to (a) define the essential elements of a pan-WCRP monsoon modeling strategy, (b) identify the procedures for producing this strategy, and (c) promote improvements in monsoon observations and analyses with a view toward their adequacy, and addressing any undue redundancy or duplication. As such, the WCRP sponsored the ''1st Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons'' at the University of California, Irvine, CA, USA from 15-17 June 2005. Experts from the two WCRP programs directly relevant to monsoon studies, the Climate Variability and Predictability Programme (CLIVAR) and the Global Energy and Water Cycle Experiment (GEWEX), gathered to assess the current understanding of the fundamental physical processes governing monsoon variability and to highlight outstanding problems in simulating the monsoon that can be tackled through enhanced cooperation between CLIVAR and GEWEX. The agenda with links to the presentations can be found at: http://www.clivar.org/organization/aamon/WCRPmonsoonWS/agenda.htm. Scientific motivation for a joint CLIVAR-GEWEX approach to investigating monsoons includes the potential for improved medium-range to seasonal prediction through better simulation of intraseasonal (30-60 day) oscillations (ISO's). ISO's are important for the onset of monsoons, as well as the development of active and break periods of rainfall during the monsoon season. Foreknowledge of the active and break phases of the monsoon is important for crop selection, the determination of planting times and mitigation of potential flooding and short-term drought. With a few exceptions simulations of ISO are typically poor in all classes of

  7. Trends of ionospheric irregularities over African low latitude region during quiet geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick; Habarulema, John Bosco; Jurua, Edward

    2016-02-01

    The occurrence patterns of ionospheric irregularities during quiet geomagnetic conditions over the African low latitude region were analysed. GNSS-derived Total Electron Content of the ionosphere data during the period 2001-2012 were used. The data were obtained from Libreville, Gabon (0.35°N, 9.68°E, geographic, 8.05°S, magnetic), Mbarara, Uganda (0.60°S, 30.74°E, geographic, 10.22°S, magnetic), and Malindi, Kenya (2.99°S, 40.19°E, geographic, 12.42°S, magnetic). The rate of change of total electron content index greater than 0.5 TECU/Min were considered as severe ionospheric irregularities. For most of the time, the strength of ionospheric irregularities in March equinox were greater than those during September equinox over East Africa and an opposite observation was made over West Africa. These asymmetries might be due to the direction of the meridional winds during equinoxes over the different stations. Severity of ionospheric irregularity reduced from west towards the east. This might have been related to the decreasing geomagnetic field strength from east towards the west. This is the first study that reveals the equinoctial asymmetry is different in the West and East African sectors. Moreover, the importance of this study lies in the fact that it has used extensive data to examine the isolated and un-explained earlier observations of equinoctial asymmetry and longitudinal variation of ionospheric irregularities over the African low latitude region.

  8. Status of national health research systems in ten countries of the WHO African Region

    PubMed Central

    Kirigia, Joses M; Wambebe, Charles

    2006-01-01

    Background The World Health Organization (WHO) Regional Committee for Africa, in 1998, passed a resolution (AFR/RC48/R4) which urged its Member States in the Region to develop national research policies and strategies and to build national health research capacities, particularly through resource allocation, training of senior officials, strengthening of research institutions and establishment of coordination mechanisms. The purpose of this study was to take stock of some aspects of national resources for health research in the countries of the Region; identify current constraints facing national health research systems; and propose the way forward. Methods A questionnaire was prepared and sent by pouch to all the 46 Member States in the WHO African Region through the WHO Country Representatives for facilitation and follow up. The health research focal person in each of the countries Ministry of Health (in consultation with other relevant health research bodies in the country) bore the responsibility for completing the questionnaire. The data were entered and analysed in Excel spreadsheet. Results The key findings were as follows: the response rate was 21.7% (10/46); three countries had a health research policy; one country reported that it had a law relating to health research; two countries had a strategic health research plan; three countries reported that they had a functional national health research system (NHRS); two countries confirmed the existence of a functional national health research management forum (NHRMF); six countries had a functional ethical review committee (ERC); five countries had a scientific review committee (SRC); five countries reported the existence of health institutions with institutional review committees (IRC); two countries had a health research programme; and three countries had a national health research institute (NHRI) and a faculty of health sciences in the national university that conducted health research. Four out of the ten

  9. Relative rates of evolution in the coding and control regions of African mtDNAs.

    PubMed

    Howell, Neil; Elson, Joanna L; Howell, Corinna; Turnbull, Douglass M

    2007-10-01

    Reduced median networks of African haplogroup L mitochondrial DNA (mtDNA) sequences were analyzed to determine the pattern of substitutions in both the noncoding control and coding regions. In particular, we attempted to determine the causes of the previously reported (Howell et al. 2004) violation of the molecular clock during the evolution of these sequences. In the coding region, there was a significantly higher rate of substitution at synonymous sites than at nonsynonymous sites as well as in the tRNA and rRNA genes. This is further evidence for the operation of purifying selection during human mtDNA evolution. For most sites in the control region, the relative rate of substitution was similar to the rate of neutral evolution (assumed to be most closely approximated by the substitution rate at 4-fold degenerate sites). However, there are a number of mutational hot spots in the control region, approximately 3% of the total sites, that have a rate of substitution greater than the neutral rate, at some sites by more than an order of magnitude. It is possible either that these sites are evolving under conditions of positive selection or that the substitution rate at some sites in the control region is strongly dependent upon sequence context. Finally, we obtained preliminary evidence for "nonideal" evolution in the control region, including haplogroup-specific substitution patterns and a decoupling between relative rates of substitution in the control and coding regions. PMID:17642471

  10. [People of African descent in the region of the Americas and health equity].

    PubMed

    Torres, Cristina

    2002-01-01

    The Region of the Americas and the Caribbean has a complex demographic profile from an ethnic and racial perspective. One of the largest groups is composed of persons of African descent, who in some countries, such as Brazil and the Dominican Republic, comprise 46 and 84% of the total population, respectively. Recent analyses of the statistics available in some countries of the Region show wide gaps in terms of living conditions and health in these communities, as well as gaps in access to health services. PAHO, through its Public Policy and Health Program, under the Division of Health and Human Development, supports sectorial efforts and those of civil organizations that aim to improve health conditions in this segment of the population, while taking into account their sociodemographic and cultural characteristics. This article briefly summarizes health conditions and access to health services in selected countries, as well as some aspects of the recent changes to the legislation in those countries. Finally, collaborative activities on the part of United Nations agencies and international financial institutions for the benefit of people of African descent and other ethnic minorities are described. PMID:12162849

  11. Assigning African elephant DNA to geographic region of origin: Applications to the ivory trade

    PubMed Central

    Wasser, Samuel K.; Shedlock, Andrew M.; Comstock, Kenine; Ostrander, Elaine A.; Mutayoba, Benezeth; Stephens, Matthew

    2004-01-01

    Resurgence of illicit trade in African elephant ivory is placing the elephant at renewed risk. Regulation of this trade could be vastly improved by the ability to verify the geographic origin of tusks. We address this need by developing a combined genetic and statistical method to determine the origin of poached ivory. Our statistical approach exploits a smoothing method to estimate geographic-specific allele frequencies over the entire African elephants' range for 16 microsatellite loci, using 315 tissue and 84 scat samples from forest (Loxodonta africana cyclotis) and savannah (Loxodonta africana africana) elephants at 28 locations. These geographic-specific allele frequency estimates are used to infer the geographic origin of DNA samples, such as could be obtained from tusks of unknown origin. We demonstrate that our method alleviates several problems associated with standard assignment methods in this context, and the absolute accuracy of our method is high. Continent-wide, 50% of samples were located within 500 km, and 80% within 932 km of their actual place of origin. Accuracy varied by region (median accuracies: West Africa, 135 km; Central Savannah, 286 km; Central Forest, 411 km; South, 535 km; and East, 697 km). In some cases, allele frequencies vary considerably over small geographic regions, making much finer discriminations possible and suggesting that resolution could be further improved by collection of samples from locations not represented in our study. PMID:15459317

  12. Solar Spectral Radiative Forcing During the Southern African Regional Science Initiative

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Pommier, J.; Bergstrom, R.; Gore, W.; Howard, S.; Rabbette, M.; Schmid, B.; Hobbs, P. V.; Tsay, S. C.

    2003-01-01

    During the dry season component of the Southern African Regional Science Initiative (SAFARI) in late winter 2000, the net solar spectral irradiance was measured at flight levels throughout biomass burning haze layers. From these measurements, the flux divergence, fractional absorption, instantaneous heating rate, and absorption efficiency were derived. Two cases are examined: on 24 August 2000 off the coast of Mozambique in the vicinity of Inhaca Island and on 6 September 2000 in a very thick continental haze layer over Mongu, Zambia. The measured absolute absorption was substantially higher for the case over Mongu where the measured midvisible optical depth exceeded unity. Instantaneous heating from aerosol absorption was 4 K d(sup -1) over Mongu, Zambia and 1.5 K d(sup -1) near Inhaca Island, Mozambique. However, the spectral absorption efficiency was nearly identical for both cases. Although the observations over Inhaca Island preceded the river of smoke from the southern African continent by nearly 2 weeks, the evidence here suggests a continental influence in the lower tropospheric aerosol far from source regions of burning.

  13. Absolute barotropic instability and monsoon depressions

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Farrell, B.; Rosenthal, A. J.

    1983-01-01

    Monsoon depressions over the Bay of Bengal develop almost entirely in July and August. After studies conducted by Lindzen et al. (1980) and Stevens and Lindzen (1978), only barotropic instability remains as a mechanism for the development of the wave disturbances associated with monsoon depressions. The present investigation has the objective to show that barotropic instability is able to explain the wave aspects of monsoon depressions, but that normal mode analysis is inadequate. It is found that the local barotropically unstable response to regional perturbations in the Bay of Bengal during July and August will be dominated by the lower troposphere. The analysis clearly identifies the features of the mean flow which lead to monsoon depressions in July. The features include the development of an easterly jet as opposed to semijet structure in the mean flow, and the development of a modest easterly flow at the jet center as opposed to westerly flow.

  14. Analysis of Genomic Regions Associated With Coronary Artery Disease Reveals Continent-Specific Single Nucleotide Polymorphisms in North African Populations

    PubMed Central

    Zanetti, Daniela; Via, Marc; Carreras-Torres, Robert; Esteban, Esther; Chaabani, Hassen; Anaibar, Fatima; Harich, Nourdin; Habbal, Rachida; Ghalim, Noreddine; Moral, Pedro

    2016-01-01

    Background In recent years, several genomic regions have been robustly associated with coronary artery disease (CAD) in different genome-wide association studies (GWASs) conducted mainly in people of European descent. These kinds of data are lacking in African populations, even though heart diseases are a major cause of premature death and disability. Methods Here, 384 single nucleotide polymorphisms (SNPs) in the top four CAD risk regions (1p13, 1q41, 9p21, and 10q11) were genotyped in 274 case-control samples from Morocco and Tunisia, with the aim of analyzing for the first time if the associations found in European populations were transferable to North Africans. Results The results indicate that, as in Europe, these four genetic regions are also important for CAD risk in North Africa. However, the individual SNPs associated with CAD in Africa are different from those identified in Europe in most cases (1p13, 1q41, and 9p21). Moreover, the seven risk variants identified in North Africans are efficient in discriminating between cases and controls in North African populations, but not in European populations. Conclusions This study indicates a disparity in markers associated to CAD susceptibility between North Africans and Europeans that may be related to population differences in the chromosomal architecture of these risk regions. PMID:26780859

  15. Influences of dust aerosols on regional aerosol optical properties, radiation budget and tropospheric chemistry during a typical pre-monsoon season dust storm in northern India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Madronich, S.; Naja, M. K.; Carmichael, G. R.; Pfister, G.; Knote, C. J.; Brasseur, G. P.; Ojha, N.; Sarangi, T.

