Science.gov

Sample records for african monsoon variability

  1. Examining Intraseasonal Variability in the West African Monsoon Using the Superparameterized Community Climate System Model

    NASA Astrophysics Data System (ADS)

    McCrary, Rachel; Randall, David; Stan, Cristiana

    2013-04-01

    In West Africa, the ability to predict intraseasonal variations in rainfall would have important social and economic impacts for local populations. In particular, such predictions might be useful for estimating the timing of the monsoon onset and break periods in monsoon rains. Current theory suggests that on 25-90 day timescales, the West African monsoon (WAM) is influenced by intraseasonal variations in the Indo-Pacific region, namely the Madden Julian Oscillation (MJO) and the Asian summer monsoon. Unfortunately, most general circulation models (GCMs) show weak skill in simulating the seasonal variations in the WAM as well as intraseasonal variability in the Indo-Pacific. These model limitations make it difficult to study the dynamical links in variability across the tropics. Unlike traditional GCMs, models that have implemented the superparameterization (where traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid box) have been shown to be able to represent the WAM, the MJO and the Asian Summer Monsoon with reasonable fidelity. These model advances may allow us to study the teleconnections between the Indo-Pacific and West Africa in more detail. This study examines the intraseasonal variability of the WAM in the Superparameterized Community Climate System model (SP-CCSM). Results from the SP-CCSM are consistent with observations where intraseasonal variability accounts for 15-20% of the total variability in rainfall over West Africa during the monsoon season. We also show that on 25-90 day timescales, increases in precipitation over West Africa correspond with a northward shift of the African easterly jet and an increase in African easterly wave activity. Lag-composite analysis indicates that intraseasonal variations in WAM precipitation correspond with the North-South propagation of the MJO during boreal summer as well as the active and breaking phases of the Asian summer monsoon. Preliminary

  2. Influence of Soil Moisture on the Asian and African Monsoons. Part II: Interannual Variability.

    NASA Astrophysics Data System (ADS)

    Douville, H.

    2002-04-01

    The relevance of soil moisture (SM) for simulating the interannual climate variability has not been much investigated until recently. Much more attention has been paid on SST anomalies, especially in the Tropics where the El Niño-Southern Oscillation represents the main mode of variability. In the present study, ensembles of atmospheric integrations based on the Action de Recherche Petit Echelle Grande Echelle (ARPEGE) climate model have been performed for two summer seasons: 1987 and 1988, respectively. The aim is to compare the relative impacts of using realistic boundary conditions of SST and SM on the simulated variability of the Asian and African monsoons. Besides control runs with interactive SM, sensitivity tests have been done in which SM is relaxed toward a state-of-the-art SM climatology, either globally or regionally over the monsoon domain. The simulations indicate that the variations of the Asian monsoon between 1987 and 1988 are mainly driven by SST anomalies. This result might be explained by the strong teleconnection with the ENSO and by a weak SM-precipitation feedback over south Asia (Part I of the study). The influence of SM is more obvious over Africa. The model needs both realistic SST and SM boundary conditions to simulate the observed variability of the Sahelian monsoon rainfall. The positive impact of the SM relaxation is not only due to a local mechanism whereby larger surface evaporation leads to larger precipitation. The best results are obtained when the relaxation is applied globally, suggesting that remote SM impacts also contribute to the improved simulation of the precipitation variability. A relationship between the Sahelian rainfall anomalies and the meridional wind anomalies over North Africa points out the possible influence of the Northern Hemisphere midlatitudes. The comparison of the low- and midtropospheric anomalies in the various pairs of experiments indicates that SM anomalies can trigger stationary waves over Europe, and

  3. Revisiting the role of global SST anomalies and their effects on West African monsoon variability

    NASA Astrophysics Data System (ADS)

    Pomposi, Catherine; Kushnir, Yochanan; Giannini, Alessandra

    2016-04-01

    The West African Monsoon is a significant component of the global monsoon system, delivering the majority of annual precipitation for the Sahel and varying on timescales from seasons to decades and beyond. Much of the internal variability of this system is driven by sea surface temperature (SST) anomalies and their resulting atmospheric teleconnections linking oceanic changes to land-based precipitation. Previous idealized studies have identified the role of particular ocean basins in driving monsoon variations on a number of key timescales, including the Atlantic basin as the main driver behind decadal-scale changes and the Pacific basin for interannual variability. However, understanding of how the monsoon responds to global SSTs remains incomplete because the system can be affected by moisture availability locally as well as tropical atmospheric stability, both of which are influenced by ocean temperatures. Furthermore, the complexity of how the global ocean basins change in relation to one another (what we refer to as superposition of anomalies) can result in Sahel precipitation anomalies that are contrary to what one might posit when considering the state of a single basin alone (e.g. the 2015 El Niño event and a relatively wet Sahel). The aim of this work is to revisit the role of global SSTs in driving Sahel rainfall variability over the recent past using a blending of observations and new model output. We seek to disentangle the state of various basins in combination with each other in driving normal or anomalously dry or wet years, resolving the ways that remote and local ocean forcings affect the movement of convection from the Guinea coast inland and northward into the Sahel, and include the study of circulation and stability components of the atmosphere. Preliminary diagnostic work suggests that varying SST conditions across ocean basins could imprint distinctly different precipitation responses in the Sahel. For example, precipitation anomalies are

  4. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Schmiedl, Gerhard; Seidel, Martin; Krüger, Stefan; Schulz, Hartmut

    2016-03-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the eastern Mediterranean Sea (EMS). The record spans the last ca. 140 kyr. Smectite abundances indicate the influence of the Blue Nile and the Atbara River that have their headwaters in the volcanic rocks of the Ethiopian Highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major African humid periods (AHPs) with enhanced sediment discharge at 132 to < 126 (AHP 5), 116 to 99 (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (> 2 kyr), S4 (3.5 kyr), and S3 (5 kyr). During the last glacial period (Marine Isotope Stages (MISs) 4-2), the long-term changes in the monsoonal system were superimposed by millennial-scale changes in an intensified midlatitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African humid periods.

  5. Interannual- to multicentiennial-scale variability in the West African Monsoon during the Eemian

    NASA Astrophysics Data System (ADS)

    McKay, N. P.; Overpeck, J. T.; Shanahan, T. M.; Peck, J. A.; King, J. W.; Scholz, C. A.; Heil, C. W.

    2011-12-01

    The Eemian was the last interglacial period prior to the Holocene, lasting from 130 to 118 ka. Whereas annual insolation during the Eemian was comparable to the Holocene, the substantial differences in seasonal forcing and the reduced extent of continental ice sheets make the interval an important benchmark for understanding how altered climatic forcing drives changes in both global and regional climate. Climate variability during the period is, however, poorly understood, especially on annual to decadal timescales. Here we present the initial results of 4,000-yr-long annually-resolved varve record from the Lake Bosumtwi from the early Eemian (ca. 130 to 126 ka). Lake Bosumtwi (6.5°N, 1.4°W) is a 1.07 Ma impact crater lake in southern Ghana. The lake is hydrologically closed, and is relatively small, and consequently, is particularly sensitive to changes in effective moisture and the West African Monsoon (WAM). In 2004, an ICDP lake drilling expedition recovered the complete 291-m sediment sequence that spans the 1 Myr history of the lake. More than half of the 1 Myr sediment sequence appears to be annually laminated, including the late Holocene. This allows us the rare opportunity to compare long, annually-resolved records between interglacials. We analyzed the varve sequence for major element composition at 25-μm resolution using a high-resolution scanning X-ray fluorescence analyzer (or μXRF). The abundance of terrestrial elements (i.e., Al, Si, K, Ti) in the sediments, as inferred by XRF, has been shown to be a proxy for lake level at Lake Bosumtwi. During the Holocene, lake level in Lake Bosumtwi generally tracked summer insolation; for most of the early Holocene lake level was near the crater rim and the lake overflowed. Summer insolation was substantially higher during the early Eemian (up to 30 W m-2), however there is no evidence of comparably high lake level at Lake Bosumtwi during any part of last interglacial. In contrast, abundant evidence from the

  6. A distal 145 ka sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, W.; Schmiedl, G.; Seidel, M.; Krüger, S.; Schulz, H.

    2015-09-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 145 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to < 122 ka (AHP 5), 113 to 104 ka (AHP 4), and 86 to 74 ka (AHP 3). They lasted much longer than the formation of the related sapropel layers S5, S4 and S3. During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.

  7. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K.-M.; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah Seidou; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siegfried; Dirmeyer, Paul; Ruby Leung, L.; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, Natalie M.; Zhang, Zhengqiu

    2016-12-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic

  8. Stratospheric variability of wave activity and parameters in equatorial coastal and tropical sites during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Kafando, P.; Chane-Ming, F.; Petitdidier, M.

    2016-12-01

    Recent numerical studies in stratospheric dynamics and its variability as well as climate, have highlighted the need of more observational analyses to improve simulation of the West African monsoon (WAM). In this paper, activity and spectral characteristics of short-scale vertical waves (wavelengths <4 km) are analysed in equatorial coastal and tropical lower stratosphere during the WAM. A first detailed description of such waves over West Africa is derived from high-resolution vertical profiles of temperature and horizontal wind obtained during Intensive Observation Period of the African Monsoon Multidisciplinary Analyses (AMMA) Campaign 2006. Monthly variation of wave energy density is revealed to trace the progression of the inter-tropical convergence zone (ITCZ) over West Africa. Mesoscale inertia gravity-waves structures with vertical and horizontal wavelengths of 1.5-2.5 and 400-1100 km respectively and intrinsic frequencies of 1.1-2.2 f or periods <2 days are observed in the tropical LS with intense activity during July and August when the WAM is installed over the tropical West Africa. Over equatorial region, gravity waves with intrinsic frequencies of 1.4-4 f or periods <5.2 days, vertical wavelength of 2.1 km and long horizontal wavelengths of 1300 km are intense during the WAM coastal phase. From July to October, gravity waves with intrinsic frequencies of 1.2-3.8 f or periods <6 days, vertical wavelength of 2.1 km and horizontal wavelengths of 1650 km are less intense during the WAM Sahelian phase of the WAM, March-June. Unlike potential energy density, kinetic energy density is observed to be a good proxy for the activity of short-scale vertical waves during the WAM because quasi-inertial waves are dominant. Long-term wave activity variation from January 2001 to December 2009, highlights strong year-to-year variation superimposed on convective activity and quasi-biennial oscillation-like variations especially above tropical stations.

  9. Seasonal Evolution and Variability Associated with the West African Monsoon System

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2003-01-01

    In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident

  10. The turbulence underside of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Lothon, M.; Lohou, F.; Saïd, F.; Campistron, B.; Canut, G.; Couvreux, F.; Durand, P.; Kalapureddy, M. C.; Lee, Y.; Madougou, S.; Serça, D.

    2009-09-01

    We present an experimental analysis of the sahelian Planetary Boundary Layer (PBL) processes in the context of the AMMA (African Monsoon Multidisciplinary Analysis) program and its extensive observational deployment in 2006. From May to October, two opposite flows are interacting in the first 5 thousands m over surface in Sahel: the moist southerly monsoon flow and the overlying northeasterly Saharan Air Layer (SAL) in which the African Easterly Jet (AEJ) is developing, generated by the contrast of surface moisture and temperature between Sahara and the Gulf of Guinea. Until the monsoon onset in mid-July, the low troposphere is slowly moistening through advection from the Guinea Gulf by the monsoon flow, especially during the night. During the day, the dry convection occurring within the PBL vertically redistributes part of the water vapour. After the onset, deep convection occurs much more frequently and the role played by the PBL completely changes. The relative position of the interface between monsoon and SAL and the PBL top inversion is crucial for the nature of the interaction and its impact on scalars, especially water vapour. We consider the role of the PBL processes in this context, and focus on four main aspects: (1) the diurnal cycle of the low troposphere, (2) the interaction between the PBL and the AEJ, (3) the entrainment at the PBL top (4) the impact of the PBL processes at surface. We base our analysis on long term profilers, radiosondes, and surface flux data, short term aircraft turbulence measurements made during the Special Observing Periods and Large Eddy Simulation. The network of wind profilers enables us to study the large scale circulation and highlight the consistence and extent of the nocturnal jet, and the importance of the diurnal cycle of the low troposphere for the West African Monsoon. During daytime, both the wind within the monsoon flow and the AEJ windspeed in the overlying SAL decrease, due to turbulent mixing within the PBL and

  11. The spectrum of Asian monsoon variability

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2014-12-01

    The Indian monsoon is the critical source of freshwater for over one billion people. Variability in monsoon precipitation occurs on all time scales and has severe consequences for the people who depend on monsoon rains. Extreme precipitation events have increased in the 20th century and are predicted to continue to become more frequent with anthropogenic global warming. The most recent models project that both monsoon precipitation and variability of precipitation will increase over the 21st century leading to increased flooding and possibly severe droughts. Although current models are able to capture the risk of relatively short droughts (1-5 years) reasonably well, they tend to underestimate the risk of longer, decadal- multidecadal droughts. I use observational records over the last 100 years in conjunction with cave, tree ring, and lake data from the NOAA paleoclimate database to reconstruct Holocene monsoon variability. I am able to show that the Asian monsoon has more low frequency variability than is projected by current climate models. The growing evidence for this discrepancy in hydroclimate variability between models and observational/paleoclimate records is of grave concern. If these models fail to capture the decadal-multidecadal droughts of the past it is likely they will underestimate the possibility of such droughts in the future.

  12. Coupled marine productivity and salinity and West African monsoon variability over the last 30,000 years in the eastern equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marret, F.; Kim, S.-Y.; Scourse, J.; Kennedy, H.

    2009-04-01

    Marine cores collected off west equatorial Africa have highlighted transfer of terrigenous material in the close ocean that have had a deep influence on the marine productivity for the last 30,000 years. The strength of the West African Monsoon has varied though time, from weak during glacial periods to strong during interglacials. In consequence, the amount of precipitation on the continent had drastic effect on the vegetation cover and soil erosion. Studies of marine cores have enabled the observation of changes in vegetation cover, from extended equatorial rainforest to expansion of savannahs. In association with open grassland association, soil is open to erosion, although precipitation is less; conversely, during periods of extended rainforest in a context of strong monsoon, soil erosion is minimised to the presence of trees. In both cases, terrigenous material is flushed out to the adjacent marine domain and has a profound influence on the marine biota. Three marine cores were studied from a north south transect, from Cameroon to Angola (off Sanaga, off Ogouée, and off Congo rivers), for their palynomorph contents. All cores contain a robust chronology based on radiocarbon dates and two have stable isotope data, allowing comparison. Dinoflagellate cysts were studied for retracing sea-surface conditions such as temperature, salinity and productivity whereas pollen were used to assess changes in the vegetation on the close continent for the last 30,000 years (1). A number of pollen records from terrestrial sequences from equatorial central Africa document the dynamics of the lowland rainforest and savannah in relation to climatic changes during the Holocene. Prior to the Holocene, continental records are scarce in this vast region and/or only allow reconstruction of the local vegetation. In our records, terrestrial proxies (pollen, spores, and charred grass cuticles) signal changes in the expansion/regression of the lowland rainforest which we relate to the

  13. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, Katharine; Grimm, Rosina; Mikolajewicz, Uwe; Marino, Gianluca; Rohling, Eelco

    2016-04-01

    The periodic deposition of organic rich layers or 'sapropels' in eastern Mediterranean sediments can be linked to orbital-driven changes in the strength and location of (east) African monsoon precipitation. Sapropels are therefore an extremely useful tool for establishing orbital chronologies, and for providing insights about African monsoon variability on long timescales. However, the link between sapropel formation, insolation variations, and African monsoon 'maxima' is not straightforward because other processes (notably, sea-level rise) may have contributed to their deposition, and because there are uncertainties about monsoon-sapropel phase relationships. For example, different phasings are observed between Holocene and early Pleistocene sapropels, and between proxy records and model simulations. To address these issues, we have established geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1, S3, S4, and S5 in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows us to examine in detail the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. Our records suggest that the onset of sapropel deposition and monsoon run-off was near synchronous, yet insolation-sapropel/monsoon phasings varied, whereby monsoon/sapropel onset was relatively delayed (with respect to insolation maxima) after glacial terminations. We suggest that large meltwater discharges into the North Atlantic modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. Hence, the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. We also surmise that both monsoon run-off and sea-level rise were important buoyancy-forcing mechanisms for

  14. Role of inertial instability in the West African monsoon jump

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.

    2015-04-01

    The West African monsoon jump is a sudden shift in the latitude of the West African precipitation maximum from the Guinean coast near 4°N into Sahel near 12°N in late June or early July. An examination of reanalyses and observations indicates that the Sahel rainy season develops smoothly and the monsoon jump occurs because of an abrupt decrease in Guinean coast rainfall. We show that this abrupt end of the coastal rainy season occurs when inertial instability develops over the region, 1 month later than it develops in the vicinity of the marine Atlantic Intertropical Convergence Zone. The reason for this delay is the presence of the African easterly jet, which places strong negative meridional zonal wind gradients over the coast to preserve the inertially stable environment. When the African easterly jet moves farther north due to the seasonal solar forcing, these gradients weaken and then reverse to satisfy the threshold condition for inertial instability; the rapid end of the Guinean coast rainy season follows. The northward movement and intensity of the African easterly jet are controlled by the seasonal development of strong meridional land surface temperature gradients and are independent of the formation of the Atlantic cold tongue. This explanation for the West African monsoon jump relates the phenomenon to the shape and location of the African continent, including the low-latitude position of the Guinean coast and the large expanse of the continent to the north.

  15. Multiscale Variability of the Monsoon Climate

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2005-05-01

    The reliability of weather forecasts is limited to a few days and is mainly determined by the synoptic scale features of the atmosphere. The predictability of weather models depends on the error growth determined by nonlinear terms representing advection. Smaller scale features, such as convection, may also influence the predictability of the synoptic scale forecasts. While the prediction of instantaneous states of the system may be impossible on longer time scale, there is optimism for medium-range and long-range forecasts of time-averaged features of the climate system. Such optimism is based on the observation that slowly-varying boundary forces such as sea surface temperature, soil moisture and snow influence the variability of the atmosphere on a longer time scale, especially in the tropical region. This study discusses the variability of such a tropical climate system, the monsoon, and shows that its variability consists of a combination of large-scale persistent seasonal mean component and intraseasonal variability of different time scales. The spatial variability of these components is also found to consist of different scales. By performing multi-channel singular spectrum analysis of daily rainfall, low-pressure systems, outgoing long-wave radiation and winds, two oscillatory modes with periods of about 45 and 20 days have been identified and shown to correspond to the active and break phases of the monsoon. These two intraseasonal modes, however, do not contribute much to the seasonal mean rainfall. Three other components of the MSSA are identified as the contributors to the seasonal mean rainfall, possibly arising from the influence of slowly-varying boundary forces. The prospect for making accurate long-range forecasts of the monsoon depends on the relative magnitudes of the large-scale seasonally persistent component and the intraseasonal component and on climate model experiments to establish a relation between the two components.

  16. Future of West African Monsoon in A Warming Climate

    NASA Astrophysics Data System (ADS)

    Raj, Jerry; Kunhu Bangalath, Hamza; Stenchikov, Georgiy

    2016-04-01

    West Africa is the home of more than 300 million people whose agriculture based economy highly relies on West African Monsoon (WAM), which produces a mean annual rainfall of 150 - 2,500 mm and variability and change of which have devastating impact on the local population. The observed widespread drought in West Africa during the 1970s and 1980s was the most significant drought at regional scale during the twentieth century. In this study, a high resolution AGCM, High Resolution Atmospheric Model (HiRAM), is used to study the effects of anthropogenic greenhouse warming on WAM. HiRAM is developed at GFDL based on AM2 and employs a cubed-sphere finite volume dynamical core and uses shallow convective scheme (for moist convection and stratiform cloudiness) instead of deep convective parameterization. Future projections are done using two representative concentration pathways, RCP 4.5 and RCP 8.5 from 2007 to 2050 at C360 (~25 km) resolution. Both RCP 4.5 and RCP 8.5 scenarios predict warming over West Africa during boreal summer, especially over Western Sahara. Also, both scenarios predict southward shift in WAM rainfall pattern and drying over Southern Sahara, while RCP 8.5 predicts enhanced rainfall over Gulf of Guinea. The intensification of rainfall over tropical latitudes is caused by increased low level winds due to warm SST over Gulf of Guinea.

  17. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for

  18. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  19. Indian Monsoon Depression: Climatology and Variability

    SciTech Connect

    Yoon, Jin-Ho; Huang, Wan-Ru

    2012-03-09

    The monsoon climate is traditionally characterized by large seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system, with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June - August with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern and central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall. Various weather systems such as tropical cyclones and weak disturbances contribute to monsoon rainfall (Ramage 1971). Among these systems, the most efficient rain-producing system is known as the Indian monsoon depression (hereafter MD). This MD is critical for monsoon rainfall because: (i) it occurs about six times during each summer monsoon season, (ii) it propagates deeply into the continent and produces large amounts of rainfall along its track, and (iii) about half of the monsoon rainfall is contributed to by the MDs (e.g., Krishnamurti 1979). Therefore, understanding various properties of the MD is a key towards comprehending the veracity of the Indian summer monsoon and especially its hydrological process.

  20. Seasonal forecasts for regional onset of the West African monsoon

    NASA Astrophysics Data System (ADS)

    Vellinga, Michael; Arribas, Alberto; Graham, Richard

    2013-06-01

    The West African monsoon has over the years proven difficult to represent in global coupled models. The current operational seasonal forecasting system of the UK Met Office (GloSea4) has a good representation of monsoon rainfall over West Africa. It reproduces the various stages of the monsoon: a coastal phase in May and June, followed by onset of the Sahelian phase in July when rainfall maxima shift northward of 10N until September; and a secondary coastal rainfall maximum in October. We explore the dynamics of monsoon onset in GloSea4 and compare it to reanalyses. An important difference is the change in the Saharan heat low around the time of Sahelian onset. In Glosea4 the deepening heat low introduces moisture convergence across an east-west Sahelian band, whereas in the reanalyses such an east-west organisation of moisture does not occur and moisture is transported northwards to the Sahara. Lack of observations in the southern Sahara makes it difficult to verify this process in GloSea4 and also suggests that reanalyses may not be strongly constrained by station observations in an area key to Sahelian onset. Timing of monsoon onset has socio-economic importance for many countries in West Africa and we explore onset predictability in GloSea4. We use tercile categories to calculate probabilities for onset occurring before, near and after average in four different onset indicators. Glosea4 has modest skill at 2-3 months' lead time, with ROC scores of 0.6-0.8. Similar skill is seen in hindcasts with models from the ENSEMBLES project, even in models with large rainfall biases over the Sahel. Forecast skill derives from tropical SST in June and many models capture at least the influence of the tropical Atlantic. This suggests that long-range skill for onset could be present in other seasonal forecasting systems in spite of mean rainfall biases.

  1. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a

  2. The Role of African topography in the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Wei, H. H.; Bordoni, S.

    2014-12-01

    The Somali cross-equatorial jet is estimated to contribute up to half of the mass flux crossing the equator during the Asian monsoon season. Previous studies have argued that the Somali jet is strengthened by the East African Highlands, which act as a wall and accelerate the flow (e.g., Krishnamurti et al. 1976, Sashegyi and Geisler 1987). Besides, observational studies have shown a positive correlation between the strength of the Somali jet and the South Asian Monsoon (SAM) precipitation (e.g., Findlater 1969, Halpern and Woiceshyn 2001). These imply that the existence of the topography would relate to a stronger SAM. However, in a more recent study, Chakraborty et al. (2002) found that if the African topography is removed in a comprehensive general circulation model (GCM), the SAM strengthens. In this study, we use the GFDL AM2.1 GCM to conduct experiments with and without topography in Africa, to further examine its influence on the cross-equatorial Somali jet and the SAM. We find that when the African topography is removed, the SAM precipitation increases, consistent with the results in Chakraborty et al. (2002). Interestingly, our results also show that the cross-equatorial Somali jet does weaken in the absence of the African topography, in agreement with previous studies. The moisture budget shows that the increase in precipitation in the no-African topography experiment is primarily due to stronger wind convergence. The dynamics of the cross-equatorial Somali jet is investigated within the framework of the Potential Vorticity (PV) budget, showing the contribution of the changes in friction and diabatic heating to the circulation as the topography is removed. A backward trajectory analysis is also conducted to further examine the influence of topography on both the material tendencies of the PV budget and trajectories of parcels reaching the Indian subcontinent.

  3. Role of soil moisture-atmosphere interactions in model simulation of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin; Giannini, Alessandra

    2015-04-01

    Land-atmosphere interactions play a major role in climate characteristics over land. One of the key features of those interactions is the feedback of soil moisture on precipitation: driven by atmosphere variability, soil moisture variations in turn modulate land-atmosphere fluxes, altering surface climate and boundary layer conditions and potentially feeding back on precipitation, both through local and large-scale processes. Prior studies have highlighted West Africa as one of the regions where such interactions play an important role in precipitation variability. Here we investigate the role of soil moisture-atmosphere interactions on the West African Monsoon in the GFDL-ESM2M model, comparing simulations from the GLACE-CMIP5 experiment with prescribed (climatological seasonal cycle) and interactive soil moisture. Results indicate that total monsoon precipitation is enhanced in the prescribed case, suggesting that overall soil moisture-atmosphere interactions act to reduce precipitation. However, contrasting effects appear between the "core" of the monsoon (in a time- latitude sense) where precipitation is reduced with interactive soil moisture, and the "margins" (in a time-latitude view) where precipitation increases. We investigate the processes responsible for these differences, from changes in the surface energy budget and Bowen Ratio to changes in large-scale circulation and monsoon dynamics. Simulations from other GLACE-CMIP5 participating models are also analyzed to assess the inter-model robustness of the results.

  4. Orbital forcing on West African monsoon system revealed by KZai 02 pollen record spectral analysis

    NASA Astrophysics Data System (ADS)

    Dalibard, Mathieu; Popescu, Speranta-Maria; Pittet, Bernard; Fernandez, Vincent; Marsset, Tania; Droz, Laurence; Suc, Jean-Pierre

    2013-04-01

    The present-day intertropical climate is forced by yearly fluctuations of insolation reorganizing pressure cells. They control, via the wind system, the variations of the precipitation front known as the InterTropical Convergence Zone (ITCZ). Its latitudinal oscillation drives a strong seasonality of rainfalls over Africa. However, connections between African climate during Pleistocene and orbital forcing are blurred by high-latitudes and local direct influence of insolation and need further investigations. The study of KZai 02 core pollen content provides a high-resolution record of changes in West African plant ecosystems during the last 160 kyrs. Spectral analyses were performed on pollen signals to identify periodicity in vegetation dynamics related to environmental fluctuations. The large range of frequencies detected testifies for the sensibility of African biotopes to past climate fluctuations. Milankovitch parameters, especially precession, are identified within variations of the ecological groups of KZai 02 pollen record and interpreted in terms of West African monsoon system variability. Asynchrony in the different plant ecosystem fluctuations suggests the out of step influence of several climatic parameters (precipitation, CO2, temperature) involving local insolation and high-latitude influence. Spectral analysis also reveals sub-Milankovitch periods related to (1) Heinrich and Dansgaard/Oeschger glacial pulsation events and (2) East Asian monsoon oscillations controlled by ice sheet pulses testifying for the strong relationship between low- and high-latitude climate changes.

  5. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    SciTech Connect

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  6. Analysis of intraseasonal convective variability modes over West Africa during the monsoon season

    NASA Astrophysics Data System (ADS)

    Ceratto, Jeffrey

    Intraseasonal variability of rainfall within the West African Monsoon has been shown to be an important factor in the weather of this region. Multiple factors have been found to contribute to variability at this timescale. Mounier, et al (2008) use EOF analysis to uncover and describe a quasi-stationary dipole of precipitation between the West African Monsoon system and the West Atlantic/Caribbean Sea. This mode, termed the Quasi Biweekly Zonal Dipole mode, operates on timescales of roughly 13 days. The stationary nature of this dipole is focused upon in their work, while the role of Kelvin waves in the mode are considered secondary. In this work, the role of Kelvin waves in the dipole mode is considered. Regression analyses are performed with time lags to observe how the dipole evolves with time. Kelvin waves are observed to dominate the timing and the phase of the dipole mode. Dynamical regressions indicate a possible source region for these Kelvin waves, over the South American continent, as well as the effects the Kelvin waves have on the West African Monsoon system as they enter and exit the region. Impacts on the strength of the Saharan Heat Low and on African Easterly Wave activity are observed. A case study highlighting Kelvin wave activity in relation to the QBZD is also considered. The second EOF pattern is also examined with lagged regressions; a relationship is found between it and the first EOF pattern.

  7. Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Jeong; Ha, Kyung-Ja; Jhun, Jong-Ghap

    2014-05-01

    The interdecadal and the interannual variability of the global monsoon (GM) precipitation over the area which is chosen by the definition of Wang and Ding (Geophys Res Lett 33: L06711, 2006) are investigated. The recent increase of the GM precipitation shown in previous studies is in fact dominant during local summer. It is evident that the GM monsoon precipitation has been increasing associated with the positive phase of the interdecadal Pacific oscillation in recent decades. Against the increasing trend of the GM summer precipitation in the Northern Hemisphere, its interannual variability has been weakened. The significant change-point for the weakening is detected around 1993. The recent weakening of the interannual variability is related to the interdecadal changes in interrelationship among the GM subcomponents around 1993. During P1 (1979-1993) there is no significant interrelationship among GM subcomponents. On the other hand, there are significant interrelationships among the Asian, North American, and North African summer monsoon precipitations during P2 (1994-2009). It is noted that the action center of the interdecadal changes is the Asian summer (AS) monsoon system. It is found that during P2 the Western North Pacific summer monsoon (WNPSM)-related variability is dominant but during P1 the ENSO-related variability is dominant over the AS monsoon region. The WNPSM-related variability is rather related to central-Pacific (CP) type ENSO rather than the eastern-Pacific (EP) type ENSO. Model experiments confirm that the CP type ENSO forcing is related to the dominant WNPSM-related variability and can be responsible for the significant interrelationship among GM subcomponents.

  8. Half-precessional dynamics of monsoon rainfall near the East African Equator.

    PubMed

    Verschuren, Dirk; Sinninghe Damsté, Jaap S; Moernaut, Jasper; Kristen, Iris; Blaauw, Maarten; Fagot, Maureen; Haug, Gerald H

    2009-12-03

    External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions. Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-rich middle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few, especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional ( approximately 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low

  9. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  10. Indian monsoon variability on millennial-orbital timescales

    NASA Astrophysics Data System (ADS)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-04-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  11. Indian monsoon variability on millennial-orbital timescales.

    PubMed

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-04-13

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  12. Indian monsoon variability on millennial-orbital timescales

    PubMed Central

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-01-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales. PMID:27071753

  13. Asian summer monsoon variability during the last two millennia

    NASA Astrophysics Data System (ADS)

    Chawchai, Sakonvan; Chabangborn, Akkaneewut; Fritz, Sherilyn; Blaauw, Maarten; Löwemark, Ludvig; Reimer, Paula J.; Krusic, Paul J.; Väliranta, Minna; Mörth, Carl-Magnus; Wohlfarth, Barbara

    2014-05-01

    The Southeast Asian mainland is located in the central path of the Asian summer monsoon, a region where paleoclimatic data are still sparse. Here we report a new detailed reconstruction of monsoon variability during the past 2000 years from a multi-proxy sediment record (TOC, C/N, δ13C, δ15N, Si, K, Ti elemental data, biogenic silica and fossil plant remains) from Lake Pa Kho in northeast Thailand. We infer a stronger summer monsoon between BC 200 - AD 400 and AD 800 - 1350, a weaker summer monsoon AD 400 - 800, and fluctuating moisture availability AD 1350 - 1550. Increased run-off after AD 1750 can be linked to agricultural intensification in the region. Placed in a wider context our high-resolution data set contributes important information regarding abrupt shifts in hydroclimatic conditions, spatial patterns of monsoon variability, and variations in the position of the ITCZ across SE Asia during the last two millennia. These paleoclimatic shifts may have contributed to the rise and fall of Iron Age and Khmer societies.

  14. East Asian summer monsoon precipitation variability since the last deglaciation

    PubMed Central

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H. John B.; Liu, Jianbao; Zhang, Shengrui; Jin, Liya; An, Chengbang; Telford, Richard J.; Cao, Xianyong; Wang, Zongli; Zhang, Xiaojian; Selvaraj, Kandasamy; Lu, Houyuan; Li, Yuecong; Zheng, Zhuo; Wang, Haipeng; Zhou, Aifeng; Dong, Guanghui; Zhang, Jiawu; Huang, Xiaozhong; Bloemendal, Jan; Rao, Zhiguo

    2015-01-01

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka = thousands of years before present, where the “present” is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7–7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8–5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5–8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change. PMID:26084560

  15. East Asian summer monsoon precipitation variability since the last deglaciation.

    PubMed

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H John B; Liu, Jianbao; Zhang, Shengrui; Jin, Liya; An, Chengbang; Telford, Richard J; Cao, Xianyong; Wang, Zongli; Zhang, Xiaojian; Selvaraj, Kandasamy; Lu, Houyuan; Li, Yuecong; Zheng, Zhuo; Wang, Haipeng; Zhou, Aifeng; Dong, Guanghui; Zhang, Jiawu; Huang, Xiaozhong; Bloemendal, Jan; Rao, Zhiguo

    2015-06-18

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka = thousands of years before present, where the "present" is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7-7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8-5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5-8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change.

  16. East Asian summer monsoon precipitation variability since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H. John B.; Liu, Jianbao; Zhang, Xiaojian; Jin, Liya

    2016-04-01

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka=thousands of years before present, where the "present" is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7-7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8-5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5-8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change.

  17. The West African Monsoon in the Regional Climate Model COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Kothe, S.; Ahrens, B.

    2010-09-01

    The West African Monsoon is in parts of Africa the exceedingly climatic process with a high influence on flora, fauna and economy. In this study we evaluated ECHAM5 and ERA-Interim driven CCLM regional climate simulations of Africa to analyze the reproduction of characteristics of the West African Monsoon in the model. As indicators for the monsoon we looked at the total precipitation and the outgoing long-wave radiation (OLR) as a hint for convective clouds. Additionally the West African Monsoon Index (WAMI) should give a view at the dynamical component of the monsoon. Compared to the large-scale driving models, CCLM was not able to achieve more accurate results. There were regional strong under- and overestimations in precipitation but the mean values showed quite good results with a maximum difference of about 20%. For the ECHAM5 driven CCLM simulation, the strongest overestimation of precipitation at the African West coast, was combined with a strong overestimation of OLR, which indicated too much convection in this area. The model caught the WAMI very well. In a next step we want to quantify the influence of the driving model and the impact of surface features like the surface albedo on the monsoon.

  18. A solar variability driven monsoon see-saw: switching relationships of the Holocene East Asian-Australian summer monsoons

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Ozken, Ibrahim; McRobie, Fiona; Stemler, Thomas; Marwan, Norbert; Wyrwoll, Karl-Heinz; Kurths, Juergen

    2016-04-01

    The East Asian-Indonesian-Australian monsoon is the predominant low latitude monsoon system, providing a major global scale heat source. Here we apply newly developed non-linear time series techniques on speleothem climate proxies, from eastern China and northwestern Australia and establish relationships between the two summer monsoon regimes over the last ˜9000 years. We identify significant variations in monsoonal activity, both dry and wet phases, at millennial to multi-centennial time scales and demonstrate for the first time the existence of a see-saw antiphase relationship between the two regional monsoon systems. Our analysis attributes this inter-hemispheric linkage to the solar variability that is effecting both monsoon systems.

  19. South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration

    SciTech Connect

    Meehl, G.A.; Washington, W.M. )

    1993-05-21

    Doubled atmospheric carbon dioxide concentration in a global coupled ocean-atmosphere climate model produced increased surface temperatures and evaporation and greater mean precipitation in the south Asian summer monsoon region. As a partial consequence, interannual variability of area-averaged monsoon rainfall was enhanced. Consistent with the climate sensitivity results from the model, observations showed a trend of increased interannual variability of Indian monsoon precipitation associated with warmer land and ocean temperatures in the monsoon region. 26 refs., 3 figs., 1 tab.

  20. Ecosystem Response to Monsoon Rainfall Variability in Southwestern North America

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Feyen, Luc; Vivoni, Enrique

    2013-04-01

    Due to its marked plant phenology driven by precipitation, the North American Monsoon System (NAMS) can serve to reveal ecological responses to climate variability and change in water-controlled regions. This study attempts to elucidate the effects of monsoon rainfall variability on vegetation dynamics over the North American Monsoon Experiment (NAME) tier I domain (20°-35° N, 105°-115° W). To this end, we analyze long-term dynamics (1982-2004) in seasonal precipitation (Pr), net primary production (NPP) and rain-use efficiency (RUE) based on phenological and biophysical memory metrics from NOAA CPC daily 1° gridded precipitation data and satellite GIMMS semi-monthly NDVI images at 8-km resolution. We focus our analysis on six diverse ecosystems spanning from semi-arid and desert environments to tropical deciduous forests to investigate: 1) the spatially averaged NPP/RUE profiles along the regional Pr gradient, 2) the linkage between NPP and Pr inter-annual variations and 3) the long-term trends of Pr, NPP and RUE. All the biomes show an increase (decrease) in mean NPP (RUE) along the mean seasonal precipitation gradient ranging from 100 to 900 mm. Variations in NPP/RUE profiles differ strongly across ecosystems and show threshold behaviors likely resulting from different physiological responses to climate effects and landscape features. Statistical analysis suggests that the inter-annual variability in NPP is significantly related to the temporal variability in precipitation. In particular, we found that forest biomes are more sensitive to inter-annual variations in precipitation regimes. Semi-arid ecosystems appear to be more resilient, probably because they are more exposed to extreme conditions and consequently better adapted to greater inter and intra-annual climate variability. The long-term positive signal in RUE imposed on its inter-annual variability, which results from a constant NPP under negative long-term trends of Pr, indicates an improved

  1. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali

  2. Sensible and latent heat forced divergent circulations in the West African Monsoon System

    NASA Astrophysics Data System (ADS)

    Hagos, S.; Zhang, C.

    2008-12-01

    Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.

  3. Interannual variability of the Indian monsoon and the Southern Oscillation

    SciTech Connect

    Wu, M.; Hastenrath, S.

    1986-01-01

    Years with abundant Southwest monsoon rainfall in India are characterized by anomalously low pressure over South Asia and the adjacent waters, enhanced cross-equatorial flow in the western, and increased cloudiness over the northern portion of the Indian Ocean, continuing from the pre-monsoon through the post-monsoon season; positive temperature anomalies over land and in the Arabian Sea in the pre-monsoon season, changing to negative departures after the monsoon onset. The following causality chain is suggested: the anomalously warm surfaces of south Asia and the adjacent ocean in the pre-monsoon season induce a thermal low, thus enhancing the northward directed pressure gradient, and favoring a vigorous cross-equatorial flow over the Indian Ocean. After the monsoon onset the land surfaces are cooled by evaporation, and the Arabian Sea surface waters by various wind stress effects. However, latent heat release over South Asia can now maintain the meridional topography gradients essential to the monsoon circulation. The positive phase of the Southern Oscillation (high pressure over the Eastern South Pacific) is associated with circulation departures in the Indian Ocean sector similar to those characteristic of years with abundant India monsoon rainfall. Abundant rainfall over India during the northern summer monsoon leads the positive mode of the southern Oscillation, and this in turn leads Java rainfall, whose peak is timed about half a year after that of India. A rising Southern Oscillation tendency presages abundant India Southwest Monsoon rainfall but a late monsoon onset. 46 references, 9 figures, 4 tables.

  4. Asian Monsoon Variability from the Monsoon Asia Drought Atlas (MADA) and Links to Indo-Pacific Climate

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; D'Arrigo, Rosanne; Anchukaitis, Kevin; Hernandez, Manuel; Buckley, Brendan; Cook, Edward

    2014-05-01

    Drought patterns across monsoon and temperate Asia over the period 1877-2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June-August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Variations in the strength of the South Asian monsoon can also be linked to the Strange Parallels Drought (1756-1768) affecting much of Southeast Asia and the Indian subcontinent in the mid-18th Century. Large-scale climate anomalies across the wider region during years with an anomalously strengthened/weakened South Asian monsoon are discussed with implications for severe droughts prior to the instrumental period. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the

  5. The annual cycle of the West African Monsoon in a two-dimensional model:Mechanisms of the rainband migration

    NASA Astrophysics Data System (ADS)

    Peyrille, P.; Lafore, J. P.; Boone, A. A.

    2015-12-01

    The processes that drive the annual cycle of the West African Monsoon (WAM) are analysed using an idealized meridional-vertical numerical model that includes moist physics. Using the work by Peyrillé and Lafore (2007) as a starting point, the framework is adapted to studying the annual cycle. A suitable forcing methodology for temperature and humidity is derived allowing the 2D model to reproduce the main features of the WAM.A budget analysis of the simulated temperature and humidity variables leads to a picture of the ITCZ seasonal displacement, for which the moistening on the northern side of the ITCZ is key. It is due to the near surface moisture advection by the monsoon flow to the north of the ITCZ, in addition to the turbulent fluxes and shallow convection which transport humidity to the top of the PBL. On a larger scale, the warming of the Saharan Heat Low by turbulence and radiation and the cooling/moistening within the ITCZ by convective downdrafts reinforces the monsoon flow. The mechanism seems at play during the whole seasonal cycle, which is seen as a steady translation of these structures. Sensitivity experiments show the importance of the low level processes such as downdrafts, horizontal advection and water recycling. Although advection is the 1st order process, the water recycling appears as a key element by directly modulating the intensity of rainfall and by allowing the convective downdraft to feed back onto the WAM.

  6. Diabatic heating, divergent circulation and moisture transport in the African monsoon system

    SciTech Connect

    Hagos, Samson M.; Zhang, Chidong

    2009-12-24

    The dynamics of the West African monsoon system is studied through the diagnosis of the roles of diabatic heating in the divergent circulation and moisture transport. The divergent circulation is partitioned into latent-heating and non-latent-heating (the sum of surface sensible heat flux and radiative heating) driven components based on its field properties and its relationship with diabatic heating profiles. Roles of latent and non-latent diabatic heating in the moisture transport of the monsoon system are thus distinguished. The gradient in surface sensible heat flux between the Saharan heat-low and the Gulf of Guinea drives a shallow meridional circulation, which transports moisture far into the continent on the northern side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence maximum is within the region of precipitation and thus enhances local monsoon precipitation. Meanwhile, latent heating also induces dry air advection from the north. The seasonal northward migration of precipitation is encouraged by neither of the two effects. On the other hand, the divergent circulation forced by remote latent heating influences local moisture distribution through advection. Specifically by bringing Saharan air from the north, and driving moisture to the adjacent oceans, global latent heating has an overall drying effect over the Sahel.

  7. An Indian Ocean precursor for Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Sreejith, O. P.; Panickal, S.; Pai, S.; Rajeevan, M.

    2015-11-01

    The Indian summer monsoon rainfall (ISMR) depicts large interannual variability strongly linked with El Niño-Southern Oscillation (ENSO). However, many of the El Niño years were not accompanied by deficient ISMR. The results from the study reveal the significant role of coupled air-sea interaction over the tropical Indian Ocean (IO) in modifying the ENSO-ISMR association. The IO warm water volume (WWV), a measure of heat content variations in the equatorial IO has strong influence on ISMR. A deepening (shoaling) of thermocline in the eastern equatorial IO (EEIO) during late boreal spring (April-May) accompanied by increase (decrease) in WWV anomalies weaken (enhance) the ISMR by enhancing (suppressing) the convection over EEIO resulting in the below (above) normal ISMR. Thus, the changes in the WWV anomalies in the EEIO along with ENSO conditions during boreal spring can be considered as a precursor for the performance of subsequent ISMR.

  8. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  9. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation

  10. Holocene Climatic Variability in the Indian Monsoon Domain

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen Kumar; Anoop, Ambili; Menzel, Philip; Gaye, Birgit; Basavaiah, Nathani; Jehangir, Arshid; Prasad, Sushma

    2013-04-01

    The available data on Holocene climate variability from Asia indicates spatio-temporal changes in the precipitation over this vast region. Detailed information on the timing, duration, regionality, and causes of these fluctuations is not well understood, especially over the Indian subcontinent. My work focuses on long core sediments from lake Tso Moriri (78°14'-78°25'N and 32°40'-33°02'E; altitude: 4500 m) situated in climatically sensitive zone of NW Himalayas affected by both mid-latitude westerlies and Indian summer monsoon. Two cores ca.7 m were retrieved from the lake at different water depths (ca. 40m and 105m) in July 2011. Investigations reveal marked changes in grain size, lamination quality, mineralogy, organic and carbonate content suggesting changes in lake level, direction of inflow, and biological productivity that in turn are influenced by regional climate. As the lake lies in a tectonically active region, I have also undertaken detailed geomorphometric (knick-point, Hack index), and drainage pattern analysis of the major inflowing streams to decipher the active tectonics in the region. Sharp changes in river course and slope gradient indicates the presence of an active N-S trending fault in western flank of the lake. The data from lake Tso Moriri will be compared with other high-resolution records from lake Lonar and stalagmites in NE India to reconstruct the forcing mechanism of Holocene climatic variability.

  11. Influence of Arctic sea-ice and greenhouse gas concentration change on the West African Monsoon.

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    The Sahelian precipitation are projected to increase in the CNRM-CM5 coupled climate model due to a strengthening of the land-Sea temperature gradient, the increase in the North Atlantic temperature and the deepening of the Heat Low. Arctic Sea-Ice loss impacts the low-level atmospheric circulation through a decrease in the northward heat transport. Some authors have linked the sea-ice loss to a poleward shift of the InterTropical Convergence Zone. Within the CMIP5 models the effect of these mechanisms are not distinguishable and it is difficult to understand the effect of the Arctic sea-ice loss on the West African Monsoon so far. We performed several sensitivity experiments with the CNRM-CM5 coupled climate models by modifying the arctic sea-ice extent and/or the greenhouse gas concentration. We then investigated separately the impact of Arctic sea-ice loss and greenhouse gas concentration increases on the West African Monsoon. The increase in greenhouse gas explains the northward shift and the strengthening of the monsoon. Its effect is stronger with a sea-ice free Arctic that leads to an increase in North Atlantic temperature and in Sahelian precipitation at the end of the rainy season (September-October). We argue that the decrease in sea-ice extent, in the context of the global warming, may moistens the Sahel during the rainy season by changing the pressure, winds and moisture fluxes at low-level.

  12. Regional Climate Modeling of West African Summer Monsoon Climate: Impact of Historical Boundary Forcing

    NASA Astrophysics Data System (ADS)

    Kebe, I.

    2015-12-01

    In this paper, we analyze and intercompare the performance of an ensemble of three Regional Climate Models (RCMs) driven by three set of Global Climate Models (GCMs), in reproducing seasonal mean climatologies with their annual cycle and the key features of West African summer monsoon over 20 years period (1985-2004) during the present day. The results show that errors in lateral boundary conditions from the GCM members, have an unexpected way on the skill of the RCMs in reproducing regional climate features such as the West African Monsoon features and the annual cycle of precipitation and temperature in terms of outperforming the GCM simulation. It also shows the occurrence of the West African Monsoon jump, the intensification and northward shift of the Saharan Heat Low (SHL) as expressed in some RCMs than the GCMs. Most RCMs also capture the mean annual cycle of precipitation and temperature, including, single and double-peaked during the summer months, in terms of events and amplitude. In a series of RCMs and GCMs experiments between the Sahara region and equatorial Africa, the presence of strong positive meridional temperature gradients at the surface and a strong meridional gradients in the potential temperatures near the surface are obvious, indicating the region of strong vertical shear development enough to establish easterly flow such as the African easterly jet. In addition, the isentropic potential vorticity (IPV) gradient decreases northward in the lower troposphere across northern Africa, with the maximum reversal on the 315-K surface. The region with negative IPV gradient favors the potential instability which has been associated with the growth of easterly waves.

  13. West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges

    NASA Astrophysics Data System (ADS)

    Poan, E. D.; Gachon, P.; Dueymes, G.; Diaconescu, E.; Laprise, R.; Seidou Sanda, I.

    2016-11-01

    The West African monsoon intraseasonal variability has huge socio-economic impacts on local populations but understanding and predicting it still remains a challenge for the weather prediction and climate scientific community. This paper analyses an ensemble of simulations from six regional climate models (RCMs) taking part in the coordinated regional downscaling experiment, the ECMWF ERA-Interim reanalysis (ERAI) and three satellite-based and observationally-constrained daily precipitation datasets, to assess the performance of the RCMs with regard to the intraseasonal variability. A joint analysis of seasonal-mean precipitation and the total column water vapor (also called precipitable water— PW) suggests the existence of important links at different timescales between these two variables over the Sahel and highlights the relevance of using PW to follow the monsoon seasonal cycle. RCMs that fail to represent the seasonal-mean position and amplitude of the meridional gradient of PW show the largest discrepancies with respect to seasonal-mean observed precipitation. For both ERAI and RCMs, spectral decompositions of daily PW as well as rainfall show an overestimation of low-frequency activity (at timescales longer than 10 days) at the expense of the synoptic (timescales shorter than 10 days) activity. Consequently, the effects of the African Easterly Waves and the associated mesoscale convective systems are substantially underestimated, especially over continental regions. Finally, the study investigates the skill of the models with respect to hydro-climatic indices related to the occurrence, intensity and frequency of precipitation events at the intraseasonal scale. Although most of these indices are generally better reproduced with RCMs than reanalysis products, this study indicates that RCMs still need to be improved (especially with respect to their subgrid-scale parameterization schemes) to be able to reproduce the intraseasonal variance spectrum adequately.

  14. Understanding the mechanisms behind the West African Monsoon northward extension during Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Messori, Gabriele; Zhang, Qiong; Flamant, Cyrille; Evan, Amato T.; Pausata, Francesco S. R.

    2016-04-01

    Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modelling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy is largely due to unrealistic imposed land surface cover and aerosols. Numerical experiments are conducted by imposing a "green Sahara", along with a reduced dust concentration in the atmosphere, coherently with the MH environment in the region, and the atmospheric dynamics response and impact on precipitation are investigated. The response of the WAM system to the imposed conditions shows a dramatic augmentation of the precipitation across West Africa up to the Mediterranean coast. This follows a substantial reorganization of the regional circulation, with some monsoonal circulation features (Saharan heat low, African easterly jet, African easterly waves) weakened in favour of deep convection development over land. The simulated response is dominated by land cover changes, and the reduction in dust concentration further enhances the changes induced by the "green Sahara". The intensity and meridional extent of the WAM is fully consistent with proxy evidence. The results for the MH WAM present important implications for understanding future climate scenarios in the region, in the perspective of projected wetter conditions in West Africa.

  15. Seasonal forecast quality of the West African monsoon rainfall regimes by multiple forecast systems

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luis Ricardo Lage; García-Serrano, Javier; Doblas-Reyes, Francisco

    2014-07-01

    A targeted methodology to study the West African monsoon (WAM) rainfall variability is considered where monthly rainfall is averaged over 10°W-10°E to take into account the latitudinal migration and temporal distribution of the WAM summer rainfall. Two observational rainfall data sets and a large number of quasi-operational forecast systems, among them two systems from the European Seasonal to Interannual Prediction initiative and six systems from the North American Multi-model Ensemble project, are used in this research. The two leading modes of the WAM rainfall variability, namely, the Guinean and Sahelian regimes, are estimated by applying principal component analysis (PCA) on the longitudinally averaged precipitation. The PCA is performed upon the observations and each forecast system and lead time separately. A statistical model based on simple linear regression using sea surface temperature indices as predictors is considered both as a benchmark and an additional forecast system. The combination of the dynamical forecast systems and the statistical model is performed using different methods of combination. It is shown that most forecast systems capture the main features associated with the Guinean regime, that is, rainfall located mainly south of 10°N and the northward migration of rainfall over the season. On the other hand, only a fraction of the forecast systems capture the characteristics of the rainfall signal north of 10°N associated with the Sahelian regime. A simple statistical model proves to be of great value and outperforms most state-of-the-art dynamical forecast systems when predicting the principal components associated with the Guinean and Sahelian regimes. Combining all forecast systems do not lead to improved forecasts when compared to the best single forecast system, the European Centre for Medium-Range Weather Forecasts System 4 (S4). In fact, S4 is far better than any forecast system when predicting the variability of the WAM rainfall

  16. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

    NASA Astrophysics Data System (ADS)

    Bosmans, J. H. C.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Lourens, L. J.

