Science.gov

Sample records for african monsoon variability

  1. Examining Intraseasonal Variability in the West African Monsoon Using the Superparameterized Community Climate System Model

    NASA Astrophysics Data System (ADS)

    McCrary, Rachel; Randall, David; Stan, Cristiana

    2013-04-01

    In West Africa, the ability to predict intraseasonal variations in rainfall would have important social and economic impacts for local populations. In particular, such predictions might be useful for estimating the timing of the monsoon onset and break periods in monsoon rains. Current theory suggests that on 25-90 day timescales, the West African monsoon (WAM) is influenced by intraseasonal variations in the Indo-Pacific region, namely the Madden Julian Oscillation (MJO) and the Asian summer monsoon. Unfortunately, most general circulation models (GCMs) show weak skill in simulating the seasonal variations in the WAM as well as intraseasonal variability in the Indo-Pacific. These model limitations make it difficult to study the dynamical links in variability across the tropics. Unlike traditional GCMs, models that have implemented the superparameterization (where traditional convective parameterizations are replaced by embedding a two dimensional cloud resolving model in each grid box) have been shown to be able to represent the WAM, the MJO and the Asian Summer Monsoon with reasonable fidelity. These model advances may allow us to study the teleconnections between the Indo-Pacific and West Africa in more detail. This study examines the intraseasonal variability of the WAM in the Superparameterized Community Climate System model (SP-CCSM). Results from the SP-CCSM are consistent with observations where intraseasonal variability accounts for 15-20% of the total variability in rainfall over West Africa during the monsoon season. We also show that on 25-90 day timescales, increases in precipitation over West Africa correspond with a northward shift of the African easterly jet and an increase in African easterly wave activity. Lag-composite analysis indicates that intraseasonal variations in WAM precipitation correspond with the North-South propagation of the MJO during boreal summer as well as the active and breaking phases of the Asian summer monsoon. Preliminary

  2. The West African Monsoon: variability and teleconnection with ENSO during the years 1948-57

    NASA Astrophysics Data System (ADS)

    Stickler, Alexander; Brönnimann, Stefan

    2010-05-01

    The intensity of the West African Monsoon (WAM) has been shown to be influenced by different factors. Most important for the existence of the monsoon system is the land-sea thermal contrast between the North African landmass and the Gulf of Guinea. ENSO plays an important role for its interannual variability via an atmospheric teleconnection bridging the Pacific and Atlantic oceanic basins and favouring either descent/weak low-level monsoon flow or ascent/strong low-level monsoon flow over tropical West Africa. Most published studies on the WAM variability are based on reanalysis datasets. However, while reproducing quite well the interannual variability, reanalysis products have been found to contain major biases in certain tropical regions before 1968. These lead to an unrealistic low frequency behaviour and might be explained by the lack of observations assimilated into the reanalyses, as is the case e.g. for tropical Africa where only the much sparser radiosonde data have been assimilated into the NCEP/NCAR Reanalysis (NNR). Here we present an analysis of the interannual WAM variability and its teleconnection with ENSO for the years 1948-57 which is not based on a reanalysis, but on early pilot balloon observational wind data from the Comprehensive Historical Upper Air Network (CHUAN). We have examined wind data from all 36 stations located in the domain (10°S-30°N, 20°W-20°E) on 5 levels up to the mid troposphere (corresponding roughly to the 925, 850, 700, 600 and 500 hPa pressure levels). This analysis shows that 7 subregions can be defined which are characterised by similar vertical wind profiles as well as seasonality: the NW (Mauritania, northern Senegal), the SW (southern Senegal to coastal Guinea), central sub-Saharan West Africa (SSWA, from interior Guinea in the W to coastal Cameroon and southern Niger in the E), central and eastern Niger, western Chad, the western Central African Republic, and the southern coastal regions east of the Gulf of

  3. Revisiting the role of global SST anomalies and their effects on West African monsoon variability

    NASA Astrophysics Data System (ADS)

    Pomposi, Catherine; Kushnir, Yochanan; Giannini, Alessandra

    2016-04-01

    The West African Monsoon is a significant component of the global monsoon system, delivering the majority of annual precipitation for the Sahel and varying on timescales from seasons to decades and beyond. Much of the internal variability of this system is driven by sea surface temperature (SST) anomalies and their resulting atmospheric teleconnections linking oceanic changes to land-based precipitation. Previous idealized studies have identified the role of particular ocean basins in driving monsoon variations on a number of key timescales, including the Atlantic basin as the main driver behind decadal-scale changes and the Pacific basin for interannual variability. However, understanding of how the monsoon responds to global SSTs remains incomplete because the system can be affected by moisture availability locally as well as tropical atmospheric stability, both of which are influenced by ocean temperatures. Furthermore, the complexity of how the global ocean basins change in relation to one another (what we refer to as superposition of anomalies) can result in Sahel precipitation anomalies that are contrary to what one might posit when considering the state of a single basin alone (e.g. the 2015 El Niño event and a relatively wet Sahel). The aim of this work is to revisit the role of global SSTs in driving Sahel rainfall variability over the recent past using a blending of observations and new model output. We seek to disentangle the state of various basins in combination with each other in driving normal or anomalously dry or wet years, resolving the ways that remote and local ocean forcings affect the movement of convection from the Guinea coast inland and northward into the Sahel, and include the study of circulation and stability components of the atmosphere. Preliminary diagnostic work suggests that varying SST conditions across ocean basins could imprint distinctly different precipitation responses in the Sahel. For example, precipitation anomalies are

  4. Global and Regional-scale Sst Variability and West African Monsoon. The Role of The Indian Ocean : A Numerical Study

    NASA Astrophysics Data System (ADS)

    Trzaska, S.; Fontaine, B.; Janicot, S.

    Interannual to decadal variability of the West African Monsoon has been commonly linked to Tropical Atlantic and Pacific SST variabilities (so called "Atlantic Dipole" and ENSO). Tropical Atlantic is thought to affect West African Monsoon via modi- fication of low-level thermal gradients driving the monsoon thus the location of the rainbelt over the continent. Warm events in the easten Pacific may affect it via up- per level zonal circulation and eventual subsidence over West Africa. However the teleconnections seem to have modified through time : main association with tropi- cal Atlantic during 50's and 60's i.e. the wetter period vs stronger association with ENSO and relative disconnection with tropical Atlantic during recent, dry decades. The role of the Indian Ocean has not been much investigated so far. The variability of this basin is dominated by a slow warming trend which compares well with the global warming. This study is aimed at investigating the possible effects of the Indian Ocean warming on the West African Monsoon dynamics and its teleconnections to ENSO and Tropical Atlantic. It is shown that this warming can potentially modify circulation anomalies related to ENSO in the Atlantic-African region by limiting the zonal extent of the zonal circulation anomalies and shifting the main subsidence branch to Africa and central Atlantic. In non-ENSO case monsoon circulation seems also to have more zonal orientation. The results are documented in the divergent circulation frame since it allows to unify a regional view of the monsoon as a meridional overturning with the global effects of ENSO in the zonal circulation. Modifications in the low-level moisture flux are also presented.

  5. The relationship between the equatorial westerlies, upper-level zonal flow and interannual variability of the West African monsoon

    NASA Astrophysics Data System (ADS)

    Nicholson, S. E.

    2013-12-01

    Two of the most important circulation features governing the interannual variability of the West African monsoon are the low-level African westerly jet and the upper tropospheric Tropical Easterly Jet. Both jets are abnormally intense during wet years over the Sahel/Soudan region. This paper examines four new aspects of these systems and their role in interannual variability. One is the extent to which these systems explain recent variability in the region. A second is their role in western equatorial regions. A third is possible teleconnections of the low-level jet to rainfall in eastern equatorial Africa. A fourth is the mechanism by which intensification of the two jets appears to occur in tandem.

  6. Variability of West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-11-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, we simulate the WAM for the wet year 1999 with a 27-member multi-physics ensemble of the Weather Research and Forecasting (WRF) model. We investigate the inter-member differences in a process-based manner in order to extract generalizable information on the behavior of the tested cumulus (CU), microphysics (MP), and planetary boundary layer (PBL) schemes. Precipitation, temperature and atmospheric dynamics are analyzed in comparison to the Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the Global Precipitation Climatology Centre (GPCC) gridded gauge-analysis, the Global Historical Climatology Network (GHCN) gridded temperature product and the forcing data (ERA-Interim) to explore interdependencies of processes leading to a certain WAM regime. We find that MP and PBL schemes contribute most to the ensemble spread (147 mm month-1) for monsoon precipitation over the study region. Furthermore, PBL schemes have a strong influence on the movement of the WAM rainband because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation and a weaker monsoon. Ultimately, we identify the differing intensities of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. The ensemble spread of Sahel precipitation and associated dynamics for August 1999 is comparable to the observed inter-annual spread (1979-2010) between dry and wet years, emphasizing the strong potential impact of regional processes and the need for a careful selection of model parameterizations.

  7. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, Werner; Schmiedl, Gerhard; Seidel, Martin; Krüger, Stefan; Schulz, Hartmut

    2016-03-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the eastern Mediterranean Sea (EMS). The record spans the last ca. 140 kyr. Smectite abundances indicate the influence of the Blue Nile and the Atbara River that have their headwaters in the volcanic rocks of the Ethiopian Highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major African humid periods (AHPs) with enhanced sediment discharge at 132 to < 126 (AHP 5), 116 to 99 (AHP4), and 89 to 77 ka (AHP3). They lasted much longer than the formation of the related sapropel layers S5 (> 2 kyr), S4 (3.5 kyr), and S3 (5 kyr). During the last glacial period (Marine Isotope Stages (MISs) 4-2), the long-term changes in the monsoonal system were superimposed by millennial-scale changes in an intensified midlatitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African humid periods.

  8. A distal 145 ka sediment record of Nile discharge and East African monsoon variability

    NASA Astrophysics Data System (ADS)

    Ehrmann, W.; Schmiedl, G.; Seidel, M.; Krüger, S.; Schulz, H.

    2015-09-01

    Clay mineral assemblages in a sediment core from the distal Nile discharge plume off Israel have been used to reconstruct the late Quaternary Nile sediment discharge into the Eastern Mediterranean Sea (EMS). The record spans the last ca. 145 ka. Smectite abundances indicate the influence of the Blue Nile and Atbara that have their headwaters in the volcanic rocks of the Ethiopian highlands. Kaolinite abundances indicate the influence of wadis, which contribute periodically to the suspension load of the Nile. Due to the geographical position, the climate and the sedimentary framework of the EMS is controlled by two climate systems. The long-term climate regime was governed by the African monsoon that caused major humid periods with enhanced sediment discharge at 132 to < 122 ka (AHP 5), 113 to 104 ka (AHP 4), and 86 to 74 ka (AHP 3). They lasted much longer than the formation of the related sapropel layers S5, S4 and S3. During the last glacial period (MIS 4-2) the long-term changes of the monsoonal system were superimposed by millennial-scale changes of an intensified mid-latitude glacial system. This climate regime caused short but pronounced drought periods in the Nile catchment, which are linked to Heinrich Events and alternate with more humid interstadials. The clay mineral record further implies that feedback mechanisms between vegetation cover and sediment discharge of the Nile are detectable but of minor importance for the sedimentary record in the southeastern Mediterranean Sea during the investigated African Humid Periods.

  9. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K.-M.; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah Seidou; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siegfried; Dirmeyer, Paul; Ruby Leung, L.; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, Natalie M.; Zhang, Zhengqiu

    2016-06-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic

  10. Seasonal Evolution and Variability Associated with the West African Monsoon System

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2003-01-01

    In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident

  11. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  12. The global monsoon across timescales: coherent variability of regional monsoons

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-11-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently have regional monsoons been recognized as a global system. It remains a debated issue, however, as to what extent and at which timescales the global monsoon can be viewed as a major mode of climate variability. For this purpose, a PAGES (Past Global Changes) working group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various timescales, varying between interannual, interdecadal, centennial, millennial, orbital and tectonic timescales, conforming to the global monsoon concept across timescales. Within the global monsoon system, each subsystem has its own features, depending on its geographic and topographic conditions. Discrimination between global and regional components in the monsoon system is a key to revealing the driving factors in monsoon variations; hence, the global monsoon concept helps to enhance our understanding and to improve future projections of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various timescales, providing evidence of the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts in a warming world. The synthesis will be followed by a companion paper addressing driving mechanisms and outstanding issues in global monsoon studies.

  13. The spectrum of Asian monsoon variability

    NASA Astrophysics Data System (ADS)

    Loope, G. R.; Overpeck, J. T.

    2014-12-01

    The Indian monsoon is the critical source of freshwater for over one billion people. Variability in monsoon precipitation occurs on all time scales and has severe consequences for the people who depend on monsoon rains. Extreme precipitation events have increased in the 20th century and are predicted to continue to become more frequent with anthropogenic global warming. The most recent models project that both monsoon precipitation and variability of precipitation will increase over the 21st century leading to increased flooding and possibly severe droughts. Although current models are able to capture the risk of relatively short droughts (1-5 years) reasonably well, they tend to underestimate the risk of longer, decadal- multidecadal droughts. I use observational records over the last 100 years in conjunction with cave, tree ring, and lake data from the NOAA paleoclimate database to reconstruct Holocene monsoon variability. I am able to show that the Asian monsoon has more low frequency variability than is projected by current climate models. The growing evidence for this discrepancy in hydroclimate variability between models and observational/paleoclimate records is of grave concern. If these models fail to capture the decadal-multidecadal droughts of the past it is likely they will underestimate the possibility of such droughts in the future.

  14. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    The West African monsoon (WAM) occurs during the boreal summer and is responsible for a majority of precipitation in the northern portion of West Africa. A distinct shift of precipitation, often driven by large propagating mesoscale convective systems, is indicated from satellite observations. Excepting the coarser satellite observations, sparse data across the continent has prevented understanding of mesoscale variability of these important systems. The interaction between synoptic and mesoscale features appears to be an important part of the WAM system. Without an understanding of the mesoscale properties of precipitating systems, improved understanding of the feedback mechanism between spatial scales cannot be attained. Convective and microphysical characteristics of West African convective systems are explored using various observational data sets. Focus is directed toward meso -alpha and -beta scale convective systems to improve our understanding of characteristics at this spatial scale and contextualize their interaction with the larger-scale. Ground-based radar observations at three distinct geographical locations in West Africa along a common latitudinal band (Niamey, Niger [continental], Kawsara, Senegal [coastal], and Praia, Republic of Cape Verde [maritime]) are analyzed to determine convective system characteristics in each domain during a 29 day period in 2006. Ancillary datasets provided by the African Monsoon Multidisciplinary Analyses (AMMA) and NASA-AMMA (NAMMA) field campaigns are also used to place the radar observations in context. Results show that the total precipitation is dominated by propagating mesoscale convective systems. Convective characteristics vary according to environmental properties, such as vertical shear, CAPE, and the degree of synoptic forcing. Data are bifurcated based on the presence or absence of African easterly waves. In general, African easterly waves appear to enhance mesoscale convective system strength

  15. Coupled marine productivity and salinity and West African monsoon variability over the last 30,000 years in the eastern equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marret, F.; Kim, S.-Y.; Scourse, J.; Kennedy, H.

    2009-04-01

    Marine cores collected off west equatorial Africa have highlighted transfer of terrigenous material in the close ocean that have had a deep influence on the marine productivity for the last 30,000 years. The strength of the West African Monsoon has varied though time, from weak during glacial periods to strong during interglacials. In consequence, the amount of precipitation on the continent had drastic effect on the vegetation cover and soil erosion. Studies of marine cores have enabled the observation of changes in vegetation cover, from extended equatorial rainforest to expansion of savannahs. In association with open grassland association, soil is open to erosion, although precipitation is less; conversely, during periods of extended rainforest in a context of strong monsoon, soil erosion is minimised to the presence of trees. In both cases, terrigenous material is flushed out to the adjacent marine domain and has a profound influence on the marine biota. Three marine cores were studied from a north south transect, from Cameroon to Angola (off Sanaga, off Ogouée, and off Congo rivers), for their palynomorph contents. All cores contain a robust chronology based on radiocarbon dates and two have stable isotope data, allowing comparison. Dinoflagellate cysts were studied for retracing sea-surface conditions such as temperature, salinity and productivity whereas pollen were used to assess changes in the vegetation on the close continent for the last 30,000 years (1). A number of pollen records from terrestrial sequences from equatorial central Africa document the dynamics of the lowland rainforest and savannah in relation to climatic changes during the Holocene. Prior to the Holocene, continental records are scarce in this vast region and/or only allow reconstruction of the local vegetation. In our records, terrestrial proxies (pollen, spores, and charred grass cuticles) signal changes in the expansion/regression of the lowland rainforest which we relate to the

  16. Role of inertial instability in the West African monsoon jump

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.

    2015-04-01

    The West African monsoon jump is a sudden shift in the latitude of the West African precipitation maximum from the Guinean coast near 4°N into Sahel near 12°N in late June or early July. An examination of reanalyses and observations indicates that the Sahel rainy season develops smoothly and the monsoon jump occurs because of an abrupt decrease in Guinean coast rainfall. We show that this abrupt end of the coastal rainy season occurs when inertial instability develops over the region, 1 month later than it develops in the vicinity of the marine Atlantic Intertropical Convergence Zone. The reason for this delay is the presence of the African easterly jet, which places strong negative meridional zonal wind gradients over the coast to preserve the inertially stable environment. When the African easterly jet moves farther north due to the seasonal solar forcing, these gradients weaken and then reverse to satisfy the threshold condition for inertial instability; the rapid end of the Guinean coast rainy season follows. The northward movement and intensity of the African easterly jet are controlled by the seasonal development of strong meridional land surface temperature gradients and are independent of the formation of the Atlantic cold tongue. This explanation for the West African monsoon jump relates the phenomenon to the shape and location of the African continent, including the low-latitude position of the Guinean coast and the large expanse of the continent to the north.

  17. Multiscale Variability of the Monsoon Climate

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2005-05-01

    The reliability of weather forecasts is limited to a few days and is mainly determined by the synoptic scale features of the atmosphere. The predictability of weather models depends on the error growth determined by nonlinear terms representing advection. Smaller scale features, such as convection, may also influence the predictability of the synoptic scale forecasts. While the prediction of instantaneous states of the system may be impossible on longer time scale, there is optimism for medium-range and long-range forecasts of time-averaged features of the climate system. Such optimism is based on the observation that slowly-varying boundary forces such as sea surface temperature, soil moisture and snow influence the variability of the atmosphere on a longer time scale, especially in the tropical region. This study discusses the variability of such a tropical climate system, the monsoon, and shows that its variability consists of a combination of large-scale persistent seasonal mean component and intraseasonal variability of different time scales. The spatial variability of these components is also found to consist of different scales. By performing multi-channel singular spectrum analysis of daily rainfall, low-pressure systems, outgoing long-wave radiation and winds, two oscillatory modes with periods of about 45 and 20 days have been identified and shown to correspond to the active and break phases of the monsoon. These two intraseasonal modes, however, do not contribute much to the seasonal mean rainfall. Three other components of the MSSA are identified as the contributors to the seasonal mean rainfall, possibly arising from the influence of slowly-varying boundary forces. The prospect for making accurate long-range forecasts of the monsoon depends on the relative magnitudes of the large-scale seasonally persistent component and the intraseasonal component and on climate model experiments to establish a relation between the two components.

  18. The Global Monsoon across Time Scales: is there coherent variability of regional monsoons?

    NASA Astrophysics Data System (ADS)

    Wang, P. X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z. T.; Kiefer, T.; Liu, Z. Y.

    2014-05-01

    Monsoon has earned increasing attention from the climate community since the last century, yet only recently regional monsoons have been recognized as a global system. It remains a debated issue, however, as to what extent and at which time scales the global monsoon can be viewed as a major mode of climate variability. For this purpose a PAGES Working Group (WG) was set up to investigate the concept of the global monsoon and its future research directions. The WG's synthesis is presented here. On the basis of observation and proxy data, the WG found that the regional monsoons can vary coherently, although not perfectly, at various time scales, ranging from interannual, interdecadal, centennial and millennial, up to orbital and tectonics time scales, conforming the global monsoon concept across time scales. Within the global monsoon system each subsystem has its own features depending on its geographic and topographic conditions. Discrimination of global and regional components in the monsoon system is a key to reveal the driving factors of monsoon variations, hence the global monsoon concept helps to enhance our understanding and to improve future projection of the regional monsoons. This paper starts with a historical review of the global monsoon concept in both modern and paleo-climatology, and an assessment of monsoon proxies used in regional and global scales. The main body of the paper is devoted to a summary of observation data at various time scales, providing evidence for the coherent global monsoon system. The paper concludes with a projection of future monsoon shifts into a warming world. The synthesis will be followed by a companying paper to discuss driving mechanisms and outstanding issues in the global monsoon studies.

  19. Future of West African Monsoon in A Warming Climate

    NASA Astrophysics Data System (ADS)

    Raj, Jerry; Kunhu Bangalath, Hamza; Stenchikov, Georgiy

    2016-04-01

    West Africa is the home of more than 300 million people whose agriculture based economy highly relies on West African Monsoon (WAM), which produces a mean annual rainfall of 150 - 2,500 mm and variability and change of which have devastating impact on the local population. The observed widespread drought in West Africa during the 1970s and 1980s was the most significant drought at regional scale during the twentieth century. In this study, a high resolution AGCM, High Resolution Atmospheric Model (HiRAM), is used to study the effects of anthropogenic greenhouse warming on WAM. HiRAM is developed at GFDL based on AM2 and employs a cubed-sphere finite volume dynamical core and uses shallow convective scheme (for moist convection and stratiform cloudiness) instead of deep convective parameterization. Future projections are done using two representative concentration pathways, RCP 4.5 and RCP 8.5 from 2007 to 2050 at C360 (~25 km) resolution. Both RCP 4.5 and RCP 8.5 scenarios predict warming over West Africa during boreal summer, especially over Western Sahara. Also, both scenarios predict southward shift in WAM rainfall pattern and drying over Southern Sahara, while RCP 8.5 predicts enhanced rainfall over Gulf of Guinea. The intensification of rainfall over tropical latitudes is caused by increased low level winds due to warm SST over Gulf of Guinea.

  20. The pace of East African monsoon evolution during the Holocene

    NASA Astrophysics Data System (ADS)

    Weldeab, Syee; Menke, Valerie; Schmiedl, Gerhard

    2014-03-01

    African monsoon precipitation experienced a dramatic change in the course of the Holocene. The pace with which the African monsoon shifted from a strong early to middle to a weak late Holocene is critical for our understanding of climate dynamics, hydroclimate-vegetation interaction, and shifts of prehistoric human settlements, yet it is controversially debated. On the basis of planktonic foraminiferal Ba/Ca time series from the eastern Mediterranean Sea, here we present a proxy record of Nile River runoff that provides a spatially integrated measure of changes in East African monsoon (EAM) precipitation. The runoff record indicates a markedly gradual middle to late Holocene EAM transition that lasted over 3500 years. The timing and pace of runoff change parallels those of insolation and vegetation changes over the Nile basin, indicating orbitally forced variation of insolation as the main EAM forcing and the absence of a nonlinear precipitation-vegetation feedback. A tight correspondence between a threshold level of Nile River runoff and the timing of occupation/abandonment of settlements suggests that along with climate changes in the eastern Sahara, the level of Nile River and intensity of summer floods were likely critical for the habitability of the Nile Valley (Egypt).

  1. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for

  2. Interannual variability of South American monsoon circulation

    NASA Astrophysics Data System (ADS)

    Alonso Gan, Manoel; Rafaele Araújo Lima, Jeane

    2016-04-01

    The South America Monsoon System (SAMS) is responsible for influencing the atmospheric circulation and precipitation over most of tropical South America (SA) during the summer season. Studies for aiming to understand the temporal variability of this system have great value to the scientific community, because the processes that control the monsoon climate are not totally clear. Thus, the main objective of this research is to investigate the possible large-scale climatic factors and the remote interaction mechanisms, which may be associated with summer season interannual variability focusing on identifying the main differences between dry and wet extremes rainy season in the South-eastern Amazon Basin (SAB), Central-West (WC) and Southeast (SE) of Brazil, which are areas influenced by the summer monsoon regime. For such analyzes, Pearson correlations, quantile method and composite analysis were used during the period from 1979 to 2014. The correlation between precipitation anomaly in SAB and the sea surface temperature anomaly (SSTA) and wind at 850hPa and 300hPa indicate El Niño-Southern Oscillation (ENSO) influence. Precipitation anomalies in WC did not show significant correlation with SSTA. However, a pattern similar to ENSO Modoki type was observed in the composite analysis. At 850 hPa, the presence of an anomalous cyclonic (anticyclonic) circulation was observed over the central region of SA during wet (dry) summers seasons. Over SE region of Brazil, a dipole SSTA pattern over the South Atlantic was identified, as well the presence of anomalous circulations with an equivalent barotropic structure over these SSTA areas. This pattern is more evident in case of dry summer on the SE. At 300 hPa, the wave train between 30°S-60°S was observed presenting a feature curvature from 120°W reaching SA, similar to the Pacific-South American pattern (PSA). Analysis of the summer interannual variability indicated the manifestation of wet summers more frequently than dry

  3. Linkages of remote sea surface temperatures and Atlantic tropical cyclone activity mediated by the African monsoon

    NASA Astrophysics Data System (ADS)

    Taraphdar, Sourav; Leung, L. Ruby; Hagos, Samson

    2015-01-01

    sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations demonstrates that warm NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower troposphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50°W-20°E; 10°N-20°N) of Atlantic TCs. By modulating multiple African monsoon processes, NAMED SST explains comparable and approximately one third of the interannual variability of Atlantic TC frequency as that explained by local wind shear and local SST, respectively, which are known key factors that influence Atlantic TC development.

  4. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  5. Indian Monsoon Depression: Climatology and Variability

    SciTech Connect

    Yoon, Jin-Ho; Huang, Wan-Ru

    2012-03-09

    The monsoon climate is traditionally characterized by large seasonal rainfall and reversal of wind direction (e.g., Krishnamurti 1979). Most importantly this rainfall is the major source of fresh water to various human activities such as agriculture. The Indian subcontinent resides at the core of the Southeast Asian summer monsoon system, with the monsoon trough extended from northern India across Indochina to the Western Tropical Pacific (WTP). Large fraction of annual rainfall occurs during the summer monsoon season, i.e., June - August with two distinct maxima. One is located over the Bay of Bengal with rainfall extending northwestward into eastern and central India, and the other along the west coast of India where the lower level moist wind meets the Western Ghat Mountains (Saha and Bavardeckar 1976). The rest of the Indian subcontinent receives relatively less rainfall. Various weather systems such as tropical cyclones and weak disturbances contribute to monsoon rainfall (Ramage 1971). Among these systems, the most efficient rain-producing system is known as the Indian monsoon depression (hereafter MD). This MD is critical for monsoon rainfall because: (i) it occurs about six times during each summer monsoon season, (ii) it propagates deeply into the continent and produces large amounts of rainfall along its track, and (iii) about half of the monsoon rainfall is contributed to by the MDs (e.g., Krishnamurti 1979). Therefore, understanding various properties of the MD is a key towards comprehending the veracity of the Indian summer monsoon and especially its hydrological process.

  6. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a

  7. The Role of African topography in the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Wei, H. H.; Bordoni, S.

    2014-12-01

    The Somali cross-equatorial jet is estimated to contribute up to half of the mass flux crossing the equator during the Asian monsoon season. Previous studies have argued that the Somali jet is strengthened by the East African Highlands, which act as a wall and accelerate the flow (e.g., Krishnamurti et al. 1976, Sashegyi and Geisler 1987). Besides, observational studies have shown a positive correlation between the strength of the Somali jet and the South Asian Monsoon (SAM) precipitation (e.g., Findlater 1969, Halpern and Woiceshyn 2001). These imply that the existence of the topography would relate to a stronger SAM. However, in a more recent study, Chakraborty et al. (2002) found that if the African topography is removed in a comprehensive general circulation model (GCM), the SAM strengthens. In this study, we use the GFDL AM2.1 GCM to conduct experiments with and without topography in Africa, to further examine its influence on the cross-equatorial Somali jet and the SAM. We find that when the African topography is removed, the SAM precipitation increases, consistent with the results in Chakraborty et al. (2002). Interestingly, our results also show that the cross-equatorial Somali jet does weaken in the absence of the African topography, in agreement with previous studies. The moisture budget shows that the increase in precipitation in the no-African topography experiment is primarily due to stronger wind convergence. The dynamics of the cross-equatorial Somali jet is investigated within the framework of the Potential Vorticity (PV) budget, showing the contribution of the changes in friction and diabatic heating to the circulation as the topography is removed. A backward trajectory analysis is also conducted to further examine the influence of topography on both the material tendencies of the PV budget and trajectories of parcels reaching the Indian subcontinent.

  8. Tropospheric ozone variability during the monsoon season in Malaysia

    NASA Astrophysics Data System (ADS)

    Ahamad, Fatimah; Latif, Mohd Talib

    2013-11-01

    Vertical ozone (O3) profiles obtained from ozonesondes launched at Kuala Lumpur International Airport (KLIA), Malaysia were analyzed. Results of soundings between January to March 2011 and July to September 2011 are presented along with meteorological parameters (temperature and relative humidity (RH)). The overall O3 concentration range between the soundings made during the northeast monsoon (January - March) and the southwest monsoon (July - September) were not far from each other for altitudes below 8 km. However O3 variability is less pronounced between 2 km and 12 km during the southwest monsoon compared to the northeast monsoon season.

  9. West African Monsoon influence on the summer Euro-Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Pohl, Benjamin; Douville, Hervé; Fontaine, Bernard

    2011-05-01

    The West African Monsoon (WAM) influence on the interannual variability of the summer atmospheric circulation over North Atlantic and Europe is investigated over the period 1971-2000. A set of sensitivity experiments performed through the Arpege-Climat Atmospheric General Circulation Model is analyzed, using the so-called “grid-point nudging” technique, where the simulated atmospheric fields in the WAM region are relaxed towards the ERA40 reanalysis. Observations confirm that a sizable part of the Euro-Atlantic circulation variability is related to the WAM, with anomalies of reinforced convection in the Sudan-Sahel region associated with positive North Atlantic Oscillation (NAO) phases and subsidence over eastern Mediterranean. The nudged simulations highlights the role of the WAM in driving the mid-latitude circulation. A strong monsoon is related to high-pressure anomalies over the Azores and positive NAO phases.

  10. Role of soil moisture-atmosphere interactions in model simulation of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin; Giannini, Alessandra

    2015-04-01

    Land-atmosphere interactions play a major role in climate characteristics over land. One of the key features of those interactions is the feedback of soil moisture on precipitation: driven by atmosphere variability, soil moisture variations in turn modulate land-atmosphere fluxes, altering surface climate and boundary layer conditions and potentially feeding back on precipitation, both through local and large-scale processes. Prior studies have highlighted West Africa as one of the regions where such interactions play an important role in precipitation variability. Here we investigate the role of soil moisture-atmosphere interactions on the West African Monsoon in the GFDL-ESM2M model, comparing simulations from the GLACE-CMIP5 experiment with prescribed (climatological seasonal cycle) and interactive soil moisture. Results indicate that total monsoon precipitation is enhanced in the prescribed case, suggesting that overall soil moisture-atmosphere interactions act to reduce precipitation. However, contrasting effects appear between the "core" of the monsoon (in a time- latitude sense) where precipitation is reduced with interactive soil moisture, and the "margins" (in a time-latitude view) where precipitation increases. We investigate the processes responsible for these differences, from changes in the surface energy budget and Bowen Ratio to changes in large-scale circulation and monsoon dynamics. Simulations from other GLACE-CMIP5 participating models are also analyzed to assess the inter-model robustness of the results.

  11. Observation of cloud sytems during the African monsoon with METEOSAT

    NASA Astrophysics Data System (ADS)

    Sèze, G.; Szantai, A.; Desalmand, F.

    2003-04-01

    In the frame of the AMMA (African Monsoon Multidisciplinary Analyses) project and the related field experiments planned for 2005, satellite data are of prime importance to provide a good description of cloud systems. The simultaneous observations of low clouds associated with the monsoon flow and of cloud sytems associated with deep convection could bring useful information on the relation between these two processes. Using geostationnary satellite data, we have developed an approach allowing to classify clouds in cloud types, to study their evolution and their displacement. It is applied to METEOSAT-7 data during the JET2000 experiment ; it combines the cloud classification obtained from the LMD Dynamic Cluster Method developed by Sèze and Desbois (Sèze and Desbois, 1987; Sèze and Pawlowska, 2001), with the LMD cloud tracking method (Desalmand et al., 1999; Szantai et al., 2002). An analysis of the low cloud cover in the monsoon flow during the 10 day period of the experiment, is presented and the advantage of this combined study (cloud classification plus cloud tracking) is demonstrated. The improvements that the higher image frequency provided by the MSG (METEOSAT Second Generation) satellite will bring are illustrated with results obtained with the same kind of processing on METEOSAT-6 Rapid Scan data available over West Africa on 28 July 1999.

  12. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    SciTech Connect

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  13. Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Jeong; Ha, Kyung-Ja; Jhun, Jong-Ghap

    2014-05-01

    The interdecadal and the interannual variability of the global monsoon (GM) precipitation over the area which is chosen by the definition of Wang and Ding (Geophys Res Lett 33: L06711, 2006) are investigated. The recent increase of the GM precipitation shown in previous studies is in fact dominant during local summer. It is evident that the GM monsoon precipitation has been increasing associated with the positive phase of the interdecadal Pacific oscillation in recent decades. Against the increasing trend of the GM summer precipitation in the Northern Hemisphere, its interannual variability has been weakened. The significant change-point for the weakening is detected around 1993. The recent weakening of the interannual variability is related to the interdecadal changes in interrelationship among the GM subcomponents around 1993. During P1 (1979-1993) there is no significant interrelationship among GM subcomponents. On the other hand, there are significant interrelationships among the Asian, North American, and North African summer monsoon precipitations during P2 (1994-2009). It is noted that the action center of the interdecadal changes is the Asian summer (AS) monsoon system. It is found that during P2 the Western North Pacific summer monsoon (WNPSM)-related variability is dominant but during P1 the ENSO-related variability is dominant over the AS monsoon region. The WNPSM-related variability is rather related to central-Pacific (CP) type ENSO rather than the eastern-Pacific (EP) type ENSO. Model experiments confirm that the CP type ENSO forcing is related to the dominant WNPSM-related variability and can be responsible for the significant interrelationship among GM subcomponents.

  14. Statistical postprocessing for precipitation forecasts during the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Vogel, Peter; Gneiting, Tilmann; Knippertz, Peter; Fink, Andreas; Schlüter, Andreas

    2016-04-01

    Statistical postprocessing for ensemble forecasts has undergone many improvements recently. Commonly used methods are Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), but have predominantly been applied over the midlatitudes (e.g. North America or Europe). The prediction of precipitation events during the wet period of the West African Monsoon (WAM) is highly challenging and ensemble forecasts for precipitation in West Africa during this period have low skill. The present contribution investigates for the first time how statistical postprocessing methods can improve precipitation forecasts to obtain calibrated and sharp predictive distributions. Perhaps surprisingly, the ECMWF ensemble is unable to outperform climatological forecasts. However, BMA and EMOS postprocessed forecasts can cope with the poor quality of the raw ensemble forecasts and yield predictive distributions that are as calibrated as, but sharper than, climatology.

  15. Strengthened African summer monsoon in the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Zhang, Zhongshi; Jiang, Dabang; Yan, Qing; Zhou, Xin; Cheng, Zhigang

    2016-09-01

    Using model results from the first phase of the Pliocene Model Intercomparison Project (PlioMIP) and four experiments with CAM4, the intensified African summer monsoon (ASM) in the mid-Piacenzian and corresponding mechanisms are analyzed. The results from PlioMIP show that the ASM intensified and summer precipitation increased in North Africa during the mid-Piacenzian, which can be explained by the increased net energy in the atmospheric column above North Africa. Further experiments with CAM4 indicated that the combined changes in the mid-Piacenzian of atmospheric CO2 concentration and SST, as well as the vegetation change, could have substantially increased the net energy in the atmospheric column over North Africa and further intensified the ASM. The experiments also demonstrated that topography change had a weak effect. Overall, the combined changes of atmospheric CO2 concentration and SST were the most important factor that brought about the intensified ASM in the mid-Piacenzian.

  16. Half-precessional dynamics of monsoon rainfall near the East African Equator.

    PubMed

    Verschuren, Dirk; Sinninghe Damsté, Jaap S; Moernaut, Jasper; Kristen, Iris; Blaauw, Maarten; Fagot, Maureen; Haug, Gerald H

    2009-12-01

    External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions. Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-rich middle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few, especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional ( approximately 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low

  17. Indian Summer Monsoon Variability during the Last Millennium

    NASA Astrophysics Data System (ADS)

    Rooker, Mary; Sinha, Ashish

    2011-11-01

    The seasonal rainfall associated with the Indian summer monsoon during the instrumental period (˜last 150 years) is characterized by a biennial oscillation, such that monsoon precipitation varied between singularly strong and weak years but rarely deviated far from its mean state for consecutive years. This observation has led to a hypothesis that monsoon is a self-regulating system, regulated by the annual cycle of the heat balance in the Indian Ocean, mediated by the cross-equatorial ocean heat transport from the summer hemisphere through wind-driven Ekman transport. Consequently, the present day water resource infrastructure and the contingency planning in the region does not take into account the possibility of protracted failures of the monsoon or drastic shifts in its spatial patterns. Here we present new millennial-length speleothem-based reconstructions of Indian monsoon variability from a number of sites across India that challenges the underlying physics of the aforementioned hypothesis. Our proxy records of Indian monsoon provide clear evidence for type of low frequency and high amplitude variability in rainfall that have not been observed during the short instrumental period.

  18. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  19. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-01-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  20. Diagnosis of the South American Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Alonso Gan, Manoel; Aragão Ferreira, Solange

    2014-05-01

    In order to understand the space-time evolution of the dominant modes that constitute the South American Monsoon System (SAMS), cyclostationary EOF analysis was applied in the region between 20°N-60°S and 0°-90°E and for 29 summers (from 1978/79 to 2007/08) to the Xie-Arkin pentad precipitation data and other synoptic variables during the life cycle of the SAMS (September to March). This analysis shows detailed features of the first three dominant modes. The first mode of precipitation represents the seasonal cycle, the second mode explains the cold phase of El Niño-South Oscillation (ENSO) (La Niña) signal, and the third mode describes the transition phase of ENSO between La Niña and El Niño and possible interaction of the Madden Julian Oscillation (MJO). All three modes together explain about 26% of the total variance of the pentad precipitation data. The most pronounced feature of the seasonal cycle is strongly associated with the positive anomalies of surface temperature during the rainy season onset that develop over the tropical region of the continent. Associated with these temperature anomalies changes in the sea level pressure (SLP) field are observed. During the end of the dry season, the surface temperature over the SAMS core increases and consequently SLP decreases. This initiates an cyclonic circulation over central region of South America (SA), known as Chaco low. The increased upward motion induced by the surface warming together with the anomalous cyclonic circulation results in the increased of low-level moisture transport from Amazon region toward central region of SA by the low-level northwesterly flow. This situation increases the amount of precipitation in SAMS core and starts the rainy season in this region. During the termination stage, these conditions over SA are reversed. The ENSO mode reveals that the following factors affect the evolution of the SAMS system in La Niña years. (1) Negative 1000-hPa temperature anomalies over the

  1. Indian monsoon variability on millennial-orbital timescales.

    PubMed

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-01-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales. PMID:27071753

  2. Indian monsoon variability on millennial-orbital timescales

    NASA Astrophysics Data System (ADS)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-04-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  3. Indian monsoon variability on millennial-orbital timescales

    PubMed Central

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R. Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F. M.

    2016-01-01

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales. PMID:27071753

  4. East Asian summer monsoon precipitation variability since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H. John B.; Liu, Jianbao; Zhang, Xiaojian; Jin, Liya

    2016-04-01

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka=thousands of years before present, where the "present" is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7-7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8-5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5-8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change.

  5. East Asian summer monsoon precipitation variability since the last deglaciation.

    PubMed

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H John B; Liu, Jianbao; Zhang, Shengrui; Jin, Liya; An, Chengbang; Telford, Richard J; Cao, Xianyong; Wang, Zongli; Zhang, Xiaojian; Selvaraj, Kandasamy; Lu, Houyuan; Li, Yuecong; Zheng, Zhuo; Wang, Haipeng; Zhou, Aifeng; Dong, Guanghui; Zhang, Jiawu; Huang, Xiaozhong; Bloemendal, Jan; Rao, Zhiguo

    2015-01-01

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka = thousands of years before present, where the "present" is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7-7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8-5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5-8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change. PMID:26084560

  6. East Asian summer monsoon precipitation variability since the last deglaciation

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H. John B.; Liu, Jianbao; Zhang, Shengrui; Jin, Liya; An, Chengbang; Telford, Richard J.; Cao, Xianyong; Wang, Zongli; Zhang, Xiaojian; Selvaraj, Kandasamy; Lu, Houyuan; Li, Yuecong; Zheng, Zhuo; Wang, Haipeng; Zhou, Aifeng; Dong, Guanghui; Zhang, Jiawu; Huang, Xiaozhong; Bloemendal, Jan; Rao, Zhiguo

    2015-06-01

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka = thousands of years before present, where the “present” is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7-7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8-5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5-8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change.