    2013-12-01

    The effects of dust aerosols on the regional aerosol optical properties, radiation budget and tropospheric chemistry during a typical pre-monsoon season (April-June) dust storm event in northern India are analyzed. The MOZCART chemical mechanism of WRF-Chem is extended to simulate heterogeneous chemistry on dust surface and F-TUV photolysis scheme is updated to account for effects of dust aerosols on photolysis rates. The dust storm event lasted from 17 to 22 April 2010 and large changes (>50%) in local to regional scale aerosol optical properties are observed in both AERONET and satellite observations during this period. The extended version of WRF-Chem model captured several important features of the spatio-temporal distributions of dust plumes, aerosol optical properties and trace gases during the dust storm. Model results show that dust particles cool the surface and the top of the atmosphere, and warm the atmosphere. The regionally averaged radiative perturbation due to dust aerosols is estimated as -2.0×3.0 W m-2 at the top of the atmosphere, 2.3×1.8 W m-2 in the atmosphere and -4.4×3.1 W m-2 at the surface. The impact of these radiative perturbations on the surface energy budget is estimated to be small on a regional scale but significant locally. The dust storm acted as a sink for many key trace gases including ozone, nitrogen oxides, hydrogen oxides, methanol, acetic acid and formaldehyde, and significantly perturbed their spatial and vertical distributions. The reductions in these gases are estimated as 5-99% and more than 80% of this reduction came from the heterogeneous chemistry. The RH dependence of reactive uptake coefficient is found to have a significant impact on the distributions of trace gases. A set of sensitivity analyses revealed that dust aging can play an important role in heterogeneous chemistry. Model experiments based on laboratory measurements of changes in the uptake of ozone by dust with aging showed that dust aging can lead to

  16. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  17. Global climate and monsoons response to orbital forcing in the Late Miocene

    NASA Astrophysics Data System (ADS)

    Marzocchi, A.; Lunt, D. J.; Flecker, R.; Farnsworth, A.; Bradshaw, C.

    2014-12-01

    Global climate during the Late Miocene (11.61-5.33 Ma) is thought to have been generally warmer and wetter than at present day. The Northern Hemisphere was characterised by nearly ice-free conditions (with respect to the extent of the Greenland ice sheet) and some of the main marine gateways were undergoing opening or closure (e.g. Central American gateway, Bering Strait, and Indonesian Throughflow). Vegetation distribution was also generally more extensive than it is today, both at high and low latitudes. There is geological evidence of orbitally-forced cyclicity in sedimentary sections throughout the globe, especially in marginal basins such as the Mediterranean Sea. In the Late Miocene the entire North African catchment drained in the Eastern Mediterranean, constituting the main fresh water input into the basin, regulated by the North African monsoon. In addition, the Tibetan Plateau underwent substantial uplift throughout this time period, which strengthened the Asian monsoon system. The Late Miocene therefore represents an ideal scenario to investigate the impact of orbital forcing on the North African and Asian monsoon systems, the establishment of their teleconnections, and the associated vegetation changes. There still is considerable uncertainty in the reconstructed atmospheric CO2 levels for this time period, due to the patchy distribution (both spatially and temporally) of the available proxy record. Hence, we also explore the sensitivity of global climate to changing CO2 levels with different orbital configurations. We carried out a new series of 22 fully coupled atmosphere-ocean-vegetation numerical simulations, run at evenly spaced intervals (1kyr) through a full late Miocene precession cycle (~6.5 Ma), using a full-complexity general circulation model (HadCM3L). These model results show substantial changes to sea surface temperatures and regional atmospheric circulation on sub-precessional time scales. This triggers responses in the North African and

  18. In-situ measurements of cloud-precipitation microphysics in the East Asian monsoon region since 1960

    NASA Astrophysics Data System (ADS)

    Wang, Donghai; Yin, Jinfang; Zhai, Guoqing

    2015-04-01

    A large number of in-situ measurements of cloud-precipitation microphysical properties have been made since 1960, including measurements of particle size distribution, particle concentration, and liquid water content of clouds and rain. These measurements have contributed to considerable progress in understanding microphysical processes in clouds and precipitation and significant improvements in parameterizations of cloud microphysics in numerical models. This work reviews key findings regarding cloud-precipitation microphysics over China. The total number concentrations of various particles vary significantly, with certain characteristic spatial scales. The size distributions of cloud droplets in stratiform clouds can generally be fit with gamma distributions, but the fit parameters cover a wide range. Raindrop size distributions (RSDs) associated with stratiform clouds can be fit with either exponential or gamma distributions, while RSDs associated with convective or mixed stratiform-cumuliform clouds are best fit with gamma distributions. Concentrations of ice nuclei (IN) over China are higher than those observed over other regions, and increase exponentially as temperature decreases. The particle size distributions of ice crystals, snow crystals, and hailstones sampled at a variety of locations can be reliably approximated by using exponential distributions, while aerosol particle size distributions are best described as the sum of a modified gamma distribution and a Junge power-law distribution. These results are helpful for evaluating and improving the fidelity of physical processes and hydrometeor fields simulated by microphysical parameterizations. The comprehensive summary and analysis of previous work presented here also provide useful guidelines for the design of future observational programs.

  19. Possible Effects of Seasonal Fires on Drought Across the Northern Sub-Saharan African Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Recent satellite-based studies have revealed that the northern sub-Saharan African (NSSA) region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.

  20. Multiple Origins and Regional Dispersal of Resistant dhps in African Plasmodium falciparum Malaria

    PubMed Central

    Pearce, Richard J.; Pota, Hirva; Evehe, Marie-Solange B.; Bâ, El-Hadj; Mombo-Ngoma, Ghyslain; Malisa, Allen L.; Ord, Rosalynn; Inojosa, Walter; Matondo, Alexandre; Diallo, Diadier A.; Mbacham, Wilfred; van den Broek, Ingrid V.; Swarthout, Todd D.; Getachew, Asefaw; Dejene, Seyoum; Grobusch, Martin P.; Njie, Fanta; Kweku, Margaret; Owusu-Agyei, Seth; Chandramohan, Daniel; Bonnet, Maryline; Guthmann, Jean-Paul; Clarke, Sian; Barnes, Karen I.; Streat, Elizabeth; Katokele, Stark T.; Uusiku, Petrina; Agboghoroma, Chris O.; Elegba, Olufunmilayo Y.; Cissé, Badara; A-Elbasit, Ishraga E.; Giha, Hayder A.; Kachur, S. Patrick; Lynch, Caroline; Rwakimari, John B.; Chanda, Pascalina; Hawela, Moonga; Naidoo, Inbarani; Roper, Cally

    2009-01-01

    Background Although the molecular basis of resistance to a number of common antimalarial drugs is well known, a geographic description of the emergence and dispersal of resistance mutations across Africa has not been attempted. To that end we have characterised the evolutionary origins of antifolate resistance mutations in the dihydropteroate synthase (dhps) gene and mapped their contemporary distribution. Methods and Findings We used microsatellite polymorphism flanking the dhps gene to determine which resistance alleles shared common ancestry and found five major lineages each of which had a unique geographical distribution. The extent to which allelic lineages were shared among 20 African Plasmodium falciparum populations revealed five major geographical groupings. Resistance lineages were common to all sites within these regions. The most marked differentiation was between east and west African P. falciparum, in which resistance alleles were not only of different ancestry but also carried different resistance mutations. Conclusions Resistant dhps has emerged independently in multiple sites in Africa during the past 10–20 years. Our data show the molecular basis of resistance differs between east and west Africa, which is likely to translate into differing antifolate sensitivity. We have also demonstrated that the dispersal patterns of resistance lineages give unique insights into recent parasite migration patterns. PMID:19365539

  1. North African petroleum geology: regional structure and stratigraphic overview of a hydrocarbon-rich cratonic area

    SciTech Connect

    O'Connor, T.E.; Kanes, W.H.

    1985-02-01

    North Africa, including Sinai, contains some of the most important hydrocarbon-producing basins in the world. The North African Symposium is devoted to examining the exploration potential of the North African margin in light of the most recent and promising exploration discoveries. The geologic variety of the region is extraordinary and can challenge any exploration philosophy. Of primary interest are the Sirte basin of Libya, which has produced several billion barrels of oil, and the Gulf of Suez, a narrow, evaporite-capped trough with five fields that will produce more than 5 billion bbl. Both are extensional basins with minimal lateral movement and with good source rocks in direct proximity to reservoirs. Structural models of these basins give firm leads for future exploration. More difficult to evaluate are the Tethyan realm basins of the northern Sinai, and the Western Desert of Egypt, the Cyrenaican Platform of Libya, and the Tunisia-Sicily shelf area, where there are only limited subsurface data. These basins are extensional in origin also, but have been influenced by lateral tectonics. Favorable reservoirs exist, but source rocks have been a problem locally. Structural models with strong stratigraphic response offer several favorable play concepts. The Paleozoic Ghadames basin in Libya, Tunisia, and Algeria has the least complex structural history, and production appears to be limited to small structures. A series of stratigraphic models indicates additional areas with exploration potential. The Paleozoic megabasin of Morocco, with its downfaulted Triassic grabens, remains an untested but attractive area.

  2. Simultaneous observations of ionospheric irregularities in the African low-latitude region

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Seemala, Gopi K.; Bosco Habarulema, John

    2013-05-01

    Ionospheric storms represent large global disturbances of the ionospheric F-region electron density in response to geomagnetic storms. This study investigates the ionospheric response during a minor geomagnetic storm that occurred on 13-15 September 2004. In particular, we use total electron content (TEC) measurements (rate of TEC change, ROT) to examine the presence of ionospheric irregularities over four low-latitude stations in the African sector, a region that has been less studied. Ionospheric irregularities are known to cause fading and phase fluctuation of L-band radio navigation signals such as those used by the Global Navigation Satellite Systems (GNSS), and are a common feature in the equatorial and low-latitude ionosphere. In the present study, the storm began with a sudden commencement at approximately 20:00 UT on 13 September, while the peak of the main phase occurred on 14 September with an SYM-H index value around -59 nT. On 13 September, the storm did not appear to hinder the development of irregularities as they were observed over all the stations. In contrast, irregularities were rarely observed at two of the 4 stations under study and were absent over the other two stations on 14 September. The DSMP F15 satellite post-sunset flight over the African region observed deep density depletions on 13 September that can be associated with the presence of ionospheric plasma bubble irregularities. Furthermore, an analysis of ΔH (horizontal geomagnetic component corrected for ring current effects) shows that there was a strong positive ΔH perturbation observed in the post-sunset hours on 13 September, which suggests the presence of an eastward penetration electric field, while a negative perturbation of ΔH, which is associated with the equatorial counter-electrojet, was observed on 14 September.

  3. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    PubMed

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-01-01

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America. PMID:24634296

  4. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Kushnir, Yochanan; Enzel, Yehouda; Haug, Gerald; Stein, Mordechai

    2015-02-01

    Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at ∼725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5). The results document both a more intense aridity during MIS5 than during the Holocene, and the moderating impacts derived from the intense MIS5e African Monsoon. Early MIS5e (∼133-128 ka) was dominated by hyperarid conditions in the Eastern Mediterranean-Levant, indicated by thick halite deposition triggered by a lake-level drop. Halite deposition was interrupted however, during the MIS5e peak (∼128-122 ka) by sequences of flood deposits, which are coeval with the timing of the intense precession-forced African monsoon that generated Mediterranean sapropel S5. A subsequent weakening of this humidity source triggered extreme aridity in the Dead Sea watershed and resulting in the biggest known lake level drawdown in its history, reflected by the deposition of thick salt layers, and a capping pebble layer corresponding to a hiatus at ∼116-110 ka. The DSDDP core provides the first evidence for a direct association of the African monsoon with mid subtropical latitude climate systems effecting the Dead Sea watershed. Combined with coeval deposition of Arabia and southern Negev speleothems, Arava travertines, and calcification of Red Sea corals, the evidence points to a climatically wet corridor that could have facilitated homo sapiens migration "out of Africa" during the MIS5e peak. The hyperaridity documented during MIS5e may provide an important analogue for future warming of arid regions of the Eastern Mediterranean-Levant.