    2015-01-01

    We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.

  17. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  18. The Mid-Holocene West African Monsoon strength modulated by Saharan dust and vegetation

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Messori, G.; Zhang, Q.

    2015-12-01

    The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the WAM occurred between 15,000-5,000 years BP, when increased summer precipitation led to the so-called "Green Sahara" and to a reduction in dust emissions from the region. Previous studies have shown that variations in vegetation and soil type can have major impacts on precipitation. However, model simulations are still unable to fully reproduce the intensification and geographical expansion of the African monsoon during that period, even when vegetation over the Sahara is simulated. Here, we use a fully coupled simulation for 6000 years BP in which prescribed Saharan vegetation and dust concentrations are changed in turn. A close agreement with proxy records is obtained only when both Saharan vegetation and dust decrease are taken into account (Fig. 1). The dust reduction extends the monsoon's northern limit further than the vegetation-change case only (Fig. 2), by strengthening vegetation-albedo feedbacks and driving a deeper Saharan Heat Low. The dust reduction under vegetated Sahara conditions leads to a northward shift of the WAM extension that is about twice as large as the shift due to the changes in orbital forcing alone. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the MH WAM. The role of dust is also relevant when looking into the future, since Saharan dust emission may decrease owing to both direct and indirect anthropogenic impacts on land cover.

  19. Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations

    NASA Astrophysics Data System (ADS)

    Barret, B.; Ricaud, P.; Mari, C.; Attié, J.-L.; Bousserez, N.; Josse, B.; Le Flochmoën, E.; Livesey, N. J.; Massart, S.; Peuch, V.-H.; Piacentini, A.; Sauvage, B.; Thouret, V.; Cammas, J.-P.

    2008-06-01

    The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the

  20. Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations

    NASA Astrophysics Data System (ADS)

    Barret, B.; Ricaud, P.; Mari, C.; Attié, J.-L.; Bousserez, N.; Josse, B.; Le Flochmoën, E.; Livesey, N. J.; Massart, S.; Peuch, V.-H.; Piacentini, A.; Sauvage, B.; Thouret, V.; Cammas, J.-P.

    2008-02-01

    The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the

  1. 250 years of SW Indian Monsoon Variability from Red Sea Corals

    NASA Astrophysics Data System (ADS)

    Bryan, S.; Hughen, K. A.; Karnauskas, K. B.; Farrar, J. T.

    2015-12-01

    During the northern hemisphere summer, strong dust storms develop in the Tokar Delta region of Sudan. These massive dust storms are funneled through a gap in the coastal mountains and blow out across the Red Sea. The generation and transport of these dust storms is driven by the large-scale atmospheric pressure gradient across the Red Sea, which is a component of the Southwest Indian Monsoon. Dust deposited on the Red Sea is recorded in skeletal geochemistry of corals that live on the Saudi Arabian coast, and provides an opportunity to reconstruct variability in the monsoon system prior to instrumental records. We have generated annually-resolved records of coral Ba/Ca, which display strong correlations to the zonal pressure gradient across the Red Sea during the instrumental period. Our coral-based monsoon records show an increasing trend in the strength of SW Indian Monsoon circulation since the Little Ice Age, in agreement with lower-resolution Arabian Sea upwelling based records. Our records also show strong decadal-scale variability, which was strongest during the late 19th century and has declined during the past century. In this presentation, we will discuss the decadal-scale variability in the SW Indian Monsoon circulation over the past 250 years as revealed by Red Sea Corals and the implications of the relationships and trends observed in this study for projections of future monsoon variability.

  2. Climate variability in a coupled GCM. Part II: The Indian Ocean and monsoon

    SciTech Connect

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1994-10-01

    We have investigated the seasonal cycle and the interannual variability of the tropical Indian Ocean circulation and the Indian summer monsoon simulated by a coupled ocean-atmosphere general circulation model in a 26-year integration. Although the model exhibits significant climate drift, overall, the coupled GCM simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian summer monsoon. The amplitudes of the seasonal changes, however, are underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation, which is partly related to the El Nino/Southern Oscillation phenomenon and the associated changes in the Walker circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in monsoon rainfall, simulated by the coupled GCM, is only about half as strong as observed. The reason for this is that the simulated interannual variability in the Indian monsoon appears to be related to internal processes within the atmosphere only. In contrast, an investigation based on observations shows a clear lead-lag relationship between interannual variations in the monsoon rainfall and tropical Pacific SST anomalies. Furthermore, the atmospheric GCM also fails to reproduce this lead-lag relationship between monsoon rainfall and tropical Pacific SST when run in a stand-alone integration with observed SSTs prescribed during the period 1970-1988. These results indicate that important physical processes relating tropical Pacific SST to Indian monsoon rainfall are not adequately modeled in our atmospheric GCM. Monsoon rainfall predictions appear therefore premature. 24 refs., 13 figs, 2 tabs.

  3. Interannual vs decadal SST forced responses of the West African monsoon

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fonseca, Belen

    2010-05-01

    One of the strongest interdecadal signals on the planet has been observed in the Sahelian rainfall during the second half of the XXth century, from wet conditions in the 50's and 60's to drier conditions after the 70's. Parallel to this, several decadal signals have experienced a change from the 70's, and also the influence of the global warming has increased from this decade. From a global perspective the West African rainfall variability is highly modulated by SST forced signals. Many works have pointed out to the Atlantic and Pacific equatorial modes influence on interannual timescales; and to the AMO and the Pacific and Indian Ocean at multidecadal timescales. In the AMMA-EU context the modulation of the interannual modes by the decadal variability together with the influence of the GW has been studied by analysing the interannual modes of variability before and after the 70's. The results indicate the presence of different interannual telecconections between these two periods and, hence, of different anomalous rainfall responses. The importance of the background state modulated by multidecadal variability in the interannual modes is stated in this work. Also, an interesting discussion appears if we wonder whether or not the background state is affected, in turn, by anthropogenic climate change. Recent observational and GCM studies have shown, following the results of Polo et al. (2008), how the Atlantic and Pacific Niños present a dynamical link during the last decades of the XX century (Rodriguez-Fonseca et al., 2009). In this way, the positive (negative) phase of the summer Pacific Niño signal has been found to be connected with a negative (positive) phase of the Equatorial Atlantic mode (EM or Atlantic Niño, Polo et al., 2008); a pattern which leads the summer Atlantic variability. The determinant impact of this connection on the WA monsoon has been addressed by defining a global summer tropical mode accounting for more than the 60% of the rainfall

  4. Monsoon rainfall interannual variability over China and its association with the Euasian circulation

    SciTech Connect

    Samel, A.N.; Wang, Wei-Chyung

    1997-11-01

    This study has two goals. The first is to determine annual observed initial and final dates of east Asian summer monsoon rainfall. To accomplish this, a semi-objective analysis is developed and applied to daily rainfall station data throughout China. The resulting values are used to calculate monsoon duration and total rainfall. The second goal is to identify relationships between these rainfall characteristics and circulation features in the Eurasian sea level pressure. The analysis of the duration of monsoon rainfall events produced results that are consistent with those found in previous studies. Total monsoon rainfall over south China, the Yangtze River valley, and north China was then correlated with the Eurasian sea level pressure and 500 millibar height fields. The results indicate that summer rainfall interannual variability over each region is governed by the interaction of several circulation features. These findings are also consistent with those of other studies. 18 refs., 5 figs.

  5. Trends and variability in East African rainfall and temperature observations

    NASA Astrophysics Data System (ADS)

    Seregina, Larisa; Ermert, Volker; Fink, Andreas H.; Pinto, Joaquim G.

    2014-05-01

    The economy of East Africa is highly dependent on agriculture, leading to a strong vulnerability of local society to fluctuations in seasonal rainfall amounts, including extreme events. Hence, the knowledge about the evolution of seasonal rainfall under future climate conditions is crucial. Rainfall regimes over East Africa are influenced by multiple factors, including two monsoon systems, several convergence zones and the Rift Valley lakes. In addition, local conditions, like topography, modulate the large-scale rainfall pattern. East African rainfall variability is also influenced by various teleconnections like the Indian Ocean Zonal Mode and El Niño Southern Oscillation. Regarding future climate projections, regional and global climate models partly disagree on the increase or decrease of East African rainfall. The specific aim of the present study is the acquirement of historic data from weather stations in East Africa (Kenya, Tanzania, Ruanda and Uganda), the use of gridded satellite (rainfall) products (ARC2 and TRMM), and three-dimensional atmospheric reanalysis (e.g., ERA-Interim) to quantify climate variability in the recent past and to understand its causes. Climate variability and trends, including changes in extreme events, are evaluated using ETCCDI climate change and standardized precipitation indices. These climate indices are determined in order to investigate the variability of temperature and rainfall and their trends with the focus on most recent decades. In the follow-up, statistical and dynamical analyses are conducted to quantify the local impact of pertinent large-scale modes of climate variability (Indian Ocean Zonal Mode, El Niño Southern Oscillation, Sea Surface Temperature of the Indian Ocean).

  6. Role of Terrestrial Moisture Source Transport on Summer Monsoon Rainfall Variability over Ganga River Basin

    NASA Astrophysics Data System (ADS)

    A S, S.; Pathak, A.; Ghosh, S.; Kumar, P.

    2015-12-01

    Ganga river basin, which is one of the most agricultural intensified and densely populated in the world, receives moisture from different terrestrial sources, other than oceanic sources. The modeling of Indian Summer Monsoon Rainfall (ISMR) over Ganga Basin, especially its variability, is very crucial as most of the agro-economical practices depend on it. The monsoon rainfall over the core monsoon zone in India which covers the large amount of area of Ganga basin is significantly correlated with the rainfall over Ganga basin. Therefore, the atmospheric moisture transport from different terrestrial sources to the sink over Ganga basin is studied for better understanding of ISMR variability (both inter-annual, and intraseasonal timescale) over Ganga Basin and core monsoon zone. We use extended version of the dynamic recycling model, which is based on Lagrangian trajectory approach to study the impact of moisture source variability on ISMR over Ganga basin during 1979-2013. The intraseasonal variation of ISMR is also observed to be significantly associated with the moisture source variability. The regions with dense vegetation cover such as Ganga basin and south-central forest region in India, manifest substantial role of land surface feedback with high recycling ratios (15-20%). It is also observed that the peak monsoon rainfall occurs during a period when all the oceanic and terrestrial sources altogether contribute significantly to the ISMR. The novelty of present work lies in understanding the role of different terrestrial sources on ISMR variability at different timescale viz., intra-seasonal to interannual. Our findings also highlight the importance of land surface feedback through evapotranspiration, in order to accurately model ISMR variability for better planning and management of the crop calendar. Key words: Atmospheric moisture transport, Dynamic precipitation recycling, Indian summer monsoon rainfall variability, Ganga River Basin.

  7. Trace gas variability within the Asian monsoon anticyclone on intraseasonal and interannual timescales

    NASA Astrophysics Data System (ADS)

    Nützel, Matthias; Dameris, Martin; Fierli, Federico; Stiller, Gabriele; Garny, Hella; Jöckel, Patrick

    2016-04-01

    The Asian monsoon and the associated monsoon anticyclone have the potential of substantially influencing the composition of the UTLS (upper troposphere/lower stratosphere) and hence global climate. Here we study the variability of the Asian summer monsoon anticyclone in the UTLS on intraseasonal and interannual timescales using results from long term simulations performed with the CCM EMAC (ECHAM5/MESSy Atmospheric Chemistry). In particular, we focus on specified dynamics simulations (Newtonian relaxation to ERA-Interim data) covering the period 1980-2013, which have been performed within the ESCiMo (Earth System Chemistry integrated Modelling) project (Jöckel et al., GMDD, 2015). Our main focus lies on variability of the anticyclone's strength (in terms of potential vorticity, geopotential and circulation) and variability in trace gas signatures (O3, H2O) within the anticyclone. To support our findings, we also include observations from satellites (MIPAS, MLS). Our work is linked to the EU StratoClim campaign in 2016.

  8. West Indian Ocean variability and East African fish catch.

    PubMed

    Jury, M; McClanahan, T; Maina, J

    2010-08-01

    We describe marine climate variability off the east coast of Africa in the context of fish catch statistics for Tanzania and Kenya. The time series exhibits quasi-decadal cycles over the period 1964-2007. Fish catch is up when sea surface temperature (SST) and atmospheric humidity are below normal in the tropical West Indian Ocean. This pattern relates to an ocean Rossby wave in one phase of its east-west oscillation. Coastal-scale analyses indicate that northward currents and uplift on the shelf edge enhance productivity of East African shelf waters. Some of the changes are regulated by the south equatorial current that swings northward from Madagascar. The weather is drier and a salty layer develops in high catch years. While the large-scale West Indian Ocean has some impact on East African fish catch, coastal dynamics play a more significant role. Climatic changes are reviewed using 200 years of past and projected data. The observed warming trend continues to increase such that predicted SST may reach 30 degrees C by 2100 while SW monsoon winds gradually increase, according to a coupled general circulation model simulation with a gradual doubling of CO(2).

  9. Lake Mega-Chad, a West African Monsoon indicator and tipping element

    NASA Astrophysics Data System (ADS)

    Armitage, Simon; Bristow, Charlie; Drake, Nick

    2015-04-01

    From the deglacial period to the mid-Holocene, North Africa was characterised by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines and fluvio-lacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ~15 ka, followed by a return to relatively arid conditions. By 11.5 ka Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly non-linear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles since the northern (Bodélé) basin is currently the World's greatest single dust source, and possibly an important source of limiting nutrients for both the Amazon basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from Bodélé Basin cannot have occurred prior to 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.

  10. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad.

    PubMed

    Armitage, Simon J; Bristow, Charlie S; Drake, Nick A

    2015-07-14

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼ 15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼ 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world's greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.

  11. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad

    PubMed Central

    Armitage, Simon J.; Bristow, Charlie S.; Drake, Nick A.

    2015-01-01

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  12. Obliquity-paced SE Asian monsoon variability during the Middle Miocene

    NASA Astrophysics Data System (ADS)

    Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.

    2015-12-01

    Middle Miocene climate had boundary conditions different from the Pleistocene but similar to those predicted for Earth's future including substantial Antarctic ice cover without permanent northern hemisphere ice sheets. Under these boundary conditions, comparatively little is known about monsoon variability. Here we show using terrestrial sediments in the Tianshui Basin, Gansu, China that East Asian monsoon variability during a portion of the Middle Miocene (~13.9 - 13.4 Ma) was obliquity-paced. The sediments, part of the Yanwan section, consist of siltstones strongly modified by pedogenesis, such that primary sedimentary structures are largely absent. 20 cm thick, well-cemented CaCO3 cliff-forming horizons containing root-pore cements and clay nodules are inter-bedded at regular ~1m intervals with slope-forming siltstones containing clay films, well-preserved roots up to 2 cm in diameter, and variable abundances of 0.1-2cm diameter CaCO3 nodules. Stronger pedogenesis in the well-cemented horizons typify soil K horizons that develop in seasonal climates when sedimentation is slower, whereas the weaker pedogenesis in the siltstones occurs when sedimentation is faster. Thus this cyclic stratigraphy was likely generated by changes in sedimentation rate, which governed the intensity of pedogenesis and was likely controlled by variability of the winter monsoon (if the sediments are aeolian) or the summer monsoon (if fluvial). Obliquity (41 kyr) pacing of the inferred monsoon variability is concluded from counting the cycles in a 12m subsection dated by magnetostratigraphy. Obliquity-paced (41kyr) monsoon variability was likely controlled by insolation-driven changes in the meridional temperature gradient and may relate to southern hemisphere ice volume.

  13. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  14. The South American monsoon variability over the last millennium in climate models

    NASA Astrophysics Data System (ADS)

    Rojas, Maisa; Arias, Paola A.; Flores-Aqueveque, Valentina; Seth, Anji; Vuille, Mathias

    2016-08-01

    In this paper we assess South American monsoon system (SAMS) variability in the last millennium as depicted by global coupled climate model simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly and a stronger monsoon during the Little Ice Age (LIA). Due to the small external forcing during the past 1000 years, model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, in contrast with the rainfall reconstructions in South America. Therefore, we used an ad hoc definition of these two periods for each model simulation in order to account for model-specific signals. Thereby, several coherent large-scale atmospheric circulation anomalies are identified. The models feature a stronger monsoon during the LIA associated with (i) an enhancement of the rising motion in the SAMS domain in austral summer; (ii) a stronger monsoon-related upper-tropospheric anticyclone; (iii) activation of the South American dipole, which results in a poleward shift of the South Atlantic Convergence Zone; and (iv) a weaker upper-level subtropical jet over South America. The diagnosed changes provide important insights into the mechanisms of these climate anomalies over South America during the past millennium.

  15. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Waliser, D.

    2003-01-01

    This study was examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant 'to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on sub-seasonal time scales associated with the meridional propagation of the ISO/MJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISO/MJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISO/MJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISO/MJO variability should provide useful skill of monsoon breaks and surges on sub-seasonal time scales.

  16. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Bacmeister, J.; Waliser, D.

    2004-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on subseasonal time scales associated with the meridional propagation of the ISOMJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISOMJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISOMJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISOM0 variability should provide useful skill of monsoon breaks and surges on subseasonal time scales.

  17. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  18. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  19. Holocene monsoon variability inferred from palaeolake sediments in NW India.

    NASA Astrophysics Data System (ADS)

    Dixit, Y.; Hodell, D. A.; Petrie, C. A.

    2012-04-01

    The plains of NW India encompasses arid, semi-arid to sub-humid zones and are characterized by numerous palaeolakes and playas. The sedimentary records from these water bodies provide a rich source of paleoclimatic information. We present a high-resolution, Holocene monsoon-variation record inferred from three palaeolakes lying across the precipitation gradient in NW India; palaeolake Karsandi in arid Rajasthan and palaeolake Riwasa, palaeolake Kotla Dahar in semi-arid and sub-humid regions, respectively, in Haryana plains. Laminated and massive gypsum deposits characterize Palaeolake Karsandi in the arid region. Oxygen isotopes are being measured on the gastropod shells and gypsum hydration of water (Hodell et al 2011) for a continuous isotopic record from Rajasthan. The oxygen isotope record from palaeolake Riwasa in the semi-arid region indicates the inception of a wet period at 9700-9500 cal yr (BP) with the establishment of a deep, permanent lake coinciding with the early Holocene maximum in the Indian monsoon. The deep, permanent-lake phase ended with a desiccation event at approximately 8200 BP coinciding with the '8.2kyr' weakening of the monsoon. In contrast, palaeolake Kotla Dahar, lying further east of Riwasa in the sub-humid region, receives 500-700mm annual rainfall. At Kotla Dahar, bulk CaCO3 (%), gastropod abundance and isotope data indicate that the deep lacustrine sequence ends at c.185 cm. Extrapolating from the AMS radio-carbon dated sediments at 135cm (4870-4650 BP) and 230cm (2000-1870 BP), places the 185 cm horizon at c.3970-3720 BP. Our results so far indicate that the Riwasa paleolake lying west of Kotla Dahar dries earlier than Kotla Dahar during the mid-Holocene. The precise date of the transition from a deep-lake water phase to an ephemeral lake in Kotla Dahar is pending, but the projected date suggests that the event coincides with the decline of the urban phase of the Indus Civilization at c. 3900 BP. These three lakes lying across

  20. Past changes of the North African monsoon intensity between 5 and 6.2 My, impact of the Messinian Salinity Crisis (MSC)

    NASA Astrophysics Data System (ADS)

    Ségueni, F.; Colin, C.; Siani, G.; Frank, N.; Blamart, D.; Kissel, C.; Liu, Z.; Richter, T.; Suc, J.

    2006-12-01

    A high resolution multiproxy study by oxygen isotope record (δ18O) on benthic foraminifera (Cibicides wuellerstorfii), magnetic susceptibility, clay mineralogy (DRX), major - trace elements (XRF core scanner and ICPMS) and Rb/Sr - Nd isotopes was carried out from site ODP 659 along the Cape Verde off Africa. The aim was to reconstruct variations of African Monsoon during the Mio-Pliocene in the time interval from 5 My to 6,2 My. Chronology was established by linear interpolation between 3 bio-events based on calcareous nannoplancton zones, 2 glacial stages TG12 and TG22 identified on δ18O records and by tuning the δ18O and magnetic susceptibility records to the orbital parameter of obliquity and precession. Results indicate that between 5 to 6.2 My variability in the eolian input from Sahara and the coastal upwelling intensity are anti-correlated and make it possible to retrace the evolution of northern African Monsoon. The latter co- varies mainly with the insolation received by the earth at low latitude during the summer. Maximal insolation enhance summer monsoonal effects by increasing wetter conditions on Sahel and NE dominance wind system cause a reduced eolian input and an increased biogenic sea surface productivity by coastal upwelling. On the other hand, minimal insolation reinforce winter monsoon that create a more arid climate on Sahel and stronger westward winds that increase eolian flux on Cap Verde with a reduced upwelling effect on sea surface productivity. At a longer time scale, the end of the MSC is correlated with a major change of the African Monsoon intensity. Finally, the δ18O record on C.wuellerstorfii suggests that global eustatic processes didn't play a key role in the MSC history. Nevertheless, transition between glacial stage TG12 and the interglacial TG11 seems to correspond to a major event within the MSC, and associated to the beginning of the upper evaporite deposits. Thus, the facies of the Lago Mare of the upper evaporites would

  1. Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models

    NASA Astrophysics Data System (ADS)

    Paxian, A.; Sein, D.; Panitz, H.-J.; Warscher, M.; Breil, M.; Engel, T.; Tödter, J.; Krause, A.; Cabos Narvaez, W. D.; Fink, A. H.; Ahrens, B.; Kunstmann, H.; Jacob, D.; Paeth, H.

    2016-02-01

    The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.

  2. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    SciTech Connect

    Annamalai, H.

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  3. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    SciTech Connect

    Virts, Katrina S.; Houze, Robert A.

    2016-12-01

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  4. Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep

    2015-05-01

    A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.

  5. Impacts of absorbing aerosols on interannual and intraseasonal variability of the South Asian monsoon

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Kim, K. M.; Shi, J. J.; Tao, W. K.

    2015-12-01

    Aerosol-monsoon interactions on the interannual and intraseasonal variability of the South Asian monsoon are investigated from observations and modeling. On interannual time scales, we found from observations, and confirm with coupled ocean-atmosphere climate modeling, that absorbing aerosols (mainly desert dust and BC), can significantly amplifying the ENSO impact on the Indian monsoon, through precipitation and circulation feedback induced by the EHP effect. On intraseasonal time scales, modeling studies with the high-resolution WRF regional climate model demonstrated that EHP combined with the semi-direct and microphysics effects, associated with enhanced desert dust transported from the Middle East deserts across the Arabian Sea to the Indian subcontinent, may alter the moisture transport pathways, suppress the development of monsoon depression over northeastern India, resulting in development of intense convective cells, and extreme heavy rain along the Himalayan foothills in central and northwestern India. The implications of these feedback processes on climate change in the South Asian monsoon region will be discussed.

  6. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  7. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  8. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  9. Interannual Variability, Global Teleconnection, and Potential Predictability Associated with the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Li, J. Y.

    2001-01-01

    In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.

  10. East Asian Monsoon controls on the inter-annual variability in precipitation isotope ratio in Japan

    NASA Astrophysics Data System (ADS)

    Kurita, N.; Fujiyoshi, Y.; Nakayama, T.; Matsumi, Y.; Kitagawa, H.

    2015-02-01

    To elucidate the mechanism for how the East Asian Monsoon (EAM) variability have influenced the isotope proxy records in Japan, we explore the primary driver of variations of precipitation isotopes at multiple temporal scales (event, seasonal and inter-annual scales). Using a new 1-year record of the isotopic composition of event-based precipitation and continuous near-surface water vapor at Nagoya in central Japan, we identify the key atmospheric processes controlling the storm-to-storm isotopic variations through an analysis of air mass sources and rainout history during the transport of moisture to the site, and then apply the identified processes to explain the inter-annual isotopic variability related to the EAM variability in the historical 17-year long Tokyo station record in the Global Network of Isotopes in Precipitation (GNIP). In the summer, southerly flows transport moisture with higher isotopic values from subtropical marine regions and bring warm rainfall enriched with heavy isotopes. The weak monsoon summer corresponds to enriched isotopic values in precipitation, reflecting higher contribution of warm rainfall to the total summer precipitation. In the strong monsoon summer, the sustaining Baiu rainband along the southern coast of Japan prevents moisture transport across Japan, so that the contribution of warm rainfall is reduced. In the winter, storm tracks are the dominant driver of storm-to-storm isotopic variation and relatively low isotopic values occur when a cold frontal rainband associated with extratropical cyclones passes off to the south of the Japan coast. The weak monsoon winter is characterized by lower isotopes in precipitation, due to the distribution of the cyclone tracks away from the southern coast of Japan. In contrast, the northward shift of the cyclone tracks and stronger development of cyclones during the strong monsoon winters decrease the contribution of cold frontal precipitation, resulting in higher isotopic values in

  11. Climatology and dynamics of nocturnal low-level stratus over the southern West African monsoon region

    NASA Astrophysics Data System (ADS)

    Fink, A. H.; Schuster, R.; Knippertz, P.; van der Linden, R.

    2013-12-01

    The southern parts of West Africa, from the coast to about 10°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. We will present the first ever climatology of the diurnal cycle of the low cloud deck based on surface observations and satellite products. In addition, we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds as simulated by the model. The model configuration used for this study has been determined following an extensive sensitivity study, which has shown that at least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. The main conclusions are: (a) The observed stratus deck forms after sunset along the coast, spreads inland in the course of the night, reaches maximum poleward extent at about 10°N around 09-10 local time and dissipates in the early afternoon. (b) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (c) The cloud formation is related to a subtle balance between 'stratogenic' upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at

  12. A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall.

    PubMed

    Mishra, Vimal; Smoliak, Brian V; Lettenmaier, Dennis P; Wallace, John M

    2012-05-08

    The dominant patterns of Indian Summer Monsoon Rainfall (ISMR) and their relationships with the sea surface temperature and 850-hPa wind fields are examined using gridded datasets from 1900 on. The two leading empirical orthogonal functions (EOFs) of ISMR over India are used as basis functions for elucidating these relationships. EOF1 is highly correlated with all India rainfall and El Niño-Southern Oscillation indices. EOF2 involves rainfall anomalies of opposing polarity over the Gangetic Plain and peninsular India. The spatial pattern of the trends in ISMR from 1950 on shows drying over the Gangetic Plain projects onto EOF2, with an expansion coefficient that exhibits a pronounced trend during this period. EOF2 is coupled with the dominant pattern of sea surface temperature variability over the Indian Ocean sector, which involves in-phase fluctuations over the Arabian Sea, the Bay of Bengal, and the South China Sea, and it is correlated with the previous winter's El Niño-Southern Oscillation indices. The circulation anomalies observed in association with fluctuations in the time-varying indices of EOF1 and EOF2 both involve distortions of the low-level monsoon flow. EOF1 in its positive polarity represents a southward deflection of moist, westerly monsoon flow from the Arabian Sea across India, resulting in a smaller flux of moisture to the Himalayas. EOF2 in its positive polarity represents a weakening of the monsoon trough over northeastern India and the westerly monsoon flow across southern India, reminiscent of the circulation anomalies observed during break periods within the monsoon season.

  13. Holocene East Asian Monsoon Variability: Links to Solar and Tropical Pacific Forcing

    NASA Astrophysics Data System (ADS)

    Kandasamy, S.; Chen, C. A.; Lou, J.

    2006-12-01

    Sedimentary geochemical records from subalpine Retreat Lake, subtropical Taiwan, document the unstable East Asian Monsoon (EAM) climate for the last ~10250 calendar years before the present (cal yr B.P.). The proxy records demonstrate cool, glacial conditions with weak EAM between ~10250 and 8640 cal yr B.P., the strongest EAM during the "Holocene optimum" (8640-4500 cal yr B.P.) with an abrupt, decadal onset of postglacial EAM (8640-8600 cal yr B.P.), and relatively dry conditions since 4500 cal yr B.P. Although after 8600 cal yr B.P., EAM strength reduces gradually in response to the Northern Hemisphere summer insolation, heat and moisture transport and the development of late Holocene El-Niño-Southern Oscillation in the tropical Pacific appear to corroborate the periods of abrupt monsoon changes. Our proxy records reveal several weak monsoon intervals that correlate to low sea surface temperatures in the western tropical Pacific and cold events in the North Atlantic, suggesting a mechanistic link. Among those, four weak EAM events at 8170, 5400, 4500-2100 and 2000-1600 cal yr B.P. are in phase with the timings of low concentrations of atmospheric methane and periods of reduced North Atlantic Deep Water production as well as the `8.2 ka cold spell' and widespread event of low-latitude cultural collapse. Our EAM records exhibit strong correlations with high- and low-latitude climate and monsoon records; thus, provide robust evidences that the centennial-millennial scale monsoon variability during the Holocene are globally-mediated via sun- ocean-monsoon-North Atlantic linkages.

  14. The Preferred Structure of the Interannual Indian Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Straus, David M.; Krishnamurthy, V.

    2007-09-01

    The leading empirical orthogonal function (EOF) of the June-Sept. mean, rotational horizontal wind at 850 hPa and 200 hPa (over the region 12.5°S 42.5°N, 50°E 100°E) from 56 years (1948 2003) of reanalysis (from the National Centers for Environmental Prediction) shows strong anti-cyclonic circulation at upper levels, strong Indian Ocean cross-equatorial flow and on-shore flow over western India at lower levels . The associated principal component (PC) is correlated at the 0.75 level with the seasonal mean observed Indian Monsoon rainfall (IMR). Composite differences of vertically integrated divergence (surface to 800 hPa) and vorticity (surface to 500 hPa) between ``strong'' years (PC-1 exceeds one standard deviation σ) and ``weak'' years (PC-1 less than - σ) suggest increased rising motion and storminess over the Bay of Bengal and central India. Composite difference maps of station rainfall from the India Meteorological Department (IMD) between strong years and normal years (weak years and normal years) are statistically significant over central India, with strong (weak) years associated with increased (decreased) precipitation. In both cases the maps of rainfall anomalies are of one sign throughout India. The correlation of PC-1 with global seasonal mean SST is strong and negative over the eastern equatorial Pacific, but positive in a surrounding horse-shoe like region. Significant negative correlation occurs in the northwestern Indian Ocean. The lag/lead correlation between the NINO3 SST index and PC-1 is similar to but stronger than the NINO3/IMR correlation. Modest (but significant) negative correlation is seen when NINO3 leads PC-1 (or IMR) by one-two months. Strong negative correlation is seen when PC-1 (or IMR) leads NINO3. The projections of running five-day means of horizontal rotational winds at 850 and 200 hPa onto EOF-1 (after removing the seasonal mean for each year) were pooled for strong, normal and weak years. The strong and normal year

  15. Water vapour variability during Indian monsoon over Trivandrum observed using Microwave Radiometer and GPS

    NASA Astrophysics Data System (ADS)

    Raju, Suresh C.; Krishna Moorthy, K.; Ramachandran Pillai, Renju; Uma, K. N.; Saha, Korak

    2012-07-01

    The Indian summer monsoon is a highly regular synoptic event, providing most of the annual rainfall received over the sub-continent. Trivandrum, at the southwestern tip of Indian peninsula, is considered as the gate way of Indian monsoon, with its climatological onset on June 01. During this season, the region, experiences large seasonal variation in water vapor, rain fall and wind (speed and direction) in the troposphere. The variability in water vapor and wind information are the vital parameters in forecasting the onset of monsoon. This study focuses on water vapor measurements over the tropical coastal station Trivandrum (8.5oN & 76.9oE) using microwave techniques and the analyses with an effort to link the seasonal variability of water vapor with the onset of monsoon. At Trivandrum a hyper-spectral microwave radiometer profiler (MRP) and a Triple-frequency global positioning system receiver (GPS) have been in regular operation since April 2010. A station-dependent simple empirical relation suitable for the equatorial atmospheric condition is formulated to map the nonhydrostatic component of GPS tropospheric delay to the PWV, based on the columnar water vapor estimated from the multi-year daily radiosonde ascends from Trivandrum. A trained artificial neural network (ANN) with climatological atmospheric data of Trivandrum, is employed to derive the water vapor from the MRP brightness temperature measurements. The accuracy, reliability and consistency of PWV measurements over the tropical coastal station from these two independent instruments are assessed by comparing PWV derived from MRP and GPS measurements which resulted an rms deviation of <1.2mm (with correlation coefficient of ~0.98). This confirms the PWV derived over Trivandrum from microwave measurements are accurate even during the monsoon period in the presence of clouds and rain. PWV from microwave radiometer measurements for more than two years are used to study the water vapour variability during

  16. Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability

    NASA Astrophysics Data System (ADS)

    Chakravorty, Soumi; Gnanaseelan, C.; Pillai, P. A.

    2016-11-01

    The combined influence of tropical Indian Ocean (TIO) and Pacific Ocean (TPO) sea surface temperature (SST) anomalies on Indian summer monsoon rainfall (ISMR) variability is studied in the context of mid-1970s regime shift. The rainfall pattern on the various stages of monsoon during the developing and decaying summer of El Niño is emphasized. Analysis reveals that ISMR anomalies during El Niño developing summer in epoch-1 (1950-1979) are mainly driven by El Niño forcing throughout the season, whereas TIO SST exhibits only a passive influence. On the other hand in epoch-2 (1980-2009) ISMR does not show any significant relation with Pacific during the onset phase of monsoon whereas withdrawal phase is strongly influenced by El Niño. Again the eastern Indian Ocean cooling and westward shift in northwest Pacific (NWP) cyclonic circulation during epoch-2 have strong positive influence on the rainfall over the central and eastern India during the matured phase of monsoon. ISMR in the El Niño decaying summer does not show any significant anomalies in epoch-1 as both Pacific and Indian Ocean warming dissipate by the summer. On the other hand in epoch-2 ISMR anomalies are significant and display strong variability throughout the season. In the onset phase of monsoon, central and east India experience strong negative precipitation anomalies due to westward extension of persistent NWP anticyclone (forced by persisting Indian Ocean warming). The persistent TIO warming induces positive precipitation anomalies in the withdrawal phase of monsoon by changing the atmospheric circulation and modulating the water vapour flux. Moisture budget analysis unravels the dominant processes responsible for the differences between the two epochs. The moisture convergence and moisture advection are very weak (strong) over Indian land mass during epoch-1 (epoch-2) in El Niño decaying summer. The changing moisture availability and convergence play important role in explaining the weakening

  17. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2017-03-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  18. Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon.

    NASA Astrophysics Data System (ADS)

    Joseph, P. V.; Sijikumar, S.

    2004-04-01

    The strong cross-equatorial low level jet stream (LLJ) with its core around 850 hPa of the Asian summer monsoon (June September) is found to have large intraseasonal variability. During the monsoon onset over Kerala, India, and during break monsoon periods, when the convective heating of the atmosphere is over the low latitudes of the Indian Ocean, the axis of the LLJ is oriented southeastward over the eastern Arabian Sea and it flows east between Sri Lanka and the equator and there is no LLJ through peninsular India. This affects the transport of moisture produced over the Indian Ocean to peninsular India and the Bay of Bengal. In contrast, during active monsoon periods when there is an east west band of strong convective heating in the latitudes 10° 20°N from about longitude 70° to about 120°E, the LLJ axis passes from the central Arabian Sea eastward through peninsular India and it provides moisture for the increased convection in the Bay of Bengal and for the monsoon depressions forming there. The LLJ does not show splitting into two branches over the Arabian Sea. Splitting of the jet was first suggested by Findlater and has since found wide acceptance as seen from the literature. Findlater's findings were based on analysis of monthly mean winds. Such an analysis is likely to show the LLJ of active and break monsoons as occurring simultaneously, suggesting a split.Strengths of the convective heat source (OLR) over the Bay of Bengal and the strength of the LLJ (zonal component of wind) at 850 hPa over peninsular India and also the Bay of Bengal between latitudes 10° and 20°N have the highest linear correlation coefficient at a lag of 2 3 days, with OLR leading. The LLJ crossing the equator close to the coast of East Africa will pass through India only if there is active monsoon convection in the latitude belt 10° 20°N over south Asia. The position in latitude of the LLJ axis between longitudes 70° and 100°E is decided by the south north movement of the

  19. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    NASA Astrophysics Data System (ADS)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2017-03-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  20. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Messori, Gabriele; Zhang, Qiong

    2016-01-01

    The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the West African Monsoon (WAM) occurred between 15000-5000 yr BP, when increased summer rainfall led to the so-called "Green Sahara" and to a reduction in dust emissions from the region. However, model experiments are unable to fully reproduce the intensification and geographical expansion of the WAM during this period, even when vegetation over the Sahara is considered. Here, we use a fully coupled simulation for 6000 yr BP (Mid-Holocene) in which prescribed Saharan vegetation and dust concentrations are changed in turn. A closer agreement with proxy records is obtained only when both the Saharan vegetation changes and dust decrease are taken into account. The dust reduction strengthens the vegetation-albedo feedback, extending the monsoon's northern limit approximately 500 km further than the vegetation-change case only. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the WAM during the Mid-Holocene.

  1. Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.- M.; Kim, K.-M.; Yang, S.

    1998-01-01

    In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of

  2. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases.

  3. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo

    2017-01-01

    The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.

  4. A Stalagmite record of Holocene Indonesian-Australian summer monsoon variability from the Australian tropics

    NASA Astrophysics Data System (ADS)

    Denniston, Rhawn F.; Wyrwoll, Karl-Heinz; Polyak, Victor J.; Brown, Josephine R.; Asmerom, Yemane; Wanamaker, Alan D.; LaPointe, Zachary; Ellerbroek, Rebecca; Barthelmes, Michael; Cleary, Daniel; Cugley, John; Woods, David; Humphreys, William F.

    2013-10-01

    Oxygen isotopic data from a suite of calcite and aragonite stalagmites from cave KNI-51, located in the eastern Kimberley region of tropical Western Australia, represent the first absolute-dated, high-resolution speleothem record of the Holocene Indonesian-Australian summer monsoon (IASM) from the Australian tropics. Stalagmite oxygen isotopic values track monsoon intensity via amount effects in precipitation and reveal a dynamic Holocene IASM which strengthened in the early Holocene, decreased in strength by 4 ka, with a further decrease from ˜2 to 1 ka, before strengthening again at 1 ka to years to levels similar to those between 4 and 2 ka. The relationships between the KNI-51 IASM reconstruction and those from published speleothem time series from Flores and Borneo, in combination with other data sets, appear largely inconsistent with changes in the position and/or organization of the Intertropical Convergence Zone (ITCZ). Instead, we argue that the El Niño/Southern Oscillation (ENSO) may have played a dominant role in driving IASM variability since at least the middle Holocene. Given the muted modern monsoon rainfall responses to most El Niño events in the Kimberley, an impact of ENSO on regional monsoon precipitation over northwestern Australia would suggest non-stationarity in the long-term relationship between ENSO forcing and IASM rainfall, possibly due to changes in the mean state of the tropical Pacific over the Holocene.

  5. Experimental reconstruction of monsoon drought variability for Australasia using tree rings and corals

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne; Baker, Patrick; Palmer, Jonathan; Anchukaitis, Kevin; Cook, Garry

    2008-06-01

    An experimental reconstruction uses three well-dated, annually-resolved proxies from Australasia (0-40°S, 95-155°E) to provide large-scale information on Sep-Jan Australasian monsoon variability based on the Palmer Drought Severity Index (PDSI) for 1787-2002. The proxies are: (1) a ring width chronology of Callitris intratropica for northern Australia (1847-2006) (2) a tree-ring and coral-based reconstruction of the Oct-Nov PDSI (1787-2003) for Java, Indonesia; and (3) a rainfall reconstruction for northeastern Australia (1631-2002) based on Great Barrier Reef coral luminescence. All three proxies show considerable explanatory value for reconstructing monsoon rainfall variability over much of Australia and environs, which will improve as additional records become available. The success of this ``proof of concept'' experiment largely reflects the highly significant, spatially-coherent correlations between austral spring and summer PDSI, Australasian climate and ENSO.

  6. Sampling variability and the changing ENSO-monsoon relationship

    NASA Astrophysics Data System (ADS)

    Cash, Benjamin A.; Barimalala, Rondrotiana; Kinter, James L.; Altshuler, Eric L.; Fennessy, Michael J.; Manganello, Julia V.; Molteni, Franco; Towers, Peter; Vitart, Frederic

    2016-08-01

    The impact of sampling variability on the correlation between all-India rainfall (AIR) and the El Niño-Southern Oscillation is investigated in a large ensemble of seasonal climate simulations made using the European Centre for Medium-Range Weather Forecasting Ensemble Prediction System at T319 (64 km). The analyzed runs consist of 51 ensemble members initialized each May 1 for the period 1980-2011 and integrated for 7 months. 10,000 pairs of 32-year timeseries of June-September (JJAS) mean AIR and NINO3 indices are created from this database by randomly drawing one of the 51 ensemble members for each year. The correlation between each pair of AIR and NINO3 series is then calculated, generating a distribution of AIR-NINO3 correlation values. The model is reinitialized with observations each May 1 and thus all members are drawn from the same background state by construction and any differences in correlation are attributable to sampling variability. The spread in the calculated correlation values and the differences between 32-year segments are sufficient to explain the observed variations in AIR-NINO3 correlation since the beginning of the 1900s, including the sharp decrease in correlation strength since the late 1970s. Sampling variability thus represents a strong null hypothesis for the observed changes and one that cannot be rejected at the 95 % level based on our simulations.

  7. Influence of cosmic-ray variability on the monsoon rainfall and temperature

    NASA Astrophysics Data System (ADS)

    Badruddin; Aslam, O. P. M.

    2015-01-01

    We study the role of galactic cosmic ray (GCR) variability in influencing the rainfall variability in Indian Summer Monsoon Rainfall (ISMR) season. We find that on an average during 'drought' (low ISMR) periods in India, GCR flux is decreasing, and during 'flood' (high ISMR) periods, GCR flux is increasing. The results of our analysis suggest for a possibility that the decreasing GCR flux during the summer monsoon season in India may suppress the rainfall. On the other hand, increasing GCR flux may enhance the rainfall. We suspect that in addition to real environmental conditions, significant levitation/dispersion of low clouds and hence reduced possibility of collision/coalescence to form raindrops suppresses the rainfall during decreasing GCR flux in monsoon season. On the other hand, enhanced collision/coalescence efficiency during increasing GCR flux due to electrical effects may contribute to enhancing the rainfall. Based on the observations, we put forward the idea that, under suitable environmental conditions, changing GCR flux may influence precipitation by suppressing/enhancing it, depending upon the decreasing/increasing nature of GCR flux variability during monsoon season in India, at least. We further note that the rainfall variability is inversely related to the temperature variation during ISMR season. We suggest an explanation, although speculative, how a decreasing/increasing GCR flux can influence the rainfall and the temperature. We speculate that the proposed hypothesis, based on the Indian climate data can be extended to whole tropical and sub-tropical belt, and that it may contribute to global temperature in a significant way. If correct, our hypothesis has important implication for the sun - climate link.

  8. Monsoon Variability in the Arabian Sea from Global 0.08 deg HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Monsoon Variability in the Arabian Sea from Global 0.08...the sequence of events leading up to the early reversal of the western boundary current (WBC) circulation, we are using an existing forced global ...hybrid vertical coordinate system. The model simulation was forced with 0.5° Navy Operational Global Atmospheric Prediction (NOGAPS) fluxes for

  9. Late Holocene SST and primary productivity variations in the northeastern Arabian Sea as a recorder for winter monsoon variability

    NASA Astrophysics Data System (ADS)

    Böll, Anna; Gaye, Birgit; Lückge, Andreas

    2014-05-01

    Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).

  10. The relationship between intraseasonal and interannual variability during the asian summer monsoon

    SciTech Connect

    Sperber, K. R.; Slingo, J. M.; Annamalai, H.

    1999-04-21

    The purpose of this paper is to investigate intraseasonal (30-70 days) and higher frequency (5-30 days) variability and its relationship to interannual variability. Various modelling studies have suggested a link between intraseasonal and interannual variability of the Asian summer monsoon. This relationship has been mainly based upon the similar spatial structures of the dominant EOF patterns of the monsoon circulation on intraseasonal and interannual time scales from simulations with simple models and atmospheric general circulation models. Here we investigate these relationships using 40 years of NCEP/NCAR Reanalysis. Motivation for this study is embodied in the suggestions of Charney and Shukla (1981) that boundary forcing (e.g., sea surface temperature) may predispose the monsoon system towards a dry or wet state, and the result of Palmer (1994), using the Lorenz (1963) model, that the probability of being in one regime of phase space or another is no longer equally probable in the presence of external forcing. To investigate the influence of the boundary forcing, the probability distribution functions (PDFs) of the principal components are given.

  11. The Thermocline Layer and Chlorophyll-a Concentration Variability during Southeast Monsoon in the Banda Sea

    NASA Astrophysics Data System (ADS)

    Pusparini, Nikita; Prasetyo, Budi; Ambariyanto; Widowati, Ita

    2017-02-01

    Thermocline layer and chlorophyll-a concentration can be used to investigate the upwelling region. This investigation is focused in the Banda Sea because the upwelling event in this area is quite large and has a longer upwelling duration than other waters in Indonesia. In addition, Banda Sea is also influenced by climatic factors such as monsoon. The aim of this research is to determine the validation of secondary data (from satellite imagery data and model) and in situ observation data (from research cruise) and to determine the variability of thermocline layer and chlorophyll-a concentration during Southeast Monsoon in the Banda Sea. The data used in this study were chlorophyll-a concentration, seawater vertical temperature at depths 0-400 meters, and sea surface temperature from remote sensing and in situ data. Spatial and temporal analysis of all parameters was conducted by quantitative descriptive method. The results showed that the variability of thermocline layer and the chlorophyll-a distribution were strongly related to seasonal pattern. In most cases, the estimates of thermocline layer and chlorophyll-a concentration using remote sensing algorithm were higher than in situ measured values. The greatest variability occurred in the eastern Banda Sea during the Southeast Monsoon with shallower thermocline layer, more abundance of chlorophyll-a concentration, and lower sea surface temperature.

  12. Intraseasonal Variability of Summer Monsoon Rainfall and Droughts over Central India

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sourabh; Kar, Sarat C.; Sharma, Anu Rani

    2017-02-01

    Rainfall over Madhya Pradesh (MP) in central India has large intra-seasonal variability causing droughts and floods in many years. In this study, rainfall variability in daily and monthly scale over central India has been examined using observed data. Consistency among various datasets such as rainfall, surface temperature, soil moisture and evapotranspiration has been examined. These parameters are from various different sources and critical for drought monitoring and prediction. It is found that during weak phases of monsoon, central India receives deficit rainfall with weaker monsoon circulation. This phase is characterized by an anticyclonic circulation at 850 hPa centered on MP. The EOF analysis of daily rainfall suggests that the two leading modes explain about 23-24% of rainfall variability in intraseasonal timescale. These two modes represent drought/flood conditions over MP. Relationship of weak phases of rainfall over central India with real-time multivariate (RMM) indices of Madden Julian Oscillation (MJO) has been examined. It is found that RMM-6, RMM-7, RMM-1 and RMM-2 describe the weak monsoon conditions over central India. However, frequency of drought occurrence over MP is more during RMM-7 phase. Surface temperature increases by about 0.5°-1° during weak phases of rainfall over this region. Soil moisture and evapotranspiration gradually reduce when rainfall reduces over the study region. Soil moisture and evapotranspiration anomalies have positive pattern during good rainfall events over central India and gradually reduce and become negative anomalies during weak phases.

  13. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    DOE PAGES

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; ...

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  14. Multi-decadal Variability of Indian Summer Monsoon in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Sandeep, S.; Ravindran, A.

    2013-12-01

    The multi-decadal variability of Indian Summer Monsoon (ISM) Rainfall in the fifth phase Coupled Model Inter-comparison Project (CMIP5) climate model simulations is analyzed. Recent studies, suggest a slight weakening of the Indian precipitation as assessed from CMIP3 simulations. The ISM rainfall simulated by CMIP5 runs with all historical forcing (AF) also suggest a strong multi-decadal weakening trend in ISM precipitation during 1901 - 2005. Further, the decadal scale variability in ISM land precipitation in multi model ensemble of AF simulations is fairly comparable with the observed variability. However, these simulations show patterns of regional variability and trends within the monsoon domain. The CMIP5 ensembles with natural variability alone and those with only Green House Gas (GHG) forcing could not reproduce the observed variability in ISM precipitation. This suggests strong influence of anthropogenic aerosols on multi-decadal variability in ISM precipitation, which is consistent with previous findings. Further investigation revealed that the weakening of zonal winds in AF simulations, possibly due to aerosol induced weakening in land-ocean thermal contrast, resulted in reduced moisture transport from ocean to the land. The trends and variability of ISM in multi model ensemble of CMIP5 simulations will be discussed in detail.

  15. The impact of monsoon intraseasonal variability on renewable power generation in India

    NASA Astrophysics Data System (ADS)

    Dunning, C. M.; Turner, A. G.; Brayshaw, D. J.

    2015-06-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in

  16. Uncertainties from above and below: West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-04-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African Monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, the ability of a 27-member mixed-physics ensemble of the Weather Research and Forecasting model to represent the WAM is investigated in a process-based manner in order to extract transferable information on parameterization influences. The uncertainties introduced by three cumulus (CU), microphysics (MP) and planetary boundary layer (PBL) parameterizations are analyzed to explore interdependencies of processes leading to a certain WAM regime during the wet year 1999. We identify the modification of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. It is predominantly altered by the PBL schemes because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation, weaker precipitation and a southward displaced African Easterly Jet and monsoon rainband. This identifies the representation of clouds as a critical "uncertainty from above" in simulating the WAM. The partitioning of sensible and latent heat fluxes is found to be another major source for the ensemble spread inducing "uncertainties from below" for the modeled monsoon regime. Finally, we show that regionally adapted simulations at convection-allowing scales with ingested dynamical land surface parameters improve the representation of convection, net radiation and surface flux partitioning.

  17. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  18. A new centennial index to study the Western North Pacific Monsoon decadal variability

    NASA Astrophysics Data System (ADS)

    Vega, Inmaculada; Gómez-Delgado, F. de Paula; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; García-Herrera, Ricardo

    2016-04-01

    The concept of the Western North Pacific Summer Monsoon (WNPSM) appeared for the first time in 1987. It is, unlike the Indian Summer Monsoon (ISM) and the East Asian summer monsoon (EASM), an oceanic monsoon mostly driven by the meridional gradient of sea surface temperature. Its circulation is characterized by a northwest-southeast oriented monsoon trough with intense precipitation and low-level southwesterlies and upper-tropospheric easterlies in the region [100°-130° E, 5°-15°N]. Up to now, the primary index to characterize the WNPSM has been the Western North Pacific Monsoon Index (WNPMI) which covers the 1949-2013 period. The original WNPMI was defined as the difference of 850-hPa westerlies between two regions: D1 [5°-15°N, 100°-130°E] and D2 [20°-30°N, 110°-140°E]. Both domains are included in the main historical ship routes circumnavigating Asia for hundreds of years. Many of the logbooks of these ships have been preserved in historical archives and they usually contain daily observations of wind force and direction. Therefore, it has been possible to compute a new index of instrumental character, which reconstructs the WNPSM back to the middle of the 19th Century, by using solely historical wind direction records preserved in logbooks. We define the monthly Western North Pacific Directional Index (WNPDI) as the sum of the persistence of the low-level westerly winds in D1 and easterly winds in D2. The advantages of this new index are its nature (instrumental) and its length (1849-2013), which is 100 years longer than the WNPMI (which was based on reanalysis data). Our WNPDI shows a high correlation (r=+0.87, p<0.01) with the previous WNPMI in summer for the 1949-2009 period, thus allowing to study the multidecadal variability of the WNPSM in a more robust way. Our results show that the WNPDI has a strong impact on the precipitation in densely populated areas in South-East Asia, such as the Philippines or the west coast of Myanmar where the

  19. Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Feyen, Luc; Cescatti, Alessandro; Vivoni, Enrique R.