  7. East Asian summer monsoon precipitation variability since the last deglaciation

    PubMed Central

    Chen, Fahu; Xu, Qinghai; Chen, Jianhui; Birks, H. John B.; Liu, Jianbao; Zhang, Shengrui; Jin, Liya; An, Chengbang; Telford, Richard J.; Cao, Xianyong; Wang, Zongli; Zhang, Xiaojian; Selvaraj, Kandasamy; Lu, Houyuan; Li, Yuecong; Zheng, Zhuo; Wang, Haipeng; Zhou, Aifeng; Dong, Guanghui; Zhang, Jiawu; Huang, Xiaozhong; Bloemendal, Jan; Rao, Zhiguo

    2015-01-01

    The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka = thousands of years before present, where the “present” is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7–7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8–5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5–8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change. PMID:26084560

  8. Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.

    2008-12-01

    The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to

  9. Influence of Decadal Variability of Global Oceans on South Asian Monsoon and ENSO-Monsoon Relation

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi

    This study has investigated the influence of the decadal variability associated with global oceans on South Asian monsoon and El Nino-Southern Oscillation (ENSO)-monsoon relation. The results are based on observational analysis using long records of monsoon rainfall and circulation and coupled general circulation model experiments using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) version 4 model. The multi-channel singular spectrum analysis (MSSA) of the observed rainfall over India yields three decadal modes. The first mode (52 year period) is associated with the Atlantic Multidecadal Oscillation (AMO), the second one (21 year) with the Pacific Decadal Oscillation (PDO) and the third mode (13 year) with the Atlantic tripole. The existence of these decadal modes in the monsoon was also found in the control simulation of NCAR CCSM4. The regionally de-coupled model experiments performed to isolate the influence of North Pacific and North Atlantic also substantiate the above results. The relation between the decadal modes in the monsoon rainfall with the known decadal modes in global SST is examined. The PDO has significant negative correlation with the Indian Monsoon Rainfall (IMR). The mechanism for PDO-monsoon relation is hypothesized through the seasonal footprinting mechanism and further through Walker and Hadley circulations. The model results also confirm the negative correlation between PDO and IMR and the mechanism through which PDO influences monsoon. Both observational and model analysis show that droughts (floods) are more likely over India than floods (droughts) when ENSO and PDO are in their warm (cold) phase. This study emphasizes the importance of carefully distinguishing the different decadal modes in the SST in the North Atlantic Ocean as they have different impacts on the monsoon. The AMO exhibits significant positive correlation with the IMR while the Atlantic tripole has significant negative

  10. A mechanism for African monsoon breaks: Mediterranean cold air surges

    NASA Astrophysics Data System (ADS)

    Vizy, Edward K.; Cook, Kerry H.

    2009-01-01

    Surges of cold air from the Mediterranean into northern Africa during the boreal summer are documented, and their influence on monsoon breaks is analyzed using Tropical Rainfall Measuring Mission rainfall estimates and reanalysis products. Between 1998 and 2006, 6-10 cold air surges occurred each summer, with low-level temperature anomalies ranging from less than -1 K to over -6 K. Composite analysis indicates that cold air surges over northern Africa persist for 2-10 days and travel equatorward at approximately 5.5 m s-1, which is 0.5-1.5 m s-1 faster than the observed climatological low-level meridional flow. Northern African cold surges have characteristics similar to surges observed elsewhere in the world, including a hydrostatically induced ridge of surface pressure and an amplified upper tropospheric ridge/trough pattern. The African cold surge is preceded by the passage of a shortwave trough and an intensification of the upper tropospheric subtropical westerly jet streak over the Mediterranean Sea. These events are associated with increased confluence in the jet entrance region over the central Mediterranean, an enhanced direct secondary circulation, subsidence, and low-level ageostrophic northerly flow over northeastern Africa. Composite analysis shows that the passage of a cold surge is associated with an enhancement in convective activity over southern Algeria, western Niger, northern Mali, and Mauritania 2 to 5 days before the surge reaches the eastern Sahel (˜17.5°N), when northeasterly flow channeled between the Atlas and Ahaggar Mountains strengthens and transports relatively moist air from the western Mediterranean and eastern North Atlantic over the region and increases moisture convergence over western Africa north of 20°N. Over the eastern Sahel of Sudan and eastern Chad, the composite results reveal a break in convective activity and decrease in low-level convergence when the surge arrives that persists for about 6 days. These results offer

  11. A solar variability driven monsoon see-saw: switching relationships of the Holocene East Asian-Australian summer monsoons

    NASA Astrophysics Data System (ADS)

    Eroglu, Deniz; Ozken, Ibrahim; McRobie, Fiona; Stemler, Thomas; Marwan, Norbert; Wyrwoll, Karl-Heinz; Kurths, Juergen

    2016-04-01

    The East Asian-Indonesian-Australian monsoon is the predominant low latitude monsoon system, providing a major global scale heat source. Here we apply newly developed non-linear time series techniques on speleothem climate proxies, from eastern China and northwestern Australia and establish relationships between the two summer monsoon regimes over the last ˜9000 years. We identify significant variations in monsoonal activity, both dry and wet phases, at millennial to multi-centennial time scales and demonstrate for the first time the existence of a see-saw antiphase relationship between the two regional monsoon systems. Our analysis attributes this inter-hemispheric linkage to the solar variability that is effecting both monsoon systems.

  12. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a

  13. African Monsoon Multidisciplinary Analysis (AMMA) : The Special Observing Period of 2006

    NASA Astrophysics Data System (ADS)

    Polcher, J.; Cairo, F.; Fierli, F.; Höller, H.; Law, K.; Mari, C.; Reeves, C.; Schlager, H.

    2006-12-01

    The AMMA project aims at enhancing our understanding of the West African monsoon and its underlying physical, chemical and biological processes. This enhanced knowledge of the processes involved in the establishment and variability of the monsoon will be used to improve our capacity to predict it and evaluate the impacts on land-productivity, management of water resources and public health. The objective is to provide societies in Africa with improved tools to manage their dependence on environmental conditions. In the framework of AMMA a dense observational network has been established both as routine and campaign- based facilities. The aim is to provide a complete picture of the physical, chemical and biological processes over the ocean, the continent and in the atmosphere. The base network has been established over the last few year and covers surface states and surface flux monitoring in a number catchments over the climatic gradient of the region. The upper-air sounding network was upgraded and enhanced to improve the data available for operational weather forecasting. During 2006 AMMA supported a large field campaign to cover the dry season (SOP0), the monsoon onset (SOP1) and the wet season (SOP2). The enhancement to the observing system in 2006 included balloon borne instruments, a lightning network over northern Benin, 3 research vessels and 5 research aircraft stationed in the Niamey and Ouagadougou. Most of SOP2 observations were dedicated to the intense mesoscale convective systems which are generated in the region and travel to the West. Their impact on the circulation in the troposphere and lower stratosphere, the water cycle in the region and the transport of trace gases and aerosols have been observed at different stages of the life cycle of these systems. This talk will provide a overview of the AMMA project and the observations carried out in 2006, focusing on the most relevant events.

  14. Ecosystem Response to Monsoon Rainfall Variability in Southwestern North America

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Feyen, Luc; Vivoni, Enrique

    2013-04-01

    Due to its marked plant phenology driven by precipitation, the North American Monsoon System (NAMS) can serve to reveal ecological responses to climate variability and change in water-controlled regions. This study attempts to elucidate the effects of monsoon rainfall variability on vegetation dynamics over the North American Monsoon Experiment (NAME) tier I domain (20°-35° N, 105°-115° W). To this end, we analyze long-term dynamics (1982-2004) in seasonal precipitation (Pr), net primary production (NPP) and rain-use efficiency (RUE) based on phenological and biophysical memory metrics from NOAA CPC daily 1° gridded precipitation data and satellite GIMMS semi-monthly NDVI images at 8-km resolution. We focus our analysis on six diverse ecosystems spanning from semi-arid and desert environments to tropical deciduous forests to investigate: 1) the spatially averaged NPP/RUE profiles along the regional Pr gradient, 2) the linkage between NPP and Pr inter-annual variations and 3) the long-term trends of Pr, NPP and RUE. All the biomes show an increase (decrease) in mean NPP (RUE) along the mean seasonal precipitation gradient ranging from 100 to 900 mm. Variations in NPP/RUE profiles differ strongly across ecosystems and show threshold behaviors likely resulting from different physiological responses to climate effects and landscape features. Statistical analysis suggests that the inter-annual variability in NPP is significantly related to the temporal variability in precipitation. In particular, we found that forest biomes are more sensitive to inter-annual variations in precipitation regimes. Semi-arid ecosystems appear to be more resilient, probably because they are more exposed to extreme conditions and consequently better adapted to greater inter and intra-annual climate variability. The long-term positive signal in RUE imposed on its inter-annual variability, which results from a constant NPP under negative long-term trends of Pr, indicates an improved

  15. Space-Time Structure of Monsoon Interannual Variability.

    NASA Astrophysics Data System (ADS)

    Terray, Pascal

    1995-11-01

    The analysis of corrected ship reports [sea level pressure (SLP), sea surface temperature (SST), air temperature (AT)] and corrected land data (SLP, AT, rainfall) in the Indian sector reveals the existence of two low-frequency modes of monsoon variability during the 1900-1970 period. A definite biennial (B) mode exists on the SLP fields. This B oscillation is unambiguously linked with a southwest-northeast SLP anomaly gradient. During the summer monsoon, the B SLP pattern can be interpreted as an expansion/contraction of the monsoon activity since this mode is strongly coupled with rainfall variations over peninsular India. A strong low-frequency (LF) mode with period spanning 4-6 years is also seen on SLP fields over the Indian Ocean and subcontinent. The variance associated with this band is typically more important than the one observed for the B mode, and its spatial mark is also strikingly different since it is linked with a global pattern of variation. This mode has also a strong influence on the Indian summer rainfall fluctuations, particularly on the Ghats and in the Indo-Gangetic plains.The amplitude of these oscillations varies widely during the 1900-1970 period. The LF mode is well defined during 1900-1923 and 1947-1970. There is a tendency for the energy associated with the B mode to decrease on the land while it increases over the Indian Ocean during the whole 1900-1970 interval.Although these two timescales exist also on SST fields, cross-spectral analysis shows that ocean-atmosphere interactions are much stronger at the B timescale. This result stresses the B nature of the monsoon system.The existence of these interannual signals in the Indian areas where the annual cycle is so strong raises difficult problems: How can climatic anomalies persist for several years in spite of strong seasonality? Or, still more intriguing, how can be explained the persistence of climatic anomalies during one year and the appearance of opposite sign climatic anomalies

  16. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali

  17. The Role of Vegetation in the Dynamics of West African Monsoons.

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyu; Eltahir, Elfatih A. B.

    1998-08-01

    The focus of this paper is the role of meridional distribution of vegetation in the dynamics of monsoons and rainfall over West Africa. A moist zonally symmetric atmospheric model coupled with a simple land surface scheme is developed to investigate these processes. Four primary experiments have been carried out to examine the sensitivity of West African monsoons to perturbations in the meridional distribution of vegetation. In the control experiment, the authors assume a distribution of vegetation that resembles the natural vegetation cover in West Africa. Each perturbation experiment is identical to the control experiment except that a change in vegetation cover is imposed for a latitudinal belt that is 10° in width. The results of the numerical experiments demonstrate that West African monsoons and therefore rainfall distribution depend critically on the location of the vegetation perturbations. Changes in vegetation cover along the border between the Sahara desert and West Africa (desertification) may have a minor impact on the simulated monsoon circulation. However, coastal deforestation may cause the collapse of the monsoon circulation and have a dramatic impact on the regional rainfall. The observed deforestation in West Africa is then likely to be a significant contributor to the observed drought.

  18. African easterly wave activity in a variable resolution GCM

    NASA Astrophysics Data System (ADS)

    Moustaoui, M.; Royer, J.-F.; Chauvin, F.

    2002-03-01

    The role of large-scale conditions on African easterly waves' variability and associated rainfall is investigated in simulations with the variable resolution version of the Arpege-Climat General Circulation Model (GCM). Easterly waves are identified from the 850 hPa meridional winds. The simulated waves' characteristics and their frequency response are compared with that in the reanalyses of the European Center for Medium-range Weather Forecasts (ECMWF) during summer 1992. The zonal wavelength of the simulated waves increases toward the equator. This increase, found also in previous works, is explained by the increase in 850-hPa mean zonal winds toward the equator as a result of low-level monsoon flow. A pronounced seasonal variability indicating a late summer enhancement of wave activity and related precipitation is found in both simulations and reanalyses. This feature, which has been found from observation campaigns, is explained by the variability of the large-scale circulation, which gives favorable conditions for the penetration of the easterly waves into the moist layer in the late summer. A shift of the spectra towards low frequencies is found in the simulated waves when compared to the reanalysis. The shift is explained by the relatively weak westward winds within the African Easterly Jet in the model, which tend to generate waves with low phase speed and frequency. We suggest that the weakness of the winds in the jet is caused by the strong eastward monsoon flow in the model, which may be due to surface condition parameterizations.

  19. Sst and Ghg Impacts On The West African Monsoon Climate: A Superensemble Approach

    NASA Astrophysics Data System (ADS)

    Paeth, H.; Hense, A.

    West African rainfall has been subject to large interdecadal variations during the 20th century. The most prominent feature is a negative trend in annual precipitation after 1960, causing severe drought in the Sahel region and the southern part of West Africa, with some recoverage in recent years. We examine and quantify the influence of ob- served SST changes on low-frequency variability over the subcontinent and compare it with the additional impact of increasing GHG concentrations, as revealed by a su- perensemble of SST-driven experiments. SST is largely responsible for decadal and longer-term variability over the southern part of West Africa, accounting for almost 80 % of monsoonal rainfall variance. The additional impact of the enhanced green- house effect is weak but statistically significant by the year 1980, obviously associ- ated with a positive trend in annual precipitation. This positive trend is also found in GHG-induced coupled climate model projection into the future. The CO2 signal is again weak but statistically significant and consistent with different climate models, as revealed by a superensemble of coupled experiments.

  20. Diagnosing GCM errors over West Africa using relaxation experiments. Part I: summer monsoon climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Douville, Hervé

    2011-10-01

    The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.

  1. West African Monsoon dynamics in idealized simulations: the competitive roles of SST warming and CO2

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Hourdin, Frederic; Bastin, Sophie; Braconnot, Pascale; Bony, Sandrine

    2015-04-01

    The West African Monsoon (WAM) is affected by large climate variability at different timescales, from interannual to multidecadal, with strong environmental and socio-economic impacts associated to climate-related rainfall variability, especially in the Sahelian belt. State-of-the-art coupled climate models still show poor ability in correctly simulating the WAM past variability and also a large spread is observed in future climate projections. In this work, the July-to-September (JAS) WAM variability in the period 1979-2008 is studied in AMIP-like simulations (SST-forced) from CMIP5. The individual roles of global SST warming and CO2 concentration increasing are investigated through idealized experiments simulating a 4K warmer SST and a 4x CO2 concentration, respectively. Results show a dry response in Sahel to SST warming, with dryer conditions over western Sahel. On the contrary, wet conditions are observed when CO2 is increased, with the strongest response over central-eastern Sahel. The precipitation changes are associated to modifications in the regional atmospheric circulation: dry (wet) conditions are associated with reduced (increased) convergence in the lower troposphere, a southward (northward) shift of the African Easterly Jet, and a weaker (stronger) Tropical Easterly Jet. The co-variability between global SST and WAM precipitation is also investigated, highlighting a reorganization of the main co-variability modes. Namely, in the 4xCO2 simulation the influence of Tropical Pacific is dominant, while it is reduced in the 4K simulation, which also shows an increased coupling with the eastern Pacific and the Indian Ocean. The above results suggest a competitive action of SST warming and CO2 increasing on the WAM climate variability, with opposite effects on precipitation. The combination of the observed positive and negative response in precipitation, with wet conditions in central-eastern Sahel and dry conditions in western Sahel, is consistent with the

  2. Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific-East Asian Monsoons(.

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Renguang; Lau, K.-M.

    2001-10-01

    Analyses of 50-yr NCEP-NCAR reanalysis data reveal remarkably different interannual variability between the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) in their temporal-spatial structures, relationships to El Niño, and teleconnections with midlatitude circulations. Thus, two circulation indices are necessary, which measure the variability of the ISM and WNPSM, respectively. A weak WNPSM features suppressed convection along 10°-20°N and enhanced rainfall along the mei-yu/baiu front. So the WNPSM index also provides a measure for the east Asian summer monsoon. An anomalous WNPSM exhibits a prominent meridional coupling among the Australian high, cross-equatorial flows, WNP monsoon trough, WNP subtropical high, east Asian subtropical front, and Okhotsk high. The WNP monsoon has leading spectral peaks at 50 and 16 months, whereas the Indian monsoon displays a primary peak around 30 months. The WNPSM is weak during the decay of an El Niño, whereas the ISM tends to abate when an El Niño develops. Since the late 1970s, the WNPSM has become more variable, but its relationship with El Niño remained steady; in contrast, the ISM has become less variable and its linkage with El Niño has dramatically declined. These contrasting features are in part attributed to the differing processes of monsoon-ocean interaction.Also found is a teleconnection between a suppressed WNPSM and deficient summer rainfall over the Great Plains of the United States. This boreal summer teleconnection is forced by the heat source fluctuation associated with the WNPSM and appears to be established through excitation of Rossby wave trains and perturbation of the jet stream that further excites downstream optimum unstable modes.

  3. Principal modes of Asian summer monsoon variability: Detection and changes

    NASA Astrophysics Data System (ADS)

    Yasutomi, N.; Kimoto, M.

    2009-12-01

    Principal modes of Asian summer monsoon variability are identified. By using vertically integrated moisture flux, principal modes represent better separation than commonly used variables such as rainfall, winds and outgoing longwave radiation. An empirical orthogonal function of vertically integrated moisture flux within the South, Southeast and East Asia during summertime is analysed. Results of various analyses let us convince that the first and second EOFs of the moisture flux are the principal modes of the Asian monsoon variability. In summer, there are two modes dominant in the Asian monsoon region; one consists of low-level circulation over the subtropical western Pacific near Philippines and associated convective dipole centers located over the western Pacific and Indonesia. The other consists of El Nino-Southern Oscillation (ENSO) signal and the Pacific-Japan (PJ) pattern, called ENSO-PJ mixed mode. This pattern is detected as the first EOF mode of a simulation with an atmospheric general circulation model giving the climatological mean sea surface temperature. Furthermore, the pattern is dominant in both present climate simulation and global warming simulation using coupled GCM. A projected change shows increasing of precipitation over South China and Japan. The Pacific-Indo dipole pattern is found out to be excited without external forcing like a specific sea surface temperature anomaly. Moreover, the Pacific-Indo dipole pattern appears as the preferred structure of variability by giving small perturbations to a three-dimensionally varying basic state in summertime by using a linear baroclinic model. Factors of the basic state which help to excite and maintain the Pacific-Indo dipole pattern are examined. Free, stationary Rossby waves can be excited in the region of low-level westerly extending from the Indian Ocean to the South China Sea which blows as a part of the monsoonal flow in summer. Rossby waves at the eastern end of the low-level westerly where

  4. The Indian Monsoon Variability during the Holocene: New Speleothem Records from the Core Monsoon Zone of India

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Stott, L.; Cannariato, K.; Cheng, H.; Edwards, R.

    2007-12-01

    The Indian summer monsoon (ISM) brings 80% of India and Southeast Asia's annual precipitation and is vital to sustaining the region's agriculture, which supports nearly a quarter of the world's population. Although considerable efforts have been focused to improve its seasonal to inter-annual predictive capabilities, the potential for decade to century scale departures from the normal monsoon precipitation pattern poses one of the most significant risks to human health and welfare in the ISM dominated regions. Meteorological records of ISM (available since 1850 AD) document droughts on inter-annual to sub-decadal timescales but are too short to asses whether longer and/or more severe intervals of monsoon failures occurred during the Holocene. The goals of our work are to characterize the full spectrum of the longer-term monsoon variability, particularly on the societal time-scales, and to compare this with the instrumental and historic record from the last century in order to evaluate the potential for larger or more extended periods of monsoon failure. We are approaching these goals by using precisely dated and near-annually resolved oxygen isotope records of the speleothems collected from a suite of caves throughout the core monsoon zone of India. We present new, well-dated, speleothem records from north, central, and north-east India that document past monsoon variations spanning much of the Holocene. To a large extent, our records confirm the previous marine based reconstructions of ISM that suggest that the episodes of rapid monsoon changes in Holocene coincided with major shifts in North Atlantic temperatures. Our data also suggest that significant century-scale decreases in monsoon rainfall also took place during the early to mid-Holocene, a period of generally enhanced monsoon strength. The centennial scale departures in our reconstructions appear to be more severe than any change observed in last 150 years. Our ISM reconstructions during the Late Holocene

  5. Interannual variability of the Indian monsoon and the Southern Oscillation

    SciTech Connect

    Wu, M.; Hastenrath, S.

    1986-01-01

    Years with abundant Southwest monsoon rainfall in India are characterized by anomalously low pressure over South Asia and the adjacent waters, enhanced cross-equatorial flow in the western, and increased cloudiness over the northern portion of the Indian Ocean, continuing from the pre-monsoon through the post-monsoon season; positive temperature anomalies over land and in the Arabian Sea in the pre-monsoon season, changing to negative departures after the monsoon onset. The following causality chain is suggested: the anomalously warm surfaces of south Asia and the adjacent ocean in the pre-monsoon season induce a thermal low, thus enhancing the northward directed pressure gradient, and favoring a vigorous cross-equatorial flow over the Indian Ocean. After the monsoon onset the land surfaces are cooled by evaporation, and the Arabian Sea surface waters by various wind stress effects. However, latent heat release over South Asia can now maintain the meridional topography gradients essential to the monsoon circulation. The positive phase of the Southern Oscillation (high pressure over the Eastern South Pacific) is associated with circulation departures in the Indian Ocean sector similar to those characteristic of years with abundant India monsoon rainfall. Abundant rainfall over India during the northern summer monsoon leads the positive mode of the southern Oscillation, and this in turn leads Java rainfall, whose peak is timed about half a year after that of India. A rising Southern Oscillation tendency presages abundant India Southwest Monsoon rainfall but a late monsoon onset. 46 references, 9 figures, 4 tables.

  6. The West African Monsoon simulated by global and regional climate models

    NASA Astrophysics Data System (ADS)

    Nikulin, Grigory; Jones, Colin; Kjellström, Erik; Gbobaniyi, Emiola

    2013-04-01

    We present results from two ensembles of global and regional climate simulations with a focus on the West African Monsoon (WAM). The first ensemble includes eight coupled atmosphere ocean general circulation models (AOGCMs) from the CMIP5 project, namely: CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR. The second ensemble consists of corresponding downscaling of all 8 AOGCMs by a regional climate model - RCA4 produced at the Rossby Centre (SMHI) in the Africa-CORDEX activities. Spatial resolution varies from about 1° to 3° in the AOGCM ensemble while all regional simulations are at the same 0.44° resolution. To see what added value higher resolution can provide ability of the eight AOGCMs and the downscaled RCA4(AOGCMs) to simulate the key characteristics of the WAM rainy season are evaluated and then inter-compared between the global and regional ensembles. The main focus in our analysis is on the WAM rainy season onset, cessation, length, total precipitation, its mean intensity and intraseasonal variability. Future climate projections under the RCP45 and RCP85 scenarios are analyzed and again inter-compared for both ensembles in order to assess uncertainties in the future projections of the WAM rainy season from the global and regional ensembles.

  7. An Indian Ocean precursor for Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Sreejith, O. P.; Panickal, S.; Pai, S.; Rajeevan, M.

    2015-11-01

    The Indian summer monsoon rainfall (ISMR) depicts large interannual variability strongly linked with El Niño-Southern Oscillation (ENSO). However, many of the El Niño years were not accompanied by deficient ISMR. The results from the study reveal the significant role of coupled air-sea interaction over the tropical Indian Ocean (IO) in modifying the ENSO-ISMR association. The IO warm water volume (WWV), a measure of heat content variations in the equatorial IO has strong influence on ISMR. A deepening (shoaling) of thermocline in the eastern equatorial IO (EEIO) during late boreal spring (April-May) accompanied by increase (decrease) in WWV anomalies weaken (enhance) the ISMR by enhancing (suppressing) the convection over EEIO resulting in the below (above) normal ISMR. Thus, the changes in the WWV anomalies in the EEIO along with ENSO conditions during boreal spring can be considered as a precursor for the performance of subsequent ISMR.

  8. Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Philippon, N.; Doblas-Reyes, F. J.; Ruti, P. M.

    2010-07-01

    In the framework of the ENSEMBLES FP6 project, an ensemble prediction system based on five different state-of-the-art European coupled models has been developed. This study evaluates the performance of these models for forecasting the West African monsoon (WAM) at the monthly time scale. From simulations started the 1 May of each year and covering the period 1991-2001, the reproducibility and potential predictability (PP) of key parameters of the WAM—rainfall, zonal and meridional wind at four levels from the surface to 200 hPa, and specific humidity, from July to September—are assessed. The Sahelian rainfall mode of variability is not accurately reproduced contrary to the Guinean rainfall one: the correlation between observations (from CMAP) and the multi-model ensemble mean is 0.17 and 0.55, respectively. For the Sahelian mode, the correlation is consistent with a low PP of about ~6%. The PP of the Guinean mode is higher, ~44% suggesting a stronger forcing of the sea surface temperature on rainfall variability over this region. Parameters relative to the atmospheric dynamics are on average much more skillful and reproducible than rainfall. Among them, the first mode of variability of the zonal wind at 200 hPa that depicts the Tropical Easterly Jet, is correlated at 0.79 with its “observed” counterpart (from the NCEP/DOE2 reanalyses) and has a PP of 39%. Moreover, models reproduce the correlations between all the atmospheric dynamics parameters and the Sahelian rainfall in a satisfactory way. In that context, a statistical adaptation of the atmospheric dynamic forecasts, using a linear regression model with the leading principal components of the atmospheric dynamical parameters studied, leads to moderate receiver operating characteristic area under the curve and correlation skill scores for the Sahelian rainfall. These scores are however much higher than those obtained using the modelled rainfall.

  9. Instrumental evidence of an unusually strong West African Monsoon in the 19th century

    NASA Astrophysics Data System (ADS)

    Gallego, David; Ordoñez, Paulina; Ribera, Pedro; Peña-Ortiz, Cristina; Garcia-Herrera, Ricardo; Vega, Inmaculada; Gomez, Francisco de Paula

    2016-04-01

    The precipitation in the Sahel -which is mainly controlled by the dynamics of the West African Monsoon-, has been in the spot of the climate community for the last three decades due to the persistence of the drought period that started in the 1970s. Unfortunately, reliable meteorological series in this area are only available since the beginning of the 20th Century, thus limiting our understanding of the significance of this period from a long term perspective. Currently, our knowledge of what happened in times previous to the 20th Century essentially relies in documentary or proxy sources. In this work, we present the first instrumental evidence of a 50 year-long period characterised by an unusually strong West African monsoon in the19th Century. Following the recent advances in the generation of climatic indices based on data from ship's logbooks, we used historical wind observations to compute a new index (the so-called ASWI) for characterising the strength of the West African Monsoon. The ASWI is based in the persistence of the southwesterly winds in the [29°W-17°W;7°N-13°N] area and it has been possible to compute it since 1790 for July and since 1839 for August and September. We show that the ASWI is a reliable measure of the monsoon's strength and the Sahelian rainfall. Our new series clearly shows the well-known drought period starting in the 1970s. During this dry period, the West African Monsoon was particularly weak and interestingly, we found that since then, the correlations with different climatic patterns such as the Pacific and Atlantic "El Niño" changed significantly in relation to those of the previous century. Remarkably, our results also show that the period 1839-1890 was characterised by an unusually strong and persistent monsoon. Notwithstanding, two of the few dry years within this period were concurrent with large volcanic eruptions in the Northern Hemisphere. This latter result supports the recently suggested relationship between major

  10. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2015-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  11. The West African monsoon: Contribution of the AMMA multidisciplinary programme to the study of a regional climate system.

    NASA Astrophysics Data System (ADS)

    Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.

    2014-12-01

    The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.

  12. Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary

    NASA Astrophysics Data System (ADS)

    Tierney, Jessica E.; Russell, James M.; Sinninghe Damsté, Jaap S.; Huang, Yongsong; Verschuren, Dirk

    2011-04-01

    Both Atlantic and Indian Ocean climate dynamics exert influence over tropical African hydroclimate, producing complex patterns of convergence and precipitation. To isolate the Indian Ocean influence on African paleohydrology, we analyzed the deuterium/hydrogen ratio of higher plant leaf waxes ( δD wax) in a 25 000-year sediment record from Lake Challa (3° S, 38° E) in the easternmost area of the African tropics. Whereas both the seismic record of inferred lake level fluctuations and the Branched and Isoprenoidal Tetraether (BIT) index proxy record changes in hydrology within the Challa basin, δD wax, as a proxy for the isotopic composition of precipitation ( δD P) is interpreted as a tracer of large-scale atmospheric circulation that integrates the history of the moisture transported to the Lake Challa area. Specifically, based on modern-day isotope-rainfall relationships, we argue that Lake Challa δD wax reflects the intensity of East African monsoon circulation. The three hydrological proxy records show generally similar trends for the last 25 000 years, but there are important differences between them, primarily during the middle Holocene. We interpret this deviation of δD wax from local hydrological history as a decoupling of East African monsoon intensity - which heavily influences the isotopes of precipitation in East Africa today - from rainfall amount in the Challa basin. In combination, the hydrological proxy data from Lake Challa singularly highlight zonal gradients in tropical African climate that occur over a variety of timescales, suggesting that the Congo Air Boundary plays a fundamental role in controlling hydroclimate in the African tropics.

  13. Pre-onset land surface processes and `internal' interannual variabilities of the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Saha, Subodh K.; Halder, Subhadeep; Kumar, K. Krishna; Goswami, B. N.

    2011-06-01

    It is proposed that, land-atmosphere interaction around the time of monsoon onset could modulate the first episode of climatological intraseasonal oscillation (CISO) and may generate significant `internal' interannual variation in the Indian summer monsoon rainfall. The regional climate model RegCM3 is used over Indian monsoon domain for 27 years of control simulation. In order to prove the hypothesis, another two sets of experiment are performed using two different boundary conditions (El Niño year and non-ENSO year). In each of these experiments, a single year of boundary conditions are used repeatedly year after year to generate `internal' interannual monsoon variability. Simulation of monsoon climate in the control model run is found to be in reasonably good agreement with observation. However, large rainfall bias is seen over Arabian Sea and Bay of Bengal. The interannual monsoon rainfall variability are of the same order in two experiments, which suggest that the external influences may not be important on the generation of `internal' monsoon rainfall variability. It is shown that, a dry (wet) pre-onset land-surface condition increases (decreases) rainfall in June which in turn leads to an anomalous increase (decrease) in seasonal (JJAS) rainfall. The phase and amplitude of CISO are modulated during May-June and beyond that the modulation of CISO is quite negligible. Though the pre-onset rainfall is unpredictable, significant modulation of the post-onset monsoon rainfall by it can be exploited to improve predictive skill within the monsoon season.

  14. Variability and teleconnectivity of northeast monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Nayagam, Lorna R.; Janardanan, Rajesh; Ram Mohan, H. S.

    2009-12-01

    The spatial and temporal variabilities of rainfall over Peninsular India during the northeast monsoon (NEM) season is studied using a high resolution gridded data, for the period 1951-2003. The dominant modes of the NEM rainfall were identified using Empirical Orthogonal Function (EOF) analysis and the power over the identified scales was extracted using wavelet analysis (scale averaged wavelet power-SAP). Homogenous regions of variability of the SAP of NEM rainfall (smoothed NEM) were studied using EOF. Excluding the subdivisions of Karnataka, the leading mode of EOF explains the spatio-temporal variability of NEM rainfall over Peninsular India. Dominant frequency of smoothed NEM is in the 4 year period and the second dominant mode is in the 8 year period. The energy of the principal components (PCs) is consistent with the above/below-normal rainfall received over the NEM region. Even though PC1 explains the variability over the core region of NEM rainfall, the energy of the WET year 1956 is not captured by PC1. The excess rainfall of this year was contributed by the subdivisions of Karnataka, whose variability is explained by PC2. EOF analysis was also applied on the SAP of SST (smoothed SST) for the months from January to September, over the Indian Ocean (30° S-30° N, 40° E-110° E), the Atlantic Ocean (30° S-30° N, 60° W-10° E) and the Pacific Ocean (30° S-30° N, 120° E-60° W). Correlation between PC1 of smoothed SST for the months of January to September and smoothed NEM averaged over Peninsular India was found and the month that bears high correlation was selected to explain the teleconnections. Thus the smoothed SST for the months of February, March and August over Indian, Atlantic and Pacific Oceans respectively was selected to explain their relations with the smoothed NEM rainfall.

  15. Processes and Mechanisms in Simulations of the Mid-holocene African Summer Monsoon Circulation

    NASA Astrophysics Data System (ADS)

    Tomas, R. A.; Otto-Bliesner, B.

    2006-12-01

    Proxy reconstructions indicate that the Sahel and Sahara regions were considerably wetter during the early and middle Holocene (about 12 to 5 thousand years ago) than they are presently. Kutzbach (1981) and Kutzbach and Otto-Bliesner (1982) tested whether changes in the Earth's orbital parameters could have caused these climatic changes seen in the observed records. Using a low-resolution general circulation model and orbital parameters that describe conditions 9000 years ago, they found that the increased solar radiation during the summer months caused an intensified monsoon circulation over the African-Eurasian land mass. During the past 25 years, as general circulation models and coupled climate models have evolved, these experiments have been repeated, these results have been reconfirmed and our understanding of what parts of the climate system are important for the anomalous monsoon circulation has been refined. Yet, questions remain about the details of the processes and mechanisms that are important for producing the anomalous monsoon in climate model simulations and there are still some significant discrepancies between simulations and proxy records. We examine simulations of the African summer monsoon made using the latest version of the Community Climate System Model (CCSM3) developed at the National Center for Atmospheric Research (NCAR) forced with orbital parameters and greenhouse gas concentrations appropriate for 6 ka and pre-industrial periods following the protocols established by the Paleoclimate Modeling Intercomparison Project II (PMIP-2). Results from three sets of experiments are presented. In the first, we test to determine to what extent the SST's simulated by CCSM3 influence the anomalous monsoon circulation using a stand alone atmospheric model forced with 6ka orbital parameters but prescribed SST's taken from CCSM3 simulations of the 6ka and pre-industrial periods. In the second, we explore a more fundamental question regarding what

  16. Holocene Climatic Variability in the Indian Monsoon Domain

    NASA Astrophysics Data System (ADS)

    Mishra, Praveen Kumar; Anoop, Ambili; Menzel, Philip; Gaye, Birgit; Basavaiah, Nathani; Jehangir, Arshid; Prasad, Sushma

    2013-04-01

    The available data on Holocene climate variability from Asia indicates spatio-temporal changes in the precipitation over this vast region. Detailed information on the timing, duration, regionality, and causes of these fluctuations is not well understood, especially over the Indian subcontinent. My work focuses on long core sediments from lake Tso Moriri (78°14'-78°25'N and 32°40'-33°02'E; altitude: 4500 m) situated in climatically sensitive zone of NW Himalayas affected by both mid-latitude westerlies and Indian summer monsoon. Two cores ca.7 m were retrieved from the lake at different water depths (ca. 40m and 105m) in July 2011. Investigations reveal marked changes in grain size, lamination quality, mineralogy, organic and carbonate content suggesting changes in lake level, direction of inflow, and biological productivity that in turn are influenced by regional climate. As the lake lies in a tectonically active region, I have also undertaken detailed geomorphometric (knick-point, Hack index), and drainage pattern analysis of the major inflowing streams to decipher the active tectonics in the region. Sharp changes in river course and slope gradient indicates the presence of an active N-S trending fault in western flank of the lake. The data from lake Tso Moriri will be compared with other high-resolution records from lake Lonar and stalagmites in NE India to reconstruct the forcing mechanism of Holocene climatic variability.

  17. Regional Climate Modeling of West African Summer Monsoon Climate: Impact of Historical Boundary Forcing

    NASA Astrophysics Data System (ADS)

    Kebe, I.

    2015-12-01

    In this paper, we analyze and intercompare the performance of an ensemble of three Regional Climate Models (RCMs) driven by three set of Global Climate Models (GCMs), in reproducing seasonal mean climatologies with their annual cycle and the key features of West African summer monsoon over 20 years period (1985-2004) during the present day. The results show that errors in lateral boundary conditions from the GCM members, have an unexpected way on the skill of the RCMs in reproducing regional climate features such as the West African Monsoon features and the annual cycle of precipitation and temperature in terms of outperforming the GCM simulation. It also shows the occurrence of the West African Monsoon jump, the intensification and northward shift of the Saharan Heat Low (SHL) as expressed in some RCMs than the GCMs. Most RCMs also capture the mean annual cycle of precipitation and temperature, including, single and double-peaked during the summer months, in terms of events and amplitude. In a series of RCMs and GCMs experiments between the Sahara region and equatorial Africa, the presence of strong positive meridional temperature gradients at the surface and a strong meridional gradients in the potential temperatures near the surface are obvious, indicating the region of strong vertical shear development enough to establish easterly flow such as the African easterly jet. In addition, the isentropic potential vorticity (IPV) gradient decreases northward in the lower troposphere across northern Africa, with the maximum reversal on the 315-K surface. The region with negative IPV gradient favors the potential instability which has been associated with the growth of easterly waves.

  18. Influence of Arctic sea-ice and greenhouse gas concentration change on the West African Monsoon.

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    The Sahelian precipitation are projected to increase in the CNRM-CM5 coupled climate model due to a strengthening of the land-Sea temperature gradient, the increase in the North Atlantic temperature and the deepening of the Heat Low. Arctic Sea-Ice loss impacts the low-level atmospheric circulation through a decrease in the northward heat transport. Some authors have linked the sea-ice loss to a poleward shift of the InterTropical Convergence Zone. Within the CMIP5 models the effect of these mechanisms are not distinguishable and it is difficult to understand the effect of the Arctic sea-ice loss on the West African Monsoon so far. We performed several sensitivity experiments with the CNRM-CM5 coupled climate models by modifying the arctic sea-ice extent and/or the greenhouse gas concentration. We then investigated separately the impact of Arctic sea-ice loss and greenhouse gas concentration increases on the West African Monsoon. The increase in greenhouse gas explains the northward shift and the strengthening of the monsoon. Its effect is stronger with a sea-ice free Arctic that leads to an increase in North Atlantic temperature and in Sahelian precipitation at the end of the rainy season (September-October). We argue that the decrease in sea-ice extent, in the context of the global warming, may moistens the Sahel during the rainy season by changing the pressure, winds and moisture fluxes at low-level.

  19. West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: diagnostics and challenges

    NASA Astrophysics Data System (ADS)

    Poan, E. D.; Gachon, P.; Dueymes, G.; Diaconescu, E.; Laprise, R.; Seidou Sanda, I.

    2016-02-01

    The West African monsoon intraseasonal variability has huge socio-economic impacts on local populations but understanding and predicting it still remains a challenge for the weather prediction and climate scientific community. This paper analyses an ensemble of simulations from six regional climate models (RCMs) taking part in the coordinated regional downscaling experiment, the ECMWF ERA-Interim reanalysis (ERAI) and three satellite-based and observationally-constrained daily precipitation datasets, to assess the performance of the RCMs with regard to the intraseasonal variability. A joint analysis of seasonal-mean precipitation and the total column water vapor (also called precipitable water—PW) suggests the existence of important links at different timescales between these two variables over the Sahel and highlights the relevance of using PW to follow the monsoon seasonal cycle. RCMs that fail to represent the seasonal-mean position and amplitude of the meridional gradient of PW show the largest discrepancies with respect to seasonal-mean observed precipitation. For both ERAI and RCMs, spectral decompositions of daily PW as well as rainfall show an overestimation of low-frequency activity (at timescales longer than 10 days) at the expense of the synoptic (timescales shorter than 10 days) activity. Consequently, the effects of the African Easterly Waves and the associated mesoscale convective systems are substantially underestimated, especially over continental regions. Finally, the study investigates the skill of the models with respect to hydro-climatic indices related to the occurrence, intensity and frequency of precipitation events at the intraseasonal scale. Although most of these indices are generally better reproduced with RCMs than reanalysis products, this study indicates that RCMs still need to be improved (especially with respect to their subgrid-scale parameterization schemes) to be able to reproduce the intraseasonal variance spectrum adequately.

  20. The response to deforestation and desertification in a model of West African monsoons

    NASA Astrophysics Data System (ADS)

    Zheng, Xinyu; Eltahir, Elfatih A. B.