  5. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  6. Pre-monsoon rain and its relationship with monsoon onset over the Indochina Peninsula

    NASA Astrophysics Data System (ADS)

    Kiguchi, Masashi; Matsumoto, Jun; kanae, Shinjiro; Oki, Taikan

    2016-05-01

    We analyzed rainfall during the pre-monsoon season from 1979 to 2002 over the Indochina Peninsula. Our multi-year analysis confirmed that the passage of the upper trough and moisture convergence in the lower troposphere produce intermittent rainfall events during the pre-monsoon season. From this result, three questions are raised. First, what are the characteristics of the upper trough? Second, what is the cause of the significant amount of moisture during the pre-monsoon season over inland Indochina? Third, what is the relationship between the intermittent pre-monsoon rainfall and monsoon onset? Our study suggests the following answers to these questions: 1) The upper trough is associated with the cyclone over the Yangtze River basin. This cyclone is baroclinic, so the upper trough over the study area is produced by the mid-latitude regime. 2) A significant amount of moisture over the Indochina Peninsula is produced by both intermittent rainfall associated with the passage of the upper trough and continuous rainfall occurred over a wide region associated with the equatorial southwesterly. 3) We found no clear relationship between rainfall amount during the pre-monsoon period and timing of monsoon onset over the Indochina Peninsula.

  7. Responses of equatorial F region to different geomagnetic storms observed by GPS in the African sector

    NASA Astrophysics Data System (ADS)

    Adewale, A. O.; Oyeyemi, E. O.; Adeloye, A. B.; Ngwira, C. M.; Athieno, R.

    2011-12-01

    This article presents the first results regarding the investigation of the response of the equatorial ionospheric F region in the African sector during geomagnetic storm periods between April 2000 and November 2007 using GPS-derived vertical total electron content observed at Libreville, Gabon (0.35°N, 9.67°E, dip latitude -8.05°S). We performed a superposed epoch analysis of the storms by defining the start time of the epoch as the storm onset time. During geomagnetic storms, the altered electric fields contribute significantly to the occurrence of negative and positive ionospheric storm effects. Our results showed that the positive storm effects are more prevalent than the negative storm effects and generally last longer irrespective of storm onset times. Also, the positive storm effects are most pronounced in the daytime than in the premidnight and postmidnight periods.

  8. A solar variability driven monsoon see-saw: switching relationships of the Holocene East Asian-Australian summer monsoons

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Ozken, Ibrahim; McRobie, Fiona; Stemler, Thomas; Marwan, Norbert; Wyrwoll, Karl-Heinz; Kurths, Juergen

    2016-04-01

    The East Asian-Indonesian-Australian monsoon is the predominant low latitude monsoon system, providing a major global scale heat source. Here we apply newly developed non-linear time series techniques on speleothem climate proxies, from eastern China and northwestern Australia and establish relationships between the two summer monsoon regimes over the last ˜9000 years. We identify significant variations in monsoonal activity, both dry and wet phases, at millennial to multi-centennial time scales and demonstrate for the first time the existence of a see-saw antiphase relationship between the two regional monsoon systems. Our analysis attributes this inter-hemispheric linkage to the solar variability that is effecting both monsoon systems.

  9. New vaccine introduction in the East and Southern African sub-region of the WHO African region in the context of GIVS and MDGs.

    PubMed

    Chauke-Moagi, Bafedile E; Mumba, Mutale

    2012-09-01

    number of countries have adopted and operationalized GIVS through comprehensive multi-year plans for immunization (cMYP). This paper reviews progress with respect to introduction of some of the new vaccines in the East and Southern sub-region of WHO African region in the context of GIVS and MDGs as well as the challenges thereof. PMID:22939018

  10. Characterisation of plumes from the Johannesburg-Pretoria megacity within the regional South African context

    NASA Astrophysics Data System (ADS)

    Beukes, J. P.; Vakkari, V.; Van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Tiitta, P.; Jaars, K.; Pienaar, J. J.; Kulmala, M.; Worsnop, D.; Laakso, L.

    2012-04-01

    plumes from the more well-known source regions i.e. the Mpumalanga Highveld and the Vaal Triangle, which have been proclaimed as a national air pollution hotspots in terms of the South African National Environmental Management: Air Quality Act (Government Gazette Republic of South Africa, 2005; Government Gazette Republic of South Africa, 2007). The above-mentioned results obtained for the Johannesburg-Pretoria conurbation indicate serious air quality and climate change related impacts for the human population and regional ecosystems.

  11. Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region

    NASA Astrophysics Data System (ADS)

    Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg

    2015-04-01

    Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on

  12. Polio eradication in the World Health Organization African Region, 2008-2012.

    PubMed

    Kretsinger, Katrina; Gasasira, Alex; Poy, Alain; Porter, Kimberly A; Everts, Johannes; Salla, Mbaye; Brown, Kristin H; Wassilak, Steven G F; Nshimirimana, Deogratias

    2014-11-01

    A renewed commitment at the regional and the global levels led to substantial progress in the fight for polio eradication in the African Region (AFR) of the World Health Organization (WHO) during 2008-2012. In 2008, there were 912 reported cases of wild poliovirus (WPV) infection in 12 countries in the region. This number had been reduced to 128 cases in 3 countries in 2012, of which 122 were in Nigeria, the only remaining country with endemic circulation of WPV in AFR. During 2008-2012, circulation apparently ceased in the 3 AFR countries with reestablished WPV transmission-Angola, the Democratic Republic of the Congo, and Chad. Outbreaks in West Africa continued to occur in 2008-2010 but were more rapidly contained, with fewer cases than during earlier years. This progress has been attributed to better implementation of core strategies, increased accountability, and implementation of innovative approaches. During this period, routine coverage with 3 doses of oral polio vaccine in AFR, as measured by WHO-United Nations Children's Fund estimates, increased slightly, from 72% to 74%. Despite this progress, challenges persist in AFR, and 2013 was marked by new setbacks and importations. High population immunity and strong surveillance are essential to sustain progress and assure that AFR reaches its goal of eradicating WPV. PMID:25316840

  13. Physical impacts of regional climate change in the West African Sahel and the question of desertification

    SciTech Connect

    Nicholson, S.E.; Ba, M.

    1997-11-01

    The question of desertification is examined in the West African Sahel region by considering various physical indicators assumed to accompany this process. The study considers only the past 14 years, since the availability of comprehensive satellite data sets. The physical indicators examined include vegetation cover, surface albedo, soil moisture, wind-borne dust, river flow, lakes, and the ratio of available moisture to vegetation growth. Vegetation cover and albedo are assessed from satellite data. Soil moisture is assessed using a surface hydrologic model. Dust is estimated from visibility measurements. The most important results are that: (1) there is no progressive change in the vegetation cover, (2) an increase of albedo as the region dries up cannot be documented, and (3) there has been a tremendous increase in wind-borne dust over the Sahel. The vegetation cover responds almost directly to rainfall and the movement of the desert boundary corresponds roughly to rainfall fluctuations. The most important meteorological effect of the drought and/or desertification in the Sahel may be the enhanced dust generation, with the region becoming a major global source of atmospheric mineral dust. 5 refs., 7 figs., 1 tab.

  14. Integrated mapping of groundwater drought risk in the Southern African Development Community (SADC) region

    NASA Astrophysics Data System (ADS)

    Villholth, Karen G.; Tøttrup, Christian; Stendel, Martin; Maherry, Ashton

    2013-06-01

    Groundwater drought denotes the condition and hazard during a prolonged meteorological drought when groundwater resources decline and become unavailable or inaccessible for human use. Groundwater drought risk refers to the combined physical risk and human vulnerability associated with diminished groundwater availability and access during drought. An integrated management support tool, GRiMMS, is presented, for the mapping and assessment of relative groundwater drought risk in the Southern African Development Community (SADC) region. Based on composite mapping analysis of region-wide gridded relative indices of meteorological drought risk, hydrogeological drought proneness and human groundwater drought vulnerability, the mapping results highlight consistent areas across the region with highest groundwater drought risk and populations in the order of 39 million at risk of groundwater drought at present. Projective climate-model results suggest a potentially significant negative impact of climate change on groundwater drought risk. The tool provides a means for further attention to the key, but neglected, role of groundwater in drought management in Africa.

  15. The East Asian summer monsoon: an overview

    NASA Astrophysics Data System (ADS)

    Yihui, Ding; Chan, Johnny C. L.

    2005-06-01

    The present paper provides an overview of major problems of the East Asian summer monsoon. The summer monsoon system over East Asia (including the South China Sea (SCS)) cannot be just thought of as the eastward and northward extension of the Indian monsoon. Numerous studies have well documented that the huge Asian summer monsoon system can be divided into two subsystems: the Indian and the East Asian monsoon system which are to a greater extent independent of each other and, at the same time, interact with each other. In this context, the major findings made in recent two decades are summarized below: (1) The earliest onset of the Asian summer monsoon occurs in most of cases in the central and southern Indochina Peninsula. The onset is preceded by development of a BOB (Bay of Bengal) cyclone, the rapid acceleration of low-level westerlies and significant increase of convective activity in both areal extent and intensity in the tropical East Indian Ocean and the Bay of Bengal. (2) The seasonal march of the East Asian summer monsoon displays a distinct stepwise northward and northeastward advance, with two abrupt northward jumps and three stationary periods. The monsoon rain commences over the region from the Indochina Peninsula-the SCS-Philippines during the period from early May to mid-May, then it extends abruptly to the Yangtze River Basin, and western and southern Japan, and the southwestern Philippine Sea in early to mid-June and finally penetrates to North China, Korea and part of Japan, and the topical western West Pacific. (3) After the onset of the Asian summer monsoon, the moisture transport coming from Indochina Peninsula and the South China Sea plays a crucial “switch” role in moisture supply for precipitation in East Asia, thus leading to a dramatic change in climate regime in East Asia and even more remote areas through teleconnection. (4) The East Asian summer monsoon and related seasonal rain belts assumes significant variability at

  16. Translating the potential of hydrological forecasts into improved decision making in African regions

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; He, X.; Wanders, N.; Wood, E. F.; Ali, A.; Olang, L.; Estes, L. D.; Caylor, K. K.; Evans, T. P.

    2015-12-01

    Hydrological forecasts at local scale and seasonal time scales have the potential to inform decision-making by individuals and institutions to improve management of water resources and enhance food security. Much progress has been made in recent years in understanding climate variability and its predictability over African regions. However, there remain many challenges in translating large-scale evaluations and forecasts into locally relevant information. This is hampered by lack of on the ground data of hydrological and agricultural states, and the generally low skill of climate forecasts at time scales beyond one or two weeks. Additionally, the uptake of forecasts is not prevalent because of lack of capacity, and institutional and cultural barriers to using new and uncertain information. New technologies for monitoring and forecasting relevant hydrological variables, and novel approaches to understanding how this information may be used within decision making processes, have the potential to make substantial progress in addressing these challenges. We present a quasi-operational drought and flood monitoring and forecasting system and its use in understanding the potential of hydrological forecasts for improved decision-making. The system monitors in near real-time the terrestrial water cycle for the African continent based on remote sensing data and land surface hydrological modeling. The monitoring forms initial conditions for hydrological forecasts at short time scale, aimed at flood forecasting, and seasonal scale aimed at drought and crop yield forecasts. The flood forecasts are driven by precipitation and temperature forecasts from the Global Forecast System (GFS). The drought forecasts are driven by climate forecasts from the North American Multi-Model Ensemble (NMME). The seasonal forecast skill is modest and seasonally/regionally dependent with part of the skill coming from persistence in initial land surface conditions. We discuss the use of the system

  17. Energetics and monsoon bifurcations

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-04-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  18. Estimation of foF2 from GPS TEC over the South African region

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Mckinnell, Lee-Anne; Bosco Habarulema, John

    2014-05-01

    This paper describes a statistical method (TEC2F2) of estimating the critical frequency (foF2) values from Global Positioning System (GPS) Vertical Total Electron Content (VTEC). The method has been developed over the South African region using the available ionosonde stations; Grahamstown (33.2°S, 26.3°E), Hermanus (34.4°S, 19.2°E), Louisvale (28.5°S, 21.2°E) and Madimbo (22.4°S, 30.9°E), and nearby GPS receiver stations. The analysis of the results showed the TEC2F2 method to be more accurate at estimating the foF2 parameter over South Africa than the most commonly used International Reference Ionosphere (IRI-2012) model. On average, the TEC2F2 improves foF2 estimation by 15% (2006-2012) over the IRI-2012 model. The application of this method over the rest of Africa is proposed in order to more accurately estimate the foF2 parameter in regions where ionosondes do not exist. This is a pioneering new method that allows for the utilisation of additional resources to close the gap in ionospheric mapping over Africa.