    2014-10-01

    Due to its marked vegetation phenology and precipitation gradients, the North American Monsoon Region (NAMR) is a useful domain for studying ecosystem responses to climate variability and change. To this end, we analyze long-term dynamics (1982-2004) in monsoon precipitation (Pr), time-integrated Normalized Difference Vegetation Index (TINDVI) used as proxy of net primary productivity, and rain-use efficiency (RUE). The analysis focuses on six ecoregions, spanning from desert environments to tropical dry forests, to investigate (1) how net primary productivity and rain-use efficiency vary along a precipitation gradient, (2) if interannual variability in net primary productivity is linked to the interannual variability in precipitation, and (3) if there is evidence of a long-term signal imposed on the interannual variability in rain-use efficiency. Variations in TINDVI and RUE with Pr along the NAMR precipitation gradient differ among ecoregions exhibiting intensive or extensive water use strategies. We explain the nonlinear behaviors along the precipitation gradient as resulting from different physiological responses to climatological means and the impact of topographic effects. Statistical analysis indicates that the interannual variability in vegetation response is significantly related to the interannual variability in Pr, but their correlation declines with time. A long-term positive signal in RUE imposed on its interannual variability is identified and results from a constant TINDVI under negative long-term trends of Pr. This important finding suggests the combined long-term effects of ecosystem acclimation to reduced water availability and increasing CO2 concentration across the varied ecosystems of the North American Monsoon Region.

  20. Winter monsoon variability and its impact on aerosol concentrations in East Asia.

    PubMed

    Jeong, Jaein I; Park, Rokjin J

    2017-02-01

    We investigate the relationship between winter aerosol concentrations over East Asia and variability in the East Asian winter monsoon (EAWM) using GEOS-Chem 3-D global chemical transport model simulations and ground-based aerosol concentration data. We find that both observed and modeled surface aerosol concentrations have strong relationships with the intensity of the EAWM over northern (30-50°N, 100-140°E) and southern (20-30°N, 100-140°E) East Asia. In strong winter monsoon years, compared to weak winter monsoon years, lower and higher surface PM2.5 concentrations by up to 25% are shown over northern and southern East Asia, respectively. Analysis of the simulated results indicates that the southward transport of aerosols is a key process controlling changes in aerosol concentrations over East Asia associated with the EAWM. Variability in the EAWM is found to play a major role in interannual variations in aerosol concentrations; consequently, changes in the EAWM will be important for understanding future changes in wintertime air quality over East Asia.

  1. A 16 ka lacustrine 18O record from High Himalaya reflecting the Indian Monsoon variability

    NASA Astrophysics Data System (ADS)

    Zech, M.; Tuthorn, M.; Zech, R.; Schlütz, F.; Zech, W.; Glaser, B.

    2012-04-01

    Establishing 18O records using organic matter of lake sediments is so far complicated due to analytical challenges. Based on the results obtained by a novel analytical method, the so-called compound-specific delta18O-analysis of hemicellulose monosaccharides (Zech, M. and Glaser, B., 2009. Rapid Communications in Mass Spectrometry 23, 3522-3532), we here present a first well-dated continuous late glacial lacustrine 18O record from High Himalayan lake sediments. Our 18O record, which reflects a coupled hydrological and thermal control, reveals the late glacial Indian Summer Monsoon variability depicting the Bölling/Alleröd and the Younger Dryas. Thus, it closely resembles the 18O records of South Asian speleothems and Greenland ice cores. We hence conclude that our novel 18O method enables regional paleoclimate reconstructions and that our 18O record highlights the previously suggested teleconnections between the Indian and the East Asian Monsoon and Greenland temperatures.

  2. Southeast Asian Monsoon variability may have assisted the rise and fall of the Khmer Empire

    NASA Astrophysics Data System (ADS)

    Kweku Kyei Afrifa, Yamoah; Chabangborn, Akkaneewut; Chawchai, Sakonvan; Wohlfarth, Barbara; Smittenberg, Rienk

    2014-05-01

    Climate shifts with links to human migration and social change have contributed to the global rise and fall of ancient civilizations (Weiss et al 2001; Haug et al. 2003). At the same time, these civilizations also tend to influence their environment significantly (Buckley et. al, 2010). Here we use δ13C and δD data of long-chained n-alkanes to unravel the drivers of monsoon intensity and their potential effects on the Angkor civilization. Strong Sea Surface Temperature (SST) variability from the Indo Pacific Warm Pool (IPWP), coupled to dramatic changes in the Pacific Walker Circulation (PWC) is suggested as a potential driver of the monsoon variability in Southeast Asia over the last two millennia. Our dataset provides independent evidence that past vegetation in Southeast Asia was greatly influenced by the activities of the Angkor people at about AD 834 to 1431 when agricultural activities and extensive hydrological systems may have contributed immensely to change the vegetation type. The massive agricultural boom as a result of increase in monsoon intensity, along with an extensive hydrological system, may have contributed significantly to the rise of the Khmer Empire. However, a prolonged drought as a result of the gradual weakening of the monsoon intensity over time (AD 1375-2000) may have caused the water management system to fail thus contributing significantly to the demise of the Khmer empire. References B. M. Buckley et al., Proc. Natl. Acad. Sci. U.S.A. 107, 6748 (2010). G. H. Haug et al., Science 299, 1731 (2003). H. Weiss, R. S. Bradley, Science 291, 609 (2001).

  3. Interannual variability of H218O in precipitation over the Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Ishizaki, Yasuhiro; Yoshimura, Kei; Kanae, Shinjiro; Kimoto, Masahide; Kurita, Naoyuki; Oki, Taikan

    2012-08-01

    The stable isotopic composition of water has been used as a paleoproxy to reconstruct past climates over the Asian monsoon region, but the main controls on the variability of isotopes of water in precipitation have not been characterized quantitatively in this region. Therefore, we used an atmospheric general circulation model incorporating stable water isotope physics to quantitatively estimate the relative contributions to isotope variability in precipitation falling in the Asian monsoon region. As in previous research, we identified two primary factors controlling the interannual variability of δ18Oprecip (defined as (Rsample/RVSMOW - 1) × 1000, where RVSMOW is the 18O ratio in Vienna Standard Mean Ocean Water) and its correlation with El Niño-Southern Oscillation (ENSO) events: the amount of precipitation at the observation site, and distillation during transport from source regions. Two sensitivity experiments revealed that distillation during transport from source regions was the dominant controlling factor; at Bangkok, Bombay, and Hong Kong, the amount of local precipitation contributed 27%, 33%, and 25% while distillation processes contributed 70%, 60%, and 70%, respectively. Similarly, distillation processes accounted for 80%, 82%, and 83% of observed differences in δ18Oprecip between El Niño and La Niña years at these three cities, respectively. Therefore, interannual variability of δ18Oprecipat the three stations primarily reflects distillation during transport from source regions, and it is also governed by the large-scale tropical variability (ENSO).

  4. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia

    NASA Astrophysics Data System (ADS)

    Yang, Bao; Kang, Shuyuan; Ljungqvist, Fredrik Charpentier; He, Minhui; Zhao, Yan; Qin, Chun

    2014-08-01

    The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625-1644 and 1975-1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975-1999 drought. Possible causes of the drought of 1625-1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea

  5. Solar forcing of the Indian summer monsoon variability during the Ållerød period.

    PubMed

    Gupta, Anil K; Mohan, Kuppusamy; Das, Moumita; Singh, Raj K

    2013-09-25

    Rapid climatic shifts across the last glacial to Holocene transition are pervasive feature of the North Atlantic as well as low latitude proxy archives. Our decadal to centennial scale record of summer monsoon proxy Globigerina bulloides from rapidly accumulating sediments from Hole 723A, Arabian Sea shows two distinct intervals of weak summer monsoon wind coinciding with cold periods within Ållerød inerstadial of the North Atlantic named here as IACP-A1 and IACP-A2 and dated (within dating uncertainties) at 13.5 and 13.3 calibrated kilo years before the present (cal kyr BP), respectively. Spectral analysis of the Globigerina bulloides time series for the segment 13.6-13.1 kyr (Ållerød period) reveals a strong solar 208-year cycle also known as de Vries or Suess cycle, suggesting that the centennial scale variability in Indian summer monsoon winds during the Ållerød inerstadial was driven by changes in the solar irradiance through stratospheric-tropospheric interactions.

  6. Solar forcing of the Indian summer monsoon variability during the Ållerød period

    PubMed Central

    Gupta, Anil K.; Mohan, Kuppusamy; Das, Moumita; Singh, Raj K.

    2013-01-01

    Rapid climatic shifts across the last glacial to Holocene transition are pervasive feature of the North Atlantic as well as low latitude proxy archives. Our decadal to centennial scale record of summer monsoon proxy Globigerina bulloides from rapidly accumulating sediments from Hole 723A, Arabian Sea shows two distinct intervals of weak summer monsoon wind coinciding with cold periods within Ållerød inerstadial of the North Atlantic named here as IACP-A1 and IACP-A2 and dated (within dating uncertainties) at 13.5 and 13.3 calibrated kilo years before the present (cal kyr BP), respectively. Spectral analysis of the Globigerina bulloides time series for the segment 13.6–13.1 kyr (Ållerød period) reveals a strong solar 208-year cycle also known as de Vries or Suess cycle, suggesting that the centennial scale variability in Indian summer monsoon winds during the Ållerød inerstadial was driven by changes in the solar irradiance through stratospheric-tropospheric interactions. PMID:24067487

  7. Characterization of the impact of land degradation in the Sahel on the West African monsoon using an ensemble of climate models from the WAMME project

    NASA Astrophysics Data System (ADS)

    Boone, A. A.; Xue, Y.; Ruth, C.; De Sales, F.; Hagos, S.; Mahanama, S. P. P.; Schiro, K.; Song, G.; Wang, G.; Koster, R. D.; Mechoso, C. R.

    2014-12-01

    There is increasing evidence from numerical studies that anthropogenic land-use and land-cover changes (LULCC) can potentially induce significant variations on the regional scale climate. However, the magnitude of these variations likely depends on the local strength of the coupling between the surface and the atmosphere, the magnitude of the surface biophysical changes and how the key processes linking the surface with the atmosphere are parameterized within a particular model framework. One key hot-spot which has received considerable attention is the Sahelian region of West Africa, for which numerous studies have reported a significant increase in anthropogenic pressure on the already limited natural resources in this region, notably in terms of land use conversion and degradation. Thus, there is a pressing need to better understand the impacts of potential land degradation on the West African Monsoon (WAM) system. One of the main goals of the West African Monsoon Modeling andEvaluation project phase 2 (WAMMEII) is to provide basic understandingof LULCC on the regional climate over West Africa, and to evaluate thesensitivity of the seasonal variability of the WAM to LULCC. Theprescribed LULCC is based on recent 50 year period which represents amaximum feasible degradation scenario. In the current study, the LULCCis applied to five state of the art global climate models over afive-year period. The imposed LULCC results in a model-average 5-7%increase in surface albedo: the corresponding lower surface netradiation mainly results in a significant reduction in surfaceevaporation (upwards of 1 mm per day over a large part of the Sahel)which leads to less convective heating of the atmosphere, lowermoisture convergence, increased subsidence and reduced cloud coverover the LULCC zone. The overall impact can be characterized as asubstantial drought effect resulting in a reduction in annual rainfallof 20-40% in the Sahel and a southward shift of the monsoon. In

  8. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon.

    PubMed

    Donnelly, Jeffrey P; Woodruff, Jonathan D

    2007-05-24

    The processes that control the formation, intensity and track of hurricanes are poorly understood. It has been proposed that an increase in sea surface temperatures caused by anthropogenic climate change has led to an increase in the frequency of intense tropical cyclones, but this proposal has been challenged on the basis that the instrumental record is too short and unreliable to reveal trends in intense tropical cyclone activity. Storm-induced deposits preserved in the sediments of coastal lagoons offer the opportunity to study the links between climatic conditions and hurricane activity on longer timescales, because they provide centennial- to millennial-scale records of past hurricane landfalls. Here we present a record of intense hurricane activity in the western North Atlantic Ocean over the past 5,000 years based on sediment cores from a Caribbean lagoon that contain coarse-grained deposits associated with intense hurricane landfalls. The record indicates that the frequency of intense hurricane landfalls has varied on centennial to millennial scales over this interval. Comparison of the sediment record with palaeo-climate records indicates that this variability was probably modulated by atmospheric dynamics associated with variations in the El Niño/Southern Oscillation and the strength of the West African monsoon, and suggests that sea surface temperatures as high as at present are not necessary to support intervals of frequent intense hurricanes. To accurately predict changes in intense hurricane activity, it is therefore important to understand how the El Niño/Southern Oscillation and the West African monsoon will respond to future climate change.

  9. Assessing Holocene water level changes of Lake Turkana, Kenya with potential linkages to monsoon variability

    NASA Astrophysics Data System (ADS)

    Bloszies, C.; Forman, S. L.; Wright, D. K.

    2012-12-01

    This study focuses on better defining water level variability in the past 10 ka for Lake Turkana, Kenya. The water level of Lake Turkana was approximately 90m higher than today ca. 8 ka years ago, and in the past century lake levels have varied by up to 15 m. Lake level is especially sensitive to shifts in water balance with changes in regional rainfall linked to the relative strength of the Indian Ocean Monsoon. Variations in monsoonal precipitation in Kenya may be controlled by distinct modes of the Indian Ocean Dipole, with one mode associated with increased sea surface temperatures and concomitant heavy rainfall in the Turkana basin, and the other mode resulting in low precipitation. Well preserved beach ridges up to 90 m above present water level occur around the lake representing a record of varying elevations of lake level still-stands during the Holocene. Along this prograded strand plain there is evidence of a shift in human subsistence from fishing villages to pastoral encampments, possibly associated with pronounced mid-Holocene drying and a precipitous (>30 m) fall in lake level ca. between 7 and 5 ka. However, a recent GPS campaign of beach ridges on the east and west sides of the lake reveal variability in highstand beach ridge elevations, implying deferential tectonic deformation across the basin and possible crustal warping due to hydroisostatic processes. Radiocarbon dating of aquatic shells will resolve the ages of beach ridges and these ages will be tested by direct dating of littoral quartz grains by OSL. Stratigraphic exposures of this littoral system reveal new evidence for lake still-stands, transgressions and regressions. Ultimately, the data will constrain a basin hydrologic model to assess the catchment changes and evaporative conditions required to yield the tens of meters of lake level change in the Holocene and provide new insights into the magnitude and linkage to monsoon variability.

  10. Climate variability and land cover change over the North American monsoon region (Invited)

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Scheftic, W. D.; Broxton, P. D.

    2013-12-01

    The North American Monsoon System over Mexico and southwestern United States represents a weather/climate and ecosystem coupled "macrosystem". The weather and climate affect the seasonal and interannual variability of ecosystem, while the ecosystem change affects surface energy, water, and carbon fluxes that, in turn, affect weather and climate. Furthermore, long-term weather/climate data have a much coarser horizontal resolution than the satellite land cover data. Here the North American Regional Reanalysis (NARR) data at 32 km grid spacing will be combined with various satellite remote sensing products at 1 km and/or 8 km resolution from AVHRR, MODIS, and SPOT for the period of 1982 to present. Our analysis includes: a) precipitation, wind, and precipitable water data from NARR to characterize the North American monsoon; b) land cover type, normalized difference vegetation index (NDVI), green vegetation fraction, and leaf-area index (LAI) data to characterize the seasonal and interannual variability of ecosystem; c) assessing the consistency of various satellite products; and d) testing the coherence in the weather/climate and ecosystem variability.

  11. Intra-seasonal variability of atmospheric CO2 concentrations over India during summer monsoons

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, K.; Valsala, Vinu; Tiwari, Yogesh K.; Revadekar, J. V.; Pillai, Prasanth; Chakraborty, Supriyo; Murtugudde, Raghu

    2016-10-01

    In a study based on a data assimilation product of the terrestrial biospheric fluxes of CO2 over India, the subcontinent was hypothesized to be an anomalous source (sink) of CO2 during the active (break) spells of rain in the summer monsoon from June to September (Valsala et al., 2013). We test this hypothesis here by investigating intraseasonal variability in the atmospheric CO2 concentrations over India by utilizing a combination of ground-based and satellite observations and model outputs. The results show that the atmospheric CO2 concentration also varies in synchrony with the active and break spells of rainfall with amplitude of ±2 ppm which is above the instrumental uncertainty of the present day techniques of atmospheric CO2 measurements. The result is also consistent with the signs of the Net Ecosystem Exchange (NEE) flux anomalies estimated in our earlier work. The study thus offers the first observational affirmation of the above hypothesis although the data gap in the satellite measurements during monsoon season and the limited ground-based stations over India still leaves some uncertainty in the robust assertion of the hypothesis. The study highlights the need to capture these subtle variabilities and their responses to climate variability and change since it has implications for inverse estimates of terrestrial CO2 fluxes.

  12. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.

    PubMed

    Mandal, S; Choudhury, B U; Satpati, L N

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning

  13. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.; Satpati, L. N.

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant ( p < 0.05) increasing trend (at 0.22 days year-1) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress

  14. Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-06-01

    The capability of the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2) in simulating the Indian summer monsoon (ISM) is evaluated in the context of the global monsoon in the Indo-Pacific domain and its variability. Although the CFSv2 captures the ISM spatial structure qualitatively, it demonstrates a severe dry bias over the Indian subcontinent. The weaker model monsoon may be related to an excessive surface convergence over the equatorial Indian Ocean, which reduces the moisture transport toward the Indian subcontinent. The excessively low equatorial pressure is in turn a part of a tropical-wise bias with the largest errors in the central and eastern equatorial Pacific associated with the cold sea surface temperature bias and an overly strong inter-tropical convergence zone. In this sense, the model bias in the tropical Pacific influences those in the Indian Ocean-ISM region substantially. The leading mode of the June-September averaged CFSv2 rainfall anomalies covering the ISM and its adjacent oceanic regions is qualitatively similar to that of the observations, characterized by a spatial pattern of strong anomalies over either side of the Indian peninsula as well as center of opposite sign over Myanmar. However, the model fails to reproduce the northward expansion of rainfall anomalies from Myanmar, leading to opposite anomalies over northeast India and Himalayas region. A substantial amount of the anomalous fluctuation is attributed to the El Niño and the Southern Oscillation (ENSO), although the model variability depends more strongly on ENSO. The active regional influences in the observations may contribute to its baroclinic vertical structure of the geopotential height anomalies in the ISM region, compared with the predominantly barotropic one in CFSv2. Model ENSO deficiencies also affects its ISM simulation significantly.

  15. Qualitative assessment of PMIP3 rainfall simulations across the eastern African monsoon domains during the mid-Holocene and the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Chevalier, Manuel; Brewer, Simon; Chase, Brian M.

    2017-01-01

    In this paper we compare a compilation of multiproxy records spanning the eastern African margin with general circulation model simulations of seasonal precipitation fields for the mid-Holocene and the Last Glacial Maximum (LGM) carried out as part of the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). Results show good agreement during the mid-Holocene (the '6K experiment'), with palaeodata and model outputs correlating well and indicating that changes in insolation drove a stronger northern African monsoon (north of ∼0-5°S) during the terminal "African Humid Period" and a weaker southeast African monsoon. For the LGM (the '21K experiment'), however, significant discrepancies exist both between model simulations, and between existing palaeodata and simulated conditions, both in terms of direction and amplitude of change. None of the PMIP3 simulations reflect the pattern inferred from the palaeodata. Two major discrepancies have been identified to explain this: 1) the limited sensitivity of the southern monsoon domain to the colder temperatures of the Indian Ocean (-2 °C), and 2) the absence of changes in the dynamic of the Indian Ocean Walker circulation over the entire basin, despite the exposure of the Sahul and Sunda shelves that weakened convection over the Indo-Pacific Warm Pool during the LGM. These results indicate that some major features of the atmospheric and oceanic teleconnections between the different monsoon regions require further consideration as models evolve.

  16. Response of the African monsoon to orbital forcing and ocean feedbacks in the middle holocene

    SciTech Connect

    Kutzbach, J.E.; Liu, Z.

    1997-10-17

    Simulations with a climate model that asynchronously couples the atmosphere and the ocean showed that the increased amplitude of the seasonal cycle of insolation in the Northern Hemisphere 6000 years ago could have increased tropical Atlantic sea surface temperatures in late summer. The simulated increase in sea surface temperature and associated changes in atmospheric circulation enhanced the summer monsoon precipitation of northern Africa by more than 25 percent, compared with the middle Holocene simulation with prescribed modern sea surface temperatures, and provided better agreement with paleorecords of enhanced monsoons. 28 refs., 4 figs., 1 tab.

  17. Variables affecting racial-identity salience among African Americans.

    PubMed

    Thompson, V L

    1999-12-01

    The author clarified the African American racial-group identification process by addressing the issue of salience and its relationship to racial-group attitudes. A sample of 409 African American adults responded to surveys pertaining to their racial-group salience, racial-group attitudes, racial socialization, racial-group interaction, political activism, experiences of discrimination, and demographic data (e.g., sex, age, and income). The author tested 3 hypotheses: (a) Racial socialization and interaction with other African Americans are predictive of African American racial-identity salience; (b) discriminatory experiences are predictive of African American racial-identity salience; and (c) racial-identity salience is a stronger predictor of African American racial-group identification than are previously identified predictive variables (D. H. Demo & H. Hughes, 1990; V. L. Thompson Sanders, 1991, 1995). The results supported the 1st and 3rd hypotheses.

  18. Regional climate projections of trends and variability in the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Dobler, A.; Ahrens, B.

    2010-09-01

    The Indian summer monsoon (ISM) influences daily lives and economies in many countries in the South Asian region, and a wide range of indices have been defined to measure and predict the strength of the ISM. The most obvious impact is on rainfall in the monsoon season (June to September), which accounts for about 75% of the annual precipitation in India. Thus, the all-India monsoon rainfall (AIMR) index has been defined as the total rainfall amount from June to September averaged over whole India. Although the observed interannual standard deviation in the AIMR is only about 10% of the long-term mean, the extremes lead to floods and droughts. Other indices for the ISM are based on the vertical shear over certain pressure levels of zonal or meridional winds or on the use of outgoing longwave radiation as a measure of convection. Also, there is a well documented relationship between the nino3.4 index and the ISM. However, which index best estimates the ISM strength remains controversial. This study gives an overview on projections of different ISM indices by the regional climate model COSMO-CLM for the time period 1960-2100. To generate a small ensemble of possible future developments, the scenarios A1B, B1, A2, and the commitment scenario have been used. Trends and temporal variabilities of the indices are investigated as well as the pairwise correlations between the indices over different time spans. Changes in the temporal distribution of precipitation are revealed by different indices like rain-day frequency, intensity, the maximum 5-day precipitation amount or the number of consecutive dry days.

  19. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  20. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  1. Large-scale response of the Eastern Mediterranean thermohaline circulation to African monsoon intensification during sapropel S1 formation

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Asioli, A.; Minisini, D.; Maselli, V.; Dalla Valle, G.; Gamberi, F.; Langone, L.; Cattaneo, A.; Montagna, P.; Trincardi, F.

    2017-03-01

    The formation of Eastern Mediterranean sapropels has periodically occurred during intensification of northern hemisphere monsoon precipitation over North Africa. However, the large-scale response of the Eastern Mediterranean thermohaline circulation during these monsoon-fuelled freshening episodes is poorly constrained. Here, we investigate the formation of the youngest sapropel (S1) along an across-slope transect in the Adriatic Sea. Foraminifera-based oxygen index, redox-sensitive elements and biogeochemical parameters reveal - for the first time - that the Adriatic S1 was synchronous with the deposition of south-eastern Mediterranean S1 beds. Proxies of paleo thermohaline currents indicate that the bottom-hugging North Adriatic Dense Water (NAdDW) suddenly decreased at the sapropel onset simultaneously with the maximum freshening of the Levantine Sea during the African Humid Period. We conclude that the lack of the "salty" Levantine Intermediate Water hampered the preconditioning of the northern Adriatic waters necessary for the NAdDW formation prior to the winter cooling. Consequently, a weak NAdDW limited in turn the Eastern Mediterranean Deep Water (EMDWAdriatic) formation with important consequences for the ventilation of the Ionian basin as well. Our results highlight the importance of the Adriatic for the deep water ventilation and the interdependence among the major eastern Mediterranean water masses whose destabilization exerted first-order control on S1 deposition.

  2. Flood Hazard Trends in the Mekong River during the 20th century due to monsoon variability

    NASA Astrophysics Data System (ADS)

    Delgado, Jose; Merz, Bruno; Apel, Heiko

    2013-04-01

    Flood trends were investigated in four stations of the lower Mekong River. Two types of changes were accounted for: trend in the mean and trend in the variance of the time series. A trend in the mean implies that the average flood events changed with time. A trend in variance implies that the frequency of low and high magnitude floods changed with time (Merz et al., 2012). Results showed that average flood events decreased during the 20th century. However, due to an increase in variance, the frequency of high magnitude floods increased towards the end of the 20th century (Delgado et al., 2010). This increase could not be detected by usual trend tests like Mann Kendall test or the ordinary least squares regression. The results agree with Katz and Brown (1992), who showed that variance changes are more important that changes in mean, when it comes to flood frequency trends. To investigate possible causes for the detected changes in flood variance, we looked at several large scale atmospheric circulation patterns cited in the literature. The Western Pacific monsoon index (Wang, 2001) showed the greatest resemblance with the flood data. A test of step change in variance was conducted which revealed a coinciding step change in variance between annual maximum discharge and the Western Pacific monsoon. A statistical model where monsoon variance forces flood frequency in the 20th century was tested. The results were statistically significant. This has the advantadge of by-passing the use of precipitation, which in this region is collected in a rather sparse network. Concerning climate change projections, a dynamic index like the Western Pacific monsoon index is better simulated by climate models than tropical precipitation (Wang, 2004, Douville et al. 2005). Another important result is the attribution of the detected changes. The Mekong River basin is located in a transition zone between the Indian and the Pacific oceans. Our results showed that the interannual variability

  3. Millennial-Scale Variability in the Asian Monsoon from Chinese Cave Records (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Cheng, H.

    2013-12-01

    Over the past 15 years a number of key climate records based upon the oxygen isotopic cave calcite have been published. Such records reflect changes in the oxygen isotopic composition of rainfall at the cave sites. Among the strengths of the cave records are the possibility of precise dating using the Th-230 dating method, high resolution oxygen isotope values (typically a few years to several decades), the possibility of long records (hundreds of thousands of years), and the possibility of wide geographic coverage. Records from caves (mainly from Hulu, Dongge, and Sanbao) in SE China now cover much of the past 400,000 with an average oxygen isotope resolution of several decades. The Chinese record follows summer solar insolation and also exhibits millennial-scale variability. For the last glacial cycle, virtually every significant millennial and centennial-scale event observed in Greenland is also observed in the Hulu and/or Dongge Cave records, with inferred higher monsoon rainfall correlating with inferred higher temperature in Greenland. We have established cave-based chronologies for the NGRIP and GISP2 records based correlations of these events. Using these timescales, none of the records (cave or ice) exhibit precisely timed jumps into interstadial conditions at intervals of 1470 to 1500 years as required by some versions of the stochastic resonance model. However, all have significant spectral power at ~1500 years, suggesting that a version of the model that does not require exact timing may be viable. In addition to millennial-scale events, Heinrich Stadial Events are observed in the Chinese records as times of unusually low inferred monsoon rainfall, which we term 'Weak Monsoon Intervals'. All of the Heinrich Stadial Events of the last glacial period are found in the Chinese record. Furthermore, major Weak Monsoon Intervals (WMIs) or sequences of WMIs are found on each of the last five ice age terminations. On each termination, the WMIs correlate with ice

  4. Variability of the Somali current system during the onset of the Southwest Monsoon, 1979

    SciTech Connect

    Schott, F.; Quadfasel, D.R.

    1982-12-01

    An array of six current-meter moorings and several coastal temperature recorders was deployed on the shelf and continental slope off northern Somalia from March to July 1979; a seventh mooring was placed near 2/sup 0/S. In addition, four deep-sea moorings were deployed for a period of one month in May--June farther offshore. Already during the late northeast monsoon in March the Somali Current north of 5/sup 0/N was flowing northeastward in the top 150 m. Underneath, in the depth range 150--400 m, a narrow southward undercurrent was observed from March to June. After the first onset of the southwest monsoon, which occurred around 5 May when winds shifted from easterly to southwesterly parallel to the coast, the near-surface temperatures on the shelf decreased immediately with no detectable phase difference between 6 and 10/sup 0/N, but no change was observed in the offshore circulation pattern. The final monsoon onset around 10 June was characterized by a drastic increase in wind speeds and the establishment of a strong anticyclonic wind-stress curl over the northern Somali Basin. The current measurements showed that within a few days after this onset the northern Somali gyre spun up over the deep sea and then propagated northwestward toward the coast with a speed of 12 cm s/sup -1/. These findings are in good agreement with results of satellite infrared imagery. The observed gyre kinematics can be explained by locally generated non-equatorial Rossby waves. When the onset reaches the coast the shallow coastal undercurrent is extinguished. Superimposed on the gyre-scale variability were fluctuations in the period ranges of weeks to months and of 3--5 days. There is evidence that the energies of the latter were related to the development of the Somali Current. Significant differences were found in a comparison of the 1979 current measurements south of the equator with observations obtained there during the monsoon onset of 1976.

  5. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  6. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming

  7. Intraseasonal variability of the Indian summer monsoon: wet and dry events in COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Leckebusch, G. C.; Cubasch, U.

    2016-10-01

    This study aims to validate the widely used regional climate model COSMO-CLM driven by ERA-Interim reanalysis data with a spatial resolution of 55 km with respect to observed features of the intraseasonal variability of the Indian summer monsoon (ISM) during the period 1979 until 2011. One of these features is the northward propagation of the ISM intraseasonal oscillations. We find, that the temporal evolution between model and observation is in good agreement, while less agreement with respect to the strength is found. Furthermore, the model's capability to simulate observed dry and wet events on a weekly time-scale is investigated using the standardized precipitation index. In general, the model is capable to simulate these events with a similar magnitude at the same time. Observational based analyses show, that the coupling between atmospheric circulation anomalies and rainfall anomalies over India on the intraseasonal time scale is well represented by the model. The most important circulation anomalies for dry events are a lower tropospheric anti-cyclonic vortex over India and partly an upper tropospheric cyclonic vortex over the Pakistan region and vice versa for wet events. The model shows a slightly higher ability to simulate dry compared to wet events. Overall, this study shows that the current configuration of COSMO-CLM is able to simulate the key features of the intraseasonal variability of the Indian summer monsoon. Being aware of its limitation, COSMO-CLM is suitable to investigate possible changes of the intraseasonal variability of ISM under changed climate conditions in the past or in the future.

  8. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all

  9. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  10. Interannual to centennial variability of the South Asian summer monsoon over the past millennium

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Fang, Keyan; Xu, Chenxi; Guo, Zhengtang; Borgaonkar, H. P.

    2016-12-01

    Proxy-based reconstructions have indicated that the South Asian summer monsoon (SASM) has shown interannual- to centennial-scale oscillations over the past millennium; however, the variability and mechanisms that operate over different timescales remain to be explicitly identified. This is firstly because of the inadequate spatial representation within previous SASM reconstructions, which is caused by the scarcity of tree-ring records from the core monsoon region. This study used eight additional Indian tree-ring width chronologies from the core region of the SASM to update the reconstructed SASM index that covers the past 1105 years. We found that the most significant interannual variability of SASM is mainly related to the El Niño-Southern Oscillation (ENSO) over the past few hundred years. The decadal/multidecadal oscillations show a high negative/positive correlation with the Pacific Decadal Oscillation (PDO)/Atlantic Multidecadal Oscillation (AMO) after the late 19th century. The centennial component of the SASM, which accounts for 19.4% of the total variance, begins to weaken from the mid-13th century and reaches a minimum in the mid-15th century. The component gradually strengthens again to reach its peak in the early 17th century, followed by a decline trend toward recent. The centennial variations agree well with historical changes in solar activity before the nineteenth century that caused changes in land-sea thermal contrast. However, the close linkage between the SASM and solar activity has weakened since the Industrial era, probably because of the enhanced influence of anthropogenic aerosol emissions.

  11. Predictability of the East Asian winter monsoon interannual variability as indicated by the DEMETER CGCMS

    NASA Astrophysics Data System (ADS)

    Li, Fei; Wang, Huijun

    2012-05-01

    The interannual variability of East Asian winter monsoon (EAWM) circulation from the Development of a European Multi-Model Ensemble (MME) System for Seasonal to Inter-Annual Prediction (DEMETER) hindcasts was evaluated against observation reanalysis data. We evaluated the DEMETER coupled general circulation models (CGCMs)' retrospective prediction of the typical EAWM and its associated atmospheric circulation. Results show that the EAWM can be reasonably predicted with statistically significant accuracy, yet the major bias of the hindcast models is the underestimation of the related anomalies. The temporal correlation coefficient (TCC) of the MME-produced EAWM index, defined as the first EOF mode of 850-hPa air temperature within the EAWM domain (20°-60°N, 90°-150°E), was 0.595. This coefficient was higher than those of the corresponding individual models (range: 0.39-0.51) for the period 1969-2001; this result indicates the advantage of the super-ensemble approach. This study also showed that the ensemble models can reasonably reproduce the major modes and their interannual variabilities for sea level pressure, geopotential height, surface air temperature, and wind fields in Eurasia. Therefore, the prediction of EAWM interannual variability is feasible using multimodel ensemble systems and that they may also reveal the associated mechanisms of the EAWM interannual variability.

  12. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Sanil Kumar, V.; George, Jesbin

    2016-10-01

    We assess the influence of monsoon variability on the surface waves using measured wave data covering 7 years and reanalysis data from 1979 to 2015 during the Indian summer monsoon (JJAS) in the eastern Arabian Sea. The inter-annual comparison shows that the percentage of higher wave heights ( > 2.5 m) is higher ( ˜ 26%) in 2014 than in other years due to the higher monsoon wind speed (average speed ˜ 7.3 m s-1) in 2014. Due to the delayed monsoon, monthly average significant wave height (Hm0) of June was lowest (˜ 1.5 m) in 2009. The spectral peak shifted to lower frequencies in September due to the reduction of wind seas as a result of decrease in monsoon intensity. The study shows high positive correlation (r ˜ 0.84) between average low-level jet (LLJ) for the block 0-15° N, 50-75° E and Hm0 of eastern Arabian Sea in all the months except in August (r ˜ 0.66). The time series data on wave height shows oscillations with periods 5 to 20 days. Wavelet coherence analysis indicates that the LLJ and Hm0 are in-phase related (phase angle 0°) almost all the time and LLJ leads Hm0. The monsoon seasonal anomaly of Hm0 is found to have a negative relationship with the Oceanic Niño Index indicating that the monsoon average Hm0 is relatively low during the strong El Niño years.

  13. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  14. The mean evolution and variability of the Asian summer monsoon: comparison of ECMWF and NCEP/NCAR reanalyses

    SciTech Connect

    Annamalai, H.; Hodges, K.; Slingo, J.M.; Sperber, K.R.

    1999-04-21

    The behavior of the Asian Summer Monsoon is compared using the European Centre for Medium Range Weather Forecasts Reanalysis (ERA) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996). The goals of this paper are to identify common features between the reanalyses, to assess their robustness for model validation, and especially to use reanalyses to develop their understanding of the mean evolution of the Asian Summer Monsoon and the characteristics of its interannual and intraseasonal variability (Annamalai et al. 1999).

  15. Role of monsoon intraseasonal oscillation and its interannual variability in simulation of seasonal mean in CFSv2

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Aher, Vaishali R.

    2016-12-01

    Intraseasonal oscillation (ISO), which appears as "active" and "break" spells of rainfall, is an important component of Indian summer monsoon (ISM). The present study investigates the potential of new National Centre for Environmental Prediction (NCEP) climate forecast system version 2 (CFSv2) in simulating the ISO with emphasis to its interannual variability (IAV) and its possible role in the seasonal mean rainfall. The present analysis shows that the spatial distribution of CFSv2 rainfall has noticeable differences with observations in both ISO and IAV time scales. Active-break cycle of CFSv2 has similar evolution during both strong and weak years. Regardless of a reasonable El Niño Southern Oscillation (ENSO)-monsoon teleconnection in the model, the overestimated Arabian Sea (AS) sea surface temperature (SST)-convection relationship hinters the large-scale influence of ENSO over the ISM region and adjacent oceans. The ISO scale convections over AS and Bay of Bengal (BoB) have noteworthy contribution to the seasonal mean rainfall, opposing the influence of boundary forcing in these areas. At the same time, overwhelming contribution of ISO component over AS towards the seasonal mean modifies the effect of slow varying boundary forcing to large-scale summer monsoon. The results here underline that, along with the correct simulation of monsoon ISO, its IAV and relationship with the boundary forcing also need to be well captured in coupled models for the accurate simulation of seasonal mean anomalies of the monsoon and its teleconnections.

  16. Mid- to late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, Maïté; Fleitmann, Dominik; Verheyden, Sophie; Cheng, Hai; Edwards, Lawrence; De Geest, Peter; De Vleeschouwer, David; Burns, Stephen J.; Matter, Albert; Claeys, Philippe; Keppens, Eddy

    2013-04-01

    Four stalagmites covering the last 7.0 ka were sampled on Socotra, an island in the northern Indian Ocean to investigate the evolution of the northeast Indian Ocean Monsoon (IOM) since the mid Holocene. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains act as a barrier forcing precipitation brought by the northeast winds to fall preferentially on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites reflect precipitation amounts brought by the northeast winds. For stalagmite STM6, this amount effect is amplified by kinetic effects during calcite deposition. Combined interpretation of the stalagmites' signals suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. No link can be established with Greenland ice cores and with the summer IOM variability. In contrast to the stable northeast rainy season suggested by the records in this study, speleothem records from western Socotra indicate a wettening of the southwest rainy season on Socotra after 4.4 ka. The local wettening of western Socotra could relate to a more southerly path (more over the Indian Ocean) taken by the southwest winds. Stalagmite STM5, sampled at the fringe between both rain areas displays intermediate δ18O values. After 6.2 ka, similar precipitation changes are seen between eastern Socotra and northern Oman indicating that both regions are affected similarly by the monsoon. Different palaeoclimatologic records from the Arabian Peninsula currently located outside the ITCZ migration pathway display an abrupt drying around 6 ka due to their disconnection from the southwest rain influence. Records that are nowadays still receiving rain by the southwest winds

  17. Nong Thale Pron - a key site from southern Thailand for studying monsoon variability during the past 15000 years

    NASA Astrophysics Data System (ADS)

    Bredberg, Camilla; Chawchai, Sakonvan; Chabangborn, Akkaneewut; Kylander, Malin; Fritz, Sherilyn; Reimer, Paula J.; Wohlfarth, Barbara

    2014-05-01

    Studies of marine sediments, cave speleothemes, annually laminated corals, and tree rings from Asian monsoon regions have added knowledge to our understanding of the factors that control inter-annual to millennial monsoon variability in the past and have provided important constraints for climate modeling scenarios. In contrast, the spatial and temporal pattern of sub-millennial scale monsoon variability and its impact on land cover in SE Asia are still unresolved. This shortcoming stems from the fact that temporally well-resolved paleo-environmental studies are missing from large parts of SE Asia, especially from Thailand. Given that global and regional climate models are increasingly using terrestrial paleo- data to test their performance, past changes in land cover are therefore important variables to better understand feedbacks between different Earth systems. We obtained sediments from Lake Nong Thale Pron, in southern Thailand (8º 10`N, 99 º23`E; 380 m.asl). The aim of our study is to reconstruct lake status changes and to evaluate whether the extent of these changes are linked to known shifts in monsoon intensity and variability. Preliminary results show that lake infilling started more than 15,000 years ago and that the sediments cover the last deglaciation and the Holocene. Current analyses include Itrax XRF core scanning, loss-on-ignition (LOI at 950 and 550ºC), CN elemental and isotopic composition. We expect that our results will be able to give a picture of how the lake's status has changed over time and whether the extent of these changes is linked to known shifts in monsoon intensity and variability.

  18. Trends and variability of East African rainfall and its relationship to the Mascarene High pressure system

    NASA Astrophysics Data System (ADS)

    Seregina, Larisa; Pinto, Joaquim G.; Fink, Andreas H.; Ermert, Volker

    2016-04-01

    In the recent decades, East Africa needs to deal with strong fluctuations in seasonal rainfall including precipitation extremes. In context of climate change, such extremes can become more frequent in the future. However, regional climate projections are uncertain about the future development of seasonal precipitation in the region. Rainfall regimes over East Africa are influenced by multiple factors, including two monsoon systems, several convergence zones and the Rift Valley lakes. In addition, local conditions, like topography, modulate the large-scale rainfall pattern. East African rainfall variability is also influenced by various teleconnections like the Indian Ocean Zonal Mode and El Niño Southern Oscillation. The study of past climate variability in East Africa requires sufficient observational data coverage in the region. As East Africa does not have a dense observational network of meteorological stations, satellite rainfall observations gain on importance in studies on climate variability in the region. The specific aim of the present study is the analysis of historic data from weather stations in East Africa (Kenya, Tanzania, Ruanda and Uganda), the use of gridded satellite products, and three-dimensional atmospheric reanalysis (e.g., ERA-Interim) to quantify climate variability in the recent past and to understand its causes. Climate variability and trends, including changes in extreme events, are evaluated using ETCCDI climate change and standardized precipitation indices. These climate indices are determined in order to investigate the variability of rainfall and its trends with the focus on recent decades. For seasonal trend analysis, an independent and non-calendaric rainfall onset criterion is introduced. In the follow-up, statistical and dynamical analyses are conducted to quantify the local impact of Mascarene High as a part of the Subtropical High Pressure Ridge on East African seasonal rainfall. Possible connections to pertinent large

  19. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene

    NASA Astrophysics Data System (ADS)

    Kutzbach, J.; Bonan, G.; Foley, J.; Harrison, S. P.

    1996-12-01

    FOSSIL pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1-4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5-7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.

  20. Modeling bio-geophysical feedback in the African and Indian monsoon region

    NASA Astrophysics Data System (ADS)

    Claussen, M.

    An asynchronously coupled global atmosphere-biome model is used to assess the dynamics of deserts and drought in the Sahel, Saudi-Arabia and the Indian subcontinent. Under present-day conditions of solar irradiation and sea-surface temperatures, the model finds two solutions: the first solution yields the present-day distribution of vegetation and deserts and the second shows a northward spread of savanna and xerophytic shrub of some 600 km, particularly in the southwest Sahara. Comparison of atmospheric states associated with these solutions corroborates Charney's theory of a self-induction of deserts through albedo enhancement in the Sahel. Over the Indian subcontinent, changes in vegetation are mainly caused by a positive feedback between increased soil moisture and stronger summer monsoon.

  1. GCM Study of Interannual Variability of Indian Summer Monsoon: the Impact of Anomalous Spring Eurasian Snow Cover.

    NASA Astrophysics Data System (ADS)

    Zhou, Jiayu

    A recently improved version of the COLA GCM, which simulates the Indian monsoon circulation and precipitation pattern closely, together with snow data derived from SMMR observations, were used to investigate the effect of anomalous spring Eurasian snow cover on the interannual variability of the Indian summer monsoon. We have successfully simulated the observed evidence that excessive winter/spring Eurasian snow cover is associated with a delay in monsoon onset, weak monsoon circulation, and an extended monsoon withdrawal period. JJAS simulated precipitation shows a reduction of about one standard deviation of model natural variation over the Indian region as well as a significant increase over the eastern portion of China. A study of the physical mechanisms involved reveals: (1) Energy used in melting excessive snow reduces the surface temperature over a broad region centered on the Tibetan Plateau. Reduced surface sensible heat flux reduces the mid-tropospheric temperature gradient between Tibet and equatorial Indian Ocean, resulting in a weakening of the Indian summer monsoon circulation. (2) North of Tibet, an anomalous low induced by the excessive springtime Mongolian snow cover is superimposed on the summertime central Asian trough, resulting in the deepening of the trough and the creation of a stronger-than-normal east Asian westerly jet. South of this jet, an upper-tropospheric anomalous anticyclonic circulation provides favorable conditions for convective precipitation over the southeastern part of China. Due to heating anomalies, weaker secondary circulation is accompanied by mass readjustment. Abnormal stationary wave propagation induced by an anomalous divergence field has an abnormal impact on remote regions. The use of the Plumb flux is extended to indicate the propagation of the stationary wave anomaly. Results clearly demonstrate that North America can be influenced by Tibetan anomalous snow cover via atmospheric teleconnection during the spring and

  2. Understanding the Dynamic and Thermodynamic Causes of Historical Trends in the Intraseasonal Variability of the South Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Singh, D.; Horton, D. E.; Diffenbaugh, N. S.

    2014-12-01

    The Indian Summer Monsoon directly affects the lives of over 1/6th of the world's population, being critical for agriculture (>50% of the agricultural lands are still rainfed) and water availability in the subcontinent. The summer monsoon is characterized by a dominant 30-60 day mode of intraseasonal variability causing the occurrence of wet and dry spells over a substantial portion of India during the peak-monsoon months (July-August). We use a 1°x1° gridded rainfall dataset (1951-2011) from the Indian Meteorological Department to quantify changes in the mean and intraseasonal variability of daily summer monsoon rainfall across India. Using a non-parametric statistical methodology to account for temporal correlation in the time-series, we find a statistically significant decreasing trend in rainfall and increasing trend in variability in many regions, and changes in the characteristics of wet and dry spells.Using geopotential heights from the NCEP reanalysis dataset, we apply the Self-Organizing Maps (SOMs) approach (cluster analysis) to define typical upper (200mb) and lower-level (850mb) atmospheric patterns associated with extreme wet and dry conditions in the different sub-regions within India. We identify the extreme wet and dry spell patterns from the precipitation composites associated with the SOM patterns. Next, we link the contribution of the changing frequency of occurrence of the associated atmospheric patterns and increasing moisture availability in response to atmospheric warming to observed trends in these extremes. Lastly, we compare the changes in the frequency of occurrence of these atmospheric patterns in the historical and pre-industrial simulations from a single GCM to examine the influence of global warming on these extremes. Understanding the causes of these observed changes in wet and dry extremes during the monsoon season and responses to increasing global warming are relevant for managing climate-related risks, with particular relevance

  3. Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO

    NASA Astrophysics Data System (ADS)

    Yun, Kyung-Sook; Seo, Ye-Won; Ha, Kyung-Ja; Lee, June-Yi; Kajikawa, Yoshiyuki

    2014-08-01

    Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958-2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern warming over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide warming trend; the second mode by northern warming with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (ENSO) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of ENSO on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in

  4. Water level changes for Lake Turkana and climate variability during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Bloszies, C.; Forman, S. L.; Wright, D. K.

    2013-12-01

    (SST) records from the Indian and the Atlantic oceans. A brief (<500 yr) high stand up to at least 50 m at ca. 7 ka appears to be coincident with warm postglacial SSTs in the western Indian Ocean and thus may reflect a strengthened East African Monsoon, though some precipitation was probably derived from Atlantic sources as well. Similarly, the brief high stand (< 400 yr) at 6.3 ka, possibly up to 100 m, is associated with warming across the Indian Ocean and equator-ward compression of the ITCZ reflecting a strengthened East African Monsoon. This high stand also may be in response to elevated SSTs in the eastern Atlantic Ocean and associated intensification of West African Monsoon. A final high stand up to at least 95 m at ca. 5.0 to 5.5 ka appears to have occurred with sustained moisture influx into East Africa from Atlantic-derived sources, coincident with warming in the western Indian Ocean. The AHP for Lake Turkana is characterized by extreme water level variability, rather than a sustained water level, with a final and rapid fall in lake level between 5.0 and 4.5 ka associated with increasing aridity.

  5. Intraseasonal to interannual variability of summer monsoon rainfall and its influence on the Agricultural corps in mountainous Kashmir

    NASA Astrophysics Data System (ADS)

    Hussain, Z.; Saeed, S.

    2012-04-01

    By using high resolution APHRODITE precipitation and meteorological station data (1961-2007) the present study examines the intraseasonal to interannual variability of the monsoon rainfall over mountainous Kashmir and its influence on the agricultural crops such as Maiz and Wheat. It is found that an intraseasonal to interannual variability of the monsoon rainfall can severely affect the crop production in the hilly areas of Kashmir. We found an increasing trend in the extreme precipitation events over Kashmir and adjacent areas in the recent years. The associated crop production shows significant decreasing trend especially over the hilly areas in Kashmir. The enhanced rainfall can result in the soil erosion that impose a major threat to sustainable agriculture in the mountainous areas of Kashmir. The heavy rainfall associated with the orographic uplifitng removes the uppermost fertile layer of soil, depleting fertility and leaving the soil in poor physical condition. This further causes severe deficiency of most important nutrients required for plant growth and crop yield. We further analysed the IPCC AR4 ECHAM5/MPIOM climate model simulations to examine the future interannual variability of monsoon rainfall over Kashmir and adjoining areas. In the following we analysed the transient run with a 1% per year increase in CO2 until reaching double concentrations and held constant thereafter. We found enhanced interannual variability of the summer monsoon rainfall (July-August) with increasing drought like conditions over Kashmir and adjoining northern parts of Pakistan in future climate. The enhanced interannual variability of precipitation in future could further affect severely growth of various agricultural crops in mountainous parts of Kashmir.

  6. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  7. Northern East Asian Monsoon Precipitation Revealed by Air Mass Variability and Its Prediction

    NASA Astrophysics Data System (ADS)

    Son, J. H.; Seo, K. H.

    2015-12-01

    This work provides a new perspective on the major factors controlling the East Asian summer monsoon (EASM) in July, and a promising physical-statistical forecasting of the EASM ahead of summer. Dominant modes of the EASM are revealed from the variability of large-scale air masses discerned by equivalent potential temperature, and are found to be dynamically connected with the anomalous sea surface temperatures (SSTs) over the three major oceans of the world and their counterparts of prevailing atmospheric oscillation or teleconnection patterns. Precipitation over Northeast Asia (NEA) during July is enhanced by the tropical central Indian Ocean warming and central Pacific El Niño-related SST warming, the northwestern Pacific cooling off the coast of NEA, and the North Atlantic Ocean warming. Using these factors and data from the preceding spring seasons, the authors build a multiple linear regression model for seasonal forecasting. The cross-validated correlation skill predicted for the period 1994 to 2012 is up to 0.84, which far exceeds the skill level of contemporary climate models.

  8. On the Variability of Summer Monsoon Rainfall over East Cost of India

    NASA Astrophysics Data System (ADS)

    de, N.; Bondyopadhaya, R. P.

    2009-04-01

    A study of the major portion of Monsoon Rainfall (M.R.) of West Bengal and Orissa (two coastal states of India whose total area is bigger than many European countries)during 1871-2005 has been made. It is suggested that the nature of variability of M.R. is to be studied for the regions as a whole where M.R. is precipitated simultaneously.For example, by z-score and other methods of analysis it is found that M.R. of those two states vary in opposite manner but the total M.R. remains almost constant during the said long period. Further it is found that the mean M.R. before and after 1946 are same in spite of the fact that the nature of deviations are almost in opposite phase. Incidentally we have noted that 1946 was the year just after the World War Two and the explosion of first hydrogen bomb in this continent in the neighborhood of India.