    Since Charney proposed his theory on the dynamics of deserts and droughts in the Sahel [Charney, 1975], there has been significant scientific interest in the interaction between vegetation and climate in this region. The essence of this interaction is that the atmospheric circulation, and therefore rainfall, over this region may be sensitive to changes in vegetation cover near the desert border. Here we describe simulations of the West African monsoons with a simple zonally-symmetric model. The results suggest that the potential impact of human induced change of land cover on regional climate depends critically on the location of the change in vegetation cover. That is, desertification along the border with the Sahara (e.g., in Chad, Niger, Mali and Mauritania) leaves a relatively minor impact on monsoon circulation and regional rainfall; deforestation along the southern coast of West Africa (e.g., in Nigeria, Ghana and Ivory Coast) may result in complete collapse of monsoon circulation, and a significant reduction of regional rainfall.

  1. Understanding South Asian Monsoon Variability in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Annamalai, H.; Prasanna, V.; Mohan, T.

    2014-12-01

    Both observations and 20th century coupled model (CMIP3/5) simulations suggest that severe weak monsoon years (seasonal mean rainfall less than 15% of the normal) over South Asia are associated with a developing El Nino. During these years and within the summer season, monsoon breaks last for a prolonged period (> 7 days). Detailed diagnostics show that dry advection is the primary initiator for the dryness while cloud-radiative processes maintain it. In all future RCP projections, a robust signal in the time-mean is a basin-wide SST warming along the equatorial central-eastern Pacific (El Nino-like conditions). Question of interests include: in a warmer planet, what is the probability that the monsoon extremes would increase and intensify? Are there any changes in the dynamical and thermodynamical processes that shape these extremes? To address the above questions, a detalied diagostics of CMIP3/5 solutions in conjunction with a series of idealized numerical experiments were performed in an ensemble mode. Model solutions suggest that compared to present-day, intensity of severe weak monsoons increases, and frequency and intensity of prolonged break conditions also increase. Furthermore, an examination of temporal evolution of area-averaged daily rainfall over South Asia suggests "persistence" of dryness throughout the summer season. Our model solutions imply the dominant role of boundary forcing, enhancing predictability of severe weak monsoons. The actual processes that shape these extremes as well as limitations in the present research, and future directions will be discussed.

  2. Role of Ocean in the Variability of Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Joseph, Porathur V.

    2014-05-01

    Asian summer monsoon sets in over India after the Intertropical Convergence Zone moves across the equator to the northern hemisphere over the Indian Ocean. Sea surface temperature (SST) anomalies on either side of the equator in Indian and Pacific oceans are found related to the date of monsoon onset over Kerala (India). Droughts in the June to September monsoon rainfall of India are followed by warm SST anomalies over tropical Indian Ocean and cold SST anomalies over west Pacific Ocean. These anomalies persist till the following monsoon which gives normal or excess rainfall (tropospheric biennial oscillation). Thus, we do not get in India many successive drought years as in sub-Saharan Africa, thanks to the ocean. Monsoon rainfall of India has a decadal variability in the form of 30-year epochs of frequent (infrequent) drought monsoons occurring alternately. Decadal oscillations of monsoon rainfall and the well-known decadal oscillation in SST of the Atlantic Ocean (also of the Pacific Ocean) are found to run parallel with about the same period close to 60 years and the same phase. In the active-break cycle of the Asian summer monsoon, the ocean and the atmosphere are found to interact on the time scale of 30-60 days. Net heat flux at the ocean surface, monsoon low-level jetstream (LLJ) and the seasonally persisting shallow mixed layer of the ocean north of the LLJ axis play important roles in this interaction. In an El Niño year, the LLJ extends eastwards up to the date line creating an area of shallow ocean mixed layer there, which is hypothesised to lengthen the active-break (AB) cycle typically from 1 month in a La Niña to 2 months in an El Niño year. Indian monsoon droughts are known to be associated with El Niños, and long break monsoon spells are found to be a major cause of monsoon droughts. In the global warming scenario, the observed rapid warming of the equatorial Indian ocean SST has caused the weakening of both the monsoon Hadley circulation and

  3. O the Interannual Variability of the Indian Monsoon and the Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Wu, Ming Chin

    The mechanisms of the interannual variability of the Indian monsoon and the Southern Oscillation are investigated from observations in the Indian Ocean sector. On this diagnostic basis, a statistical forecasting scheme is developed for all-India rainfall anomalies. A good summer monsoon is characterized by the following aspects. (1) Arabian Sea: higher sea surface temperature (SST) in the pre-monsoon season but lower SST in the monsoon and post -monsoon seasons, lower sea level pressure (SLP) throughout the year, strong surface wind and more cloudiness from the pre-monsoon through the post-monsoon seasons; (2) Indian subcontinent: higher surface temperature in the pre-monsoon season but lower surface temperature afterward, decreased lower-tropospheric constant pressure topographies and higher in the North but lower in the South upper-tropospheric topographies, stronger lower-tropospheric inflow from the South and upper-tropospheric outflow toward the South, and more northward position of the upper-air ridge; and (3) Tibetan Plateau: a warm and dry concurrent summer and a warm and wet preceding winter. An early monsoon onset is heralded by oceanic -atmospheric conditions around the Indian subcontinent similar to those for a good monsoon year. However, conditions immediately following an early monsoon onset are characterized in the Arabian Sea by high SST, strong surface wind, less cloudiness, and high SLP, and in India by an anomalously cold and then warm surface environment. A cool equatorial Pacific Ocean episode of the southern Oscillation is characterized in the Indian Ocean by higher SST in the antecedent seasons but lower SST in the concurrent and following seasons, lower SLP from the preceding throughout the following seasons, stronger surface wind in the western part of the ocean but weaker surface wind in the eastern part during the summer, and more cloudiness. Both large positive values of the Southern Oscillation index and its tendency foreshadow a good

  4. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

    NASA Astrophysics Data System (ADS)

    Bosmans, J. H. C.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Lourens, L. J.

    2015-01-01

    We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.

  5. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  6. Mutual interaction between the West African Monsoon on the summer Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Gaetani, M.; Baldi, M.; Dalu, G. A.

    2009-04-01

    Many studies have show that the West African Monsoon (WAM) is teleconnected with neighbouring regions, as the Mediterranean (Med) basin and the Tropical Atlantic, but also it is sensitive to the perturbations occurring even in remote regions, as the Indian sub-continent and the Tropical Pacific, these teleconnections being active on several time-scales, from intraseasonal to multidecadal. The WAM plays also an active role in the regional atmospheric circulation, inducing significant changes in rainfall, moisture, temperature, and wind distribution up to the North Africa. Within this framework, recent works were focused on the teleconnection between WAM and Med. WAM is strengthened by the north-easterly advection of moisture from the Med Sea, and, since the subsiding monsoonal air often invades the Med, there is a 2-way interaction between WAM and Med summer circulation. We study these interactions, applying SVD analysis to global NCEP Reanalysis and to rainfall data from CMAP, during the extended monsoonal season from May to October, on interannual and on intraseasonal time-scale. Dynamical features are explored using composite analysis, focusing on the role of this connection in the heat waves occurrence in the Med. We find that a strong WAM intensifies the Hadley meridional circulation, with a strengthening of the north Atlantic anticyclone and a weakening, even blocking, of the westerly flow in the Med. A deep inland penetration of WAM produces a northern shift of the Libyan anticyclone, with subsidence and high pressure affecting mainly the western Med. The positive feedback is due to the intensification of north-easterly flow from the eastern Med, which, reaching the Sahara desert, intensifies the intertropical front, favouring abundant monsoonal precipitation because of the added moist air.

  7. Quaternary Indus River Terraces as Archives of Summer Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Jonell, Tara N.; Clift, Peter D.

    2013-04-01

    If we are to interpret the marine stratigraphic record in terms of evolving continental environmental conditions or tectonics, it is essential to understand the transport processes that bring sediment from mountain sources to its final marine depocenter. We investigate the role that climate plays in modulating this flux by looking at the Indus River system, which is dominated by the strong forcing of the Asian monsoon and the erosion of the western Himalaya. Lake, paleoceanographic, and speleothem records offer high-resolution reconstructions of monsoon intensity over millennial timescales. These proxies suggest the monsoon reached peak intensity at ~9-10 ka in central India, followed by a steady decline after ~7 ka, with a steep decline after 4 ka. New lake core records (Tso Kar and Tso Moriri), however, suggest a more complex pattern of monsoon weakening between 7-8 ka in the Greater Himalayan region, which contrasts with a time of strong monsoon in central India. This indicates that the floodplains of the major river systems may not experience the same climatic conditions as their mountain sources, resulting in different geomorphologic responses to climate change. Earlier research has established that the northern part of the Indus floodplain adjacent to the mountains experienced incision after ~10 ka. Incision and reworking is even more intense in the Himalayas but its timing is not well-constrained. High altitude river valleys, at least north of the Greater Himalaya, appear to be sensitive to monsoon strength because they lie on the periphery of the Himalayan rain shadow. These valleys may be affected by landslide damming during periods of strong monsoonal precipitation, such as slightly after the monsoon maximum from 9-10 ka. Damming of these river valleys provides sediment storage through valley-filling and later sediment release through gradual incision or dam-bursting. Terraces of a major tributary to the Indus, the Zanskar River, indicate valley

  8. 250 years of SW Indian Monsoon Variability from Red Sea Corals

    NASA Astrophysics Data System (ADS)

    Bryan, S.; Hughen, K. A.; Karnauskas, K. B.; Farrar, J. T.

    2015-12-01

    During the northern hemisphere summer, strong dust storms develop in the Tokar Delta region of Sudan. These massive dust storms are funneled through a gap in the coastal mountains and blow out across the Red Sea. The generation and transport of these dust storms is driven by the large-scale atmospheric pressure gradient across the Red Sea, which is a component of the Southwest Indian Monsoon. Dust deposited on the Red Sea is recorded in skeletal geochemistry of corals that live on the Saudi Arabian coast, and provides an opportunity to reconstruct variability in the monsoon system prior to instrumental records. We have generated annually-resolved records of coral Ba/Ca, which display strong correlations to the zonal pressure gradient across the Red Sea during the instrumental period. Our coral-based monsoon records show an increasing trend in the strength of SW Indian Monsoon circulation since the Little Ice Age, in agreement with lower-resolution Arabian Sea upwelling based records. Our records also show strong decadal-scale variability, which was strongest during the late 19th century and has declined during the past century. In this presentation, we will discuss the decadal-scale variability in the SW Indian Monsoon circulation over the past 250 years as revealed by Red Sea Corals and the implications of the relationships and trends observed in this study for projections of future monsoon variability.

  9. KZai 02 pollen record, an insight into West African monsoon fluctuations during the Last Climatic Cycle

    NASA Astrophysics Data System (ADS)

    Dalibard, M.; Popescu, S.; Maley, J.; Suc, J.

    2012-12-01

    Climate of the circum-Atlantic intertropical zone is driven by the ocean/atmosphere dynamics in response to variations of yearly insolation. These latitudes correspond to the convergence of the Hadley cells expressed on earth surface by intense trade winds and in lower troposphere by the African easterly jet making the edges of the intertropical zone relatively dry, while humidity is concentrated near the Equator. This phenomenon generates a precipitation front, known as the InterTropical Convergence Zone (ITCZ), the oscillations of which regulate the latitudinal vegetation distribution. Pollen record of core KZai 02 (Guinea Gulf) allows high resolution reconstruction of variations of past ecosystems over Central Africa during the Last Climatic Cycle. Plant taxa recorded in pollen analyses have been clustered according to their ecological requirements and African phytogeography. Fluctuations of these groups inform on precipitation intensity and their distribution during the last 130 ka. During Glacials, an open vegetation made of Cyperaceae marshes developed in the central Zaire/Congo Basin, surrounded by savannah on borders and afromontane forests on reliefs. Composition and distribution of vegetation indicate a decrease in monsoon activity and the strengthening of the precipitation front in the center of the basin. Interglacial phases are characterized by rain forest expansion over Central Africa in response to a precipitation enhancement associated with a northward shift of the rainfall front. Replacement of afromontane forest and marsh ecosystems by savannah then lowland pioneering, warm-temperate and rain forests characterized glacial/interglacial transitions. This succession suggests the increasing influence of at least two climatic parameters: the water availability and temperature and/or CO2 fluctuation. Spectral analysis applied to vegetation groups evidences the forcing of insolation, mainly driven by precession, on the West African monsoon system. Sub

  10. Climate variability in a coupled GCM. Part II: The Indian Ocean and monsoon

    SciTech Connect

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1994-10-01

    We have investigated the seasonal cycle and the interannual variability of the tropical Indian Ocean circulation and the Indian summer monsoon simulated by a coupled ocean-atmosphere general circulation model in a 26-year integration. Although the model exhibits significant climate drift, overall, the coupled GCM simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian summer monsoon. The amplitudes of the seasonal changes, however, are underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation, which is partly related to the El Nino/Southern Oscillation phenomenon and the associated changes in the Walker circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in monsoon rainfall, simulated by the coupled GCM, is only about half as strong as observed. The reason for this is that the simulated interannual variability in the Indian monsoon appears to be related to internal processes within the atmosphere only. In contrast, an investigation based on observations shows a clear lead-lag relationship between interannual variations in the monsoon rainfall and tropical Pacific SST anomalies. Furthermore, the atmospheric GCM also fails to reproduce this lead-lag relationship between monsoon rainfall and tropical Pacific SST when run in a stand-alone integration with observed SSTs prescribed during the period 1970-1988. These results indicate that important physical processes relating tropical Pacific SST to Indian monsoon rainfall are not adequately modeled in our atmospheric GCM. Monsoon rainfall predictions appear therefore premature. 24 refs., 13 figs, 2 tabs.

  11. High resolution simulation of the South Asian monsoon using a variable resolution global climate model

    NASA Astrophysics Data System (ADS)

    P Sabin, T.; Krishnan, R.; Ghattas, Josefine; Denvil, Sebastien; Dufresne, Jean-Louis; Hourdin, Frederic; Pascal, Terray

    2013-07-01

    This study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (~35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1° × 1° grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics

  12. Simulation of West African monsoon circulation in four atmospheric general circulation models forced by prescribed sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Philippon, Nathalie; Fontaine, Bernard

    2004-12-01

    The mean evolution of the West African monsoon (WAM) circulation and its interannual variability have been studied using an ensemble of 21 simulations (common period 1961-1994) performed with four different atmospheric general circulation models (AGCMs) (European Center/Hamburg (ECHAM) 3, ECHAM 4, Action de Recherche Petite Echelle Grande Echelle (ARPEGE), and Goddard Institute for Space Studies (GISS)) and forced by the same observed sea surface temperature (SST) data set. The results have been compared with European Centre for Medium-Range Weather Forecasts reanalyses (ERA-40). The climatological means of WAM winds for the AGCMs are similar to the ERA-40 ones. However, the AGCMs tend to underestimate the southern wind component at low levels around 10°N compared to the ERA-40. The simulated Tropical Easterly Jet (TEJ) is usually shifted northward and also too weak for ECHAM 3 and ECHAM 4 compared to ERA-40. The interannual variability of an atmospheric WAM index (WAMI) is quite successfully reproduced (the correlations between the mean ensemble of each AGCM and ERA-40 time series over 1961-1994 range between 0.51 and 0.64). In particular, the four AGCMs reproduce quite well the mean teleconnection structure with El Niño-Southern Oscillation, i.e., a strong (weak) monsoon during La Niña (El Niño) events, even if the largest absolute correlations between WAMI and SST in the eastern and central equatorial Pacific are weaker than in ERA-40. On a yearly basis, WAMI is more predictable and skillful during the cold ENSO years than during the warm ENSO ones. The unskillful warm ENSO events are associated with a significant cooling over the equatorial Atlantic and Western Pacific Ocean and a significant warming in the tropical Indian Ocean.

  13. Trends and variability in East African rainfall and temperature observations

    NASA Astrophysics Data System (ADS)

    Seregina, Larisa; Ermert, Volker; Fink, Andreas H.; Pinto, Joaquim G.

    2014-05-01

    The economy of East Africa is highly dependent on agriculture, leading to a strong vulnerability of local society to fluctuations in seasonal rainfall amounts, including extreme events. Hence, the knowledge about the evolution of seasonal rainfall under future climate conditions is crucial. Rainfall regimes over East Africa are influenced by multiple factors, including two monsoon systems, several convergence zones and the Rift Valley lakes. In addition, local conditions, like topography, modulate the large-scale rainfall pattern. East African rainfall variability is also influenced by various teleconnections like the Indian Ocean Zonal Mode and El Niño Southern Oscillation. Regarding future climate projections, regional and global climate models partly disagree on the increase or decrease of East African rainfall. The specific aim of the present study is the acquirement of historic data from weather stations in East Africa (Kenya, Tanzania, Ruanda and Uganda), the use of gridded satellite (rainfall) products (ARC2 and TRMM), and three-dimensional atmospheric reanalysis (e.g., ERA-Interim) to quantify climate variability in the recent past and to understand its causes. Climate variability and trends, including changes in extreme events, are evaluated using ETCCDI climate change and standardized precipitation indices. These climate indices are determined in order to investigate the variability of temperature and rainfall and their trends with the focus on most recent decades. In the follow-up, statistical and dynamical analyses are conducted to quantify the local impact of pertinent large-scale modes of climate variability (Indian Ocean Zonal Mode, El Niño Southern Oscillation, Sea Surface Temperature of the Indian Ocean).

  14. Monsoon rainfall interannual variability over China and its association with the Euasian circulation

    SciTech Connect

    Samel, A.N.; Wang, Wei-Chyung

    1997-11-01

    This study has two goals. The first is to determine annual observed initial and final dates of east Asian summer monsoon rainfall. To accomplish this, a semi-objective analysis is developed and applied to daily rainfall station data throughout China. The resulting values are used to calculate monsoon duration and total rainfall. The second goal is to identify relationships between these rainfall characteristics and circulation features in the Eurasian sea level pressure. The analysis of the duration of monsoon rainfall events produced results that are consistent with those found in previous studies. Total monsoon rainfall over south China, the Yangtze River valley, and north China was then correlated with the Eurasian sea level pressure and 500 millibar height fields. The results indicate that summer rainfall interannual variability over each region is governed by the interaction of several circulation features. These findings are also consistent with those of other studies. 18 refs., 5 figs.

  15. West Indian Ocean variability and East African fish catch.

    PubMed

    Jury, M; McClanahan, T; Maina, J

    2010-08-01

    We describe marine climate variability off the east coast of Africa in the context of fish catch statistics for Tanzania and Kenya. The time series exhibits quasi-decadal cycles over the period 1964-2007. Fish catch is up when sea surface temperature (SST) and atmospheric humidity are below normal in the tropical West Indian Ocean. This pattern relates to an ocean Rossby wave in one phase of its east-west oscillation. Coastal-scale analyses indicate that northward currents and uplift on the shelf edge enhance productivity of East African shelf waters. Some of the changes are regulated by the south equatorial current that swings northward from Madagascar. The weather is drier and a salty layer develops in high catch years. While the large-scale West Indian Ocean has some impact on East African fish catch, coastal dynamics play a more significant role. Climatic changes are reviewed using 200 years of past and projected data. The observed warming trend continues to increase such that predicted SST may reach 30 degrees C by 2100 while SW monsoon winds gradually increase, according to a coupled general circulation model simulation with a gradual doubling of CO(2). PMID:20471674

  16. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile

    NASA Astrophysics Data System (ADS)

    Oman, Luke; Robock, Alan; Stenchikov, Georgiy L.; Thordarson, Thorvaldur

    2006-09-01

    Nile River records indicate very low flow following the 1783-1784 Laki volcanic eruption, as well as after other high-latitude volcanic eruptions. As shown by climate model simulations of the Laki eruption, significant cooling (-1° to -3°C) of the Northern Hemisphere land masses during the boreal summer of 1783 resulted in a strong dynamical effect of weakening the African and Indian monsoon circulations, with precipitation anomalies of -1 to -3 mm/day over the Sahel of Africa, thus producing the low Nile flow. Future high-latitude eruptions would significantly impact the food and water supplies in these areas. Using observations of the flow of the Nile River, this new understanding is used to support a date of 939 for the beginning of the eruption of the Eldgjá volcano in Iceland, the largest high-latitude eruption of the past 1500 years.

  17. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad

    PubMed Central

    Armitage, Simon J.; Bristow, Charlie S.; Drake, Nick A.

    2015-01-01

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  18. West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad.

    PubMed

    Armitage, Simon J; Bristow, Charlie S; Drake, Nick A

    2015-07-14

    From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼ 15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼ 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world's greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133

  19. Lake Mega-Chad, a West African Monsoon indicator and tipping element

    NASA Astrophysics Data System (ADS)

    Armitage, Simon; Bristow, Charlie; Drake, Nick

    2015-04-01

    From the deglacial period to the mid-Holocene, North Africa was characterised by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines and fluvio-lacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ~15 ka, followed by a return to relatively arid conditions. By 11.5 ka Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at 5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly non-linear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles since the northern (Bodélé) basin is currently the World's greatest single dust source, and possibly an important source of limiting nutrients for both the Amazon basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from Bodélé Basin cannot have occurred prior to 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.

  20. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  1. Simulation of the Indian monsoon and its variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Polanski, S.; Fallah, B.; Prasad, S.; Cubasch, U.

    2013-02-01

    The general circulation model ECHAM5 has been used to simulate the Indian monsoon and its variability during the Medieval Warm Period (MWP; 900-1100 AD), the Little Ice Age (LIA; 1515-1715 AD) and for recent climate (REC; 1800-2000 AD). The focus is on the analysis of external drivers and internal feedbacks leading to extreme rainfall events over India from interannual to multidecadal time scale. An evaluation of spatiotemporal monsoon patterns with present-day observation data is in agreement with other state-of-the-art monsoon modeling studies. The simulated monsoon intensity on multidecadal time scale is weakened (enhanced) in summer (winter) due to colder (warmer) SSTs in the Indian Ocean. Variations in solar insolation are the main drivers for these SST anomalies, verified by very strong temporal anticorrelations between Total Solar Irradiance and All-India-Monsoon-Rainfall in summer monsoon months. The external solar forcing is coupled and overlain by internal climate modes of the ocean (ENSO and IOD) with asynchronous intensities and lengths of periods. In addition, the model simulations have been compared with a relative moisture index derived from paleoclimatic reconstructions based on various proxies and archives in India. In this context, the Lonar record in Central India has been highlighted and evaluated the first time. The simulated relative annual rainfall anomalies in comparison to present-day climate are in agreement (disagreement) with the reconstructed moisture index for MWP (LIA) climate. In order to investigate the interannual monsoon variability with respect to monsoon failures, dry summer monsoon composites for 30-yr-long periods of MWP, LIA and REC have been further analysed. Within dry years of LIA, the summer rainfall over India and surrounding oceans is less than in MWP indicating stronger drying conditions due to a stronger summer solar insolation forcing coupled with variations in ENSO. To quantify the ECHAM5 simulated long-term drought

  2. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Bacmeister, J.; Waliser, D.

    2004-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on subseasonal time scales associated with the meridional propagation of the ISOMJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISOMJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISOMJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISOM0 variability should provide useful skill of monsoon breaks and surges on subseasonal time scales.

  3. Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Waliser, D.

    2003-01-01

    This study was examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant 'to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on sub-seasonal time scales associated with the meridional propagation of the ISO/MJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISO/MJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISO/MJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISO/MJO variability should provide useful skill of monsoon breaks and surges on sub-seasonal time scales.

  4. The South American Monsoon Variability over the Last Millennium in CMIP5/PMIP3 simulations

    NASA Astrophysics Data System (ADS)

    Rojas, M.; Arias, P. A.; Flores-Aqueveque, V.; Seth, A.; Vuille, M.

    2015-12-01

    In this paper we assess South American Monsoon System (SAMS) variability throughout the Last Millennium as depicted by the Coupled Modelling Intercomparison Project version 5/Paleo Modelling Intercomparison Project version 3 (CMIP5/PMIP3) simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly period and a stronger monsoon during the Little Ice Age (LIA). Due to the small forcing during the past 1000 years, CMIP5/PMIP3 model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, as suggested by rainfall reconstructions in South America. However, with an ad-hoc definition of these two periods for each model simulation, several coherent large-scale atmospheric circulation anomalies were identified. The models feature a stronger Monsoon during the LIA associated with: (i) an enhancement of the rising motion in the SAMS domain in austral summer, (ii) a stronger monsoon-related upper-troposphere anticyclone, (iii) activation of the South American dipole, which results to a certain extent in a poleward shift in the South Atlantic Convergence Zone and (iv) a weaker upper-level sub tropical jet over South America, this providing important insights into the mechanisms of these climate anomalies over South America during the past millennium.

  5. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  6. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    NASA Astrophysics Data System (ADS)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27-24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1) A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3) a deep storm wave base is represented by an Amussiopecten-Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene global warming (~24 Ma).

  7. Daily characteristics of West African summer monsoon precipitation in CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Klutse, Nana Ama Browne; Sylla, Mouhamadou Bamba; Diallo, Ismaila; Sarr, Abdoulaye; Dosio, Alessandro; Diedhiou, Arona; Kamga, Andre; Lamptey, Benjamin; Ali, Abdou; Gbobaniyi, Emiola O.; Owusu, Kwadwo; Lennard, Christopher; Hewitson, Bruce; Nikulin, Grigory; Panitz, Hans-Jürgen; Büchner, Matthias

    2016-01-01

    We analyze and intercompare the performance of a set of ten regional climate models (RCMs) along with the ensemble mean of their statistics in simulating daily precipitation characteristics during the West African monsoon (WAM) period (June-July-August-September). The experiments are conducted within the framework of the COordinated Regional Downscaling Experiments for the African domain. We find that the RCMs exhibit substantial differences that are associated with a wide range of estimates of higher-order statistics, such as intensity, frequency, and daily extremes mostly driven by the convective scheme employed. For instance, a number of the RCMs simulate a similar number of wet days compared to observations but greater rainfall intensity, especially in oceanic regions adjacent to the Guinea Highlands because of a larger number of heavy precipitation events. Other models exhibit a higher wet-day frequency but much lower rainfall intensity over West Africa due to the occurrence of less frequent heavy rainfall events. This indicates the existence of large uncertainties related to the simulation of daily rainfall characteristics by the RCMs. The ensemble mean of the indices substantially improves the RCMs' simulated frequency and intensity of precipitation events, moderately outperforms that of the 95th percentile, and provides mixed benefits for the dry and wet spells. Although the ensemble mean improved results cannot be generalized, such an approach produces encouraging results and can help, to some extent, to improve the robustness of the response of the WAM daily precipitation to the anthropogenic greenhouse gas warming.

  8. Holocene monsoon variability inferred from palaeolake sediments in NW India.

    NASA Astrophysics Data System (ADS)

    Dixit, Y.; Hodell, D. A.; Petrie, C. A.

    2012-04-01

    The plains of NW India encompasses arid, semi-arid to sub-humid zones and are characterized by numerous palaeolakes and playas. The sedimentary records from these water bodies provide a rich source of paleoclimatic information. We present a high-resolution, Holocene monsoon-variation record inferred from three palaeolakes lying across the precipitation gradient in NW India; palaeolake Karsandi in arid Rajasthan and palaeolake Riwasa, palaeolake Kotla Dahar in semi-arid and sub-humid regions, respectively, in Haryana plains. Laminated and massive gypsum deposits characterize Palaeolake Karsandi in the arid region. Oxygen isotopes are being measured on the gastropod shells and gypsum hydration of water (Hodell et al 2011) for a continuous isotopic record from Rajasthan. The oxygen isotope record from palaeolake Riwasa in the semi-arid region indicates the inception of a wet period at 9700-9500 cal yr (BP) with the establishment of a deep, permanent lake coinciding with the early Holocene maximum in the Indian monsoon. The deep, permanent-lake phase ended with a desiccation event at approximately 8200 BP coinciding with the '8.2kyr' weakening of the monsoon. In contrast, palaeolake Kotla Dahar, lying further east of Riwasa in the sub-humid region, receives 500-700mm annual rainfall. At Kotla Dahar, bulk CaCO3 (%), gastropod abundance and isotope data indicate that the deep lacustrine sequence ends at c.185 cm. Extrapolating from the AMS radio-carbon dated sediments at 135cm (4870-4650 BP) and 230cm (2000-1870 BP), places the 185 cm horizon at c.3970-3720 BP. Our results so far indicate that the Riwasa paleolake lying west of Kotla Dahar dries earlier than Kotla Dahar during the mid-Holocene. The precise date of the transition from a deep-lake water phase to an ephemeral lake in Kotla Dahar is pending, but the projected date suggests that the event coincides with the decline of the urban phase of the Indus Civilization at c. 3900 BP. These three lakes lying across

  9. Indian Summer Monsoon Variability and its Physical Mechanisms in the last Millennium

    NASA Astrophysics Data System (ADS)

    Polanski, S.; Hanf, F.; Befort, D.; Menzel, F.; Cubasch, U.; Leckebusch, G. C.

    2012-04-01

    The last Millennium is the best documented climate period affected by variations in external forcing and an internal variability in the highly nonlinear climate system. According to that the Indian Summer Monsoon and its high variability on different time scales plays an important role, studied in the interdisciplinary HIMPAC project (Himalaya - Modern and Past Climates). In order to understand the forcing mechanisms, feedbacks and amplifiers concerning monsoon variability of the last 1000 years, the five ensemble members of the full forced simulation of the Millennium experiment (Jungclaus, J. et al., 2010), using the coupled COSMOS Earth System Model (ECHAM5/JSBACH-MPIOM/HAMOCC) in a T31L19 spatial resolution, have been statistically analyzed to detect strong wet and dry periods of monsoonal rainfall due to interannual rainfall anomalies and special monsoon indices within the South Asian Monsoon region. Later the selected periods of extreme rainfall events have been simulated in a higher spatial resolution with the uncoupled atmosphere version of COSMOS Earth System Model (ECHAM5) in a T63L31 resolution. The focus is on the monsoon variability of 200-years-long time slices within the Medieval Climate Optimum (900-1100 AD), the Little Ice Age (1500-1700 AD) and the Preindustrial (1800-2000). A comparison with paleoclimatic reconstructions from Dandak and Jhumar cave record (Sinha, A. et al., 2011) helps to verify the model results, and the model has been used to check the consistency of the proxy data. I addition high resolution regional climate model simulations with COSMO-CLM will be carried out for the selected time slices driven by the ECHAM5 simulation results.

  10. Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models

    NASA Astrophysics Data System (ADS)

    Paxian, A.; Sein, D.; Panitz, H.-J.; Warscher, M.; Breil, M.; Engel, T.; Tödter, J.; Krause, A.; Cabos Narvaez, W. D.; Fink, A. H.; Ahrens, B.; Kunstmann, H.; Jacob, D.; Paeth, H.

    2016-02-01

    The West African monsoon rainfall is essential for regional food production, and decadal predictions are necessary for policy makers and farmers. However, predictions with global climate models reveal precipitation biases. This study addresses the hypotheses that global prediction biases can be reduced by dynamical downscaling with a multimodel ensemble of three regional climate models (RCMs), a RCM coupled to a global ocean model and a RCM applying more realistic soil initialization and boundary conditions, i.e., aerosols, sea surface temperatures (SSTs), vegetation, and land cover. Numerous RCM predictions have been performed with REMO, COSMO-CLM (CCLM), and Weather Research and Forecasting (WRF) in various versions and for different decades. Global predictions reveal typical positive and negative biases over the Guinea Coast and the Sahel, respectively, related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical Atlantic SST bias. These rainfall biases are reduced by some regional predictions in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST bias, increased westerlies and evaporation over the tropical Atlantic and shifted African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and Central Sahel precipitation biases. Some added values in rainfall bias are found for more realistic SST and land cover boundary conditions over the Guinea Coast and improved vegetation in the Central Sahel. Thus, the ability of RCMs and improved boundary conditions to reduce rainfall biases for climate impact research depends on the considered West African region.

  11. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    SciTech Connect

    Annamalai, H

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  12. Future changes in the West African Monsoon: A COSMO-CLM and RCA4 multimodel ensemble study

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Gbobaniyi, Emiola

    2014-05-01

    In this multi-model multi-ensemble study, we intercompare results from two regional climate simulation ensembles to see how well they reproduce the known main features of the West African Monsoon (WAM). Each ensemble was created under the ongoing CORDEX-Africa activities by using the regional climate models (RCA4 and COSMO-CLM) to downscale four coupled atmosphere ocean general circulation models (AOGCMs), namely, CNRM-CM5, HadGEM2-ES, EC-EARTH, and MPI-ESM-LR. Spatial resolution of the driving AOGCMs varies from about 1° to 3° while all regional simulations are at the same 0.44° resolution. Future climate projections from the RCP8.5 scenario are analyzed and inter-compared for both ensembles in order to assess deviations and uncertainties. The main focus in our analysis is on the projected WAM rainy season statistics. We look at projected changes in onset and cessation, total precipitation and temperature toward the end of the century (2071-2100) for different time scales spanning seasonal climatologies, annual cycles and interannual variability, and a number of spatial scales covering the Sahel, the Gulf of Guinea and the entire West Africa. Differences in the ensemble projections are linked to the parameterizations employed in both regional models and the influence of this is discussed.

  13. Three centuries of Myanmar monsoon climate variability inferred from teak tree rings

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne; Palmer, Jonathan; Ummenhofer, Caroline C.; Kyaw, Nyi Nyi; Krusic, Paul

    2011-12-01

    Asian monsoon extremes critically impact much of the globe’s population. Key gaps in our understanding of monsoon climate remain due to sparse coverage of paleoclimatic information, despite intensified recent efforts. Here we describe a ring width chronology of teak, one of the first high-resolution proxy records for the nation of Myanmar. Based on 29 samples from 20 living trees and spanning from 1613-2009, this record, from the Maingtha forest reserve north of Mandalay, helps fill a substantial gap in spatial coverage of paleoclimatic records for monsoon Asia. Teak growth is positively correlated with rainfall and Palmer Drought Severity Index variability over Myanmar, during and prior to the May-September monsoon season (e.g., r = 0.38 with Yangon rainfall, 0.001, n 68). Importantly, this record also correlates significantly with larger-scale climate indices, including core Indian rainfall (23°N, 76°E a particularly sensitive index of the monsoon), and the El Niño-Southern Oscillation (ENSO). The teak ring width value following the so-called 1997-98 El Niño of the Century suggests that this was one of the most severe droughts in the past ˜300 years in Myanmar. Evidence for past dry conditions inferred for Myanmar is consistent with tree-ring records of decadal megadroughts developed for Thailand and Vietnam. These results confirm the climate signature related to monsoon rainfall in the Myanmar teak record and the considerable potential for future development of climate-sensitive chronologies from Myanmar and the broader region of monsoon Asia.

  14. Influence of preonset land atmospheric conditions on the Indian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh K.; Pokhrel, Samir; Sujith, K.; Halder, Subhadeep

    2015-05-01

    A possible link between preonset land atmospheric conditions and the Indian summer monsoon rainfall (ISMR) is explored. It is shown that, the preonset positive (negative) rainfall anomaly over northwest India, Pakistan, Afghanistan, and Iran is associated with decrease (increase) in ISMR, primarily in the months of June and July, which in turn affects the seasonal mean. ISMR in the months of June and July is also strongly linked with the preonset 2 m air temperature over the same regions. The preonset rainfall/2 m air temperature variability is linked with stationary Rossby wave response, which is clearly evident in the wave activity flux diagnostics. As the predictability of Indian summer monsoon relies mainly on the El Niño-Southern Oscillation (ENSO), the found link may further enhance our ability to predict the monsoon, particularly during a non-ENSO year.

  15. Summer monsoon moisture variability over China and Mongolia during the past four centuries

    NASA Astrophysics Data System (ADS)

    Li, Jinbao; Cook, Edward R.; Chen, Fahu; Davi, Nicole; D'Arrigo, Rosanne; Gou, Xiaohua; Wright, Wiliam E.; Fang, Keyan; Jin, Liya; Shi, Jiangfeng; Yang, Tao

    2009-11-01

    A great impediment of Asian monsoon (AM) climate studies is the general lack of long-term observations of large-scale monsoon variability. Here we present a well-verified reconstruction of temporal changes in the dominant summer moisture pattern over China and Mongolia (CM), based on a network of tree-ring chronologies (1600-1991). The reconstruction reveals significant changes in the large-scale AM over the past four centuries, which coincide with dramatic episodes in Chinese history over the period of record. These episodes include the fall of the Ming Dynasty (AD 1644) and the catastrophic famine during China's Great Leap Forward (1958-1961). Overall, the reconstructed AM strength corresponds well with Northern Hemisphere temperature proxies over the past four centuries. Yet, this relationship has broken down in recent decades, raising the possibility that the major driving force of monsoon dynamics has shifted from natural to anthropogenic in nature.

  16. Impacts of absorbing aerosols on interannual and intraseasonal variability of the South Asian monsoon

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Kim, K. M.; Shi, J. J.; Tao, W. K.

    2015-12-01

    Aerosol-monsoon interactions on the interannual and intraseasonal variability of the South Asian monsoon are investigated from observations and modeling. On interannual time scales, we found from observations, and confirm with coupled ocean-atmosphere climate modeling, that absorbing aerosols (mainly desert dust and BC), can significantly amplifying the ENSO impact on the Indian monsoon, through precipitation and circulation feedback induced by the EHP effect. On intraseasonal time scales, modeling studies with the high-resolution WRF regional climate model demonstrated that EHP combined with the semi-direct and microphysics effects, associated with enhanced desert dust transported from the Middle East deserts across the Arabian Sea to the Indian subcontinent, may alter the moisture transport pathways, suppress the development of monsoon depression over northeastern India, resulting in development of intense convective cells, and extreme heavy rain along the Himalayan foothills in central and northwestern India. The implications of these feedback processes on climate change in the South Asian monsoon region will be discussed.

  17. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  18. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  19. Climatology and dynamics of nocturnal low-level stratus over the southern West African monsoon region

    NASA Astrophysics Data System (ADS)

    Fink, A. H.; Schuster, R.; Knippertz, P.; van der Linden, R.

    2013-12-01

    The southern parts of West Africa, from the coast to about 10°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. We will present the first ever climatology of the diurnal cycle of the low cloud deck based on surface observations and satellite products. In addition, we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds as simulated by the model. The model configuration used for this study has been determined following an extensive sensitivity study, which has shown that at least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. The main conclusions are: (a) The observed stratus deck forms after sunset along the coast, spreads inland in the course of the night, reaches maximum poleward extent at about 10°N around 09-10 local time and dissipates in the early afternoon. (b) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (c) The cloud formation is related to a subtle balance between 'stratogenic' upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at

  20. Interannual Variability, Global Teleconnection, and Potential Predictability Associated with the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Li, J. Y.

    2001-01-01

    In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.

  1. Himalayan River Terraces as A Landscape Response to Quaternary Summer Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Jonell, T. N.; Clift, P. D.

    2013-12-01

    In order to interpret marine sedimentary archives as records of the erosional response to Asian monsoon variability, we must first recognize how transport processes affect the storage and release of sediment to the ocean. River terraces, such as found in the Greater Himalaya, provide a pivotal role in the source-to-sink story, because this is where sediment storage occurs and is likely modulated. We investigate the role that climate plays in controlling erosion and sediment flux to the Indus delta and fan by looking at the Indus River system, which is dominated by the strong forcing of the Asian monsoon, as well as winter Westerly winds. Paleoceanographic, speleothem, and lacustrine records indicate that summer monsoon intensity was strong from 29 to 37 ka, decreased after that time until ~16 ka, reached maximum intensity from 8 to 10 ka, and then weakened until ~3 ka. Some lacustrine records, however, indicate a more complex pattern of monsoon variability in the Greater Himalaya, which contrasts with monsoonal forcing in central India. This disagreement suggests that floodplains of major river systems may not experience the same climatic conditions as their mountain sources, resulting in contrasting landscape responses to climate change. High altitude river valleys, at least north ofthe Greater Himalaya, appear to be sensitive to monsoon strength because they lie on the periphery of the present rainfall maximum, in the Himalayan rain shadow. These steep river valleys may be affected by landslide damming during periods of increase moisture transport and strong monsoonal precipitation, where damming provides sediment storage through valley-filling and later sediment release through gradual incision or dam-bursting. The Zanskar River, a major tributary to the upper Indus River, provides a record of the erosional response of mountain river valleys to these extreme phases through river terracing. New OSL ages from alluvial terraces indicate reworking of sediment and

  2. An Abrupt Change in the African Monsoon at the end of the Younger Dryas?

    NASA Astrophysics Data System (ADS)

    Talbot, M. R.; Filippi, M. L.; Jensen, N. B.; Tiercelin, J.

    2005-12-01

    A variety of proxy palaeoclimatic records from tropical Africa and the adjacent oceans suggest that a climatic event equivalent to the Younger Dryas (YD) also affected this region. To date however, little attention has been directed towards the end of the YD in Africa, even though it has been identified as a period of particularly rapid and profound climatic change in the circum-North Atlantic region. High-resolution studies of variations in the elemental and stable carbon- and nitrogen-isotope composition of organic matter in cores from Lakes Malawi, Tanganyika and Bosumtwi (tropical Africa) indicate an abrupt change in the wind-driven circulation of these lakes that, within the limits of available chronologies, was contemporaneous with the end of the YD in the northern hemisphere. The change was apparently coincident with the transition to humid conditions in the central Sahara, with shifts in surface winds recorded in cores from off the coasts of East and West Africa, and possibly also with the onset of the last phase of ice accumulation on Mt. Kilimanjaro. Together, the evidence suggests an abrupt northward translation of the African monsoon system at ca. 11.5 +/- 0.3 cal. ka BP.