  19. The negative impacts of human activities in the eastern African region: an international waters perspective.

    PubMed

    Payet, Rolph; Obura, David

    2004-02-01

    The complex interactions between human activities and the environment at the interface of land and water is analyzed with a focus on the Somali Current (East Africa), and Indian Ocean Island States, subregions of the Global International Waters Assessment (GIWA). These 2 subregions contain some of the world's richest ecosystems, including the high biodiversity forests of Madagascar and the diverse coastal habitats of the eastern African coast. These ecosystems support local communities and national and regional economies. Current and future degradation of these systems, from water basins to continental shelves, affects the livelihoods and sustainability of the countries in the region, and long-term efforts to reduce poverty. The assessments determined that pollution and climate change are the primary environmental and social concerns in the Islands of the Indian Ocean, while freshwater shortage and unsustainable exploitation of fisheries and other living resources are the primary environmental and social concerns in East Africa. The GIWA approach, through assessing root causes of environmental concerns, enables the development of policy approaches for mitigating environmental degradation. This paper explores policy frameworks for mitigating the impacts, and reducing the drivers, of 3 environmental concerns--freshwater shortage; solid waste pollution; and climate change--addressing social and institutional causes and effects, and linking the subregions to broad international frameworks. The common theme in all 3 case studies is the need to develop integrated ecosystem and international waters policies, and mechanisms to manage conflicting interests and to limit threats to natural processes. PMID:15083647

  20. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  1. Does Aerosol Weaken or Strengthen the South Asian Monsoon?

    NASA Technical Reports Server (NTRS)

    Lau, William K.

    2010-01-01

    Aerosols are known to have the ability to block off solar radiation reaching the earth surface, causing it to cool - the so-called solar dimming (SDM) effect. In the Asian monsoon region, the SDM effect by aerosol can produce differential cooling at the surface reducing the meridional thermal contrast between land and ocean, leading to a weakening of the monsoon. On the other hand, absorbing aerosols such as black carbon and dust, when forced up against the steep slopes of the southern Tibetan Plateau can produce upper tropospheric heating, and induce convection-dynamic feedback leading to an advance of the rainy season over northern India and an enhancement of the South Asian monsoon through the "Elevated Heat Pump" (EHP) effect. In this paper, we present modeling results showing that in a coupled ocean-atmosphere-land system in which concentrations of greenhouse gases are kept constant, the response of the South Asian monsoon to dust and black carbon forcing is the net result of the two opposing effects of SDM and EHP. For the South Asian monsoon, if the increasing upper tropospheric thermal contrast between the Tibetan Plateau and region to the south spurred by the EHP overwhelms the reduction in surface temperature contrast due to SDM, the monsoon strengthens. Otherwise, the monsoon weakens. Preliminary observations are consistent with the above findings. We find that the two effects are strongly scale dependent. On interannual and shorter time scales, the EHP effect appears to dominate in the early summer season (May-June). On decadal or longer time scales, the SDM dominates for the mature monsoon (July-August). Better understanding the physical mechanisms underlying the SDM and the EHP effects, the local emission and transport of aerosols from surrounding deserts and arid-regions, and their interaction with monsoon water cycle dynamics are important in providing better prediction and assessment of climate change impacts on precipitation of the Asian monsoon

  2. Does Aerosol Weaken or Strengthen the South Asian Monsoon?

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2007-01-01

    Aerosols are known to have the ability to block off solar radiation reaching the earth surface, causing it to cool - the so-called solar dimming (SDM) effect. In the Asian monsoon region, the SDM effect by aerosol can produce differential cooling at the surface reducing the meridional thermal contrast between land and ocean, leading to a weakening of the monsoon (Ramanathan et al. 2005). On the other hand, absorbing aerosols such as black carbon and dust, when forced up against the steep slopes of the southern Tibetan Plateau can produce upper tropospheric heating, and induce convection-dynamic feedback leading to an advance of the rainy season over northern India and an enhancement of the South Asian monsoon through the "Elevated Heat Pump" (EHP) effect (Lau et al. 2006). In this paper, we present modeling results showing that in a coupled ocean-atmosphere-land system in which concentrations of greenhouse gases are kept constant, the response of the South Asian monsoon to dust and black carbon forcing is the net result of the two opposing effects of SDM and EHP. For the South Asian monsoon, if the increasing upper tropospheric thermal contrast between the Tibetan Plateau and region to the south spurred by the EHP overwhelms the reduction in surface temperature contrast due to SDM, the monsoon strengthens. Otherwise, the monsoon weakens. Preliminary observations are consistent with the above findings. We find that the two effects are strongly scale dependent. On interannual and shorter time scales, the EHP effect appears to dominate in the early summer season (May-June). On decadal or longer time scales, the SDM dominates for the mature monsoon (July-August). Better understanding the physical mechanisms underlying the SDM and the EHP effects, the local emission and transport of aerosols from surrounding deserts and arid-regions, and their interaction with monsoon water cycle dynamics are important in providing better prediction and assessment of climate change

  3. Regional Variations in the Phonological Characteristics of African American Vernacular English.

    ERIC Educational Resources Information Center

    Hinton, Linette N.; Pollock, Karen E.

    2000-01-01

    Investigated African American Vernacular English dialect features in the midwestern community of Davenport, Iowa, and compared them to those reported by Pollock and Berni (1997) for Memphis, Tennessee--specifically productions of vocalic and postvocalic /r/ across African-American speakers from Davenport and Memphis. (Author/VWL)

  4. Political Implications of the Southern African Development Community Agenda on Educational Development in the Region.

    ERIC Educational Resources Information Center

    Nziramasanga, Caiphas T.

    This paper briefly describes the historical development of the Southern African Development Coordination Conference (SADCC) from its roots in 1980 and examines the work of the Southern African Development Community (SADC) today. The objectives of the SADCC are listed from the 1980 declaration and the achievement of those objectives are assessed.…

  5. African Regional Symposium on Telematics for Development. Report and Recommendations = Colloque regional africain la telematique au service du developpement. Rapport et recommandations (Addis Ababa, Ethiopia, April 3-7, 1995).

    ERIC Educational Resources Information Center

    International Telecommunication Union, Geneva (Switzerland).

    The African Regional Symposium on Telematics for Development was organized in view of the special educational and communication needs of Africa in a time of accelerating change and development of information technologies. The symposium brought together more than 150 African specialists, and over 40 participants from other regions and development…

  6. Characterization of southwest monsoon onset over Myanmar

    NASA Astrophysics Data System (ADS)

    Mie Sein, Z. M.; Islam, A. R. M. Towfiqul; Maw, K. W.; Moya, T. B.

    2015-10-01

    The aim of this paper was to characterize the southwest monsoon onset over Myanmar based on the model. The Regional Climate Model (RegCM3) was run for a period of 10 years (2000-2009) to simulate the meteorological fields which focused on April to July season. The model input data were obtained from the reanalyzed datasets of the National Center for Environmental Prediction (NCEP) and National Centre for Atmospheric Research (NCAR). Grell scheme with Arakawa closure for cumulus parameterization assumption was used for simulation with 45 km horizontal resolution. The results revealed that southwest monsoon onset was confirmed when the prevailing wind direction up to 600 hPa level had shifted from northeasterly to westerly or southwesterly. The southwest monsoon first arrived at southernmost Kawthoung station of Myanmar and progressed through the Deltaic and Central parts until it reached at northernmost Putao station. Over the simulation periods, the southwest monsoon onset progressed from the southernmost to northernmost parts of the country in 19 ± 10 days. The position of Intertropical Convergence Zone (ITCZ) appeared (23°N-28°N) over the Northern part of the country before the onset. Furthermore, 500 hPa ridge appeared consistently over the Deltaic area of Myanmar from 6 to 10 days before the monsoon onset. Its position is about 6° to the south of the ITCZ.

  7. Optical, physical and chemical properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola

    2014-05-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to

  8. Properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Triquet, Sylvain; Zapf, Pascal; Loisil, Rodrigue; Bourrianne, Thierry; Freney, Evelyn; Dupuy, Regis; Sellegri, Karine; Schwarzenbock, Alfons; Torres, Benjamin; Mallet, Marc; Cassola, Federico; Prati, Paolo; Formenti, Paola

    2015-04-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), one intensive airborne campaign (ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) has been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport

  9. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  10. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  11. Interactions and Feedbacks Between Biomass Burning and Water Cycle Dynamics Across the Northern Sub-Saharan African Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching from the West to the East African coastlines, has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. A new interdisciplinary research effort sponsored by NASA is presently being focused on the NSSA region, to better understand the possible connection between the intense biomass burning observed from satellite year after year across the region and the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. A combination of remote sensing and modeling approaches is being utilized in investigating multiple regional surface, atmospheric, and water-cycle processes, and inferring possible links between them. In this presentation, we will discuss preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the biomass burning and the environmental change dynamics in the NSSA region.

  12. Effects of mountain uplift on global monsoon precipitation

    NASA Astrophysics Data System (ADS)

    Lee, June-Yi; Wang, Bin; Seo, Kyong-Hwan; Ha, Kyung-Ja; Kitoh, Akio; Liu, Jian

    2015-08-01

    This study explores the role of the global mountain uplift (MU), which occurred during the middle and late Cenozoic, in modulating global monsoon precipitation using the Meteorological Research Institute atmosphere-ocean coupled model experiments. First, the MU causes changes in the annual mean of major monsoon precipitation. Although the annual mean precipitation over the entire globe remains about the same from the no-mountain experiment (MU0) to the realistic MU (MU1), that over the Asian-Australian monsoon region and Americas increases by about 16% and 9%, respectively. Second, the MU plays an essential role in advancing seasonal march, and summer-monsoon onset, especially in the Northern Hemisphere, by shaping pre-monsoon circulation. The rainy seasons are lengthened as a result of the earlier onset of the summer monsoon since the monsoon retreat is not sensitive to the MU. The East Asian monsoon is a unique consequence of the MU, while other monsoons are attributed primarily to land-sea distribution. Third, the strength of the global monsoon is shown to be substantially affected by the MU. In particular, the second annual cycle (AC) mode of global precipitation (the spring-autumn asymmetry mode) is more sensitive to the progressive MU than the first mode of the AC (the solstice mode), suggesting that the MU may have a greater impact during transition seasons than solstice seasons. Finally, the MU strongly modulates interannual variation in global monsoon precipitation in relation to El Niño and Southern Oscillation (ENSO). The Progressive MU changes not only the spatial distribution but also the periodicity of the first and second AC mode of global precipitation on interannual timescale.