  9. Relationships between interdecadal variability and extreme precipitation events in South America during the monsoon season

    NASA Astrophysics Data System (ADS)

    Grimm, Alice; Laureanti, Nicole; Rodakoviski, Rodrigo

    2016-04-01

    This study aims to clarify the impact of interdecadal climate oscillations (periods of 8 years and longer) on the frequency of extreme precipitation events over South America in the monsoon season (austral spring and summer), and determine the influence of these oscillations on the daily precipitation frequency distribution. Interdecadal variability modes of precipitation during the monsoon season are provided by a continental-scale rotated empirical orthogonal function analysis for the 60 years period 1950-2009. The main disclosed modes are robust, since they are reproduced for different periods. They can produce differences around 50% in monthly precipitation between opposite phases. Oceanic and atmospheric anomalous fields associated with these modes indicate that they have physical basis. The first modes in spring and summer display highest correlation with the Interdecadal Pacific Oscillation (IPO) SST mode, while the second modes have strongest correlation with the Atlantic Multidecadal Oscillation (AMO) SST mode. However, there are also other influences on these modes. As the most dramatic consequences of climate variability stem from its influence on the frequency of extreme precipitation events, it is important to also assess this influence, since variations in monthly or seasonal precipitation do not necessarily imply significant alterations in their extreme events. This study seeks to answer the questions: i) Do opposite phases of the main interdecadal modes of seasonal precipitation produce significant anomalies in the frequency of extreme events? ii) Does the interdecadal variability of the frequency of extreme events show similar spatial and temporal structure as the interdecadal variability of the seasonal precipitation? iii) Does the interdecadal variability change the daily precipitation probability distribution between opposite phases? iv) In this case, which ranges of daily precipitation are most affected? The significant anomalies of the extreme

  10. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Bastin, Sophie; Janicot, Serge; Lavaysse, Christophe; Hourdin, Frederic; Braconnot, Pascale; Bony, Sandrine

    2017-02-01

    Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (-0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (-0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by

  11. Observational Evidence of Impacts of Aerosols on Seasonal-to-Interannual Variability of the Asian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Kim, K.-M.; Hsu, N. C.

    2006-01-01

    Observational evidences are presented showing that the Indian subcontinent and surrounding regions are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle. Increased loading of absorbing aerosols over the Indo-Gangetic Plain in April-May is associated with a) increased heating of the upper troposphere over the Tibetan Plateau, b) an advance of the monsoon rainy season, and c) subsequent enhancement of monsoon rainfall over the South Asia subcontinent, and reduction over East Asia. Also presented are radiative transfer calculations showing how differential solar absorption by aerosols over bright surface (desert or snow cover land) compared to dark surface (vegetated land and ocean), may be instrumental in triggering an aerosol-monsoon large-scale circulation and water cycle feedback, consistent with the elevated heat pump hypothesis (Lau et al. 2006).

  12. Interannual variability and predictability over the Arabian Penuinsula Winter monsoon region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Muhammad; Kucharski, Fred; Almazroui, Mansour; Kang, In-Sik

    2016-04-01

    Interannual winter rainfall variability and its predictability are analysed over the Arabian Peninsula region by using observed and hindcast datasets from the state-of-the-art European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal prediction System 4 for the period 1981-2010. An Arabian winter monsoon index (AWMI) is defined to highlight the Arabian Peninsula as the most representative region for the Northern Hemispheric winter dominating the summer rainfall. The observations show that the rainfall variability is relatively large over the northeast of the Arabian Peninsula. The correlation coefficient between the Nino3.4 index and rainfall in this region is 0.33, suggesting potentially some modest predictability, and indicating that El Nino increases and La Nina decreases the rainfall. Regression analysis shows that upper-level cyclonic circulation anomalies that are forced by El Nino Southern Oscillation (ENSO) are responsible for the winter rainfall anomalies over the Arabian region. The stronger (weaker) mean transient-eddy activity related to the upper-level trough induced by the warm (cold) sea-surface temperatures during El Nino (La Nina) tends to increase (decrease) the rainfall in the region. The model hindcast dataset reproduces the ENSO-rainfall connection. The seasonal mean predictability of the northeast Arabian rainfall index is 0.35. It is shown that the noise variance is larger than the signal over the Arabian Peninsula region, which tends to limit the prediction skill. The potential predictability is generally increased in ENSO years and is, in particular, larger during La Nina compared to El Nino years in the region. Furthermore, central Pacific ENSO events and ENSO events with weak signals in the Indian Ocean tend to increase predictability over the Arabian region.

  13. Asian Monsoon Climate from Tropical Tree Rings: Decadal Scale Variability and Links to Tropical Pacific Sea Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Buckley, B. M.; Duangsathaporn, K.; Borgaonkar, H.; Palakit, K.

    2006-12-01

    Records of climate from the terrestrial tropics for the period before instrumentation are very limited. Tropical tree ring research, particularly in the Asian tropics, has been limited by difficulties ranging from problematic annual ring formation, poor understanding of phenology and physiology of thousands of tree species, complicated forest dynamics factors, and political turmoil and resultant effects on access. The need for understanding the potential range of variability in the monsoon regions of Asia is critical for making sound planning decisions in the face of potential hydrological changes associated with global climate change. A growing body of work from the SSEA-DENDRO (South and Southeast Asian Dendrochronology) project, one component of an NSF-funded project "Tree-Ring Reconstruction of Asian Monsoon Climate Dynamics", is beginning to allow analyses of local and regional climate from Monsoon Asian tree rings. We now have continuous records of 500-plus years, that enable analyses of important time periods such as the Little Ice Age (LIA), while "floating" time series span portions of the Medieval Climate Anomaly (MCA). From these records, we see clear evidence of decadal-scale reduced monsoon strength from India to Thailand for much of the 18th century, and we suggest warm SST anomalies in the eastern tropical Pacific as one of the primary factors. We compare our tree-ring based results with evidence from Speleothem research from northeast India that corroborates the decadal-scale monsoon weakening in the LIA, while revealing increased rainfall during the MCA. The role of SST anomalies in the eastern tropical Pacific is seen as significant, with El Ni?o and La Ni?a like conditions resulting in rainfall reductions and increases, respectively, in the study region. Persistent state changes in the SST fields can result in the kinds of decadal-scale patterns we are seeing in monsoon Asia, with far-reaching influence into the western hemisphere as well. More

  14. African hydroclimatic variability during the last 2000 years

    NASA Astrophysics Data System (ADS)

    Nash, David J.; De Cort, Gijs; Chase, Brian M.; Verschuren, Dirk; Nicholson, Sharon E.; Shanahan, Timothy M.; Asrat, Asfawossen; Lézine, Anne-Marie; Grab, Stefan W.

    2016-12-01

    The African continent is characterised by a wide range of hydroclimate regimes, ranging from humid equatorial West Africa to the arid deserts in the northern and southern subtropics. The livelihoods of much of its population are also vulnerable to future climate change, mainly through variability in rainfall affecting water resource availability. A growing number of data sources indicate that such hydroclimatic variability is an intrinsic component of Africa's natural environment. This paper, co-authored by members of the PAGES Africa 2k Working Group, presents an extensive assessment and discussion of proxy, historical and instrumental evidence for hydroclimatic variability across the African continent, spanning the last two millennia. While the African palaeoenvironmental record is characterised by spatially disjunctive datasets, with often less-than-optimal temporal resolution and chronological control, the available evidence allows the assessment of prominent spatial patterns of palaeomoisture variability through time. In this study, we focus sequentially on data for six major time windows: the first millennium CE, the Medieval Climate Anomaly (900-1250 CE), the Little Ice Age (1250-1750 CE), the end of the LIA (1750-1850 CE), the Early Modern Period (1850-1950), and the period of recent warming (1950 onwards). This results in a continent-wide synthesis of regional moisture-balance trends through history, allowing consideration of possible driving mechanisms, and suggestions for future research.

  15. The representation of low-level clouds during the West African monsoon in weather and climate models

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  16. African monsoon variations and persistence of the Megalake Chad during the late Pliocene

    NASA Astrophysics Data System (ADS)

    Contoux, Camille; Ramstein, Gilles; Jost, Anne; Sepulchre, Pierre; Schuster, Mathieu; Braconnot, Pascale

    2013-04-01

    Megalake Chad (MLC) occurrences are widely documented for the mid-Holocene period but also for the Mio-Pliocene (Schuster et al., 2009). From 7 to 3 Ma, analysis of sedimentary deposits of the Djurab desert region show desertic to full-lacustrine facies, suggesting an alternance of dry to wet climates (Schuster, 2002, Schuster et al., 2009), lacustrine conditions being associated to fauna dispersal and early hominid presence (e.g. Brunet et al., 1995, 2002). Some studies (e.g. Braconnot and Marti, 2003) suggest a control of precession on monsoon. Using late Pliocene climate simulations and different orbital configurations, can we constrain variations of the Megalake and reach the water volume of 350 000 km² proposed by several authors (Ghienne et al., 2002; Leblanc et al., 2006)? Can we propose a timing for the MLC occurrences? First, in order to better characterize the precession role on Megalake Chad occurrences during the late Pliocene, we use the IPSLCM5A coupled ocean atmosphere climate model forced with four different orbital configurations and mid-Pliocene boundary conditions. The four orbital configurations, all around 3 Ma, correspond to maximum and minimum insolations at 30°N at summer solstice or autumn equinox. We find important increases of precipitation in North Africa, controlled by insolation maxima at 30°N at summer solstice and autumn equinox, i.e. related to an angular precession between 270° and 10°. When used to force a surface routing model (HYDRA, Coe, 2000), these precipitation increases lead to MLC episodes, suggesting the MLC could be sustained during at least 5 kyr of a precession cycle. However, this method does not account for the lake feedback on climate. Indeed, during wet phases, the MLC becomes an important evaporation source, modifying the climate of the Chad basin. To investigate this aspect, we use the LMDZ4 atmospheric model including an open water surface module (Krinner, 2003). We find that deep convection is suppressed

  17. Multi-Decadal Modulations in the Variability of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Machimura, T.; Ogawa, S.; Kosaka, Y.; Nishii, K.; Miyasaka, T.

    2015-12-01

    The East Asian summer monsoon fluctuates from its climatological activity on monthly and interannual time scales, and the most dominant pattern of the variability is known as the Pacific-Japan (PJ) pattern. Characterized by a meridional teleconnection in anomalous activity of the Meiyu/Baiu rainband, tropical storms and a surface subtropical anticyclone (the Bonin High) in between, the PJ pattern exerts substantial influence on summertime climatic conditions over East Asia and the western North Pacific. Despite the recent warming trend observed in its background state, no assessment thus far has been made on how substantially the PJ has undergone, if any, multi-decadal modulations in its structure and/or dominance. Through an EOF analysis applied to a new dataset of global atmospheric reanalysis (JRA-55), the predominance of the PJ pattern is confirmed as being extracted in the leading EOF of lower-tropospheric monthly vorticity anomalies over 55 recent years. Both efficient barotropic/baroclinic energy conversion from the climatological-mean state and efficient generation of available potential energy through anomalous convective activity over the tropical western Pacific are shown to be essential for the maintenance of the monthly atmospheric anomalies of the PJ pattern over the entire 55-year period. At the same time, however, the same EOF analysis as above but applied separately to each of the sub-periods reveals a distinct signature of long-term modulations in amplitude and thus the dominance of the PJ pattern. While being extracted in the first EOF up to the 1980s, the PJ pattern is extracted in the second EOF in the period since the 1990s with marked reductions in both the variance fraction explained and the efficiency of energy conversion/generation. The resultant modulations of the summertime meridional teleconnection are also discussed with implications for future changes.

  18. Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers

    NASA Astrophysics Data System (ADS)

    Grießinger, Jussi; Bräuning, Achim; Helle, Gerd; Thomas, Axel; Schleser, Gerhard

    2011-02-01

    Recent warming in High Asia might have a strong impact on Asian summer monsoon variability with consequences for the hydrological cycle. Based on correlations between climate data, the tree-ring δ18O of high-elevation junipers is an indicator of August precipitation. Thus, our 800-year long annually resolved oxygen isotope series reflects long-term variations in summer monsoon activity on the southern Tibetan plateau. Summer precipitation was reduced during 13th-15th centuries and since the 19th century, whereas the Little Ice Age period (15th-19th century) was rather moist. The late 20th century was among the driest periods during the past 800 years, showing a tendency to slightly wetter conditions after AD 1990.

  19. Evaluation of Boreal Summer Monsoon Intraseasonal Variability in the GASS-YOTC Multi-Model Physical Processes Experiment

    NASA Astrophysics Data System (ADS)

    Mani, N. J.; Waliser, D. E.; Jiang, X.

    2014-12-01

    While the boreal summer monsoon intraseasonal variability (BSISV) exerts profound influence on the south Asian monsoon, the capability of present day dynamical models in simulating and predicting the BSISV is still limited. The global model evaluation project on vertical structure and diabatic processes of the Madden Julian Oscillations (MJO) is a joint venture, coordinated by the Working Group on Numerical Experimentation (WGNE) MJO Task Force and GEWEX Atmospheric System Study (GASS) program, for assessing the model deficiencies in simulating the ISV and for improving our understanding of the underlying processes. In this study the simulation of the northward propagating BSISV is investigated in 26 climate models with special focus on the vertical diabatic heating structure and clouds. Following parallel lines of inquiry as the MJO Task Force has done with the eastward propagating MJO, we utilize previously proposed and newly developed model performance metrics and process diagnostics and apply them to the global climate model simulations of BSISV.

  20. Reconstructing the variability in the Indian monsoon over the last 20,000 years

    NASA Astrophysics Data System (ADS)

    Schulenberg, S. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2011-12-01

    The Asian monsoon rains provide freshwater to one of the most densely populated regions on Earth. However, despite the societal and economic importance of the monsoon system, its forcing mechanisms are not fully understood. It is widely accepted that on orbital timescales the strength of the Asian monsoon varies in response to changes in northern hemisphere (NH) summer insolation, which is primarily controlled by precession. Paleoclimate archives from around the region yield conflicting evidence about the timing of the monsoonal response with respect to NH insolation changes [e.g., Clemens and Prell, 2003; Wang et al., 2001], perhaps suggesting a complex relationship between insolation forcing and climatic response. We present new down-core records of paired planktic foraminiferal Mg/Ca-derived sea surface temperatures and seawater δ18O since the Last Glacial Maximum, which we generated using an intermediate depth sediment core retrieved from the Mahanadi Basin within the northwestern Bay of Bengal. When compared to previously published results [Rashid et al., 2007, 2011], our new results reveal geographic variations in sea surface hydrography within the Bay of Bengal over the past 20,000 years. The timing of these variations will be interpreted in light of known changes in NH summer insolation and within the context of previously published paleoclimate archives from the entire Asian monsoon region.

  1. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations

    NASA Astrophysics Data System (ADS)

    Safieddine, Sarah; Boynard, Anne; Hao, Nan; Huang, Fuxiang; Wang, Lili; Ji, Dongsheng; Barret, Brice; Ghude, Sachin D.; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2016-08-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), aircraft data from the MOZAIC/IAGOS project, as well as observations from ground-based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years 2008-2013 of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon seen by a decrease in the tropospheric 0-6 km O3 column due to the EASM, and to reproduce this decrease from one year to the other. The year-to-year variability is found to be mainly dependent on meteorology. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric 0-6 km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC/IAGOS project for the EASM of 2008-2013 are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.73 (12 %) between the 0-6 km O3 column derived from IASI and aircraft data. IASI captures very well the inter-annual variation of tropospheric O3 observed by the aircraft data over the studied domain. Analysis of vertical profiles of the aircraft data shows a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at 10-20° N than elsewhere. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with a decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  2. A 5000 Year Record of Andean South American Summer Monsoon Variability from Laguna de Ubaque, Colombia

    NASA Astrophysics Data System (ADS)

    Rudloff, O. M.; Bird, B. W.; Escobar, J.

    2014-12-01

    Our understanding of Northern Hemisphere South American summer monsoon (SASM) dynamics during the Holocene has been limited by the small number of terrestrial paleoclimate records from this region. In order to increase our knowledge of SASM variability and to better inform our predictions of its response to ongoing rapid climate change, we require high-resolution paleoclimate records from the Northern Hemisphere Andes. To this end, we present sub-decadally resolved sedimentological and geochemical data from Laguna de Ubaque that spans the last 5000 years. Located in the Eastern Cordillera of the Colombian Andes, Laguna de Ubaque (2070 m asl) is a small, east facing moraine-dammed lake in the upper part of the Rio Meta watershed near Bogotá containing finely laminated clastic sediments. Dry bulk density, %organic matter, %carbonate and magnetic susceptibility (MS) results from Ubaque suggest a period of intense precipitation between 3500 and 2000 years BP interrupted by a 300 yr dry interval centered at 2700 years BP. Following this event, generally drier conditions characterize the last 2000 years. Although considerably lower amplitude than the middle Holocene pluvial events, variability in the sedimentological data support climatic responses during the Medieval Climate Anomaly (MCA; 900 to 1200 CE) and Little Ice Age (LIA; 1450 to 1900 CE) that are consistent with other records of local Andean conditions. In particular, reduced MS during the MCA suggests a reduction in terrestrial material being washed into the lake as a result of generally drier conditions. The LIA on the other hand shows a two phase structure with increased MS between 1450 and 1600 CE, suggesting wetter conditions during the onset of the LIA, and reduced MS between 1600 and 1900 CE, suggesting a return to drier conditions during the latter part of the LIA. These LIA trends are similar to the Quelccaya accumulation record, possibly supporting an in-phase relationship between the South American

  3. Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-03-01

    Using observation-based analyses, this study identifies the leading interannual pattern of the Indian summer monsoon rainfall (ISMR) independent of ENSO and examines the potential mechanisms of its formation. For this purpose, an objective procedure is used to isolate the variability of the summer precipitation associated with the contemporary ENSO state and in previous winter-spring, which influence the Indian summer monsoon (ISM) region in opposite ways. It is shown that the leading pattern of these ENSO-related monsoon rainfall anomalies reproduces some major ISMR features and well represents its connections to the global-scale ENSO features in both lower and upper troposphere. On the other hand, the leading pattern derived from the precipitation anomalies with the ENSO component removed in the ISM and surrounding region also accounts for a substantial amount of the monsoon precipitation centered at the eastern coast of the subtropical Arabian Sea, extending into both the western Indian Ocean and the Indian subcontinent. The associated atmospheric circulation change is regional in nature, mostly confined in the lower to mid troposphere centered in the Arabian Sea, with a mild connection to an opposite tendency centered at the South China Sea. Further analyses show that this regional pattern is associated with a thermodynamic air-sea feedback during early to mid summer season. Specifically, before the monsoon onset, an anomalous atmospheric high pressure over the Arabian Sea causes excessive shortwave radiation to the sea surface and increases SST in May. The warm SST anomalies peak in June and reduce the sea level pressure. The anomalous cyclonic circulation generates regional convection and precipitation, which also induces subsidence and anticyclonic circulation over the South China Sea. The combined cyclonic-anticyclonic circulation further transport moisture from the western Pacific into the Indian Ocean and causes its convergence into the Arabian Sea. As a

  4. Response of Asian summer monsoon duration to orbital forcing under glacial and interglacial conditions: Implication for precipitation variability in geological records

    NASA Astrophysics Data System (ADS)

    Shi, Zhengguo

    2016-05-01

    The responses of Asian summer monsoon and associated precipitation to orbital forcing have been intensively explored during the past 30 years, but debate still exists regarding whether or not the Asian monsoon is controlled by northern or southern summer insolation on the precessional timescale. Various modeling studies have been conducted that support the potential roles played by the insolation in both hemispheres. Among these previous studies, however, the main emphasis has been on the Asian monsoon intensity, with the response of monsoon duration having received little consideration. In the present study, the response of the rainy season duration over different monsoon areas to orbital forcing and its contribution to total annual precipitation are evaluated using an atmospheric general circulation model. The results show that the durations of the rainy seasons, especially their withdrawal, in northern East Asia and the India-Bay of Bengal region, are sensitive to precession change under interglacial-like conditions. Compared to those during stronger boreal summer insolation, the Asian monsoon-associated rainy seasons at weaker insolation last longer, although the peak intensity is smaller. This longer duration of rainfall, which results from the change in land-ocean thermal contrast associated with atmospheric diabatic heating, can counterbalance the weakened intensity in certain places and induce an opposite response of total annual precipitation. However, the duration effect of Asian monsoon is limited under glacial-like conditions. Nevertheless, monsoon duration is a factor that can dominate the orbital-scale variability of Asian monsoon, alongside the intensity, and it should therefore receive greater attention when attempting to explain orbital-scale monsoon change.

  5. Spatiotemporal variability of hypoxia and eutrophication in Manila Bay, Philippines during the northeast and southwest monsoons.

    PubMed

    Sotto, Lara Patricia A; Jacinto, Gil S; Villanoy, Cesar L

    2014-08-30

    Hypoxia in Manila Bay, Philippines was previously reported during the northeast monsoon (dry season) in February 2010. In this study, four more field surveys of the same 31 stations were conducted in July 2010, August 2011 and 2012 (wet season, southwest monsoon), and February 2011 (dry season, northeast monsoon). During the wet season, bottom hypoxia spread northward towards the coast with dissolved oxygen (DO) ranging from 0.12 to 9.22 mg/L and the bay-wide average reaching 2.10 mg/L. Nutrient levels were elevated, especially near the bottom where dissolved inorganic nitrogen reached 22.3 μM (July 2010) and phosphorus reached 5.61 μM (August 2011). High nutrient concentrations often coincided with low near-bottom DO content. Our work builds on the preliminary assessment of hypoxia in Manila Bay, the importance of repeated temporal studies, and shows hypoxia to prevail significantly during the southwest monsoon (wet season) when increased freshwater discharge caused strong water column stratification.

  6. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene.

    PubMed

    Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; De Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred

    2015-01-06

    The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.

  7. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene

    NASA Astrophysics Data System (ADS)

    Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; de Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred

    2015-01-01

    The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.

  8. Tropospheric Ozone Variability during the East Asian Summer Monsoon as Observed by Satellite (IASI), Aircraft (MOZAIC) and Ground Stations

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Boynard, A.; Hao, N.; Huang, F.; Wang, L.; Ji, D.; Barret, B.; Ghude, S. D.; Coheur, P.-F.; Hurtmans, D.; Clerbaux, C.

    2015-11-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), the Measurements of OZone and water vapor by in-service AIrbus airCraft (MOZAIC), as well as observations from ground based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years [2008-2013] of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon reflected by a decrease in the tropospheric [0-6] km O3 column due to the EASM, and to reproduce this decrease from one year to the other. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric [0-6] km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC project at Hyderabad, Nanjing and Guangzhou are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.74 between the [0-6] km O3 column derived from IASI and MOZAIC. The aircraft data show a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at Hyderabad than at the other two Chinese cities. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  9. Intraseasonal-to-interannual variability of the Indian Monsoon: the present climate and future projections of climate change

    NASA Astrophysics Data System (ADS)

    Carvalho, L. V.; Jones, C.; Cannon, F.

    2014-12-01

    The Asia Monsoon is among Earth's most intriguing and spectacular phenomena. The Indian Monsoon System (IMS) is a regional manifestation this continental-scale phenomenon with complex characteristics and predictive challenges. India exhibits one of the largest rates of population growth that relies on IMS cycle for water supply. Thus, understanding the temporal variability of the IMS is essential to realistically predict the impacts of climate change on Asia's water resources and food security. Here we investigate intraseasonal-to-interannual variability of the IMS in the climate of the 20th century using the Climate Forecast System Reanalysis (CFSR) and examine future scenarios of climate change using the high spatial resolution models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) project. IMS is characterized with a large-scale index continuous in time and obtained by performing combined EOF analysis (CEOF) of variables that characterize the monsoon cycle: precipitation, low level circulation at 10 m, specific humidity and temperature at 2m. CFSR is used to derive the index (1979-2013). Projections of the CEOF onto the tropical rainfall measuring mission (TRMM) indicate that the first CEOF captures the large-scale features of the South and East Asia Monsoon. The second CEOF is associated with the IMS and its time coefficient is used as large-scale index for the IMS (LIMS). LIMS realistically defines IMS onset and withdrawal, and its amplitude associates with total seasonal precipitation. Moreover, the spectral analysis of the ISMI shows peaks on intraseasonal timescales that are related to IMS's active and break phases. Moreover, we demonstrate that LIMS identifies the interannual variability of IMS and can be used to investigate floods and droughts that have occurred over India. Similar approach is used to investigate the skill of the CMIP5 models in realistically simulating active and break phases of the IMS in the 'historic' run (1951-2005). We

  10. Indonesian Throughflow and Australasian Monsoon Variability Over the Last two Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Kuhnt, W.; Holbourn, A.; Xu, J.; Nuernberg, D.; Bolliet, T.; Duerkop, A.; Zuraida, R.; Kawamura, H.

    2007-12-01

    The climate and hydrography of the tropical Indian Ocean are strongly influenced by the intensity and vertical profile of the Indonesian Throughflow (ITF) and seasonal changes in wind direction associated with the southward migration of the Intertropical Convergence Zone (ITCZ) during austral summer. We use a multiproxy approach to reconstruct monsoonal wind and circulation patterns along the NW Australian continental margin as well as changes in the vertical profile of the Indonesian Throughflow on glacial, precessional and suborbital timescales. Our records from the Timor Passage and Timor Sea (Sonne 185 and IMAGES WEPAMA cruises) closely track changes in the structure of the upper water column within one of the main outflow passages of the ITF. We use (1) XRF scanning records to reconstruct continental runoff and eolian dust transport, (2) paleoproductivity proxy data related to vertical mixing of the upper water column by monsoonal winds, (3) SST, SSS and mixed layer thickness estimates from combined oxygen isotope and Mg/Ca analyses of surface and thermocline dwelling planktonic foraminifers. XRF-scanner derived terrigenous flux and paleoproductivity fluctuations over the last 460 ky were strongly influenced by monsoonal wind patterns offshore NW Australia (23 and 19 ky), the position of the ITCZ (southward shift during precession minima) and were also modulated by sea-level related variations in the intensity of the ITF (100 ky). Our results indicate that the intensity of the Australian summer monsoon over the last two glacial cycles was controlled both by summer insolation over NW Australia and by the strength of the boreal winter monsoon, as the southward migration of the ITCZ is closely linked to northern hemisphere cooling. A comparison of water mass properties within the main outflow in the Timor Strait and within the mixing zone between ITF and eastern Indian Ocean waters reveals a higher thermocline temperature gradient between the eastern Indian Ocean

  11. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbin; Griffiths, Michael L.; Huang, Junhua; Cai, Yanjun; Wang, Canfa; Zhang, Fan; Cheng, Hai; Ning, Youfeng; Hu, Chaoyong; Xie, Shucheng

    2016-11-01

    Previous research has shown a strong persistence for direct teleconnections between the East Asian summer monsoon (EASM) and high northern latitude climate variability during the last glacial and deglaciation, in particular between monsoon weakening and a reduced Atlantic meridional overturning circulation (AMOC). However, less attention has been paid to EASM strengthening as the AMOC was reinvigorated following peak Northern Hemisphere (NH) cooling. Moreover, climate model simulations have suggested a strong role for Antarctic meltwater discharge in modulating northward heat transport and hence NH warming, yet the degree to which Southern Hemisphere (SH) climate anomalies impacted the Asian monsoon region is still unclear. Here we present a new stalagmite oxygen-isotope record from the EASM affected region of central China, which documents two prominent stages of increased 18O-depleted moisture delivery to the region through the transition from Heinrich Stadial 1 (HS1) to the Bølling-Allerød (B-A) interstadial; this is in general agreement with the other monsoonal records from both NH and SH mid to low latitudes. Through novel comparisons with a recent iceberg-rafted debris (IRD) record from the Southern Ocean, we propose that the two-stage EASM intensification observed in our speleothem records were linked with two massive Antarctic icesheet discharge (AID) events at ∼16.0 ka and ∼14.7 ka, immediately following the peak HS1 stadial event. Notably, the large increase in EASM intensity at the beginning of the HS1/B-A transition (∼16 ka) is relatively muted in the NH higher latitudes, and better aligns with the changes observed in the SH, indicating the Antarctic and Southern Ocean perturbations could have an active role in driving the initial EASM strengthening at this time. Indeed, Antarctic freshwater input to the Southern Ocean during these AID events would have cooled the surrounding surface waters and caused an expansion of sea ice, restricting the

  12. Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Li, R.; Jin, J.; Wang, S.-Y.; Gillies, R. R.

    2015-03-01

    Precipitation from the West African Monsoon (WAM) provides food security and supports the economy in the region. As a consequence of the intrinsic complexities of the WAM's evolution, accurate simulations of the WAM and its precipitation regime, through the application of regional climate models, are challenging. We used the coupled Weather Research and Forecasting (WRF) and Community Land Model (CLM) to explore impacts of radiation physics on the precipitation and dynamics of the WAM. Our results indicate that the radiation physics schemes not only produce biases in radiation fluxes impacting radiative forcing, but more importantly, result in large bias in precipitation of the WAM. Furthermore, the different radiation schemes led to variations in the meridional gradient of surface temperature between the north that is the Sahara desert and the south Guinean coastline. Climate diagnostics indicated that the changes in the meridional gradient of surface temperature affect the position and strength of the African Easterly Jet as well as the low-level monsoonal inflow from the Gulf of Guinea. The net result was that each radiation scheme produced differences in the WAM precipitation regime both spatially and in intensity. Such considerable variances in the WAM precipitation regime and dynamics, resulting from radiation representations, likely have strong feedbacks within the climate system and so have inferences when it comes to aspects of predicted climate change both for the region and globally.

  13. Meridional Propagation of the MJO/ISO and Asian Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Suarez, Max; Pegion, Phil; Waliser, D.

    2003-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the Asian monsoon. We are particularly interested in isolating the nature of the poleward propagation of the ISO/MJO in the monsoon region. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the idealized 10-member ensemble simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. In order to understand the impact of SST on the off equatorial convection (or Rossby-wave response), a second set of 10-member ensemble simulations is carried out with the climatological SSTs shifted in time by 6-months. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. This includes the well-known meridional propagation that affects the summer monsoons of both hemispheres. The AGCM experiments with the idealized eastward propagating MJO-like heating reproduce the observed meridional propagation including the observed seasonal differences. The impact of the SSTs are to enhance the magnitude of the propagation into the summer hemispheres. The results suggest that the winter/summer differences associated with the MJO/ISO are auxiliary features that depend on the MJO's environment (basic state and boundary conditions) and are not the result of fundamental differences in the MJO itself.

  14. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological

  15. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    SciTech Connect

    Zhu, Chunmei; Leung, Lai R.; Gochis, David; Qian, Yun; Lettenmaier, Dennis P.

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most of the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.

  16. Phenology Analysis of Forest Vegetation to Environmental Variables during - and Post-Monsoon Seasons in Western Himalayan Region of India

    NASA Astrophysics Data System (ADS)

    Khare, S.; Latifi, H.; Ghosh, K.

    2016-06-01

    To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous

  17. A 1700-year history of West African multidecadal sea surface temperature and rainfall variability

    NASA Astrophysics Data System (ADS)

    Kuhnert, Henning; Stefan, Mulitza; Gesine, Mollenhauer

    2010-05-01

    Tropical Atlantic sea surface temperatures (SST) exert a major influence on the latitudinal position and intensity of the West African Monsoon and the tropical rainbelt. The impact of the Atlantic Multidecadal Oscillation (AMO) in particular has previously been demonstrated, but little information is available beyond the instrumental time period. We have reconstructed summer-fall SST and relative changes in the discharge of the Senegal River from a sediment core off southern Mauritania. Time series of SST and seawater-d18O (a measure of salinity and hence discharge) were estimated from planktonic foraminiferal Mg/Ca and d18O. The records are sufficiently resolved to infer multidecadal variability over the past 1700 years and centennial variability over the past 3300 years. River discharge increases slightly over the entire time series. This can be brought into agreement with the general Sahel drying trend indicated by previous studies, when we assume a southward migration of the rainbelt that leads to locally enhanced rainfall over the southernmost Senegal River catchment area in Guinea. SST cooled by 1-1.5 °C between AD 1250 and 1500, more pronounced and somewhat earlier compared with the North Atlantic mean. Spectral analysis reveals several multidecadal periods (38, ~45 and ~62 years) where SST and Senegal River discharge are tightly coupled and are driven by the AMO. The exception is a 30-year periodicity in discharge that has no counterpart in SST, and is potentially linked to meridional tropical SST gradient anomalies. AMO signatures are present throughout the past 1700 years, but vary in amplitude. The most recent and persistent phase of enhanced AMO variability commences around AD 1250 contemporaneous with the transition from the Medieval Climate Anomaly to the Little Ice Age.

  18. The primacy of multidecadal to centennial variability over late-Holocene forced change of the Asian Monsoon on the southern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Conroy, Jessica L.; Hudson, Adam M.; Overpeck, Jonathan T.; Liu, Kam-Biu; Wang, Luo; Cole, Julia E.

    2017-01-01

    The nature of multidecadal to centennial variability of the Asian monsoon is largely unknown, hindering our understanding of how the modern precipitation regime compares to preindustrial variability, as well as how the Asian monsoon may change in coming decades. Here we use the sediment record from a closed-basin lake in southern Tibet, Ngamring Tso, along with other published paleoclimatic records, to assess summer monsoon precipitation variability over the 20th century and during the late Holocene (4100 cal yr BP to present). The first principal component of the Ngamring Tso grain size record, which is highly correlated with median grain size, correlates significantly with observed summer (June-September) precipitation. From CE 1940 to 2007, grain size decreased with increasing summer precipitation and increased with decreasing summer precipitation. Satellite images of Ngamring Tso reveal larger lake area in the 1970s and 2000s and smaller lake area in the 1980s and 1990s, suggesting monsoon precipitation-induced changes in lake depth or area likely govern grain size variability. In the context of the last 4100 yr, prolonged periods of relatively weak summer monsoon precipitation occurred from 2800-2600 cal yr BP, 2500-2300 cal yr BP, and 1600-400 cal yr BP. A trend toward increased summer precipitation began around 1000 cal yr BP, with above-average summer precipitation from 400 cal yr BP to present, peaking between 200-100 cal yr BP (CE 1750-1850). Dry and wet periods are coincident with dry and wet periods in other south-central Tibetan lake sediment records that reflect precipitation or moisture balance, and with regional proxies of the ISM and EASM, indicating south-central Tibet is influenced by both monsoon subsystems. However, western Tibet lake sediment records do not covary with the Ngamring Tso record, suggesting the spatial variability in Tibet precipitation that occurs on interannual timescales today may also characterize precipitation on

  19. Effects of biosocial variables on changes in nutritional status of rural Bangladeshi children, pre- and post-monsoon flooding.

    PubMed

    Choudhury, A Y; Bhuiya, A

    1993-07-01

    This study examined the effects of biosocial variables on changes in nutritional status of rural Bangladeshi children, aged less than 2 years, pre- and post-1987 monsoon flooding. Nutritional status was measured by weight for age: variables included were age, sex, sickness during 2 weeks preceding the survey, intake of vitamin A capsules, socioeconomic status of household, and mother's education. A multivariate logistic regression analysis revealed an adverse effect of flood on nutrition and the effect was dependent on sex of child and intake of vitamin A. After the flood the proportion of severely malnourished children was significantly greater among those who had not taken vitamin A. For boys the proportion with severe malnutrition increased after the flood and the increase was greater than for girls; however, boys always had a lower risk of severe malnutrition than girls.

  20. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  1. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea

    USGS Publications Warehouse

    Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.

    2007-01-01

    Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.

  2. Intraseasonal Variability of the South Asian Summer Monsoon: Present-day Simulations with the Regional Atmospheric Model HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, F. S.; Rinke, A.; Dethloff, K.

    2014-12-01

    Since 1950, observations show a robust negative trend of the seasonal rainfall associated with the South Asian summer monsoon over India coinciding with a continuous decrease in surface solar radiation ("dimming") over South Asia due to an increase of local aerosol emissions. On the intraseasonal timescale the summer monsoon fluctuates between periods of enhanced and reduced rainfall. The frequency of occurrence of these active and breaks monsoon phases affects directly the seasonal monsoon rainfall. This study investigates the regional pattern and changes of the South Asian monsoon for the period 1979-2012 using the regional atmospheric model HIRHAM5 with a horizontal resolution of 0.25° forced at the lateral and lower boundaries with ERA-Interim reanalysis data. Despite the dry bias in the mean summer monsoon rainfall over the Indian landmass, the simulated temperature and atmospheric circulation patterns are in agreement with the ERA-Interim reanalysis indicating a realistic representation of important dynamical summer monsoon features. In addition, mechanisms which controls active and break phases within the summer monsoon season are analyzed using daily outgoing longwave radiation model data as an identification tool of monsoon breaks as proposed by Krishnan et al. (2000). Model results reveal an increasing trend of the cumulative monsoon break days of around 1.4 days per year during the last 30 years. The possible link between this increasing of cumulative monsoon break days and the observed decrease of seasonal South Asian monsoon rainfall will be the scope of further investigations.

  3. Variability and risk analysis of Hong Kong air quality based on Monsoon and El Niño conditions

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Suk; Zhou, Wen; Cheung, Ho Nam; Chow, Chak Hang

    2013-03-01

    This study presents an exploratory analysis aimed at improving understanding of the variability of Hong Kong air quality associated with different climate conditions. Significantly negative correlations were found when Niño 3 led particulate matter ⩽10 μm PM10) and NO2 by 2-3 months over the Hong Kong territory, while the other pollutants (e.g., O3, SO2) showed modest correlations. A significant decreasing trend in visibility was observed during the autumn and winter, which has potential implications for the air-quality degradation and the endangerment of human health in Hong Kong. In an El Niño summer, the visibility was relatively better, while visibility in other seasons was diminished. On the other hand, in La Niña events, significant changes occurred in visibility in winter and autumn. Air pollution indices were less sensitive to the South China Summer Monsoon (SCSM), but a relatively high correlation existed between the East Asian Winter Monsoon (EAWM) and air pollutants. Rainfall was lower during most of the strong EAWM years compared to the weak years. This result suggests that the pollutants that accumulate in Hong Kong are not easy to wash out, so concentrations remain at a higher level. Finally, based on the conditional Air Pollution Index (API) risk assessment, site-specific vulnerabilities were analyzed to facilitate the development of the air-quality warning systems in Hong Kong.

  4. Probabilistic versus Deterministic Skill in Predicting the Western North Pacific- East Asian Summer Monsoon Variability with Multi-Model Ensembles

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, X. Q.; Xie, Q.; Zhang, Y.; Ren, X.; Tang, Y.

    2015-12-01

    Based on the historical forecasts of three quasi-operational multi-model ensemble (MME) systems, this study assesses the superiorities of the coupled MME over its contributing single-model ensembles (SMEs) and over the uncoupled atmospheric MME in predicting the seasonal variability of the Western North Pacific-East Asian summer monsoon. The seasonal prediction skill of the monsoon is measured by Brier skill score (BSS) in the sense of probabilistic forecast as well as by anomaly correlation (AC) in the sense of deterministic forecast. The probabilistic forecast skill of the MME is found to be always significantly better than that of each participating SME, while the deterministic forecast skill of the MME is even worse than that of some SME. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the drastic improvement in reliability, while resolution is not always improved, similar to AC. A monotonous resolution-AC relationship is further found and qualitatively understood, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability possibly arises from an effective reduction of biases and overconfidence in forecast distributions. The coupled MME is much more skillful than the uncoupled atmospheric MME forced by persisted sea surface temperature (SST) anomalies. This advantage is mainly attributed to its better capability in capturing the evolution of the underlying seasonal SST anomaly.

  5. Variability of Moisture Sources and Moisture Transport in the East Asian Monsoon System

    NASA Astrophysics Data System (ADS)

    Fremme, Astrid; Sodemann, Harald

    2016-04-01

    The rainfall of the East Asian Monsoon is of key importance for livelihoods in the densely populated area of China, Japan and Korea. The interplay of many factors, including land surface processes, makes monsoon precipitation difficult to predict. To contribute to improved precipitation prediction we investigate the atmospheric mechanisms importing moisture to the region. In previous studies moisture transport has mainly been analysed by examining a combination of temperature, pressure, winds and water vapour content. However this has been done without linking precipitation to its moisture sources directly. In this project we use the Lagrangian particle dispersion model FLEXPART and the diagnostic tool WaterSip to analyse ERA Interim reanalysis data to obtain a link between precipitation and its moisture sources. The total atmospheric mass is subdivided into millions air parcels, which are traced backwards for 20 days for each rainfall event in the 34 year ERA-Interim period. Specific humidity changes are interpreted as evaporation and precipitation in the area beneath the parcel with the help of a sophisticated accounting method related to target precipitation. Results on the relationship between source and sink areas reflect changes in the conditions of the source regions and in moisture transport. We investigate the moisture transport mechanisms for both seasonal and inter-annual variations during the study period 1979-2013. Preliminary results show that the sources for precipitation in the Yangtze River Valley (YRV) in China have a clear seasonal cycle in terms of location and evaporation conditions. Land areas outside the YRV Region contribute most of the moisture. The second largest source is inside the YRV region itself. For monthly means the sum of all direct oceanic sources rarely exceeds 20%. Recycling of moisture from land surfaces outside the target regions therefore seems to play a pivotal role in the East Asian Monsoon's moisture budget. Contrasting

  6. Factors Affecting the Inter-annual to Centennial Time Scale Variability of All Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan

    2016-04-01

    The All Indian Summer Monsoon Rainfall (AISMR) is highly important for the livelihood of more than 1 billion people living in the Indian sub-continent. The agriculture of this region is heavily dependent on seasonal (JJAS) monsoon rainfall. An early start or a slight delay of monsoon, or an early withdrawal or prolonged monsoon season may upset the farmer's agricultural plans, can cause significant reduction in crop yield, and hence economic loss. Understanding of AISMR is also vital because it is a part of global atmospheric circulation system. Several studies show that AISMR is influenced by internal climate forcings (ICFs) viz. ENSO, AMO, PDO etc. as well as external climate forcings (ECFs) viz. Greenhouse Gases, volcanic eruptions, and Total Solar Irradiance (TSI). We investigate the influence of ICFs and ECFs on AISMR using recently developed statistical technique called De-trended Partial-Cross-Correlation Analysis (DPCCA). DPCCA can analyse a complex system of several interlinked variables. Often, climatic variables, being cross correlated, are simultaneously tele-connected with several other variables and it is not easy to isolate their intrinsic relationship. In the presence of non-stationarities and background signals the calculated correlation coefficients can be overestimated and erroneous. DPCCA method removes the non-stationarities and partials out the influence of background signals from the variables being cross correlated and thus give a robust estimate of correlation. We have performed the analysis using NOAA Reconstructed SSTs and homogenised instrumental AISMR data set from 1854-1999. By employing the DPCCA method we find that there is a statistically insignificant negative intrinsic relation (by excluding the influence of ICFs, and ECFs except TSI) between AISMR and TSI on decadal to centennial time scale. The ICFs considerably modulate the relation between AISMR and solar activity between 50-80 year time scales and transform this relationship

  7. A study on the role of land-atmosphere coupling on the south Asian monsoon climate variability using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Vijaya Bhaskara Rao, S.

    2017-02-01

    Land-atmosphere coupling over the south Asian monsoon region is examined using a regional climate model. For this purpose, the Weather Research and Forecasting (WRF) model with a resolution of 45 km was used. In the control experiment (CTL), the model was integrated from the year 2000 to 2011 and allowed the soil moisture interaction with the atmosphere using a coupled land surface model. In the second experiment (CSM), the soil moisture evolution at each time step was replaced with the climatology of soil moisture taken from the control run. The results reveal that land-atmosphere coupling plays a critical role in influencing the south Asian monsoon climate variability. Soil moisture is found to have stronger impacts on daily maximum temperature compared to minimum temperature. Soil moisture also makes a significant contribution to monsoon rainfall variability over the monsoon region. The coupling strength for large-scale rainfall is found to be higher compared to that of cumulus rainfall. Soil moisture is found more strongly coupled to sensible heat flux over most of the monsoon region.

  8. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y.

    PubMed

    Cai, Yanjun; Fung, Inez Y; Edwards, R Lawrence; An, Zhisheng; Cheng, Hai; Lee, Jung-Eun; Tan, Liangcheng; Shen, Chuan-Chou; Wang, Xianfeng; Day, Jesse A; Zhou, Weijian; Kelly, Megan J; Chiang, John C H

    2015-03-10

    A speleothem δ(18)O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial-interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the "land bridge" in the Maritime continents in the western equatorial Pacific.

  9. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y

    PubMed Central

    Cai, Yanjun; Fung, Inez Y.; Edwards, R. Lawrence; An, Zhisheng; Cheng, Hai; Lee, Jung-Eun; Tan, Liangcheng; Shen, Chuan-Chou; Wang, Xianfeng; Day, Jesse A.; Zhou, Weijian; Kelly, Megan J.; Chiang, John C. H.

    2015-01-01

    A speleothem δ18O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial–interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the “land bridge” in the Maritime continents in the western equatorial Pacific. PMID:25713347

  10. Teleconnection Linking Asian/Pacific Monsoon Variability and Summertime Droughts and Floods Over the United States

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Hengyi

    2000-01-01

    Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.

  11. Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region

    NASA Astrophysics Data System (ADS)

    Mehta, Sanjay Kumar; Venkat Ratnam, Madineni; Sunilkumar, Sukumarapillai V.; Narayana Rao, Daggumati; Krishna Murthy, Boddapaty V.

    2017-01-01

    The diurnal variation of atmospheric boundary layer (ABL) height is studied using high-resolution radiosonde observations available at 3 h intervals for 3 days continuously from 34 intensive campaigns conducted during the period December 2010-March 2014 over a tropical station Gadanki (13.5° N, 79.2° E; 375 m), in the Indian monsoon region. The heights of the ABL during the different stages of its diurnal evolution, namely, the convective boundary layer (CBL), the stable boundary layer (SBL), and the residual layer (RL) are obtained to study the diurnal variabilities. A clear diurnal variation is observed in 9 campaigns out of the 34 campaigns. In 7 campaigns the SBL did not form in the entire day and in the remaining 18 campaigns the SBL formed intermittently. The SBL forms for 33-55 % of the time during nighttime and 9 and 25 % during the evening and morning hours, respectively. The mean SBL height is within 0.3 km above the surface which increases slightly just after midnight (02:00 IST) and remains almost constant until the morning. The mean CBL height is within 3.0 km above the surface, which generally increases from morning to evening. The mean RL height is within 2 km above the surface which generally decreases slowly as the night progresses. The diurnal variation of the ABL height over the Indian region is stronger during the pre-monsoon and weaker during winter season. The CBL is higher during the summer monsoon and lower during the winter season while the RL is higher during the winter season and lower during the summer season. During all the seasons, the ABL height peaks during the afternoon (˜ 14:00 IST) and remains elevated until evening (˜ 17:00 IST). The ABL suddenly collapses at 20:00 IST and increases slightly in the night. Interestingly, it is found that the low level clouds have an effect on the ABL height variability, but the deep convective clouds do not. The lifting condensation level (LCL) is generally found to occur below the ABL for the

  12. Radiative impact of mineral dust on monsoon precipitation variability over West Africa

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Hagos, Samson M.

    2011-03-01

    The radiative forcing of dust and its impact on precipitation over the West Africa monsoon (WAM) region is simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem). During the monsoon season, dust is a dominant contributor to AOD over West Africa. In the standard simulation, on 24-hour domain average, dust has a cooling effect (-6.11 W/m2) at the surface, a warming effect (6.94 W/m2) in the atmosphere, and a relatively small TOA forcing (0.83 W/m2). Dust modifies the surface energy budget and atmospheric diabatic heating and hence causes lower atmospheric cooling in the daytime but warming in the nighttime. As a result, atmospheric stability is increased in the daytime and reduced in the nighttime, leading to a reduction of late afternoon precipitation by up to 0.14 mm/hour (30%) and an increase of nocturnal and early morning precipitation by up to 0.04 mm/hour (23%) over the WAM region. Dust-induced reduction of diurnal precipitation variation improves the simulated diurnal cycle of precipitation when compared to measurements. However, daily precipitation is only changed by a relatively small amount (-0.14 mm/day or -4%). On the other hand, sensitivity simulations show that, for weaker-to-stronger absorbing dust, dust longwave warming effect in the nighttime surpasses its shortwave cooling effect in the daytime at the surface, leading to a less stable atmosphere associated with more convective precipitation in the nighttime. As a result, the dust-induced change of daily WAM precipitation varies from a significant reduction of -0.40 mm/day (-12%, weaker absorbing dust) to a small increase of 0.05 mm/day (1%, stronger absorbing dust). This variation originates from the competition between dust impact on daytime and nighttime precipitation, which depends on dust shortwave absorption. Dust reduces the diurnal variation of precipitation regardless of its absorptivity, but more reduction is associated with stronger absorbing dust.

  13. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    NASA Astrophysics Data System (ADS)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2017-01-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  14. Mid- to Late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, M.; Fleitmann, D.; Verheyden, S.; Cheng, H.; Edwards, R.; De Vleeschouwer, D.; Claeys, P. F.; Burns, S. J.; Matter, A.; Keppens, E.

    2012-12-01

    Since the Holocene, the summer position of the Intertropical Convergence Zone (ITCZ) is gradually moving south due to the diminishing boreal summer insolation (Fleitmann et al., 2007). Understanding this behavior for the Indian Ocean Monsoon (IOM) and its northeast and southwest subsystems is of major importance, especially since further drying is predicted (Fleitmann et al., 2007). To investigate how precipitation from the northeast IOM subsystem is evolving since the mid Holocene, we sampled four stalagmites on Socotra, an island in the northern Indian Ocean. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains, reaching up to 3000m altitude in the middle of the island, act as a barrier forcing precipitation to fall preferentially on the windward side of the mountain range. Consequently, rain delivered by northeast winds at the start of the northeast IOM, falls on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites are interpreted as indicators of wetter or drier conditions created by the northeast IOM. The stalagmite records suggest a long-term weakening of the northeast IOM since 7 ka confirming a link between the Holocene decreasing boreal summer insolation and the diminishing rainfall of the IOM. A similar δ18O record to that of eastern Socotra occurs in Northern Oman stalagmites, after 6.2 ka (Fleitmann et al., 2007). At this time, the summer ITCZ moved south of Northern Oman making precipitation from northeast winds the only moisture source available. A drying around 6 ka is also seen in sedimentary records from the Arabian Peninsula (Lezine et al., 2010; Parker et al., 2006), which nowadays are located outside the migration pathway of the ITCZ. Records on the Arabian Peninsula that today are still within the ITCZ migration belt, and thus receive rain by both the

  15. Simple metrics for representing East Asian winter monsoon variability: Urals blocking and western Pacific teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Cheung, Hoffman H. N.; Zhou, Wen

    2016-06-01

    Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature (SAT) variations north of 40°N in the EAWM region. Second, the well-known western Pacific teleconnection index (WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode (NTM) and the southern temperature mode (STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI-NTM and WPI-STM relationships are robust when the correlation analysis is repeated by (1) the 31-year running correlation and (2) the 8-year high-pass and low-pass filter. Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. In particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.

  16. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  17. Possible Linkage between Monsoon Trough Variability and Tropical Cyclone Activity over Western North Pacific: Role of Tropical Waves

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Huang, Ronghui; Wen, Zhiping

    2014-05-01

    The present study investigates the influence of the monsoon trough (MT) on the interannual variability of tropical cyclone (TC) activity over the western North Pacific during July-November for the period 1979-2007. It is shown that the TC activity is closely related to the MT location. During the years when the MT extends eastward (retreats westward), more (less) TCs form within the southeastern quadrant of the western North Pacific. Such a relationship can be explained by the changes in tropical waves, such as mixed Rossby-gravity (MRG) waves and (tropical depression) TD-type disturbances, associated with the movement of the MT. An eastward extension of the MT coincides with enhanced TD-MRG type disturbances and a clear MRG-to-TD transition over the southeast quadrant of the western North Pacific. Such a transition is unclear during the years when the MT retreats westward. These waves associated with the eastern extension of the MT are favorable for TC genesis, while those associated with the westward retreat of the MT are not. Diagnosis of the barotropic energy conversion indicates that both the rotational and divergent components of the background flow change associated with MT are responsible for energy conversion from the mean flow to the TD-MRG perturbations. This is an important reason for the linkage between MT variability and TC genesis over the western North Pacific.