  3. An abrupt change in the African monsoon at the end of the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Talbot, Michael R.; Filippi, Maria Letizia; Jensen, Niels Bo; Tiercelin, Jean-Jacques

    2007-03-01

    High-resolution studies of variations in the elemental and stable carbon- and nitrogen-isotope composition of organic matter in cores from Lakes Malawi, Tanganyika, and Bosumtwi (tropical Africa) indicate an abrupt change in the wind-driven circulation of these lakes that, within the limits of available chronologies, was contemporaneous with the end of the Younger Dryas in the northern hemisphere. The change was also coincident with shifts in surface winds recorded in cores from off the west and northeast coasts of Africa. A range of other proxies indicate that these changes in wind regime were accompanied by a marked increase in precipitation in the northern tropics. Africa south of ˜5°-10°S, on the other hand, initially suffered drought conditions. Together, the evidence suggests an abrupt northward translation of the African monsoon system at circa 11.5 ± 0.25 ka B.P. The data assembled here contribute to a growing body of work showing that the Younger Dryas was a major climatic excursion in tropical Africa. Furthermore, they add substance to recent suggestions that climatic events in the southern hemisphere may have played a significant role in the abrupt demise of the Younger Dryas.

  4. North American monsoon variability from paleoclimate era to climate change projection: A multiple dataset perspective

    NASA Astrophysics Data System (ADS)

    Carrillo Cruz, Carlos Mauricio

    In southwestern United States, the North American monsoon (NAM) is the main driver of severe weather in the Southwest. How the monsoon has behaved in the past and how it will change in the future is a question of importance for natural resource management and infrastructural planning. In this dissertation, I present the results of three studies that have investigated NAM variability and change from the perspective of paleoclimate records, future climate change projections, and simulation of the low-frequency variability with the longest retrospective atmospheric reanalysis. In the first study, a monsoon-sensitive network of tree-ring chronologies is evaluated within its ability to reproduce NAM variability during the past four centuries. The tree-ring chronologies can reasonable characterizes the dominant modes of NAM climate variability and reveal low-frequency climate variability at decadal and longer timescales that is beyond the ability of the instrumental record to temporally well resolve. This low-frequency climate variability seems to coincide with the occurrence of multiyear persistent droughts. In the second study, we consider the modes of climate variability to assess the degree of physical uncertainty in climate change projections models used in the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP models are evaluated mainly on their ability to represent warm season driven by quasi-stationary Rossby wave trains and El Nino Southern Oscillation -- Pacific Decadal Variability (ENSO-PDV). Only one out of eight NARCCAP models has a reasonable representation of the seasonal cycle of monsoon precipitation and ENSO-driven variability in both the 20 th and 21st centuries. No decadal variability was observed in any of the NARCCAP models. In the third study, the low-frequency drought signal found with tree-ring chronologies is further explored within the framework of a regional climate modeling. The Twentieth-Century Reanalysis is

  5. The role of antecedent soil moisture on variability of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Qian, Y.; Leung, R.; Gochis, D.; Cavazos, T.; Lettenmaier, D. P.

    2007-05-01

    We evaluate the influence of soil moisture anomalies on the timing and strength of North American Monsoon system (NAMS) precipitation through analysis of retrospective data sets including off-line simulations with the Variable Infiltration Capacity (VIC) land surface model, and through coupled model simulations using the MM5 mesoscale climate model coupled with the VIC land surface scheme. The role of land surface conditions on variations in monsoon precipitation in the Arizona-New Mexico and northwestern Mexico subregions of the North American Monsoon region are evaluated. The retrospective data analysis shows that soil moisture memory can propagate winter precipitation anomalies, and hence land surface cooling, through the dry spring season and into early summer. The effect is greater in NW Mexico where the monsoon begins earlier than in the southwestern U.S. We further investigate this land surface feedback mechanism through a set of coupled model runs using MM5/VIC. These coupled runs are consistent with the previous off-line runs to the extent that the VIC land surface scheme is the basis for soil moisture prediction in both. MM5/VIC control runs together with a set of sensitivity experiments in which soil moisture is prescribed to field capacity, wilting point and VIC soil moisture climatology, respectively, during pre-monsoon seasons (April-June) are used to examine the influence of antecedent (above-normal, below-normal and normal) soil moisture on pre-monsoon (May and June) surface temperature. Surface temperature, and its contrast with sea surface temperature, is a key driver of the onset of the NAMS. These experiments are intended to better understand the role of land-atmosphere feedbacks on the NAMS by testing a range of land surface and climate conditions in the coupled modeling environment.

  6. A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall.

    PubMed

    Mishra, Vimal; Smoliak, Brian V; Lettenmaier, Dennis P; Wallace, John M

    2012-05-01

    The dominant patterns of Indian Summer Monsoon Rainfall (ISMR) and their relationships with the sea surface temperature and 850-hPa wind fields are examined using gridded datasets from 1900 on. The two leading empirical orthogonal functions (EOFs) of ISMR over India are used as basis functions for elucidating these relationships. EOF1 is highly correlated with all India rainfall and El Niño-Southern Oscillation indices. EOF2 involves rainfall anomalies of opposing polarity over the Gangetic Plain and peninsular India. The spatial pattern of the trends in ISMR from 1950 on shows drying over the Gangetic Plain projects onto EOF2, with an expansion coefficient that exhibits a pronounced trend during this period. EOF2 is coupled with the dominant pattern of sea surface temperature variability over the Indian Ocean sector, which involves in-phase fluctuations over the Arabian Sea, the Bay of Bengal, and the South China Sea, and it is correlated with the previous winter's El Niño-Southern Oscillation indices. The circulation anomalies observed in association with fluctuations in the time-varying indices of EOF1 and EOF2 both involve distortions of the low-level monsoon flow. EOF1 in its positive polarity represents a southward deflection of moist, westerly monsoon flow from the Arabian Sea across India, resulting in a smaller flux of moisture to the Himalayas. EOF2 in its positive polarity represents a weakening of the monsoon trough over northeastern India and the westerly monsoon flow across southern India, reminiscent of the circulation anomalies observed during break periods within the monsoon season. PMID:22529372

  7. Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence

    NASA Astrophysics Data System (ADS)

    Lough, J. M.; Llewellyn, L. E.; Lewis, S. E.; Turney, C. S. M.; Palmer, J. G.; Cook, C. G.; Hogg, A. G.

    2014-06-01

    Summer monsoon rainfall in northeastern (NE) Australia exhibits substantial interannual variability resulting in highly variable river flows. The occurrence and magnitude of these seasonal river flows are reliably recorded in modern inshore corals as luminescent lines. Here we present reconstructed annual river flows for two ~120 year mid-Holocene windows based on luminescence measurements from five cores obtained from three separate coral colonies. We were able to cross-date the luminescence signatures in four cores from two of the colonies, providing confidence in the derived reconstruction. Present-day NE Australian rainfall and river flow are sensitive to El Niño-Southern Oscillation (ENSO) variability, with La Niña (El Niño) events typically associated with wetter (drier) monsoon seasons. Thus, our replicated and annually resolved coral records provide valuable insights into the northern Australian summer monsoon and ENSO variability at a key period (6 ka) when greenhouse gas levels and ice sheet cover were comparable to the preindustrial period but orbital forcing was different. Average modern and mid-Holocene growth characteristics were very similar, suggesting that sea surface temperatures off NE Australia at 6 kyr were also close to present values. The reconstructed river flow record suggests, however, that the mid-Holocene Australian summer monsoon was weaker, less variable from year to year (possibly indicative of reduced ENSO variability), and characterized by more within-season flood pulses than present. In contrast to today, the delivery of moisture appears to have been dominated by eastward propagating convective coupled waves associated with the Madden-Julian Oscillation.

  8. Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability

    NASA Astrophysics Data System (ADS)

    Chakravorty, Soumi; Gnanaseelan, C.; Pillai, P. A.

    2016-02-01

    The combined influence of tropical Indian Ocean (TIO) and Pacific Ocean (TPO) sea surface temperature (SST) anomalies on Indian summer monsoon rainfall (ISMR) variability is studied in the context of mid-1970s regime shift. The rainfall pattern on the various stages of monsoon during the developing and decaying summer of El Niño is emphasized. Analysis reveals that ISMR anomalies during El Niño developing summer in epoch-1 (1950-1979) are mainly driven by El Niño forcing throughout the season, whereas TIO SST exhibits only a passive influence. On the other hand in epoch-2 (1980-2009) ISMR does not show any significant relation with Pacific during the onset phase of monsoon whereas withdrawal phase is strongly influenced by El Niño. Again the eastern Indian Ocean cooling and westward shift in northwest Pacific (NWP) cyclonic circulation during epoch-2 have strong positive influence on the rainfall over the central and eastern India during the matured phase of monsoon. ISMR in the El Niño decaying summer does not show any significant anomalies in epoch-1 as both Pacific and Indian Ocean warming dissipate by the summer. On the other hand in epoch-2 ISMR anomalies are significant and display strong variability throughout the season. In the onset phase of monsoon, central and east India experience strong negative precipitation anomalies due to westward extension of persistent NWP anticyclone (forced by persisting Indian Ocean warming). The persistent TIO warming induces positive precipitation anomalies in the withdrawal phase of monsoon by changing the atmospheric circulation and modulating the water vapour flux. Moisture budget analysis unravels the dominant processes responsible for the differences between the two epochs. The moisture convergence and moisture advection are very weak (strong) over Indian land mass during epoch-1 (epoch-2) in El Niño decaying summer. The changing moisture availability and convergence play important role in explaining the weakening

  9. Water vapour variability during Indian monsoon over Trivandrum observed using Microwave Radiometer and GPS

    NASA Astrophysics Data System (ADS)

    Raju, Suresh C.; Krishna Moorthy, K.; Ramachandran Pillai, Renju; Uma, K. N.; Saha, Korak

    2012-07-01

    The Indian summer monsoon is a highly regular synoptic event, providing most of the annual rainfall received over the sub-continent. Trivandrum, at the southwestern tip of Indian peninsula, is considered as the gate way of Indian monsoon, with its climatological onset on June 01. During this season, the region, experiences large seasonal variation in water vapor, rain fall and wind (speed and direction) in the troposphere. The variability in water vapor and wind information are the vital parameters in forecasting the onset of monsoon. This study focuses on water vapor measurements over the tropical coastal station Trivandrum (8.5oN & 76.9oE) using microwave techniques and the analyses with an effort to link the seasonal variability of water vapor with the onset of monsoon. At Trivandrum a hyper-spectral microwave radiometer profiler (MRP) and a Triple-frequency global positioning system receiver (GPS) have been in regular operation since April 2010. A station-dependent simple empirical relation suitable for the equatorial atmospheric condition is formulated to map the nonhydrostatic component of GPS tropospheric delay to the PWV, based on the columnar water vapor estimated from the multi-year daily radiosonde ascends from Trivandrum. A trained artificial neural network (ANN) with climatological atmospheric data of Trivandrum, is employed to derive the water vapor from the MRP brightness temperature measurements. The accuracy, reliability and consistency of PWV measurements over the tropical coastal station from these two independent instruments are assessed by comparing PWV derived from MRP and GPS measurements which resulted an rms deviation of <1.2mm (with correlation coefficient of ~0.98). This confirms the PWV derived over Trivandrum from microwave measurements are accurate even during the monsoon period in the presence of clouds and rain. PWV from microwave radiometer measurements for more than two years are used to study the water vapour variability during

  10. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2016-06-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  11. Land surface and ocean effects on the variabilities of three Asian summer monsoons

    NASA Astrophysics Data System (ADS)

    Lee, Eungul

    The effects on the variabilities of three Asian summer monsoons of changes in recent land surface and ocean heat sources are examined using the results from several observational analyses and modeling simulations. We find that the East Asian summer monsoon (EASM) can be subdivided into a northern and a southern component with distinctly different driving mechanisms. The northern EASM (NEASM) is affected by heat sources in the tropical oceans related to El Nino events, while the southern EASM (SEASM) is affected by the subtropical oceans related to a North Pacific sea surface temperature (SST) dipole mode. A stronger NEASM is related to above-normal western North Pacific anticyclonic anomalies, while a stronger SEASM is related to below-normal western North Pacific anticyclonic anomalies. These anticyclonic anomalies are connected to SST anomalies in the tropical and subtropical Pacific during the pre-monsoon season (December˜May). We provide evidence that decreased July sensible heat flux in the Indian subcontinent (an expected result of increased soil moisture due to irrigation and increased vegetation) leads to a reduced land-sea thermal contrast, which is one of the driving factors for the monsoon, and therefore weakens the monsoon circulation. Thus, a weak early Indian summer monsoon appears to be at least partially a result of irrigation and the resultant increased vegetation activity during the preceding spring. EASM precipitation can be predicted from land and ocean factors during the pre-monsoon season using a linear regression model. Statistical forecast models of the EASM using land cover conditions in addition to ocean heat sources double and triple, respectively, the predictive skill of the NEASM and SEASM forecasting models relative to models using ocean factors alone. This work highlights the, as yet, undocumented importance of seasonal land cover in monsoon prediction and the role of the biosphere in the climate system as a whole. We also detail the

  12. Intraseasonal Variability of the Low-Level Jet Stream of the Asian Summer Monsoon.

    NASA Astrophysics Data System (ADS)

    Joseph, P. V.; Sijikumar, S.

    2004-04-01

    The strong cross-equatorial low level jet stream (LLJ) with its core around 850 hPa of the Asian summer monsoon (June September) is found to have large intraseasonal variability. During the monsoon onset over Kerala, India, and during break monsoon periods, when the convective heating of the atmosphere is over the low latitudes of the Indian Ocean, the axis of the LLJ is oriented southeastward over the eastern Arabian Sea and it flows east between Sri Lanka and the equator and there is no LLJ through peninsular India. This affects the transport of moisture produced over the Indian Ocean to peninsular India and the Bay of Bengal. In contrast, during active monsoon periods when there is an east west band of strong convective heating in the latitudes 10° 20°N from about longitude 70° to about 120°E, the LLJ axis passes from the central Arabian Sea eastward through peninsular India and it provides moisture for the increased convection in the Bay of Bengal and for the monsoon depressions forming there. The LLJ does not show splitting into two branches over the Arabian Sea. Splitting of the jet was first suggested by Findlater and has since found wide acceptance as seen from the literature. Findlater's findings were based on analysis of monthly mean winds. Such an analysis is likely to show the LLJ of active and break monsoons as occurring simultaneously, suggesting a split.Strengths of the convective heat source (OLR) over the Bay of Bengal and the strength of the LLJ (zonal component of wind) at 850 hPa over peninsular India and also the Bay of Bengal between latitudes 10° and 20°N have the highest linear correlation coefficient at a lag of 2 3 days, with OLR leading. The LLJ crossing the equator close to the coast of East Africa will pass through India only if there is active monsoon convection in the latitude belt 10° 20°N over south Asia. The position in latitude of the LLJ axis between longitudes 70° and 100°E is decided by the south north movement of the

  13. Teleconnections and internal variability of the Asian Monsoon in the last 1000 years from paleoclimate data

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Lechleitner, Franziska; Molkenthin, Nora; Kurths, Jürgen

    2013-04-01

    The Asian monsoon is a climate phenomenon with global reach, impacting on 60% of the world's population, and extremes in its dynamics affect both the people and the economies of Asia. Investigating past climate changes in the Asian monsoon system offers a unique key to understanding its future behavior under anthropogenic perturbation, because our global past is the only truthful realization of the "Earth System experiment" we can access. Paleoclimate data are hereby the only witnesses that testify directly about the state of the Earth system in the past. However, in order to be able to infer on the climatic processes reflected in the proxy data, three inherent challenges need to be met: the datasets are heterogeneously sampled in time (i), space (ii) and time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. Addressing these issues using adapted similarity estimators, flexible network measures and numerical simulation, we infer spatio-temporal dependencies from paleoclimate networks. We then investigate, to what extent the decadal-scale variability recorded in the paleoclimate data from trees, speleothems, sediments and ice cores is due to internal variability of the Indian and the East Asian monsoon systems, and how potential teleconnections with the El Niño southern oscillation, the North Atlantic oscillation, and solar variability have varied over the last 1000 years.

  14. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    NASA Astrophysics Data System (ADS)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2016-05-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  15. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period

    NASA Astrophysics Data System (ADS)

    Pausata, Francesco S. R.; Messori, Gabriele; Zhang, Qiong

    2016-01-01

    The West African Monsoon (WAM) is crucial for the socio-economic stability of millions of people living in the Sahel. Severe droughts have ravaged the region in the last three decades of the 20th century, highlighting the need for a better understanding of the WAM dynamics. One of the most dramatic changes in the West African Monsoon (WAM) occurred between 15000-5000 yr BP, when increased summer rainfall led to the so-called "Green Sahara" and to a reduction in dust emissions from the region. However, model experiments are unable to fully reproduce the intensification and geographical expansion of the WAM during this period, even when vegetation over the Sahara is considered. Here, we use a fully coupled simulation for 6000 yr BP (Mid-Holocene) in which prescribed Saharan vegetation and dust concentrations are changed in turn. A closer agreement with proxy records is obtained only when both the Saharan vegetation changes and dust decrease are taken into account. The dust reduction strengthens the vegetation-albedo feedback, extending the monsoon's northern limit approximately 500 km further than the vegetation-change case only. We therefore conclude that accounting for changes in Saharan dust loadings is essential for improving model simulations of the WAM during the Mid-Holocene.

  16. Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.- M.; Kim, K.-M.; Yang, S.

    1998-01-01

    In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of

  17. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases. PMID:26476061

  18. A Stalagmite record of Holocene Indonesian-Australian summer monsoon variability from the Australian tropics

    NASA Astrophysics Data System (ADS)

    Denniston, Rhawn F.; Wyrwoll, Karl-Heinz; Polyak, Victor J.; Brown, Josephine R.; Asmerom, Yemane; Wanamaker, Alan D.; LaPointe, Zachary; Ellerbroek, Rebecca; Barthelmes, Michael; Cleary, Daniel; Cugley, John; Woods, David; Humphreys, William F.

    2013-10-01

    Oxygen isotopic data from a suite of calcite and aragonite stalagmites from cave KNI-51, located in the eastern Kimberley region of tropical Western Australia, represent the first absolute-dated, high-resolution speleothem record of the Holocene Indonesian-Australian summer monsoon (IASM) from the Australian tropics. Stalagmite oxygen isotopic values track monsoon intensity via amount effects in precipitation and reveal a dynamic Holocene IASM which strengthened in the early Holocene, decreased in strength by 4 ka, with a further decrease from ˜2 to 1 ka, before strengthening again at 1 ka to years to levels similar to those between 4 and 2 ka. The relationships between the KNI-51 IASM reconstruction and those from published speleothem time series from Flores and Borneo, in combination with other data sets, appear largely inconsistent with changes in the position and/or organization of the Intertropical Convergence Zone (ITCZ). Instead, we argue that the El Niño/Southern Oscillation (ENSO) may have played a dominant role in driving IASM variability since at least the middle Holocene. Given the muted modern monsoon rainfall responses to most El Niño events in the Kimberley, an impact of ENSO on regional monsoon precipitation over northwestern Australia would suggest non-stationarity in the long-term relationship between ENSO forcing and IASM rainfall, possibly due to changes in the mean state of the tropical Pacific over the Holocene.

  19. Experimental reconstruction of monsoon drought variability for Australasia using tree rings and corals

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne; Baker, Patrick; Palmer, Jonathan; Anchukaitis, Kevin; Cook, Garry

    2008-06-01

    An experimental reconstruction uses three well-dated, annually-resolved proxies from Australasia (0-40°S, 95-155°E) to provide large-scale information on Sep-Jan Australasian monsoon variability based on the Palmer Drought Severity Index (PDSI) for 1787-2002. The proxies are: (1) a ring width chronology of Callitris intratropica for northern Australia (1847-2006) (2) a tree-ring and coral-based reconstruction of the Oct-Nov PDSI (1787-2003) for Java, Indonesia; and (3) a rainfall reconstruction for northeastern Australia (1631-2002) based on Great Barrier Reef coral luminescence. All three proxies show considerable explanatory value for reconstructing monsoon rainfall variability over much of Australia and environs, which will improve as additional records become available. The success of this ``proof of concept'' experiment largely reflects the highly significant, spatially-coherent correlations between austral spring and summer PDSI, Australasian climate and ENSO.

  20. Late Holocene SST and primary productivity variations in the northeastern Arabian Sea as a recorder for winter monsoon variability

    NASA Astrophysics Data System (ADS)

    Böll, Anna; Gaye, Birgit; Lückge, Andreas

    2014-05-01

    Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).

  1. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    DOE PAGESBeta

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin -Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Furthermore, the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  2. Multi-decadal Variability of Indian Summer Monsoon in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Sandeep, S.; Ravindran, A.

    2013-12-01

    The multi-decadal variability of Indian Summer Monsoon (ISM) Rainfall in the fifth phase Coupled Model Inter-comparison Project (CMIP5) climate model simulations is analyzed. Recent studies, suggest a slight weakening of the Indian precipitation as assessed from CMIP3 simulations. The ISM rainfall simulated by CMIP5 runs with all historical forcing (AF) also suggest a strong multi-decadal weakening trend in ISM precipitation during 1901 - 2005. Further, the decadal scale variability in ISM land precipitation in multi model ensemble of AF simulations is fairly comparable with the observed variability. However, these simulations show patterns of regional variability and trends within the monsoon domain. The CMIP5 ensembles with natural variability alone and those with only Green House Gas (GHG) forcing could not reproduce the observed variability in ISM precipitation. This suggests strong influence of anthropogenic aerosols on multi-decadal variability in ISM precipitation, which is consistent with previous findings. Further investigation revealed that the weakening of zonal winds in AF simulations, possibly due to aerosol induced weakening in land-ocean thermal contrast, resulted in reduced moisture transport from ocean to the land. The trends and variability of ISM in multi model ensemble of CMIP5 simulations will be discussed in detail.

  3. The relationship between intraseasonal and interannual variability during the asian summer monsoon

    SciTech Connect

    Sperber, K. R.; Slingo, J. M.; Annamalai, H.

    1999-04-21

    The purpose of this paper is to investigate intraseasonal (30-70 days) and higher frequency (5-30 days) variability and its relationship to interannual variability. Various modelling studies have suggested a link between intraseasonal and interannual variability of the Asian summer monsoon. This relationship has been mainly based upon the similar spatial structures of the dominant EOF patterns of the monsoon circulation on intraseasonal and interannual time scales from simulations with simple models and atmospheric general circulation models. Here we investigate these relationships using 40 years of NCEP/NCAR Reanalysis. Motivation for this study is embodied in the suggestions of Charney and Shukla (1981) that boundary forcing (e.g., sea surface temperature) may predispose the monsoon system towards a dry or wet state, and the result of Palmer (1994), using the Lorenz (1963) model, that the probability of being in one regime of phase space or another is no longer equally probable in the presence of external forcing. To investigate the influence of the boundary forcing, the probability distribution functions (PDFs) of the principal components are given.

  4. Uncertainties from above and below: West African monsoon patterns generated by a WRF multi-physics ensemble

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald

    2015-04-01

    The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African Monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, the ability of a 27-member mixed-physics ensemble of the Weather Research and Forecasting model to represent the WAM is investigated in a process-based manner in order to extract transferable information on parameterization influences. The uncertainties introduced by three cumulus (CU), microphysics (MP) and planetary boundary layer (PBL) parameterizations are analyzed to explore interdependencies of processes leading to a certain WAM regime during the wet year 1999. We identify the modification of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. It is predominantly altered by the PBL schemes because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation, weaker precipitation and a southward displaced African Easterly Jet and monsoon rainband. This identifies the representation of clouds as a critical "uncertainty from above" in simulating the WAM. The partitioning of sensible and latent heat fluxes is found to be another major source for the ensemble spread inducing "uncertainties from below" for the modeled monsoon regime. Finally, we show that regionally adapted simulations at convection-allowing scales with ingested dynamical land surface parameters improve the representation of convection, net radiation and surface flux partitioning.

  5. Feedback of observed interannual vegetation change: a regional climate model analysis for the West African monsoon

    NASA Astrophysics Data System (ADS)

    Klein, Cornelia; Bliefernicht, Jan; Heinzeller, Dominikus; Gessner, Ursula; Klein, Igor; Kunstmann, Harald

    2016-06-01

    West Africa is a hot spot region for land-atmosphere coupling where atmospheric conditions and convective rainfall can strongly depend on surface characteristics. To investigate the effect of natural interannual vegetation changes on the West African monsoon precipitation, we implement satellite-derived dynamical datasets for vegetation fraction (VF), albedo and leaf area index into the Weather Research and Forecasting model. Two sets of 4-member ensembles with dynamic and static land surface description are used to extract vegetation-related changes in the interannual difference between August-September 2009 and 2010. The observed vegetation patterns retain a significant long-term memory of preceding rainfall patterns of at least 2 months. The interannual vegetation changes exhibit the strongest effect on latent heat fluxes and associated surface temperatures. We find a decrease (increase) of rainy hours over regions with higher (lower) VF during the day and the opposite during the night. The probability that maximum precipitation is shifted to nighttime (daytime) over higher (lower) VF is 12 % higher than by chance. We attribute this behaviour to horizontal circulations driven by differential heating. Over more vegetated regions, the divergence of moist air together with lower sensible heat fluxes hinders the initiation of deep convection during the day. During the night, mature convective systems cause an increase in the number of rainy hours over these regions. We identify this feedback in both water- and energy-limited regions of West Africa. The inclusion of observed dynamical surface information improved the spatial distribution of modelled rainfall in the Sahel with respect to observations, illustrating the potential of satellite data as a boundary constraint for atmospheric models.

  6. The impact of monsoon intraseasonal variability on renewable power generation in India

    NASA Astrophysics Data System (ADS)

    Dunning, C. M.; Turner, A. G.; Brayshaw, D. J.

    2015-06-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in

  7. The role of antecedent soil moisture on variability of the North American Monsoon System

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Lettenmaier, D. P.; Qian, Y.; Leung, R.

    2006-12-01

    We evaluate the influence of soil moisture anomalies on the timing and strength of North American Monsoon system (NAMS) precipitation using the MM5 mesoscale climate model coupled with the Variable Infiltration Capacity (VIC) land surface model. Our experiments are motivated by results of previous data analysis that has evaluated the role of land surface conditions on variations in monsoon precipitation in the Arizona-New Mexico northwestern Mexico subregions of the NAMS region. These previous studies showed that soil moisture memory can propagate winter precipitation anomalies, and hence land surface cooling, through the dry spring season and into early summer. The effect is greater in NW Mexico where the monsoon begins earlier than in the southwestern U.S. We further investigate this land surface feedback mechanism through a set of coupled model runs using MM5/VIC. These coupled runs are consistent with the previous off-line runs to the extent that the VIC land surface scheme is the basis for soil moisture prediction in both. MM5/VIC control runs together with a set of sensitivity experiments in which soil moisture is prescribed to field capacity, wilting point and VIC soil moisture climatology, respectively, during pre-monsoon seasons (April-June) are used to examine the influence of antecedent (above-normal, below-normal and normal) soil moisture on pre-monsoon (May and June) surface temperature. Surface temperature, and its contrast with sea surface temperature, is a key driver of the onset of the NAMS. These experiments are intended to better understand the role of land- atmosphere feedbacks on the NAMS by testing a range of land surface and climate conditions in the coupled modeling environment.

  8. Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon

    NASA Technical Reports Server (NTRS)

    Brock, John C.; Mcclain, Charles R.

    1992-01-01

    Interannual changes in the strength and seasonal evolution of the 1979 through 1982 surface-level southwest monsoon winds are related to variations in the summer phytoplankton bloom of the northwestern Arabian Sea by synthesis of satellite ocean-color remote sensing with analysis of in-situ hydrographic and meteorological data sets. The 1979-1981 southwest monsoon phytoplankton blooms in the northwest Arabian Sea peaked during August-September, extended from the Omani coast to about 6 E, and appeared to lag the development of open-sea upwelling by at least 1 month. In all 3 years the bloom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and along the Omani coast was limited in its impact on upper ocean biological variability to the continental shelf. Ekman pumping stimulated the development of a broad open-ocean component of the southwest monsoon phytoplankton bloom oceanward of the Omani shelf. Phytoplankton biomass on the Omani continental shelf was increased during both the early and late phases of the 1980 southwest monsoon due to stronger coastal upwelling under the most intense southwesterly winds of the four summers investigated. Diminished coastal upwelling during the early phase of the weak 1982 southwest monsoon resulted in a coastal bloom that reached a mean phytoplankton-pigment concentration that was 28 percent of that seen in 1980. The lack of a strong regional northwestern Arabian Sea bloom in late summer 1982 is attributed to the development of persistent, shallow temperature stratification that rendered Ekman pumping less effective in driving upward nutrient fluxes.

  9. A new centennial index to study the Western North Pacific Monsoon decadal variability

    NASA Astrophysics Data System (ADS)

    Vega, Inmaculada; Gómez-Delgado, F. de Paula; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; García-Herrera, Ricardo

    2016-04-01

    The concept of the Western North Pacific Summer Monsoon (WNPSM) appeared for the first time in 1987. It is, unlike the Indian Summer Monsoon (ISM) and the East Asian summer monsoon (EASM), an oceanic monsoon mostly driven by the meridional gradient of sea surface temperature. Its circulation is characterized by a northwest-southeast oriented monsoon trough with intense precipitation and low-level southwesterlies and upper-tropospheric easterlies in the region [100°-130° E, 5°-15°N]. Up to now, the primary index to characterize the WNPSM has been the Western North Pacific Monsoon Index (WNPMI) which covers the 1949-2013 period. The original WNPMI was defined as the difference of 850-hPa westerlies between two regions: D1 [5°-15°N, 100°-130°E] and D2 [20°-30°N, 110°-140°E]. Both domains are included in the main historical ship routes circumnavigating Asia for hundreds of years. Many of the logbooks of these ships have been preserved in historical archives and they usually contain daily observations of wind force and direction. Therefore, it has been possible to compute a new index of instrumental character, which reconstructs the WNPSM back to the middle of the 19th Century, by using solely historical wind direction records preserved in logbooks. We define the monthly Western North Pacific Directional Index (WNPDI) as the sum of the persistence of the low-level westerly winds in D1 and easterly winds in D2. The advantages of this new index are its nature (instrumental) and its length (1849-2013), which is 100 years longer than the WNPMI (which was based on reanalysis data). Our WNPDI shows a high correlation (r=+0.87, p<0.01) with the previous WNPMI in summer for the 1949-2009 period, thus allowing to study the multidecadal variability of the WNPSM in a more robust way. Our results show that the WNPDI has a strong impact on the precipitation in densely populated areas in South-East Asia, such as the Philippines or the west coast of Myanmar where the

  10. Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Feyen, Luc; Cescatti, Alessandro; Vivoni, Enrique R.

    2014-10-01

    Due to its marked vegetation phenology and precipitation gradients, the North American Monsoon Region (NAMR) is a useful domain for studying ecosystem responses to climate variability and change. To this end, we analyze long-term dynamics (1982-2004) in monsoon precipitation (Pr), time-integrated Normalized Difference Vegetation Index (TINDVI) used as proxy of net primary productivity, and rain-use efficiency (RUE). The analysis focuses on six ecoregions, spanning from desert environments to tropical dry forests, to investigate (1) how net primary productivity and rain-use efficiency vary along a precipitation gradient, (2) if interannual variability in net primary productivity is linked to the interannual variability in precipitation, and (3) if there is evidence of a long-term signal imposed on the interannual variability in rain-use efficiency. Variations in TINDVI and RUE with Pr along the NAMR precipitation gradient differ among ecoregions exhibiting intensive or extensive water use strategies. We explain the nonlinear behaviors along the precipitation gradient as resulting from different physiological responses to climatological means and the impact of topographic effects. Statistical analysis indicates that the interannual variability in vegetation response is significantly related to the interannual variability in Pr, but their correlation declines with time. A long-term positive signal in RUE imposed on its interannual variability is identified and results from a constant TINDVI under negative long-term trends of Pr. This important finding suggests the combined long-term effects of ecosystem acclimation to reduced water availability and increasing CO2 concentration across the varied ecosystems of the North American Monsoon Region.

  11. Volcanic forcing of monsoonal precipitation variability in selected modern volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.; Chan, J. C.

    2009-12-01

    An important characteristic of the monsoonal climate is the heavy summer precipitation and the winter drought brought about by the shift in wind circulation. For planet Earth to achieve greater future sustainability, a better understanding of precipitation variability in the densely populated monsoonal regions of the world is particularly critical. In the present study, three major modern tropical volcanic eruptions occurring over the past fifty years have been selected to investigate their influence on precipitation variability in the monsoonal region of southern China. The three eruptions are the February 1963 Agung eruption in Indonesia, the March 1982 El Chichón eruption in Mexico and the June 1991 Pinatubo eruption in the Philippines. Abnormally low annual precipitation was found in the southern China region during 1963 and 1991. Based on the annual precipitation at the Hong Kong Observatory Station, they were the driest and the tenth driest respectively since record began in 1884. In contrast, abnormally heavy precipitation was found in southern China in 1982 with the Hong Kong Observatory Station recording the second wettest year since record began. Based on the observed precipitation, near-field major volcanic eruptions located in the Indonesian-Pacific gateway may lead to abnormally dry conditions explained either by a shift and/or strengthening of predominantly offshore wind. Far-field major volcanic eruptions such as in the eastern Pacific may give rise to abnormally wet conditions through the global spread of the volcanic cloud. The El Chichón volcanic cloud was tracked by satellites across the Pacific Ocean and there is a match in the timing of heavy precipitation after the volcanic cloud entered the South China Sea about eleven days after the main eruption phase. Major volcanic eruptions are concluded to be a causative factor in monsoonal precipitation variability worthy of greater attention.

  12. Study of intraseasonal variability of Indian summer monsoon using a regional climate model

    NASA Astrophysics Data System (ADS)

    Maharana, P.; Dimri, A. P.

    2016-02-01

    The Indian summer monsoon season is very heterogeneous over Indian land mass from precipitation point of view. The intraseasonal variability of the rainfall during summer is marked by the active and break spells of the rainfall. The regional climate model version 4.0 (RegCM4.0) forced with European centre of medium range weather forecast interim reanalysis (ERA-Int) is used to examine the intraseasonal variability and meteorological processes associated with it. The model rightly represents the climatology of different fields such as the surface temperature, sea level pressure, lower level wind and the precipitation for monsoon season. The model captures the different active and break spells and the results are in agreement with the observed value and previous studies. The major features of the active/break periods, such as the positive/negative rainfall anomaly over the monsoon core region (MCR) and negative/positive rainfall anomaly over the foothills of Himalayas and southern part of India is nicely represented in the model. The model rightly reproduces the evolution of the active and break phase and also the revival from the break period by the northward propagation of active rainfall anomaly. The heat trough type of circulation is analysed in detail along with the atmospheric condition during active and break spell over the MCR. The atmospheric condition over MCR resembles the heat trough type circulation during break spells. The moisture availability, moisture-precipitation relation and their transition during active and break period over the MCR is established.

  13. A 16 ka lacustrine 18O record from High Himalaya reflecting the Indian Monsoon variability

    NASA Astrophysics Data System (ADS)

    Zech, M.; Tuthorn, M.; Zech, R.; Schlütz, F.; Zech, W.; Glaser, B.

    2012-04-01

    Establishing 18O records using organic matter of lake sediments is so far complicated due to analytical challenges. Based on the results obtained by a novel analytical method, the so-called compound-specific delta18O-analysis of hemicellulose monosaccharides (Zech, M. and Glaser, B., 2009. Rapid Communications in Mass Spectrometry 23, 3522-3532), we here present a first well-dated continuous late glacial lacustrine 18O record from High Himalayan lake sediments. Our 18O record, which reflects a coupled hydrological and thermal control, reveals the late glacial Indian Summer Monsoon variability depicting the Bölling/Alleröd and the Younger Dryas. Thus, it closely resembles the 18O records of South Asian speleothems and Greenland ice cores. We hence conclude that our novel 18O method enables regional paleoclimate reconstructions and that our 18O record highlights the previously suggested teleconnections between the Indian and the East Asian Monsoon and Greenland temperatures.

  14. Primary productivity and its variability in the equatorial South China Sea during the northeast monsoon

    NASA Astrophysics Data System (ADS)

    Ooi, S. H.; Samah, A. A.; Braesicke, P.

    2013-08-01

    Near coastal areas of the equatorial South China Sea (SCS) are one of the world's regions with highest primary productivity (phytoplankton growth). Concentrations of phytoplankton in the SCS depend significantly on atmospheric forcings and the oceanic state, in particular during the northeast (winter) monsoon season from November to March. Aided by new ocean-observing satellite data, we present a climatological overview of recent surface atmospheric and oceanic features in the equatorial SCS during the northeast monsoon to identify the dominant air-sea processes influencing and modulating the primary productivity of the region. Measured chlorophyll a concentrations are used as a proxy for phytoplankton amounts and the spatial and temporal variations are characterized according to meteorological conditions. Converging northeasterly surface winds support high chlorophyll a concentrations along East Malaysia's coastline in conjunction with a continual nutrient supply from the bottom of the continental shelf by vertical mixing. The mixing can be enhanced due to increased turbulence by wind-generated high waves when they approach shallow water from the deep basin during strong cold surges and monsoon disturbances. Intraseasonal variability during the winter monsoon is characterized by a coastal increase of chlorophyll a starting in November and peaking in January. A general decrease is observed in March. Interannual variability of chlorophyll a concentrations is influenced by ENSO (due to the known modulation of cold surge occurrences), with decreases during El Niño and increases during La Niña in early winter along the shore of East Malaysia. As an example, we discuss an enhanced phytoplankton growth event that occurred due to a typical cold surge-induced Borneo vortex event in January 2010.

  15. Southeast Asian Monsoon variability may have assisted the rise and fall of the Khmer Empire

    NASA Astrophysics Data System (ADS)

    Kweku Kyei Afrifa, Yamoah; Chabangborn, Akkaneewut; Chawchai, Sakonvan; Wohlfarth, Barbara; Smittenberg, Rienk

    2014-05-01

    Climate shifts with links to human migration and social change have contributed to the global rise and fall of ancient civilizations (Weiss et al 2001; Haug et al. 2003). At the same time, these civilizations also tend to influence their environment significantly (Buckley et. al, 2010). Here we use δ13C and δD data of long-chained n-alkanes to unravel the drivers of monsoon intensity and their potential effects on the Angkor civilization. Strong Sea Surface Temperature (SST) variability from the Indo Pacific Warm Pool (IPWP), coupled to dramatic changes in the Pacific Walker Circulation (PWC) is suggested as a potential driver of the monsoon variability in Southeast Asia over the last two millennia. Our dataset provides independent evidence that past vegetation in Southeast Asia was greatly influenced by the activities of the Angkor people at about AD 834 to 1431 when agricultural activities and extensive hydrological systems may have contributed immensely to change the vegetation type. The massive agricultural boom as a result of increase in monsoon intensity, along with an extensive hydrological system, may have contributed significantly to the rise of the Khmer Empire. However, a prolonged drought as a result of the gradual weakening of the monsoon intensity over time (AD 1375-2000) may have caused the water management system to fail thus contributing significantly to the demise of the Khmer empire. References B. M. Buckley et al., Proc. Natl. Acad. Sci. U.S.A. 107, 6748 (2010). G. H. Haug et al., Science 299, 1731 (2003). H. Weiss, R. S. Bradley, Science 291, 609 (2001).

  16. Intra- and inter-seasonal variability of nutrients in a tropical monsoonal estuary (Zuari, India)

    NASA Astrophysics Data System (ADS)

    Subha Anand, S.; Sardessai, S.; Muthukumar, C.; Mangalaa, K. R.; Sundar, D.; Parab, S. G.; Dileep Kumar, M.

    2014-07-01

    A study was conducted to understand the intra- and inter-seasonal variability of dissolved oxygen and nutrients in a tropical monsoon estuary (Zuari in Goa, India). We adopted a dual sampling approach with (a) daily or alternate day sampling at a fixed location in the mid-estuarine zone and (b) longitudinal transect sampling from freshwater end to mouth during spring and neap tides of each month for about a year. Multivariate statistical analyses of oxygen and nutrients were carried out to evaluate the hypotheses: (i) biogeochemical processes chiefly regulate their variability and (ii) anthropogenic inputs lead to material accumulation in the estuary. Multivariate statistical analyses helped identify the controlling factors of the oxygen and nutrient variability. Our results significantly revealed (i) physical forcings (freshwater discharge and tidal circulation, these also facilitate sedimentary releases) are more important than biogeochemical processes in determining oxygen and nutrient variability in the water column and (ii) the monsoon driven regular annual flushing makes the system resilient to human interference as the Zuari estuary returns to normalcy by postmonsoon every year. Our study identified the significance of subsurface discharges in transporting mining effluents from the river basin. Results also suggest that extrapolation of controlling factors of biogeochemical variables at a fixed location to the entire estuary is untenable since the relative dominance of forcings vary in time and space in the estuary.