  13. Exploring child prostitution in a major city in the West African region.

    PubMed

    Hounmenou, Charles

    2016-09-01

    The study explored the characteristics of child prostitution in a major city in the West African region. A convenience sample of children in prostitution, specifically girls below age 18 (n=243), were recruited on 83 prostitution sites identified in Ouagadougou, the capital city of Burkina Faso. A survey instrument, consisting of 71 closed-ended question items, was used to explore various variables including profile of children in prostitution, factors of vulnerability to prostitution; prostitution practices, compensations and related issues in child prostitution. The findings show that most children in prostitution in the city were from Burkina Faso (63%) and Nigeria (30%), two countries that do not share borders. Most native respondents practiced prostitution for survival and to support their families. In contrast, all the respondents from Nigeria practiced prostitution as victims of international sex trafficking. An important finding was that 77% of the children in prostitution surveyed were educated. Among the respondents, there were similarities in the major life events that contributed to their situation of prostitution. These life events include early separation with parents, sexual abuse, foster care, and forced marriage. Implications for policy, practice and research are discussed. PMID:27490517

  14. Tracking cashew economically important diseases in the West African region using metagenomics.

    PubMed

    Monteiro, Filipa; Romeiras, Maria M; Figueiredo, Andreia; Sebastiana, Mónica; Baldé, Aladje; Catarino, Luís; Batista, Dora

    2015-01-01

    During the last decades, agricultural land-uses in West Africa were marked by dramatic shifts in the coverage of individual crops. Nowadays, cashew (Anacardium occidentale L.) is one of the most export-oriented horticulture crops, notably in Guinea-Bissau. Relying heavily on agriculture to increase their income, developing countries have been following a strong trend of moving on from traditional farming systems toward commercial production. Emerging infectious diseases, driven either by adaptation to local conditions or inadvertent importation of plant pathogens, are able to cause tremendous cashew production losses, with economic and social impact of which, in developing countries is often underestimated. Presently, plant genomics with metagenomics as an emergent tool, presents an enormous potential to better characterize diseases by providing extensive knowledge on plant pathogens at a large scale. In this perspective, we address metagenomics as a promising genomic tool to identify cashew fungal associated diseases as well as to discriminate the causal pathogens, aiming at obtaining tools to help design effective strategies for disease control and thus promote the sustainable production of cashew in West African Region. PMID:26175748

  15. Tracking cashew economically important diseases in the West African region using metagenomics

    PubMed Central

    Monteiro, Filipa; Romeiras, Maria M.; Figueiredo, Andreia; Sebastiana, Mónica; Baldé, Aladje; Catarino, Luís; Batista, Dora

    2015-01-01

    During the last decades, agricultural land-uses in West Africa were marked by dramatic shifts in the coverage of individual crops. Nowadays, cashew (Anacardium occidentale L.) is one of the most export-oriented horticulture crops, notably in Guinea-Bissau. Relying heavily on agriculture to increase their income, developing countries have been following a strong trend of moving on from traditional farming systems toward commercial production. Emerging infectious diseases, driven either by adaptation to local conditions or inadvertent importation of plant pathogens, are able to cause tremendous cashew production losses, with economic and social impact of which, in developing countries is often underestimated. Presently, plant genomics with metagenomics as an emergent tool, presents an enormous potential to better characterize diseases by providing extensive knowledge on plant pathogens at a large scale. In this perspective, we address metagenomics as a promising genomic tool to identify cashew fungal associated diseases as well as to discriminate the causal pathogens, aiming at obtaining tools to help design effective strategies for disease control and thus promote the sustainable production of cashew in West African Region. PMID:26175748

  16. Identifying transboundary aquifers in need of international resource management in the Southern African Development Community region

    NASA Astrophysics Data System (ADS)

    Davies, Jeff; Robins, Nick S.; Farr, John; Sorensen, James; Beetlestone, Philip; Cobbing, Jude E.

    2013-03-01

    Transboundary aquifer (TBA) management, in part, seeks to mitigate degradation of groundwater resources caused either by an imbalance of abstraction between countries or by cross-border pollution. Fourteen potential TBAs were identified within a hydrogeological mapping programme based on simple hydrogeological selection criteria for the Southern African Development Community (SADC) region. These have been reassessed against a set of data associated with five categories: (1) groundwater flow and vulnerability (which is perceived as the over-arching influence on the activity level of each TBA), (2) knowledge and understanding, (3) governance capability, (4) socio-economic/water-demand factors, and (5) environmental issues. These assessments enable the TBAs to be classified according to their need for cross-border co-operation and management. The study shows that only two of the 14 TBAs have potential to be the cause of tension between neighbouring states, while nine are potentially troublesome and three are unlikely to become problematic even in the future. The classification highlights the need to focus on data gathering to enable improved understanding of the TBAs that could potentially become troublesome in the future due to, for example, change in demographics and climate.

  17. Influence of Aerosols on Monsoon Circulation and Hydroclimate

    NASA Technical Reports Server (NTRS)

    Lau, William K.M.

    2007-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global water cycles and climate change. In the Asian monsoon regions, the response of the regional water cycle and climate to aerosol forcing is very complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. Up to now, besides the general notion that aerosols may significantly impact monsoon through altering large scale radiative heating gradients, there has been very little information regarding the specific signatures, and mechanisms of aerosol-monsoon water cycle interaction. In this talk, based on preliminary results from observations and climate model experiments, I will offer some insights into how aerosols may impact the Asian monsoon water cycle, in particular the effects of absorbing aerosols (dust and black carbon), and the role of the Tibetan Plateau. The influence of aerosol forcing relative to those due to sea surface temperature and land surface processes, and impact on potential predictability of the monsoon climate system will also be discussed.

  18. Influence of Aerosols on Monsoon Circulation and Hydroclimate

    NASA Technical Reports Server (NTRS)

    Lau, William K.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global water cycles and climate change. In the Asian monsoon regions, the response of the regional water cycle and climate to aerosol forcing is very complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. Up to now, besides the general notion that aerosols may significantly impact monsoon through altering large scale radiative heating gradients, there has been very little information regarding the specific signatures, and mechanisms of aerosol-monsoon water cycle interaction. In this talk, based on preliminary results from observations and climate model experiments, I will offer some insights into how aerosols may impact the Asian monsoon water cycle, in particular the effects of absorbing aerosols (dust and black carbon), and the role of the Tibetan Plateau. The influence of aerosol forcing relative to those due to sea surface temperature and land surface processes, and impact on potential predictability of the monsoon climate system will also be discussed.

  19. Impacts of East Asian aerosols on the Asian monsoon

    NASA Astrophysics Data System (ADS)

    Bartlett, Rachel; Bollasina, Massimo; Booth, Ben; Dunstone, Nick; Marenco, Franco

    2016-04-01

    Over recent decades, aerosol emissions from Asia have increased rapidly. Aerosols are able to alter radiative forcing and regional hydroclimate through direct and indirect effects. Large emissions within the geographical region of the Asian monsoon have been found to impact upon this vital system and have been linked to observed drying trends. The interconnected nature of smaller regional monsoon components (e.g. the Indian monsoon and East Asian monsoon) presents the possibility that aerosol sources could have far-reaching impacts. Future aerosol emissions are uncertain and may continue to dominate regional impacts on the Asian monsoon. Standard IPCC future emissions scenarios do not take a broad sample of possible aerosol pathways. We investigate the sensitivity of the Asian monsoon to East Asian aerosol emissions. Experiments carried out with HadGEM2-ES use three time-evolving future anthropogenic aerosol emissions scenarios with similar time-evolving greenhouse gases. We find a wetter summer over southern China and the Indochina Peninsula associated with increased sulfate aerosol over China. The southern-flood-northern-drought pattern seen in observations is reflected in these results. India is found to be drier in the summer overall, although wetter in June. These precipitation changes are linked to the increase in sulfate through the alteration of large scale dynamics. Sub-seasonal changes are also seen, with an earlier withdrawal of the monsoon over East Asia.

  20. Africans in America.

    ERIC Educational Resources Information Center

    Hart, Ayanna; Spangler, Earl

    This book introduces African-American history and culture to children. The first Africans in America came from many different regions and cultures, but became united in this country by being black, African, and slaves. Once in America, Africans began a long struggle for freedom which still continues. Slavery, the Civil War, emancipation, and the…

  1. On the weakening relationship between the indian monsoon and ENSO

    PubMed

    Kumar; Rajagopalan; Cane

    1999-06-25

    Analysis of the 140-year historical record suggests that the inverse relationship between the El Nino-Southern Oscillation (ENSO) and the Indian summer monsoon (weak monsoon arising from warm ENSO event) has broken down in recent decades. Two possible reasons emerge from the analyses. A southeastward shift in the Walker circulation anomalies associated with ENSO events may lead to a reduced subsidence over the Indian region, thus favoring normal monsoon conditions. Additionally, increased surface temperatures over Eurasia in winter and spring, which are a part of the midlatitude continental warming trend, may favor the enhanced land-ocean thermal gradient conducive to a strong monsoon. These observations raise the possibility that the Eurasian warming in recent decades helps to sustain the monsoon rainfall at a normal level despite strong ENSO events. PMID:10381876

  2. Did aboriginal vegetation burning impact on the Australian summer monsoon?

    NASA Astrophysics Data System (ADS)

    Notaro, Michael; Wyrwoll, Karl-Heinz; Chen, Guangshan

    2011-06-01

    Aboriginal vegetation burning practices and their role in the Australian environment remains a central theme of Australian environmental history. Previous studies have identified a decline in the Australian summer monsoon during the late Quaternary and attributed it to land surface-atmosphere feedbacks, related to Aboriginal burning practices. Here we undertake a comprehensive, ensemble model evaluation of the effects of a decrease in vegetation cover over the summer monsoon region of northern Australia. Our results show that the climate response, while relatively muted during the full monsoon, was significant for the pre-monsoon season (austral spring), with decreases in precipitation, higher surface and ground temperatures, and enhanced atmospheric stability. These early monsoon season changes can invoke far-reaching ecological impacts and set-up land surface-atmosphere feedbacks that further accentuate atmospheric stability.

  3. Capacity Building and Financing Oral Health in the African and Middle East Region.

    PubMed

    Mumghamba, E G; Joury, E; Fatusi, O; Ober-Oluoch, J; Onigbanjo, R J; Honkala, S

    2015-07-01

    Many low- and middle-income countries do not yet have policies to implement effective oral health programs. A reason is lack of human and financial resources. Gaps between resource needs and available health funding are widening. By building capacity, countries aim to improve oral health through actions by oral health care personnel and oral health care organizations and their communities. Capacity building involves achieving measurable and sustainable results in training, research, and provision of care. Actions include advancement of knowledge, attitudes and skills, expansion of support, and development of cohesiveness and partnerships. The aim of this critical review is to review existing knowledge and identify gaps and variations between and within different income levels in relation to the capacity building and financing oral health in the African and Middle East region (AMER). A second aim is to formulate research priorities and outline a research agenda for capacity building and financing to improve oral health and reduce oral health inequalities in the AMER. The article focuses on capacity building for oral health and oral health financing in the AMER of the IADR. In many communities in the AMER, there are clear and widening gaps between the dental needs and the existing capacity to meet these needs in terms of financial and human resources. Concerted efforts are required to improve access to oral health care through appropriate financing mechanisms, innovative health insurance schemes, and donor support and move toward universal oral health care coverage to reduce social inequality in the region. It is necessary to build capacity and incentivize the workforce to render evidence-based services as well as accessing funds to conduct research on equity and social determinants of oral health while promoting community engagement and a multidisciplinary approach. PMID:26101338

  4. The Chew Bahir Project, southern Ethiopia: Reconstructing East African palaeoenvironments in the source region of modern man

    NASA Astrophysics Data System (ADS)

    Foerster, V. E.; Chew Bahir Science Team

    2011-12-01

    Chew Bahir is a tectonically bounded basin in the southern part of the Main Ethiopian Rift and in close proximity to the Omo valley, which contains some of the oldest known early modern human sites. As East African palaeoenvironments are highly variable and marked by extreme fluctuations in moisture availability, this in turn bears far reaching implications for the life, evolution and most notably for the expansion of Homo sapiens beyond the limits of the African continent. This study is a prerequisite for the ICDP- Hominin Sites And Paleolakes Drilling Project and part of the CRC-806 "Our way to Europe". The Chew Bahir Project will provide fundamental data to reconstruct late Quaternary East African environments including the timing, amplitude, synchronicity and abruptness of dry-wet-dry cycles and focuses on the interaction between those rapid climate shifts and their influence on the biosphere. This poster presents results from six cores (9-18m depth) from a NW-SE transect across the Chew Bahir basin that have recorded the climatic history of the past 45 ka and therewith can potentially elucidate those highly variable East African palaeoenvironments with emphasis on the last of the wet periods, the African Humid Period (AHP). Based on a series of multi-proxy analyses, comprising geochemical, physical and biological indicators as well as AMS 14C dates, it becomes obvious that the Chew Bahir responds decidedly sensitive towards even minor climatic fluctuations on millennial to even centennial timescales. Therefore, the Chew Bahir represents a unique site to reveal the impact of timing and mechanisms of local, regional and global climate events on the key region for humankind.