  18. A 106 year monthly coral record reveals that the East Asian summer monsoon modulates winter PDO variability

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsuyoshi; Kawamura, Takashi; Yamazaki, Atsuko; Murayama, Masafumi; Yamano, Hiroya

    2014-05-01

    The Pacific Decadal Oscillation (PDO) is a dominant climate mode in the Pacific Ocean and thought to be related to seasonal to decadal changes in sea surface conditions. Colonies of long-living Porites coral, widely used to reconstruct monthly to century-scale tropical sea surface temperature and sea surface salinity records, were discovered near Koshiki Island, Japan (31°N, 129°E). A monthly resolved, 106 year δ18O record revealed that distinct decadal-scale variability was significantly correlated with the PDO index. Our comparison showed 1 to 3 years lead-lag correlation of summer coral δ18O with the winter PDO index, suggesting that the East Asian summer monsoon (EASM) may act as the driving force of winter PDO variability over the last 100 years. Cross-spectral analysis between the winter PDO index and summer coral δ18O suggested that recent and future global warming may lead to a more frequent and/or stronger teleconnection between EASM and PDO.

  19. Composition of the Asian summer monsoon anticyclone: Climatology and variability from 10 years of Aura Microwave Limb Sounder measurements

    NASA Astrophysics Data System (ADS)

    Santee, Michelle; Manney, Gloria; Livesey, Nathaniel; Neu, Jessica; Schwartz, Michael; Read, William

    2016-04-01

    Satellite measurements are invaluable for investigating the composition of the upper troposphere / lower stratosphere (UTLS) in the region of the Asian summer monsoon anticyclone, which has been sparsely sampled by other means. The Microwave Limb Sounder (MLS), launched as part of NASA's Aura mission in July 2004, makes simultaneous co-located measurements of trace gases and cloud ice water content (IWC, a proxy for deep convection) in the UTLS on a daily basis. Here we exploit the dense spatial and temporal coverage, long-term data record, and extensive measurement suite of Aura MLS to characterize the climatological composition of the ASM anticyclone and quantify its considerable spatial, seasonal, and interannual variability. We relate the observed trace gas behavior to various meteorological quantities, such as the size and strength of the ASM anticyclone, the extent and intensity of deep convection, and variations in the tropopause and the upper tropospheric jets in that region. Multiple species of both tropospheric and stratospheric origin are examined to help assess whether the observed variability arises from variations in transport processes or changes in the strength or location of surface emissions.

  20. South Asian climate change at the end of urban Harappan (Indus valley) civilization and mechanisms of Holocene monsoon variability

    NASA Astrophysics Data System (ADS)

    Staubwasser, M.; Sirocko, F.; Erlenkeuser, H.; Grootes, P. M.; Segl, M.

    2003-04-01

    Planktonic oxygen isotope ratios from the well-dated laminated sediment core 63KA off the river Indus delta are presented. The record reveals significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable and the largest change of the entire Holocene occurred at 4.2 ka BP. This event is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The remainder of the late Holocene shows drought cycles of approximately 700 years that are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is one fundamental cause behind late Holocene rainfall changes over south Asia.

  1. Watershed Scale Surface Soil Moisture Variability in the Walnut Gulch Experimental Watershed During the 2004 North American Monsoon

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Keefer, T.

    2004-12-01

    In an effort to validate soil moisture satellite products, such as the Advance Microwave Scanning Radiometer (AMSR), diverse landscapes have been studied with intensive field campaigns. Semi-arid landscapes present a particular challenge to satellite remote sensing validation using traditional techniques because of the high spatial variability and potentially rapid rates of temporal change in moisture conditions. For one semi-arid watershed, temporal stability and other common techniques of geostatistical estimation are investigated for the watershed during a portion of the North American Monsoon season of 2004. The Walnut Gulch Experimental Watershed has a dense network of 88 precipitation gages of which 19 are collocated with soil moisture sensors providing an excellent location for satellite validation experiments. In conjunction with this monitoring network, intensive soil moisture field sampling, as part of the Soil Moisture Experiment in 2004 (SMEX04), contributed to the calibration of the network for large-scale estimation and added samples at additional raingages that did not have permanent sensors. Large-scale estimates can be calculated using a limited number of surface sensors with some qualifications. Geophysical aspects of the watershed, including topography and soil type are also examined for their influence on the soil moisture variability.

  2. Assessing response of local moisture conditions in central Brazil to variability in regional monsoon intensity using speleothem 87Sr/86Sr values

    NASA Astrophysics Data System (ADS)

    Wortham, Barbara E.; Wong, Corinne I.; Silva, Lucas C. R.; McGee, David; Montañez, Isabel P.; Troy Rasbury, E.; Cooper, Kari M.; Sharp, Warren D.; Glessner, Justin J. G.; Santos, Roberto V.

    2017-04-01

    Delineating the controls on hydroclimate throughout Brazil is essential to assessing potential impact of global climate change on water resources and biogeography. An increasing number of monsoon reconstructions from δ18O records provide insight into variations in regional monsoon intensity over the last millennium. The strength, however, of δ18O as a proxy of regional climate limits its ability to reflect local conditions, highlighting the need for comparable reconstructions of local moisture conditions. Here, speleothem 87Sr/86Sr values are developed as a paleo-moisture proxy in central Brazil to complement existing δ18O-based reconstructions of regional monsoon intensity. Speleothem 87Sr/86Sr values are resolved using laser ablation and conventional solution mass spectrometry at high resolution relative to existing (non-δ18O-based) paleo-moisture reconstructions to allow comparisons of centennial variability in paleo-monsoon intensity and paleo-moisture conditions. Variations in speleothem 87Sr/86Sr values from Tamboril Cave are interpreted to reflect varying extents of water interaction with the carbonate host rock, with more interaction resulting in greater evolution of water isotope values from those initially acquired from the soil to those of the carbonate bedrock. Increasing speleothem 87Sr/86Sr values over the last millennium suggest progressively less interaction with the carbonate host rock likely resulting from higher infiltration rates, expected under wetter conditions. Increasingly wetter conditions over the last millennium are consistent with an overall trend of increasing monsoon intensity (decreasing δ18O values) preserved in many existing δ18O records from the region. Such a trend, however, is absent in δ18O records from our site (central Brazil) and Cristal Cave (southeast Brazil), suggesting the existence of divergent (relevant to δ18Oprecip) shifts in the climate patterns within and outside the core monsoon region.

  3. Past variability of the North American Monsoon: ultrahigh resolution records from the lower Gulf of California for the last 6 Ka

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Nava Fernandez, C.; Bernal, G.; Paull, C. K.

    2015-12-01

    The North American Monsoon regime results from an interplay between the ocean, atmosphere and continental topography though there is an ongoing debate as to the relative importance of sea surface temperatures (SSTs) in the NE tropical Pacific warm water lens region, solar radiation variability, land snow cover and soil moisture over the Western North America mountain ranges and the strength and spatial patterns of the dominant winds. The links between these factors and the monsoonal variability appear to be of variable importance during the short instrumental record, and hampers any prediction on the future evolution of this climatic regime in a warming climate. The terrigenous component in very-high sedimentation rate sediments on the margins of the Gulf of California links monsoonal precipitation patterns on land with the varying importance of the lithogenic component in these margin sediments. Here we use the elemental composition of Si and Fe in these margin sediments, as a proxy for the lithogenic component in a collection of box and kasten cores from the eastern and western margins of the lower Gulf of California. This region shows a strong tropical influence during the summer, as part of the northernmost extension of the eastern tropical Pacific warm water lens region. A period when the southwestern winds bring moist air masses inland enhancing the monsoonal rains on the eastern reaches of Sierra Madre Occidental. High resolution XRF results allow us to explore the relationships between different elemental ratios in these sediments and the available instrumental record and several paleo-reconstructions to evaluate the possible links between external forcings and internal feedback effects, to help to understand the controls on the evolution of the monsoonal regime in this region.

  4. Mid- to Late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, Maite; Fleitmann, Dominik; Verheyden, Sophie; Cheng, Hai; Edwards, Lawrence; Burns, Stephen; Matter, Albert; Claeys, Philippe; Keppens, Eddy

    2013-04-01

    Since the Mid-Holocene, the summer position of the Intertropical Convergence Zone (ITCZ) is gradually moving south due to the diminishing boreal summer insolation (Wanner et al., 2006). Understanding this behavior for the Indian Ocean Monsoon (IOM) and its northeast and southwest subsystems is of major importance, especially since further drying is predicted (Fleitmann et al., 2007). To investigate how precipitation from the northeast IOM subsystem is evolving since the mid Holocene, we sampled four stalagmites on Socotra, an island in the northern Indian Ocean. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains, reaching up to 3000m altitude in the middle of the island, act as a barrier forcing rain delivered by northeast winds to fall on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites are interpreted as indicators of wetter or drier conditions created by the northeast IOM. The stalagmite records suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. A similar δ18O record to that of eastern Socotra occurs in Northern Oman stalagmites after 6.2 ka. At this time, the summer ITCZ moved south of Northern Oman making precipitation from northeast winds the only moisture source available. A drying around 6 ka is also seen in sedimentary records from the Arabian Peninsula (Lezine et al., 2010; Parker et al., 2006), which nowadays are located outside the migration pathway of the ITCZ. Records on the Arabian Peninsula that today are still within the ITCZ migration belt, and thus receive rain by both the northeast as the southwest IOM, display a gradual drying after the wet Holocene optimum at 8.0 ka. In contrast to the

  5. Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Sič, B.; El Amraoui, L.; Attié, J.-L.; Zbinden, R.; Huszar, P.; Szopa, S.; Parmentier, J.; Jaidan, N.; Michou, M.; Abida, R.; Carminati, F.; Hauglustaine, D.; August, T.; Warner, J.; Imasu, R.; Saitoh, N.; Peuch, V.-H.

    2014-10-01

    The space and time variabilities of methane (CH4) total column and upper tropospheric mixing ratios are analysed above the Mediterranean Basin (MB) as part of the Chemical and Aerosol Mediterranean Experiment (ChArMEx) programme. Since the analysis of the mid-to-upper tropospheric CH4 distribution from spaceborne sensors and model outputs is challenging, we have adopted a climatological approach and have used a wide variety of data sets. We have combined spaceborne measurements from the Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer (TANSO-FTS) instrument on the Greenhouse gases Observing SATellite (GOSAT) satellite, the Atmospheric InfraRed Spectrometer (AIRS) on the AURA platform and the Infrared Atmospheric Sounder Interferometer (IASI) instrument aboard the MetOp-A platform with model results from the Chemical Transport Model (CTM) MOCAGE, and the Chemical Climate Models (CCMs) CNRM-AOCCM and LMDz-OR-INCA (according to different emission scenarios). In order to minimize systematic errors in the spaceborne measurements, we have only considered maritime pixels over the MB. The period of interest spans from 2008 to 2011 considering satellite and MOCAGE data and, regarding the CCMs, from 2001 to 2010. Although CH4 is a long-lived tracer with lifetime of ~12 years and is supposed to be well mixed in the troposphere, an east-west gradient in CH4 is observed and modelled in the mid-to-upper troposphere with a maximum in the Western MB in all seasons except in summer when CH4 accumulates above the Eastern MB. The peak-to-peak amplitude of the east-west seasonal variation in CH4 above the MB in the upper troposphere (300 hPa) is weak but almost twice as great in the satellite measurements (~25 ppbv) as in the model data (~15 ppbv). The maximum of CH4 in summer above the eastern MB can be explained by a series of dynamical processes only occurring in summer. The Asian monsoon traps and uplifts high amounts of CH4 to the upper

  6. Late Quaternary change in the North American (Mexican) Monsoon: variability in terrestrial and marine records and possible mechanisms

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Barron, J. A.; Roy, P.; Davies, S.

    2013-05-01

    The Late Quaternary history of the North American (or Mexican) monsoon (NAM) remains poorly understood, with continuing debates about the relative importance of insolation forcing, the role of the Laurentide Ice Sheet (LIS), the expression of warm (D-O) and cold (H) events in the North Atlantic and the influence of the Pacific. To date, more information has been available from the southern and northern margins of the NAM region than from its tropical and subtropical core. This is significant because to the south of the NAM region, the direct effect of ITCZ location is likely to be stronger and any potential influence of the LIS weaker, and to the north, there is an important change in present day precipitation seasonality (from summer to winter), an opposite response to forcings such as ENSO/PDO and AMO and probably a stronger influence of the LIS. As a result, the interpretation of speleothem records from New Mexico (e.g. Asmerom et al., 2010) and Arizona (e.g. Wagner et al., 2010), in the southwestern USA and marine records such as Cariaco (Peterson and Haug, 2006) and lake records such as Peten Iztá (Hodell et al., 2008) may not be applicable to the tropical NAM core. Here we present results from two lacustrine sequences in Mexico (Sayula 20oN; Babicora 29oN) and a marine core record from the central part of the Gulf of California (27oN) all extending back at least through MIS3 (ca. 60 kyr BP). Although lacking the chronological precision of the speleothem sequences, these multiproxy records preserve evidence of centennial and millennial scale variability. MIS3 is marked by generally wetter conditions in the lake basins and warmer SSTs in the marine record, particularly during D/O events, which can be attributed to a stronger monsoon as well northward displacement of the ITCZ. This contrasts with the standard interpretation of the speleothem sequences where D/O events are dry. In contrast, H events are usually drier/cooler (weaker NAM, reduced summer

  7. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n

  8. Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan

    NASA Astrophysics Data System (ADS)

    Liew, P. M.; Lee, C. Y.; Kuo, C. M.

    2006-10-01

    The East Asian monsoon Holocene optimal period has been debated both about duration and whether conditions were a maximum in thermal conditions or in precipitation. In this study we show Holocene climate variability inferred by a forest reconstruction of a subalpine pollen sequence from peat bog deposits in central Taiwan, based on modern analogues of various altitudinal biomes in the region. A warmer interval occurred between 8 and 4 ka BP (calibrated 14C years) when the subtropical forests were more extensive. The Holocene thermal optimum is represented by an altitudinal tropical forest at 6.1-5.9 ka BP and 6.9 ka BP and only the latter was accompanied by wet conditions, indicating decoupling of thermal and precipitation mechanism in the middle Holocene. Abrupt and relative severe cold phases, shown by biome changes, occurred at about 11.2-11.0 ka BP; 7.5 ka BP; 7.2 ka BP; 7.1 ka BP; 5.2 ka BP, 5.0 ka BP and 4.9 ka BP. A spectral analysis of pollen of a relatively cold taxon — Salix, reveals that the time series is dominated by a 1500 yr periodicity and similar to the cold cycle reported in the marine records of Indian and western Pacific Oceans. The cold-warm conditions inferred by the change of forests show close relationship to solar energy in comparison with the production rate of Be-10.

  9. Interannual and decadal variability of East Asian Winter Monsoon and ENSO detected in a 120-year coral record from the eastern coast of the Philippines

    NASA Astrophysics Data System (ADS)

    Fukushima, A.; Kawahata, H.; Suzuki, A.; Kojima, K.; Okai, T.; Ishimura, T.; Siringan, F. P.

    2010-12-01

    Coral skeletal climatology has provided increasing knowledge of tropical ocean-atmosphere interaction such as El Niño Southern Oscillation (ENSO). On the other hand, there are only few studies regarding the Asian Monsoon although it also plays an important role in the global climate system. Here we present a 120-year Sr/Ca and δ18O of the coral (δ18Ocoral) record (1883-2002) from the eastern coast of the Philippines. Spectral analyses of both time series showed significant quasi-biennial periodicity, which indicated the Tropospheric Biennial Oscillation (TBO) related to the Monsoon system. The δ18Ocoral time series also identified interannual (3.8 and 8.2 years) and decadal (22 years) periodicity. The former indicated ENSO-related frequency. Our reconstruction revealed that winter sea surface temperature (SST) is significantly correlated with East Asian Winter Monsoon Index (WMI) especially within climatic regimes. Then, we showed that the intensity of EAWM had changed on the decadal scale using possible regime shift detection method based on the sequential t-test. This transition occurred around regime shift years. It is suggested that winter SST variability in this region reflects the change of the wind pattern related to the decadal variability often found in the mid-latitudes. Our results suggest the potential of Philippines’ coral for monitoring the large-scale climate variability on the decadal scale.

  10. AMS 14 C dating controlled records of monsoon and Indonesian throughflow variability from the eastern Indian Ocean of the past 32,000 years

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Chen, M. T.; Shi, X.; Liu, S.; Wang, H.

    2015-12-01

    Zi-Ye Li a, Min-Te Chen b, Hou-Jie Wang a, Sheng-Fa Liu c, Xue-Fa Shi ca College of Marine Geosciences, Ocean University of China, Qingdao 266100, P.R. Chinab Institute of Applied Geosciences, National Taiwan Ocean University, Keelung, Taiwan 20224, ROCc First Institute of Oceanography, SOA, Qingdao 266100, P.R. China Indonesian throughflow (ITF) is one of the most important currents responsible for transporting heat and moisture from the western Pacific to the Indian Oceans. The ITF is also well-known as effectively in modulating the global climate change with the interactions among ENSO and Asian monsoons. Here we present an AMS 14C dating controlled sea surface temperature (SST) record from core SO184-10043 (07°18.57'S, 105°03.53'E), which was retrieved from 2171m water depth at a north-south depression located at the southeastern offshore area of Sumatera in the eastern Indian Ocean. Based on our high-resolution SST using Mg/Ca analyses based on planktonic foraminifera shells of Globigerinoides ruber and alkenone index, U k'37-SST, oxygen isotope stratigraphy, and AMC 14C age-controls, our records show that, during the past 32,000 years, the SSTs were decreased which imply weaker ITF during Marine Isotope Stage (MIS) 2 and 3. The weaker UTF may respond to strengthened northeast monsoon during the boreal winter. During 21 to 15ka, the southeast monsoon had been stronger and the northeast monsoon was relatively weaker. During 15 to 8ka, rapid sea level rising may allow the opening of the gateways in the Makassar Strait and Lombok Strait that may have further strengthened the ITF. During the early Holocene, the northeast and southeast monsoons seem to be both strengthened. We will discuss the implications of the hydrographic variability and their age uncertainties in this paper during the meeting.

  11. Controls on oxygen isotope variability in precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Tan, Ming

    2015-04-01

    Cave monitoring is important to fully understand the climatic significance of stalagmite δ18O records. Most previous studies focus on one cave, or several caves in one area. A large regional-scale investigation on the isotopic composition of precipitation and drip water is scarce. To investigate the regional-scale climate forcing on the oxygen isotopic composition of precipitation in the monsoon regions of China (MRC) and how the isotopic signals are transmitted to various drip sites, a three-year-long (2011-2014) on-site rainfall and drip water monitoring program has been carried out with approximately monthly sampling at 37 drip sites in eight caves in the MRC. Neither rainfall amount nor air temperature are the predominant controls on the oxygen isotopic composition of monthly precipitation. The rain in the wet season (May to October), with relatively low δ18O values, is sourced from tropical air masses, whereas the rainfall in the dry season (November to April), with relatively high δ18O values, is mostly sourced from continental air masses. Additionally, the weighted summer rainwater δ18O values decrease from coastal southwest China to inland northeast China, which suggests that the moisture of monsoon rainfall in China originates mainly from Indian Ocean, and transports to the north along the southwest-northeast path. 28 of the 37 drip sites are constant drips with little discernable variation in drip water δ18O through the whole study period. For most of the constant drips, the mean value of each drip water δ18O is nearly identical to or slightly higher than the three-year weighted mean value of the corresponding local rainwater δ18O, indicating these drips may be mainly recharged by none-evaporated or slightly evaporated, well-mixed older water stored in the vadose zone. 7 of all the 37 drip sites are seasonal drips, for which, although the amplitude of drip water δ18O is narrower than that of rainfall, the monthly response of drip water δ18O to

  12. Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)

    2001-01-01

    This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a

  13. Quantifying climatic variability in monsoonal northern China over the last 2200 years and its role in driving Chinese dynastic changes

    NASA Astrophysics Data System (ADS)

    Li, Jianyong; Dodson, John; Yan, Hong; Zhang, David D.; Zhang, Xiaojian; Xu, Qinghai; Lee, Harry F.; Pei, Qing; Cheng, Bo; Li, Chunhai; Ni, Jian; Sun, Aizhi; Lu, Fengyan; Zong, Yongqiang

    2017-03-01

    Our understanding on the spatial-temporal patterns of climatic variability over the last few millennia in the East Asian monsoon-dominated northern China (NC), and its role at a macro-scale in affecting the prosperity and depression of Chinese dynasties is limited. Quantitative high-resolution, regionally-synthesized palaeoclimatic reconstructions as well as simulations, and numerical analyses of their relationships with various fine-scale, numerical agro-ecological, social-economic, and geo-political historical records during the period of China's history, are presented here for NC. We utilize pollen data together with climate modeling to reconstruct and simulate decadal- to centennial-scale variations in precipitation or temperature for NC during the last 2200 years (-200-2000 AD). We find an overall cyclic-pattern (wet/warm or dry/cold) in the precipitation and temperature anomalies on centennial- to millennial-scale that can be likely considered as a representative for the entire NC by comparison with other related climatic records. We suggest that solar activity may play a key role in driving the climatic fluctuations in NC during the last 22 centuries, with its quasi ∼100, 50, 23, or 22-year periodicity clearly identified in our climatic reconstructions. We employ variation partitioning and redundancy analysis to quantify the independent effects of climatic factors on accounting for the total variation of 17 fine-grained numerical Chinese historical records. We quantitatively illustrate that precipitation (67.4%) may have been more important than temperature (32.5%) in causing the overall agro-ecological and macro-geopolitical shifts in imperial China with NC as the central ruling region and an agricultural heartland over the last 2200 years.

  14. Probabilistic versus deterministic skill in predicting the western North Pacific-East Asian summer monsoon variability with multimodel ensembles

    NASA Astrophysics Data System (ADS)

    Yang, Dejian; Yang, Xiu-Qun; Xie, Qian; Zhang, Yaocun; Ren, Xuejuan; Tang, Youmin

    2016-02-01

    Based on historical forecasts of three quasi-operational multimodel ensemble (MME) systems, this study assesses the superiority of coupled MME over contributing single-model ensembles (SMEs) and over uncoupled atmospheric MME in predicting the Western North Pacific-East Asian summer monsoon variability. The probabilistic and deterministic forecast skills are measured by Brier skill score (BSS) and anomaly correlation (AC), respectively. A forecast-format-dependent MME superiority over SMEs is found. The probabilistic forecast skill of the MME is always significantly better than that of each SME, while the deterministic forecast skill of the MME can be lower than that of some SMEs. The MME superiority arises from both the model diversity and the ensemble size increase in the tropics, and primarily from the ensemble size increase in the subtropics. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the dramatic improvement in reliability, while resolution is not always improved, similar to AC. A monotonic resolution-AC relationship is further found and qualitatively explained, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability arises from an effective reduction of the overconfidence in forecast distributions. Moreover, it is examined that the seasonal predictions with coupled MME are more skillful than those with the uncoupled atmospheric MME forced by persisting sea surface temperature (SST) anomalies, since the coupled MME has better predicted the SST anomaly evolution in three key regions.

  15. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    NASA Astrophysics Data System (ADS)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2016-11-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  16. Use of Machine Learning Techniques for Identification of Robust Teleconnections to East African Rainfall Variability

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Funk, C.

    2014-01-01

    Hidden Markov models can be used to investigate structure of subseasonal variability. East African short rain variability has connections to large-scale tropical variability. MJO - Intraseasonal variations connected with appearance of "wet" and "dry" states. ENSO/IOZM SST and circulation anomalies are apparent during years of anomalous residence time in the subseasonal "wet" state. Similar results found in previous studies, but we can interpret this with respect to variations of subseasonal wet and dry modes. Reveal underlying connections between MJO/IOZM/ENSO with respect to East African rainfall.

  17. Prediction of daily modes of South Asian monsoon variability and its association with Indian and Pacific Ocean SST in the NCEP CFS V2

    NASA Astrophysics Data System (ADS)

    Shahi, Namendra Kumar; Rai, Shailendra; Pandey, D. K.

    2016-02-01

    The prediction capability of daily modes of variability for South Asian monsoon from climate forecast system version 2 of national centers for environmental prediction with respect to observed precipitation has been assessed. The space-time structure of the daily modes for summer monsoon rainfall has been identified by using multi-channel singular spectrum analysis (MSSA). The MSSA is applied on daily anomalies of rainfall data over the South Asian monsoon region (40°E-160°E, 30°S-35°N) for the period of 2001-2013 with a lag window of 61 days for June-July-August-September season. The broad spectrum around 45 and 50 days was obtained from the observed and model data during the time domain of our study. The space-time structure of the modes obtained from the model shows good resemblance with respect to the observation. The observed northeastward propagation of oscillatory mode is well simulated by the model. The significant improvement in the space-time structure, period of oscillation, and propagation of oscillatory modes was found in the model. The observed connectivity of oscillatory and persisting modes with the sea surface temperature of Indian and Pacific Ocean has also been investigated and it was found that the model is able to predict it reasonably well.

  18. The Monsoon as a Self-regulating Coupled Ocean-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Clark, C.; Cherikova, G.; Fasullo, J.; Han, W.; Loschnigg, J.; Sahami, K.

    INTRODUCTION REGULATION OF THE MONSOON ANNUAL CYCLE The Climatological Annual Cycle Processes Determining the Annual Cycle of the Monsoon Role of Ocean Dynamics in the Annual Heat Balance of the Indian - Ocean Regulation of the Annual Cycle of the Monsoon: an Ocean-Atmosphere - Feedback System INTERANNUAL VARIABILITY OF THE MONSOON Modes of Interannual Variability in the Monsoon Interannual Modes in Ocean Heat Transport Interannual Regulation of the Monsoon GENERAL THEORY OF REGULATION OF THE COUPLED OCEAN-ATMOSPHERIC MONSOON - SYSTEM CONCLUSIONS REFERENCES

  19. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Tada, Ryuji; Zheng, Hongbo; Clift, Peter D.

    2016-12-01

    Uplift of the Himalaya and Tibetan Plateau (HTP) and its linkage with the evolution of the Asian monsoon has been regarded as a typical example of a tectonic-climate linkage. Although this linkage remains unproven because of insufficient data, our understanding has greatly advanced in the past decade. It is thus timely to summarize our knowledge of the uplift history of the HTP, the results of relevant climate simulations, and spatiotemporal changes in the Indian and East Asian monsoons since the late Eocene. Three major pulses of the HTP uplift have become evident: (1) uplift of the southern and central Tibetan Plateau (TP) at ca. 40-35 Ma, (2) uplift of the northern TP at ca. 25-20 Ma, and (3) uplift of the northeastern to eastern TP at ca. 15-10 Ma. Modeling predictions suggest that (i) uplift of the southern and central TP should have intensified the Indian summer monsoon (ISM) and the Somali Jet at 40-35 Ma; (ii) uplift of the northern TP should have intensified the East Asian summer monsoon (EASM) and East Asian winter monsoon (EAWM), as well as the desertification of inland Asia at 25-20 Ma; and (iii) uplift of the northeastern and eastern TP should have further intensified the EASM and EAWM at 15-10 Ma. We tested these predictions by comparing them with paleoclimate data for the time intervals of interest. There are insufficient paleoclimate data to test whether the ISM and Somali Jet intensified with the uplift of the southern and central TP at 40-35 Ma, but it is possible that such uplift enhanced erosion and weathering that drew down atmospheric CO2 and resulted in global cooling. There is good evidence that the EASM and EAWM intensified, and desertification started in inland Asia at 25-20 Ma in association with the uplift of the northern TP. The impact of the uplift of the northeastern and eastern TP on the Asian monsoon at 15-10 Ma is difficult to evaluate because that interval was also a time of global cooling and Antarctic glaciation that might also

  20. Decadal- to biennial scale variability of planktic foraminifera in the northeastern Arabian Sea during the last two millennia: evidence for winter monsoon forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Munz, Philipp; Lückge, Andreas; Siccha, Michael; Kucera, Michal; Schulz, Hartmut

    2015-04-01

    The Asian monsoon system is controlling the hydrologic cycle, and thus the agricultural and economic prosperity of the worlds most densely populated region. Strong and moisture-laden winds from the southwest induce upwelling and significant productivity in the western Arabian Sea during boreal summer. During boreal winter, weaker dry and cold surface winds from the northeast nourish ocean productivity mainly in the northeastern Arabian Sea. Instrumental records spanning the last century are too short to understand how the monsoon system reacts to external forcing mechanisms and to accurately determine its natural variability. Compared to the summer monsoon component, the dynamics of the winter monsoon are virtually unknown, due to the lack of adequate archives that are affected only by winter conditions. Here we present a decadal- to biennial-scale resolution record of past winter monsoon variability over the last two millennia, based on census counts of planktic foraminifera from two laminated sediment cores collected offshore Pakistan. One shorter box core (SO90-39KG) spans the last 250 years with an average ~2-year resolution, whereas the longer piston core (SO130-275KL) spans the last 2,100 years with a 10-year resolution. We use Globigerina falconensis as a faunal indicator for winter conditions, a species that is most abundant during winter in the NE Arabian Sea (Peeters and Brummer, 2002; Schulz et al., 2002). Our results show that during the past 2,100 years G. falconensis varied with significant periodicities centered on ˜ 60, ˜ 53, ˜ 40, ˜ 34 and ˜ 29 years per cycle. Some of these periods closely match cycles that are known from proxy records of solar irradiance, suggesting a solar forcing on winter monsoon variability. During the past 250 years G. falconensis varied in correlation with the (11-year) Schwabe and the (22-year) Hale solar cycles. Furthermore, a significant ˜ 7 year cyclicity could indicate a teleconnection to the El Niño Southern

  1. Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; Polo, Irene; Losada, Teresa; Druyan, Leonard M.; Fontaine, Bernard; Bader, Juergen; Doblas-Reyes, Francisco J.; Goddard, Lisa; Janicot, Serge; Arribas, Alberto; Lau, William; Colman, Andrew; Vellinga, M.; Rowell, David P.; Kucharski, Fred; Voldoire, Aurore

    2015-01-01

    The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

  2. Metric variability in the anterior dentition of African colobines.

    PubMed

    Leutenegger, W

    1976-07-01

    The anterior dentition of three species of African colobines (Colobus polykomos, C. badius, and C. verus) was investigated metrically and the results analyzed for three characters: (1)intraspecific tooth size relations, (2)sexual dimorphism, and (3)interspecific relations. Based on incisor size sequences C. polykomos and C. badius appear to be more closely related to each other than either is to C. verus. However, incorporating the results of a previous study on postcanine dentition the three species appear to be equally closely related. The magnitude of sexual dimorphism in canine size decreases from C. badius to C. verus to C. polykomos. Interspecific differences in the degree of canine size dimorphism may be attributed to differential intensities of male intrasexual selection; however, the interspecific differences in canine size dimorphism do not correspond to the interspecific differences in body size dimorphism.

  3. Simulation of East Asian Summer Monsoon (EASM) in SP-CCSM4: Part I—Seasonal mean state and intraseasonal variability

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Stan, Cristiana

    2016-07-01

    The mean state and intraseasonal variability of the East Asian Summer Monsoon (EASM) simulated by the Super-Parameterized Community Climate System Model version 4 (SP-CCSM4) and the conventionally parameterized CCSM4 are evaluated against observations. The SP-CCSM4 model has a better simulation of the May-June-July-August seasonal mean state of EASM than CCSM4, although it produces a dry bias over the EASM area compared to observations. The dry bias in SP-CCSM4 is associated with the erroneous northward displacement of the western North Pacific subtropical high. The SP-CCSM4 model simulates the reasonable monsoon onset and northward propagation of the monsoonal precipitation, yet the rainband marches faster and reaches to a higher latitude than in observations. The mechanisms associated with the northward propagation of the intraseasonal oscillation (ISO) of EASM are also captured by SP-CCSM4. The cyclonic vorticity and the moisture convergence lead the convective activity, favoring the northward propagation of convection. The easterly wind shear and air-sea interaction mechanisms in the model are realistic and show contributions to the northward propagation of the ISO of the model. The SP-CCSM4 model captures many facets of the stepwise northward propagation of the precipitation belt in the EASM region, including the Mei-yu season. However, compared to the observations, in the model the onset of the Mei-yu season takes place 5 days earlier and the duration of the Mei-yu's rainy episode is shorter. The CCSM4 model has large deficiencies in simulating the intraseasonal variability of EASM.

  4. Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoon

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-12-20

    The Earth's monsoon systems are the life-blood of more than two-thirds of the world's population through the rainfall they provide to the mainly agrarian societies they influence. More than 60 experts gathered to assess the current understanding of monsoon variability and to highlight outstanding problems simulating the monsoon.

  5. Analysis of the linkages between rainfall and land surface conditions in the West African monsoon through CMAP, ERS-WSC, and NOAA-AVHRR data

    NASA Astrophysics Data System (ADS)

    Philippon, Nathalie; Mougin, Eric; Jarlan, Lionel; Frison, Pierre-Louis

    2005-12-01

    -vegetation water content over Guinea from winter to spring. Cross correlations and Granger causality analyses partly relate these winter to spring land surface anomalies to those recorded in precipitation during the previous autumn. Spring soil-vegetation water content anomalies strengthen the meridional gradient of soil-vegetation water content over the subcontinent. This gradient is thought to contribute to the gradient of entropy that drives the West African monsoon.

  6. Ice-sheet influences on global Monsoon systems (Invited)

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; Elison Timm, O.; Friedrich, T.; Abe-Ouchi, A.; Menviel, L.; Tigchelaar, M.

    2013-12-01

    The waxing and waning of the northern Hemisphere ice-sheets on orbital and millennial timescales and corresponding changes in atmospheric and oceanic circulation played an essential role in modulating monsoon systems globally. Here we review the mechanisms by which changes in ice-sheet orography, global sea-level and freshwater input into the North Atlantic can influence global wind patterns and tropical moisture convergence. Our analysis is based on a series of transient model simulations conducted with the newly developed 3-dimensional coupled ice-sheet-climate model iLOVE. Forced by orbital and greenhouse gas concentrations over the past 80 ka, this model realistically simulates the evolution of Northern Hemisphere ice volume. It is demonstrated that orbital-scale changes in ice-sheet orography influence the South American and African Monsoons, but leave Asian Monsoon systems relatively unaltered. On millennial timescales the situation is very different. Freshwater forcing from calving ice-sheets causes variations of the thermohaline circulation, North Atlantic sea surface temperatures and global wind patterns. Using an earth system model hindcast for the period 30-50 ka in combination with high-resolution hydroclimate proxies, we demonstrate that this mechanism can explain for the bulk of MIS3 global Monsoon variability on millennial-timescales. In addition to these remote influences, rainfall intensity in the dominant Monsoon regions is also modulated by precessional forcing and corresponding shifts of the meridional surface temperature gradients. This presentation will conclude with a brief discussion of gaps in our understanding of how orbital forcing affected Monsoons and Intertropical Convergence Zones during the Pleistocene.

  7. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean.

    PubMed

    Tierney, Jessica E; Smerdon, Jason E; Anchukaitis, Kevin J; Seager, Richard

    2013-01-17

    The recent decades-long decline in East African rainfall suggests that multidecadal variability is an important component of the climate of this vulnerable region. Prior work based on analysing the instrumental record implicates both Indian and Pacific ocean sea surface temperatures (SSTs) as possible drivers of East African multidecadal climate variability, but the short length of the instrumental record precludes a full elucidation of the underlying physical mechanisms. Here we show that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal. Our results, based on proxy indicators of relative moisture balance for the past millennium paired with long control simulations from coupled climate models, reveal that moist conditions in coastal East Africa are associated with cool SSTs (and related descending circulation) in the eastern Indian Ocean and ascending circulation over East Africa. The most prominent event identified in the proxy record--a coastal pluvial from 1680 to 1765--occurred when Indo-Pacific warm pool SSTs reached their minimum values of the past millennium. Taken together, the proxy and model evidence suggests that Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales.

  8. Dry and wet spell variability during monsoon in gauge-based gridded daily precipitation datasets over India

    NASA Astrophysics Data System (ADS)

    Chaudhary, Shushobhit; Dhanya, C. T.; Vinnarasi, R.

    2017-03-01

    Accurate estimates of monsoonal rainfall at daily time scales are essential inputs for various water-related sectors such as drought and flood forecasting, crop and water management for agriculture. To serve this purpose, a variety of rainfall products, especially the gauge based products which serve as the ground-truth for other derived rainfall products, are available over India. In this study, three different daily gauge based gridded rainfall datasets, namely Indian Meteorological Department (IMD), Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Climate Prediction Center (CPC) unified rain gauge data are compared over India for the monsoon season of 1979-2007. The comparison among the datasets is based on the duration, frequency and intensity of three different spell characteristics, namely dry, wet and extreme wet spells, and their associated trends. Wet (dry) spells are defined as the consecutive period of wet (dry) days, where a wet (dry) day is defined using rainfall threshold of 1 mm. Extreme wet spells are defined using the 90th percentile of rainfall above the depth of wet day. All datasets capture the spatial distribution of precipitation characteristics, albeit with pronounced differences at heavy rainfall regions. CPC and IMD show a close match in spell characteristics while APHRODITE significantly deviates. APHRODITE shows increased intensity of rainfall during dry periods, leading to over-estimation of wet days and under-estimation of dry days. Northern extreme of India (Jammu and Kashmir) show major differences in replicating the spell characteristics. Trend patterns are also not consistent between the three datasets. The present study will provide information on the spatio-temporal pattern of dry, wet and extreme wet spell characteristics over India and aid in selecting appropriate datasets for studying the Indian monsoon rainfall depending on their scope and application of

  9. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  10. Variability of foF2 in the African equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Akala, A. O.; Oyeyemi, E. O.; Somoye, E. O.; Adeloye, A. B.; Adewale, A. O.

    2010-06-01

    This paper presents the impact of diurnal, seasonal and solar activity effects on the variability of ionospheric foF2 in the African equatorial latitude. Three African ionospheric stations; Dakar (14.8°N, 17.4°W, dip: 11.4°N), Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N) and Djibouti (11.5°N, 42.8°E, dip: 7.2°N) were considered for the investigation. The overall aim is to provide African inputs that will be of assistance at improving existing forecasting models. The diurnal analysis revealed that the ionospheric critical frequency (foF2) is more susceptible to variability during the night-time than the day-time, with two peaks in the range; 18-38% during post-sunset hours and 35-55% during post-midnight hours. The seasonal and solar activity analyses showed a post-sunset September Equinox maximum and June Solstice maximum of foF2 variability in all the stations for all seasons. At all the stations, foF2 variability was high for low solar activity year. Overall, we concluded that equatorial foF2 variability increases with decreasing solar activity during night-time.

  11. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China

    NASA Astrophysics Data System (ADS)

    Yu, F.; Zong, Y.; Lloyd, J. M.; Leng, M. J.; Switzer, A. D.; Yim, W. W.; Huang, G.

    2012-12-01

    Understanding the mid-Holocene dynamics of the East Asian monsoon (EAM) is integral to modelling the Holocene development of the global climate system (Webster et al., 1998). Thus the mid-Holocene EAM history was reconstructed using bulk organic carbon isotopes (δ13C), total carbon to total nitrogen (C/N) ratios and total organic carbon (TOC) from a sediment core (UV1), at a mean resolution of 7-10 years, from the Pearl River estuary, southern China. Sedimentary δ13C, C/N and TOC from the Pearl River estuary is a good indicator of changes in monsoonal precipitation strength (Zong et al., 2006; Yang et al., 2010; Yu et al., 2010), eg sediments buried during a period of high precipitation exhibit a high proportion of terrigenous sediments, and have low δ13C and high C/N, and vice versa (Yu et al., 2010). Results suggest a general decreasing trend in monsoonal precipitation from 6650 to 2215 cal yr BP because of the weakening Northern Hemisphere insolation most likely related to the current precession circle (An, 2000). Superimposed on this trend are apparent dry-wet oscillations at centennial to millennial timescales most likely in response to solar activity. Mismatch between δ13C and results from the Dongge Cave in southern China at millennial-timescale oscillations (Wang et al., 2005), may indicate that the δ13C from the Pearl River estuary reveals changes in precipitation in a broader area than the δ18O from Dongge Cave does. Reference An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171-187. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA and Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308: 854-857. Webster PJ, Magaña VO, Palmer TN, Shukla J and Tomas RA (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 14451-14510. Yang S, Tang M, Yim WWS, Zong

  12. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China

    NASA Astrophysics Data System (ADS)

    Yu, F.; Lloyd, J. M.; Zong, Y.; Leng, M. J.; Switzer, A. D.; Yim, W. W.; Huang, G.

    2010-12-01

    Understanding the mid-Holocene dynamics of the East Asian monsoon (EAM) is integral to modelling the Holocene development of the global climate system (Webster et al., 1998). Thus the mid-Holocene EAM history was reconstructed using bulk organic carbon isotopes (δ13C), total carbon to total nitrogen (C/N) ratios and total organic carbon (TOC) from a sediment core (UV1), at a mean resolution of 10 years, from the Pearl River estuary, southern China. Sedimentary δ13C, C/N and TOC from the Pearl River estuary is a good indicator of changes in monsoonal precipitation strength (Zong et al., 2006; Yang et al., 2010), eg sediments buried during a period of high precipitation exhibit a high proportion of terrigenous sediments, and have low δ13C and high C/N, and vice versa (Yu et al., 2010). Results suggest a general decreasing trend in monsoonal precipitation from 6650-2215 cal yr BP due to the weakening insolation over northern hemisphere most likely related to the current precession circle (An, 2000). Superimposed on this trend are apparent dry-wet oscillations at centennial to millennial timescales most likely in response to solar activity. Mismatch between δ13C and results from the Dongge Cave in southern China at millennial-timescale oscillations (Wang et al., 2005), may indicate that the δ13C from the Pearl River estuary reveals changes in precipitation in a broader area than the δ18O from Dongge Cave does. Reference An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171-187. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA and Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308: 854-857. Webster PJ, Magaña VO, Palmer TN, Shukla J and Tomas RA (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 14451-14510. Yang S, Tang M, Yim WWS, Zong Y, Huang G, Switzer

  13. Monsoon variability in the northeastern Arabian Sea on orbital- and millennial scale during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Lückge, Andreas; Groeneveld, Jeroen; Steinke, Stephan; Mohtadi, Mahyar; Westerhold, Thomas; Schulz, Hartmut

    2016-04-01

    The Dansgaard-Oeschger oscillations and Heinrich events described in the Greenland ice cores and in North Atlantic and Western Mediterranean sediments are also expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. However, little is known about these fluctuations beyond the reach of the Greenland ice cores. Here, we present high-resolution geochemical, sedimentological as well as micropaleontological data from two cores (SO130-283KL, 987m water depth and SO130-289KL, 571m) off the coast of Pakistan, extending the monsoon record on orbital and millennial scales to the past 200,000 years. The stable oxygen isotope record of the surface-dwelling planktonic foraminifer G. ruber shows a strong correspondence to Greenland ice core δ18O, whereas the deepwater δ18O signal of benthic foraminifera (U. peregrina and G. affinis) reflects patterns recorded in ice cores from Antarctica. Strong shifts in benthic δ18O during stadials/Heinrich events are interpreted to show frequent advances of oxygen-rich intermediate water masses into the Arabian Sea originating from the southern ocean. Alkenone-derived SSTs varied between 23 and 28° C. Highest temperatures were encountered during interglacial MIS 5. Rapid SST changes of 2° C magnitude on millennial scale are overlain by long-term SST fluctuations. Interstadials (of glacial phases) and the cold phases of interglacials are characterized by sediments enriched in organic carbon (up to 4 % TOC) whereas sediments with low TOC contents (< 1 % TOC) appear during stadials and Heinrich events. Shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related and anoxia-indicating proxies. Interstadial inorganic elemental data consistently show that enhanced fluxes of terrestrial-derived sediments are paralleled by productivity maxima, and are characterized by an increased fluvial contribution from the Indus River. In contrast, stadials are

  14. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  15. Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2015-10-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  16. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets

    SciTech Connect

    Lin, Renping; Zhou, Tianjun; Qian, Yun

    2014-02-01

    With the motivation to identify whether or not a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data (NCEP2, ERA40, JRA25, ERA-Interim and MERRA) in reproducing the climatology, interannual variation and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. In order to better understand the variability and long-term trend of GM precipitation, we also examined the major components of water budget, including evaporation, water vapor convergence and the change in local water vapor storage, based on five reanalysis datasets. The results show that all five reanalysis data reasonably reproduce the climatology of GM precipitation. The ERA-Interim (NCEP2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979-2001 along with a strong interannual variability, which is reasonably reproduced by the five sets of reanalysis data. The observed increasing trend of GM precipitation is dominated by the contribution from the North African, North American and Australian monsoons. All five data fail in reproducing the increasing tendency of North African monsoon precipitation. The wind convergence term in water budget equation dominate the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

  17. Holocene monsoon variability inferred from Targo Xian peat bog in the Tangra Yumco basin, central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Henkel, Karoline; Haberzettl, Torsten; Miehe, Sabine; Frenzel, Peter; Daut, Gerhard; Dietze, Elisabeth; Kasper, Thomas; Ahlborn, Marieke; Mäusbacher, Roland

    2013-04-01

    The Tibetan Plateau is the greatest plateau on Earth with an average altitude of 4,500 m asl. Due to its high elevation, large area and significant role in the formation of the Asian Monsoon Systems (e.g., Indian Ocean and East-Asian Summer Monsoon) it is considered to react very sensitive to climate variations. The numerous lake systems on the Tibetan Plateau represent excellent archives reflecting variations in the strength of the monsoon system in terms of hydrological changes expressed in lake level fluctuations. For example, terraces and lacustrine deposits around the saline lake Tangra Yumco indicate lake level highstands up to ~215 m higher than the present lake level. To study Holocene lake level variations we investigated a 3.6 m long sediment core recovered from a peat bog (near the Targo Xian settlement, 30°46'N, 86°40'E) on a recessional lake level terrace ~150 m above the present shoreline of Tangra Yumco. In particular, our analyses of sedimentological (grain size), geochemical (CNS and ICP-OES) and mineralogical (XRD) data allow a detailed and high-resolution interpretation of the hydrological conditions during the Holocene. The existence of two carbonate layers in the Targo Xian record, separated by a sand layer and intercalated in peat sequences at the bottom and top of the core, provide evidence for two stable lake stages at the coring position. Peat at the bottom of the core, which is radiocarbon-dated to 11,130 +130/-345 cal BP, indicates wetland conditions similar to the Recent situation (Miehe et al., submitted). After a transition zone, a layer of pure aragonitic lake marl gives evidence for a lake stage. During this stage, high values of the total inorganic carbon (TIC) and Ca/Ti ratios as well as low C/N ratios point to a stable lake due to wet climatic conditions. This carbonate layer can be correlated with a 2-3 m thick carbonate layer found in outcrops around the present lake Tangra Yumco presenting a high lake level until approx. 2

  18. Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation

    NASA Astrophysics Data System (ADS)

    Awasthi, Neeraj; Ray, Jyotiranjan S.; Singh, Ashutosh K.; Band, Shraddha T.; Rai, Vinai K.

    2014-10-01

    present a geochemical and Sr-Nd isotopic study on a sediment core collected from the Andaman Sea in an attempt to reconstruct the Late Quaternary weathering and erosion patterns in the watersheds of the river systems of Myanmar and understand their controlling factors. Age control is based on nine radiocarbon dates and δ18O stratigraphy. The rate of sedimentation was strongly controlled by fluctuations of the monsoon. We identify three major sediment provenances: (1) the Irrawaddy catchment, (2) the western slopes of the Indo-Burman-Arakan (IBA) mountain ranges and the Andaman Islands, and (3) the catchments of Salween and Sittang and the Bengal shelf, with the first two contributing 30-60% of the material. Enhanced contributions from juvenile sources and corresponding positive shifts of δ18O are observed at seven time periods (11-14, 20-23, 36, 45, 53, 57, and 62 ka) of which five are synchronous with cooling of the northern hemisphere, suggesting a link between the changes in sediment provenances and the shifting of the locus of the summer monsoon, southward from the Himalayas, without substantial reduction in intensity. Our data, and that from other cores in the region suggest that an eastward moving surface current disperses sediments, derived from the Bengal shelf and western margin of Myanmar, from the eastern Bay of Bengal into the western Andaman Sea and that its strength has increased since the LGM. The existence of this current during the LGM implies that the Andaman Sea and the Bay of Bengal were well connected during the last glacial period.

  19. Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing

    NASA Astrophysics Data System (ADS)

    Beal, L. M.; Hormann, V.; Lumpkin, R.; Foltz, G. R.

    2014-12-01

    We use two decades of drifter and satellite data to examine the monthly evolution of the surface circulation of the Arabian Sea, which reverses annually in response to the Indian monsoon winds. Most significantly, we find that in the transition from winter to summer circulations, northward flow appears along the length of the western boundary as early as March or April, one or two months before the onset of the southwest monsoon winds. This reversal is initiated by annual Rossby waves, which in turn are initiated by wind curl forcing during the previous southwest monsoon. These results lead us to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Previous studies of monsoon circulations with lower temporal resolution have highlighted basin-wide currents and connections that are not found to exist in the monthly fields. In particular, we find that the Northeast Monsoon Current does not reach the western boundary and there is no counter-rotating gyre system during boreal winter. South of the equator, the eastward-flowing South Equatorial Counter Current (SECC) is present year-round, even though equatorial winds are strongly influenced by the monsoons. Semi-annual variability of the SECC is governed by Ekman pumping over the south equatorial gyre (or Seychelles dome) and, surprisingly, it is weakest during the northeast monsoon. This region has important influence on the atmosphere and its link to the monsoons deserves further investigation. The East African Coastal Current feeds into the SECC from the boundary. During the southwest monsoon it overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC after looping back across the equator. This apparent retroflection of the EACC is what was previously known as the southern gyre and is obscured at the surface by strong, locally wind-driven, cross-equatorial Ekman transport. Finally, there is broad, strong eastward flow at

  20. Sensitivity of the mean and variability of Indian summer monsoon to land surface schemes in RegCM4: Understanding coupled land-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Halder, Subhadeep; Dirmeyer, Paul A.; Saha, Subodh Kumar

    2015-09-01

    A relatively simple land surface model, the Biosphere-Atmosphere Transfer Scheme (BATS) and the more complex Community Land Model (CLM3.5) coupled to RegCM4 are used to investigate land-atmosphere feedback processes during the Indian summer monsoon. Model simulations for 27 years show that the mean and interannual variability of rainfall and surface air temperature are affected significantly due to differences in the formulation of evapotranspiration and hydrological processes between BATS and CLM3.5, prescribed land use, land cover data and changes in net radiation. RegCM4 with CLM3.5 (RCLM) shows a reduction in surface moisture flux and precipitation but an increase in surface air temperature over most parts of India as compared to RegCM4 with BATS (RBAT). In terms of the mean and interannual variability of rainfall over central India, RBAT performs better than RCLM. Evapotranspiration over central India is found to be less (more) sensitive to soil wetness variations in RCLM (RBAT) compared to the multimodel estimate from the Global Soil Wetness Project, that is mainly attributed to the differences in ground evaporation and transpiration. Changes in evaporation efficiency between the models also lead to a reduction in the land-atmosphere coupling strength for precipitation in RCLM. Furthermore, such changes decrease the convective instability over central and eastern India in RCLM leading to weakened convection, reduced large-scale moisture convergence and precipitation over land. Observations of soil moisture, surface fluxes, and radiation are needed for better understanding and improvement of coupled land-atmosphere feedbacks in models during the Indian summer monsoon.

  1. Genesis of meteorological disturbances and thermohaline variability of the upper layers in the head of the Bay of Bengal during MONsoon Trough Boundary Layer EXperiment (MONTBLEX-90)

    NASA Astrophysics Data System (ADS)

    Sanilkumar, K. V.; Mohankumar, N.; Joseph, M. X.; Rao, R. R.

    1994-10-01

    Time-series measurements of surface meteorological elements and near-surface thermohaline profiles made at a station at the head of the Bay of Bengal during the MONsoon Trough Boundary Layer EXperiment (MONTBLEX-90; August-September 1990) were utilized to describe and explain the observed short-term variability in the thermohaline structure during active and inactive regimes of the summer monsoon. The observed near-surface thermal structure showed the occurrence of distinct isolated mini-warm pockets with temperatures in excess of 29°C extending from the surface to about 30 m depth, with a temporal correspondence to the formation of meteorological disturbances over the Bay's head. Accumulation of heat in the upper layers in excess of 0.4 × 10 8 J m -2 (with respect to the 28.7°C isotherm) appeared to have triggered the formation of meteorological disturbances that extracted this surplus energy to lower the surface temperature to around 28.7°C. The depth-time sections of thermohaline fields suggest the signature of a transient eddy or propagating wave. The small-scale structure in the thermohaline profiles was more prominent during September 1990 compared to August 1990. Two simple one-dimensional numerical models following KRAUS and TURNER (1967, Tellus, 19, 98-106), DENMAN (1973, Journal of Physical Oceanography, 3, 173-189), MILLER (1976, Journal of Physical Oceanography, 6, 29-35) and NIILER (1975, Journal of Marine Research, 33, 405-422), NIILER and KRAUS (1977, Modelling and prediction of the upper layers of the ocean, Pergamon, pp. 143-172) were evaluated to assess the relative importance of the local atmospheric forcing to account the observed variability in the near-surface mixed layer characteristics.