  17. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia

    NASA Astrophysics Data System (ADS)

    Yang, Bao; Kang, Shuyuan; Ljungqvist, Fredrik Charpentier; He, Minhui; Zhao, Yan; Qin, Chun

    2014-08-01

    The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625-1644 and 1975-1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975-1999 drought. Possible causes of the drought of 1625-1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea

  18. Simulation of Indian Monsoon Variability in the Medieval Warm Period using ECHAM5 General Circulation Model

    NASA Astrophysics Data System (ADS)

    Polanski, Stefan; Fallah, Bijan; Prasad, Sushma; Cubasch, Ulrich

    2013-04-01

    Within the framework of the DFG research group HIMPAC, the general circulation model ECHAM5 has been used to simulate the Indian monsoon and its variability during the Medieval Warm Period (MWP; 900-1100 AD) and for recent climate (REC; 1800-2000 AD). The focus is on the analysis of internal and external drivers leading to extreme rainfall events over India from interannual to multidecadal time scale. An evaluation of spatio-temporal monsoon patterns with present-day observation data is in agreement with other state-of-the-art monsoon modeling studies. The simulated monsoon intensity on multidecadal time scale is weakened (enhanced) in summer (winter) due to colder (warmer) SSTs in the Indian Ocean. Variations in solar insolation are the main drivers for these SST anomalies, verified by very high temporal correlations between Total Solar Irradiance and All-India-Monsoon-Rainfall in summer monsoon months (-0.95). The external solar forcing is coupled and overlain by internal climate modes of the Ocean (ENSO and IOD) with asynchronous intensities and lengths of periods. In addition, the model simulations have been compared with a relative moisture index derived from paleoclimatic reconstructions based on various proxies and archives in India (Anoop et al., 2012 (under revision); Bhattacharya et al., 2007; Chauhan et al., 2000; Denniston et al., 2000; Ely et al., 1999; Kar et al., 2002; Ponton et al., 2012; Prasad et al., 2012 (under revision)). In this context, the reconstructed climate of the well-dated Lonar record in Central India has been highlighted and evaluated the first time (Anoop et al., 2012 (under revision); Prasad et al., 2012 (under revision)). Particularly with regard to the long continuously chronology of the last 11000 years, the Lonar site gives a unique possibility for a comparison of long-term climate time series. The simulated relative annual rainfall anomalies ("MWP" minus "REC") are in agreement with the reconstructed moisture index. The dry

  19. Changing monsoon intraseasonal variability and its relation with extreme events over India

    NASA Astrophysics Data System (ADS)

    Karmakar, Nirupam; Chakraborty, Arindam; Nanjundiah, Ravi

    2015-04-01

    Indian summer monsoon rainfall (ISMR) possesses a prominent and unique intraseasonal character manifested by active and break phases associated with certain oscillatory modes (intraseasonal oscillations, ISOs). Understanding the changing nature of these ISO modes and their relationship with extreme rainfall events are necessary for better prediction and essential in dealing with the climate-related risks in a warming environment. Here, using comprehensive mathematical and statistical techniques, we show that the relative strength of the dominant northward propagating low-frequency intraseasonal (20-60 days) modes have a significant decreasing trend possibly attributed to the weakening of vertical shear of zonal winds in the monsoon region. This reduction is compensated by a gain in synoptic-scale variability. Using a percentile-based threshold for extreme events, we find a significant increasing trend of extreme events over India. Preferentially, these extremes occur in tandem with the active phase of low-frequency ISO modes. However, we show that there exists a significant decreasing trend in the percentage of extreme events that occur in active phase. Consequently, significant increasing trends are present in break and transition periods counterparts. The changes of occurrence of extreme events in different phases of ISO is most prominent over central India and monsoon trough region. The observed trends are important for medium- to long-range forecasts of extreme events and relevant for hydrological planning and disaster management in the region.

  20. Solar forcing of the Indian summer monsoon variability during the Ållerød period

    PubMed Central

    Gupta, Anil K.; Mohan, Kuppusamy; Das, Moumita; Singh, Raj K.

    2013-01-01

    Rapid climatic shifts across the last glacial to Holocene transition are pervasive feature of the North Atlantic as well as low latitude proxy archives. Our decadal to centennial scale record of summer monsoon proxy Globigerina bulloides from rapidly accumulating sediments from Hole 723A, Arabian Sea shows two distinct intervals of weak summer monsoon wind coinciding with cold periods within Ållerød inerstadial of the North Atlantic named here as IACP-A1 and IACP-A2 and dated (within dating uncertainties) at 13.5 and 13.3 calibrated kilo years before the present (cal kyr BP), respectively. Spectral analysis of the Globigerina bulloides time series for the segment 13.6–13.1 kyr (Ållerød period) reveals a strong solar 208-year cycle also known as de Vries or Suess cycle, suggesting that the centennial scale variability in Indian summer monsoon winds during the Ållerød inerstadial was driven by changes in the solar irradiance through stratospheric-tropospheric interactions. PMID:24067487

  1. Assessment of Uncertainties in the Response of the African Monsoon Precipitation to Land Use Change in Regional Model Simulations

    NASA Astrophysics Data System (ADS)

    Hagos, S. M.; Leung, L.; Xue, Y.; Boone, A. A.; Huang, M.; Yoon, J.

    2013-12-01

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to land use change and the climatologies of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between and therefore land-atmosphere interactions play a more significant role have stronger response to the land use and land cover changes. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.

  2. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model

    NASA Astrophysics Data System (ADS)

    Hagos, Samson; Leung, L. Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin-Ho

    2014-11-01

    Land use and land cover (LULC) over Africa have changed substantially over the last 60 years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties of model simulated response in the African monsoon system and Sahel precipitation due to LULC change using a set of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature. The relationship between the model responses to LULC change and the climatologists of the control simulations is also examined. Simulations that are climatologically too dry or too wet compared to observations and reanalyses have weak response to land use change because they are in moisture or energy limited regimes respectively. The ones that lie in between have stronger response to the LULC changes, showing a more significant role in land-atmosphere interactions. Much of the change in precipitation is related to changes in circulation, particularly to the response of the intensity and latitudinal position of the African Easterly Jet, which varies with the changes in meridional surface temperature gradients. The study highlights the need for measurements of the surface fluxes across the meridional cross-section of the Sahel to evaluate models and thereby allowing human impacts such as land use change on the monsoon to be projected more realistically.

  3. Assessing Holocene water level changes of Lake Turkana, Kenya with potential linkages to monsoon variability

    NASA Astrophysics Data System (ADS)

    Bloszies, C.; Forman, S. L.; Wright, D. K.

    2012-12-01

    This study focuses on better defining water level variability in the past 10 ka for Lake Turkana, Kenya. The water level of Lake Turkana was approximately 90m higher than today ca. 8 ka years ago, and in the past century lake levels have varied by up to 15 m. Lake level is especially sensitive to shifts in water balance with changes in regional rainfall linked to the relative strength of the Indian Ocean Monsoon. Variations in monsoonal precipitation in Kenya may be controlled by distinct modes of the Indian Ocean Dipole, with one mode associated with increased sea surface temperatures and concomitant heavy rainfall in the Turkana basin, and the other mode resulting in low precipitation. Well preserved beach ridges up to 90 m above present water level occur around the lake representing a record of varying elevations of lake level still-stands during the Holocene. Along this prograded strand plain there is evidence of a shift in human subsistence from fishing villages to pastoral encampments, possibly associated with pronounced mid-Holocene drying and a precipitous (>30 m) fall in lake level ca. between 7 and 5 ka. However, a recent GPS campaign of beach ridges on the east and west sides of the lake reveal variability in highstand beach ridge elevations, implying deferential tectonic deformation across the basin and possible crustal warping due to hydroisostatic processes. Radiocarbon dating of aquatic shells will resolve the ages of beach ridges and these ages will be tested by direct dating of littoral quartz grains by OSL. Stratigraphic exposures of this littoral system reveal new evidence for lake still-stands, transgressions and regressions. Ultimately, the data will constrain a basin hydrologic model to assess the catchment changes and evaporative conditions required to yield the tens of meters of lake level change in the Holocene and provide new insights into the magnitude and linkage to monsoon variability.

  4. Organization of vertical shear of wind and daily variability of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Goswami, P.

    2016-02-01

    Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.

  5. The influence of land-atmosphere interactions on variability of the North American Monsoon

    NASA Technical Reports Server (NTRS)

    Small, Eric; Lakshmi, Venkat

    2005-01-01

    Our project focused on the influence of land-atmosphere interactions on variability of North American Monsoon System (NAMS) precipitation is summarized in seven published manuscripts (listed below). Three of these manuscripts (Matsui et al. 2003; Matsui et al. 2005; Small and Kurc 2003) were completed solely with support from this NASA project. The remaining four were completed with additional support from NOAA. Our primary results are summarized: 1) Test of Rocky Mountains snowcover-NAMS rainfall hypothesis. Testing radiation and convective precipitation parameterization in MM5. Analysis of soil moisture-radiation feedbacks in semiarid environments from field observations and modeling.

  6. Lake sediment records of late Holocene monsoon variability in western Nepal (preliminary results)

    NASA Astrophysics Data System (ADS)

    Ghazoui, Zakaria; Bertrand, Sebastien; Sachse, Dirk; Nomade, Jerome; Prasad Gajurel, Ananta; van der Beek, Peter

    2015-04-01

    In Nepal, high altitude paleoclimatological and limnological studies face many logistical challenges due to remoteness, accessibility, and altitude of potential lake sampling sites. Therefore, paleolimnological investigations in the Nepalese Himalaya remain scarce, and most of our understanding of past Indian Summer Monsoon (ISM) variability relies on a low-density network of speleothems and ice cores. Here we report preliminary new data from three high-altitude lakes in the Nepal Himalaya. In order to improve our understanding of climate variability in western Nepal during the late Holocene three lakes were investigated and sampled in autumn 2014: Rara Lake, Mugu District; Phoksundo Lake, Dolpa District; Dhumba Lake, Mustang District. The sediment cores are being studied using a multi-proxy approach combining radiocarbon, 210Pb and 137Cs chronologies, physical properties (Geotek multi-sensor core logger), grain size (Malvern Mastersizer 3000) inorganic geochemistry (major and selected trace elements by ICP-AES and ITRAX XRF core scanning), bulk organic geochemistry (C, N concentrations and stable isotopes) and hydrogen isotopic composition of leaf wax long-chain n-alkanes (δDwax). These sediment records will provide important new insights into the late-Holocene variability of the Indian Summer Monsoon in Nepal, including the recent latitudinal shift of the rainbelt due to climate change in the 20th and 21st centuries.

  7. Influence of monsoons on atmospheric CO2 spatial variability and ground-based monitoring over India.

    PubMed

    Tiwari, Yogesh K; Vellore, Ramesh K; Ravi Kumar, K; van der Schoot, Marcel; Cho, Chun-Ho

    2014-08-15

    This study examines the role of Asian monsoons on transport and spatial variability of atmospheric CO2 over the Indian subcontinent, using transport modeling tools and available surface observations from two atmospheric CO2 monitoring sites Sinhagad (SNG) and Cape Rama (CRI) in the western part of peninsular India. The regional source contributions to these sites arise from the horizontal flow in conduits within the planetary boundary layer. Greater CO2 variability, greater than 15 ppm, is observed during winter, while it is reduced nearly by half during summer. The SNG air sampling site is more susceptible to narrow regional terrestrial fluxes transported from the Indo-Gangetic Plains in January, and to wider upwind marine source regions from the Arabian Sea in July. The Western Ghats mountains appear to play a role in the seasonal variability at SNG by trapping polluted air masses associated with weak monsoonal winds. A Lagrangian back-trajectory analysis further suggests that the horizontal extent of regional sensitivity increases from north to south over the Indian subcontinent in January (Boreal winter). PMID:24880546

  8. Role of the Indian and Pacific oceans in the Indian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Achuthavarier, Deepthi

    The role of the Indian and Pacific sea surface temperature (SST) variability in the intraseasonal and interannual variability of the Indian summer monsoon rainfall is examined by performing a set of regionally coupled experiments with the Climate Forecast System (CFS), the latest and operational coupled general circulation model (CGCM) developed at the National Centers for Environmental Prediction (NCEP). The intraseasonal and interannual variability are studied by isolating oscillatory and persistent signals, respectively, from the unfiltered daily rainfall anomalies using multi-channel singular spectrum analysis (MSSA). This technique identifies nonlinear oscillations, its variance and period without preconditioning the data with a filter and also helps to separate the intraseasonal and low frequency climate signals from the daily variability. It is found that, although the model has large amount of daily variance in rainfall, the combined variance of coherently propagating intraseasonal oscillations is only about 7% while the corresponding number in the observations is 11%. The model has three intraseasonal oscillations with periods around 106, 57 and 30 days. The 106-day mode has a characteristic large-scale pattern extending from the Arabian Sea to the West Pacific with northward and eastward propagations. These features are similar to the northeastward propagating 45-day mode found in the observations except for the longer period. The 57-day mode is more dominant in the region, 60°E-100°E and is strictly northward-propagating. The 30-day mode appears to be equivalent to the northwestward propagating oscillation in the observations. The dominant low frequency persistent signal in the region is due to the El Nino-Southern Oscillation (ENSO). The ENSO-related rainfall anomalies, however fail to penetrate into the Extended Indian Monsoon Rainfall (EIMR) region, and therefore, the ENSO-monsoon relationship in the model is weak. Regionally coupled simulations of

  9. Multi-proxy Evidence of Australian Summer Monsoon Variability During the Holocene: Links to the East-Asian Monsoon and the North Atlantic

    NASA Astrophysics Data System (ADS)

    Griffiths, M. L.; Drysdale, R. N.; Frisia, S.; Gagan, M.; Zhao, J.; Fischer, M.; Ayliffe, L.; Feng, Y.; St Pierre, E.; Hellstrom, J.; Hantoro, W.; Suwargadi, B.

    2008-12-01

    The Australian summer monsoon (ASM) is the dominant factor controlling rainfall variability and terrestrial productivity in northern Australia and the Indonesian archipelago. Understanding the mechanisms that influence its variability over different time-scales, and their teleconnections with other parts of the global climate system, has proven difficult because we lack high-resolution, precisely dated records of past monsoon behaviour. Linkages between the tropics and North Atlantic have been well documented north of the equator, but the degree to which these teleconnection patterns extend into the southern sub-equatorial tropics and their effects on the ASM are undocumented. We present a precisely dated, high-resolution oxygen isotope and trace element record of ASM variability from stalagmites located on Flores (east Indonesia) over the period 13 kyr B.P. to present. The multi-proxy records are constrained by over 30 TIMS and MC-ICP-MS U-series ages. The δ18O profile displays a gradual intensification of the ASM through the Holocene, which is in phase with precipitation changes in southern Brazil but antiphased with East Asian monsoon (EAM) intensity. The low frequency trend in the oxygen isotopes tracks changes in southern hemisphere summer insolation at 25° S located directly over the heat-low region of the Australian continent. Superimposed upon the δ18O trend are multi-decadal to centennial scale increased ASM events that occur concurrently (within dating errors) with periods of decreased EAM intensity and North Atlantic ice-rafting events. Thus, late-Pleistocene/Holocene cold events in the North Atlantic, related to reductions in the Atlantic meridional overturning circulation and variations in solar output, were associated with a southward migration of the ITCZ. While precessional forcing appears to be the dominant driver of ASM circulation over orbital time-scales, the high synchroneity between the Flores isotope variations and titanium (Ti) content of

  10. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.

    PubMed

    Mandal, S; Choudhury, B U; Satpati, L N

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning

  11. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.; Satpati, L. N.

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant ( p < 0.05) increasing trend (at 0.22 days year-1) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress

  12. Orbital and Millennial Scale Variability of the Southeast Asian Monsoon Since 45 ka

    NASA Astrophysics Data System (ADS)

    Johnson, K. R.; Griffiths, M. L.; Yang, H.; Wang, J. K.; Wood, C. T.; Henderson, G. M.

    2015-12-01

    Despite significant advances in our understanding of tropical Indo-Pacific and monsoon climate variability on orbital to millennial timescales, we still know very little about the range and mechanisms of variability in the Southeast Asian monsoon region. To address this need, we have developed a new, decadally-resolved speleothem δ18O and δ13C record from two overlapping stalagmites (TM-17 and TM-8), collected from Tham Mai Cave in Northern Laos. The TM-17 stalagmite was dated with 25 U-Th measurements, which indicate nearly continuous growth since 37.8 ka at ~20 microns/year. Based on 16 U-Th dates, the TM-8 stalagmite grew continuously between 33.7 and 45.6 ka at ~35 microns/year. Both samples were microdrilled at ~0.5 mm resolution and >2000 samples were analysed for stable isotope composition (δ18O and δ13C). Based on cave monitoring work conducted since 2010 and the strong correlation between the overlapping segments of the two records, these two speleothems faithfully record the mean δ18O of rainfall at this site, which reflects an integrated signal of upstream rainout over the Bay of Bengal and tropical Indian Ocean. The composite TM record clearly shows orbital and millennial scale variability over the last 45 kyr, with a strong precessional signal during the Holocene and clear δ18O increases during Heinrich Stadials 1-5, the Younger Dryas, and the 8.2 kyr event. The strong similarity between the Tham Mai record and the Chinese speleothem records supports recent interpretations of these records as reflecting large-scale Indian monsoon intensity rather than local precipitation over East Asia. In contrast to δ18O, speleothem δ13C from Tham Mai Cave may be more reflective of local water balance than large-scale monsoon intensity. The composite δ13C record shows increased values during the Heinrich stadials, especially HS1, potentially reflecting dry conditions with increased prior calcite precipitation and/or decreased soil respiration. Interestingly

  13. Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-06-01

    The capability of the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2) in simulating the Indian summer monsoon (ISM) is evaluated in the context of the global monsoon in the Indo-Pacific domain and its variability. Although the CFSv2 captures the ISM spatial structure qualitatively, it demonstrates a severe dry bias over the Indian subcontinent. The weaker model monsoon may be related to an excessive surface convergence over the equatorial Indian Ocean, which reduces the moisture transport toward the Indian subcontinent. The excessively low equatorial pressure is in turn a part of a tropical-wise bias with the largest errors in the central and eastern equatorial Pacific associated with the cold sea surface temperature bias and an overly strong inter-tropical convergence zone. In this sense, the model bias in the tropical Pacific influences those in the Indian Ocean-ISM region substantially. The leading mode of the June-September averaged CFSv2 rainfall anomalies covering the ISM and its adjacent oceanic regions is qualitatively similar to that of the observations, characterized by a spatial pattern of strong anomalies over either side of the Indian peninsula as well as center of opposite sign over Myanmar. However, the model fails to reproduce the northward expansion of rainfall anomalies from Myanmar, leading to opposite anomalies over northeast India and Himalayas region. A substantial amount of the anomalous fluctuation is attributed to the El Niño and the Southern Oscillation (ENSO), although the model variability depends more strongly on ENSO. The active regional influences in the observations may contribute to its baroclinic vertical structure of the geopotential height anomalies in the ISM region, compared with the predominantly barotropic one in CFSv2. Model ENSO deficiencies also affects its ISM simulation significantly.

  14. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  15. Daily modes of South Asian summer monsoon variability in the NCEP climate forecast system

    NASA Astrophysics Data System (ADS)

    Achuthavarier, Deepthi; Krishnamurthy, V.

    2011-05-01

    The leading modes of daily variability of the Indian summer monsoon in the climate forecast system (CFS), a coupled general circulation model, of the National Centers for Environmental Predictions (NCEP) are examined. The space-time structures of the daily modes are obtained by applying multi-channel singular spectrum analysis (MSSA) on the daily anomalies of rainfall. Relations of the daily modes to intraseasonal and interannual variability of the monsoon are investigated. The CFS has three intraseasonal oscillations with periods around 106, 57 and 30 days with a combined variance of 7%. The 106-day mode has spatial structure and propagation features similar to the northeastward propagating 45-day mode in the observations except for its longer period. The 57-day mode, despite being in the same time scale as of the observations has poor eastward propagation. The 30-day mode is northwestward propagating and is similar to its observational counterpart. The 106-day mode is specific to the model and should not be mistaken for a new scale of variability in observations. The dominant interannual signal is related to El Niño-Southern Oscillation (ENSO), and, unlike in the observations, has maximum variance in the eastern equatorial Indian Ocean. Although the Indian Ocean Dipole (IOD) mode was not obtained as a separate mode in the rainfall, the ENSO signal has good correlations with the dipole variability, which, therefore, indicates the dominance of ENSO in the model. The interannual variability is largely determined by the ENSO signal over the regions where it has maximum variance. The interannual variability of the intraseasonal oscillations is smaller in comparison.

  16. Simulation of the West African monsoon onset using the HadGEM3-RA regional climate model

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaïla; Bain, Caroline L.; Gaye, Amadou T.; Moufouma-Okia, Wilfran; Niang, Coumba; Dieng, Mame D. B.; Graham, Richard

    2014-08-01

    The performance of the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) in simulating the West African monsoon (WAM) is investigated. We focus on performance for monsoon onset timing and for rainfall totals over the June-July-August (JJA) season and on the model's representation of the underlying dynamical processes. Experiments are driven by the ERA-Interim reanalysis and follow the CORDEX experimental protocol. Simulations with the HadGEM3 global model, which shares a common physical formulation with HadGEM3-RA, are used to gain insight into the causes of HadGEM3-RA simulation errors. It is found that HadGEM3-RA simulations of monsoon onset timing are realistic, with an error in mean onset date of two pentads. However, the model has a dry bias over the Sahel during JJA of 15-20 %. Analysis suggests that this is related to errors in the positioning of the Saharan heat low, which is too far south in HadGEM3-RA and associated with an insufficient northward reach of the south-westerly low-level monsoon flow and weaker moisture convergence over the Sahel. Despite these biases HadGEM3-RA's representation of the general rainfall distribution during the WAM appears superior to that of ERA-Interim when using Global Precipitation Climatology Project or Tropical Rain Measurement Mission data as reference. This suggests that the associated dynamical features seen in HadGEM3-RA can complement the physical picture available from ERA-Interim. This approach is supported by the fact that the global HadGEM3 model generates realistic simulations of the WAM without the benefit of pseudo-observational forcing at the lateral boundaries; suggesting that the physical formulation shared with HadGEM3-RA, is able to represent the driving processes. HadGEM3-RA simulations confirm previous findings that the main rainfall peak near 10°N during June-August is maintained by a region of mid-tropospheric ascent located, latitudinally, between the cores of

  17. Future changes in the African monsoon analysed with 8 CMIP5 models: contrasted rainfall dipole and delayed withdrawal

    NASA Astrophysics Data System (ADS)

    Monerie, P.

    2013-12-01

    Based on the approach of Fontaine et al. (2011) and Monerie et al. (2013) we study the African Monsoon (AM) future changes. We used 8 available CMIP5/AR5 AOGCMs from 8 different climate centres and the RCP4.5 emission scenario. Data are analysed with the 'one model one vote' concept and a multi-model approach. The results refer to the difference of a ';future horizon' (2031-2070) minus the ';present' period (1960-1999) and are discussed in terms of monsoon dynamics and climate change. CMIP5 AOGCMs produces a warmer world in the future, especially over land. The sea-band thermal gradient is enhanced and create therefore the basic energy conditions for a reinforced monsoon in the future. The future changes show a contrasted response with less (more) rainfall expected over the western (central-eastern) Sahel. The deficits are chiefly linked to subsidence anomalies in mid-troposphere preventing deep moist convection and precipitation due to modifications in the zonal circulation. The surplus are associated with a more intense monsoon circulation, an increasing of the mean moisture flux convergence over the continental Sahel favoured by the greater surface warming over the continent. An African Rainfall Pattern Index (ARPI), based on the standardized rainfall differences between these regions is defined for capturing the rainfall contrast over years 1900 to 2100. It has been compared to the thermal evolution on both the present and future periods. This allowed us to document the effect of the global warming on Sahelian rainfall patterns by extracting low-frequency signals (20-year-cut-off). The contrasted rainfall pattern change at Sahelian latitudes is therefore expected to occur more frequently in the future. These results are according to Fontaine et al. (2011) and Monerie et al. (2013) who shown through 12 CMIP3 models an increasing (decreasing) of rainfall amounts above the central part (western part) of the Sahel in a future period. In addition to these results we

  18. Indian Monsoon and its Variability during the last Millennium - a Model-Proxy-Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Polanski, S.; Fallah, B.; Leckebusch, G. C.; Cubasch, U.

    2012-12-01

    The last Millennium is the best documented climate period affected by variations in external forcing and internal dynamics in a highly nonlinear climate system. According to that the Indian Monsoon and its high variability on different time scales plays an important role, studied in the interdisciplinary HIMPAC project (Himalaya - Modern and Past Climates). In order to understand the driving mechanisms, feedbacks and amplifiers regarding the monsoon variability of the last 1.200 years, the five ensemble members of the full forced simulation of the Millennium experiment (Jungclaus et al., 2010), using the coupled COSMOS Earth System Model (ECHAM5/JSBACH-MPIOM/HAMOCC) in a T31L19 spatial resolution, have been statistically analysed to detect strong wet and dry periods of monsoon rainfall within the All India Monsoon Rainfall Region. Later the selected periods of extreme rainfall events have been simulated in a higher spatial resolution with the atmosphere-only model ECHAM5 in a T63L31 spatial resolution. The focus is on the monsoon variability of the selected 200-years long time slices within the Medieval Climate Optimum (MWP; 900-1100 AD), the Little Ice Age (LIA; 1515-1715 AD) and the Preindustrial (PI; 1800-2000 AD). The relative annual rainfall anomalies simulated by ECHAM5 model show drier (wetter) conditions over India during the MWP (LIA) compared to the PI. The spatial EOF variance patterns of the summer monsoon rainfall in the MWP are more pronounced in the lower resolved T31L19 Millennium simulation according to the higher amount of simulated rainfall whereas the differentiation of the patterns is better in the T63L31 ECHAM5 simulation especially in the Himalayas due to the better representation of the mountains. Furthermore the simulations have been also compared with paleoclimatic reconstructions based on proxy data from different archives (Bhattacharya et al., 2007, Chauhan et al., 2000, Denniston et al., 2000, Ely et al., 1999, Kar et al., 2002, Ponton

  19. Sensitivity of the simulated African monsoon of summers 1993 and 1999 to convective parameterization schemes in RegCM3

    NASA Astrophysics Data System (ADS)

    Tchotchou, L. A. Djiotang; Kamga, F. Mkankam

    2010-03-01

    In this study, the International Center for Theoretical Physics Regional Climate Model version 3 (RegCM3) was used to investigate the sensitivity of the simulation of the West African monsoon using four different cumulus and closures parameterization schemes of Anthes Kuo (AK), Grell and Fristish Chappell (GFC), Grell and Arakawa Schubert (GAS), and MIT-Emmanuel (EM) while maintaining other physical packages unchanged. The contrasting monsoon years of 1993 and 1999, which were dry and wet years, respectively, were simulated. The model was integrated from a period of 5 months, starting from May 1 to September 30 of each year using the European Centre for Medium-Range-Weather Forecast (ECMWF) Reanalysis data (ERA40) as input boundary conditions. The 6-hourly reanalysis data were used to provide the lateral boundary conditions, and the observed weekly Reynolds Sea Surface Temperature interpolated to 6 h was used as the lower boundary forcing. The results show that in West Africa, monsoon precipitations are sensitive to the choice of cumulus parameterization and closure schemes. None of the schemes is able to simulate the monsoon rainfall accurately, and furthermore, there is little difference in behavior among schemes between dry and wet years. The spatial features of precipitation are not identical among schemes, although they all show a northward shift of the rain bands, giving a very wet Sahel and dry Guinean Coast. The GFC and EM schemes are able to capture the diurnal cycle of precipitation and the zonal averages of stratiform rain fractions as observed in the Tropical Rainfall Measuring Mission (TRMM), although they overestimated rainfall amounts. The most important deficiencies, however, cannot be attributed to the schemes. In particular, the northward shift of both the rain band and the AEJ in RegCM3 is the result of unrealistic soil moisture resulting from the way albedo is parameterized, leading to an excessive northward penetration of monsoon flow. A

  20. Sensitivity of the African and Asian Monsoons to Mid-Holocene Insolation and Data-Inferred Surface Changes.

    NASA Astrophysics Data System (ADS)

    Texier, Delphine; de Noblet, Nathalie; Braconnot, Pascale

    2000-01-01

    Orbital forcing alone is not sufficient to explain the massive northward penetration of monsoon rains in Africa shown by data during the mid-Holocene (6000 yr ago). Feedbacks associated with changes in SSTs and land surface cover may be necessary to produce a sufficient increase in the monsoon. A step toward a better understanding of the respective role of oceans and land surfaces is to design sensitivity studies with prescribed forcings, inferred from observations. In the first study, SSTs are lowered in the upwelling regions offshore of West Africa and Somalia, and increased in the Bay of Bengal and South China Sea. In the second simulation, the modern Sahara desert is replaced by a combination of xerophytic woods/scrub and grassland.In both cases the amount of water vapor advected from oceanic sources is increased north of 10°N in Africa in response to the increased land-sea temperature contrast, thereby enhancing rainfall. But the magnitude of the simulated changes is much larger when land surface is modified. The lower albedo (compared to desert) increases the amount of radiation absorbed by the surface in northern Africa and warms it up, and the larger roughness length increases both the sensible and latent heat fluxes. Moreover, vegetation is more efficient in recycling water than a bare soil, and the release of latent heat in the atmosphere increases convection, which in turn helps maintain the onshore oceanic advection. The monsoon season is then lengthened by 1-2 months compared to all other simulations reported in the paper.The intensity of monsoon rains is also modified in Asia in both sensitivity experiments. Warmer SSTs in the Bay of Bengal and South China Sea reduce the land-sea contrast and therefore the inland penetration of monsoon rains. Changes in the position of the main large-scale convergence area in the case of a green Sahara enhances the precipitation in India.Changes are also discussed in terms of atmospheric circulation. For example, the

  1. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  2. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh

    2012-07-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean-atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  3. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    NASA Astrophysics Data System (ADS)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  4. Flood Hazard Trends in the Mekong River during the 20th century due to monsoon variability

    NASA Astrophysics Data System (ADS)

    Delgado, Jose; Merz, Bruno; Apel, Heiko

    2013-04-01

    Flood trends were investigated in four stations of the lower Mekong River. Two types of changes were accounted for: trend in the mean and trend in the variance of the time series. A trend in the mean implies that the average flood events changed with time. A trend in variance implies that the frequency of low and high magnitude floods changed with time (Merz et al., 2012). Results showed that average flood events decreased during the 20th century. However, due to an increase in variance, the frequency of high magnitude floods increased towards the end of the 20th century (Delgado et al., 2010). This increase could not be detected by usual trend tests like Mann Kendall test or the ordinary least squares regression. The results agree with Katz and Brown (1992), who showed that variance changes are more important that changes in mean, when it comes to flood frequency trends. To investigate possible causes for the detected changes in flood variance, we looked at several large scale atmospheric circulation patterns cited in the literature. The Western Pacific monsoon index (Wang, 2001) showed the greatest resemblance with the flood data. A test of step change in variance was conducted which revealed a coinciding step change in variance between annual maximum discharge and the Western Pacific monsoon. A statistical model where monsoon variance forces flood frequency in the 20th century was tested. The results were statistically significant. This has the advantadge of by-passing the use of precipitation, which in this region is collected in a rather sparse network. Concerning climate change projections, a dynamic index like the Western Pacific monsoon index is better simulated by climate models than tropical precipitation (Wang, 2004, Douville et al. 2005). Another important result is the attribution of the detected changes. The Mekong River basin is located in a transition zone between the Indian and the Pacific oceans. Our results showed that the interannual variability

  5. Evaluating interannual variability in speleothem records of North American monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Truebe, S. A.; Cole, J. E.; Ault, T. R.; Kimbrough, A.; Henderson, G. M.; Barmett, H.; Hlohowskyj, S.

    2013-12-01

    Speleothems can produce long, high resolution, absolutely-dated records of past climate. They are especially useful for past climate reconstruction in areas such as the southwestern United States, where traditional sources of past climate information (corals, lake or ocean sediments, ice cores) are absent. Here we present two records of Holocene rainfall variability from two Arizona caves less than 40km apart: Cave of the Bells (COB) and Fort Huachuca Cave (FHC), spanning 7000 and 4000 years respectively. Both records show a trend towards more negative oxygen isotope values into the modern era. Extensive monthly monitoring suggests that speleothem oxygen isotope composition is an average of the oxygen isotope composition of the summer North American monsoon (NAM) and winter frontal storms, with a bias towards winter likely due to lack of infiltration of intense monsoon rainfall. This bias is stronger in COB than in FHC. Winter rainfall has had an increasing influence at both sites from the mid-Holocene until the present; in other words, the NAM has been weakening over the past few thousand years, in step with changes in other monsoon systems and Northern Hemisphere insolation. Although the records are similar in overall trend, short-term variability is inconsistent. When providing information to water managers about future rainfall availability in the Southwest, having only millennial-scale information does not help much! To investigate the differences between the two records, we use a combination of approaches, including assessing age model uncertainty and modern climate heterogeneity, and monitoring cave-specific processes that may be overprinting the climate signal. We assess age model uncertainty using a statistical age-modeling program, which allows us to develop many physically plausible time series for the same age-depth data. With this age modeling tool, we critically assess whether particular isotope excursions correspond between speleothems and if they

  6. Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Pelon, J.; Formenti, P.; Bharmal, N.; Brooks, M.; Capes, G.; Chazette, P.; Chou, C.; Christopher, S.; Coe, H.; Cuesta, J.; Derimian, Y.; Desboeufs, K.; Greed, G.; Harrison, M.; Heese, B.; Highwood, E. J.; Johnson, B.; Mallet, M.; Marticorena, B.; Marsham, J.; Milton, S.; Myhre, G.; Osborne, S. R.; Parker, D. J.; Rajot, J.-L.; Schulz, M.; Slingo, A.; Tanré, D.; Tulet, P.

    2008-12-01

    The African Monsoon Multidisciplinary Analysis (AMMA) is a major international campaign investigating far-reaching aspects of the African monsoon, climate and the hydrological cycle. A special observing period was established for the dry season (SOP0) with a focus on aerosol and radiation measurements. SOP0 took place during January and February 2006 and involved several ground-based measurement sites across west Africa. These were augmented by aircraft measurements made by the Facility for Airborne Atmospheric Measurements (FAAM) aircraft during the Dust and Biomass-burning Experiment (DABEX), measurements from an ultralight aircraft, and dedicated modeling efforts. We provide an overview of these measurement and modeling studies together with an analysis of the meteorological conditions that determined the aerosol transport and link the results together to provide a balanced synthesis. The biomass burning aerosol was significantly more absorbing than that measured in other areas and, unlike industrial areas, the ratio of excess carbon monoxide to organic carbon was invariant, which may be owing to interaction between the organic carbon and mineral dust aerosol. The mineral dust aerosol in situ filter measurements close to Niamey reveals very little absorption, while other measurements and remote sensing inversions suggest significantly more absorption. The influence of both mineral dust and biomass burning aerosol on the radiation budget is significant throughout the period, implying that meteorological models should include their radiative effects for accurate weather forecasts and climate simulations. Generally, the operational meteorological models that simulate the production and transport of mineral dust show skill at lead times of 5 days or more. Climate models that need to accurately simulate the vertical profiles of both anthropogenic and natural aerosols to accurately represent the direct and indirect effects of aerosols appear to do a reasonable job

  7. Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial-interglacial period

    NASA Astrophysics Data System (ADS)

    Li, T.-Y.; Shen, C.-C.; Huang, L.-J.; Jiang, X.-Y.; Yang, X.-L.; Mii, H.-S.; Lee, S.-Y.; Lo, L.

    2014-06-01

    The orbital-timescale dynamics of the Quaternary Asian summer monsoons (ASM) are frequently attributed to precession-dominated northern hemispheric summer insolation. However, this long-term continuous ASM variability is inferred primarily from oxygen isotope records of stalagmites, mainly from Sanbao cave in mainland China, and may not provide a comprehensive picture of ASM evolution. A new spliced stalagmite oxygen isotope record from Yangkou cave tracks summer monsoon precipitation variation from 124 to 206 thousand years ago in Chongqing, southwest China. Our Yangkou record supports that the evolution of ASM was dominated by the North Hemisphere solar insolation on orbital timescales. When superimposed on the Sanbao record, the precipitation time series referred from Yangkou cave stalagmites supports the strong ASM periods at marine isotope stages (MIS) 6.3, 6.5, and 7.1 and weak ASM intervals at MIS 6.2, 6.4, and 7.0. This consistency confirms that ASM events affected most of mainland China. Except for the solar insolation forcing, the large amplitude of minimum δ18O values in Yangkou record during glacial period, such as MIS 6.5, could stem from the enhanced prevailing Pacific trade wind and/or continental shelf exposure in the Indo-Pacific warm pool.

  8. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming

  9. Intraseasonal variability of the Indian summer monsoon: wet and dry events in COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Leckebusch, G. C.; Cubasch, U.

    2016-02-01

    This study aims to validate the widely used regional climate model COSMO-CLM driven by ERA-Interim reanalysis data with a spatial resolution of 55 km with respect to observed features of the intraseasonal variability of the Indian summer monsoon (ISM) during the period 1979 until 2011. One of these features is the northward propagation of the ISM intraseasonal oscillations. We find, that the temporal evolution between model and observation is in good agreement, while less agreement with respect to the strength is found. Furthermore, the model's capability to simulate observed dry and wet events on a weekly time-scale is investigated using the standardized precipitation index. In general, the model is capable to simulate these events with a similar magnitude at the same time. Observational based analyses show, that the coupling between atmospheric circulation anomalies and rainfall anomalies over India on the intraseasonal time scale is well represented by the model. The most important circulation anomalies for dry events are a lower tropospheric anti-cyclonic vortex over India and partly an upper tropospheric cyclonic vortex over the Pakistan region and vice versa for wet events. The model shows a slightly higher ability to simulate dry compared to wet events. Overall, this study shows that the current configuration of COSMO-CLM is able to simulate the key features of the intraseasonal variability of the Indian summer monsoon. Being aware of its limitation, COSMO-CLM is suitable to investigate possible changes of the intraseasonal variability of ISM under changed climate conditions in the past or in the future.

  10. Formation and maintenance of nocturnal low-level stratus over the southern West African monsoon region during AMMA 2006

    NASA Astrophysics Data System (ADS)

    Schuster, Robert; Fink, Andreas; Knippertz, Peter

    2013-04-01

    The southern parts of West Africa, from the coast to about 9°N, are frequently covered by an extensive deck of shallow, low (200 - 400 m above ground) stratus or stratocumulus clouds during the summer monsoon season as shown by recent studies based on ground observations and new satellite products. These clouds usually form at night in association with a nocturnal low-level jet (NLLJ) and can persist into the early afternoon hours until they are dissipated or replaced by fair-weather cumuli. Recent work suggests that the stratus deck and its effect on the surface radiation balance are unsatisfactorily represented in standard satellite retrievals and simulations by state-of-the-art climate models. Here we use high-resolution regional simulations with the Weather Research and Forecast (WRF) model and observations from the African Monsoon Multidisciplinary Analysis (AMMA) 2006 campaign to investigate (a) the spatiotemporal distribution, (b) the influence on the radiation balance, and (c) the detailed formation and maintenance mechanisms of the stratiform clouds. The model configuration used for this study has been determined following an extensive sensitivity study. The main conclusions are: (a) At least some configurations of WRF satisfactorily reproduce the diurnal cycle of the low cloud evolution. (b) The simulated stratus deck forms after sunset along the coast, spreads inland in the course of the night, and dissipates in the early afternoon. (c) The average surface net radiation balance in stratus-dominated regions is 35 W m-2 lower than in those with less clouds. (d) The cloud formation is related to a subtle balance between "stratogenic" upward (downward) fluxes of latent (sensible) heat caused by shear-driven turbulence below the NLLJ, cold advection from the ocean, forced lifting at the windward side of orography, and radiative cooling on one hand, and "stratolytic" dry advection and latent heating on the other hand. Future work should focus on the influence

  11. Interannual variability in Wyrtki jets and its impact on Indian Summer Monsoon circulation

    NASA Astrophysics Data System (ADS)

    Deshpande, A.; Gnanaseelan, C.

    2013-12-01

    The interannual variability of the Wyrtki jets is studied using an OGCM for the period of 1958-2009. The first two modes of an EOF decomposition account for about 75% and 11% of variability in zonal currents along the equator in the Indian Ocean. The boreal fall (October-November) Wyrtki jet is more significantly affected than the boreal spring (May) Wyrtki jet by IOD and ENSO forcing since they tend to peak toward the end of the calendar year. It is found that the interannual variability in spring jets is driven partly by El Niño forcing and partly due to the variations in the latitude at which the southeasterly winds turn westerly. The springtime subsidence over East Africa primarily determines the strength of the zonal pressure gradient along the equator which is important for determining the latitude of recurvature of southeasterly winds. The variability of Wyrtki jets affects the spring and fall rainfall over East Africa through modulations in the Walker circulation. The thermocline and SST variations in east equatorial Indian Ocean and Bay of Bengal are also primarily induced by the variability in these jets. The impact of Wyrtki jets on Indian Summer monsoon circulation is evident via changes in the thermal structure over north Indian Ocean. The spring jets affect the thermal structure in the Bay of Bengal, while the influence of fall jets extends up to Bay of Bengal as well as southeastern Arabian Sea through wave propagation.