  5. The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Levine, Richard C.; Turner, Andrew G.; Martin, Gill M.; Woolnough, Steven J.; Schiemann, Reinhard; Mizielinski, Matthew S.; Roberts, Malcolm J.; Vidale, Pier Luigi; Demory, Marie-Estelle; Strachan, Jane

    2016-02-01

    The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world's population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200-40 km at the equator (N96-N512, 1.9°-0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.

  6. Novel swine virulence determinant in the left variable region of the African swine fever virus genome.

    PubMed

    Neilan, J G; Zsak, L; Lu, Z; Kutish, G F; Afonso, C L; Rock, D L

    2002-04-01

    Previously we have shown that the African swine fever virus (ASFV) NL gene deletion mutant E70DeltaNL is attenuated in pigs. Our recent observations that NL gene deletion mutants of two additional pathogenic ASFV isolates, Malawi Lil-20/1 and Pr4, remained highly virulent in swine (100% mortality) suggested that these isolates encoded an additional virulence determinant(s) that was absent from E70. To map this putative virulence determinant, in vivo marker rescue experiments were performed by inoculating swine with infection-transfection lysates containing E70 NL deletion mutant virus (E70DeltaNL) and cosmid DNA clones from the Malawi NL gene deletion mutant (MalDeltaNL). A cosmid clone representing the left-hand 38-kb region (map units 0.05 to 0.26) of the MalDeltaNL genome was capable of restoring full virulence to E70DeltaNL. Southern blot analysis of recovered virulent viruses confirmed that they were recombinant E70DeltaNL genomes containing a 23- to 28-kb DNA fragment of the Malawi genome. These recombinants exhibited an unaltered MalDeltaNL disease and virulence phenotype when inoculated into swine. Additional in vivo marker rescue experiments identified a 20-kb fragment, encoding members of multigene families (MGF) 360 and 530, as being capable of fully restoring virulence to E70DeltaNL. Comparative nucleotide sequence analysis of the left variable region of the E70DeltaNL and Malawi Lil-20/1 genomes identified an 8-kb deletion in the E70DeltaNL isolate which resulted in the deletion and/or truncation of three MGF 360 genes and four MGF 530 genes. A recombinant MalDeltaNL deletion mutant lacking three members of each MGF gene family was constructed and evaluated for virulence in swine. The mutant virus replicated normally in macrophage cell culture but was avirulent in swine. Together, these results indicate that a region within the left variable region of the ASFV genome containing the MGF 360 and 530 genes represents a previously unrecognized virulence

  7. Novel Swine Virulence Determinant in the Left Variable Region of the African Swine Fever Virus Genome

    PubMed Central

    Neilan, J. G.; Zsak, L.; Lu, Z.; Kutish, G. F.; Afonso, C. L.; Rock, D. L.

    2002-01-01

    Previously we have shown that the African swine fever virus (ASFV) NL gene deletion mutant E70ΔNL is attenuated in pigs. Our recent observations that NL gene deletion mutants of two additional pathogenic ASFV isolates, Malawi Lil-20/1 and Pr4, remained highly virulent in swine (100% mortality) suggested that these isolates encoded an additional virulence determinant(s) that was absent from E70. To map this putative virulence determinant, in vivo marker rescue experiments were performed by inoculating swine with infection-transfection lysates containing E70 NL deletion mutant virus (E70ΔNL) and cosmid DNA clones from the Malawi NL gene deletion mutant (MalΔNL). A cosmid clone representing the left-hand 38-kb region (map units 0.05 to 0.26) of the MalΔNL genome was capable of restoring full virulence to E70ΔNL. Southern blot analysis of recovered virulent viruses confirmed that they were recombinant E70ΔNL genomes containing a 23- to 28-kb DNA fragment of the Malawi genome. These recombinants exhibited an unaltered MalΔNL disease and virulence phenotype when inoculated into swine. Additional in vivo marker rescue experiments identified a 20-kb fragment, encoding members of multigene families (MGF) 360 and 530, as being capable of fully restoring virulence to E70ΔNL. Comparative nucleotide sequence analysis of the left variable region of the E70ΔNL and Malawi Lil-20/1 genomes identified an 8-kb deletion in the E70ΔNL isolate which resulted in the deletion and/or truncation of three MGF 360 genes and four MGF 530 genes. A recombinant MalΔNL deletion mutant lacking three members of each MGF gene family was constructed and evaluated for virulence in swine. The mutant virus replicated normally in macrophage cell culture but was avirulent in swine. Together, these results indicate that a region within the left variable region of the ASFV genome containing the MGF 360 and 530 genes represents a previously unrecognized virulence determinant for domestic swine

  8. MEDCAN-GRO: Medical Capacity for African Nations - Growing Regional Operability A Case Study in Special Operations Forces Capacity Building.

    PubMed

    Givens, Melissa L; Verlo, April

    2015-01-01

    Medical Capacity for African Nations-Growing Regional Operability (MEDCAN-GRO) is a framework for addressing healthcare engagements that are intended to provide sustainable capacity building with partner nations. MEDCAN-GRO provides SOF units with a model that can be scaled to partner nation needs and aligned with the goals of the TSOC in an effort to enhance partner nation security. PMID:25770807

  9. A new perspective on West African hydroclimate during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Parker, Andrew O.; Schmidt, Matthew W.; Jobe, Zane R.; Slowey, Niall C.

    2016-09-01

    Widespread drought characterized the Heinrich 1 and Younger Dryas cold periods of the last deglaciation throughout much of Africa, causing large increases in dust emissions from the Sahara and Sahel. At the same time, increases in wind strength may have also contributed to dust flux, making it difficult to interpret dust records alone as reflecting changes in rainfall over the region. The Niger River has the third largest drainage basin in Africa and drains most of the Sahara and Sahel and thus preserves and propagates climatic signals. Here, we present new reconstructions of Niger Delta sea surface salinity and Niger River discharge for the last 20,000 years in order to more accurately reconstruct the onset of the Western African Monsoon system. Based on calculated δ18OSEAWATER (δ18OSW) and measured Ba/Ca ratios in planktonic foraminifera, these new records reflect changes in sub-Saharan precipitation across the Niger River Basin in West Africa and reveal that the West African Monsoon system began to intensify several thousand years after the equatorial Monsoon system in Central Africa. We also present new records of primary productivity in the Niger Delta that are related to wind-driven upwelling and show that productivity is decoupled from changes in Niger River discharge. Our results suggest that wind strength, rather than changes in monsoon moisture, was the primary driver of dust emissions from the Sahara and Sahel across the last deglaciation.

  10. The North American Monsoon Forecast Forum at CPC/NCEP

    NASA Astrophysics Data System (ADS)

    Schemm, J. E.; Higgins, W.; Long, L.; Shi, W.; Gochis, D. J.

    2009-12-01

    In 2008, CPC introduced a new operational product to provide users a forum to monitor the North American monsoon (NAM). The NAME Forecast Forum (NAME FF) was proposed and endorsed by the North American Monsoon Experiment (NAME) Project Science Working Group as a natural extension to the NAME modeling activities coordinated under the NAME Climate Process Team project. It provided an opportunity to consolidate and assess, in real-time, the skill of intra-seasonal and seasonal monsoon forecasts. The NAME FF has continued in 2009 and three modeling groups collaborate with CPC to provide model simulated seasonal precipitation forecasts in the monsoon region. The website includes spatial maps and accumulated precipitation area-averaged over eight sub-regions of the NAM domain and is updated daily to include the current observed precipitation. A weekly update of the current conditions of the NAM system has been added to CPC’s American Monsoons monitoring webpage at, http://www.cpc.ncep.noaa.gov/products/Global_Monsoons/American_Monsoons/NAME/index.shtml. A highlight for the 2009 season is the inclusion of the NCEP CFS forecasts in T382 horizontal resolution. These special high-resolution runs were made with initial conditions in mid-April to accommodate the CPC’s hurricane season outlook. Some results based on the T382 CFS runs also will be presented with emphasis on the prediction of precipitation and accompanying atmospheric circulation over the NAM region.

  11. Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Pozzoli, L.; Schultz, M. G.; Ghude, S. D.; Das, S.; Kakatkar, R.

    2013-09-01

    An eight-member ensemble of ECHAM5-HAMMOZ simulations for a boreal summer season is analysed to study the transport of aerosols in the upper troposphere and lower stratosphere (UTLS) during the Asian summer monsoon (ASM). The simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September), when convective activity over the Indian subcontinent is highest, indicating that boundary layer aerosol pollution is the source of this UTLS aerosol layer. The simulations identify deep convection and the associated heat-driven circulation over the southern flanks of the Himalayas as the dominant transport pathway of aerosols and water vapour into the tropical tropopause layer (TTL). Comparison of model simulations with and without aerosols indicates that anthropogenic aerosols are central to the formation of this transport pathway. Aerosols act to increase cloud ice, water vapour, and temperature in the model UTLS. Evidence of ASM transport of aerosols into the stratosphere is also found, in agreement with aerosol extinction measurements from the Halogen Occultation Experiment (HALOE) and Stratospheric Aerosol and Gas Experiment (SAGE) II. As suggested by the observations, aerosols are transported into the Southern Hemisphere around the tropical tropopause by large-scale mixing processes. Aerosol-induced circulation changes also include a weakening of the main branch of the Hadley circulation and a reduction of monsoon precipitation over India.

  12. Oral Health Inequalities between Rural and Urban Populations of the African and Middle East Region.

    PubMed

    Ogunbodede, E O; Kida, I A; Madjapa, H S; Amedari, M; Ehizele, A; Mutave, R; Sodipo, B; Temilola, S; Okoye, L

    2015-07-01

    Although there have been major improvements in oral health, with remarkable advances in the prevention and management of oral diseases, globally, inequalities persist between urban and rural communities. These inequalities exist in the distribution of oral health services, accessibility, utilization, treatment outcomes, oral health knowledge and practices, health insurance coverage, oral health-related quality of life, and prevalence of oral diseases, among others. People living in rural areas are likely to be poorer, be less health literate, have more caries, have fewer teeth, have no health insurance coverage, and have less money to spend on dental care than persons living in urban areas. Rural areas are often associated with lower education levels, which in turn have been found to be related to lower levels of health literacy and poor use of health care services. These factors have an impact on oral health care, service delivery, and research. Hence, unmet dental care remains one of the most urgent health care needs in these communities. We highlight some of the conceptual issues relating to urban-rural inequalities in oral health, especially in the African and Middle East Region (AMER). Actions to reduce oral health inequalities and ameliorate rural-urban disparity are necessary both within the health sector and the wider policy environment. Recommended actions include population-specific oral health promotion programs, measures aimed at increasing access to oral health services in rural areas, integration of oral health into existing primary health care services, and support for research aimed at informing policy on the social determinants of health. Concerted efforts must be made by all stakeholders (governments, health care workforce, organizations, and communities) to reduce disparities and improve oral health outcomes in underserved populations. PMID:26101336