  2. Enhancing the Variable Infiltration Capacity Model to Account for Natural and Anthropogenic Impacts on Evapotranspiration in the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2015-12-01

    Evapotranspiration (ET) is a poorly constrained flux in the North American monsoon (NAM) region, leading to potential errors in land-atmosphere feedbacks. Due to the region's arid to semi-arid climate, two factors play major roles in ET: sparse vegetation that exhibits dramatic seasonal greening, and irrigated agriculture. To more accurately characterize the spatio-temporal variations of ET in the NAM region, we used the Variable Infiltration Capacity (VIC) model, modified to account for soil evaporation (Esoil), irrigated agriculture, and the variability of land surface properties derived from the Moderate Resolution Imaging Spectroradiometer during 2000-2012. Simulated ET patterns were compared to field observations at fifty-nine eddy covariance towers, water balance estimates in nine basins, and six available gridded ET products. The modified VIC model performed well at eddy covariance towers representing the natural and agricultural land covers in the region. Simulations revealed that major source areas for ET were forested mountain areas during the summer season and irrigated croplands at peak times of growth in the winter and summer, accounting for 22% and 9% of the annual ET, respectively. Over the NAM region, Esoil was the largest component (60%) of annual ET, followed by plant transpiration (T, 32%) and evaporation of canopy interception (8%). Esoil and T displayed different relations with P in natural land covers, with Esoil tending to peak earlier than T by up to one month, while only a weak correlation between ET and P was found in irrigated croplands. These VIC-based estimates are the most realistic to date for this region, outperforming several other process-based and remote-sensing-based gridded ET products. Furthermore, spatio-temporal patterns reveal new information on the magnitudes, locations and timing of ET in the North American monsoon region, with implications for land-atmosphere feedbacks.

  3. Climatic variability in the Mediterranean region over the last 130 ka, sapropel formation and teleconnection with the North Atlantic and monsoon systems

    NASA Astrophysics Data System (ADS)

    Sanchez Goñi, M. F.; Fletcher, W. J.; Landais, A.

    2009-04-01

    Since the identification of millennial-scale climatic variability in Greenland and the North Atlantic (Dansgaard-Oeschger (D-O) and Heinrich (H) events) several questions remain open regarding the expression of this variability in the Mediterranean region, the oceanic and atmospheric mechanisms involved and how other forcings such as orbital parameters affect this variability. Several high-resolution pollen-rich marine cores retrieved in the framework of the IMAGES and ODP programs and covering at least the last 50,000 years have been analysed in the last decade. An array of terrestrial and marine micropalaeontological (pollen, foraminifer), sedimentary (microcharcoal, ice rafted detritus) and geochemical (d18O and d13C) tracers from the same sample set has allowed us to establish a direct correlation between the evolution of the atmospheric and oceanic reservoirs. All the D-O events have a counterpart in western Mediterranean terrestrial and marine ecosystems. Cold sea surface temperatures (SST) were synchronous with the expansion of semi-desert landscapes indicating a decrease in winter precipitation likely related with the northward displacement of the westerlies. SST increases were contemporaneous with the expansion of this forest and, therefore, the establishment of the Mediterranean climate, i.e. wet and mild winters with warm and dry summers. The best expression of the Mediterranean climate occurred during the Eemian, D-O 24, 21, 17-16, 8-7, 1 and the Holocene. These maxima occurred always during precession minima (seasonality maxima). The comparison of Mediterranean and Atlantic terrestrial and marine palaeoclimatic records of the last glacial period with Greenland temperature changes reveals that the Mediterranean region is distinctly impacted by precession. The comparison of this contrasting latitudinal climatic scenario with the global methane record which is also modulated by precession during the last climatic cycle reveals that the amplitude of

  4. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.

    2016-06-01

    In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the

  5. Stalagmite-inferred centennial variability of the Asian summer monsoon in southwest China between 58 and 79 ka BP

    NASA Astrophysics Data System (ADS)

    Zhang, Tao-Tao; Li, Ting-Yong; Cheng, Hai; Edwards, R. Lawrence; Shen, Chuan-Chou; Spötl, Christoph; Li, Hong-Chun; Han, Li-Yin; Li, Jun-Yun; Huang, Chun-Xia; Zhao, Xin

    2017-03-01

    We use a new spliced stalagmite oxygen isotope record from Yangkou Cave and Xinya Cave, Chongqing, southwest China, to reconstruct the centennial-millennial-scale changes in Asian Summer Monsoon (ASM) intensity between 58.0 and 79.3 thousand years before present (ka BP, before AD 1950). This multidecadally resolved record shows four strong ASM periods, corresponding to Greenland Interstadials (GIS) 17-20, and three weak ASM episodes, among which, the one starting at 61.5 ± 0.2 ka BP and ending at 59.4 ± 0.2 ka BP that may correlate with Heinrich Event 6. The close agreement of climate events between China and Greenland supports the notion that the ASM is dominantly governed by high-latitude forcings in the Northern Hemisphere. The short-lived interstadial GIS 18, however, lasted for over 3 kyr in the records derived from ASM region, reflecting a gradual decline of ASM intensity, which coincides with a millennial-scale warming trend in Antarctica. This suggests an additional forcing of the ASM by the Southern Hemisphere, which also affected GIS 8-12, H4 and H5, as shown by previous speleothem studies from the ASM region.

  6. Robust signals of future projections of Indian summer monsoon rainfall by IPCC AR5 climate models: Role of seasonal cycle and interannual variability

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan

    2015-05-01

    Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.

  7. Modification of the southern African rainfall variability/ENSO relationship since the late 1960s

    NASA Astrophysics Data System (ADS)

    Richard, Y.; Trzaska, S.; Roucou, P.; Rouault, M.

    Analysis of 149 raingauge series (1946-1988) shows a weak positive correlation between late summer rainfalls (January-March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds

  8. Environmental variability in the monsoon-westerlies transition zone during the last 1200 years: lake sediment analyses from central Mongolia and supra-regional synthesis

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Herzschuh, Ulrike; Dallmeyer, Anne; Xu, Qinghai; Mischke, Steffen; Biskaborn, Boris K.

    2013-08-01

    A high resolution multi-proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6°N, 101.8°E; 2270 m a.s.l.) in the south-eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix-Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix-Betula forest steppe (after ˜ AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial-scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present-day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only.

  9. Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki

    NASA Astrophysics Data System (ADS)

    As-syakur, Abd. Rahman; Osawa, Takahiro; Miura, Fusanori; Nuarsa, I. Wayan; Ekayanti, Ni Wayan; Dharma, I. Gusti Bagus Sila; Adnyana, I. Wayan Sandi; Arthana, I. Wayan; Tanaka, Tasuku

    2016-09-01

    Rainfall is among the most important climatic elements of the Maritime Continent. The Maritime Continent rainfall climate is uniquely located in the world's most active convective area. Satellite data measured by the Tropical Rainfall Measuring Mission (TRMM) 3B43 based high-resolution rainfall products represent monthly Maritime Continent rainfall characteristics over 16 years. Several statistical scores were employed to analyse annual means, linear trends, seasonal means, and anomalous Maritime Continent rainfall characteristic percentages. The effects of land and topography on rainfall quantities were also studied and compared with the Global Precipitation Climatology Project (GPCP) gridded precipitation estimates which has low-resolution. Comparison also applied on linear correlation and partial correlation techniques to determine the relationship between rainfall and the El Niño Modoki and El Niño-Southern Oscillation (ENSO; hereafter conventional El Niño). The results show that north-south Maritime Continent precipitation is associated with and generated by the northwest and southeast monsoon patterns. In addition, the large-scale circulations are linked with heavy rainfall over this land-ocean region due to large-scale island-topography-induced convective organization. The rainfall responses to El Niño Modoki and conventional El Niño clearly indicated the times at which the conventional El Niño had a higher impact than El Niño Modoki, especially during northern winter and spring, and vice versa during northern fall, and similarly affect during northern summer. Furthermore, the dynamic movements of rainfall anomaly that are caused by El Niño Modoki and the conventional El Niño events spanned from the southwest during June-July-August (JJA) to throughout the northeast ending in March-April-May (MAM).

  10. Evaluation of the potential of organic geochemical proxies from lake sediments from Central India to reconstruct monsoon variability during the Holocene

    NASA Astrophysics Data System (ADS)

    Sarkar, Saswati; Sachse, Dirk; Wilkes, Heinz; Prasad, Sushma; Brauer, Achim; Strecker, Manfred; Basavaiah, Nathani

    2010-05-01

    A better understanding of the past variations of the Indian Monsoon system, which has a deep societal impact on the subcontinent, is essential to determine its behavior under a changing global climate. We aim to reconstruct the variability of the Indian Monsoon, which has both spatially as well as temporally variable nature, during the last 10,000 years using lipid biomarker abundances and stable isotopes from continuous, high-resolution lake sediments in a climatically sensitive region of Central India. Previous sedimentological and geochemical studies on bulk material from a well dated long lake sediment core covering the last 11,000 years have already shown evidence of rapid changes in lithology, sedimentation rate, paleo lake productivity and supply of terrestrial organic matter. Changes in the abundance of source-specific organic compounds - lipid biomarkers - can be useful for the interpretation of past changes in hydrology and ecosystem of the lake and its catchment area as well as their relation to climatic factors. We have identified a number of suitable biomarker compounds for paleohydrological and environmental reconstruction from surface sediments and short cores. Identified biomarker compounds include both aquatic and terrestrial biomarkers. Among the aquatic biomarkers short chain n-alkanes and phytane, most probably derived from cyanobacteria and microbial biomarkers like moretene, diploptene and other hopenes were present. Additionally long chain n-alkanes from vascular land plants from the lake catchment area were identified. Interestingly, the triterpene lipid tetrahymanol and tetrahymanone was found to be the biomarker of highest concentration in all analyzed surface sediments, with concentrations higher than the ubiquitous short-chain fatty acids. Tetrahymanol is often attributed to certain protozoa and frequently found in hypersaline lakes. However, studies have shown that this lipid can also be found in sizable amounts in phototrophic bacteria

  11. Plio-pleistocene African climate

    SciTech Connect

    deMenocal, P.B.

    1995-10-06

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated. 65 refs., 6 figs.

  12. Plio-Pleistocene African Climate

    NASA Astrophysics Data System (ADS)

    Demenocal, Peter B.

    1995-10-01

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated.

  13. Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan; Stickler, Alexander; Raible, Christoph C.; Muthers, Stefan; Anet, Julien; Rozanov, Eugene; Schmutz, Werner

    2017-01-01

    The present study is an effort to deepen the understanding of Indian summer monsoon rainfall (ISMR) on decadal to multi-decadal timescales. We use ensemble simulations for the period AD 1600-2000 carried out by the coupled Atmosphere-Ocean-Chemistry-Climate Model (AOCCM) SOCOL-MPIOM. Firstly, the SOCOL-MPIOM is evaluated using observational and reanalyses datasets. The model is able to realistically simulate the ISMR as well as relevant patterns of sea surface temperature and atmospheric circulation. Further, the influence of Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) variability on ISMR is realistically simulated. Secondly, we investigate the impact of internal climate variability and external climate forcings on ISMR on decadal to multi-decadal timescales over the past 400 years. The results show that AMO, PDO, and Total Solar Irradiance (TSI) play a considerable role in controlling the wet and dry decades of ISMR. Resembling observational findings most of the dry decades of ISMR occur during a negative phase of AMO and a simultaneous positive phase of PDO. The observational and simulated datasets reveal that on decadal to multi-decadal timescales the ISMR has consistent negative correlation with PDO whereas its correlation with AMO and TSI is not stationary over time.

  14. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  15. Eocene monsoons

    NASA Astrophysics Data System (ADS)

    Huber, Matthew; Goldner, Aaron

    2012-01-01

    A prominent example of climate-tectonic coupling is the Asian monsoon and the uplift of the Tibetan Plateau. Here we review some of what is known about the history of the monsoon, within a global context and present results from fully coupled Eocene simulations in which Tibetan Plateau height is varied. Peak elevations were doubled from 2000 m to 4000 m whereas mean elevations increased from 750 to 1500 m. The fully coupled Eocene simulations show that introducing a higher Tibetan Plateau into Asian topography intensifies rainfall over southwest Asia, but induces drying over and behind the Plateau. This atmospheric response is controlled by increases in heating over the Plateau region which drives increases in moisture convergence inducing shifts in lower level atmospheric moisture flux. With Eocene boundary conditions aspects of the canonical response from prior work remain the same: cooling over the uplifted region, a large stationary wave response emanating from the plateau and extending into North America, and a large increase in precipitation in summer in the regions with strongest relief, with a rain shadow behind it. But some important local responses are different from similar studies with modern boundary conditions, such as a warming behind the uplifted mountains, and southward advection of warm, moist air from Paratethys onto the Plateau. These results demonstrate that simulations with fully interactive ocean-atmosphere coupled models with a realistic history of paleogeographic boundary conditions will increase the realism of the resulting climatic simulations and increase the body of available proxy evidence for comparison. More generally we find that a global monsoon distribution of precipitation exists in the Eocene regardless of Tibetan Plateau height. Changing Plateau height has minor global impacts, which include a slight drying of midlatitude and cooling of the North Pacific. The results are robust to changes in climate model resolution and

  16. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.

    2017-01-01

    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  17. Reduction of monsoon rainfall in response to past and future land use and land cover changes

    NASA Astrophysics Data System (ADS)

    Quesada, Benjamin; Devaraju, Narayanappa; Noblet-Ducoudré, Nathalie; Arneth, Almut

    2017-01-01

    Land use and land cover changes (LULCC) can have significant biophysical impacts on regional precipitation, including monsoon rainfall. Using global simulations with and without LULCC from five general circulation models, under the Representative Concentration Pathway 8.5 scenario, we find that future LULCC significantly reduce monsoon precipitation in at least four (out of eight) monsoon regions. While monsoon rainfalls are likely to intensify under future global warming, we estimate that biophysical effects of LULCC substantially weaken future projections of monsoons' rainfall by 9% (Indian region), 12% (East Asian), 32% (South African), and 41% (North African), with an average of 30% for projections across the global monsoon region. A similar strong contribution is found for biophysical effects of past LULCC to monsoon rainfall changes since the preindustrial period. Rather than remote effects, local land-atmosphere interactions, implying a decrease in evapotranspiration, soil moisture, and clouds along with more anticyclonic conditions, could explain this reduction in monsoon rainfall.

  18. Onset of the summer monsoon during the FGGE 1979 experiment off the East African Coast: A comparison of wind data collected by different means

    SciTech Connect

    Schott, F.; Partagas, J.F.

    1981-05-20

    During FGGE 1979, from March to July, an extensive oceanographic experiment with ships and moored stations was carried out in the Somali Current. The development of the monsoon winds off Somalia during the time of that experiment is described in a comparative analysis of standard ship wind observations, moored buoy wind measurements, low-level cloud winds, and winds from land stations. The onset 1979 is found to be of the multiple type, with northward winds off Somalia beginning around May 5 but dying down into early June; the real onset of sustained high winds starts around June 10. Cloud level wind observation numbers off Somalia decrease drastically with the monsoon onset because of lack of clouds over the quickly developing cold upwelling areas. An intercomparison of cloud level and ship winds for the period May 16 to July 6 at five offshore points shows good agreement in directions but reduction of ship wind speeds against cloud level winds off northern Somalia after the onset, which may explained by the increased vertical wind shear due to high air stability over the upwelled water and by geostrophic shear due to the strong gradients of sea surface temperature. A comparison of 3-day averages of buoy winds measured at 3-m height 30 km offshore, but still inland from the ship lane, with ship winds for the period March 3 to June 10 showed good agreement in directions but lower buoy wind speeds, which could partly be due to sensor height difference and partly due to horizontal wind shear towards the coast. Coastal stations and wind buoys near the coast are found not to be good indicators of the monsoon onset further out in the open ocean.

  19. Potential linkages between the moisture variability in the northeastern Qaidam Basin, China, since 1800 and the East Asian summer monsoon as reflected by tree ring δ18O

    NASA Astrophysics Data System (ADS)

    Xu, Guobao; Chen, Tuo; Liu, Xiaohong; An, Wenling; Wang, Wenzhi; Yun, Hanbo

    2011-05-01

    We established the first annual resolution tree ring δ18O chronology of Qilian juniper (Sabina przewalskii Kom.) for the eastern margin of the Qaidam Basin, northwestern China. The mean tree ring cellulose δ18O in the study region (33.46‰ ± 0.99‰) was higher than that in the Qilian (28.7‰) and Helan Mountains (27.66‰), northwest China, and higher than the values in other published research (15.0‰ to 33.0‰), possibly as a result of the heavier δ18O in precipitation and the lower relative humidity (43%) during the growing season. The results of our simple correlation, bootstrap correlation, and response analyses showed that the cellulose δ18O was negatively and significantly correlated with relative humidity in July and August and that this correlation explained about 31.4% of the total variance in the moisture variability from 1954 to 2006. We also detected significant correlations among the Palmer drought severity index, the standard precipitation index, and the tree ring δ18O series. These analyses revealed that the summer relative humidity was the main limiting factor that affected δ18O values in the tree ring cellulose. Previous research indicates that the direct influence of the East Asian summer monsoon (EASM) reaches as far west as 100°E in China. However, our study revealed that the tree ring δ18O series was significantly correlated with the EASM index from 1873 to 1975, which means that the EASM influences moisture variability in the Qaidam Basin (farther west than 100°E) and that the tree ring δ18O chronology we obtained can be used as a proxy to study historical variability in the EASM.

  20. Influences of Social and Style Variables on Adult Usage of African American English Features

    PubMed Central

    Craig, Holly K.; Grogger, Jeffrey T.

    2013-01-01

    Purpose In this study, the authors examined the influences of selected social (gender, employment status, educational achievement level) and style variables (race of examiner, interview topic) on the production of African American English (AAE) by adults. Method Participants were 50 African American men and women, ages 20–30 years. The authors used Rapid and Anonymous Survey (RAS) methods to collect responses to questions on informal situational and formal message-oriented topics in a short interview with an unacquainted interlocutor. Results Results revealed strong systematic effects for academic achievement, but not gender or employment status. Most features were used less frequently by participants with higher educational levels, but sharp declines in the usage of 5 specific features distinguished the participants differing in educational achievement. Strong systematic style effects were found for the 2 types of questions, but not race of addressee. The features that were most commonly used across participants—copula absence, variable subject–verb agreement, and appositive pronouns—were also the features that showed the greatest style shifting. Conclusions The findings lay a foundation with mature speakers for rate-based and feature inventory methods recently shown to be informative for the study of child AAE and demonstrate the benefits of the RAS. PMID:22361105

  1. Latitudinal Hydrologic Variability Along the East African Rift, Over the Past 200 Kyr

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.

    2014-12-01

    Within the deep sediments of the large lakes of Africa's Great Rift Valley are continuous environmental records of remarkable antiquity and fidelity. Not only do stratigraphic sections from these basins extend back millions of years, many of the intervals represented contain high-resolution material of decadal resolution or better. East African lake basins remain sparsely sampled however, with only a few long and continuous records available. Our ability to image the lakes using seismic reflection methods greatly exceeds our opportunities for coring and drilling however; assessing stratal relationships observed in the geophysical data permits powerful inferences about past hydrologic changes. With intensive hydrocarbon exploration work underway in East Africa, industry well data can also help constrain and ground truth basin histories. Substantial spatio-temporal hydrologic variability is observed in East African basins over the past 200 kyr. Paleohydrological changes in the late Pleistocene and early Holocene are now well constrained in the northern hemisphere East African topics, with widespread aridity and in some cases lake desiccation observed during Heinrich Event 1. A climate recovery followed in the northern hemisphere East African tropics, with the early Holocene African Humid Period a time of positive water balance across most of the rift valley. The paleohydrology of southern hemisphere tropical East Africa is more equivocal, for instance with negligible draw-down of Lake Malawi at HE1. Whereas these late Pleistocene events represent substantial climate reorganizations, severe droughts during the middle-late Pleistocene (150-65 kyr BP) were far more intense, and produced much more severe drawdowns of Lakes Malawi and Tanganyika. Scientific drill cores, kullenberg cores, and extensive seismic reflection data sets from Lakes Malawi and Tanganyika provide indisputable evidence for lowstands of -500m and -600 m respectively. Climate changes that lowered the

  2. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  3. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region

  4. Recurrent Interannual Climate Modes and Teleconnection Linking North America Warm Season Precipitation Anomalies to Asia Summer Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, H. Y.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, we present results showing that summertime precipitation anomalies over North America and East Asia may be linked via pan-Pacific teleconnection patterns, which are components of two dominant recurring global climate modes. The first mode (Mode-1) features an inverse relationship between rainfall anomaly over the US Midwest/central to the eastern/southeastern regions, coupled to a mid-tropospheric high-low pressure system over the northwest and southeast of the US, which regulates low level moisture transport from the Gulf of Mexico to the Midwest. The regional circulation pattern appears to be a part of a global climate mode spanning Eurasia, the North Pacific, North America, and the Atlantic. This mode is associated with coherent fluctuations of jetstream variability over East Asia, and Eurasia, SST in the North Pacific and the North Atlantic. While Mode-1 is moderately correlated with El Nino-Southern Oscillation (ENSO), it appears to be distinct from it, with strong influences from mid-latitude or possibly from higher latitude processes. Results show that Mode-1 not only has an outstanding contribution to the great flood of 1993, it has large contribution to the US precipitation anomalies in other years. Also noted is an apparent increase in influence of Mode-1 on US summertime precipitation in the last two decades since 1977.

  5. Effects of monsoon precipitation variability on the physiological response of two dominant C₄ grasses across a semiarid ecotone.

    PubMed

    Thomey, Michell L; Collins, Scott L; Friggens, Michael T; Brown, Renee F; Pockman, William T

    2014-11-01

    For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.

  6. Palaeoclimatic insights into forcing and response of monsoon rainfall.

    PubMed

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-12

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth's population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  7. Palaeoclimatic insights into forcing and response of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-01

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  8. Extensive genetic variability of simian immunodeficiency virus from African green monkeys.

    PubMed Central

    Li, Y; Naidu, Y M; Daniel, M D; Desrosiers, R C

    1989-01-01

    Serological surveys have revealed that 30 to 50% of wild-caught African green monkeys have antibodies reactive to simian immunodeficiency virus (SIV), a retrovirus related to human immunodeficiency virus (HIV). Although the nucleotide sequence of one SIVagm isolate, Tyo1, was recently reported, the extent of genetic variability among SIVagm isolates remains to be determined. Restriction endonuclease mapping of infectious molecular clones of two SIVagm isolates (266 and 385), described in this note, revealed conservation of only 4 of 39 sites across the genome. Partial sequence analysis of the molecular clones revealed only 80% amino acid sequence conservation in the pol gene. Although the three Kenyan SIVagm isolates, Tyo1, 385, and 266, are more closely related to each other than to other primate lentiviruses, genetic variation among these three isolates is much greater than that observed previously among individual HIV type 1 (HIV-1), HIV-2, or SIVmac isolates. Less variability among HIV-1 and HIV-2 isolates could be explained by recent entry into the human population. The extensive genetic variation in these Kenyan SIVagm isolates should prompt continued examination of SIVagm variability from dispersed geographic regions; SIVagm strains much more closely related to HIV-1, HIV-2, or SIVmac which would be reasonable candidates for recent cross-species transmission may be found. PMID:2467010

  9. Late Pleistocene monsoon variability in northwest Thailand: an oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province

    NASA Astrophysics Data System (ADS)

    Marwick, Ben; Gagan, Michael K.

    2011-10-01

    Long, continuous records of Late Quaternary environmental change are rare in Southeast Asia, yet they are crucial for understanding the nature of early human dispersal and occupation in the Australasian region. We present a new record of palaeomonsoon activity extending back to 35,000 BP (years before the present), based on the analysis of oxygen isotope ratios (δ 18O) in the freshwater bivalve Margaritanopsis laosensis excavated from the Tham Lod and Ban Rai rockshelters in Mae Hong Son Province, northwest Thailand. Long-term changes in the M. laosensis δ 18O record reflect changes in the δ 18O of the river water in which these organisms grew, and correlate well with changes in speleothem δ 18O records of east Asian monsoon rainfall from Hulu Cave and Dongge Cave in China. The new northwest Thailand δ 18O sequence indicates wetter and relatively unstable climatic conditions from 35,000 to 20,000 BP, followed by drier conditions from 20,000 to 11,500 BP. A period of peak aridity occurred around 15,600 BP during Heinrich Event 1, suggesting that the intertropical convergence zone shifted southward when the North Atlantic region cooled. However, there is little evidence for the Younger Dryas event at ˜12,800-11,500 BP. After 9,800 BP, precipitation increased substantially and climatic variability declined. Our findings provide an improved baseline against which to gauge interactions between early humans and climate change in Southeast Asia. For example, there was no significant change in the prehistoric flake stone technology used at Tham Lod and Ban Rai despite the bivalve δ 18O evidence for substantial climate change in the region. Also, the climatic impact of the Younger Dryas event appears to have been less intense in northwest Thailand compared to the cooling and drying observed in China, and may explain why agriculture made a relatively late appearance in Thailand, possibly involving migrants from China.

  10. High resolution variability in the Quaternary Indian monsoon inferred from records of clastic input and paleo-production recovered during IODP Expedition 355

    NASA Astrophysics Data System (ADS)

    Hahn, Annette; Lyle, Mitchell; Kulhanek, Denise; Ando, Sergio; Clift, Peter

    2016-04-01

    The sediment cores obtained from the Indus fan at Site U1457 during Expedition 355 of the International Ocean Discovery Program (IODP) contain a ca. 100m spliced section covering the past ca. 1Ma. We aim to make use of this unique long, mostly continuous climate archive to unravel the millennial scale atmospheric and oceanic processes linked to changes in the Indian monsoon climate over the Quaternary glacial-interglacial cycles. Our aim is to fill this gap using fast, cost-efficient methods (Fourier Transform Infrared Spectroscopy [FTIRS] and X-ray Fluorescence [XRF] scanning) which allow us to study this sequence at a millennial scale resolution (2-3cm sampling interval). An important methodological aspect of this study is developing FTIRS as a method for the simultaneous estimation of the sediment total inorganic carbon and organic carbon content by using the specific fingerprint absorption spectra of minerals (e.g. calcite) and organic sediment components. The resulting paleo-production proxies give indications of oceanic circulation patterns and serve as a direct comparison to the XRF scanning data. Initial results show that variability in paleo-production is accompanied by changes in the quantity and composition of clastic input to the site. Phases of increased deposition of terrigenous material are enriched in K, Al, Fe and Si. Both changes in the weathering and erosion focus areas affect the mineralogy and elemental composition of the clastic input as grain size and mineralogical changes are reflected in the ratios of lighter to heavier elements. Furthermore, trace element compositions (Zn, Cu, Mn) give indications of diagenetic processes and contribute to the understanding of the depositional environment. The resulting datasets will lead to a more comprehensive understanding of the interplay of the local atmospheric and oceanic circulation processes over glacial-interglacial cycles; an essential prerequisite for regional predictions of global climate

  11. The Freshwater Oyster Etheria elliptica as a Tool to Reconstruct Climate Variability across the African Continent

    NASA Astrophysics Data System (ADS)

    Vanhove, D.; Gillikin, D. P.; Kelemen, Z.; Bouillon, S.

    2015-12-01

    The bivalve Etheria elliptica occurs abundantly in (sub)tropical African river basins. We investigate its potential use for the reconstruction of ambient water chemistry and climate by means of stable oxygen isotope ratios in specimens from the Congo river (Kisangani), the Oubangui river (Bangui) and the Victoria Nile (Jinja). Unlike other common African bivalve species, E. elliptica contains distinct organic-rich growth increments, previously suggested to correlate with lunar periodicity. However, cavities in the shell complicate age reading and little is known about the exact timing and continuity of these growth increments. We set up a comparative study between different techniques to visualize and enhance growth features, and find that staining with Mutvei's solution and confocal fluorescence microscopy perform equally well. Despite the presence of cavities, growth lines can generally be followed from umbo to shell margin. Moreover, preliminary δ18O results of two micro-sampled specimens from the Oubangui river show that 12-13 growth lines occur within one year of growth. This corroborates that these increments can be used as temporal anchor points, providing a moon-monthly time frame for sequential microchemistry. In two Congo river specimens, δ18Oshell values vary between -1.9 and -3.8 ‰ (VPDB), in line with a predicted range of -2.1 to -4.1 ‰ based on fortnightly δ18Owater and T monitoring. Reconstructed intra-annual δ18Owater variability from δ18Oshell values and observed T correlates with discharge, reflecting rainfall and runoff variability in the upstream catchment area. In two Victoria Nile specimens, collected 20 km downstream from Lake Victoria, δ18Oshell values are high and relatively constant, varying between +1.8 and +3.2 ‰. Enrichment of 18Oshell is consistent with isotopically heavy rainfall signatures and elevated surface evaporation in Lake Victoria. These first results suggest that E. elliptica is well-suited for the reconstruction

  12. Global aspects of monsoons

    NASA Technical Reports Server (NTRS)

    Murakami, T.

    1985-01-01

    Recent developments are studied in three areas of monsoon research: (1) global aspects of the monsoon onset, (2) the orographic influence of the Tibetan Plateau on the summer monsoon circulations, and (3) tropical 40 to 50 day oscillations. Reference was made only to those studies that are primarily based on FGGE Level IIIb data. A brief summary is given.

  13. Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium

    PubMed Central

    Asmerom, Yemane; Polyak, Victor J.; Rasmussen, Jessica B. T.; Burns, Stephen J.; Lachniet, Matthew

    2013-01-01

    Late Holocene climate in western North America was punctuated by periods of extended aridity called megadroughts. These droughts have been linked to cool eastern tropical Pacific sea surface temperatures (SSTs). Here, we show both short-term and long-term climate variability over the last 1,500 y from annual band thickness and stable isotope speleothem data. Several megadroughts are evident, including a multicentury one, AD 1350–1650, herein referred to as Super Drought, which corresponds to the coldest period of the Little Ice Age. Synchronicity between southwestern North American, Chinese, and West African monsoon precipitation suggests the megadroughts were hemispheric in scale. Northern Hemisphere monsoon strength over the last millennium is positively correlated with Northern Hemisphere temperature and North Atlantic SST. The megadroughts are associated with cooler than average SST and Northern Hemisphere temperatures. Furthermore, the megadroughts, including the Super Drought, coincide with solar insolation minima, suggesting that solar forcing of sea surface and atmospheric temperatures may generate variations in the strength of Northern Hemisphere monsoons. Our findings seem to suggest stronger (wetter) Northern Hemisphere monsoons with increased warming. PMID:23716648

  14. Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium.

    PubMed

    Asmerom, Yemane; Polyak, Victor J; Rasmussen, Jessica B T; Burns, Stephen J; Lachniet, Matthew

    2013-06-11

    Late Holocene climate in western North America was punctuated by periods of extended aridity called megadroughts. These droughts have been linked to cool eastern tropical Pacific sea surface temperatures (SSTs). Here, we show both short-term and long-term climate variability over the last 1,500 y from annual band thickness and stable isotope speleothem data. Several megadroughts are evident, including a multicentury one, AD 1350-1650, herein referred to as Super Drought, which corresponds to the coldest period of the Little Ice Age. Synchronicity between southwestern North American, Chinese, and West African monsoon precipitation suggests the megadroughts were hemispheric in scale. Northern Hemisphere monsoon strength over the last millennium is positively correlated with Northern Hemisphere temperature and North Atlantic SST. The megadroughts are associated with cooler than average SST and Northern Hemisphere temperatures. Furthermore, the megadroughts, including the Super Drought, coincide with solar insolation minima, suggesting that solar forcing of sea surface and atmospheric temperatures may generate variations in the strength of Northern Hemisphere monsoons. Our findings seem to suggest stronger (wetter) Northern Hemisphere monsoons with increased warming.

  15. Spatial and temporal variability of (7)Be and (210)Pb wet deposition during four successive monsoon storms in a catchment of northern Laos.

    PubMed

    Gourdin, E; Evrard, O; Huon, S; Reyss, J-L; Ribolzi, O; Bariac, T; Sengtaheuanghoung, O; Ayrault, S

    2014-10-01

    Fallout radionuclides (7)Be and (210)Pb have been identified as potentially relevant temporal tracers for studying soil particles dynamics (surface vs. subsurface sources contribution; remobilization of in-channel sediment) during erosive events in river catchments. An increasing number of studies compared (7)Be: (210)Pb activity ratio in rainwater and sediment to estimate percentages of freshly eroded particles. However, the lack of data regarding the spatial and temporal variability of radionuclide wet deposition during individual storms has been identified as one of the main gaps in these estimates. In order to determine these key parameters, rainwater samples were collected at three stations during four storms that occurred at the beginning of the monsoon (June 2013) in the Houay Xon mountainous catchment in northern Laos. Rainwater (7)Be and (210)Pb activities measured using very low background hyperpure Germanium detectors ranged from 0.05 to 1.72 Bq L(-1) and 0.02 to 0.26 Bq L(-1), respectively. Water δ(18)O were determined on the same samples. Total rainfall amount of the four sampled storms ranged from 4.8 to 26.4 mm (51 mm in total) at the time-fractionated collection point. Corresponding cumulative (7)Be and (210)Pb wet depositions during the sampling period were 17.6 and 2.9 Bq m(-2), respectively. The (7)Be: (210)Pb activity ratio varied (1) in space from 6 to 9 for daily deposition and (2) in time from 3 to 12 for samples successively collected. Intra-event evolution of rainwater (7)Be and (210)Pb activities as well as δ(18)O highlighted the progressive depletion of local infra-cloud atmosphere radionuclide stock with time (washout), which remains consistent with a Raleigh-type distillation process for water vapour. Intra-storm ratio increasing with time showed the increasing contribution of rainout scavenging. Implications of such variability for soil particle labelling and erosion studies are briefly discussed and recommendations are formulated

  16. Aerosol and monsoon climate interactions over Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from

  17. Impact of racial perspectives and contextual variables on marital trust and adjustment for African American couples.

    PubMed

    Kelly, Shalonda; Floyd, Frank J

    2006-03-01

    This study examined the associations of racial perspectives that represent pro-African American, anti-African American, or a mixture of these beliefs with marital trust and adjustment for African American couples (N = 93). Religious well-being and socioeconomic status (SES) were examined as contextual moderators. For husbands only, the anti-African American perspective was inversely associated with couple functioning, the mixed perspective was inversely associated with marital trust, and the pro-African American perspective predicted marital trust only for husbands having relatively low religious well-being and relatively high SES. The limited effects of pro-African American attitudes suggest the need to evaluate a wider range of these attitudes in future research. Also, findings corroborate suggestions for therapists to routinely assess and address both cultural pride and shame issues relevant to African American couple relationships.

  18. Impact of Mascarene High variability on the East African `short rains'

    NASA Astrophysics Data System (ADS)

    Manatsa, Desmond; Morioka, Yushi; Behera, Swadhin K.; Matarira, Caxston H.; Yamagata, Toshio

    2014-03-01

    The interannual variability of East African `short rains' (EASR) and its link with the Mascarene High (MH) variation are explored, using observations and reanalysis data. Correlation and composite analyses for flood and drought events reveal that the EASR variability is strongly linked to the MH zonal displacement, in particular, the zonal movement of the MH eastern ridge. When the MH eastern ridge is anomalously displaced to the west (east) of its normal position, the south east (SE) trade winds over the South Indian Ocean (SIO) anomalously strengthen (weaken). This enhances (reduces) the relatively cool and dry SE trade winds and induces cold (warm) sea surface temperature anomaly in the SIO. As a result, convection over the western equatorial SIO is suppressed (enhanced) and leads to rainfall deficits (excess) over East Africa. Droughts in East Africa are associated with a westward migration of the MH eastern ridge, while the relationship is less clear for flood events and their link to an eastward migration of the MH. Therefore, the zonal migration of the MH eastern ridge provides a novel indicator for the EASR extremes especially droughts. This revelation has immense social application for rainfall forecast over East Africa where rainfall deficits have become more prevalent against the background of deteriorating conventional forecasts for EASR droughts.

  19. [Integration of demographic variables in development planning: the case of Central African Republic].

    PubMed

    Bm'niyat Bangamboulou-te-niya, D

    1989-06-01

    maternal-child health project created in 1978, and the 2nd national population census is underway. These positive actions have not been integrated into a framework for population and development planning. 4 phases are viewed as necessary if integration of population and development planning is to be achieved in the Central African Republic. These phases are provision of population education to all sectors; research on population variables and links between population and development especially in employment, education, and population distribution; training and integration of skills between political authorities, planners, and researchers; and development of data bases and modelling capabilities.

  20. A Record of Early to Middle Holocene Hydroclimate Variability from the West African Sahel

    NASA Astrophysics Data System (ADS)

    McIntosh, R.; Douglas, P. M.; Warren, C.; Meyers, S. R.; Coutros, P.; Park, D. P.

    2011-12-01

    The African Humid Period (ca. 14.8 to 5.5 ka) is an interval of wet climates across northwest Africa, with evidence for widespread lake basins and savannah vegetation in areas that are now desert. There are few high-resolution continental records of hydrologic variability during the African humid period however. In particular, it remains uncertain how periods of north Atlantic climate variability were expressed in northwest Africa. We present results from a 5.4 meter sediment core from Lake Fati in northern Mali (16.29° N, 3.71° W), which represents the first lake sediment core from the western Sahel. The Lake Fati core contains a continuous record of lake mud from 10.43 to 4.66 kyr BP. Centimeter scale XRF scanning indicates strong covariation between iron, calcium, manganese and phosphorous abundance due to enrichment of these elements during periods of enhanced deposition of authigenic siderite. Preliminary oxygen isotope measurements indicate that authigenic siderite δ18O values are positively correlated with Fe counts, suggesting that siderite deposition increased during drier periods with greater evaporation of lake waters. These drying events occurred on decadal to centennial time scales, with higher-frequency variability during the early Holocene. Peaks in zirconium and titanium abundance coincide with some of the inferred dry periods, suggesting that deposition of aeolian silt coincided with periods of increased evaporation of lake water. A roughly 30 year interval of sand deposition at ~8.33 kyr BP suggests major drying and activation of aeolian sand deposition. This abrupt climate change could be related to the 8.2 ka event in the North Atlantic; further efforts to refine the sediment core age model will constrain the relationship of this rapid drying to abrupt climate change in the North Atlantic. Aluminum and silicon counts co-vary for much of the lake Fati record, and are related to input of terrigenous sediment, primarily during seasonal flooding

  1. Satellite-derived interannual variability of West African rainfall during 1983-88

    NASA Technical Reports Server (NTRS)

    Ba, Mamoudou B.; Frouin, Robert; Nicholson, Sharon E.

    1995-01-01

    Two satellite algorithms for rain estimation are used to study the interannual variability of West African rainfall during contrasting years of the period 1983-88. The first algorithm uses a frequency of occurrence index quantifying the number of times Meteosat thermal infrared radiance below 2.107 W/sq m/sr/micrometer (-40 C) occurs during the rainy season. The second algorithm uses the average Meteosat thermal infrared radiance over the period of interest. Appropriate calibrations are performed using these satellite parameters and ground-based rainfall observations. Separate calibration and equations are considered for each of three suggested subrainfall zones in West Africa: two Sahelian zones located just north of 9 deg N (one east and one west of 5 deg W) and the region extending south from 9 deg N to the coast. Over 80% of the variance in the ground-based rainfall data is explained by both algorithms in regions located north of 9 deg N, but poor correlations between observed and estimated rainfall exist south of 9 deg N. The interannual variability of rainfall in the Sahel is well described by that of cold clouds and average radiances. The satellite estimates also reveal substantial longitudinal variability in the anomaly fields, indicating that some Sahelo-Soudanian areas may receive above average rainfall during a year cataloged as dry. The latitudinal displacement and the extent of the cloud band associated with the intertropical convergence zone (ITCZ), as derived from cold cloud indices, indicate a northward displacement of the ITCZ in some, but not all, wet years in the Sahel. No systematic anomalous southward displacement of the ITCZ is evident in dry years. Drought in the Sahel appears to be more closely linked to the lattitudinal extent and the intensity of the convection within the ITCZ.

  2. The First Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-07-27

    In 2004 the Joint Scientific Committee (JSC) that provides scientific guidance to the World Climate Research Programme (WCRP) requested an assessment of (1) WCRP monsoon related activities and (2) the range of available observations and analyses in monsoon regions. The purpose of the assessment was to (a) define the essential elements of a pan-WCRP monsoon modeling strategy, (b) identify the procedures for producing this strategy, and (c) promote improvements in monsoon observations and analyses with a view toward their adequacy, and addressing any undue redundancy or duplication. As such, the WCRP sponsored the ''1st Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons'' at the University of California, Irvine, CA, USA from 15-17 June 2005. Experts from the two WCRP programs directly relevant to monsoon studies, the Climate Variability and Predictability Programme (CLIVAR) and the Global Energy and Water Cycle Experiment (GEWEX), gathered to assess the current understanding of the fundamental physical processes governing monsoon variability and to highlight outstanding problems in simulating the monsoon that can be tackled through enhanced cooperation between CLIVAR and GEWEX. The agenda with links to the presentations can be found at: http://www.clivar.org/organization/aamon/WCRPmonsoonWS/agenda.htm. Scientific motivation for a joint CLIVAR-GEWEX approach to investigating monsoons includes the potential for improved medium-range to seasonal prediction through better simulation of intraseasonal (30-60 day) oscillations (ISO's). ISO's are important for the onset of monsoons, as well as the development of active and break periods of rainfall during the monsoon season. Foreknowledge of the active and break phases of the monsoon is important for crop selection, the determination of planting times and mitigation of potential flooding and short-term drought. With a few exceptions simulations of ISO are typically poor in all classes of

  3. Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the role of monsoonal flows, the Madden-Julian Oscillation, tropical cyclones, squall lines and cold pools

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L. E.; Zhang, J.

    2014-08-01

    In a joint NRL/Manila Observatory mission, as part of the 7 SouthEast Asian Studies program (7SEAS), a two-week, late September~2011 research cruise in the northern Palawan Archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a~receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a~narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Nino/Southern Oscillation (ENSO) La Nina year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol lifecycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm-3, non-sea salt PM2.5=1μg m-3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea salt PM2.510-25 μg m-3). These

  4. Use of Machine Learning Techniques for Iidentification of Robust Teleconnections to East African Rainfall Variability in Observations and Models

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris

    2014-01-01

    Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.

  5. Asian monsoon failure and megadrought during the last millennium.

    PubMed

    Cook, Edward R; Anchukaitis, Kevin J; Buckley, Brendan M; D'Arrigo, Rosanne D; Jacoby, Gordon C; Wright, William E

    2010-04-23

    The Asian monsoon system affects more than half of humanity worldwide, yet the dynamical processes that govern its complex spatiotemporal variability are not sufficiently understood to model and predict its behavior, due in part to inadequate long-term climate observations. Here we present the Monsoon Asia Drought Atlas (MADA), a seasonally resolved gridded spatial reconstruction of Asian monsoon drought and pluvials over the past millennium, derived from a network of tree-ring chronologies. MADA provides the spatiotemporal details of known historic monsoon failures and reveals the occurrence, severity, and fingerprint of previously unknown monsoon megadroughts and their close linkages to large-scale patterns of tropical Indo-Pacific sea surface temperatures. MADA thus provides a long-term context for recent monsoon variability that is critically needed for climate modeling, prediction, and attribution.

  6. Political determinants of variable aetiology resonance: explaining the African AIDS epidemics.

    PubMed

    Hunsmann, M

    2009-12-01

    Notwithstanding the massive social and economic disruptions caused by HIV/AIDS in many sub-Saharan countries, the epidemic does not pose a serious political threat to African governments. Based on an analysis of today's dominant aetiologic framing of HIV/AIDS in sub-Saharan Africa, this paper argues that the behaviour-centred explanatory approach contributes to the political domestication of the epidemic. The behavioural aetiology suffers from a double reductionism: It concentrates on sexual transmission only and, within sexual transmission, it focuses exclusively on the immediate cause of transmission (unprotected sex), omitting that biological co-factors increase populations' vulnerability to infection. By overlooking these non-behaviour-related determinants of sexual HIV transmission, this explanatory approach implicitly blames individual behaviours for the spread of the virus. Conversely, the likely underestimation (if not the outright denial) of iatrogenic HIV transmission exonerates governments and donor agencies. The variable political resonance of different explanatory approaches is not random and the translation of the available bio-medical and epidemiological evidence into prevention measures is politically mediated.

  7. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    SciTech Connect

    Li, Zhanqing; Lau, W. K. -M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S. -S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  8. Observed variability of summer precipitation pattern and extreme events in East China associated with variations of the East Asian summer monsoon: VARIABILITY OF SUMMER PRECIPITATION AND EXTREME EVENT IN EAST CHINA

    SciTech Connect

    Wang, Lei; Qian, Yun; Zhang, Yaocun; Zhao, Chun; Leung, L. Ruby; Huang, Anning; Xiao, Chuliang

    2015-11-09

    This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation, the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.

  9. Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007

    NASA Technical Reports Server (NTRS)

    Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.

    2014-01-01

    Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.

  10. Variable Production of African American English across Oracy and Literacy Contexts

    ERIC Educational Resources Information Center

    Thompson, Connie A.; Craig, Holly K.; Washington, Julie A.

    2004-01-01

    Many African American students produce African American English (AAE) features that are contrastive to Standard American English (SAE). The AAE-speaking child who is able to dialect shift, that is, to speak SAE across literacy contexts, likely will perform better academically than the student who is not able to dialect shift. Method: This…

  11. Noncognitive Variables and Their Impact on Enrollment of African American Males in Higher Education

    ERIC Educational Resources Information Center

    Brown, Alanka P.

    2009-01-01

    The purpose of this study was to identify the nonacademic reasons that preclude African American males from enrolling in college after high school completion. The examination of this study evolved as a result of an abundance of African American males choosing not to enroll in college after completing high school. A mixed-methods research design…

  12. African American High School Students and Variability in Behavior across Classrooms

    ERIC Educational Resources Information Center

    Gregory, Anne; Thompson, Aisha R.

    2010-01-01

    Many African American adolescents who enter high school with low achievement are at-risk for being perceived as defiant and uncooperative by their classroom teachers. This generalized view of risk, however, offers little understanding of the differentiated behavior these students have with their teachers. The study followed 35 African American…

  13. Potential Predictability of the Monsoon Subclimate Systems

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Chang, Y.; Schubert, S.

    1999-01-01

    While El Nino/Southern Oscillation (ENSO) phenomenon can be predicted with some success using coupled oceanic-atmospheric models, the skill of predicting the tropical monsoons is low regardless of the methods applied. The low skill of monsoon prediction may be either because the monsoons are not defined appropriately or because they are not influenced significantly by boundary forcing. The latter characterizes the importance of internal dynamics in monsoon variability and leads to many eminent chaotic features of the monsoons. In this study, we analyze results from nine AMIP-type ensemble experiments with the NASA/GEOS-2 general circulation model to assess the potential predictability of the tropical climate system. We will focus on the variability and predictability of tropical monsoon rainfall on seasonal-to-interannual time scales. It is known that the tropical climate is more predictable than its extratropical counterpart. However, predictability is different from one climate subsystem to another within the tropics. It is important to understand the differences among these subsystems in order to increase our skill of seasonal-to-interannual prediction. We assess potential predictability by comparing the magnitude of internal and forced variances as defined by Harzallah and Sadourny (1995). The internal variance measures the spread among the various ensemble members. The forced part of rainfall variance is determined by the magnitude of the ensemble mean rainfall anomaly and by the degree of consistency of the results from the various experiments.

  14. The role of the New Guinea cross-equatorial flow in the interannual variability of the western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Wei; LinHo; Chou, Chia

    2014-04-01

    The western North Pacific (WNP) monsoon trough from 1958 to 2001 shows a binary-like feature in August and September, with more than half being either an imposing presence or a total absence. One of the major moisture sources maintaining the WNP monsoon trough is the low-level moisture advection laterally driven by the low-level cross-equatorial flow that originates from the Banda Sea and Solomon Sea. By decomposing contributions to the cross-equatorial flow based on the method proposed by Back and Bretherton in 2009, the boundary-layer pressure gradient in the Maritime Continent plays a major role. This pressure gradient is further found to be associated with the densely packed sea surface temperature (SST) gradient near the equator around New Guinea, which is well correlated with the SST anomalies in the equatorial eastern Pacific, a concurrent El Niño/Southern Oscillation (ENSO) condition.

  15. Terrigenous supplies variability over the past 22,000 yr in the southern South China Sea slope: Relation to sea level and monsoon rainfall changes

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Jiang, Fuqing; Wan, Shiming; Zhang, Jin; Li, Anchun; Li, Tiegang

    2016-03-01

    Changing weathering intensity, sediment transport, and provenance variations over the past 22.0 ka BP have been investigated by high-resolution clay mineralogy, grain-size and stable oxygen isotopes of planktonic foraminifera records along core CG2 recovered from the continental slope of the Sunda Shelf (southern South China Sea). Our results indicated that the reworking of older sediments outcropping on the Sunda Shelf exerted a great influence on the sediment supply during the last glacial and most of the last deglacial, modulated by sea level and monsoon rainfall changes. During the last 9.0 ka BP, relative increased kaolinite and heavier δ18Oseawater values might reflect the higher influence of the tropical Indonesian Islands sources due to the reopen of southern straits, implying the formation of modern oceanic circulation and depositional patterns. High sediment fluxes in core CG2 during Heinrich stadial 1 might be a synthetic result of the intensified monsoon rainfall originated from the southward shift of the Intertropical Convergence Zone and the proximal location of the study core before the flooding of the Sunda Shelf. Fluctuations in smectite/(illite + chlorite) ratios correlated well with monsoon intensity, and periods of strong monsoon rainfall (lighter δ18Oseawater values) were associated with an intensification of erosion of pre-existing, more weathered materials on the Sunda Shelf. Finally, we concluded that sediment composition and mineralogy in the southern South China Sea slope were controlled by varying degrees of reworking on the Sunda Shelf, as well as climatically modulated sediment supply from the Mekong River and southern tropical islands over the last 22.0 ka BP.

  16. Interdecadal variability of El Niño onset and its impact on monsoon systems over areas encircling the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxi; Xu, Jianjun; Guan, Zhaoyong; Powell, Alfred M.

    2016-10-01

    Based on previous study by Xu and Chan (J Clim 14:418-433, 2001), two types of El Niño distinguished by the onset time, a Spring (SP) type and a Summer (SU) type, have been investigated from 1871 through 2011. As can be classified by the spatial patterns of sea surface temperature anomaly into the Warm Pool (WP) and Cold Tongue (CT) El Niño, the temporal features of the CT are dominated by the SP events whereas the SU events mostly display the spatial pattern of WP or Mixed events. The approximate 140-year data analysis shows that the frequency of SP events tends to increase in the most recent 30 years (1980-2009) while the SU events show very strong activity in the beginning of the twentieth century (1900-1929), which are closely associated with the decadal changes in oceanic and atmospheric background conditions. The air-sea processes indicate that the pattern of sea surface temperature (SST) gradient between tropical and extratropical Pacific Ocean on decadal time scales is related to the sea level pressure distribution, which tends to produce wind anomalies. The wind anomalies in turn affect the SST anomalies on inter-annual time scales over the equatorial areas and finally result in the early onset of El Niño in SP time or late onset of El Nino in SU time. A spring onset El Niño favors a Kelvin wave that propagates across the basin and a summer onset favors a Kelvin wave that does not traverse the basin or the related effects are not strong enough. The early or late onset of El Niño significantly impacts the precipitation distribution correlated with the monsoon systems including the Asian-Australian monsoon and North-South American monsoon. The El Niño-monsoon relationship is modulated by decadal changes in atmospheric and oceanic background conditions. The precipitation in the monsoonal area circling the Pacific Ocean exhibits characteristic quasi-biennial variations that are closely associated with the onset time of El Niño events, especially with

  17. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  18. High-Resolution Speleothem Records of the Indian Ocean Monsoon Variability of the Last 6 ka and 0,5 ka From Soqotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    de Geest, P.; Verheyden, S.; Cheng, H.; Edwards, L. R.; Keppens, E.