  12. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all

  13. Solar forcing of centennial-scale East Asian winter monsoon variability in the mid- to late Holocene

    NASA Astrophysics Data System (ADS)

    Sagawa, Takuya; Kuwae, Michinobu; Tsuruoka, Kentaro; Nakamura, Yugo; Ikehara, Minoru; Murayama, Masafumi

    2014-06-01

    Centennial-scale variability of the East Asian winter monsoon during the Holocene is poorly understood because suitable archives and proxies are lacking. Here we present a high-resolution (∼30-yr spacing) planktonic foraminiferal δO18 record of Neogloboquadrina incompta (dextral form), which reflects sea surface temperature during the winter season, for the last 6000 yrs from marine sediments in the western North Pacific. Stronger winter monsoons indicated by cooler winter SSTs correspond to weaker summer monsoons indicated by the cave oxygen isotopes in centennial-scale variability. The variability also shows good correlation with δO18 records in lake sediments and ice cores from the Yukon Territory, Canada, spanning the last 4500 yrs, suggesting east-west climate coupling across the North Pacific. Furthermore, the climate changes across the North Pacific co-vary over widespread regions, such as the eastern tropical Pacific and the northern Red Sea, and the reconstructed solar activity. The cross-spectral and wavelet analyses show that the East Asian winter monsoon shares some cyclicity with the solar variability. Our results suggest that the solar activity is a fundamental forcing producing the centennial-scale EAWM variability mediated by the large-scale climate linkages.

  14. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  15. Diagnosing GCM errors over West Africa using relaxation experiments. Part II: intraseasonal variability and African easterly waves

    NASA Astrophysics Data System (ADS)

    Pohl, Benjamin; Douville, Hervé

    2011-10-01

    A near-global grid-point nudging of the Arpege-Climat atmospheric General Circulation Model towards ECMWF reanalyses is used to diagnose the regional versus remote origin of the summer model biases and variability over West Africa. First part of this study revealed a limited impact on the monsoon climatology compared to a control experiment without nudging, but a significant improvement of interannual variability, although the amplitude of the seasonal anomalies remained underestimated. Focus is given here on intraseasonal variability of monsoon rainfall and dynamics. The reproducible part of these signals is investigated through 30-member ensemble experiments computed for the 1994 rainy season, a year abnormally wet over the Sahel but representative of the model systematic biases. In the control experiment, Arpege-Climat simulates too few rainy days that are associated with too low rainfall amounts over the central and western Sahel, in line with the seasonal dry biases. Nudging the model outside Africa tends to slightly increase the number of rainy days over the Sahel, but has little effect on associated rainfall amounts. However, results do indicate that a significant part of the monsoon intraseasonal variability simulated by Arpege-Climat is controlled by lateral boundary conditions. Parts of the wet/dry spells over the Sahel occur in phase in the 30 members of the nudging experiment, and are therefore embedded in larger-scale variability patterns. Inter-member spread is however not constant across the selected summer season. It is partly controlled by African Easterly Waves, which show dissimilar amplitude from one member to another, but a coherent phasing in all members. A lowpass filtering of the nudging fields suggests that low frequency variations in the lateral boundary conditions can lead to eastward extensions of the African Easterly Jet, creating a favorable environment for easterly waves, while high frequency perturbations seem to control their

  16. Predictability of the East Asian winter monsoon interannual variability as indicated by the DEMETER CGCMS

    NASA Astrophysics Data System (ADS)

    Li, Fei; Wang, Huijun

    2012-05-01

    The interannual variability of East Asian winter monsoon (EAWM) circulation from the Development of a European Multi-Model Ensemble (MME) System for Seasonal to Inter-Annual Prediction (DEMETER) hindcasts was evaluated against observation reanalysis data. We evaluated the DEMETER coupled general circulation models (CGCMs)' retrospective prediction of the typical EAWM and its associated atmospheric circulation. Results show that the EAWM can be reasonably predicted with statistically significant accuracy, yet the major bias of the hindcast models is the underestimation of the related anomalies. The temporal correlation coefficient (TCC) of the MME-produced EAWM index, defined as the first EOF mode of 850-hPa air temperature within the EAWM domain (20°-60°N, 90°-150°E), was 0.595. This coefficient was higher than those of the corresponding individual models (range: 0.39-0.51) for the period 1969-2001; this result indicates the advantage of the super-ensemble approach. This study also showed that the ensemble models can reasonably reproduce the major modes and their interannual variabilities for sea level pressure, geopotential height, surface air temperature, and wind fields in Eurasia. Therefore, the prediction of EAWM interannual variability is feasible using multimodel ensemble systems and that they may also reveal the associated mechanisms of the EAWM interannual variability.

  17. Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses 2006

    NASA Astrophysics Data System (ADS)

    Delonge, Marcia S.; Fuentes, Jose D.; Chan, Stephen; Kucera, Paul A.; Joseph, Everette; Gaye, Amadou T.; Daouda, Badiane

    2010-05-01

    In this study we investigate the development of a mesoscale convective system (MCS) as it moved from West Africa to the Atlantic Ocean on 31 August 2006. We document surface and atmospheric conditions preceding and following the MCS, particularly near the coast. These analyses are used to evaluate how thermodynamic and microphysical gradients influence storms as they move from continental to maritime environments. To achieve these goals, we employ observations from NASA African Monsoon Multidisciplinary Analyses (NAMMA) from the NASA S band polarimetric Doppler radar, a meteorological flux tower, upper-air soundings, and rain gauges. We show that the MCS maintained a convective leading edge and trailing stratiform region as it propagated from land to ocean. The initial strength and organization of the MCS were associated with favorable antecedent conditions in the continental lower atmosphere, including high specific humidity (18 g kg-1), temperatures (300 K), and wind shear. While transitioning, the convective and stratiform regions became weaker and disorganized. Such storm changes were linked to less favorable thermodynamic, dynamic, and microphysical conditions over ocean. To address whether storms in different life-cycle phases exhibited similar features, a composite analysis of major NAMMA events was performed. This analysis revealed an even stronger shift to lower reflectivity values over ocean. These findings support the hypothesis that favorable thermodynamic conditions over the coast are a prerequisite to ensuring that MCSs do not dissipate at the continental-maritime transition, particularly due to strong gradients that can weaken West African storms moving from land to ocean.

  18. Trends and variability of East African rainfall and its relationship to the Mascarene High pressure system

    NASA Astrophysics Data System (ADS)

    Seregina, Larisa; Pinto, Joaquim G.; Fink, Andreas H.; Ermert, Volker

    2016-04-01

    In the recent decades, East Africa needs to deal with strong fluctuations in seasonal rainfall including precipitation extremes. In context of climate change, such extremes can become more frequent in the future. However, regional climate projections are uncertain about the future development of seasonal precipitation in the region. Rainfall regimes over East Africa are influenced by multiple factors, including two monsoon systems, several convergence zones and the Rift Valley lakes. In addition, local conditions, like topography, modulate the large-scale rainfall pattern. East African rainfall variability is also influenced by various teleconnections like the Indian Ocean Zonal Mode and El Niño Southern Oscillation. The study of past climate variability in East Africa requires sufficient observational data coverage in the region. As East Africa does not have a dense observational network of meteorological stations, satellite rainfall observations gain on importance in studies on climate variability in the region. The specific aim of the present study is the analysis of historic data from weather stations in East Africa (Kenya, Tanzania, Ruanda and Uganda), the use of gridded satellite products, and three-dimensional atmospheric reanalysis (e.g., ERA-Interim) to quantify climate variability in the recent past and to understand its causes. Climate variability and trends, including changes in extreme events, are evaluated using ETCCDI climate change and standardized precipitation indices. These climate indices are determined in order to investigate the variability of rainfall and its trends with the focus on recent decades. For seasonal trend analysis, an independent and non-calendaric rainfall onset criterion is introduced. In the follow-up, statistical and dynamical analyses are conducted to quantify the local impact of Mascarene High as a part of the Subtropical High Pressure Ridge on East African seasonal rainfall. Possible connections to pertinent large

  19. The mean evolution and variability of the Asian summer monsoon: comparison of ECMWF and NCEP/NCAR reanalyses

    SciTech Connect

    Annamalai, H.; Hodges, K.; Slingo, J.M.; Sperber, K.R.

    1999-04-21

    The behavior of the Asian Summer Monsoon is compared using the European Centre for Medium Range Weather Forecasts Reanalysis (ERA) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996). The goals of this paper are to identify common features between the reanalyses, to assess their robustness for model validation, and especially to use reanalyses to develop their understanding of the mean evolution of the Asian Summer Monsoon and the characteristics of its interannual and intraseasonal variability (Annamalai et al. 1999).

  20. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  1. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ˜18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  2. Nong Thale Pron - a key site from southern Thailand for studying monsoon variability during the past 15000 years

    NASA Astrophysics Data System (ADS)

    Bredberg, Camilla; Chawchai, Sakonvan; Chabangborn, Akkaneewut; Kylander, Malin; Fritz, Sherilyn; Reimer, Paula J.; Wohlfarth, Barbara

    2014-05-01

    Studies of marine sediments, cave speleothemes, annually laminated corals, and tree rings from Asian monsoon regions have added knowledge to our understanding of the factors that control inter-annual to millennial monsoon variability in the past and have provided important constraints for climate modeling scenarios. In contrast, the spatial and temporal pattern of sub-millennial scale monsoon variability and its impact on land cover in SE Asia are still unresolved. This shortcoming stems from the fact that temporally well-resolved paleo-environmental studies are missing from large parts of SE Asia, especially from Thailand. Given that global and regional climate models are increasingly using terrestrial paleo- data to test their performance, past changes in land cover are therefore important variables to better understand feedbacks between different Earth systems. We obtained sediments from Lake Nong Thale Pron, in southern Thailand (8º 10`N, 99 º23`E; 380 m.asl). The aim of our study is to reconstruct lake status changes and to evaluate whether the extent of these changes are linked to known shifts in monsoon intensity and variability. Preliminary results show that lake infilling started more than 15,000 years ago and that the sediments cover the last deglaciation and the Holocene. Current analyses include Itrax XRF core scanning, loss-on-ignition (LOI at 950 and 550ºC), CN elemental and isotopic composition. We expect that our results will be able to give a picture of how the lake's status has changed over time and whether the extent of these changes is linked to known shifts in monsoon intensity and variability.

  3. Mid- to late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, Maïté; Fleitmann, Dominik; Verheyden, Sophie; Cheng, Hai; Edwards, Lawrence; De Geest, Peter; De Vleeschouwer, David; Burns, Stephen J.; Matter, Albert; Claeys, Philippe; Keppens, Eddy

    2013-04-01

    Four stalagmites covering the last 7.0 ka were sampled on Socotra, an island in the northern Indian Ocean to investigate the evolution of the northeast Indian Ocean Monsoon (IOM) since the mid Holocene. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains act as a barrier forcing precipitation brought by the northeast winds to fall preferentially on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites reflect precipitation amounts brought by the northeast winds. For stalagmite STM6, this amount effect is amplified by kinetic effects during calcite deposition. Combined interpretation of the stalagmites' signals suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. No link can be established with Greenland ice cores and with the summer IOM variability. In contrast to the stable northeast rainy season suggested by the records in this study, speleothem records from western Socotra indicate a wettening of the southwest rainy season on Socotra after 4.4 ka. The local wettening of western Socotra could relate to a more southerly path (more over the Indian Ocean) taken by the southwest winds. Stalagmite STM5, sampled at the fringe between both rain areas displays intermediate δ18O values. After 6.2 ka, similar precipitation changes are seen between eastern Socotra and northern Oman indicating that both regions are affected similarly by the monsoon. Different palaeoclimatologic records from the Arabian Peninsula currently located outside the ITCZ migration pathway display an abrupt drying around 6 ka due to their disconnection from the southwest rain influence. Records that are nowadays still receiving rain by the southwest winds

  4. Spatial Reconstructions of Asian Monsoon Climate Variability Over the Past Millennium from Long Tree-Ring Records

    NASA Astrophysics Data System (ADS)

    Cook, E. R.; Anchukaitis, K. J.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G. C.; Wright, W. E.

    2008-12-01

    We present the first spatial reconstructions of Asian monsoon climate variability over the past millennium from long tree-ring records. The reconstructions, for both the monsoon (JJA) and pre-monsoon (MAM) seasons, are based on a 534-point grid of instrumental Palmer Drought Severity Indices (PDSI) covering all of monsoon Asia and an irregular network of 312 annual tree-ring chronologies over most of the same domain. The seasonal reconstructions were initially estimated at each grid point using a local "point-by-point regression" (PPR) method that has been used successfully in reconstructing drought over North America. Different levels of predictor variable screening applied in PPR produced a 5-member ensemble of reconstructions for each season. The estimated noise level in these reconstructions was relatively high (average cross-validation R2 over the 534 grid point domain typically <0.30). In addition, the lengths of the grid point reconstructions varied over space due to the variable length tree-ring series available for use in PPR. For these reasons, each ensemble member was iteratively refined using a local variant of PPR to improve its reconstructions, with missing values imputed as necessary, to produce complete fields extending back to AD 1000 over all 534 grid point locations. An ensemble average for each season, with estimated uncertainties, was then calculated and used for analysis. The reconstructions reveal the occurrence of some persistent "megadroughts" in the past that appear to be unprecedented in the instrumental records. These megadroughts are not restricted to any particular part of "Monsoon Asia", but the ones in Southeast Asia stand out particularly strong. Comparisons made between these drought reconstructions and a companion field of SST reconstructions for the tropical Pacific back to AD 1400, based on independent tree-ring data from the American Southwest and Mexico, suggest that unusual ENSO variability is a contributor to the development

  5. Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability

    NASA Astrophysics Data System (ADS)

    Sun, Jianqi; Wu, Sha; Ao, Juan

    2016-06-01

    In this study, a possible mechanism for the decadal variability in the East Asian winter monsoon (EAWM) is proposed. Specifically, the North Pacific sea surface temperature (SST) may play an important role. An analysis of the observations shows that the North Pacific SST has a remarkable decadal pattern whose phase shifted around the mid-1980s. This North Pacific SST decadal pattern can weaken the East Asian trough and enhance the North Pacific Oscillation through changing air-sea interactions over the North Pacific. The weak East Asian trough enhances the zonal circulation and weakens the meridional circulation over East Asia, consequently leading to a weaker southward cold surge and East Asia warming around the mid-1980s. The numerical experiment further confirms the pronounced physical processes. In addition, over the longer period of 1871-2012, the indices of the EAWM and North Pacific SST decadal pattern are also highly consistent on the decadal timescale, which further confirms the impact of the North Pacific SST decadal pattern on the EAWM decadal variability.

  6. Multidecadal variability of moisture and heat budgets of the South American monsoon system

    NASA Astrophysics Data System (ADS)

    Garcia, Sâmia R.; Kayano, Mary T.

    2015-08-01

    The variability of sources or sinks of moisture and heat for the South American monsoon system (SAMS) region is investigated for the 1958-1995 period. So, moisture and heat budget equations are applied to data from the National Centers for Environmental Prediction (NCEP) reanalysis project. Sources or sinks of moisture and heat are the equation residues and are referred to as residue and diabatic terms, respectively. Using empirical orthogonal function (EOF) analysis, the dominant variability modes of these terms are obtained for the study period, with the monthly anomalies of the residue and diabatic terms employed. For residue EOF01, negative (positive) principal component (PC01) values correspond to positive (negative) residue anomalies over tropical South America (TSAM), which indicate a moisture source (sink) before (after) 1976, cold (warm) phase of the Pacific Decadal Oscillation (PDO). For the EOF01 of the diabatic term, negative (positive) PC01 values correspond to negative (positive) diabatic anomalies over TSAM, indicating a heat sink (source) before (after) 1976. Thus, a moisture source (sink) and a heat sink (source) occur over TSAM before (after) 1976. These findings are corroborated by composite analysis of the anomalies of precipitable water, 850 hPa air temperature, 500 hPa vertical pressure velocity, vertically integrated moisture flux (VIMF), VIMF divergence, and precipitation. In terms of system thermodynamics, these composites are indicative of SAMS weakening (strengthening) before (after) 1976, cold (warm) PDO phase.

  7. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene- comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2015-02-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the

  8. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene - comparison of different transient climate model simulations

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2014-05-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene

  9. Understanding the Dynamic and Thermodynamic Causes of Historical Trends in the Intraseasonal Variability of the South Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Singh, D.; Horton, D. E.; Diffenbaugh, N. S.

    2014-12-01

    The Indian Summer Monsoon directly affects the lives of over 1/6th of the world's population, being critical for agriculture (>50% of the agricultural lands are still rainfed) and water availability in the subcontinent. The summer monsoon is characterized by a dominant 30-60 day mode of intraseasonal variability causing the occurrence of wet and dry spells over a substantial portion of India during the peak-monsoon months (July-August). We use a 1°x1° gridded rainfall dataset (1951-2011) from the Indian Meteorological Department to quantify changes in the mean and intraseasonal variability of daily summer monsoon rainfall across India. Using a non-parametric statistical methodology to account for temporal correlation in the time-series, we find a statistically significant decreasing trend in rainfall and increasing trend in variability in many regions, and changes in the characteristics of wet and dry spells.Using geopotential heights from the NCEP reanalysis dataset, we apply the Self-Organizing Maps (SOMs) approach (cluster analysis) to define typical upper (200mb) and lower-level (850mb) atmospheric patterns associated with extreme wet and dry conditions in the different sub-regions within India. We identify the extreme wet and dry spell patterns from the precipitation composites associated with the SOM patterns. Next, we link the contribution of the changing frequency of occurrence of the associated atmospheric patterns and increasing moisture availability in response to atmospheric warming to observed trends in these extremes. Lastly, we compare the changes in the frequency of occurrence of these atmospheric patterns in the historical and pre-industrial simulations from a single GCM to examine the influence of global warming on these extremes. Understanding the causes of these observed changes in wet and dry extremes during the monsoon season and responses to increasing global warming are relevant for managing climate-related risks, with particular relevance

  10. Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO

    NASA Astrophysics Data System (ADS)

    Yun, Kyung-Sook; Seo, Ye-Won; Ha, Kyung-Ja; Lee, June-Yi; Kajikawa, Yoshiyuki

    2014-08-01

    Interdecadal changes in the Asian winter monsoon (AWM) variability are investigated using three surface air temperature datasets for the 55-year period of 1958-2012 from (1) the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 1 (NCEP), (2) combined datasets from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-yr reanalysis and interim data (ERA), and (3) Japanese 55-year reanalysis (JRA). Particular attention has been paid to the first four empirical orthogonal function (EOF) modes of the AWM temperature variability that together account for 64% of the total variance and have been previously identified as predictable modes. The four modes are characterized as follows: the first mode by a southern warming over the Indo-western Pacific Ocean associated with a gradually increasing basin-wide warming trend; the second mode by northern warming with the interdecadal change after the late 1980s; the third and fourth modes by north-south triple pattern, which reveal a phase shift after the late 1970s. The three reanalyses agree well with each other when producing the first three modes, but show large discrepancy in capturing both spatial and temporal characteristics of the fourth mode. It is therefore considered that the first three leading modes are more reliable than the rest higher modes. Considerable interdecadal changes are found mainly in the first two modes. While the first mode shows gradually decreasing variance, the second mode exhibits larger interannual variance during the recent decade. In addition, after the late 1970s, the first mode has a weakening relationship with the El Niño-Southern Oscillation (ENSO) whereas the second mode has strengthening association with the Artic Oscillation (AO). This indicates an increasing role of AO but decreasing role of ENSO on the AWM variability. A better understanding of the interdecadal change in the dominant modes would contribute toward advancing in

  11. Water level changes for Lake Turkana and climate variability during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Bloszies, C.; Forman, S. L.; Wright, D. K.

    2013-12-01

    (SST) records from the Indian and the Atlantic oceans. A brief (<500 yr) high stand up to at least 50 m at ca. 7 ka appears to be coincident with warm postglacial SSTs in the western Indian Ocean and thus may reflect a strengthened East African Monsoon, though some precipitation was probably derived from Atlantic sources as well. Similarly, the brief high stand (< 400 yr) at 6.3 ka, possibly up to 100 m, is associated with warming across the Indian Ocean and equator-ward compression of the ITCZ reflecting a strengthened East African Monsoon. This high stand also may be in response to elevated SSTs in the eastern Atlantic Ocean and associated intensification of West African Monsoon. A final high stand up to at least 95 m at ca. 5.0 to 5.5 ka appears to have occurred with sustained moisture influx into East Africa from Atlantic-derived sources, coincident with warming in the western Indian Ocean. The AHP for Lake Turkana is characterized by extreme water level variability, rather than a sustained water level, with a final and rapid fall in lake level between 5.0 and 4.5 ka associated with increasing aridity.

  12. The detection of post-monsoon tropospheric ozone variability over south Asia using IASI data

    NASA Astrophysics Data System (ADS)

    Barret, B.; Le Flochmoen, E.; Sauvage, B.; Pavelin, E.; Matricardi, M.; Cammas, J. P.

    2011-09-01

    The ozone (O3) variability over south Asia during the 2008 post-monsoon season has been assessed using measurements from the MetOP-A/IASI instrument and O3 profiles retrieved with the SOftware for a Fast Retrieval of IASI Data (SOFRID). The information content study and error analyses carried out in this paper show that IASI Level 1 data can be used to retrieve tropospheric O3 columns (TOC, surface-225 hPa) and UTLS columns (225-70 hPa) with errors smaller than 20%. Validation with global radiosonde O3 profiles obtained during a period of 6 months show the excellent agreement between IASI and radiosonde for the UTLS with correlation coefficient R > 0.91 and good agreement in the troposphere with correlation coefficient R > 0.74. For both the UTLS and the troposphere Relative Standard Deviations (RSD) are lower than 23%. Comparison with in-situ measurements from the MOZAIC program around Hyderabad demonstrates that IASI is able to capture the TOC inter and intra-seasonal variability in central India. Nevertheless, the agreement is mitigated by the fact that the smoothing of the true O3 profiles by the retrieval results in a reduction of the TOC variability detected by IASI relative to the variability observed by in situ instruments. The post-monsoon temporal variability of the vertical profile of O3 around Hyderabad has been investigated with MOZAIC observations. These observations from airborne instruments show that tropospheric O3 is steadily elevated during most of the studied period with the exception of two sharp drops following the crossing of tropical storms over India. Lagrangian simulations with the FLEXPART model indicate that elevated O3 concentrations in the middle troposphere near Hyderabad are associated with the transport of UTLS air-masses that have followed the Subtropical Westerly Jet (SWJ) and subsided over northern India together with boundary layer polluted air-masses transported from the Indo-gangetic plain by the north-easterly trades. Low O3

  13. The Impact of Projected Changes in Monsoon Season Circulation and African Easterly Waves on Saharan Dust Transport

    NASA Astrophysics Data System (ADS)

    Skinner, C. B.; Diffenbaugh, N. S.

    2013-12-01

    The Sahara is the largest source region of mineral dust in the world. Each year, an estimated 100 to 700 million tons of dust are transported from the Sahara through atmospheric processes. Roughly 30 - 50% of this dust travels westward into the North Atlantic where it impacts the regional radiative balance, atmospheric dynamics, and biogeochemical cycles. During the boreal summer season, dust emissions and dust transport over North Africa are largely controlled by westward propagating synoptic-scale and mesoscale systems such as African easterly waves (AEWs) and mesoscale convective systems (MCSs). In particular, strong low-level winds, vertical motion, and convection associated with these systems drive dust mobilization and vertical mixing throughout the atmosphere. In this work we utilize the CMIP5 ensemble of general circulation models to explore the projected impact of enhanced radiative forcing, consistent with a high emissions scenario (RCP8.5), on atmospheric processes that may influence the emission and transport of dust over West Africa. In particular we focus on the simulation of AEWs during the months of the West African monsoon (June - September). Results from the CMIP5 ensemble indicate a robust increase in low-level (850mb) AEW activity along the Sahel/Sahara border in response to increasing greenhouse gas concentrations by the end of the 21st century. Across the CMIP5 ensemble, AEWs exhibit the strongest increase in low-level winds directly over the observed prolific dust sources within Mali, Mauritania and Algeria in the western Sahara. Enhanced AEW activity in this region is consistent with projected increases in low-level baroclinicity and increased ascent associated with a deepening Saharan Heat Low and stronger convergence along the Intertropical Front. We use a variety of observed and modeled relationships between atmospheric processes and dust as well as output from the available CMIP5 dust modules to explore the impact of the projected

  14. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  15. Monsoon variability of ultraviolet radiation (UVR) attenuation and bio-optical factors in the Asian tropical coral-reef waters

    NASA Astrophysics Data System (ADS)

    Mizubayashi, Keiko; Kuwahara, Victor S.; Segaran, Thirukanthan C.; Zaleha, Kassim; Effendy, A. W. M.; Kushairi, M. R. M.; Toda, Tatsuki

    2013-07-01

    The East coast of Peninsular Malaysia is strongly influenced by the North-East (NE) monsoon, and may significantly influence the optical environment of coral-reef ecosystems. However, our knowledge of temporal variability, including episodic events, of environmental factors in Asian tropical regions is still limited. The objectives of this study were to (1) observe temporal variability in ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) attenuation and (2) determine the bio-optical factors regulating the optical environment in shallow coral-reef waters. Downwelling UVR and PAR irradiance and in situ bio-optical factors were measured monthly near Bidong Island on the East coast of Peninsular Malaysia from June 2010 to June 2011. The NE monsoon was recognized between November 2010 and January 2011. The highest diffuse attenuation coefficient at 305 nm was 2.05 ± 0.03 m-1 in a coral-reef area on December 2010. The most significant bio-optical factor at 305, 380, 440 nm during the NE monsoon season was CDOM (89 ± 8% at 305 nm, 84 ± 9% at 380 nm and 49 ± 17% at 440 nm). All UVR attenuation coefficients showed significant correlations with the CDOM absorption coefficients (aCDOM). CDOM with relatively low S275-295 during the NE monsoon season (0.0177 ± 0.0020 nm-1) suggests terrestrial sources, which is also supported by the correlation between salinity and aCDOM(305). A significant correlation between S275-295 and the carbon specific absorbance coefficient (a*(305)) suggest the potential to measure DOC optically in these waters. The high CDOM during the NE monsoon season may have an important role to reduce harmful UVR exposure reaching benthic communities.

  16. A review of South American monsoon variability over the past 2 millennia based on stable isotopic proxies and model simulations

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Cruz, F. W.; Abbott, M.; Bird, B. W.; Burns, S. J.; Cheng, H.; Colose, C. M.; Kanner, L. C.; LeGrande, A. N.; Novello, V.

    2013-05-01

    The growing number of high-resolution stable isotopic proxies (speleothems, ice cores, lake sediments) from the South American summer monsoon (SASM) belt, when combined with isotope-enabled General Circulation Models (GCMs), offers new prospects for better understanding the spatiotemporal dynamics of the South American monsoon system and for diagnosing its sensitivities to external forcings and internal modes of ocean-atmosphere variability over the past 2 millennia. In this presentation we will discuss the rationale for interpreting isotopic excursions recorded in various proxies from the SASM region as indicative of changes in monsoon intensity. Over the past 2 millennia isotopic proxies from the SASM belt display a fairly coherent behavior, regardless of the type of archive considered. All proxies exhibit significant decadal to multidecadal variability, superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000- year historical perspective, rivaled only by the low intensity during the MCA. One interpretation of these centennial-scale climate anomalies suggests that they were at least partially driven by temperature changes in the northern hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity and degree of rainout upstream of the proxy locations, over the tropical continent. This interpretation is supported by several independent proxy archives and modeling studies.

  17. Relationships between interdecadal variability and extreme precipitation events in South America during the monsoon season

    NASA Astrophysics Data System (ADS)

    Grimm, Alice; Laureanti, Nicole; Rodakoviski, Rodrigo

    2016-04-01

    This study aims to clarify the impact of interdecadal climate oscillations (periods of 8 years and longer) on the frequency of extreme precipitation events over South America in the monsoon season (austral spring and summer), and determine the influence of these oscillations on the daily precipitation frequency distribution. Interdecadal variability modes of precipitation during the monsoon season are provided by a continental-scale rotated empirical orthogonal function analysis for the 60 years period 1950-2009. The main disclosed modes are robust, since they are reproduced for different periods. They can produce differences around 50% in monthly precipitation between opposite phases. Oceanic and atmospheric anomalous fields associated with these modes indicate that they have physical basis. The first modes in spring and summer display highest correlation with the Interdecadal Pacific Oscillation (IPO) SST mode, while the second modes have strongest correlation with the Atlantic Multidecadal Oscillation (AMO) SST mode. However, there are also other influences on these modes. As the most dramatic consequences of climate variability stem from its influence on the frequency of extreme precipitation events, it is important to also assess this influence, since variations in monthly or seasonal precipitation do not necessarily imply significant alterations in their extreme events. This study seeks to answer the questions: i) Do opposite phases of the main interdecadal modes of seasonal precipitation produce significant anomalies in the frequency of extreme events? ii) Does the interdecadal variability of the frequency of extreme events show similar spatial and temporal structure as the interdecadal variability of the seasonal precipitation? iii) Does the interdecadal variability change the daily precipitation probability distribution between opposite phases? iv) In this case, which ranges of daily precipitation are most affected? The significant anomalies of the extreme

  18. On the Variability of Summer Monsoon Rainfall over East Cost of India

    NASA Astrophysics Data System (ADS)

    de, N.; Bondyopadhaya, R. P.

    2009-04-01

    A study of the major portion of Monsoon Rainfall (M.R.) of West Bengal and Orissa (two coastal states of India whose total area is bigger than many European countries)during 1871-2005 has been made. It is suggested that the nature of variability of M.R. is to be studied for the regions as a whole where M.R. is precipitated simultaneously.For example, by z-score and other methods of analysis it is found that M.R. of those two states vary in opposite manner but the total M.R. remains almost constant during the said long period. Further it is found that the mean M.R. before and after 1946 are same in spite of the fact that the nature of deviations are almost in opposite phase. Incidentally we have noted that 1946 was the year just after the World War Two and the explosion of first hydrogen bomb in this continent in the neighborhood of India.

  19. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations

    NASA Astrophysics Data System (ADS)

    Gaetani, Marco; Flamant, Cyrille; Bastin, Sophie; Janicot, Serge; Lavaysse, Christophe; Hourdin, Frederic; Braconnot, Pascale; Bony, Sandrine

    2016-04-01

    Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (-0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (-0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by

  20. Variability in Chinese loess single-grain provenance data and the influence of the Quaternary East Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Stevens, Thomas; Zaremba, Kaja; Bird, Anna; Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Limonta, Mara; Ando, Sergio; Garzanti, Eduardo; Lu, Huayu; Adamiec, Grzegorz

    2015-04-01

    The Chinese Loess Plateau represents one of the world's most detailed and continuous dust and climate records, stretching back into the Miocene and, to the west of the Plateau, into the late Eocene. It has long been argued that Chinese loess deposits record variations in the East Asian monsoon system, both during the summer via pedogenetic indicators, and during winter via grain-size and sedimentation rates. However, the potential influence of non-monsoonal dust transporting winds on Chinese loess deposition has been increasingly suggested, leaving question marks over whether loess deposits record winter monsoon variability. Central to resolving this is to establish the source regions of loess material. Despite a great deal of previous work, the sources and transport mechanisms of dust on the Chinese Loess Plateau are still contested, although areas to the west and northwest of the Plateau have primarily been suggested. Recent applications of single-grain U-Pb dating of zircons in loess provenance has eliminated some of the proposed sources, although possible spatial and temporal variability across the Loess Plateau and through the Plio-Quaternary still remains contentious. Here we show detailed single-grain provenance data, including zircon U-Pb ages and heavy mineral assemblage data from multiple sites and across the Quaternary to examine the key source areas and consider their variations in space and time. These show changing source characteristics both spatially and temporally, with westerly/Yellow River influence in the west of the Plateau, and probable winter monsoon influence to the east. Furthermore, although abrupt variability within individual sediment units is commonly seen in many loess climate proxy records, a high resolution approach that would reveal this has not been applied in single-grain provenance studies. Consequently the extent to which individual samples from a unit are representative of the unit's source in general has not been demonstrated

  1. Observational Evidence of Impacts of Aerosols on Seasonal-to-Interannual Variability of the Asian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Kim, K.-M.; Hsu, N. C.

    2006-01-01

    Observational evidences are presented showing that the Indian subcontinent and surrounding regions are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle. Increased loading of absorbing aerosols over the Indo-Gangetic Plain in April-May is associated with a) increased heating of the upper troposphere over the Tibetan Plateau, b) an advance of the monsoon rainy season, and c) subsequent enhancement of monsoon rainfall over the South Asia subcontinent, and reduction over East Asia. Also presented are radiative transfer calculations showing how differential solar absorption by aerosols over bright surface (desert or snow cover land) compared to dark surface (vegetated land and ocean), may be instrumental in triggering an aerosol-monsoon large-scale circulation and water cycle feedback, consistent with the elevated heat pump hypothesis (Lau et al. 2006).

  2. Interannual variability and predictability over the Arabian Penuinsula Winter monsoon region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Muhammad; Kucharski, Fred; Almazroui, Mansour; Kang, In-Sik

    2016-04-01

    Interannual winter rainfall variability and its predictability are analysed over the Arabian Peninsula region by using observed and hindcast datasets from the state-of-the-art European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal prediction System 4 for the period 1981-2010. An Arabian winter monsoon index (AWMI) is defined to highlight the Arabian Peninsula as the most representative region for the Northern Hemispheric winter dominating the summer rainfall. The observations show that the rainfall variability is relatively large over the northeast of the Arabian Peninsula. The correlation coefficient between the Nino3.4 index and rainfall in this region is 0.33, suggesting potentially some modest predictability, and indicating that El Nino increases and La Nina decreases the rainfall. Regression analysis shows that upper-level cyclonic circulation anomalies that are forced by El Nino Southern Oscillation (ENSO) are responsible for the winter rainfall anomalies over the Arabian region. The stronger (weaker) mean transient-eddy activity related to the upper-level trough induced by the warm (cold) sea-surface temperatures during El Nino (La Nina) tends to increase (decrease) the rainfall in the region. The model hindcast dataset reproduces the ENSO-rainfall connection. The seasonal mean predictability of the northeast Arabian rainfall index is 0.35. It is shown that the noise variance is larger than the signal over the Arabian Peninsula region, which tends to limit the prediction skill. The potential predictability is generally increased in ENSO years and is, in particular, larger during La Nina compared to El Nino years in the region. Furthermore, central Pacific ENSO events and ENSO events with weak signals in the Indian Ocean tend to increase predictability over the Arabian region.

  3. Seasonal evolution mechanism of the East Asian winter monsoon and its interannual variability

    NASA Astrophysics Data System (ADS)

    Kim, Yoojin; Kim, Kwang-Yul; Jhun, Jong-Gap

    2013-09-01

    This study investigates the space-time evolution of the East Asian winter monsoon (EAWM) and its relationship with other climate subsystems. Cyclostationary Empirical Orthogonal Function (CSEOF) analysis and the multiple regression method are used to delineate the detailed evolution of various atmospheric and surface variables in connection with the EAWM. The 120 days of winter (November 17-March 16) per year over 62 years (1948-2010) are analyzed using the NCEP daily reanalysis dataset. The first CSEOF mode of 850-hPa temperatures depicts the seasonal evolution of the EAWM. The contrast in heat capacity between the continent and the northwestern Pacific results in a differential heating in the lower troposphere. Its temporal evolution drives the strengthening and weakening of the Siberian High and the Aleutian Low. The anomalous sea level pressure pattern dictates anomalous circulation, in compliance with the geostrophic relationship. Thermal advection, in addition to net surface radiation, partly contributes to temperature variations in winter. Latent and sensible heat fluxes (thermal forcing from the ocean to the atmosphere) increase with decreased thermal advection. Anomalous upper-level circulation is closely linked to the low-level temperature anomaly in terms of the thermal wind equation. The interannual variability of the seasonal cycle of the EAWM is strongly controlled by the relative strength of the Siberian High to the Aleutian Low. A stronger than normal gradient between the two pressure systems amplifies the seasonal cycle of the EAWM. The EAWM seasonal cycle in the mid-latitude region exhibits a weak negative correlation with the Arctic Oscillation and the East Atlantic/West Russia indices.

  4. Variability of Indian summer monsoon over the past 252 kyr revealed by stalagmite record in Southwest China

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Fung, I. Y.; Edwards, R.; An, Z.; Cheng, H.; Lee, J.

    2013-12-01

    Multiple proxies obtained from Arabian Sea sediments have revealed the variability of Indian summer Monsoon (ISM) on time scale of 100-105 years. These proxies mainly capture summertime winds over the Arabian Sea and our understanding of Indian summer monsoon precipitation variability; and the relationship between paleo-ISM and paleo East Asia summer monsoon (EASM) lacks precise articulation, however, due to the scarcity of high-resolution precipitation records spanning a glacial-interglacial cycle. Here, we present an absolutely-dated oxygen isotope record from stalagmites in Xiaobailong (XBL) cave, southwestern China, that documents the variability in local precipitation and the ISM for the past 252,000 years. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial-interglacial variations that are consistent with marine and other terrestrial proxies. The distinct glacial-interglacial range in XBL δ18O is larger than that of speleothem records from eastern China. Corroborated with results from an isotope-enabled global climate model, we hypothesize that these dissimilarities may reflect the different responses of ISM and EASM to changes in global circulation and moisture source, in particular those caused by glacial-interglacial sea-land configuration changes as manifested by notable coastline shifts in the Western Pacific and Maritime Continent.

  5. Impact of the modulated annual cycle and intraseasonal oscillation on daily-to-interannual rainfall variability across monsoonal India

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Robertson, Andrew W.; Ghil, Michael

    2012-06-01

    Variability of the Indian summer monsoon is decomposed into an interannually modulated annual cycle (MAC) and a northward-propagating, intraseasonal (30-60-day) oscillation (ISO). To achieve this decomposition, we apply multi-channel singular spectrum analysis (M-SSA) simultaneously to unfiltered daily fields of observed outgoing long-wave radiation (OLR) and to reanalyzed 925-hPa winds over the Indian region, from 1975 to 2008. The MAC is essentially given by the year-to-year changes in the annual and semi-annual components; it displays a slow northward migration of OLR anomalies coupled with an alternation between the northeast winter and southwest summer monsoons. The impact of these oscillatory modes on rainfall is then analyzed using a 1-degree gridded daily data set, focusing on Monsoonal India (north of 17°N and west of 90°E) during the months of June to September. Daily rainfall variability is partitioned into three states using a Hidden Markov Model. Two of these states are shown to agree well with previous classifications of "active" and "break" phases of the monsoon, while the third state exhibits a dipolar east-west pattern with abundant rainfall east of about 77°E and low rainfall to the west. Occurrence of the three rainfall states is found to be an asymmetric function of both the MAC and ISO components. On average, monsoon active phases are favored by large positive anomalies of MAC, and breaks by negative ones. ISO impact is decisive when the MAC is near neutral values during the onset and withdrawal phases of the monsoon. Active monsoon spells are found to require a synergy between the MAC and ISO, while the east-west rainfall dipole is less sensitive to interactions between the two. The driest years, defined from spatially averaged June-September rainfall anomalies, are found to be mostly a result of breaks occurring during the onset and withdrawal stages of the monsoon, e.g., mid-June to mid-July, and during September. These breaks are in turn

  6. The detection of post-monsoon tropospheric ozone variability over south Asia using IASI data

    NASA Astrophysics Data System (ADS)

    Barret, B.; Le Flochmoen, E.; Sauvage, B.; Pavelin, E.; Matricardi, M.; Cammas, J. P.