  13. Cattle ticks in Cameroon: is Rhipicephalus (Boophilus) microplus absent in Cameroon and the Central African region?

    PubMed

    Awa, D N; Adakal, H; Luogbou, N D D; Wachong, K H; Leinyuy, I; Achukwi, M D

    2015-03-01

    In most parts of the world, ticks are rapidly developing resistance to commonly used acaricides thus rendering control difficult. This constraint is further compounded by the introduction of new species in areas where they did not exist before. Such is the case with the introduction into and rapid spread of Rhipicephalus (Boophilus) microplus in some countries of West Africa. With the looming threat of its further spread in the region, the objective of the present study was to update knowledge on cattle ticks in Cameroon. Among 19,189 ticks collected monthly from 60 animals in 5 herds from March 2012 to February 2013, Rh. (B.) decoloratus was the most abundant species with a relative prevalence of 62.2%, followed by Amblyomma variegatum (28.4%), Rh. (B.) annulatus (0.2%), Rh. (B.) geigyi (0.03%), other Rhipicephalus spp. (8.4%) and Hyalomma spp. (0.3%). Rh. (B.) decoloratus and A. variegatum were also the most widely distributed in space. Infestation rate was generally high, with average tick count/animal of about 80 during peak periods. Tick distribution and abundance in the different sites was as varied as the underlying factors, among which the most important were management systems and climatic factors. The effects of rainfall and temperature were confounded by other factors and difficult to evaluate. However, it appears tick development depends among other factors, on a humidity threshold, above which there is not much more effect. Rh. microplus was not found during this study, but more extensive tick collections have to be done to confirm this. In conclusion, cattle tick infestation in Cameroon remains an important cause for concern. Farmers need assistance in the use and management of acaricides in order to increase their efficiency and reduce the development of resistance. Although Rh. microplus was not found, its introduction from other West African countries is imminent if adequate measures, especially in the control and limitation of animal movements

  14. Modelling of ionospheric irregularities during geomagnetic storms over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick

    2016-07-01

    In this study, empirical models of occurrence of ionospheric irregularities over low latitude African region during geomagnetic storms have been developed. The geomagnetic storms considered consisted of Dst ≤ -50 nT. GNSS-derived ionospheric Total Electron Content (TEC) data over Libreville, Gabon (NKLG) (0.35° N, 9.68° E, geographic, 8.05° S, magnetic) and Malindi, Kenya (MAL2) (2.99° S, 40.19° E, geographic, 12.42° S, magnetic) during 2000 - 2014 were used. Ionospheric irregularities at scale- lengths of a few kilometers and ˜400 m were represented with the rate of change of TEC index (ROTI). The inputs for the models are the local time, solar flux index, Auroral Electrojet index, day of the year, and the Dst index, while the output is the median ROTI during these given conditions. To develop the models, the ROTI index values were binned based on the input parameters and cubic B splines were then fitted to the binned data. Developed models using data over NKLG and MAL2 were validated with independent data over stations within 510 km and 680 km radius, respectively. The models captured the enhancements and inhibitions of the occurrence of the ionospheric irregularities during the storm period. The models even emulated these patterns in the various seasons, during medium and high solar activity conditions. The correlation coefficients for the validations were statistically significant and ranged from 0.58 - 0.73, while the percentage of the variance in the observed data explained by the modelled data ranged from 34 - 53.

  15. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  16. Summer monsoon response of the Northern Somali Current, 1995

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Fischer, Jürgen; Garternicht, Ulf; Quadfasel, Detlef

    Preliminary results on the development of the northern Somali Current regime and Great Whirl during the summer monsoon of 1995 are reported. They are based on the water mass and current profiling observations from three shipboard surveys of R/V Meteor and on the time series from a moored current-meter and ADCP array. The monsoon response of the GW was deep-reaching, to more than 1000m. involving large deep transports. The northern Somali Current was found to be disconnected from the interior Arabian Sea in latitude range 4°N-12°N in both, water mass properties and current fields. Instead, communication dominantly occurs through the passages between Socotra and the African continent. From moored stations in the main passage a northward throughflow from the Somali Current to the Gulf of Aden of about 5 Sv was determined for the summer monsoon of 1995.

  17. Establishing a Functional Link Between African Dust and Region-wide Coral Reef Decline

    NASA Astrophysics Data System (ADS)

    Hayes, M. L.; Barber, R. T.

    2003-12-01

    For nearly thirty years, coral reefs in the Western Atlantic and Caribbean basin have experienced historically unprecedented declines. Algal blooms, mass coral bleaching, disease outbreaks and shifts in the dominance of benthic coral-competitors were first documented in the 1970s and have increased in frequency, intensity, variety and range over the past two decades. Recent studies of decreasing coral cover document regional losses averaging nearly 80% over this period. Here, we provide experimental evidence that increased supplies of iron-rich eolian dust from Africa to typically iron-poor marine environments throughout the region could have played a key role in these profound changes. Atmospheric inputs of "new" micronutrients, especially iron, have the potential to overcome limitations to the growth of opportunistic coral-competitors and the virulence of coral pathogens. Microcosm and mesocosm experiments with a putative bacterial pathogen of stony corals, Aurantimonas coralicida, and a temperate stony coral, Oculina arbuscula, provide a means to test the functional relationship between iron availability, microbial growth and coral health. Iron limitation of A. coralicida growth rates is readily induced by the addition of synthetic chelators such as 2,2' Dipyridyl to bacterial cultures at relatively low concentrations (e.g. 10 μ M). This growth limitation is reversed by 100 nM over-enrichments of pure reagent-grade iron as well as iron-rich "synthetic dust" derived from African lake-bed sediments. The Chrome-azurol S assay demonstrates that A. coralicida also synthesizes high-affinity iron-capture mechanisms (i.e. siderophores) that may serve as critical determinants of virulence. Finally, our experimental mesocosms are based on oligotrophic Mediterranean seawater and permit controlled experimentation under relatively low iron ( ˜5 nM) conditions. Using this system, denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified ribosomal DNA

  18. Modelling the probability of ionospheric irregularity occurrence over African low latitude region

    NASA Astrophysics Data System (ADS)

    Mungufeni, Patrick; Jurua, Edward; Bosco Habarulema, John; Anguma Katrini, Simon

    2015-06-01

    This study presents models of geomagnetically quiet time probability of occurrence of ionospheric irregularities over the African low latitude region. GNSS-derived ionospheric total electron content data from Mbarara, Uganda (0.60°S, 30.74°E, geographic, 10.22°S, magnetic) and Libreville, Gabon (0.35°N, 9.68°E, geographic, 8.05°S, magnetic) during the period 2001-2012 were used. First, we established the rate of change of total electron content index (ROTI) value associated with background ionospheric irregularity over the region. This was done by analysing GNSS carrier-phases at L-band frequencies L1 and L2 with the aim of identifying cycle slip events associated with ionospheric irregularities. We identified at both stations a total of 699 events of cycle slips. The corresponding median ROTI value at the epochs of the cycle slip events was 0.54 TECU/min. The probability of occurrence of ionospheric irregularities associated with ROTI ≥ 0.5 TECU / min was then modelled by fitting cubic B-splines to the data. The aspects the model captured included diurnal, seasonal, and solar flux dependence patterns of the probability of occurrence of ionospheric irregularities. The model developed over Mbarara was validated with data over Mt. Baker, Uganda (0.35°N, 29.90°E, geographic, 9.25°S, magnetic), Kigali, Rwanda (1.94°S, 30.09°E, geographic, 11.62°S, magnetic), and Kampala, Uganda (0.34°N, 32.60°E, geographic, 9.29°S, magnetic). For the period validated at Mt. Baker (approximately, 137.64 km, north west), Kigali (approximately, 162.42 km, south west), and Kampala (approximately, 237.61 km, north east) the percentages of the number of errors (difference between the observed and the modelled probability of occurrence of ionospheric irregularity) less than 0.05 are 97.3, 89.4, and 81.3, respectively.

  19. Low latitude nighttime ionospheric vertical E × B drifts at African region

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Reinisch, B. W.

    2013-12-01

    The nighttime vertical E × B drifts velocities of the F2-region were inferred from the hourly hmF2 values obtained from ionosonde data over an African equatorial station, Ilorin (8.50oN, 4.68oE; dip lat. 2.95o) during period of low solar activity. For each season, the plasma drift Vz is characterized by an evening upward enhancement, then by a downward reversal at 1900 LT till around 0000 LT, except for June solstice. This was explained using the Rayleigh-Taylor (R-T) instability mechanism. The occasional drift differences in Vz obtained by inferred and direct measurement over Ilorin and Jicamarca, respectively are reflective of the importance of chemistry and divergent transport system due to both the E region electric and magnetic fields instead of simple motions. The pre-reversal enhancement (PRE) magnitude is higher during the equinoctial months than the solsticial months over Jicamarca, highest during December solstice and the equinoctial months over Ilorin, suggesting the dominance of higher E × B fountain during equinoxes at both stations. The lowest PRE magnitude was in June solstice. The appearance of post-noon peak in NmF2 around 1700 LT is highest during the equinoctial months and lowest during the solsticial period. A general sharp drop in NmF2 around 1800 LT is distinct immediately after sunset, lowest during June solstice and highest in March equinox. Our result suggests that between 0930 and 2100 LT, the general theory that vertical drifts obtained by digisonde measurements only match the E × B drift if the F layer is higher than 300 km is reliable, but does not hold for the nighttime period of 2200-0600 LT under condition of solar minima. Hence, the condition may not be sufficient for the representation of vertical plasma drift at nighttime during solar minima. This assertion may still be tentative, as more equatorial stations needed to be studied for better confirmation.

  20. Transient coupling relationships of the Holocene Australian monsoon

    NASA Astrophysics Data System (ADS)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.

    2015-08-01

    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  1. Leaf physiognomy and climate: Are monsoon systems different?

    NASA Astrophysics Data System (ADS)

    Jacques, Frédéric M. B.; Su, Tao; Spicer, Robert A.; Xing, Yaowu; Huang, Yongjiang; Wang, Weiming; Zhou, Zhekun

    2011-03-01

    Our understanding of past climatic changes depends on our ability to obtain reliable palaeoclimate reconstructions. Climate Leaf Analysis Multivariate Program (CLAMP) uses the physiognomy of woody dicot leaf assemblages to quantitatively reconstruct terrestrial palaeoclimates. However, the present calibrations do not always allow us to reconstruct correctly the climate of some regions due to differing palaeofloristic histories. Present calibrations are also inappropriate for regions experiencing strong monsoon regimes. To help solve this problem, we have established a new calibration that can accommodate monsoonal climates in Asia. Our new calibration is based on the Physg3brcAZ dataset with 45 new Chinese sites added. These Chinese sites are taken from humid to mesic vegetations across China, and all are influenced by monsoonal conditions to some extent. They plot in a distinct part of physiognomic space, whether they are analysed as passive or active samples. The standard deviations for the new monsoonal calibration (1.25 °C for MAT and 217.7 mm for GSP) are in the same range as those observed for previous calibrations. The new monsoonal calibration was tested using a cross validation procedure. The estimates derived from the new monsoonal calibration (PhysgAsia1) for the Chinese sites are more accurate than those obtained from the Physg3brcAZ calibration, especially for the moisture related parameters. The mean absolute error for GSP of the Chinese sites is 294.6 mm in the new monsoonal calibration, whereas it was 1609.6 mm in the Physg3brcAZ calibration. Results for the three wettest months and three driest months are also more accurate and precise, which allows us to study the seasonality of the precipitation, and hence the monsoon. The new monsoonal calibration also gives accurate results for enthalpy reconstruction. Enthalpy is a parameter that is used for palaeoaltimetry, the new calibration is therefore useful for studies of land surface height changes in

  2. a Linear Dynamic Model of the East African Jet in a Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Sashegyi, Keith Denis

    The motion forced by prescribed heat sources in the Indian summer monsoon region was investigated using a global linear primitive equations model in a stratified atmosphere. The response, without topography, to steady large-scale latent heating at the latitude of northern India showed broad, weak cross-equatorial flow, with the largest subsidence occurring to the west of the heating. The response to a 14-day oscillation in the heat source, representing the active/break cycle of the monsoon, exhibited a somewhat larger cross-equatorial flow, associated with westward propagating geopotential anomalies in both hemispheres. The north-south topographic barrier formed by the East African Highlands was modeled as a western wall, and the response to the steady and the oscillatory monsoon heat source was investigated using a fine resolution model in a limited longitudinal domain. For the steady monsoon heat source, a western boundary jet was produced, and this separated abruptly from the boundary to flow eastward into the region of the heat source. The oscillating monsoon heat source produced oscillations in the boundary jet in the near equatorial region comprised of jets of alternating sign which propagated westward into the boundary and increased in amplitude as they did so. At the equator this "boundary wave" was nearly out of phase with the monsoon heating. Steady prescribed low-level sensible heating along the coastline of Somalia and Saudi Arabia was found to result in a low-level western boundary jet comparable in strength near the surface to that forced by the steady monsoon heat source. This local-heat-source jet was situated along the western wall at the equator, but separated from the wall to run along the coast at higher tropical latitudes. Superposition of this local heating response onto the response to the steady monsoon heating would result in a departure of the jet from the western wall at a lower latitude and would also provide a more gradual curvature to

  3. Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaila; Sylla, Mouhamadou B.; Camara, Moctar; Gaye, Amadou T.