    2004-12-01

    Soqotra is an arid tropical island in the Indian Ocean, situated between the Horn of Africa and the Arabian Peninsula. The inter-tropical convergence zone (ITCZ) passes there twice each year, resulting in a bi-annual rainy season. High-resolution \\delta18O and \\delta13C ratios of speleothems from two different caves are used to reconstruct changes in the Monsoon intensity and/or variability. Based on 10 TIMS 234U/230Th dating, two active speleothems from Hoq (S-STM1) and Kazekas Caves (S-STM5) have formed over a period of 6 ka BP and 0,5 ka BP, respectively. To obtain a detailed climate reconstruction more than 1000 \\delta13C and \\delta18O measurements were carried out, providing a time resolution between 2,5 and 10 years. In S-STM1 \\delta18O -values range between -4,5\\permil and -1,5\\permil and \\delta13C -values between -10,5\\permil and -5,5\\permil; while for S-STM5 these values range respectively between -4\\permil and -2\\permil and -7\\permil and -3\\permil (vs VPDB). Based on the comparison between \\delta18O excursions and historical meteorological data, the amount of precipitation is reflected in the \\delta18O signal. Different mechanisms for the \\delta13C are considered, such as a diminution of the C4-type vegetation during droughts, resulting in more positive \\delta13C -value or kinetic effects during the calcification process itself. Throughout the time series, co-variation occur between \\delta13C and \\delta18O -values (R2= 0,69) exhibiting long term (millennial) and short term (decadal) variations. In both stalagmites, layers of white porous calcite (WPC) (0,1-0,5mm) and dark dense calcite (DDC) (0,01-0,1mm) alternate, most probably due to seasonal variations. The WPC has more positive \\delta13C and \\delta18O -values, while the DDC shows more negative values, clearly demonstrated by high-resolution micro sampling up to a monthly to bi-weekly resolution. A positive correlation between the greyscale variations in the calcite fabric, the

  19. Exploring Pacific Climate Variability and Its Impacts on East African Water Resources and Food Security

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Hoerling, M. P.; Hoell, A.; Liebmann, B.; Verdin, J. P.; Eilerts, G.

    2014-12-01

    In 8 out the past 15 boreal springs (1999, 2000, 2004, 2008, 2009, 2011, 2012, and 2013), substantial parts of eastern East Africa experienced very low boreal spring rains. These rainfall deficits have triggered widespread food insecurity, and even contributed to the outbreak of famine conditions in Somalia in 2011. At both seasonal and decadal time scales, new science supported by the USAID Famine Early Warning Systems Network seeks to understand the mechanisms producing these droughts. We present research suggesting that the ultimate and proximate causes of these increases in aridity are i) stronger equatorial Pacific SST gradients and ii) associated increases in the strength of the Indo-Pacific Walker circulation. Using observations and new modeling ensembles, we explore the relative contributions of Pacific Decadal Variability (PDV) and global warming under warm and cold east Pacific Ocean states. This question is addressed in two ways: by using atmospheric GCMs forced with full and ENSO-only SSTs, and ii) by decomposing coupled ocean-atmosphere climate simulations into PDV and non-PDV components. These analyses allow us to explore the Walker circulation's sensitivity to climate change under various PDV states, and inform a tentative bracketing of 2030 climate conditions. We conclude by discussing links to East African development. Regions of high rainfall sensitivity are delineated and intersected with recent changes in population and land cover/land use. The interaction of elevation and climate is shown to create climatically secure regions that are likely to remain viable even under drier and warmer conditions; such regions may be logical targets for agricultural intensification. Conversely, arid low elevation regions are likely to experience substantial temperature impacts. Continued expansion into these areas may effectively create more 'drought' even if rainfall increases.

  20. Paleoenvironmental evolution and Asian monsoon variability on the southern Tibetan Plateau during the late Quaternary: A comparison of two lake records

    NASA Astrophysics Data System (ADS)

    Börner, Nicole; Gifty Akita, Lailah; Jochum, Klaus Peter; Plessen, Birgit; Frenzel, Peter; Zhu, Liping; Schwalb, Antje

    2016-04-01

    The Tibetan Plateau affects the global atmospheric circulation and is thus a key region to study the Asian monsoon system. It is also one of the most sensitive areas to global climate change as, for example, the temperature rise is twice the global average (0.4°C per decade [1]). To understand the recent climate change and predict future climate scenarios it is necessary to investigate past climate changes. The comparison of high-resolution multi-proxy records from Nam Co (4719 m a.s.l., 30°40'N, 90°50'E) and Tangra Yumco (4549 m a.s.l., 31°13'N, 86°43'E) aims to infer long term variations in strength and extent of the Asian monsoon system on the southern Tibetan Plateau. Multi-proxy analysis, including the oxygen and carbon isotope signatures of bulk sediments and the chemical composition of ostracod shells (stable isotopes, trace elements), were carried out on two long cores (10.4 m and 11.5 m), covering the past 24,000 years and 18,000 years, respectively, in order to reconstruct lake level changes and related environmental parameters, i.e. salinity, temperature and productivity. The records from Nam Co and Tangra Yumco show high similarity throughout the late Quaternary with small temporal differences in onset and duration of climatic changes. The Last Glacial Maximum is dominated by dry and cold conditions and is followed by gradually increasing temperatures and moisture, only interrupted by a dry phase, which coincides with the "Heinrich 1 event" in the North Atlantic region. A significant transition to wetter conditions and rising lake levels is indicated around 15,500 cal years BP, suggesting a strengthening of summer monsoon precipitation. The Bølling/Allerød is characterized by increased meltwater input, followed by cold and arid conditions during the Younger Dryas. The early Holocene is marked by increasing temperatures and precipitation, being the wettest period within our record, characterized by the highest lake levels, lake stratification and

  1. Anxiety Disorders in Caucasian and African American Children: A Comparison of Clinical Characteristics, Treatment Process Variables, and Treatment Outcomes

    PubMed Central

    Gordon-Hollingsworth, Arlene T.; Becker, Emily M.; Keeton, Courtney; Compton, Scott N.; Birmaher, Boris B.; Sakolsky, Dara J.; Piacentini, John; Albano, Anne M.; Kendall, Philip C.; Suveg, Cynthia M.; March, John S.

    2014-01-01

    This study examined racial differences in anxious youth using data from the Child/Adolescent Anxiety Multimodal Study (CAMS) [1]. Specifically, the study aims addressed whether African American (n = 44) versus Caucasian (n = 359) children varied on (1) baseline clinical characteristics, (2) treatment process variables, and (3) treatment outcomes. Participants were ages 7–17 and met DSM-IV-TR criteria for generalized anxiety disorder, social phobia, and/or separation anxiety disorder. Baseline data, as well as outcome data at 12 and 24 weeks, were obtained by independent evaluators. Weekly treatment process variables were collected by therapists. Results indicated no racial differences on baseline clinical characteristics. However, African American participants attended fewer psychotherapy and pharmacotherapy sessions, and were rated by therapists as less involved and compliant, in addition to showing lower mastery of CBT. Once these and other demographic factors were accounted for, race was not a significant predictor of response, remission, or relapse. Implications of these findings suggest African American and Caucasian youth are more similar than different with respect to the manifestations of anxiety and differences in outcomes are likely due to treatment barriers to session attendance and therapist engagement. PMID:25293650

  2. Anxiety Disorders in Caucasian and African American Children: A Comparison of Clinical Characteristics, Treatment Process Variables, and Treatment Outcomes.

    PubMed

    Gordon-Hollingsworth, Arlene T; Becker, Emily M; Ginsburg, Golda S; Keeton, Courtney; Compton, Scott N; Birmaher, Boris B; Sakolsky, Dara J; Piacentini, John; Albano, Anne M; Kendall, Philip C; Suveg, Cynthia M; March, John S

    2015-10-01

    This study examined racial differences in anxious youth using data from the Child/Adolescent Anxiety Multimodal Study (CAMS) [1]. Specifically, the study aims addressed whether African American (n = 44) versus Caucasian (n = 359) children varied on (1) baseline clinical characteristics, (2) treatment process variables, and (3) treatment outcomes. Participants were ages 7-17 and met DSM-IV-TR criteria for generalized anxiety disorder, social phobia, and/or separation anxiety disorder. Baseline data, as well as outcome data at 12 and 24 weeks, were obtained by independent evaluators. Weekly treatment process variables were collected by therapists. Results indicated no racial differences on baseline clinical characteristics. However, African American participants attended fewer psychotherapy and pharmacotherapy sessions, and were rated by therapists as less involved and compliant, in addition to showing lower mastery of CBT. Once these and other demographic factors were accounted for, race was not a significant predictor of response, remission, or relapse. Implications of these findings suggest African American and Caucasian youth are more similar than different with respect to the manifestations of anxiety and differences in outcomes are likely due to treatment barriers to session attendance and therapist engagement.

  3. Identification of a tryptophan-like epitope borne by the variable surface glycoprotein (VSG) of African trypanosomes.

    PubMed

    Semballa, S; Okomo-Assoumou, M C; Holzmuller, P; Büscher, P; Magez, S; Lemesre, J L; Daulouede, S; Courtois, P; Geffard, M; Vincendeau, P

    2007-02-01

    Antibodies (Ab) directed against a tryptophan-like epitope (WE) were previously detected in patients with human African trypanosomiasis (HAT). We investigated whether or not these Ab resulted from immunization against trypanosome antigen(s) expressing a WE. By Western blotting, we identified an antigen having an apparent molecular weight ranging from 60 to 65 kDa, recognized by purified rabbit anti-WE Ab. This antigen, present in trypomastigote forms, was absent in procyclic forms and Trypanosoma cruzi trypomastigotes. Using purified variable surface glycoproteins (VSG) from various trypanosomes, we showed that VSG was the parasite antigen recognized by these rabbit Ab. Anti-WE and anti-VSG Ab were purified from HAT sera by affinity chromatography. Immunoreactivity of purified antibodies eluted from affinity columns and of depleted fractions showed that WE was one of the epitopes borne by VSG. These data underline the existence of an invariant WE in the structure of VSG from several species of African trypanosomes.

  4. Stable isotopes provide independent support for the use of mesowear variables for inferring diets in African antelopes.

    PubMed

    Louys, Julien; Ditchfield, Peter; Meloro, Carlo; Elton, Sarah; Bishop, Laura C

    2012-11-07

    We examine the relationship between mesowear variables and carbon and nitrogen isotopes in 16 species of African antelope (Mammalia: Bovidae). We show significant differences in carbon and nitrogen isotope values between individuals exhibiting sharp versus round cusps, and high versus low occlusal relief. We show significant correlations between mesowear variables and both carbon and nitrogen isotopes. We find significant correlations between mesowear score and nitrogen, but not carbon isotopes. Finally, we find no significant correlations between hypsodonty index and either isotope examined. Our results provide strong support for the use of mesowear variables in palaeodietary reconstructions of antelopes. Our results further suggest that for the antelopes examined here, mesowear signals are a direct result of diet, while hyposodonty may be the result of phylogenetic legacy.

  5. Bay of Bengal: coupling of pre-monsoon tropical cyclones with the monsoon onset in Myanmar

    NASA Astrophysics Data System (ADS)

    Fosu, Boniface O.; Wang, Shih-Yu Simon

    2015-08-01

    The pre-monsoon tropical cyclone (TC) activity and the monsoon evolution in the Bay of Bengal (BoB) are both influenced by the Madden-Julian Oscillation (MJO), but the two do not always occur in unison. This study examines the conditions that allow the MJO to modulate the monsoon onset in Myanmar and TC activity concurrently. Using the APHRODITE gridded precipitation and the ERA-Interim reanalysis datasets, composite evolutions of monsoon rainfall and TC genesis are constructed for the period of 1979-2010. It is found that the MJO exhibits a strong interannual variability in terms of phase and intensity, which in some years modulate the conditions for BoB TCs to shortly precede or form concurrently with the monsoon onset in Myanmar. Such a modulation is absent in years of weaker MJO events. Further understanding of the interannual variability of MJO activity could facilitate the prediction of the monsoon onset and TC formation in the BoB.

  6. Examining the Relationship between Selected Variables and the Academic Achievement of African American High School Students

    ERIC Educational Resources Information Center

    Graham, David Mark

    2009-01-01

    Research investigating the impact of factors such as gender, socioeconomic status, racial socialization, and academic self-concept on the academic achievement of African American high school students has been of interest to scholars for decades. Previous literature has focused much attention on the relationship of each of these constructs and…

  7. Impact of Demographic Variables on African-American Student Athletes' Academic Performance

    ERIC Educational Resources Information Center

    Reynolds, Lacey; Fisher, Dwalah; Cavil, J. Kenyatta

    2012-01-01

    Since the passage of Proposition 48 (NCAA, 1984), African-American student-athletes entering National Collegiate Athletic Association (NCAA) major colleges and universities have meet new challenges in their future as student-athletes. This major change altered the landscape of the future of college athletics particularly for students of color.…

  8. Comparing the effect of modeled climatic variables on the distribution of African horse sickness in South Africa and Namibia.

    PubMed

    Liebenberg, Danica; van Hamburg, Huib; Piketh, Stuart; Burger, Roelof

    2015-12-01

    Africa horse sickness (AHS) is a lethal disease of horses with a seasonal occurrence that is influenced by environmental conditions that favor the development of Culicoides midges (Diptera: Ceratopogonidae). This study compared and evaluated the relationship of various modeled climatic variables with the distribution and abundance of AHS in South Africa and Namibia. A comprehensive literature review of the historical AHS reported data collected from the Windhoek archives as well as annual reports from the Directorate of Veterinary services in Namibia were conducted. South African AHS reported data were collected from the South African Department of Agriculture, Forestry, and Fisheries. Daily climatic data were extracted for the time period 1993-2011 from the ERA-interim re-analysis dataset. The principal component analysis of the complete dataset indicated a significant statistical difference between Namibia and South Africa for the various climate variables and the outbreaks of AHS. The most influential parameters in the distribution of AHS included humidity, precipitation, evaporation, and minimum temperature. In South Africa, temperature had the most significant effect on the outbreaks of AHS, whereas in Namibia, humidity and precipitation were the main drivers. The maximum AHS cases in South Africa occurred at temperatures of 20-22° C and relative humidity between 50-70%. Furthermore, anthropogenic effects must be taken into account when trying to understand the distribution of AHS.

  9. Energetics and monsoon bifurcations

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2017-01-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  10. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  11. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  12. Autoencoder-based identification of predictors of Indian monsoon

    NASA Astrophysics Data System (ADS)

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.

    2016-10-01

    Prediction of Indian summer monsoon uses a number of climatic variables that are historically known to provide a high skill. However, relationships between predictors and predictand could be complex and also change with time. The present work attempts to use a machine learning technique to identify new predictors for forecasting the Indian monsoon. A neural network-based non-linear dimensionality reduction technique, namely, the sparse autoencoder is used for this purpose. It extracts a number of new predictors that have prediction skills higher than the existing ones. Two non-linear ensemble prediction models of regression tree and bagged decision tree are designed with identified monsoon predictors and are shown to be superior in terms of prediction accuracy. Proposed model shows mean absolute error of 4.5 % in predicting the Indian summer monsoon rainfall. Lastly, geographical distribution of the new monsoon predictors and their characteristics are discussed.

  13. Assessment of the 1997-1998 Asian Monsoon Anomalies

    NASA Technical Reports Server (NTRS)

    Lau, William K.-M.; Wu, H.-T.

    1999-01-01

    Using State-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 Asian monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analysis of rainfall and SST are carried out globally over the entire tropics and regionally over the Asian monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions. it is noted that some subcontinental regions such as all-India, or arbitrarily chosen land regions over East Asia, while important socio-economically, are not near the centers of influence from El Nino, hence are not necessarily representative of the response of the entire monsoon region to El Nino. The observed 1997-98 Asian monsoon anomalies are found to be very complex with approximately 34% of the anomalies attributable to basin- scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19%, leaving about 47% due to internal dynamics. Also noted is that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also monsoon regional coupled processes and their modulation by long-term climate change.

  14. Advanced Asian summer monsoon onset in recent decades

    NASA Astrophysics Data System (ADS)

    Kajikawa, Y.; Yasunari, T.; Yoshida, S.; Fujinami, H.

    2011-12-01

    Anthropogenic climate change in the Asian monsoon area is one of the most important issues due to the maximum population over the world. Many studies have revealed the long-term change of the Asian summer monsoon rainfall, especially over the China. It is suggested that the trend of monsoonal rainfall in China and India has been attributed to increase in the black carbon and sulphate aerosol. Most of the previous studies assessed the rainfall trend in boreal summer mean. Meanwhile, the seasonal march of the Asian summer monsoon displays a stepwise northward and northeastward migration of rainfall with abrupt onset during boreal spring and summer. Because of large seasonal variability, the long-term trend of the Asian monsoon would exhibit seasonally dependent features which we have to take a consideration of. Here, we analyze the trend of the Asian monsoon rainfall, wind circulation and water vapor flux during 1979-2008 on a monthly mean basis to clarify its seasonality. The transition phase from boreal spring to summer is specially focused. Significant increasing rainfall trend in May is remarkable over the Asian Sea, Bay of Bengal and southeastern monsoon region, which corresponds to advanced monsoon onset in recent decades. The trends are, however, nearly reversed in June over the abovementioned region. Of interest is that the Asian monsoonal rainfall in July and August does not show clear significant trend. Thus, the Asian monsoon has significant trend during the transient phase from boreal spring to summer in particular. The advanced monsoon onset and weakening of the monsoon during early summer are most likely to be attributed to the heat contrast between the Asian landmass and the tropical Indian Ocean. The heating trend over the Asian landmass contributes to the heat contrast variability, because of the persistent SST increase in the Indian Ocean throughout the season. Warming trends in the mid-upper troposphere over the landmass area in May is suggested to

  15. Intra-interglacial climate variability from Marine Isotope Stage 15 to the Holocene

    NASA Astrophysics Data System (ADS)

    Rachmayani, R.; Prange, M.; Schulz, M.

    2015-07-01

    Using the Community Climate System Model version 3 (CCSM3) including a dynamic global vegetation model a set of 13 interglacial time slice experiments was carried out to study global climate variability between and within the Quaternary interglaciations of Marine Isotope Stages (MIS) 1, 5, 11, 13, and 15. The different effects of obliquity, precession and greenhouse gas forcing on global surface temperature and precipitation fields are illuminated. Several similarities with previous idealized orbital-forcing experiments can be identified. In particular, a significant role of meridional insolation-gradient forcing by obliquity variations in forcing the West African monsoon is found. The sensitivity of the West African monsoon to this obliquity forcing, however, depends on the climatic precession. According to the CCSM3 results, the Indian monsoon is less sensitive to direct obliquity-induced insolation forcing, consistent with the interpretation of proxy records from the Arabian Sea. Moreover, the model results suggest that the two monsoon systems do not always vary in concert, challenging the concept of a global monsoon system at orbital timescales. High obliquity can also explain relatively warm Northern Hemisphere high-latitude summer temperatures despite maximum precession around 495 kyr BP (MIS 13) probably preventing a glacial inception at that time.

  16. Potential Change in the Indian Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Williams, A. P.; Mishra, V.; Barlow, M. A.; Hoerling, M. P.; Hoell, A.

    2011-12-01

    In India and East Africa more than 350 million people face chronic undernourishment; population growth alone could bring this number to 500 million by 2030. Below normal rains have become more frequent as falling water tables, land degradation, warmer air temperatures, and rising fuel and fertilizer costs limit crop production growth. The Indian and East African boreal summer monsoons rely on large moisture transports from the southern Indian Ocean (SIO, 55-90°E, 0-15°S) and a low pressure cell over the north Indian Ocean (NIO, 55-90°E, 0-15°N). The relatively cloud free NIO warm pool receives a large excess of solar radiation, which the ocean transports south across the equator. While many factors influence this system, we present here observations and climate simulations linking preferential SIO-versus-NIO warming, evaporation and precipitation changes to weaker monsoon winds, weaker northward moisture transports, and warmer and drier weather in India and East Africa. Observations show that increasing SIO sea surface temperatures (SSTs) below rapid surface winds provide an 'evaporative window' (Fig. 1) that transfers energy and moisture to the atmosphere, increasing SIO rainfall. Climate simulations driven with i) observed SSTs and ii) mid-tropospheric SIO heating associate increased SIO rainfall with lower NIO rainfall. Given the empirical relationships between increasing SIO rainfall and reduced summer monsoon rains, continued warming in the Indian Ocean could lead to more frequent droughts in India, and perhaps, East Africa.

  17. Gambling Outcome Expectancies and Gambling Behavior Among African-American Adolescents: Gender as a Moderating Variable.

    PubMed

    Simmons, Jessica L; Whelan, James P; Meyers, Andrew W; Wickwire, Emerson M

    2016-03-01

    Most high school adolescents have reported past year gambling, and males gamble more frequently and problematically than females. Ethnic minority adolescents appear to be gambling at a higher rate than Caucasian adolescents. There is evidence indicating that adolescent gambling outcome expectancies are correlated with gambling behavior, but limited evidence that this relation differs by gender. In the present study gender was evaluated as a moderator in the relation between gambling outcome expectancies and gambling behaviors in an African-American high school sample. Males gambled more frequently, gambled more problematically and held more positive gambling outcome expectancies than females. Gender was found to moderate the relations between gambling frequency and the expectations of material gain, affect, self-evaluation and parental approval. Gender also moderated the relations between gambling problems and expectations of affect and self-evaluation. These findings should inform future adolescent gambling prevention and intervention programs.

  18. The Dynamics of Bursts in the Australian Monsoon

    NASA Astrophysics Data System (ADS)

    Reeder, M. J.; Berry, G.

    2015-12-01

    The wet season of the Australian monsoon is characterized by sub-seasonal periods of excessively wet or dry conditions, commonly know as monsoon bursts and breaks. This study is concerned with the synoptic evolution prior to monsoon bursts, which are defined here by abrupt transitions of the area-averaged rainfall over the tropical parts of the Australian continent. There is large variability in the number of monsoon bursts from year-to-year and in the time interval between consecutive monsoon bursts. Reanalysis data are used to construct a lag composite of the sequence of events prior to a monsoon burst. It is found that a burst in the Australian monsoon is preceded by the development of a well-defined extratropical wave packet in the Indian Ocean, which propagates toward the Australian continent in the few days leading up to the onset of heavy rainfall in the tropics. As in the case of previous studies on the monsoon onset, the extratropical disturbances propagate equatorward over the Australian continent. These extratropical systems are accompanied by lower tropospheric air mass boundaries, which also propagate into low latitudes. Ahead of these boundaries, relatively warm moist air is advected from the surrounding oceans, locally increasing the convective available potential energy. Commonly employed climate indices shows that monsoon bursts are more likely to occur when the active phase of the Madden-Julian Oscillation is in the vicinity of Australia. Neither the El-Nino Southern Oscillation nor Southern Annular Mode have a significant effect on the occurrence of monsoon bursts.

  19. Evolving the linkages between North American Monsoon Experiment research and services in the binational monsoon region

    NASA Astrophysics Data System (ADS)

    Ray, A. J.

    2007-05-01

    Multi-year drought, high interannual precipitation variability, and rapid population growth present major challenges to water resources and land managers in the U.S. Southwest and binational monsoon region. The NAME strategy to improve warm season precipitation forecasts is paying off in the understanding of the system and its potential predictability, illustrated by a special issue of the Journal of Climate with about 25 articles and numerous other published papers (e.g. Higgins and Gochis et al. 2006; Gutzler et al. 2004, Higgins et al. 2003). NOAA now has set a goal to NAME and other initiatives also have the potential to provide key insights, such as historic information regarding onset and overall strength of the monsoon as it affects stakeholder interests in flooding, soil moisture, vegetation health, and summer water demand. However, the usual avenues for scientific output, such as peer-reviewed publications and web sites designed for use by climate and weather experts, do not adequately support the flow of knowledge to operational decisionmakers. A recent workshop on Monsoon Region climate Applications in Guaymas, Sonora identified several areas in which monsoon science might contribute to reducing societal vulnerability, as well as some research findings that are suited to transition into model development and operations at service providers including NOAA and SMN. They recommended that products are needed that interpret climate forecasts for water resource management applications, and developing new regionally-tailored climate information products. This presentation will discuss how to enhance the flow of monsoon information and predictions to stakeholders by linking user-oriented perspectives with research results from NAME and other programs, including a new effort for a North American Monsoon Forecast Forum which plans to develop periodic consolidated North American Monsoon outlooks.

  20. The records of terrestrial and marine biomarkers in South China Sea EXP349 Sites U1432C and U1433A, B: Implications for East Asian monsoon variability and paleoceanographic variations.

    NASA Astrophysics Data System (ADS)

    hyun, Sangmin; kim, Songyi

    2016-04-01

    Marine and terrestrial biomarkers, alkenones and n-alkanes compound, were investigated in sediment taken from the South China Sea (SCS) IODP Sites Exp. U1432C, U1433A and U1433B to evaluate Asian monsoon variability and paleoceanographic variations. Alkenone-based sea surface temperature (SSTalk) from the northern Site (U1432C) ranges from approximately 18.2oC to 28.3oC with an average of 24.4oC (n=65). Estimated SSTalk were slightly higher in the southern Site U1433A than at U1432C. SSTalk in Site U1433A ranges from 24.3oC to 27.4oC with an average 26.1oC (n=32), showing as much as 1.7oC higher SSTs than at U1432C. High concentrations of n-alkanes (nC21-35) are present throughout the Site SC1432C with strong fluctuations in the upper part (average = 496ug/g, n=140). The much higher records at U1433A and U1433B show long-range variations, but the concentration of n-alkanes remains constant below 244mbsf in Site 1433B (less than 200ug/g), suggesting an important change occurred at this horizon, dividing two different environmental domains. These differences in SSTalk and n-alkane concentration between two Sites might not only link with latitudinal location but also the influx of terrestrial biomarker due to the Asian monsoon variability and local oceanographic variations since the last approximately 1.5 Ma. Several indices of Average Chain Length (ACL) and Carbon Preferences Index (ICP) showed large shifts and fluctuations in both Sites. In particular, one of the paleo-plant proxy, Paq, also shows time-dependent large fluctuations in both Sites suggesting long time-scale variations in the flux of terrestrial organic compound as well as paleoclimatic changes in the East Asian area.

  1. CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18

    SciTech Connect

    Sperber, Ken R.; Hendon, Harry H.

    2011-05-04

    These are a set of slides on CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18. These are the major topics covered within: major activities over the past year, AAMP Monsoon Diagnostics/Metrics Task Team, Boreal Summer Asian Monsoon, Workshop on Modelling Monsoon Intraseasonal Variability, Workshop on Interdecadal Variability and Predictability of the Asian-Australian Monsoon, Evidence of Interdecadal Variability of the Asian-Australian Monsoon, Development of MJO metrics/process-oriented diagnostics/model evaluation/prediction with MJOTF and GCSS, YOTC MJOTF, GEWEX GCSS, AAMP MJO Diabatic Heating Experiment, Hindcast Experiment for Intraseasonal Prediction, Support and Coordination for CINDY2011/DYNAMO, Outreach to CORDEX, Interaction with FOCRAII, WWRP/WCRP Multi-Week Prediction Project, Major Future Plans/Activities, Revised AAMP Terms of Reference, Issues and Challenges.

  2. Variability of African Farming Systems from Phenological Analysis of NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Vrieling, Anton; deBeurs, K. M.; Brown, Molly E.

    2011-01-01

    Food security exists when people have access to sufficient, safe and nutritious food at all times to meet their dietary needs. The natural resource base is one of the many factors affecting food security. Its variability and decline creates problems for local food production. In this study we characterize for sub-Saharan Africa vegetation phenology and assess variability and trends of phenological indicators based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over the season (cumNDVI) which is a proxy for net primary productivity. Results are aggregated at the level of major farming systems, while determining also spatial variability within farming systems. High temporal variability of cumNDVI occurs in semiarid and subhumid regions. The results show a large area of positive cumNDVI trends between Senegal and South Sudan. These correspond to positive CRU rainfall trends found and relate to recovery after the 1980's droughts. We find significant negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and in Tanzania. For each farming system, causes of change and variability are discussed based on available literature (Appendix A). Although food security comprises more than the local natural resource base, our results can perform an input for food security analysis by identifying zones of high variability or downward trends. Farming systems are found to be a useful level of analysis. Diversity and trends found within farming system boundaries underline that farming systems are dynamic.

  3. Exploratory Analysis of the Effects of Anxiety on Specific Quantifiable Variables of African-American High School Students Enrolled in Advanced Academics

    ERIC Educational Resources Information Center

    James, Carmela N.

    2013-01-01

    The purpose of this study was to examine the attrition rate of the African American high school student enrolled in advanced academics by looking at the effects of specific quantifiable variables on state-trait anxiety scores. More specifically, this study was concerned with the influence of demographic and school related factors on the…

  4. Sampling strategies and variability in fruit pulp micronutrient contents of west and central african bananas and plantains (Musa species).

    PubMed

    Davey, Mark W; Stals, Ellen; Ngoh-Newilah, Gérard; Tomekpe, Kodjo; Lusty, Charlotte; Markham, Richard; Swennen, Rony; Keulemans, Johan

    2007-04-04

    The variability in fruit micronutrient contents in a selection of Central and West African Musa varieties cultivated under standardized field conditions was studied. Analysis of the within-fruit, within-hand, and within-plant as well as the between-plant variations demonstrated that both provitamin A carotenoids (pVACs) and mineral micronutrient (Fe, Zn) contents vary significantly across all sample groups. The variations in pVACs contents appear to be at least partly related to differences in the developmental status of the fruit, but the observed trends were genotype-specific. The mean pVACs concentrations per genotype indicated that there is substantial genetic variation in the fruit pVACs contents between Musa cultivars, with orange-fleshed plantain varieties (AAB) having generally higher fruit pVACs contents than dessert bananas (AAA). It was not possible to identify consistent trends between the sampling position and fruit Fe/Zn contents. Once the within-bunch micronutrient variability has been accounted for, the mean variations in fruit micronutrient contents between individual plants of a variety generally fell to within acceptable limits. Results are discussed within the framework of standardizing sampling and developing strategies to screen for the nutritional values of new and existing Musa varieties.

  5. A model study of the tropical Atlantic variability, with a focus on upwelling events along the African coasts

    NASA Astrophysics Data System (ADS)

    Quattrocchi, G.; Pierini, S.

    2009-04-01

    A process-oriented model study of the tropical Atlantic Ocean is presented. It is based on a hierarchy of reduced-gravity primitive equation layer models, including one, two or three active layers; the domain of integration spans the latitudes from 35°S to 35°N and the wind forcing is provided by the ECMWF Re-Analysis data, which are decomposed in EOF. The full oceanic response is first compared with that obtained with a limited number of EOF in order to identify the main patterns of the wind-driven circulation. Particular attention is devoted to the analysis of beta-refracted baroclinic Rossby waves, that shape the oceanic variability in the eastern tropical region. The wind forcing is then confined to zonal bands with different meridional widths centered at the equator, so that the thermocline variability along the African coasts outside such bands is merely due to coastal Kelvin waves originating from eastward-traveling equatorial Kelvin waves through a well known teleconnection mechanism. Comparison of the obtained results with the full oceanic response allows us to distinguish between remotely-forced and locally forced upwelling events. A preliminary validation with altimeter data is finally presented.

  6. Modeling Circulation along the Vietnamese Coast Influenced by Monsoon Variability in Meteorology, River Discharge and Interactions with the Vietnamese East Sea

    DTIC Science & Technology

    2013-09-30

    of robust ocean modeling systems suited to exploring interactions between submesoscale circulation on continental shelves and mesoscale variability...mesoscale to submesoscale dynamics of the South China Sea – with an emphasis on the environs of Luzon Strait so as to complement interpretation of...observational studies of the Submesoscale Dynamics of the South China Sea (SDSCS) ONR project team. It remains a secondary objective to also use the

  7. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  8. On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century

    NASA Astrophysics Data System (ADS)

    Salzmann, M.; Cherian, R.

    2015-09-01

    The observed summertime drying over Northern Central India (NCI) during the latter half of the twentieth century is not reproduced by the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensemble average. At the same time, the spread between precipitation trends from individual model realizations is large, indicating that internal variability potentially plays an important role in explaining the observed trend. Here we show that the drying is indeed related to the observed 1950-1999 positive trend of the Pacific Decadal Oscillation (PDO) index and that the relationship is even stronger for a simpler index (S1). Adjusting the CMIP5-simulated precipitation trends to account for the difference between the observed and simulated S1 trend increases the original multimodel average NCI drying trend from -0.09 ± 0.31 mm d-1 (50 years)-1 to -0.54 ± 0.40 mm d-1 (50 years)-1. Thus, our estimate of the 1950-1999 NCI drying associated with Pacific decadal variability is of similar magnitude as our previous CMIP5-based estimate of the drying due to anthropogenic aerosol. The drying (moistening) associated with increasing (decreasing) S1 can partially be attributed to a southeastward (northwestward) shift of the boundary between ascent and descent affecting NCI. This shift of the ascent region strongly affects NCI but not Southeast Asia and south China. The average spread between individual model realizations is only slightly reduced when adjusting for S1 as smaller-scale variability also plays an important role.

  9. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia.

    PubMed

    Sinha, Ashish; Kathayat, Gayatri; Cheng, Hai; Breitenbach, Sebastian F M; Berkelhammer, Max; Mudelsee, Manfred; Biswas, Jayant; Edwards, R L

    2015-02-17

    Observations show that summer rainfall over large parts of South Asia has declined over the past five to six decades. It remains unclear, however, whether this trend is due to natural variability or increased anthropogenic aerosol loading over South Asia. Here we use stable oxygen isotopes in speleothems from northern India to reconstruct variations in Indian monsoon rainfall over the last two millennia. We find that within the long-term context of our record, the current drying trend is not outside the envelope of monsoon's oscillatory variability, albeit at the lower edge of this variance. Furthermore, the magnitude of multi-decadal oscillatory variability in monsoon rainfall inferred from our proxy record is comparable to model estimates of anthropogenic-forced trends of mean monsoon rainfall in the 21st century under various emission scenarios. Our results suggest that anthropogenic-forced changes in monsoon rainfall will remain difficult to detect against a backdrop of large natural variability.

  10. Food Security Through the Eyes of AVHRR: Changes and Variability of African Food Production

    NASA Astrophysics Data System (ADS)

    Vrieling, A.; de Beurs, K. M.; Brown, M. E.

    2008-12-01

    Food security is defined by FAO as a situation that exists when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life. Despite globalization and food trade, access to food remains a major problem for an important part of Africa's population. As a contribution to the food security analysis we identify at a coarse scale where trends and high interannual variability of food production occur within Africa. We use the 8-km resolution AVHRR NDVI 15-day composites of the GIMMS group (1981-2006). Two methods were applied to extract phenology indicators from the dataset. The indicators are start of season, length of season, time of maximum NDVI, maximum NDVI, and cumulated NDVI over the season. To focus the analysis on food production we spatially aggregate the annual indicators at sub-national level using a general crop mask. Persistent changes during the 26-year period were assessed using trend analysis on the yearly aggregated indicators. These trends may indicate changes in production, and consequent potential increases of food insecurity. We evaluate then where strong interannual variability of phenology indicators occurs. This relates to regular shortages of food availability. For Africa, field information on phenology or accurate time series of production figures at the sub-national scale are scarce. Validating the outcome of the AVHRR analysis is consequently difficult. We propose to use crop-specific national FAOSTAT yield statistics. For this purpose, we aggregate phenology outputs per country using specific masks for the major staple food crops. Although data quality and scale issues influence results, for several countries and crops significant positive correlations between indicators and crop production exist. We conclude that AVHRR-derived phenology information can provide useful inputs to food security analysis.

  11. Trends and Variability in Pastoral Resources in the West African Sahel

    NASA Astrophysics Data System (ADS)

    Hanan, N. P.

    2014-12-01

    The geography of water and nutrients in the savannas of West Africa has shaped the development of a system of migratory cattle movements ("transhumance") in which herds travel north during the rainy season to graze the nutritious grasslands of the Sahel and return south in the dry season to graze in fallow lands and on agricultural residue. Cattle in this system gain most of their body mass while grazing in the Sahel and frequently lose mass on their dry season range. The Sahel is, therefore, at the heart of extensive livestock production systems in West Africa. However, there is increasing concern regarding how climate change will impact the region, while human population growth and economic development require increased agricultural and livestock production. The future for pastoral production systems in West Africa is, therefore, uncertain. This presentation combines remote sensing of vegetation structure and phenology with a watershed-scale tree-grass ecohydrology model, to explore how key resources for Sahelian pastoralist communities (forage and surface water for livestock, woody biomass for fuel) respond to climate variability and extreme events, conditioned by human management of grazing, fire and fuel-wood harvest. Mortality of woody species and loss of herbaceous cover during the Sahelian droughts of the 1970's and 1980's significantly perturbed vegetation dynamics and ecohydrological interactions, perturbations from which the region is still recovering. The re-greening and reforestation of the Sahel reported by many authors is, in part, an expression of this recovery. Future trajectories of change in pastoral resources in the Sahel, in particular forage availability and drinking water, are explored using climate change ensembles.

  12. Tropical African climate variability during the last glacial/interglacial transition: the molecular record from Lake Malawi

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Werne, J. P.; Johnson, T. C.

    2003-12-01

    In general, information regarding tropical African climate variability is relatively limited, especially in comparison with high-latitude studies. Unlike the high-latitudes where climate change is often expressed by fluctuations in temperature, low-latitude climate change is often expressed as variability in zonal circulation, which can result in hydrological fluctuations. Lake Malawi, situated in low-latitude tropical Africa (9-14° S), contains a continuous and high-resolution sedimentary record of the past 22ka BP and is anoxic below 250m, which enhances preservation of organic matter (OM). For these reasons, L. Malawi is an excellent location to examine the response of low-latitude African climate to global climate change. The climate of Malawi is strongly influenced by the position and seasonal migration of the ITCZ. During the rainy season from November to March, the ITCZ is positioned over L. Malawi (12-13° S) and the dominant winds are weak and northerly. Between April and May the ITCZ moves northward towards the equator and strong southerly winds prevail (Jury & Mwafulirwa, 2002). Previous studies of L. Malawi have shown responses to global climatic events, such as the Younger Dryas. Additionally, studies have demonstrated the response of L. Malawi to local or regional events, such as variability in the ITCZ. Based on BSi MAR, diatom, phosphorus, and trace metal data, Johnson et al. (2002) proposed that at times more frequent or stronger northerly winds promoted upwelling in the northern basin of L. Malawi, and suggested more southerly migrations of the ITCZ (reaching latitudes of >13\\deg S) as the cause of these increased winds. Additionally, a recent study of L. Malawi based on multiple bulk geochemical proxies provides evidence for both southward and northward displacements of the ITCZ during the past 23ka BP (Filippi and Talbot, submitted). In this study the molecular biomarker record of L. Malawi is examined. Previous studies of Lake Malawi have

  13. Desert Dust and Monsoon Rain

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2014-01-01

    For centuries, inhabitants of the Indian subcontinent have know that heavy dust events brought on by strong winds occur frequently in the pre-monsoon season, before the onset of heavy rain. Yet scientists have never seriously considered the possibility that natural dust can affect monsoon rainfall. Up to now, most studies of the impacts of aerosols on Indian monsoon rainfall have focused on anthropogenic aerosols in the context of climate change. However, a few recent studies have show that aerosols from antropogenic and natural sources over the Indian subcontinent may affect the transition from break to active monsoon phases on short timescales of days to weeks. Writing in Nature Geoscience, Vinoj and colleagues describe how they have shown that desert dust aerosols over the Arabian Sea and West Asia can strenghten the summer monsoon over the Indial subcontinent in a matter of days.

  14. Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland

    NASA Astrophysics Data System (ADS)

    Tiitta, P.; Vakkari, V.; Josipovic, M.; Croteau, P.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Jaars, K.; Pienaar, J. J.; Ng, N. L.; Canagaratna, M. R.; Jayne, J. T.; Kerminen, V.-M.; Kulmala, M.; Laaksonen, A.; Worsnop, D. R.; Laakso, L.

    2013-06-01

    Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background emissions, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1) and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilized in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV) area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG) areas. Air masses associated with the anti-cyclonic recirculation (ACBIC) source region contained largely aged OA. Positive Matrix Factorization (PMF) analysis of aerosol mass spectra was used to characterize the organic aerosol (OA) properties. The factors identified were oxidized organic aerosols (OOA) and biomass burning organic aerosols (BBOA) in the dry season and low

  15. Indo-China monsoon indices.

    PubMed

    Tsai, ChinLeong; Behera, Swadhin K; Waseda, Takuji

    2015-01-29

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  16. Indo-China Monsoon Indices

    NASA Astrophysics Data System (ADS)

    Tsai, Chinleong; Behera, Swadhin K.; Waseda, Takuji

    2015-01-01

    Myanmar and Thailand often experience severe droughts and floods that cause irreparable damage to the socio-economy condition of both countries. In this study, the Southeastern Asian Summer Monsoon variation is found to be the main element of interannual precipitation variation of the region, more than the El Niño/Southern Oscillation (ENSO). The ENSO influence is evident only during the boreal spring season. Although the monsoon is the major factor, the existing Indian Monsoon Index (IMI) and Western North Pacific Monsoon Index (WNPMI) do not correlate well with the precipitation variation in the study regions of Southern Myanmar and Thailand. Therefore, a new set of indices is developed based on the regional monsoon variations and presented here for the first time. Precipitation variations in Southern Myanmar and Thailand differ as well as the elements affecting the precipitation variations in different seasons. So, separate indices are proposed for each season for Southern Myanmar and Thailand. Four new monsoon indices based on wind anomalies are formulated and are named as the Indochina Monsoon Indices. These new indices correlate better with the precipitation variations of the study region as compared to the existing IMI and WNPMI.

  17. African easterly wave energetics on intraseasonal timescales

    NASA Astrophysics Data System (ADS)

    Alaka, Ghassan J., Jr.

    East Atlantic tropical cyclone generation is associated with positive PKE events than with negative PKE events. Easterly wave activity is then examined in a regional model. The Advanced Research Weather Research and Forecasting (WRF-ARW) simulates West African monsoon climatology more accurately than the WRF Nonhydrostatic Mesoscale Model (WRF-NMM). Although the WRF-NMM produces more realistic boreal summer rainfall than the WRF-ARW, it fails to accurately simulate the AEJ and other key West African monsoon features. Parameterizations within the WRF-ARW are scrutinized as well, with the WRF single-moment 6-class microphysics and the Noah land surface model outperforming Thompson microphysics and the RUC land surface model. Three ten-year WRF-ARW experiments are performed to investigate the role of external forcing on intraseasonal variability in West Africa. In addition to a control simulation, two sensitivity experiments remove 30-90-day variability from the boundary conditions (for all zonal wavenumbers and just for eastward zonal wavenumbers 0-10). Overall, intraseasonal variability of AEWs shows only modest differences after the removal of all 30-90-day input into the model boundary conditions. PKE and PAPE budgets reveal that simulated positive PKE events in West Africa are preceded by extensions of the AEJ into East Africa, which enhance barotropic and baroclinic energy conversions in this region. This jet extension is associated with warm lower-tropospheric temperature anomalies in the eastern Sahara. In West Africa, the amplitude of PKE and PAPE budget terms exhibit a similar evolution (even in the sensitivity experiments) as in the reanalysis products.

  18. Monsoon failure enhances drought in southwestern North America

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Stahle, D. W.

    2012-12-01

    The North American monsoon has emerged as a research frontier for paleoclimatology. Precisely dated tree-ring latewood (summer growth) offers unparalleled promise for studying interannual- to decadal-scale monsoon variability over past centuries. From the new network of latewood chronologies in the southwestern U.S., we present a high-quality, 470-year long reconstruction of June-August (monsoon) precipitation for the Arizona-Sonora sub-region of the North American monsoon. For comparison, we developed a companion reconstruction of October-April (cool-season) precipitation from chronologies of earlywood (spring growth). Foremost, these reconstructions demonstrate that many of the well-known southwestern droughts were not just cool-season events, but were also characterized by concurrent failure of the summer monsoon. The early 21st century drought, the late 19th century drought, the 17th century Puebloan drought, and even the 16th century megadrought each contain notable runs of consecutive years with below average monsoon rainfall. The reconstructions also reveal that the interannual relationship between winter and summer precipitation has been unstable through time and that the tendency for dry (wet) winters to be followed by wet [dry] summers was anomalously high during the mid-late 20th century. Cool-season and monsoon moisture variability in this region can be linked to patterns of ocean-atmosphere circulation. However, our understanding of the climate dynamics that would facilitate persistence of dual-season drought and transience in the winter-summer precipitation relationship is far from complete.

  19. Recent climatological trend of the Saharan heat low and its impact on the West African climate

    NASA Astrophysics Data System (ADS)

    Lavaysse, Christophe; Flamant, Cyrille; Evan, Amato; Janicot, Serge; Gaetani, Marco

    2016-12-01

    The Saharan heat low (SHL) plays a pivotal role in the West African monsoon system in spring and summer. The recent trend in SHL activity has been analysed using two sets of numerical weather prediction (NWP) model reanalyses and Atmospheric Models Intercomparison Project simulations from 15 climate models performed in the framework of the 5th Coupled Models Intercomparison Project (CMIP5) exercise. A local increase of temperature in the Sahara during the 90s is found in the two sets of NWP models temperature. This increase is stronger within the SHL region than over the surrounding areas. Using different temporal filters (under 25 days, 25-100 days and above 300 days), we show that this is accompanied by a slight but widespread increase of temperature, and a change in the filtered signal under 25 days during the transition period of the 90s. We also show that SHL pulsations occurring at different time scales impact the West Africa climate on a variety of spatial scales, from the regional scale (for the high band pass) to the synoptic scale (for the low band pass signal). Despite a large variability in the temporal trends for 15 climate models from the CMIP5 project, the warming trend in the 90s is observed in the models ensemble mean. Nevertheless, large discrepancies are found between the NWP models reanalyses and the climate model simulations regarding the spatial and temporal evolutions of the SHL as well as its impact on West African climate at the different time scales. These comparisons also reveal that climate models represent the West African monsoon interactions with SHL pulsations quite differently. We provide recommendations to use some of them depending on the time scales of the processes at play (synoptic, seasonal, interannual) and based on key SHL metrics (location, mean intensity, global trend, interaction with the West African monsoon dynamics).

  20. The contribution of CEOP data to the understanding and modeling of monsoon systems

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2005-01-01

    CEOP has contributed and will continue to provide integrated data sets from diverse platforms for better understanding of the water and energy cycles, and for validating models. In this talk, I will show examples of how CEOP has contributed to the formulation of a strategy for the study of the monsoon as a system. The CEOP data concept has led to the development of the CEOP Inter-Monsoon Studies (CIMS), which focuses on the identification of model bias, and improvement of model physics such as the diurnal and annual cycles. A multi-model validation project focusing on diurnal variability of the East Asian monsoon, and using CEOP reference site data, as well as CEOP integrated satellite data is now ongoing. Similar validation projects in other monsoon regions are being started. Preliminary studies show that climate models have difficulties in simulating the diurnal signals of total rainfall, rainfall intensity and frequency of occurrence, which have different peak hours, depending on locations. Further more model diurnal cycle of rainfall in monsoon regions tend to lead the observed by about 2-3 hours. These model bias offer insight into lack of, or poor representation of key components of the convective,and stratiform rainfall. The CEOP data also stimulated studies to compare and contrasts monsoon variability in different parts of the world. It was found that seasonal wind reversal, orographic effects, monsoon depressions, meso-scale convective complexes, SST and land surface land influences are common features in all monsoon regions. Strong intraseasonal variability is present in all monsoon regions. While there is a clear demarcation of onset, breaks and withdrawal in the Asian and Australian monsoon region associated with climatological intraseasonal variability, it is less clear in the American and Africa monsoon regions. The examination of satellite and reference site data in monsoon has led to preliminary model experiments to study the impact of aerosol on

  1. A Holistic View of the Coupled Monsoon System

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2008-12-01

    The basic dynamical constraint on both the atmospheric and oceanic components of the monsoon is the strong cross-equatorial pressure gradient (CEPG). The CEPG is positive and strongest in the lower troposphere during the boreal summer and weakest and negative in the boreal winter. Counter gradients exist at higher elevations. The CEPG is a slowly varying field set up by land-sea differences, convective heating and the seasonal cycle of sea-surface temperature. The dynamic response to this evolving CEPG creates the seasonal structure of the ocean and the atmosphere and determines how the monsoon system will respond to forcing from outside the system. It determines the mode of interannual variability of the system. The CEPG drives a cross-equatorial flow that gains moisture through evaporation. Strong latent heat release occurs in littoral seas and land areas during the summer and to the south of the equator during winter creating net cross-equatorial heat fluxes from the winter to summer hemispheres. However, the cross- equatorial wind fields, so generated, cause an Ekman heat transport from the winter to the summer hemisphere. The net flux is large with a seasonal amplitude of about 2 PW. This almost matches the net atmospheric heat transport, but with reversed sign. For example, the oceanic heat flux is sufficient to reduce the north Indian Ocean upper temperature by 1-2C during summer and warm it by a comparable amount during winter. The net effect is to reduce the vigor of the atmospheric monsoon. To a large degree, the couple ocean-atmosphere system is self-regulated and closed system. Occasional outside influences (ENSO, anomalous springtime snow cover etc.) influence the monsoon. For example there is evidence that El Nino (La Nina) is associated with a weak (strong) monsoon. But a strong (weak) monsoon creates a stronger (weaker) cross-equatorial flow and an enhanced (reduced) oceanic heat flux to the winter hemisphere. In this manner, the system returns to

  2. Aerosol interactions with African/Atlantic climate dynamics

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2014-07-01

    Mechanistic relationships exist between variability of dust in the oceanic Saharan air layer (OSAL) and transient changes in the dynamics of Western Africa and the tropical Atlantic Ocean. This study provides evidence of possible interactions between dust in the OSAL region and African easterly jet-African easterly wave (AEJ-AEW) system in the climatology of boreal summer, when easterly wave activity peaks. Synoptic-scale changes in instability and precipitation in the African/Atlantic intertropical convergence zone are correlated with enhanced aerosol optical depth (AOD) in the OSAL region in response to anomalous 3D overturning circulations and upstream/downstream thermal anomalies at above and below the mean-AEJ level. Upstream and downstream anomalies are referred to the daily thermal/dynamical changes over the West African monsoon region and the Eastern Atlantic Ocean, respectively. Our hypothesis is that AOD in the OSAL is positively correlated with the downstream AEWs and negatively correlated with the upstream waves from climatological perspective. The similarity between the 3D pattern of thermal/dynamical anomalies correlated with dust outbreaks and those of AEWs provides a mechanism for dust radiative heating in the atmosphere to reinforce AEW activity. We proposed that the interactions of OSAL dust with regional climate mainly occur through coupling of dust with the AEWs.