    2011-03-01

    The ozone (O3) variability over south Asia during the 2008 post-monsoon season has been assessed using measurements from the MetOP-A/IASI instrument and O3 profiles retrieved with the SOftware for a Fast Retrieval of IASI Data (SOFRID). The information content study and error analyses carried out in this paper show that IASI Level 1 data can be used to retrieve tropospheric O3 columns (surface-225 hPa) and UTLS columns (225-70 hPa) with errors smaller than 20%. Validation with global radiosonde O3 profiles obtained during a period of 6 months show the excellent agreement between IASI and radiosonde for the UTLS with correlation coefficient R > 0.91 and good agreement in the troposphere with correlation coefficient R > 0.74. For both the UTLS and the troposphere Relative Standard Deviations (RSD) are lower than 23%. The temporal variability of the vertical profile of O3 has first been observed locally near Hyderabad in central India with in situ measurements from the MOZAIC program. These measurements obtained from airborne instruments show that tropospheric O3 is steadily elevated during most of the studied period with the exception of two sharp drops following the crossing of tropical storms over India. Lagrangian simulations with the FLEXPART model indicate that elevated O3 concentrations in the middle troposphere near Hyderabad are associated with the transport of UT air-masses that have followed the Subtropical Westerly Jet (SWJ) and subsided over northern India together with boundary layer polluted air-masses transported from the Indo-gangetic plain by the north-easterly trades. Low O3 concentrations result from the uplift and westward transport of pristine air-masses from the marine boundary layer of the Bay of Bengal by tropical storms. In order to extend the analysis of tropospheric O3 variability to the whole of south Asia, we have used IASI-SOFRID O3 data. We show that IASI O3 data around Hyderabad were able to capture the fast variability revealed by

  7. The representation of low-level clouds during the West African monsoon in weather and climate models

    NASA Astrophysics Data System (ADS)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  8. African monsoon variations and persistence of the Megalake Chad during the late Pliocene

    NASA Astrophysics Data System (ADS)

    Contoux, Camille; Ramstein, Gilles; Jost, Anne; Sepulchre, Pierre; Schuster, Mathieu; Braconnot, Pascale

    2013-04-01

    Megalake Chad (MLC) occurrences are widely documented for the mid-Holocene period but also for the Mio-Pliocene (Schuster et al., 2009). From 7 to 3 Ma, analysis of sedimentary deposits of the Djurab desert region show desertic to full-lacustrine facies, suggesting an alternance of dry to wet climates (Schuster, 2002, Schuster et al., 2009), lacustrine conditions being associated to fauna dispersal and early hominid presence (e.g. Brunet et al., 1995, 2002). Some studies (e.g. Braconnot and Marti, 2003) suggest a control of precession on monsoon. Using late Pliocene climate simulations and different orbital configurations, can we constrain variations of the Megalake and reach the water volume of 350 000 km² proposed by several authors (Ghienne et al., 2002; Leblanc et al., 2006)? Can we propose a timing for the MLC occurrences? First, in order to better characterize the precession role on Megalake Chad occurrences during the late Pliocene, we use the IPSLCM5A coupled ocean atmosphere climate model forced with four different orbital configurations and mid-Pliocene boundary conditions. The four orbital configurations, all around 3 Ma, correspond to maximum and minimum insolations at 30°N at summer solstice or autumn equinox. We find important increases of precipitation in North Africa, controlled by insolation maxima at 30°N at summer solstice and autumn equinox, i.e. related to an angular precession between 270° and 10°. When used to force a surface routing model (HYDRA, Coe, 2000), these precipitation increases lead to MLC episodes, suggesting the MLC could be sustained during at least 5 kyr of a precession cycle. However, this method does not account for the lake feedback on climate. Indeed, during wet phases, the MLC becomes an important evaporation source, modifying the climate of the Chad basin. To investigate this aspect, we use the LMDZ4 atmospheric model including an open water surface module (Krinner, 2003). We find that deep convection is suppressed

  9. Rainfall variability over South-east Asia - connections with Indian monsoon and ENSO extremes: new perspectives

    NASA Astrophysics Data System (ADS)

    Kripalani, R. H.; Kulkarni, Ashwini

    1997-09-01

    Seasonal and annual rainfall data for 135 stations for periods varying from 25 to 125 years are utilized to investigate and understand the interannual and short-term (decadal) climate variability over the South-east Asian domain. Contemporaneous relations during the summer monsoon period (June to September) reveal that the rainfall variations over central India, north China, northern parts of Thailand, central parts of Brunei and Borneo and the Indonesian region east of 120°E vary in phase. However, the rainfall variations over the regions surrounding the South China Sea, in particular the north-west Philippines, vary in the opposite phase. Possible dynamic causes for the spatial correlation structure obtained are discussed.Based on the instrumental data available and on an objective criteria, regional rainfall anomaly time series for contiguous regions over Thailand, Malaysia, Singapore, Brunei, Indonesia and Philippines are prepared. Results reveal that although there are year-to-year random fluctuations, there are certain epochs of the above- and below-normal rainfall over each region. These epochs are not forced by the El Niño/La Nina frequencies. Near the equatorial regions the epochs tend to last for about a decade, whereas over the tropical regions, away from the Equator, epochs last for about three decades. There is no systematic climate change or trend in any of the series. Further, the impact of El Niño (La Nina) on the rainfall regimes is more severe during the below (above) normal epochs than during the above (below) normal epochs. Extreme drought/flood situations tend to occur when the epochal behaviour and the El Niño/La Nina events are phase-locked.

  10. Multi-Decadal Modulations in the Variability of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Machimura, T.; Ogawa, S.; Kosaka, Y.; Nishii, K.; Miyasaka, T.

    2015-12-01

    The East Asian summer monsoon fluctuates from its climatological activity on monthly and interannual time scales, and the most dominant pattern of the variability is known as the Pacific-Japan (PJ) pattern. Characterized by a meridional teleconnection in anomalous activity of the Meiyu/Baiu rainband, tropical storms and a surface subtropical anticyclone (the Bonin High) in between, the PJ pattern exerts substantial influence on summertime climatic conditions over East Asia and the western North Pacific. Despite the recent warming trend observed in its background state, no assessment thus far has been made on how substantially the PJ has undergone, if any, multi-decadal modulations in its structure and/or dominance. Through an EOF analysis applied to a new dataset of global atmospheric reanalysis (JRA-55), the predominance of the PJ pattern is confirmed as being extracted in the leading EOF of lower-tropospheric monthly vorticity anomalies over 55 recent years. Both efficient barotropic/baroclinic energy conversion from the climatological-mean state and efficient generation of available potential energy through anomalous convective activity over the tropical western Pacific are shown to be essential for the maintenance of the monthly atmospheric anomalies of the PJ pattern over the entire 55-year period. At the same time, however, the same EOF analysis as above but applied separately to each of the sub-periods reveals a distinct signature of long-term modulations in amplitude and thus the dominance of the PJ pattern. While being extracted in the first EOF up to the 1980s, the PJ pattern is extracted in the second EOF in the period since the 1990s with marked reductions in both the variance fraction explained and the efficiency of energy conversion/generation. The resultant modulations of the summertime meridional teleconnection are also discussed with implications for future changes.

  11. Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers

    NASA Astrophysics Data System (ADS)

    Grießinger, Jussi; Bräuning, Achim; Helle, Gerd; Thomas, Axel; Schleser, Gerhard

    2011-02-01

    Recent warming in High Asia might have a strong impact on Asian summer monsoon variability with consequences for the hydrological cycle. Based on correlations between climate data, the tree-ring δ18O of high-elevation junipers is an indicator of August precipitation. Thus, our 800-year long annually resolved oxygen isotope series reflects long-term variations in summer monsoon activity on the southern Tibetan plateau. Summer precipitation was reduced during 13th-15th centuries and since the 19th century, whereas the Little Ice Age period (15th-19th century) was rather moist. The late 20th century was among the driest periods during the past 800 years, showing a tendency to slightly wetter conditions after AD 1990.

  12. Evaluation of Boreal Summer Monsoon Intraseasonal Variability in the GASS-YOTC Multi-Model Physical Processes Experiment

    NASA Astrophysics Data System (ADS)

    Mani, N. J.; Waliser, D. E.; Jiang, X.

    2014-12-01

    While the boreal summer monsoon intraseasonal variability (BSISV) exerts profound influence on the south Asian monsoon, the capability of present day dynamical models in simulating and predicting the BSISV is still limited. The global model evaluation project on vertical structure and diabatic processes of the Madden Julian Oscillations (MJO) is a joint venture, coordinated by the Working Group on Numerical Experimentation (WGNE) MJO Task Force and GEWEX Atmospheric System Study (GASS) program, for assessing the model deficiencies in simulating the ISV and for improving our understanding of the underlying processes. In this study the simulation of the northward propagating BSISV is investigated in 26 climate models with special focus on the vertical diabatic heating structure and clouds. Following parallel lines of inquiry as the MJO Task Force has done with the eastward propagating MJO, we utilize previously proposed and newly developed model performance metrics and process diagnostics and apply them to the global climate model simulations of BSISV.

  13. South American Monsoon variability during the past 2,000 years from stable isotopic proxies and model simulations

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Cruz, F. W.; Abbott, M.; Bird, B. W.; Burns, S. J.; Cheng, H.; Colose, C. M.; Kanner, L. C.; LeGrande, A. N.; Novello, V. F.; Taylor, B. L.

    2012-12-01

    The rapidly growing number of high-resolution stable isotopic proxies from speleothems, ice cores and lake sediments, located in the South American summer monsoon (SASM) belt, will soon allow for a comprehensive analysis of climate variability in the South American tropics and subtropics over the past ~ 2000 years. In combination with isotope-enabled General Circulation Models (GCMs) this offers new prospects for better understanding the spatiotemporal dynamics of the South American monsoon system and for diagnosing its sensitivities to external forcing mechanisms (solar, volcanic) and modes of ocean-atmosphere variability (e.g. ENSO and AMO). In this presentation we will discuss the rationale for interpreting isotopic excursions recorded in various proxies from the Andes, northeastern and southeastern Brazil as indicative of changes in monsoon intensity. We will focus on the past 2 millenia when isotopic proxies from the SASM region show a very coherent behavior regardless of the type of archive or their location. All proxies exhibit significant decadal to multidecadal variability, superimposed on large excursions during three key periods, the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the Current Warm Period (CWP). We interpret these three periods as times when the SASM mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative delta-18O values recorded during the entire record length. On the other hand the monsoon strength is currently rather weak in a 2000- year historical perspective, rivaled only by the low intensity during the MCA. One interpretation of these centennial-scale climate anomalies suggests that they were at least partially driven by temperature changes in the northern hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity and degree of

  14. Coupled land-ocean-atmosphere processes and South asian monsoon variability.

    PubMed

    Meehl, G A

    1994-10-14

    Results from a global coupled ocean-atmosphere climate model and a model with specified tropical convective heating anomalies show that the South Asian monsoon was an active part of the tropical biennial oscillation (TBO). Convective heating anomalies over Africa and the western Pacific Ocean associated with the TBO altered the simulated pattern of atmospheric circulation for the Northern Hemisphere winter mid-latitude over Asia. This alteration in the mid-latitude circulation maintained temperature anomalies over South Asia through winter and helped set up the land-sea temperature contrast for subsequent monsoon development. South Asian snow cover contributed to monsoon strength but was symptomatic of the larger scale alteration in the mid-latitude atmospheric circulation pattern. PMID:17771448

  15. A 5000 Year Record of Andean South American Summer Monsoon Variability from Laguna de Ubaque, Colombia

    NASA Astrophysics Data System (ADS)

    Rudloff, O. M.; Bird, B. W.; Escobar, J.

    2014-12-01

    Our understanding of Northern Hemisphere South American summer monsoon (SASM) dynamics during the Holocene has been limited by the small number of terrestrial paleoclimate records from this region. In order to increase our knowledge of SASM variability and to better inform our predictions of its response to ongoing rapid climate change, we require high-resolution paleoclimate records from the Northern Hemisphere Andes. To this end, we present sub-decadally resolved sedimentological and geochemical data from Laguna de Ubaque that spans the last 5000 years. Located in the Eastern Cordillera of the Colombian Andes, Laguna de Ubaque (2070 m asl) is a small, east facing moraine-dammed lake in the upper part of the Rio Meta watershed near Bogotá containing finely laminated clastic sediments. Dry bulk density, %organic matter, %carbonate and magnetic susceptibility (MS) results from Ubaque suggest a period of intense precipitation between 3500 and 2000 years BP interrupted by a 300 yr dry interval centered at 2700 years BP. Following this event, generally drier conditions characterize the last 2000 years. Although considerably lower amplitude than the middle Holocene pluvial events, variability in the sedimentological data support climatic responses during the Medieval Climate Anomaly (MCA; 900 to 1200 CE) and Little Ice Age (LIA; 1450 to 1900 CE) that are consistent with other records of local Andean conditions. In particular, reduced MS during the MCA suggests a reduction in terrestrial material being washed into the lake as a result of generally drier conditions. The LIA on the other hand shows a two phase structure with increased MS between 1450 and 1600 CE, suggesting wetter conditions during the onset of the LIA, and reduced MS between 1600 and 1900 CE, suggesting a return to drier conditions during the latter part of the LIA. These LIA trends are similar to the Quelccaya accumulation record, possibly supporting an in-phase relationship between the South American

  16. Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-03-01

    Using observation-based analyses, this study identifies the leading interannual pattern of the Indian summer monsoon rainfall (ISMR) independent of ENSO and examines the potential mechanisms of its formation. For this purpose, an objective procedure is used to isolate the variability of the summer precipitation associated with the contemporary ENSO state and in previous winter-spring, which influence the Indian summer monsoon (ISM) region in opposite ways. It is shown that the leading pattern of these ENSO-related monsoon rainfall anomalies reproduces some major ISMR features and well represents its connections to the global-scale ENSO features in both lower and upper troposphere. On the other hand, the leading pattern derived from the precipitation anomalies with the ENSO component removed in the ISM and surrounding region also accounts for a substantial amount of the monsoon precipitation centered at the eastern coast of the subtropical Arabian Sea, extending into both the western Indian Ocean and the Indian subcontinent. The associated atmospheric circulation change is regional in nature, mostly confined in the lower to mid troposphere centered in the Arabian Sea, with a mild connection to an opposite tendency centered at the South China Sea. Further analyses show that this regional pattern is associated with a thermodynamic air-sea feedback during early to mid summer season. Specifically, before the monsoon onset, an anomalous atmospheric high pressure over the Arabian Sea causes excessive shortwave radiation to the sea surface and increases SST in May. The warm SST anomalies peak in June and reduce the sea level pressure. The anomalous cyclonic circulation generates regional convection and precipitation, which also induces subsidence and anticyclonic circulation over the South China Sea. The combined cyclonic-anticyclonic circulation further transport moisture from the western Pacific into the Indian Ocean and causes its convergence into the Arabian Sea. As a

  17. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Wang, Yongjin; Cheng, Hai; Edwards, Richard Lawrence; Shen, Chuan-Chou; Liu, Dianbing; Shao, Qingfeng; Deng, Chao; Zhang, Zhenqiu; Wang, Quan

    2016-07-01

    We present two isotopic (δ18O and δ13C) sequences of a twin-stalagmite from Zhuliuping Cave, southwestern China, with 230Th dates from 14.6 to 4.6 ka. The stalagmite δ18O record characterizes orbital- to decadal-scale variability of Asian summer monsoon (ASM) intensity, with the Holocene optimum period (HOP) between 9.8 and 6.8 ka BP which is reinforced by its co-varying δ13C data. The large multi-decadal scale amplitude of the cave δ18O indicates its high sensitivity to climate change. Four centennial-scale weak ASM events during the early Holocene are centered at 11.2, 10.8, 9.1 and 8.2 ka. They can be correlated to cold periods in the northern high latitudes, possibly resulting from rapid dynamics of atmospheric circulation associated with North Atlantic cooling. The 8.2 ka event has an amplitude more than two-thirds that of the Younger Dryas (YD), and is significantly stronger than other cave records in the Asia monsoon region, likely indicating a more severe dry climate condition at the cave site. At the end of the YD event, the δ13C record lags the δ18O record by 300-500 yr, suggesting a multi-centennial slow response of vegetation and soil processes to monsoon enhancement.

  18. Response of Asian summer monsoon duration to orbital forcing under glacial and interglacial conditions: Implication for precipitation variability in geological records

    NASA Astrophysics Data System (ADS)

    Shi, Zhengguo

    2016-05-01

    The responses of Asian summer monsoon and associated precipitation to orbital forcing have been intensively explored during the past 30 years, but debate still exists regarding whether or not the Asian monsoon is controlled by northern or southern summer insolation on the precessional timescale. Various modeling studies have been conducted that support the potential roles played by the insolation in both hemispheres. Among these previous studies, however, the main emphasis has been on the Asian monsoon intensity, with the response of monsoon duration having received little consideration. In the present study, the response of the rainy season duration over different monsoon areas to orbital forcing and its contribution to total annual precipitation are evaluated using an atmospheric general circulation model. The results show that the durations of the rainy seasons, especially their withdrawal, in northern East Asia and the India-Bay of Bengal region, are sensitive to precession change under interglacial-like conditions. Compared to those during stronger boreal summer insolation, the Asian monsoon-associated rainy seasons at weaker insolation last longer, although the peak intensity is smaller. This longer duration of rainfall, which results from the change in land-ocean thermal contrast associated with atmospheric diabatic heating, can counterbalance the weakened intensity in certain places and induce an opposite response of total annual precipitation. However, the duration effect of Asian monsoon is limited under glacial-like conditions. Nevertheless, monsoon duration is a factor that can dominate the orbital-scale variability of Asian monsoon, alongside the intensity, and it should therefore receive greater attention when attempting to explain orbital-scale monsoon change.

  19. Tropospheric Ozone Variability during the East Asian Summer Monsoon as Observed by Satellite (IASI), Aircraft (MOZAIC) and Ground Stations

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Boynard, A.; Hao, N.; Huang, F.; Wang, L.; Ji, D.; Barret, B.; Ghude, S. D.; Coheur, P.-F.; Hurtmans, D.; Clerbaux, C.

    2015-11-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), the Measurements of OZone and water vapor by in-service AIrbus airCraft (MOZAIC), as well as observations from ground based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years [2008-2013] of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon reflected by a decrease in the tropospheric [0-6] km O3 column due to the EASM, and to reproduce this decrease from one year to the other. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric [0-6] km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC project at Hyderabad, Nanjing and Guangzhou are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.74 between the [0-6] km O3 column derived from IASI and MOZAIC. The aircraft data show a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at Hyderabad than at the other two Chinese cities. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  20. Spatiotemporal variability of hypoxia and eutrophication in Manila Bay, Philippines during the northeast and southwest monsoons.

    PubMed

    Sotto, Lara Patricia A; Jacinto, Gil S; Villanoy, Cesar L

    2014-08-30

    Hypoxia in Manila Bay, Philippines was previously reported during the northeast monsoon (dry season) in February 2010. In this study, four more field surveys of the same 31 stations were conducted in July 2010, August 2011 and 2012 (wet season, southwest monsoon), and February 2011 (dry season, northeast monsoon). During the wet season, bottom hypoxia spread northward towards the coast with dissolved oxygen (DO) ranging from 0.12 to 9.22 mg/L and the bay-wide average reaching 2.10 mg/L. Nutrient levels were elevated, especially near the bottom where dissolved inorganic nitrogen reached 22.3 μM (July 2010) and phosphorus reached 5.61 μM (August 2011). High nutrient concentrations often coincided with low near-bottom DO content. Our work builds on the preliminary assessment of hypoxia in Manila Bay, the importance of repeated temporal studies, and shows hypoxia to prevail significantly during the southwest monsoon (wet season) when increased freshwater discharge caused strong water column stratification. PMID:24655947

  1. Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene

    NASA Astrophysics Data System (ADS)

    Kuhnt, Wolfgang; Holbourn, Ann; Xu, Jian; Opdyke, Bradley; de Deckker, Patrick; Röhl, Ursula; Mudelsee, Manfred

    2015-01-01

    The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.

  2. Interannual variability of North American Monsoon hydroclimate and application to water management in the Pecos River Basin

    NASA Astrophysics Data System (ADS)

    Grantz, Katrina Amelia

    2006-12-01

    The North American Monsoon (NAM) is the large-scale atmospheric circulation system responsible for up to 55% of the annual precipitation in the southwestern U.S. These summer thunderstorms, however, are highly variable and predicting the variability in the strength, location, and timing of monsoonal precipitation and streamflow is understandably very important for efficient water resources management. This research, comprised of three main components, analyzes the spatial and temporal variability of NAM precipitation and streamflow; and using this information it develops a statistical forecasting framework which is then integrated with a decision support system to evaluate water management strategies on the Pecos River Basin. First, the interannual variability of precipitation and streamflow in the NAM region of southwest U.S. is studied and large-scale and local climate features that drive the variability are diagnosed using robust Spearman rank correlation analysis and Kendall Theil slope estimators. These analyses led to the proposal of the following hypothesis: antecedent Pacific sea surface temperatures (SSTs) modulate the winter/spring hydroclimate and land conditions of the NAM region, thus playing an important role in setting up the land-ocean temperature gradient (the key driver of the NAM), and, consequently, in modulating monsoonal rainfall and precipitation. This offers increased hopes of long-lead forecasts of summer hydrologic conditions in the NAM region. The second component of this study develops a framework for generating ensemble forecasts of spring and summer streamflow at five lead times using the large-scale climate information obtained from the diagnostics. In the third, and final, component of this study, streamflow exceedance probabilities calculated from the ensemble forecasts are used in a decision support system, modeled with RiverWare, to evaluate various water management options for reservoir releases, irrigation diversions and inter

  3. Intraseasonal-to-interannual variability of the Indian Monsoon: the present climate and future projections of climate change

    NASA Astrophysics Data System (ADS)

    Carvalho, L. V.; Jones, C.; Cannon, F.

    2014-12-01

    The Asia Monsoon is among Earth's most intriguing and spectacular phenomena. The Indian Monsoon System (IMS) is a regional manifestation this continental-scale phenomenon with complex characteristics and predictive challenges. India exhibits one of the largest rates of population growth that relies on IMS cycle for water supply. Thus, understanding the temporal variability of the IMS is essential to realistically predict the impacts of climate change on Asia's water resources and food security. Here we investigate intraseasonal-to-interannual variability of the IMS in the climate of the 20th century using the Climate Forecast System Reanalysis (CFSR) and examine future scenarios of climate change using the high spatial resolution models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) project. IMS is characterized with a large-scale index continuous in time and obtained by performing combined EOF analysis (CEOF) of variables that characterize the monsoon cycle: precipitation, low level circulation at 10 m, specific humidity and temperature at 2m. CFSR is used to derive the index (1979-2013). Projections of the CEOF onto the tropical rainfall measuring mission (TRMM) indicate that the first CEOF captures the large-scale features of the South and East Asia Monsoon. The second CEOF is associated with the IMS and its time coefficient is used as large-scale index for the IMS (LIMS). LIMS realistically defines IMS onset and withdrawal, and its amplitude associates with total seasonal precipitation. Moreover, the spectral analysis of the ISMI shows peaks on intraseasonal timescales that are related to IMS's active and break phases. Moreover, we demonstrate that LIMS identifies the interannual variability of IMS and can be used to investigate floods and droughts that have occurred over India. Similar approach is used to investigate the skill of the CMIP5 models in realistically simulating active and break phases of the IMS in the 'historic' run (1951-2005). We

  4. Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition

    NASA Astrophysics Data System (ADS)

    Strutton, P. G.; Coles, V. J.; Hood, R. R.; Matear, R. J.; McPhaden, M. J.; Phillips, H. E.

    2015-04-01

    In this paper we examine time-series measurements of near-surface chlorophyll concentration from a mooring that was deployed at 80.5°E on the equator in the Indian Ocean in 2010. These data reveal at least six striking spikes in chlorophyll from October through December, at approximately 2-week intervals, that coincide with the development of the fall Wyrtki jets during the transition between the summer and winter monsoons. Concurrent meteorological and in situ physical measurements from the mooring reveal that the chlorophyll pulses are associated with the intensification of eastward winds at the surface and eastward currents in the mixed layer. These observations are inconsistent with upwelling dynamics as they occur in the Atlantic and Pacific oceans, since eastward winds that force Wyrtki jet intensification should drive downwelling. The chlorophyll spikes could be explained by two alternative mechanisms: (1) turbulent entrainment of nutrients and/or chlorophyll from across the base of the mixed layer by wind stirring or Wyrtki jet-induced shear instability or (2) enhanced southward advection of high chlorophyll concentrations into the equatorial zone. The first mechanism is supported by the phasing and amplitude of the relationship between wind stress and chlorophyll, which suggests that the chlorophyll spikes are the result of turbulent entrainment driven by synoptic zonal wind events. The second mechanism is supported by the observation of eastward flows over the Chagos-Laccadive Ridge, generating high chlorophyll to the north of the equator. Occasional southward advection can then produce the chlorophyll spikes that are observed in the mooring record. Wind-forced biweekly mixed Rossby gravity waves are a ubiquitous feature of the ocean circulation in this region, and we examine the possibility that they may play a role in chlorophyll variability. Statistical analyses and results from the OFAM3 (Ocean Forecasting Australia Model, version 3) eddy

  5. Climatology and variability of historical Soviet snow depth data: some new perspectives in snow - Indian monsoon teleconnections

    NASA Astrophysics Data System (ADS)

    Kripalani, R. H.; Kulkarni, A.

    This study presents the monthly climatology and variability of the historical soviet snow depth data. This data set was developed under the bilateral data exchange agreement between United States of America and the former Union of Soviet Socialist Republics. The original data is for 284 stations for periods varying from 1881 upto 1985. The seasonal cycle of the mean snow depth has been presented both as spatial maps and as averages over key locations. The deepest snow (=80 cms/day) areas are found over Siberia (in Particular over 80'-100'E, 55'-70'N) during March. Over the course of the annual cycle average snow depth over this region changes dramatically from about 10 cms in October to about 80 cms in March. The variability is presented in the form of spatial maps of standard deviation. To investigate the interaction of snow depth with Indian monsoon rainfall (IMR), lag and lead correlation coefficients are computed. Results reveal that the winter-time snow depth over western Eurasia surrounding Moscow (eastern Eurasia in central Siberia) shows significant negative (positive) relationship with subsequent IMR. Following the monsoon the signs of relationship reverse over both the regions. This correlation structure is indicative of a midlatitude longwave pattern with an anomalous ridge (trough) over Asia during the winter prior to a strong (weak) monsoon. As the time progresses from winter to spring, the coherent areas of significant relationship show southeastward propagation. Empirical orthogonal function analysis of the snow depth reveal that the first mode describes a dipole-type structure with one centre around Moscow and the other over central Siberia, depicting similar pattern as the spatial correlation structure. The decadal-scale IMR variations seem to be more associated with the Northern Hemisphere midlatitude snow depth variations rather than with the tropical ENSO (El Nino Southern Oscillation) variability.

  6. Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Li, R.; Jin, J.; Wang, S.-Y.; Gillies, R. R.

    2015-03-01

    Precipitation from the West African Monsoon (WAM) provides food security and supports the economy in the region. As a consequence of the intrinsic complexities of the WAM's evolution, accurate simulations of the WAM and its precipitation regime, through the application of regional climate models, are challenging. We used the coupled Weather Research and Forecasting (WRF) and Community Land Model (CLM) to explore impacts of radiation physics on the precipitation and dynamics of the WAM. Our results indicate that the radiation physics schemes not only produce biases in radiation fluxes impacting radiative forcing, but more importantly, result in large bias in precipitation of the WAM. Furthermore, the different radiation schemes led to variations in the meridional gradient of surface temperature between the north that is the Sahara desert and the south Guinean coastline. Climate diagnostics indicated that the changes in the meridional gradient of surface temperature affect the position and strength of the African Easterly Jet as well as the low-level monsoonal inflow from the Gulf of Guinea. The net result was that each radiation scheme produced differences in the WAM precipitation regime both spatially and in intensity. Such considerable variances in the WAM precipitation regime and dynamics, resulting from radiation representations, likely have strong feedbacks within the climate system and so have inferences when it comes to aspects of predicted climate change both for the region and globally.

  7. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration

    NASA Astrophysics Data System (ADS)

    Tierney, Jessica E.; Russell, James M.

    2007-08-01

    The timing and magnitude of abrupt climate change in tropical Africa during the last glacial termination remains poorly understood. High-resolution paleolimnological data from Lake Tanganyika, Southeast Africa show that wind-driven seasonal mixing in the lake was reduced during the Younger Dryas, Inter-Allerød Cool Period, Older Dryas, and Heinrich Event 1, suggesting a weakened southwest Indian monsoon and a more southerly position of the Inter-Tropical Convergence Zone over Africa during these intervals. These events in Lake Tanganyika, coeval with millennial and centennial-scale climate shifts in the high latitudes, suggest that changes in ITCZ location and Indian monsoon strength are important components of abrupt global climate change and that their effects are felt south of the equator in Africa. However, we observe additional events in Lake Tanganyika of equal magnitude that are not correlated with high-latitude changes, indicating the potential for abrupt climate change to originate from within tropical systems.

  8. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological

  9. A ˜25 ka Indian Ocean monsoon variability record from the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Rashid, H.; Flower, B. P.; Poore, R. Z.; Quinn, T. M.

    2007-10-01

    Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ 18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ 18O of seawater (δ 18O sw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ˜3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ 18O sw exhibited higher than present values during the Lateglacial interval ca 19-15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ 18O sw values during the BØlling/AllerØd ca 14.5-12.6 ka BP and during the early Holocene ca 10.8-5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation-precipitation (E-P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.

  10. Meridional Propagation of the MJO/ISO and Asian Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Suarez, Max; Pegion, Phil; Waliser, D.

    2003-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the Asian monsoon. We are particularly interested in isolating the nature of the poleward propagation of the ISO/MJO in the monsoon region. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the idealized 10-member ensemble simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. In order to understand the impact of SST on the off equatorial convection (or Rossby-wave response), a second set of 10-member ensemble simulations is carried out with the climatological SSTs shifted in time by 6-months. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. This includes the well-known meridional propagation that affects the summer monsoons of both hemispheres. The AGCM experiments with the idealized eastward propagating MJO-like heating reproduce the observed meridional propagation including the observed seasonal differences. The impact of the SSTs are to enhance the magnitude of the propagation into the summer hemispheres. The results suggest that the winter/summer differences associated with the MJO/ISO are auxiliary features that depend on the MJO's environment (basic state and boundary conditions) and are not the result of fundamental differences in the MJO itself.

  11. Multi-scale drought and ocean-atmosphere variability in monsoon Asia

    NASA Astrophysics Data System (ADS)

    Hernandez, Manuel; Ummenhofer, Caroline C.; Anchukaitis, Kevin J.

    2015-07-01

    Spatially extensive and persistent drought episodes have repeatedly influenced human history, including the ‘Strange Parallels’ drought event in monsoon Asia during the mid-18th century. Here we explore the dynamics of sustained monsoon failure using observed and tree-ring reconstructed drought patterns and a 1300-year pre-industrial community earth system model control run. Both modern observational and climate model drought patterns during years with extremely weakened South Asian monsoon resemble those reconstructed for the Strange Parallels drought. Model analysis reveals that this pattern arises during boreal spring over Southeast Asia, with decreased precipitation and moisture flux, while related summertime climate anomalies are confined to the Indian subcontinent. Years with simulated South Asian drying exhibit canonical El Niño conditions over the Pacific and associated shifts in the Walker circulation. In contrast, multi-year drought periods, resembling those sustained during the Strange Parallels drought, feature anomalous Pacific warming around the dateline, typical of El Niño Modoki events.

  12. Phenology Analysis of Forest Vegetation to Environmental Variables during - and Post-Monsoon Seasons in Western Himalayan Region of India

    NASA Astrophysics Data System (ADS)

    Khare, S.; Latifi, H.; Ghosh, K.

    2016-06-01

    To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous

  13. Cold air incursions, δ18O variability, and monsoon dynamics associated with snow days at Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Hurley, John V.; Vuille, Mathias; Hardy, Douglas R.; Burns, Stephen J.; Thompson, Lonnie G.

    2015-08-01

    Quelccaya Ice Cap in the Andes of Peru contains an annually resolved δ18O record covering the past 1800 years; yet atmospheric dynamics associated with snow deposition and δ18O variability at this site are poorly understood. Here we make use of 10 years of snow pit and short core δ18O data and hourly snow-height measurements obtained by an automated weather station deployed at the ice cap's summit to analyze linkages between snowfall, δ18O, and the South American summer monsoon (SASM). Snow accumulation peaks in December and is negative May-September. Snow δ18O values decrease gradually through austral summer from about -17 to -24‰. Surface snow δ18O is altered after deposition during austral winter from about -24 to -15‰. More than 70% of the total snow accumulation is tied to convection along the leading edge of cold air incursions of midlatitude air advected equatorward from southern South America. Snowfall amplitude at Quelccaya Ice Cap varies systematically with regional precipitation, atmospheric dynamics, midtroposphere humidity, and water vapor δD. Strongest snowfall gains correspond with positive precipitation anomalies over the western Amazon Basin, increased humidity, and lowered water vapor δD values, consistent with the "amount effect." We discuss ventilation of the monsoon, modulated by midlatitude cold air advection, as potentially diagnostic of the relationship between SASM dynamics and Quelccaya snowfall. Results will serve as a basis for development of a comprehensive isotopic forward model to reconstruct past monsoon dynamics using the ice core δ18O record.

  14. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  15. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea

    USGS Publications Warehouse

    Rashid, H.; Flower, B.P.; Poore, R.Z.; Quinn, T.M.

    2007-01-01

    Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.

  16. Intraseasonal Variability of the South Asian Summer Monsoon: Present-day Simulations with the Regional Atmospheric Model HIRHAM5

    NASA Astrophysics Data System (ADS)

    Hanf, F. S.; Rinke, A.; Dethloff, K.

    2014-12-01

    Since 1950, observations show a robust negative trend of the seasonal rainfall associated with the South Asian summer monsoon over India coinciding with a continuous decrease in surface solar radiation ("dimming") over South Asia due to an increase of local aerosol emissions. On the intraseasonal timescale the summer monsoon fluctuates between periods of enhanced and reduced rainfall. The frequency of occurrence of these active and breaks monsoon phases affects directly the seasonal monsoon rainfall. This study investigates the regional pattern and changes of the South Asian monsoon for the period 1979-2012 using the regional atmospheric model HIRHAM5 with a horizontal resolution of 0.25° forced at the lateral and lower boundaries with ERA-Interim reanalysis data. Despite the dry bias in the mean summer monsoon rainfall over the Indian landmass, the simulated temperature and atmospheric circulation patterns are in agreement with the ERA-Interim reanalysis indicating a realistic representation of important dynamical summer monsoon features. In addition, mechanisms which controls active and break phases within the summer monsoon season are analyzed using daily outgoing longwave radiation model data as an identification tool of monsoon breaks as proposed by Krishnan et al. (2000). Model results reveal an increasing trend of the cumulative monsoon break days of around 1.4 days per year during the last 30 years. The possible link between this increasing of cumulative monsoon break days and the observed decrease of seasonal South Asian monsoon rainfall will be the scope of further investigations.

  17. Subseasonal to multidecadal variability of northeast monsoon daily rainfall over Peninsular Malaysia using a hidden Markov model

    NASA Astrophysics Data System (ADS)

    Tan, Wei Lun; Yusof, Fadhilah; Yusop, Zulkifli

    2016-04-01

    This study involves the modelling of a homogeneous hidden Markov model (HMM) on the northeast rainfall monsoon using 40 rainfall stations in Peninsular Malaysia for the period of 1975 to 2008. A six hidden states HMM was selected based on Bayesian information criterion (BIC), and every hidden state has distinct rainfall characteristics. Three of the states were found to correspond by wet conditions; while the remaining three states were found to correspond to dry conditions. The six hidden states were found to correspond with the associated atmospheric composites. The relationships between El Niño-Southern Oscillation (ENSO) and the sea surface temperatures (SST) in the Pacific Ocean are found regarding interannual variability. The wet (dry) states were found to be well correlated with a Niño 3.4 index which was used to characterize the intensity of an ENSO event. This model is able to assess the behaviour of the rainfall characteristics with the large scale atmospheric circulation; the monsoon rainfall is well correlated with the El Niño-Southern Oscillation in Peninsular Malaysia.

  18. Probabilistic versus Deterministic Skill in Predicting the Western North Pacific- East Asian Summer Monsoon Variability with Multi-Model Ensembles

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, X. Q.; Xie, Q.; Zhang, Y.; Ren, X.; Tang, Y.

    2015-12-01

    Based on the historical forecasts of three quasi-operational multi-model ensemble (MME) systems, this study assesses the superiorities of the coupled MME over its contributing single-model ensembles (SMEs) and over the uncoupled atmospheric MME in predicting the seasonal variability of the Western North Pacific-East Asian summer monsoon. The seasonal prediction skill of the monsoon is measured by Brier skill score (BSS) in the sense of probabilistic forecast as well as by anomaly correlation (AC) in the sense of deterministic forecast. The probabilistic forecast skill of the MME is found to be always significantly better than that of each participating SME, while the deterministic forecast skill of the MME is even worse than that of some SME. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the drastic improvement in reliability, while resolution is not always improved, similar to AC. A monotonous resolution-AC relationship is further found and qualitatively understood, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability possibly arises from an effective reduction of biases and overconfidence in forecast distributions. The coupled MME is much more skillful than the uncoupled atmospheric MME forced by persisted sea surface temperature (SST) anomalies. This advantage is mainly attributed to its better capability in capturing the evolution of the underlying seasonal SST anomaly.

  19. Sensitivity of the East African rift lakes to climate variability

    NASA Astrophysics Data System (ADS)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  20. Impact of Soil Moisture Conditions on Interannual Variability of the Water Balance over the North American Monsoon Region

    NASA Astrophysics Data System (ADS)

    Xu, J.; Small, E.; Lakshmi, V.

    2001-12-01

    In this study, the effects of soil moisture conditions on interannual variability of the water balance over the North American monsoon (NAM) region was investigated using NCAR's MM5/OSU model. Observations and modeling studies suggest that a positive soil moisture-rainfall feedback may be important in magnifying and prolonging hydroclimatic anomalies in a variety of regions. Our preliminary modeling experiments show that the soil moisture-rainfall feedback is strong in the North American Monsoon System (NAMS) region and may contribute to variability of summertime precipitation in this area. However, this result is based on sensitivity experiments using extreme forcing - soil moisture was held at field capacity or wilting point throughout season long simulations. Here we use the MM5 model linked to the OSU land surface scheme to assess the strength of soil moisture-rainfall feedbacks in the NAMS region that result from realistic soil moisture forcing. Simulations are driven by NCEP reanalysis. The horizontal resolution of the finest grid is 30 km. Three member ensemble experiments begin on June 1 and end on October 1. First, we use the coupled MM5/OSU model to simulate NAMS climate and soil moisture in wet (1999) and dry (2000) monsoon seasons. Second, we repeat these two experiments but constrain the precipitation rate in July over the entire NAM region so that it approximates the mean state. This is accomplished by scaling the simulated precipitation at each point so that it is equal to mean observed precipitation at that location. Third, we repeat the 1999 and 2000 experiments but constrain the soil moisture field in July to the climatological mean value from the NCEP reanalysis. Both types of sensitivity experiments preserve the temporal variability of sea surface temperature (SST) in the surrounding oceans. We compare the atmosphere and land surface state in the control and sensitivity experiments. This isolates the effects of soil moisture anomalies on the

  1. Factors Affecting the Inter-annual to Centennial Time Scale Variability of All Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan

    2016-04-01

    The All Indian Summer Monsoon Rainfall (AISMR) is highly important for the livelihood of more than 1 billion people living in the Indian sub-continent. The agriculture of this region is heavily dependent on seasonal (JJAS) monsoon rainfall. An early start or a slight delay of monsoon, or an early withdrawal or prolonged monsoon season may upset the farmer's agricultural plans, can cause significant reduction in crop yield, and hence economic loss. Understanding of AISMR is also vital because it is a part of global atmospheric circulation system. Several studies show that AISMR is influenced by internal climate forcings (ICFs) viz. ENSO, AMO, PDO etc. as well as external climate forcings (ECFs) viz. Greenhouse Gases, volcanic eruptions, and Total Solar Irradiance (TSI). We investigate the influence of ICFs and ECFs on AISMR using recently developed statistical technique called De-trended Partial-Cross-Correlation Analysis (DPCCA). DPCCA can analyse a complex system of several interlinked variables. Often, climatic variables, being cross correlated, are simultaneously tele-connected with several other variables and it is not easy to isolate their intrinsic relationship. In the presence of non-stationarities and background signals the calculated correlation coefficients can be overestimated and erroneous. DPCCA method removes the non-stationarities and partials out the influence of background signals from the variables being cross correlated and thus give a robust estimate of correlation. We have performed the analysis using NOAA Reconstructed SSTs and homogenised instrumental AISMR data set from 1854-1999. By employing the DPCCA method we find that there is a statistically insignificant negative intrinsic relation (by excluding the influence of ICFs, and ECFs except TSI) between AISMR and TSI on decadal to centennial time scale. The ICFs considerably modulate the relation between AISMR and solar activity between 50-80 year time scales and transform this relationship

  2. Variability of Moisture Sources and Moisture Transport in the East Asian Monsoon System

    NASA Astrophysics Data System (ADS)

    Fremme, Astrid; Sodemann, Harald

    2016-04-01

    The rainfall of the East Asian Monsoon is of key importance for livelihoods in the densely populated area of China, Japan and Korea. The interplay of many factors, including land surface processes, makes monsoon precipitation difficult to predict. To contribute to improved precipitation prediction we investigate the atmospheric mechanisms importing moisture to the region. In previous studies moisture transport has mainly been analysed by examining a combination of temperature, pressure, winds and water vapour content. However this has been done without linking precipitation to its moisture sources directly. In this project we use the Lagrangian particle dispersion model FLEXPART and the diagnostic tool WaterSip to analyse ERA Interim reanalysis data to obtain a link between precipitation and its moisture sources. The total atmospheric mass is subdivided into millions air parcels, which are traced backwards for 20 days for each rainfall event in the 34 year ERA-Interim period. Specific humidity changes are interpreted as evaporation and precipitation in the area beneath the parcel with the help of a sophisticated accounting method related to target precipitation. Results on the relationship between source and sink areas reflect changes in the conditions of the source regions and in moisture transport. We investigate the moisture transport mechanisms for both seasonal and inter-annual variations during the study period 1979-2013. Preliminary results show that the sources for precipitation in the Yangtze River Valley (YRV) in China have a clear seasonal cycle in terms of location and evaporation conditions. Land areas outside the YRV Region contribute most of the moisture. The second largest source is inside the YRV region itself. For monthly means the sum of all direct oceanic sources rarely exceeds 20%. Recycling of moisture from land surfaces outside the target regions therefore seems to play a pivotal role in the East Asian Monsoon's moisture budget. Contrasting

  3. Teleconnection Linking Asian/Pacific Monsoon Variability and Summertime Droughts and Floods Over the United States

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Hengyi

    2000-01-01

    Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.