    2013-07-01

    We analyse the interannual variability of the averaged summer monsoon rainfall over the Sahel from multiple regional climate models driven by the ERA-interim reanalysis and seek to provide effective information for future modelling work. We find that the majority of the models are able to reproduce the rainfall variability with correlation coefficient exceeding 0.5 compared with observations. This is due to a good representation of the dynamics of the main monsoon features of the West African climate such as the monsoon flux, African Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ). Among the models, only HIRHAM fails to reproduce the rainfall variability exhibiting hence a correlation coefficient of -0.2. This deficiency originates from the fact that HIRHAM does not properly capture the variability of monsoon flow and the relationship between rainfall and the AEJ dynamic. We conclude that a good performance of a regional climate model in simulating the monsoon dynamical features variability is of primary importance for a better representation of the interannual variability of rainfall over the Sahel.

  4. A revised picture of the structure of the ``monsoon'' and land ITCZ over West Africa

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon E.

    2009-06-01

    This article presents an overview of the land ITCZ (Intertropical Convergence Zone) over West Africa, based on analysis of NCAR-NCEP Reanalysis data. The picture that emerges is much different than the classic one. The most important feature is that the ITCZ is effectively independent of the system that produces most of the rainfall. Rainfall linked directly to this zone of surface convergence generally affects only the southern Sahara and the northern-most Sahel, and only in abnormally wet years in the region. A second feature is that the rainbelt normally assumed to represent the ITCZ is instead produced by a large core of ascent lying between the African Easterly Jet and the Tropical Easterly Jet. This region corresponds to the southern track of African Easterly Waves, which distribute the rainfall. This finding underscores the need to distinguish between the ITCZ and the feature better termed the “tropical rainbelt”. The latter is conventionally but improperly used in remote sensing studies to denote the surface ITCZ over West Africa. The new picture also suggests that the moisture available for convection is strongly coupled to the strength of the uplift, which in turn is controlled by the characteristics of the African Easterly Jet and Tropical Easterly Jet, rather than by moisture convergence. This new picture also includes a circulation feature not generally considered in most analyses of the region. This feature, a low-level westerly jet termed the African Westerly Jet, plays a significant role in interannual and multidecadal variability in the Sahel region of West Africa. Included are discussions of the how this new view relates to other aspects of West Africa meteorology, such as moisture sources, rainfall production and forecasting, desertification, climate monitoring, hurricanes and interannual variability. The West African monsoon is also related to a new paradigm for examining the interannual variability of rainfall over West Africa, one that

  5. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm

    PubMed Central

    Hernández, Candela L.; Soares, Pedro; Dugoujon, Jean M.; Novelletto, Andrea; Rodríguez, Juan N.; Rito, Teresa; Oliveira, Marisa; Melhaoui, Mohammed; Baali, Abdellatif; Pereira, Luisa; Calderón, Rosario

    2015-01-01

    Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of “migratory routes” in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians—from Huelva and Granada provinces—and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia. PMID:26509580

  6. Early Holocenic and Historic mtDNA African Signatures in the Iberian Peninsula: The Andalusian Region as a Paradigm.

    PubMed

    Hernández, Candela L; Soares, Pedro; Dugoujon, Jean M; Novelletto, Andrea; Rodríguez, Juan N; Rito, Teresa; Oliveira, Marisa; Melhaoui, Mohammed; Baali, Abdellatif; Pereira, Luisa; Calderón, Rosario

    2015-01-01

    Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia. PMID:26509580

  7. Precipitation over Monsoon Asia: a comparison of reanalyses and observations

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Ceglar, Andrej; Balsamo, Gianpaolo; Kobayashi, Shinya

    2016-04-01

    Daily precipitation is essential in many impact modelling exercises and several global/regional products exist. Here, we focus on Monsoon Asia and we compare four different reanalyses with a rain-gauge gridded dataset and with a rain-gauge/satellite dataset. Differences in seasonality and distributional differences during the monsoon season are assessed by applying recently proposed approaches. Drought events during the monsoon season are compared as well. Results show remarkable differences in the seasonality of the two observational datasets as well as in the reanalyses. Distributional differences during the monsoon season are also significant almost over the whole region for all reanalyses. Finally, remarkable temporal non-stationarity characterises some of the analysed reanalyses.

  8. On breaks of the Indian monsoon

    NASA Astrophysics Data System (ADS)

    Gadgil, Sulochana; Joseph, P. V.

    2003-12-01

    For over a century, the term break has been used for spells in which the rainfall over the Indian monsoon zone is interrupted. The phenomenon of ’break monsoon’ is of great interest because long intense breaks are often associated with poor monsoon seasons. Such breaks have distinct circulation characteristics (heat trough type circulation) and have a large impact on rainfed agriculture. Although interruption of the monsoon rainfall is considered to be the most important feature of the break monsoon, traditionally breaks have been identified on the basis of the surface pressure and wind patterns over the Indian region. We have defined breaks (and active spells) on the basis of rainfall over the monsoon zone. The rainfall criteria are chosen so as to ensure a large overlap with the traditional breaks documented by Ramamurthy (1969) and De et al (1998). We have identified these rainbreaks for 1901-89. We have also identified active spells on the basis of rainfall over the Indian monsoon zone. We have shown that the all-India summer monsoon rainfall is significantly negatively correlated with the number of rainbreak days (correlation coefficient -0.56) and significantly positively correlated with the number of active days (correlation coefficient 0.47). Thus the interannual variation of the all-India summer monsoon rainfall is shown to be related to the number of days of rainbreaks and active spells identified here. There have been several studies of breaks (and also active spells in several cases) identified on the basis of different criteria over regions differing in spatial scales (e.g., Webster et al 1998; Krishnan et al it 2000; Goswami and Mohan 2000; and Annamalai and Slingo 2001). We find that there is considerable overlap between the rainbreaks we have identified and breaks based on the traditional definition. There is some overlap with the breaks identified by Krishnan et al (2000) but little overlap with breaks identified by Webster et al (1998

  9. The burden of natural and technological disaster-related mortality on gross domestic product (GDP) in the WHO African region.

    PubMed

    Kirigia, Joses M; Sambo, Luis G; Aldis, W; Mwabu, Germano M

    2002-01-01

    The WHO Africa region has the highest disaster mortality rate compared to the other five regions of the organization. Those deaths are hypothesized to have significantly negative effect on per capita gross domestic product (GDP). The objective of this study was to estimate the loss in GDP attributable to natural and technological disaster-related mortality in the WHO African Region. We estimated the impact of disaster-related mortality on GDP using double-log econometric model and cross-sectional data (from the UNDP and the World Bank publications) on 45 out of 46 countries in the WHO African Region. The coefficients for capital (K), educational enrolment (EN), life expectancy (LE) and exports (X) had a positive sign; while imports (M) and disaster mortality (DS) were found to impact negatively on GDP. The abovementioned explanatory variables were found to have statistically significant effect on GDP at 5% level in a t-distribution test. Disaster mortality of a single person was found to reduce GDP by US$0.018. We have demonstrated that disaster mortality has a significant negative effect on GDP. Thus, as policy-makers strive to increase GDP through capital investment, export promotion and increase in educational enrolment, they should always recall that investments in strengthening national capacity to mitigate the effects of national disasters expeditiously and effectively shall yield significant economic returns. PMID:17298162

  10. Disturbances in the Arizona Monsoon

    NASA Technical Reports Server (NTRS)

    Gall, Robert; Herman, Benjamin; Reagan, John

    1989-01-01

    Numerical modeling simulations of tropical squall lines were begun to determine the role of large scale terrain features over Arizona and Mexico in their initiation and propagation. Installation was completed for a short-base, high resolution lightning location and detection network in and around Tucson. Data from a Doppler wind profiler is being analyzed to determine the role of large scale heating over the inter-mountain plateau region in governing local diurnal wind variations and possible relationships to the monsoon flow. The portable solar photometer for determining high temporal resolution values of the local precipitable water vapor was completed and calibrated. The assembly is nearly completed for a multi-channel microwave passive radiometer to determine local temperature and water vapor profiles.

  11. Seismicity Patterns and Magmatic Processes in the Rwenzori Region, East-African Rift

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rumpker, G.; Schmeling, H.; Wallner, H.

    2010-12-01

    The 5000m high Rwenzori Mountains are situated within the western branch of the East African Rift System (EARS), at the border between Uganda and the Democratic Republic of Congo. They represent a basement block located within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During a recent seismological campaign we located more than 800 earthquakes per month with magnitudes ranging from 0.5 to 5.1. Vertical sections across the northern parts of the Rwenzoris show, that west of the mountains (towards the rift valley) the focal depths range from 10 to 20 km, whereas the hypocentres go as deep as 30 km on the eastern side. This is in good agreement with Moho-depths derived from receiver functions and implies that all of these events are located within the crust. However, about 30 km east of the northern mountain ridge we located a cluster of 7 events that exhibit an anomalous depth of about 60 km. We can confidently locate these earthquakes within the mantle lithosphere beneath the rift. The existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material relatively close to the surface. We think that these events are possibly related to the evolution of the Rwenzori Mountains. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere. Here we show that the RID-process is indeed capable of explaining the seismic energy release in the mantle. However, in view of the specific hypocentral location of the event cluster, magmatic impregnation processes associated with dyke propagation into the mantle lithosphere may be a more realistic cause for seismic radiation at the observed depth. Crustal earthquakes northeast of the Rwenzori area are relocated with a double-difference algorithm to improve the spatial resolution of seismicity pattern. Several event clusters in the vicinity of the Fort

  12. Explaining the Ordinary Magic of Stable African Multilingualism in the Vaal Triangle Region in South Africa

    ERIC Educational Resources Information Center

    Coetzee-Van Rooy, Susan

    2014-01-01

    The academic and public debates about language maintenance and language shift in the post-1994 South Africa distract attention from the more productive and important endeavour of explaining the nature of the multilingualism observed among users of African languages in urban contexts. An explanation for this phenomenon is offered here, based on…

  13. Aerosol interactions with African/Atlantic climate dynamics

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2014-07-01

    Mechanistic relationships exist between variability of dust in the oceanic Saharan air layer (OSAL) and transient changes in the dynamics of Western Africa and the tropical Atlantic Ocean. This study provides evidence of possible interactions between dust in the OSAL region and African easterly jet-African easterly wave (AEJ-AEW) system in the climatology of boreal summer, when easterly wave activity peaks. Synoptic-scale changes in instability and precipitation in the African/Atlantic intertropical convergence zone are correlated with enhanced aerosol optical depth (AOD) in the OSAL region in response to anomalous 3D overturning circulations and upstream/downstream thermal anomalies at above and below the mean-AEJ level. Upstream and downstream anomalies are referred to the daily thermal/dynamical changes over the West African monsoon region and the Eastern Atlantic Ocean, respectively. Our hypothesis is that AOD in the OSAL is positively correlated with the downstream AEWs and negatively correlated with the upstream waves from climatological perspective. The similarity between the 3D pattern of thermal/dynamical anomalies correlated with dust outbreaks and those of AEWs provides a mechanism for dust radiative heating in the atmosphere to reinforce AEW activity. We proposed that the interactions of OSAL dust with regional climate mainly occur through coupling of dust with the AEWs.

  14. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better underst