  3. Multi-Scale Predictions of the Asian Monsoons in the NCEP Climate Forecast System

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2013-12-01

    A comprehensive analysis of the major features of the Asian monsoon system in the NCEP Climate Forecast System version 2 (CFSv2) and predictions of the monsoon by the model has been conducted. The intraseasonal-to-interannual variations of both summer monsoon and winter monsoon, as well as the annual cycles of monsoon climate, are focused. Features of regional monsoons including the monsoon phenomena over South Asia, East Asia, and Southeast Asia are discussed. The quasi-biweekly oscillation over tropical Asia and the Mei-yu climate over East Asia are also investigated. Several aspects of monsoon features including the relationships between monsoon and ENSO (including different types of ENSO: eastern Pacific warming and central Pacific warming), extratropical effects, dependence on time leads (initial conditions), regional monsoon features, and comparison between CFSv2 and CFS version 1 (CFSv1) are particularly emphasized. Large-scale characteristics of the Asian summer monsoon including several major dynamical monsoon indices and their associated precipitation patterns can be predicted several months in advance. The skill of predictions of the monsoon originates mostly from the impact of ENSO. It is found that large predictability errors occur in first three lead months and they only change slightly as lead time increases. The large errors in the first three lead months are associated with the large errors in surface thermal condition and atmospheric circulation in the central and eastern Pacific and the African continent. In addition, the response of the summer monsoon to ENSO becomes stronger with increase in lead time. The CFSv2 successfully simulates several major features of the East Asian winter monsoon and its relationships with the Arctic Oscillation, the East Asian subtropical jet, the East Asian trough, the Siberian high, and the lower-tropospheric winds. Surprisingly, the upper-tropospheric winds over the middle-high latitudes can be better simulated

  4. Multi-decadal Variation of the Indian Monsoon Rainfall: Implications of ENSO

    NASA Astrophysics Data System (ADS)

    Pothuri, D.; Nuernberg, D.; Mohtadi, M.

    2014-12-01

    Scientific consensus exists on the inverse relationship between the El Nino Southern Oscillation (ENSO) and the Indian Monsoon Rainfall. Conversely, recent historical records of 140 years revealed that the relationship between Indian Monsoon and ENSO has broken down (Kumar et al., 1999). Indian Monsoon rainfall variability on decadal time scale was reconstructed by using seawater oxygen isotopes (d18Ow) estimated from oxygen isotopes and Mg/Ca ratios of Globigerinoides ruber from a sediment core in the Bay of Bengal. A comparison of Indian Monsoon rainfall variability on decadal time scale with the number of ENSO events over last 2000 years reveals an inverse relationship between the monsoon rainfall in the Indian Subcontinent and ENSO Events. Furthermore, d18Ow variations reveal increased monsoon rainfall during Roman Warm Period (RWP) and Medieval Warm Period (MWP) and larger monsoon rainfall fluctuations during the Little Ice Age (LIA). Therefore, our study suggests that on decadal time scale ENSO affects the Indian Monsoon Rainfall through the stronger Walker Circulation and associated tropical convection process.

  5. Recent and future changes in the Asian monsoon-ENSO relationship: Natural or forced?

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang

    2015-05-01

    The Asian monsoon-ENSO (El Niño-Southern Oscillation) relationship in the 20th and 21st centuries is examined using observations and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations. CMIP5 models can simulate the ENSO-monsoon spatial structure reasonably well when using the multimodel mean. Running correlations show prominent decadal variability of the ENSO-monsoon relationship in observations. The modeled ENSO-monsoon relation shows large intermodel spread, indicating large variations across the model ensemble. The anthropogenically forced component of ENSO-monsoon relationship is separated from the naturally varying component based on a signal-to-noise maximizing empirical orthogonal function analysis using global sea surface temperature (SST). Results show that natural variability plays a dominant role in the varied ENSO-monsoon relationship during the 20th century. In the 21st century, the forced component is dominated by enhanced monsoon rainfall associated with SST warming, which may contribute to a slightly weakened ENSO-monsoon relation in the future.

  6. Trace gas transport out of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst

    2016-04-01

    The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the

  7. East African Droughts of the Last 2 Millennia: Insights from Compound-Specific Hydrogen Isotopes at Sacred Lake, Mount Kenya

    NASA Astrophysics Data System (ADS)

    Konecky, B.; Cohen, L. R.; Russell, J. M.; Vuille, M.; Huang, Y.; Street-Perrott, A.

    2010-12-01

    We present a new record of the δD of leaf waxes spanning the last 2 millennia from Sacred Lake, East Africa. Sacred Lake is a small (~1km diameter) crater lake located on the northeastern slope of Mount Kenya, along the equator and at approximately 2,350 meters above sea level. Climate in the region is characterized by a bimodal precipitation pattern driven by the annual migration of the ITCZ through the region, with maximum rainfall occurring October through December. Due to Sacred Lake’s location on the northeast Mt. Kenya slope, precipitation at Sacred Lake is highly sensitive to the intensity of the northeasterly Indian winter monsoon. Modern isotopes of precipitation in the region reflect the intensity of this monsoonal rainfall and, on interannual to decadal timescales, its relationship with the Indian Ocean Dipole (Vuille et. al, 2005). Fluctuations in the δD of precipitation at Sacred Lake, and hence the δD of leaf waxes in its sediments, thus most likely reflect the decadal to centennial scale behavior of the Indian winter monsoon over the last 2 millennia. Our δD record exhibits a long-term trend from more D-enriched leaf waxes at ~1700 years BP to more depleted waxes during the past millennium, consistent with many East African lake records indicating generally wetter conditions in the region following a widespread drought ca. 1,800 years BP (Russell and Johnson, 2005; Verschuren et. al, 2001). This long-term D-depletion may represent a broad intensification of the Indian winter monsoon over the last 2 millennia. Sacred Lake leaf wax isotopes exhibit a step-wise change around ~1200 years BP from more D-enriched (-124 +/- 4‰) to more D-depleted (-133 +/-4‰), followed by considerable decadal-scale δD variability during the past millennium. Significant isotopic enrichment of leaf waxes occurs during the late Little Ice Age, suggesting a weakening of the Indian winter monsoon during that time. However, most of the centennial-scale droughts between

  8. HLA-E coding and 3' untranslated region variability determined by next-generation sequencing in two West-African population samples.

    PubMed

    Castelli, Erick C; Mendes-Junior, Celso T; Sabbagh, Audrey; Porto, Iane O P; Garcia, André; Ramalho, Jaqueline; Lima, Thálitta H A; Massaro, Juliana D; Dias, Fabrício C; Collares, Cristhianna V A; Jamonneau, Vincent; Bucheton, Bruno; Camara, Mamadou; Donadi, Eduardo A

    2015-12-01

    HLA-E is a non-classical Human Leucocyte Antigen class I gene with immunomodulatory properties. Whereas HLA-E expression usually occurs at low levels, it is widely distributed amongst human tissues, has the ability to bind self and non-self antigens and to interact with NK cells and T lymphocytes, being important for immunosurveillance and also for fighting against infections. HLA-E is usually the most conserved locus among all class I genes. However, most of the previous studies evaluating HLA-E variability sequenced only a few exons or genotyped known polymorphisms. Here we report a strategy to evaluate HLA-E variability by next-generation sequencing (NGS) that might be used to other HLA loci and present the HLA-E haplotype diversity considering the segment encoding the entire HLA-E mRNA (including 5'UTR, introns and the 3'UTR) in two African population samples, Susu from Guinea-Conakry and Lobi from Burkina Faso. Our results indicate that (a) the HLA-E gene is indeed conserved, encoding mainly two different protein molecules; (b) Africans do present several unknown HLA-E alleles presenting synonymous mutations; (c) the HLA-E 3'UTR is quite polymorphic and (d) haplotypes in the HLA-E 3'UTR are in close association with HLA-E coding alleles. NGS has proved to be an important tool on data generation for future studies evaluating variability in non-classical MHC genes.

  9. Comparing Gifted and Nongifted African American and Euro-American Students on Cognitive and Academic Variables Using Local Norms

    ERIC Educational Resources Information Center

    Jordan, Kelli R.; Bain, Sherry K.; McCallum, R. Steve; Mee Bell, Sherry

    2012-01-01

    A total of 47 gifted and nongifted African American and Euro-American elementary students were rated by their teachers on a multidimensional instrument developed to minimize language considerations and to rely on local norms (Universal Multiple Abilities Scales [UMAS; McCallum & Bracken, 2012a]). Results from two factorial MANOVAs revealed no…

  10. Observational relationships between aerosol and Asian monsoon rainfall, and circulation

    NASA Astrophysics Data System (ADS)

    Lau, K.-M.; Kim, K.-M.

    2006-11-01

    Preliminary observational evidences are presented showing that the Indian subcontinent and surrounding regions are subject to heavy loading of absorbing aerosols, i.e., dust and black carbon, which possess spatial and temporal variability that are closely linked to those of the Asian monsoon water cycle. Consistent with the Elevated Heat Pump hypothesis, we find that increased loading of absorbing aerosols over the Indo-Gangetic Plain in the pre-monsoon season is associated with a) increased heating of the upper troposphere, with the formation of a warm-core upper level anticyclone over the Tibetan Plateau in April-May, b) an advance of the monsoon rainy season in northern India in May, and c) subsequent increased rainfall over the Indian subcontinent, and decreased rainfall over East Asia in June-July.

  11. Testing a flexible method to reduce false monsoon onsets.

    PubMed

    Stiller-Reeve, Mathew Alexander; Spengler, Thomas; Chu, Pao-Shin

    2014-01-01

    To generate information about the monsoon onset and withdrawal we have to choose a monsoon definition and apply it to data. One problem that arises is that false monsoon onsets can hamper our analysis, which is often alleviated by smoothing the data in time or space. Another problem is that local communities or stakeholder groups may define the monsoon differently. We therefore aim to develop a technique that reduces false onsets for high-resolution gridded data, while also being flexible for different requirements that can be tailored to particular end-users. In this study, we explain how we developed our technique and demonstrate how it successfully reduces false onsets and withdrawals. The presented results yield improved information about the monsoon length and its interannual variability. Due to this improvement, we are able to extract information from higher resolution data sets. This implies that we can potentially get a more detailed picture of local climate variations that can be used in more local climate application projects such as community-based adaptations.

  12. The Origins of ITCZs, Monsoons, and Monsoon Onset

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2009-01-01

    Intertropical convergence zones (ITCZs), monsoons and monsoon onset are among the most prominent of atmospheric phenomena. Understanding their origins is fundamental to a full understanding of the atmospheric general circulation and has challenged meteorologists for a very long time. There has been important progress in understanding these phenomena in recent years, and in this seminar, recent developments, to which the speaker has contributed, are reviewed. First, contrary to conventional belief, land-sea thermal contrast is not necessary for monsoons to form. Second, monsoon onset occurs when there is a sudden poleward jump of an ITCZ during its annual cycle of latitudinal movement. A monsoon, then, is an ITCZ after its poleward jump. Third, the SST latitudinal maximum is not the most significant, or even a necessary, factor in the formation of an ITCZ; there are other important, if not more important, factors. These factors are the interaction between convection and surface fluxes, the interaction between convection and radiation, and the earth's rotation. Finally, the recent understanding of how ITCZs form has led to a conceptual explanation for the origin of the double ITCZ bias in GCM simulations.

  13. 2.1 Pan-WCRP Monsoon Modelling Workshop Summary

    SciTech Connect

    Sperber, K R

    2005-06-28

    Ken Sperber led a discussion of the outcome of the Pan-WCRP Monsoon Modelling Workshop that was held at the University of California at Irvine from 15-17 June 2005. At the workshop presentations from key CLIVAR and GEWEX panels were presented to highlight the outstanding problems in modelling the Earth's monsoons. Additionally, presentations from invited experts were given to highlight important aspects of monsoon phenomena and processes, such as low-level jets, air-sea interaction, predictability, observational networks/studies, and model test beds etc. Since all persons attending the CLIVAR AAMP meeting were present for all, or most, of the monsoon workshop, a detailed description of the workshop presentations was not given. Rather, the discussion was focused on the recommendations of the workshop breakout groups and their relevance to CLIVAR AAMP. CLIVAR AAMP endorsed the near-term workshop recommendation of investigating the diurnal cycle using a hierarchy of models a key way forward for promoting CLIVAR/GEWEX interactions. In GCM studies CLIVAR researchers have identified the diurnal cycle as a forced ''mode'' of variability that is poorly represented in terms of amplitude and phase, especially in the case of precipitation. Typical phase errors of 6-12 hours are noted over both land and ocean in GCMs. CLIVAR views adequate simulation of the diurnal cycle as key aspect of variability in its own right, but also because of its potential rectification on to subseasonal variability (e.g., the Madden-Julian oscillation). It is hypothesized that improvement of diurnal variability may lead to an improved representation of intraseasonal variability and improved skill of monsoon forecasts on medium-range to seasonal time scales.

  14. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-06-01

    The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. Simulated long term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American Monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS as compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and be lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOx. This also affects the distribution of PAN in the UTLS. According to sensitivity simulations with and without lightning, increase in concentrations of PAN (~ 40%), HNO3 (75%), NOx (70%) and ozone (30%) over the regions of convective transport, especially over equatorial Africa and America and comparatively less over the ASM. This indicates that PAN in the

  15. An Assessment of the Impact of the 1997-98 El Nino on the Asian-Australian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Wu, H.-T.

    1999-01-01

    Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.

  16. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    SciTech Connect

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A

    2008-09-16

    The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal timescales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Nino-Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features

  17. The relationship between Arabian Sea upwelling and Indian Monsoon revisited

    NASA Astrophysics Data System (ADS)

    Yi, Xing; Zorita, Eduardo; Hünicke, Birgit

    2015-04-01

    Coastal upwelling is important to marine ecosystems and human activities. It transports nutrient-rich deep water mass that supports marine biological productivity. In this study, we aim to characterize the large-scale climate forcings that drive upwelling along the western Arabian Sea coast. Studies based on ocean sediments suggest that there is a link between this coastal upwelling system and the Indian summer monsoon. However, a more direct method is needed to examine the influence of various forcings on upwelling. For this purpose, we analyse a high-resolution (about 10 km) global ocean simulation (denoted STORM), which is based on the MPI-OM model developed by the Max-Planck-Institute for Meteorology in Hamburg driven by the global meteorological reanalysis NCEP over the period 1950-2010. This very high spatial resolution allows us to identify characteristics of the coastal upwelling system. We compare the simulated upwelling velocity of STORM with two traditional upwelling indices: along-shore wind speed and sea surface temperature. The analysis reveals good consistency between these variables, with high correlations between coastal upwelling and along-shore wind speed (r=0.85) as well as coastal sea surface temperature (r=-0.77). To study the impact of the monsoon on the upwelling we analyse both temporal and spatial co-variability between upwelling velocity and the Indian summer monsoon index. The spatial analysis shows that the impact of the monsoon on the upwelling is concentrated along the coast, as expected. However, somewhat unexpectedly, the temporal correlation between the coastal upwelling and the monsoon index is rather weak (r=0.26). Also, the spatial structure of upwelling in the Arabian Sea as revealed by a Principal Component Analysis is rather rich, indicating that factors other than the Monsoon are also important drivers of upwelling. In addition, no detectable trend in our coastal upwelling is found in the simulation that would match the

  18. Anomalies in the South American Monsoon Induced by Aerosols

    NASA Technical Reports Server (NTRS)

    Lau, K. M. William; Kyu-Mong, Kim

    2007-01-01

    We have investigated the direct effects of aerosols on the water cycle of the South American monsoon using the NASA finite-volume general circulation model (fvGCM). Global aerosol forcings are computed from radiative transfer functions derived from global distributions of five species of aerosols, i.e., dust, black carbon, organic carbon, sulphate and sea salt from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model. Comparing fvGCM experiments without aerosol forcing, and with different combinations of aerosol forcing, we evaluate the impacts of aerosol direct heating on the onset, maintenance and evolution of the South American summer monsoon. We find that during the pre-monsoon season (September-October-November) Saharan dust contribute to heating of the atmosphere over the central and eastern equatorial Atlantic/Africa region through the elevated heat pump mechanism. The heating generates an anomalous Walker circulation with sinking motion, and low level northeasterlies over the Caribbean and northwestern South America. The low level flow is blocked by the Andes, and turn south and southeastward, increasing the low level jet (LLJ) along the eastern slope of the Andes. The increased LLJ transports more moisture from the Atlantic and the Amazon, enhancing the moisture convergence over subtropical land regions of South America. The moisture convergence was further accelerated by atmospheric heating by biomass burning over the Amazon. The net results of the dust and biomass heating are: a) an advance of the monsoon rainy season, b) an enhanced LLJ and c) a shifting the South America monsoon land precipitation equatorward, with increased rain over southern Brazil and reduced rain over the La Plata basin. ramifications of this elevated heating heat pump mechanism in aerosol monsoon water cycle on climate variability and change will be discussed. The ramifications of this "elevated heating heat pump" mechanism in aerosol monsoom water cycle on climate

  19. Atlantic effects on recent decadal trends in global monsoon

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Li, Xichen; Xie, Shang-Ping; Ueda, Hiroaki

    2017-01-01

    Natural climate variability contributes to recent decadal climate trends. Specifically the trends during the satellite era since 1979 include Atlantic and Indian Ocean warming and Pacific cooling associated with phase shifts of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation, and enhanced global monsoon (GM) circulation and rainfall especially in the Northern Hemisphere. Here we evaluate effects of the oceanic changes on the global and regional monsoon trends by partial ocean temperature restoring experiments in a coupled atmosphere-ocean general circulation model. Via trans-basin atmosphere-ocean teleconnections, the Atlantic warming drives a global pattern of sea surface temperature change that resembles observations, giving rise to the enhanced GM. The tropical Atlantic warming and the resultant Indian Ocean warming favor subtropical deep-tropospheric warming in both hemispheres, resulting in the enhanced monsoon circulations and precipitation over North America, South America and North Africa. The extratropical North Atlantic warming makes an additional contribution to the monsoon enhancement via Eurasian continent warming and resultant land-sea thermal gradient over Asia. The results of this study suggest that the Atlantic multidecadal variability can explain a substantial part of global climate variability including the recent decadal trends of GM.

  20. Topographic development in the late Neogene and the impact on African vegetation

    NASA Astrophysics Data System (ADS)

    Jung, Gerlinde; Prange, Matthias; Schulz, Michael

    2014-05-01

    Hominid evolution, specifically the split of the hominid-chimpansee lineages in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa in the late Miocene. A main cause for the climatic and vegetation change often considered was uplift of Africa but also uplift of the Himalaya and the Tibetan Plateau was suggested to have contributed to an intensification of the African-Asian monsoon system and hence impacted rainfall distribution over Eastern Africa. In contrast, more recent proxy data suggest that open grassland habitats were available to human ancestors and apes long before their divergence and that there is no evidence for a closed rainforest in the late Miocene. We use the coupled global circulation model CCSM3 with an online coupled dynamic vegetation module to investigate the impact of the uplift processes on the African-Asian monsoon circulation and consequent changes in tropical African vegetation. The model is run with a resolution of T85 (~1.4°) for the atmosphere and land surface and a variable resolution for the computation of ocean and sea ice down to a meridional grid spacing of 0.3° around the equator. We performed a set of sensitivity experiments, altering elevations of the Himalaya and the Tibet Plateau and of East and South Africa separately and in combination from half to full present day level. The simulations confirm the dominant impact of the East and South African uplift for climate and vegetation development of the African tropics. Only a weak, but significant, impact of the prescribed Asian Uplift on African monsoon and vegetation development could be detected. Himalaya/Tibet Plateau uplift lead to slightly dryer conditions in Central Africa and small increases in rainfall over East Africa. According to the model simulations topographic uplift of Africa significantly altered rainfall in Central Africa, which coincides with proxy records from the Congo basin showing a change towards

  1. Signature of a southern hemisphere extratropical influence on the summer monsoon over India

    NASA Astrophysics Data System (ADS)

    Viswambharan, Nithin; Mohanakumar, K.

    2013-07-01

    The weakening relationship of El Nino with Indian summer monsoon reported in recent years is a major issue to be addressed. The altered relationships of Indian monsoon with various parameters excite to search for other dominant modes of variability that can influence the precipitation pattern. Since the Indian summer monsoon circulation originates in the oceanic region of the southern hemisphere, the present study investigates the association of southern extratropical influence on Indian summer monsoon using rainfall and reanalysis parameters. The effect of Southern Annular Mode (SAM) index during the month of June associated with the onset phase of Indian summer monsoon and that during July-August linked with the active phase of the monsoon were analysed separately for a period from 1951 to 2008. The extra-tropical influence over the monsoon is illustrated by using rainfall, specific humidity, vertical velocity, circulation and moisture transport. The June high SAM index enhances the lower level wind flow during the onset phase of monsoon over Indian sub-continent. The area of significant positive correlation between precipitation and SAM in June also shows enhancement in both ascending motion and specific humidity during the strong phase of June SAM. On the other hand, the June high SAM index adversely affects July-August monsoon over Indian subcontinent. The lower level wind flow weakens due to the high SAM. Enhancement of divergence and reduction in moisture transport results in the Indian monsoon region due to the activity of this high southern annular mode. The effect is more pronounced over the southwest region where the precipitation spell has high activity during the period. Significant correlation exists between SAM and ISMR, even after removing the effect of El Nino. It indicates that the signals of Indian summer monsoon characteristics can be envisaged to a certain extend using the June SAM index.

  2. Evaluation of potential variables contributing to the development and duration of plantar lesions in a population of aquarium-maintained African penguins (Spheniscus demersus).

    PubMed

    Erlacher-Reid, Claire; Dunn, J Lawrence; Camp, Tracy; Macha, Laurie; Mazzaro, Lisa; Tuttle, Allison D

    2012-01-01

    Bumblefoot (pododermatitis), often described as the most significant environmental disease of captive penguins, is commonly due to excessive pressure or trauma on the plantar surface of the avian foot, resulting in inflammation or necrosis and causing severe swelling, abrasions, or cracks in the skin. Although not formally evaluated in penguins, contributing factors for bumblefoot are thought to be similar to those initiating the condition in raptors and poultry. These factors include substrate, body weight, and lack of exercise. The primary purpose of this retrospective study was to evaluate variables potentially contributing to the development and duration of plantar lesions in aquarium-maintained African penguins (Spheniscus demersus), including sex, weight, age, season, exhibit activity, and territory substrate. Results indicate that males develop significantly more plantar lesions than females. Penguins weighing between 3.51 and 4.0 kg develop plantar lesions significantly more often than penguins weighing between 2.5 and 3.5 kg, and because male African penguins ordinarily weigh significantly more than females, weight is likely a contributing factor in the development of lesions in males compared with females. Significantly more plantar lesions were observed in penguins standing for greater than 50% of their time on exhibit than swimming. Penguins occupying smooth concrete territories developed more plantar lesions compared with penguins occupying grate territories. Recommendations for minimizing bumblefoot in African penguins include training penguins for monthly foot examinations for early detection of plantar lesions predisposing for the disease, encouraging swimming activity, and replacing smooth surfaces on exhibit with surfaces providing variable degrees of pressure and texture on the feet.

  3. Medication adherence and visit-to-visit variability of systolic blood pressure in African Americans with chronic kidney disease in the AASK trial.

    PubMed

    Hong, K; Muntner, P; Kronish, I; Shilane, D; Chang, T I

    2016-01-01

    Lower adherence to antihypertensive medications may increase visit-to-visit variability of blood pressure (VVV of BP), a risk factor for cardiovascular events and death. We used data from the African American Study of Kidney Disease and Hypertension (AASK) trial to examine whether lower medication adherence is associated with higher systolic VVV of BP in African Americans with hypertensive chronic kidney disease (CKD). Determinants of VVV of BP were also explored. AASK participants (n=988) were categorized by self-report or pill count as having perfect (100%), moderately high (75-99%), moderately low (50-74%) or low (<50%) proportion of study visits with high medication adherence over a 1-year follow-up period. We used multinomial logistic regression to examine determinants of medication adherence, and multivariable-adjusted linear regression to examine the association between medication adherence and systolic VVV of BP, defined as the coefficient of variation or the average real variability (ARV). Participants with lower self-reported adherence were generally younger and had a higher prevalence of comorbid conditions. Compared with perfect adherence, moderately high, moderately low and low adherence was associated with 0.65% (±0.31%), 0.99% (±0.31%) and 1.29% (±0.32%) higher systolic VVV of BP (defined as the coefficient of variation) in fully adjusted models. Results were qualitatively similar when using ARV or when using pill counts as the measure of adherence. Lower medication adherence is associated with higher systolic VVV of BP in African Americans with hypertensive CKD; efforts to improve medication adherence in this population may reduce systolic VVV of BP.

  4. The Contribution of CEOP Data to the Understanding and Modeling of Monsoon Systems

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2005-01-01

    CEOP has contributed and will continue to provide integrated data sets from diverse platforms for better understanding of the water and energy cycles, and for validaintg models. In this talk, I will show examples of how CEOP has contributed to the formulation of a strategy for the study of the monsoon as a system. The CEOP data concept has led to the development of the CEOP Inter-Monsoon Studies (CIMS), which focuses on the identification of model bias, and improvement of model physics such as the diurnal and annual cycles. A multi-model validation project focusing on diurnal variability of the East Asian monsoon, and using CEOP reference site data, as well as CEOP integrated satellite data is now ongoing. Preliminary studies show that climate models have difficulties in simulating the diurnal signals of total rainfall, rainfall intensity and frequency of occurrence, which have different peak hours, depending on locations. Further more model diurnal cycle of rainfall in monsoon regions tend to lead the observed by about 2-3 hours. These model bias offer insight into lack of, or poor representation of, key components of the convective and stratiform rainfall. The CEOP data also stimulated studies to compare and contrasts monsoon variability in different parts of the world. It was found that seasonal wind reversal, orographic effects, monsoon depressions, meso-scale convective complexes, SST and land surface land influences are common features in all monsoon regions. Strong intraseasonal variability is present in all monsoon regions. While there is a clear demarcation of onset, breaks and withdrawal in the Asian and Australian monsoon region associated with climatological intraseasonal variabillity, it is less clear in the American and Africa monsoon regions. The examination of satellite and reference site data in monsoon has led to preliminary model experiments to study the impact of aerosol on monsoon variability. I will show examples of how the study of the

  5. A brief survey on climate change effects on the Indian Monsoon

    SciTech Connect

    Bala, G

    2007-02-06

    Each year, Indian summer monsoon season begins in June and ends in September. Surface winds blow from the southwest during this season. The Indian summer monsoon typically covers large areas of India with western and central India receiving more than 90% of their total annual precipitation during this period, and southern and northwestern India receiving 50%-75% of their total annual rainfall. Overall, monthly totals average 200-300 mm over the country as a whole, with the largest values observed during the heart of the monsoon season in July and August. In all total, India receives about 870 mm of rainfall in a normal summer monsoon season. This summary discusses the effects of climate change on the frequency, mean rainfall, duration and the variability of the Indian Monsoon. East Asian Monsoon in the southeastern part of Asia is not discussed in this summary. Changes in monsoon characteristics are mainly inferred from climate model simulations submitted to the Intergovernmental Panel on Climate Change (IPCC)'s Fourth Assessment Report (AR4). It should be cautioned that there is a large range in the results from these models. For instance, the range of mean monsoon precipitation as simulated by the AR4 models over India is from 500 mm to 900 mm for the present-day climate (Kirpalani et al. 2006).

  6. The meteorology of the Western Indian Ocean, and the influence of the East African Highlands.

    PubMed

    Slingo, Julia; Spencer, Hilary; Hoskins, Brian; Berrisford, Paul; Black, Emily

    2005-01-15

    This paper reviews the meteorology of the Western Indian Ocean and uses a state-of-the-art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44-year re-analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter-annual variability are described, associated with El Nino and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re-analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea-surface temperatures.

  7. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2

    NASA Astrophysics Data System (ADS)

    Ganai, Malay; Krishna, R. Phani Murali; Mukhopadhyay, P.; Mahakur, M.

    2016-08-01

    The impact of revised simplified Arakawa-Schubert (RSAS) convective parameterization scheme in Climate Forecast System (CFS) version 2 (CFSv2) on the simulation of active and break phases of Indian summer monsoon (ISM) has been investigated. The results revealed that RSAS showed better fidelity in simulating monsoon features from diurnal to daily scales during active and break periods as compared to SAS simulation. Prominent improvement can be noted in simulating diurnal phase of precipitation in RSAS over central India (CI) and equatorial Indian Ocean (EIO) region during active periods. The spatial distribution of precipitation largely improved in RSAS simulation during active and break episodes. CFSv2 with SAS simulation has noticeable dry bias over CI and wet bias over EIO region which appeared to be largely reduced in RSAS simulation during both phases of the intraseasonal oscillation (ISO). During active periods, RSAS simulates more realistic probability distribution function (PDF) in good agreement with the observation. The relative improvement has been identified in outgoing longwave radiation, monsoon circulations, and vertical velocities in RSAS over SAS simulation. The improvement of rainfall distribution appears to be contributed by proper simulation of convective rainfall in RSAS. CFSv2 with RSAS simulation is able to simulate observed diurnal cycle of rainfall over CI. It correctly reproduces the time of maximum rainfall over CI. It is found that the improved feedback between moisture and convective processes in RSAS may be attributed to its improved simulation. Besides improvement, RSAS could not reproduce proper tropospheric temperature, cloud hydrometeors over ISM domain which shows the scope for future development.

  8. Simulation of the northern summer monsoon in the ECMWF model: Sensitivity to horizontal resolution

    SciTech Connect

    Sperber, K.R.; Potter, G.L.; Boyle, J.S.; Hameed, S.

    1994-11-01

    The ability of the ECMWF model (cycle 33) to simulate the Indian and East Asian summer monsoons is evaluated at four different horizontal resolutions: T21, T42, T63, and T106. Generally, with respect to the large-scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high-frequency temporal variability serve as a further critical test of the model`s ability to simulate the monsoon. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian monsoons, whereas T42 fails to correctly simulate the sequence and development of synoptic-scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India, which results in an underestimate of precipitation over the Burma-Thailand region. This early establishment of the monsoon trough affects the evolution of the East Asian monsoon and yields excessive preseason rainfall over the Mei-yu-region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability, which is associated with an oscillation of the rainband that gives rise to periods of Mei-yu mode of variability, which is associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangtze River valley. The coarse resolution of T21 precludes simulation of the aforementioned regional-scale monsoon flows. 43 refs., 14 figs.

  9. Monsoon low-level jet over the gateway of Indian summer monsoon: a comparative study for two distinct monsoon years

    NASA Astrophysics Data System (ADS)

    Narayanan, Suresh; Kottayil, Ajil; Mohanakumar, K.

    2016-12-01

    High-resolution radiosonde measurements are used to study the characteristics and dynamics of monsoon low-level jet at the monsoon onset region of Cochin (10.04°N; 76.32°E) in India under two contrasting monsoon years, 2013 and 2015. The core speed and core height of the low-level jet is significantly higher during the strong monsoon year of 2013 than for the monsoon-deficient year of 2015. The average core heights for these years are seen to exist at 2.03 and 2.20 km, respectively. The low-level jet-modulated parameters such as moisture flux, momentum flux and kinetic energy flux show higher values during monsoon of 2013 as compared to 2015. Among the monsoon low-level jet parameters, the moisture flux has the strongest influence on the observed rainfall over Cochin. Also, an exponential function is seen to best explain the moisture flux-rainfall relationship. The weakening of monsoon during 2015 is attributed most likely to an eastward shift of the core convective activity from the Indian subcontinent as revealed from satellite observation of the upper tropospheric humidity. A close association is seen between the rainfall over Cochin and the convective activity over the Indian subcontinent. Observational studies such as this, which links monsoon rainfall, monsoon low-level jet parameters and convective activity, are expected to enhance the understanding of monsoon processes in general and subsequently improve the forecasting skill of models.

  10. Intraseasonal precipitation variability on Kilimanjaro and the East African region and its relationship to the large-scale circulation

    NASA Astrophysics Data System (ADS)

    Chan, R. Y.; Vuille, M.; Hardy, D. R.; Bradley, R. S.

    2008-08-01

    Atmospheric circulation anomalies, related to snowfall events on the Tanzanian volcano Kilimanjaro, were analyzed based on hourly snowfall data from an automated weather station (AWS), global precipitation and reanalysis products. Analysis of 5 years of data (2000 2005) shows that snowfall on Kilimanjaro is linked to large-scale circulation anomalies, which can be identified in global reanalysis products. During the long rains season (March May) snowfall on Kilimanjaro is associated with a west to east propagating wave of convective activity, which over East Africa merges with a precipitation-band maintained by steady easterly moisture influx due to cyclonic activity over northern Madagascar. Snowfall events tend to be associated with low wind speed, favorable for the development of surface radiative heating, thereby destabilizing the atmospheric column and initiating upward motion and deep convection. High near-surface specific humidity provides the necessary water vapor so that convection becomes moist. The short rains season (October December) is dominated by east to west moisture transport. This easterly flow extends vertically through much of the troposphere and horizontally from the western Indian Ocean westward across the African continent. An active center of vertical motion and deep convection located over the western Indian Ocean near the East African coastline is responsible for easterly moisture transport and spill-over of precipitation into the East African domain. During positive phases of the Indian Ocean Zonal Mode (IOZM) strong trade winds prevail across the Indian Ocean, which, in combination with enhanced westerlies over the continental interior, tend to enhance low-level wind and moisture convergence near Kilimanjaro. During the negative IOZM phase on the other hand, the trade winds across the Indian Ocean and the westerly flow from the Atlantic Ocean are weaker, moisture convergence is reduced and conditions to initiate deep convection over

  11. Sub-seasonal Modulation of Indian Summer Monsoon Seasonal Predictability

    NASA Astrophysics Data System (ADS)

    Robertson, A. W.; Moron, V.; Pai, D. S.

    2015-12-01

    Recent studies have demonstrated that the Indian Summer Monsoon is more predictable during the early and late stages of the season, with a drop in rainfall predictability during the core monsoon months of July and August. Various theories have been advanced for this sub-seasonal evolution, but its origins are still poorly understood. We use a new 0.25-degree 1901-2014 daily rainfall dataset from the Indian Meteorological Department (IMD) to investigate this phenomenon at near-local scale, using more than a century of data. The analysis is based on daily rainfall characteristics, including the spatial coherence of sub-seasonal rainfall anomalies, and on relating these to large-scale moisture variables computed from reanalysis data. Indian summer monsoon rainfall is partitioned into three sub-seasonal phases, with a steep ramp-up (June), persistent core (July-August), and a slower decay phase (Sept-Oct). Spatial coherence of sub-seasonal rainfall anomalies is shown to be highest during the onset and decay phases with a marked mark drop during the core phase. Systematic shifts in seasonal timing are found to typify rainfall anomalies during the onset and decay phases, with ENSO preferentially impacting the latter. We identify a large-scale low-level moisture threshold as a necessary condition for local daily rainfall occuring at >5% of spatial locations across monsoonal India. Sub-seasonal rainfall variability during the onset and decay phases is argued to be controlled largely by the crossing of this threshold. However, this necessary condition is generally easily met during the core season, at which time interannual variability in low-level moisture and interannual correlation between rainfall and large-scale ascent both decrease. This decrease in large-scale control and the loss of spatial coherence imply that sub-seasonal to seasonal rainfall variations at local scales during the core of the monsoon are largely a result of local-scale processes, and are thus

  12. Phylogeny and Morphological Variability of Trypanosomes from African Pelomedusid Turtles with Redescription of Trypanosoma mocambicum Pienaar, 1962.

    PubMed

    Dvořáková, Nela; Čepička, Ivan; Qablan, Moneeb A; Gibson, Wendy; Blažek, Radim; Široký, Pavel

    2015-12-01

    Little is known about host specificity, genetic diversity and phylogenetic relationships of African turtle trypanosomes. Using PCR targeting the SSU rRNA gene, we detected trypanosomes in 24 of 134 (17.9%) wild caught African pelomedusid turtles: Pelusios upembae (n=14), P. bechuanicus (n=1), P. rhodesianus (n=3) and P. subniger (n=6). Mixed infection of Trypanosoma species was confirmed by PCR in three specimens of P. upembae, and in one specimen each of P. bechuanicus, P. rhodesianus, and P. subniger. Microscopic examination of stained blood smears revealed two distinct forms (broad and slender) of trypomastigotes. The broad form coincided in morphology with T. mocambicumPienaar, 1962. Accordingly, we have designated this form as the neotype of T. mocambicum. In phylogenetic analysis of the SSU rRNA gene, all the new turtle trypanosome sequences grouped in a single clade within the strongly supported "aquatic" clade of Trypanosoma species. The turtle trypanosome clade was further subdivided into two subclades, which did not correlate with host turtle species or trypanosome morphology. This study provides the first sequence data of Trypanosoma species isolated from freshwater turtles from tropical Africa and extends knowledge on diversity of trypanosomes in the Afrotropical zoogeographical realm.

  13. On the decadal scale correlation between African dust and Sahel rainfall: The role of Saharan heat low–forced winds

    PubMed Central

    Wang, Weijie; Evan, Amato T.; Flamant, Cyrille; Lavaysse, Christophe

    2015-01-01

    A large body of work has shown that year-to-year variations in North African dust emission are inversely proportional to previous-year monsoon rainfall in the Sahel, implying that African dust emission is highly sensitive to vegetation changes in this narrow transitional zone. However, such a theory is not supported by field observations or modeling studies, as both suggest that interannual variability in dust is due to changes in wind speeds over the major emitting regions, which lie to the north of the Sahelian vegetated zone. We reconcile this contradiction showing that interannual variability in Sahelian rainfall and surface wind speeds over the Sahara are the result of changes in lower tropospheric air temperatures over the Saharan heat low (SHL). As the SHL warms, an anomalous tropospheric circulation develops that reduces wind speeds over the Sahara and displaces the monsoonal rainfall northward, thus simultaneously increasing Sahelian rainfall and reducing dust emission from the major dust “hotspots” in the Sahara. Our results shed light on why climate models are, to date, unable to reproduce observed historical variability in dust emission and transport from this region. PMID:26601301

  14. Sea surface temperature associations with the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.

    2003-04-01

    This paper uses recent gridded data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly linked to subtropical Indian Ocean dipole events, studied by Behera and Yamagata (2001), and to the El Niño-Southern Oscillation phenomenon. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal summer may also enhance the east-west Walker circulation and the monsoon.

  15. Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the scale-dependent role of monsoonal flows, the Madden-Julian Oscillation, tropical cyclones, squall lines and cold pools

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L.; Zhang, J.

    2015-02-01

    In a joint NRL/Manila Observatory mission, as part of the Seven SouthEast Asian Studies program (7-SEAS), a 2-week, late September 2011 research cruise in the northern Palawan archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Niño-Southern Oscillation (ENSO) La Niña year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol life cycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm-3, non-sea-salt PM2.5 < 1 μg m-3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea-salt PM2.5 10-25 μg m

  16. Mixing to Monsoons: Air-Sea Interactions in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Lucas, A. J.; Shroyer, E. L.; Wijesekera, H. W.; Fernando, H. J. S.; D'Asaro, E.; Ravichandran, M.; Jinadasa, S. U. P.; MacKinnon, J. A.; Nash, J. D.; Sharma, R.; Centurioni, L.; Farrar, J. T.; Weller, R.; Pinkel, R.; Mahadevan, A.; Sengupta, D.; Tandon, A.

    2014-07-01

    More than 1 billion people depend on rainfall from the South Asian monsoon for their livelihoods. Summertime monsoonal precipitation is highly variable on intraseasonal time scales, with alternating "active" and "break" periods. These intraseasonal oscillations in large-scale atmospheric convection and winds are closely tied to 1°C-2°C variations of sea surface temperature in the Bay of Bengal.

  17. High Resolution δ18O and δ13C Records of AMS 14C Dated Stalagmites From Jinlun and Yilingyan Caves in Guangxi, China: Climate Variability and Controlling Factors in the Monsoonal Region During the Past 2300 Years

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Lien, W. Y.; Mii, H. S.; Jiang, G. H.; Chou, C. Y.; Chou, P. J.

    2015-12-01

    Jinlun Cave in Mashan County and Yilingyan Cave in Wuming County are ~120km and ~60km north of Nanning in Guangxi Province under influence of both Indian Monsoon and North Western Pacific Monsoon. Several stalagmites have been dated by AMS 14C dating method since 230Th/U is not applicable due to very low U contents. Twenty (20) AMS 14C dates on Stalagmite JL20131005-10 (10-cm long) show "Bomb carbon curve", spanning the past 60 years. Lamination counting further confirms the chronology. Thirty nine (39) AMS 14C dates on Stalagmite JL20131005-12 (33-cm long) reveal 2300-year continuous growth. Stalagmite YLY20130727-12 (10-cm long) from Yilingyan Cave covers a continuous record of past 2300 years. All studied stalagmites in the caves contain low dead carbon fractions. The annual resolution δ18O and δ13C records obtained from the stalagmites allow us to compare the stalagmite δ18O records with the instrumental rainfall and temperature records, Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI), and Sunspot variation, etc. The δ18O and δ13C records exhibit relatively good correlation throughout the time, indicating climatic control on vegetation change. Based on the high-resolution δ18O and δ13C records, we interpret that dry climatic conditions and poor vegetation coverage during periods of AD1880~1850, 1700~1600, 1460~1320, 1210~1280, 860~750, 540~420, 300~220, and AD100~0 shown by increased δ18O and δ13C. The δ18O and δ13C were strongly depleted during the Medieval Warm Period (MWP between AD900 and AD1100) and Current Warm Period (CWP, since AD1900), reflecting strongly increased East Asian Summer Monsoon. After AD1900, the δ13C decreased about 6‰, perhaps indicating human impact on surface vegetation. The δ18O records from the study area are comparable to the published WX42B δ18O record of Wanxiang Cave (Zhang et al., 2008) except for the period of AD1400~1850. Our study suggests that AMS 14C dating is an alternative method for

  18. Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands

    PubMed Central

    Kadu, Caroline A. C.; Konrad, Heino; Schueler, Silvio; Muluvi, Geoffrey M.; Eyog-Matig, Oscar; Muchugi, Alice; Williams, Vivienne L.; Ramamonjisoa, Lolona; Kapinga, Consolatha; Foahom, Bernard; Katsvanga, Cuthbert; Hafashimana, David; Obama, Crisantos; Geburek, Thomas

    2013-01-01

    Background and Aims Afromontane forest ecosystems share a high similarity of plant and animal biodiversity, although they occur mainly on isolated mountain massifs throughout the continent. This resemblance has long provoked questions on former wider distribution of Afromontane forests. In this study Prunus africana (one of the character trees of Afromontane forests) is used as a model for understanding the biogeography of this vegetation zone. Methods Thirty natural populations from nine African countries covering a large part of Afromontane regions were analysed using six nuclear microsatellites. Standard population genetic analysis as well as Bayesian and maximum likelihood models were used to infer genetic diversity, population differentiation, barriers to gene flow, and recent and all migration among populations. Key Results Prunus africana exhibits strong divergence among five main Afromontane regions: West Africa, East Africa west of the Eastern Rift Valley (ERV), East Africa east of the ERV, southern Africa and Madagascar. The strongest divergence was evident between Madagascar and continental Africa. Populations from West Africa showed high similarity with East African populations west of the ERV, whereas populations east of the ERV are closely related to populations of southern Africa, respectively. Conclusions The observed patterns indicate divergent population history across the continent most likely associated to Pleistocene changes in climatic conditions. The high genetic similarity between populations of West Africa with population of East Africa west of the ERV is in agreement with faunistic and floristic patterns and provides further evidence for a historical migration route. Contrasting estimates of recent and historical gene flow indicate a shift of the main barrier to gene flow from the Lake Victoria basin to the ERV, highlighting the dynamic environmental and evolutionary history of the region. PMID:23250908

  19. A tree-ring reconstruction of monsoon precipitation for the southwestern United States

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Touchan, R.; Leavitt, S. W.; Castro, C. L.

    2010-12-01

    The southwestern United States (SWUS) receives up to sixty percent of its annual precipitation from July-September in association with the North American monsoon system. However, because the SWUS is largely on the fringe of monsoon influence, warm-season precipitation across the region is highly variable on annual to decadal time scales. Although tree rings have revealed much about long-term moisture variability in this region’s westerly-driven winter climate regime, no dendroclimatic studies have systematically targeted the monsoon across the SWUS. Toward this end, the region’s first network of monsoon-sensitive chronologies is currently being developed, drawing on variability in the latewood (summer growth) of precisely dated tree rings. This study presents the first tree-ring reconstruction of monsoon (July-August) precipitation for southeastern Arizona and southwestern New Mexico, where the monsoon’s influence is most substantial in the SWUS. The long-term history of monsoon drought is characterized and contrasted with a reconstruction of winter (November-April) precipitation for the region. The widely discussed phase relationship between cool- and warm-season precipitation is examined and the reconstructions are analyzed in the frequency domain for evidence of amplified variance at wavelengths corresponding to the large-scale modes of climate thought to influence the region’s seasonal precipitation regimes.

  20. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-02-01

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400–5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world’s highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants.

  1. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall.

    PubMed

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-02-09

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400-5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world's highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants.

  2. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall

    PubMed Central

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-01-01

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400–5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world’s highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants. PMID:26856260

  3. Stable isotopic signature of Australian monsoon controlled by regional convection

    NASA Astrophysics Data System (ADS)

    Zwart, C.; Munksgaard, N. C.; Kurita, N.; Bird, M. I.

    2016-11-01

    The aim of this study was to identify the main meteorological drivers of rainfall isotopic variation in north Australia in order to improve the interpretation of isotopic proxy records in this region. An intense monitoring program was conducted during two monsoonal events that showed significant and systematic isotopic change over time. The results showed a close link between isotopic variation in precipitation and variability in monsoon conditions, associated with the presence of large convective envelopes propagating through the study site. The largest negative amplitudes in the isotopic signal were observed when eastward and westward moving precipitation systems within the convective envelope merged over the measurement site. This suggests that the amplitude of the isotopic signal is related to the size and activity of the convective envelope. The strong correlation between rainfall isotopic variation, regional outgoing longwave radiation and regional rainfall amount supports this conclusion. This is further strengthened by the strong relationship between isotopic variation and the integrated rainfall history of air masses prior to arriving at the measurement locations. A local amount effect was not significant and these findings support the interpretation of δ18O as proxy for regional climatic conditions rather than local rainfall amount. Meteorological parameters that characterize intra-seasonal variability of monsoon conditions were also found to be strongly linked to inter-seasonal variability of the monthly based δ18O values in the Global Network of Isotopes in Precipitation (GNIP) database. This leads to the conclusion that information about the Australian monsoon variability can likely be inferred from the isotopic proxy record in North Australia on short (intra seasonal) and long (inter seasonal or longer) timescales.

  4. A Study of Mathematics and Science Achievement Scores among African American Students and the Impact of Teacher-Oriented Variables on Them through the Educational Longitudinal Study, 2002 (ELS: 2002) Data

    ERIC Educational Resources Information Center

    Walker, Valentine

    2011-01-01

    The purpose of this dissertation was to utilize the ELS: 2002 longitudinal data to highlight the achievement of African American students relative to other racial sub-groups in mathematics and science and to highlight teacher oriented variables that might influence their achievement. Various statistical tools, including descriptive statistics,…

  5. Shift in Indian summer monsoon onset during 1976/1977

    NASA Astrophysics Data System (ADS)

    Sahana, A. S.; Ghosh, Subimal; Ganguly, Auroop; Murtugudde, Raghu

    2015-05-01

    The Indian summer monsoon rainfall (ISMR) contributes nearly 80% of the annual rainfall over India and has a significant influence on the country’s gross domestic product through the agricultural sector. Onset of the ISMR displays substantial interannual variability and controls the crop calendar and hence the agricultural output. This variability is traditionally linked to sea surface temperature (SST) anomalies over the tropical Pacific Ocean. The tropical Pacific SST underwent a regime shift during 1976/77. We report a prominent delay in the Indian summer monsoon (ISM) onset following the regime shift. The onset dates are computed with the Hydrologic Onset and Withdrawal Index, based on vertically integrated moisture transport over the Arabian Sea (AS). The shift in onset is found to be due to the change in moisture availability over the AS. A delay in the development of easterly vertical shear reduces northward-propagating intraseasonal variability during May-June, limiting the moisture supply from the equatorial Indian Ocean (IO) to the AS. This, along with enhanced precipitation over the IO during the pre-monsoon, drives a reduction in moisture availability over the AS region from pre- to post-1976/77, delaying the ISM onset in recent decades. Our findings highlight the need for the re-assessment of the crop calendar in India, which is now based on the mean onset date computed from long-term data, without considering the regime shift or trends in onset.

  6. Influence of 21st century atmospheric and sea surface temperature forcing on West African climate

    SciTech Connect

    Skinner, Chris B; Ashfaq, Moetasim; Diffenbaugh, Noah

    2011-01-01

    he persistence of extended drought events throughout West Africa during the 20th century has motivated a substantial effort to understand the mechanisms driving African climate variability, as well as the possible response to elevated greenhouse gas (GHG) forcing. We use an ensemble of global climate model experiments to examine the relative roles of future direct atmospheric radiative forcing and SST forcing in shaping potential future changes in boreal summer precipitation over West Africa. We find that projected increases in precipitation throughout the Western Sahel result primarily from direct atmospheric radiative forcing. The changes in atmospheric forcing generate a slight northward displacement and weakening of the African easterly jet (AEJ), a strengthening of westward monsoon flow onto West Africa and an intensification of the tropical easterly jet (TEJ). Alternatively, we find that the projected decreases in precipitation over much of the Guinea Coast region are caused by SST changes that are induced by the atmospheric radiative forcing. The changes in SSTs generate a weakening of the monsoon westerlies and the TEJ, as well as a decrease in low-level convergence and resultant rising air throughout the mid levels of the troposphere. Our experiments suggest a potential shift in the regional moisture balance of West Africa should global radiative forcing continue to increase, highlighting the importance of climate system feedbacks in shaping the response of regional-scale climate to global-scale changes in radiative forcing.

  7. The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Hao, Yonghong; Hu, Bill X.; Huo, Xueli; Hao, Pengmei; Liu, Zhongfang

    2017-01-01

    Karst aquifers supply drinking water for 25 % of the world's population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most

  8. Mechanisms for Annual Cycle Changes in Monsoons in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Seth, Anji

    2014-05-01

    Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) experiments show that the global monsoon is expected to increase in area, precipitation, and intensity as the climate system responds to anthropogenic forcing. Concurrently, detailed analyses for several individual monsoons indicate a re-distribution of rainfall from early to late in the rainy season. This presentation will further examine CMIP5 projected changes in the annual cycle of precipitation in monsoon regions, and use a moist static energy framework to evaluate competing mechanisms identified to be important in precipitation changes over land. In the presence of sufficient surface moisture, the local response to the increase in downwelling energy is characterized by increased evaporation, increased low-level moist static energy, and decreased stability with consequent increases in precipitation. A remote mechanism begins with warmer oceans and operates on land regions via a warmer tropical troposphere, increased stability, and decreased precipitation. The remote mechanism controls the projected changes during winter, and the local mechanism appears to control the switch to increased precipitation during summer in several monsoon regions. During the early summer transition, regions where boundary layer moisture availability is reduced due to decreases in evaporation and moisture convergence experience an enhanced convective barrier. This enhanced convective barrier leads to a redistribution of rainfall from early to late summer, and is robust in the American and African monsoons but not seen in Asia.

  9. Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation

    SciTech Connect

    Sirocko, F.; Schonberg, D.G.; McIntyre A.

    1996-04-26

    The major deglacial intensification of the southwest monsoon occurred at 11,450 {+-} 150 calendar years before present, synchronous with a major climate transition as recorded in Greenland ice. An earlier event of monsoon intensification at 16,000 {+-} 150 calendar years before present occurred at the end of Heinrich layer 1 in the Atlantic and parallels the initial rise in global atmospheric methane concentrations and the first abrupt climate changes in the Antarctic; thus, the evolution of the monsoonal and high-latitude climates show teleconnections but hemispheric asymmetries. Superimposed on abrupt events, the monsoonal climate shows high-frequency variability of 1785-, 1450-, and 1150-year oscillations, and abrupt climate change seems to occur when at least two of these oscillations are in phase. 40 refs., 5 figs.

  10. Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth

    NASA Astrophysics Data System (ADS)

    Ao, Hong; Roberts, Andrew P.; Dekkers, Mark J.; Liu, Xiaodong; Rohling, Eelco J.; Shi, Zhengguo; An, Zhisheng; Zhao, Xiang

    2016-06-01

    Environmental conditions in one of Earth's most densely populated regions, East Asia, are dominated by the monsoon. While Quaternary monsoon variability is reasonably well understood, pre-Quaternary monsoon variability and dynamics remain enigmatic. In particular, little is known about potential relationships between northern hemispheric monsoon response and major Cenozoic changes in Antarctic ice cover. Here we document long-term East Asian summer monsoon (EASM) intensification through the Late Miocene-Pliocene (∼8.