  4. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y

    PubMed Central

    Cai, Yanjun; Fung, Inez Y.; Edwards, R. Lawrence; An, Zhisheng; Cheng, Hai; Lee, Jung-Eun; Tan, Liangcheng; Shen, Chuan-Chou; Wang, Xianfeng; Day, Jesse A.; Zhou, Weijian; Kelly, Megan J.; Chiang, John C. H.

    2015-01-01

    A speleothem δ18O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial–interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the “land bridge” in the Maritime continents in the western equatorial Pacific. PMID:25713347

  5. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y.

    PubMed

    Cai, Yanjun; Fung, Inez Y; Edwards, R Lawrence; An, Zhisheng; Cheng, Hai; Lee, Jung-Eun; Tan, Liangcheng; Shen, Chuan-Chou; Wang, Xianfeng; Day, Jesse A; Zhou, Weijian; Kelly, Megan J; Chiang, John C H

    2015-03-10

    A speleothem δ(18)O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial-interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the "land bridge" in the Maritime continents in the western equatorial Pacific. PMID:25713347

  6. Radiative impact of mineral dust on monsoon precipitation variability over West Africa

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Hagos, Samson M.

    2011-03-01

    The radiative forcing of dust and its impact on precipitation over the West Africa monsoon (WAM) region is simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem). During the monsoon season, dust is a dominant contributor to AOD over West Africa. In the standard simulation, on 24-hour domain average, dust has a cooling effect (-6.11 W/m2) at the surface, a warming effect (6.94 W/m2) in the atmosphere, and a relatively small TOA forcing (0.83 W/m2). Dust modifies the surface energy budget and atmospheric diabatic heating and hence causes lower atmospheric cooling in the daytime but warming in the nighttime. As a result, atmospheric stability is increased in the daytime and reduced in the nighttime, leading to a reduction of late afternoon precipitation by up to 0.14 mm/hour (30%) and an increase of nocturnal and early morning precipitation by up to 0.04 mm/hour (23%) over the WAM region. Dust-induced reduction of diurnal precipitation variation improves the simulated diurnal cycle of precipitation when compared to measurements. However, daily precipitation is only changed by a relatively small amount (-0.14 mm/day or -4%). On the other hand, sensitivity simulations show that, for weaker-to-stronger absorbing dust, dust longwave warming effect in the nighttime surpasses its shortwave cooling effect in the daytime at the surface, leading to a less stable atmosphere associated with more convective precipitation in the nighttime. As a result, the dust-induced change of daily WAM precipitation varies from a significant reduction of -0.40 mm/day (-12%, weaker absorbing dust) to a small increase of 0.05 mm/day (1%, stronger absorbing dust). This variation originates from the competition between dust impact on daytime and nighttime precipitation, which depends on dust shortwave absorption. Dust reduces the diurnal variation of precipitation regardless of its absorptivity, but more reduction is associated with stronger absorbing dust.

  7. Evaluation of mean and intraseasonal variability of Indian summer monsoon simulation in ECHAM5: identification of possible source of bias

    NASA Astrophysics Data System (ADS)

    Abhik, S.; Mukhopadhyay, P.; Goswami, B. N.

    2014-07-01

    The performance of ECHAM5 atmospheric general circulation model (AGCM) is evaluated to simulate the seasonal mean and intraseasonal variability of Indian summer monsoon (ISM). The model is simulated at two different vertical resolutions, with 19 and 31 levels (L19 and L31, respectively), using observed monthly mean sea surface temperature and compared with the observation. The analyses examine the biases present in the internal dynamics of the model in simulating the mean monsoon and the evolution of the boreal summer intraseasonal oscillation (BSISO) and attempts to unveil the reason behind them. The model reasonably simulates the seasonal mean-state of the atmosphere during ISM. However, some notable discrepancies are found in the simulated summer mean moisture and rainfall distribution. Both the vertical resolutions, overestimate the seasonal mean precipitation over the oceanic regions, but underestimate the precipitation over the Indian landmass. The performance of the model improves with the increment of the vertical resolution. The AGCM reasonably simulates some salient features of BSISO, but fails to show the eastward propagation of the convection across the Maritime Continent in L19 simulation. The propagation across the Maritime Continent and tilted rainband structure improve as one moves from L19 to L31. The model unlikely shows prominent westward propagation that originates over the tropical western Pacific region. L31 also produces some of the observed characteristics of the northward propagating BSISOs. However, the northward propagating convection becomes stationary in phase 5-7. The simulation of shallow diabatic heating structure and the heavy rainfall activity over the Bay of Bengal indicate the abundance of the premature convection-generated precipitation events in the model. It is found that the moist physics is responsible for the poor simulation of the northward propagating convection anomalies.

  8. Moisture variability over the Indo-Pacific region and its influence on the Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ratna, Satyaban B.; Cherchi, Annalisa; Joseph, P. V.; Behera, S. K.; Abish, B.; Masina, Simona

    2016-02-01

    The Indo-Pacific Ocean (i.e. region between 30°E and 150°E) has been experiencing a warming since the 1950s. At the same time, the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study, we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related to the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951-2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes to modulate the western Pacific-Indian Ocean Walker circulation. At the same time, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Contrary to previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian Sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and this has been contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats.

  9. Mid- to Late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, M.; Fleitmann, D.; Verheyden, S.; Cheng, H.; Edwards, R.; De Vleeschouwer, D.; Claeys, P. F.; Burns, S. J.; Matter, A.; Keppens, E.

    2012-12-01

    Since the Holocene, the summer position of the Intertropical Convergence Zone (ITCZ) is gradually moving south due to the diminishing boreal summer insolation (Fleitmann et al., 2007). Understanding this behavior for the Indian Ocean Monsoon (IOM) and its northeast and southwest subsystems is of major importance, especially since further drying is predicted (Fleitmann et al., 2007). To investigate how precipitation from the northeast IOM subsystem is evolving since the mid Holocene, we sampled four stalagmites on Socotra, an island in the northern Indian Ocean. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains, reaching up to 3000m altitude in the middle of the island, act as a barrier forcing precipitation to fall preferentially on the windward side of the mountain range. Consequently, rain delivered by northeast winds at the start of the northeast IOM, falls on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites are interpreted as indicators of wetter or drier conditions created by the northeast IOM. The stalagmite records suggest a long-term weakening of the northeast IOM since 7 ka confirming a link between the Holocene decreasing boreal summer insolation and the diminishing rainfall of the IOM. A similar δ18O record to that of eastern Socotra occurs in Northern Oman stalagmites, after 6.2 ka (Fleitmann et al., 2007). At this time, the summer ITCZ moved south of Northern Oman making precipitation from northeast winds the only moisture source available. A drying around 6 ka is also seen in sedimentary records from the Arabian Peninsula (Lezine et al., 2010; Parker et al., 2006), which nowadays are located outside the migration pathway of the ITCZ. Records on the Arabian Peninsula that today are still within the ITCZ migration belt, and thus receive rain by both the

  10. Simple metrics for representing East Asian winter monsoon variability: Urals blocking and western Pacific teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Cheung, Hoffman H. N.; Zhou, Wen

    2016-06-01

    Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature (SAT) variations north of 40°N in the EAWM region. Second, the well-known western Pacific teleconnection index (WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode (NTM) and the southern temperature mode (STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI-NTM and WPI-STM relationships are robust when the correlation analysis is repeated by (1) the 31-year running correlation and (2) the 8-year high-pass and low-pass filter. Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. In particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.

  11. Influences of Social and Style Variables on Adult Usage of African American English Features

    ERIC Educational Resources Information Center

    Craig, Holly K.; Grogger, Jeffrey T.

    2012-01-01

    Purpose: In this study, the authors examined the influences of selected social (gender, employment status, educational achievement level) and style variables (race of examiner, interview topic) on the production of African American English (AAE) by adults. Method: Participants were 50 African American men and women, ages 20-30 years. The authors…

  12. Cloud properties during active and break spells of the West African summer monsoon from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Efon, E.; Lenouo, A.; Monkam, D.; Manatsa, D.

    2016-07-01

    High resolution of daily rainfall dataset from the Tropical Rainfall Measuring Mission (TRMM) was used to identify active and break cloud formation periods. The clouds were characterized based on CloudSat-CALIPSO satellite images over West Africa during the summer monsoon during the period 2006-2010. The active and break periods are defined as the periods during the peak monsoon months of June to August when the normalized anomaly of rainfall over the monsoon core zone is greater than 0.9 or less than -0.9 respectively, provided the criteria is satisfied for at least three consecutive days. It is found that about 90% of the break period and 66.7% of the active spells lasted 3-4 days. Active spells lasting duration of about a week were observed while no break spell had such a long span. Cloud macrophysical (cloud base height (CBH), cloud top height (CTH) and cloud geometric depth (∆H), microphysical (cloud liquid water content, (LWC), liquid number concentration (LNC), liquid effective radius, ice water content (IWC), ice number concentration (INC) and ice effective radius) and radiative (heating rate properties) over South Central West Africa (5-15°N; 15°W-10°E) during the active and break spells were also analyzed. High-level clouds are more predominant during the break periods compared to the active periods. Active spells have lower INC compared to the break spells. Liquid water clouds are observed to have more radiative forcing during the active than break periods while ice phase clouds bring more cooling effect during the break spells compared to the active spells.

  13. Composition of the Asian summer monsoon anticyclone: Climatology and variability from 10 years of Aura Microwave Limb Sounder measurements

    NASA Astrophysics Data System (ADS)

    Santee, Michelle; Manney, Gloria; Livesey, Nathaniel; Neu, Jessica; Schwartz, Michael; Read, William

    2016-04-01

    Satellite measurements are invaluable for investigating the composition of the upper troposphere / lower stratosphere (UTLS) in the region of the Asian summer monsoon anticyclone, which has been sparsely sampled by other means. The Microwave Limb Sounder (MLS), launched as part of NASA's Aura mission in July 2004, makes simultaneous co-located measurements of trace gases and cloud ice water content (IWC, a proxy for deep convection) in the UTLS on a daily basis. Here we exploit the dense spatial and temporal coverage, long-term data record, and extensive measurement suite of Aura MLS to characterize the climatological composition of the ASM anticyclone and quantify its considerable spatial, seasonal, and interannual variability. We relate the observed trace gas behavior to various meteorological quantities, such as the size and strength of the ASM anticyclone, the extent and intensity of deep convection, and variations in the tropopause and the upper tropospheric jets in that region. Multiple species of both tropospheric and stratospheric origin are examined to help assess whether the observed variability arises from variations in transport processes or changes in the strength or location of surface emissions.

  14. South Asian climate change at the end of urban Harappan (Indus valley) civilization and mechanisms of Holocene monsoon variability

    NASA Astrophysics Data System (ADS)

    Staubwasser, M.; Sirocko, F.; Erlenkeuser, H.; Grootes, P. M.; Segl, M.

    2003-04-01

    Planktonic oxygen isotope ratios from the well-dated laminated sediment core 63KA off the river Indus delta are presented. The record reveals significant climate changes in the south Asian monsoon system throughout the Holocene. The most prominent event of the early-mid Holocene occurred after 8.4 ka BP and is within dating error of the GISP/GRIP event centered at 8.2 ka BP. The late Holocene is generally more variable and the largest change of the entire Holocene occurred at 4.2 ka BP. This event is concordant with the end of urban Harappan civilization in the Indus valley. Opposing isotopic trends across the northern Arabian Sea surface indicate a reduction in Indus river discharge at that time. Consequently, sustained drought may have initiated the archaeologically recorded interval of southeastward habitat tracking within the Harappan cultural domain. The hemispheric significance of the 4.2 ka BP event is evident from concordant climate change in the eastern Mediterranean and the Middle East. The remainder of the late Holocene shows drought cycles of approximately 700 years that are coherent with the evolution of cosmogenic radiocarbon production rates in the atmosphere. This suggests that solar variability is one fundamental cause behind late Holocene rainfall changes over south Asia.

  15. A 106 year monthly coral record reveals that the East Asian summer monsoon modulates winter PDO variability

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsuyoshi; Kawamura, Takashi; Yamazaki, Atsuko; Murayama, Masafumi; Yamano, Hiroya

    2014-05-01

    The Pacific Decadal Oscillation (PDO) is a dominant climate mode in the Pacific Ocean and thought to be related to seasonal to decadal changes in sea surface conditions. Colonies of long-living Porites coral, widely used to reconstruct monthly to century-scale tropical sea surface temperature and sea surface salinity records, were discovered near Koshiki Island, Japan (31°N, 129°E). A monthly resolved, 106 year δ18O record revealed that distinct decadal-scale variability was significantly correlated with the PDO index. Our comparison showed 1 to 3 years lead-lag correlation of summer coral δ18O with the winter PDO index, suggesting that the East Asian summer monsoon (EASM) may act as the driving force of winter PDO variability over the last 100 years. Cross-spectral analysis between the winter PDO index and summer coral δ18O suggested that recent and future global warming may lead to a more frequent and/or stronger teleconnection between EASM and PDO.

  16. On the Origin of Monsoon

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.

  17. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  18. Past variability of the North American Monsoon: ultrahigh resolution records from the lower Gulf of California for the last 6 Ka

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Nava Fernandez, C.; Bernal, G.; Paull, C. K.

    2015-12-01

    The North American Monsoon regime results from an interplay between the ocean, atmosphere and continental topography though there is an ongoing debate as to the relative importance of sea surface temperatures (SSTs) in the NE tropical Pacific warm water lens region, solar radiation variability, land snow cover and soil moisture over the Western North America mountain ranges and the strength and spatial patterns of the dominant winds. The links between these factors and the monsoonal variability appear to be of variable importance during the short instrumental record, and hampers any prediction on the future evolution of this climatic regime in a warming climate. The terrigenous component in very-high sedimentation rate sediments on the margins of the Gulf of California links monsoonal precipitation patterns on land with the varying importance of the lithogenic component in these margin sediments. Here we use the elemental composition of Si and Fe in these margin sediments, as a proxy for the lithogenic component in a collection of box and kasten cores from the eastern and western margins of the lower Gulf of California. This region shows a strong tropical influence during the summer, as part of the northernmost extension of the eastern tropical Pacific warm water lens region. A period when the southwestern winds bring moist air masses inland enhancing the monsoonal rains on the eastern reaches of Sierra Madre Occidental. High resolution XRF results allow us to explore the relationships between different elemental ratios in these sediments and the available instrumental record and several paleo-reconstructions to evaluate the possible links between external forcings and internal feedback effects, to help to understand the controls on the evolution of the monsoonal regime in this region.

  19. Monsoon precipitation in the AMIP runs

    NASA Astrophysics Data System (ADS)

    Gadgil, S.; Sajani, S.

    We present an analysis of the seasonal precipitation associated with the African, Indian and the Australian-Indonesian monsoon and the interannual variation of the Indian monsoon simulated by 30 atmospheric general circulation models undertaken as a special diagnostic subproject of the Atmospheric Model Intercomparison Project (AMIP). The seasonal migration of the major rainbelt observed over the African region, is reasonably well simulated by almost all the models. The Asia West Pacific region is more complex because of the presence of warm oceans equatorward of heated continents. Whereas some models simulate the observed seasonal migration of the primary rainbelt, in several others this rainbelt remains over the equatorial oceans in all seasons. Thus, the models fall into two distinct classes on the basis of the seasonal variation of the major rainbelt over the Asia West Pacific sector, the first (class I) are models with a realistic simulation of the seasonal migration and the major rainbelt over the continent in the boreal summer; and the second (class II) are models with a smaller amplitude of seasonal migration than observed. The mean rainfall pattern over the Indian region for July-August (the peak monsoon months) is even more complex because, in addition to the primary rainbelt over the Indian monsoon zone (the monsoon rainbelt) and the secondary one over the equatorial Indian ocean, another zone with significant rainfall occurs over the foothills of Himalayas just north of the monsoon zone. Eleven models simulate the monsoon rainbelt reasonably realistically. Of these, in the simulations of five belonging to class I, the monsoon rainbelt over India in the summer is a manifestation of the seasonal migration of the planetary scale system. However in those belonging to class II it is associated with a more localised system. In several models, the oceanic rainbelt dominates the continental one. On the whole, the skill in simulation of excess/deficit summer

  20. Mid- to Late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen

    NASA Astrophysics Data System (ADS)

    Van Rampelbergh, Maite; Fleitmann, Dominik; Verheyden, Sophie; Cheng, Hai; Edwards, Lawrence; Burns, Stephen; Matter, Albert; Claeys, Philippe; Keppens, Eddy

    2013-04-01

    Since the Mid-Holocene, the summer position of the Intertropical Convergence Zone (ITCZ) is gradually moving south due to the diminishing boreal summer insolation (Wanner et al., 2006). Understanding this behavior for the Indian Ocean Monsoon (IOM) and its northeast and southwest subsystems is of major importance, especially since further drying is predicted (Fleitmann et al., 2007). To investigate how precipitation from the northeast IOM subsystem is evolving since the mid Holocene, we sampled four stalagmites on Socotra, an island in the northern Indian Ocean. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains, reaching up to 3000m altitude in the middle of the island, act as a barrier forcing rain delivered by northeast winds to fall on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites are interpreted as indicators of wetter or drier conditions created by the northeast IOM. The stalagmite records suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. A similar δ18O record to that of eastern Socotra occurs in Northern Oman stalagmites after 6.2 ka. At this time, the summer ITCZ moved south of Northern Oman making precipitation from northeast winds the only moisture source available. A drying around 6 ka is also seen in sedimentary records from the Arabian Peninsula (Lezine et al., 2010; Parker et al., 2006), which nowadays are located outside the migration pathway of the ITCZ. Records on the Arabian Peninsula that today are still within the ITCZ migration belt, and thus receive rain by both the northeast as the southwest IOM, display a gradual drying after the wet Holocene optimum at 8.0 ka. In contrast to the

  1. Dominant Modes of Asian-Australian Monsoon Variability in Observation and in Multi-model Ensemble Seasonal Prediction

    NASA Astrophysics Data System (ADS)

    Wang, B.; Lee, J.; Kang, I.

    2006-05-01

    This paper addresses (1) what are the dominant modes of interannual variability of the Asian-Australian Monsoon (A-AM) system and (2) How well the state-of-the-art climate models actually predict these leading modes in the hindcast experiments. Ten coupled atmosphere-ocean models that participated DEMETER and APCC/CliPAS multi-model ensemble (MME) seasonal hindcast experiments have evaluated against observations for the period 1981-2002. Since interannual variations of the A-AM depend strongly on season cycle, we applied a newly developed method, termed season-sequential EOF (S-EOF) analysis, to detect seasonally evolving interannual variability of the entire A-AM and warm pool system. We found two statistically distinguished modes from observed datasets, which accounts for the 30% and 13% of the total variance in interannual variation of precipitation in the warm pool domain (30S-40N, 40E-160E). The first mode exhibits salient biennial tendency and is referred to as Quasi-Biennial (QB) mode. The QB mode represents a biennial flip-flop of precipitation anomalies over the Indian, Indonesia-Australian, western North Pacific, and East Asian monsoon regions and a biennial reversal of low-level large scale flow pattern over the warm pool. The seasonal evolution of this mode is characterized by a pair of anomalous anticyclones over the South Indian Ocean (SIO) and western North Pacific (WNP), which peaks in boreal fall and the subsequent spring, respectively. The principle component of the second S-EOF mode has a spectral peak on 4-5 years and is referred to as a Quasi-Quadrennial (QQ) mode. The QB mode concurs with the turnabout of warming (cooling) in the eastern- central Pacific, whereas the QQ mode leads Nino 3.4 SST anomalies by about one year, providing precursor for El Nino/La Nina development. We show that the DEMETER MME as well as CliPAS MME hindcasts have unexpected high skills in on-month lead hindcast of the two leading modes of seasonal mean precipitation

  2. Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Sič, B.; El Amraoui, L.; Attié, J.-L.; Zbinden, R.; Huszar, P.; Szopa, S.; Parmentier, J.; Jaidan, N.; Michou, M.; Abida, R.; Carminati, F.; Hauglustaine, D.; August, T.; Warner, J.; Imasu, R.; Saitoh, N.; Peuch, V.-H.

    2014-10-01

    The space and time variabilities of methane (CH4) total column and upper tropospheric mixing ratios are analysed above the Mediterranean Basin (MB) as part of the Chemical and Aerosol Mediterranean Experiment (ChArMEx) programme. Since the analysis of the mid-to-upper tropospheric CH4 distribution from spaceborne sensors and model outputs is challenging, we have adopted a climatological approach and have used a wide variety of data sets. We have combined spaceborne measurements from the Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer (TANSO-FTS) instrument on the Greenhouse gases Observing SATellite (GOSAT) satellite, the Atmospheric InfraRed Spectrometer (AIRS) on the AURA platform and the Infrared Atmospheric Sounder Interferometer (IASI) instrument aboard the MetOp-A platform with model results from the Chemical Transport Model (CTM) MOCAGE, and the Chemical Climate Models (CCMs) CNRM-AOCCM and LMDz-OR-INCA (according to different emission scenarios). In order to minimize systematic errors in the spaceborne measurements, we have only considered maritime pixels over the MB. The period of interest spans from 2008 to 2011 considering satellite and MOCAGE data and, regarding the CCMs, from 2001 to 2010. Although CH4 is a long-lived tracer with lifetime of ~12 years and is supposed to be well mixed in the troposphere, an east-west gradient in CH4 is observed and modelled in the mid-to-upper troposphere with a maximum in the Western MB in all seasons except in summer when CH4 accumulates above the Eastern MB. The peak-to-peak amplitude of the east-west seasonal variation in CH4 above the MB in the upper troposphere (300 hPa) is weak but almost twice as great in the satellite measurements (~25 ppbv) as in the model data (~15 ppbv). The maximum of CH4 in summer above the eastern MB can be explained by a series of dynamical processes only occurring in summer. The Asian monsoon traps and uplifts high amounts of CH4 to the upper

  3. Late Quaternary change in the North American (Mexican) Monsoon: variability in terrestrial and marine records and possible mechanisms

    NASA Astrophysics Data System (ADS)

    Metcalfe, S. E.; Barron, J. A.; Roy, P.; Davies, S.

    2013-05-01

    The Late Quaternary history of the North American (or Mexican) monsoon (NAM) remains poorly understood, with continuing debates about the relative importance of insolation forcing, the role of the Laurentide Ice Sheet (LIS), the expression of warm (D-O) and cold (H) events in the North Atlantic and the influence of the Pacific. To date, more information has been available from the southern and northern margins of the NAM region than from its tropical and subtropical core. This is significant because to the south of the NAM region, the direct effect of ITCZ location is likely to be stronger and any potential influence of the LIS weaker, and to the north, there is an important change in present day precipitation seasonality (from summer to winter), an opposite response to forcings such as ENSO/PDO and AMO and probably a stronger influence of the LIS. As a result, the interpretation of speleothem records from New Mexico (e.g. Asmerom et al., 2010) and Arizona (e.g. Wagner et al., 2010), in the southwestern USA and marine records such as Cariaco (Peterson and Haug, 2006) and lake records such as Peten Iztá (Hodell et al., 2008) may not be applicable to the tropical NAM core. Here we present results from two lacustrine sequences in Mexico (Sayula 20oN; Babicora 29oN) and a marine core record from the central part of the Gulf of California (27oN) all extending back at least through MIS3 (ca. 60 kyr BP). Although lacking the chronological precision of the speleothem sequences, these multiproxy records preserve evidence of centennial and millennial scale variability. MIS3 is marked by generally wetter conditions in the lake basins and warmer SSTs in the marine record, particularly during D/O events, which can be attributed to a stronger monsoon as well northward displacement of the ITCZ. This contrasts with the standard interpretation of the speleothem sequences where D/O events are dry. In contrast, H events are usually drier/cooler (weaker NAM, reduced summer

  4. Systematic errors in the simulation of the Asian summer monsoon: the role of rainfall variability on a range of time and space scales

    NASA Astrophysics Data System (ADS)

    Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven

    2015-04-01

    Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large

  5. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n

  6. Late Holocene South American and Indian summer monsoon variability: Assessing the regional significance of the Medieval Climate Anomaly and Little Ice Age

    NASA Astrophysics Data System (ADS)

    Bird, B. W.; Rudloff, O. M.; Escobar, J.; Polissar, P. J.; Steinman, B. A.; Thompson, L. G.; Yao, T.

    2014-12-01

    The response of Earth's major climate systems to natural forcings during the last 2000 years can provide valuable insight into the affect that ongoing climate change may have on these systems. Understanding the relationship between temperature, monsoonal hydroclimate and radiative forcing is of particular interest because hydrologic responses in these systems have the ability to impact over half of the global population. Here, late Holocene variability in the South American and Indian summer monsoon regions is examined using sedimentological, geochemical and isotopic proxies from high altitude lake sediment archives from the Colombian Andes and the southeastern Tibetan Plateau. New results from Laguna de Ubaque, a small moraine dammed lake at 2060 m ASL in the Eastern Cordillera of the Colombian Andes, suggest a reduction in Andean South American summer monsoon (SASM) rainfall during the Medieval Climate Anomaly (MCA; 900 to 1200 CE) that is consistent with other records from the Andes. During the Little Ice Age (LIA; 1450 to 1900 CE), Ubaque shows wet conditions between 1450 and 1600 CE and drier conditions from1600 to 1900 CE. This pattern is similar to accumulation at the Quelccaya Ice Cap, but differs from ice core, speleothem and lake sediment oxygen isotope records of synoptic-scale monsoonal precipitation, suggesting that Andean rainfall anomalies may have differed from upstream monsoonal trends over the Amazon. In contrast, results from Badi Namco and Paru Co on the southeastern Tibetan Plateau suggest that the MCA and LIA were relatively minor hydroclimate events superimposed on a larger millennial scale variation in Indian summer monsoon precipitation (1200 to 200 cal yr B.P.) that was associated with changes in the position of the ITCZ, surface air temperature over the Tibetan Plateau and sea surface temperatures in the western tropical Pacific. The unique hydroclimate variations in the ISM and SASM regions supports the idea that while spatially

  7. AMS 14 C dating controlled records of monsoon and Indonesian throughflow variability from the eastern Indian Ocean of the past 32,000 years

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Chen, M. T.; Shi, X.; Liu, S.; Wang, H.

    2015-12-01

    Zi-Ye Li a, Min-Te Chen b, Hou-Jie Wang a, Sheng-Fa Liu c, Xue-Fa Shi ca College of Marine Geosciences, Ocean University of China, Qingdao 266100, P.R. Chinab Institute of Applied Geosciences, National Taiwan Ocean University, Keelung, Taiwan 20224, ROCc First Institute of Oceanography, SOA, Qingdao 266100, P.R. China Indonesian throughflow (ITF) is one of the most important currents responsible for transporting heat and moisture from the western Pacific to the Indian Oceans. The ITF is also well-known as effectively in modulating the global climate change with the interactions among ENSO and Asian monsoons. Here we present an AMS 14C dating controlled sea surface temperature (SST) record from core SO184-10043 (07°18.57'S, 105°03.53'E), which was retrieved from 2171m water depth at a north-south depression located at the southeastern offshore area of Sumatera in the eastern Indian Ocean. Based on our high-resolution SST using Mg/Ca analyses based on planktonic foraminifera shells of Globigerinoides ruber and alkenone index, U k'37-SST, oxygen isotope stratigraphy, and AMC 14C age-controls, our records show that, during the past 32,000 years, the SSTs were decreased which imply weaker ITF during Marine Isotope Stage (MIS) 2 and 3. The weaker UTF may respond to strengthened northeast monsoon during the boreal winter. During 21 to 15ka, the southeast monsoon had been stronger and the northeast monsoon was relatively weaker. During 15 to 8ka, rapid sea level rising may allow the opening of the gateways in the Makassar Strait and Lombok Strait that may have further strengthened the ITF. During the early Holocene, the northeast and southeast monsoons seem to be both strengthened. We will discuss the implications of the hydrographic variability and their age uncertainties in this paper during the meeting.

  8. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  9. Use of Machine Learning Techniques for Identification of Robust Teleconnections to East African Rainfall Variability

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Funk, C.

    2014-01-01

    Hidden Markov models can be used to investigate structure of subseasonal variability. East African short rain variability has connections to large-scale tropical variability. MJO - Intraseasonal variations connected with appearance of "wet" and "dry" states. ENSO/IOZM SST and circulation anomalies are apparent during years of anomalous residence time in the subseasonal "wet" state. Similar results found in previous studies, but we can interpret this with respect to variations of subseasonal wet and dry modes. Reveal underlying connections between MJO/IOZM/ENSO with respect to East African rainfall.

  10. Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)

    2001-01-01

    This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a

  11. Controls on oxygen isotope variability in precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Tan, Ming

    2015-04-01

    Cave monitoring is important to fully understand the climatic significance of stalagmite δ18O records. Most previous studies focus on one cave, or several caves in one area. A large regional-scale investigation on the isotopic composition of precipitation and drip water is scarce. To investigate the regional-scale climate forcing on the oxygen isotopic composition of precipitation in the monsoon regions of China (MRC) and how the isotopic signals are transmitted to various drip sites, a three-year-long (2011-2014) on-site rainfall and drip water monitoring program has been carried out with approximately monthly sampling at 37 drip sites in eight caves in the MRC. Neither rainfall amount nor air temperature are the predominant controls on the oxygen isotopic composition of monthly precipitation. The rain in the wet season (May to October), with relatively low δ18O values, is sourced from tropical air masses, whereas the rainfall in the dry season (November to April), with relatively high δ18O values, is mostly sourced from continental air masses. Additionally, the weighted summer rainwater δ18O values decrease from coastal southwest China to inland northeast China, which suggests that the moisture of monsoon rainfall in China originates mainly from Indian Ocean, and transports to the north along the southwest-northeast path. 28 of the 37 drip sites are constant drips with little discernable variation in drip water δ18O through the whole study period. For most of the constant drips, the mean value of each drip water δ18O is nearly identical to or slightly higher than the three-year weighted mean value of the corresponding local rainwater δ18O, indicating these drips may be mainly recharged by none-evaporated or slightly evaporated, well-mixed older water stored in the vadose zone. 7 of all the 37 drip sites are seasonal drips, for which, although the amplitude of drip water δ18O is narrower than that of rainfall, the monthly response of drip water δ18O to

  12. Probabilistic versus deterministic skill in predicting the western North Pacific-East Asian summer monsoon variability with multimodel ensembles

    NASA Astrophysics Data System (ADS)

    Yang, Dejian; Yang, Xiu-Qun; Xie, Qian; Zhang, Yaocun; Ren, Xuejuan; Tang, Youmin

    2016-02-01

    Based on historical forecasts of three quasi-operational multimodel ensemble (MME) systems, this study assesses the superiority of coupled MME over contributing single-model ensembles (SMEs) and over uncoupled atmospheric MME in predicting the Western North Pacific-East Asian summer monsoon variability. The probabilistic and deterministic forecast skills are measured by Brier skill score (BSS) and anomaly correlation (AC), respectively. A forecast-format-dependent MME superiority over SMEs is found. The probabilistic forecast skill of the MME is always significantly better than that of each SME, while the deterministic forecast skill of the MME can be lower than that of some SMEs. The MME superiority arises from both the model diversity and the ensemble size increase in the tropics, and primarily from the ensemble size increase in the subtropics. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the dramatic improvement in reliability, while resolution is not always improved, similar to AC. A monotonic resolution-AC relationship is further found and qualitatively explained, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability arises from an effective reduction of the overconfidence in forecast distributions. Moreover, it is examined that the seasonal predictions with coupled MME are more skillful than those with the uncoupled atmospheric MME forced by persisting sea surface temperature (SST) anomalies, since the coupled MME has better predicted the SST anomaly evolution in three key regions.

  13. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    NASA Astrophysics Data System (ADS)

    Jin, L.; Peng, Y.; Chen, F.; Ganopolski, A.

    2008-12-01

    The impacts of various scenarios of snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP-0 kyr BP) are studied by using the coupled climate model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases, especially in the northern parts of Europe, Asia, and North America. At the same time, with the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP-0 kyr BP), the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. Imposed gradually increased snow and glacier cover over the Tibetan Plateau causes temperature increases in South Asia and it decreases in North Africa and Southeast Asia during 6 kyr BP to 0 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results show that the response of climate change in African-Asian monsoon region to snow and glacier cover over the Tibetan Plateau is in the way that the snow and glaciers amplify the effect of vegetation feedback and, hence, further amplify orbital forcing.

  14. Prediction of daily modes of South Asian monsoon variability and its association with Indian and Pacific Ocean SST in the NCEP CFS V2

    NASA Astrophysics Data System (ADS)

    Shahi, Namendra Kumar; Rai, Shailendra; Pandey, D. K.

    2016-02-01

    The prediction capability of daily modes of variability for South Asian monsoon from climate forecast system version 2 of national centers for environmental prediction with respect to observed precipitation has been assessed. The space-time structure of the daily modes for summer monsoon rainfall has been identified by using multi-channel singular spectrum analysis (MSSA). The MSSA is applied on daily anomalies of rainfall data over the South Asian monsoon region (40°E-160°E, 30°S-35°N) for the period of 2001-2013 with a lag window of 61 days for June-July-August-September season. The broad spectrum around 45 and 50 days was obtained from the observed and model data during the time domain of our study. The space-time structure of the modes obtained from the model shows good resemblance with respect to the observation. The observed northeastward propagation of oscillatory mode is well simulated by the model. The significant improvement in the space-time structure, period of oscillation, and propagation of oscillatory modes was found in the model. The observed connectivity of oscillatory and persisting modes with the sea surface temperature of Indian and Pacific Ocean has also been investigated and it was found that the model is able to predict it reasonably well.

  15. South America Monsoon variability on millennial to multi-centennial time scale during the Holocene in central eastern Brazil

    NASA Astrophysics Data System (ADS)

    Strikis, N. M.; Cruz, F. W.; Cheng, H.; Karmann, I.; Vuille, M.; Edwards, R.; Wang, X.; Paula, M. S.; Novello, V. F.; Auler, A.

    2011-12-01

    A paleoprecipitation reconstruction based on high resolution and well-dated speleothem oxygen isotope records shows that the monsoon precipitation over central eastern Brazil underwent to strong variations on millennial to multi-centennial time-scales during the Holocene. This new record indicates that abrupt events of increase in monsoon precipitation are correlated to Bond events 6, 5 and 4 and also with 8.2 ky event during the early and mid-Holocene, with a mean amplitude of 1.5 % (PDB). The pacing and structure of such events are general consistent with variations in solar activity suggested by atmospheric Δ14 C records. In the late-Holocene, abrupt events of increase in monsoon precipitation peaking at 3.2, 2.7 and 2.3 ky B.P. are approximately synchronous with periods of low solar minima. In this regard, the most prominent event occurred during the late Holocene occurred at ~2.7 ky B.P. In addition, these positive anomalies of the precipitation recorded in central eastern Brazil are also in good agreement with variations in Titicaca lake level. The good correspondence between the speleothem and marine records imply that the variations in the north Atlantic sea surface temperature is the main forcing for abrupt millennial to multi-centennial precipitations variation within the region under influence of South American Monsoon.

  16. Sensitivity of Red Sea circulation to monsoonal variability during the Holocene: An integrated data and modeling study

    NASA Astrophysics Data System (ADS)

    Biton, E.; Gildor, H.; Trommer, G.; Siccha, M.; Kucera, M.; van der Meer, M. T. J.; Schouten, S.

    2010-11-01

    We used an oceanic general circulation model to evaluate the sensitivity of the hydrography and circulation of the Red Sea in response to reduced sea level and modified atmospheric conditions during the Holocene. With Holocene sea level close to the modern level, the Red Sea was sensitive to changes in atmospheric conditions, and it only shows a relatively mild response to sea level change. Changes in the monsoon system influence the exchange flow through the Strait of Bab el Mandab, the meridional overturning circulation of the Red Sea, and its hydrography. Forced by humid conditions the (modeled) Red Sea temperature increased by ˜1.5°C, while when arid conditions were imposed, the temperature decreased by ˜2.5°C. Similar heating and cooling events during the early and late Holocene are seen in a sea surface temperature record from the northern Red Sea (derived from the temperature sensitive TEX86 molecular biomarker), which suggests that humid conditions prevailed during the early Holocene and more arid conditions prevailed during the late Holocene. The gradual decline in Red Sea temperature between these two time periods suggests a gradual decline in the summer monsoon strength. This monsoon trend and the resulting changes in the Red Sea circulation are supported by the distribution of crenarchaea fossil lipids in Red Sea sediments from this period. Monsoon-driven changes in the exchange flow through the Strait of Bab el Mandab affected the crenarchaea population structure, and therefore, their molecular fossil distribution in the sediments of the Red Sea potentially provides an index for the summer monsoon strength during the Holocene.

  17. Variability and Predictability of West African Droughts. A review in the role of Sea Surface Temperature Anomalies

    NASA Astrophysics Data System (ADS)

    Rodríguez de Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.

    2015-04-01

    The Sahel experienced a severe drought during the 1970's and 1980's after wet periods in the 1950's and 1960's. Although rainfall partially recovered since the 1990's, the drought had devastating impacts on societies. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface/atmospheric interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interanual to decadal time scales. At interanual time scales, a warming of the equatorial Atlantic and Pacific/Indian oceans results in rainfall reduction over the Sahel and positive SST anomalies over the Mediterranean sea tend to be associated with increased rainfall. At decadal time scales, a warming over the Tropics leads to drought over the Sahel, while the warming over the North Atlantic promotes increased rainfall. The skill of numerical forecasts has improved during the last decades, due to better dynamical vegetation schemes. Prediction systems have evolved from seasonal to decadal forecasting.The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over central part, drier conditions over the western part and a delay in the monsoon onset. The role of the Indian ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the antropogenic role, the reduction of the model rainfall spread and the improvement of some model components are among the most important remaining questions that will be the focus of current international projects.

  18. Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; Polo, Irene; Losada, Teresa; Druyan, Leonard M.; Fontaine, Bernard; Bader, Juergen; Doblas-Reyes, Francisco J.; Goddard, Lisa; Janicot, Serge; Arribas, Alberto; Lau, William; Colman, Andrew; Vellinga, M.; Rowell, David P.; Kucharski, Fred; Voldoire, Aurore

    2015-01-01

    The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

  19. Decadal- to biennial scale variability of planktic foraminifera in the northeastern Arabian Sea during the last two millennia: evidence for winter monsoon forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Munz, Philipp; Lückge, Andreas; Siccha, Michael; Kucera, Michal; Schulz, Hartmut

    2015-04-01

    The Asian monsoon system is controlling the hydrologic cycle, and thus the agricultural and economic prosperity of the worlds most densely populated region. Strong and moisture-laden winds from the southwest induce upwelling and significant productivity in the western Arabian Sea during boreal summer. During boreal winter, weaker dry and cold surface winds from the northeast nourish ocean productivity mainly in the northeastern Arabian Sea. Instrumental records spanning the last century are too short to understand how the monsoon system reacts to external forcing mechanisms and to accurately determine its natural variability. Compared to the summer monsoon component, the dynamics of the winter monsoon are virtually unknown, due to the lack of adequate archives that are affected only by winter conditions. Here we present a decadal- to biennial-scale resolution record of past winter monsoon variability over the last two millennia, based on census counts of planktic foraminifera from two laminated sediment cores collected offshore Pakistan. One shorter box core (SO90-39KG) spans the last 250 years with an average ~2-year resolution, whereas the longer piston core (SO130-275KL) spans the last 2,100 years with a 10-year resolution. We use Globigerina falconensis as a faunal indicator for winter conditions, a species that is most abundant during winter in the NE Arabian Sea (Peeters and Brummer, 2002; Schulz et al., 2002). Our results show that during the past 2,100 years G. falconensis varied with significant periodicities centered on ˜ 60, ˜ 53, ˜ 40, ˜ 34 and ˜ 29 years per cycle. Some of these periods closely match cycles that are known from proxy records of solar irradiance, suggesting a solar forcing on winter monsoon variability. During the past 250 years G. falconensis varied in correlation with the (11-year) Schwabe and the (22-year) Hale solar cycles. Furthermore, a significant ˜ 7 year cyclicity could indicate a teleconnection to the El Niño Southern

  20. South China Sea Surface Waters During the Late Pleistocene: Records of the Relationship Between South East Asian Monsoon Variability and Glacial-Interglacial Cycles

    NASA Astrophysics Data System (ADS)

    McIntyre, K.; Oppo, D.

    2001-05-01

    One of the major goals of Ocean Drilling Program Leg 184 in the South China Sea was to recover sediment records that could be used to examine the history of the South East Asian monsoon relative to external variation in the global climate, on both orbital and millennial timescales. Examinations of how monsoonal variability in this region interacts with larger changes in global climate speak to the ongoing debate about the role of the tropical and equatorial regions in climate change. In order to reconstruct this interaction we have generated a new 700 kyr record of planktonic foraminiferal (G. ruber) oxygen and carbon isotopes from Ocean Drilling Program site 1145 in the South China Sea (19° 35.04'N, 117° 37.86'E, 3175 m. water depth). The oxygen isotope record reflects both global ice volume and a composite of sea surface salinity and temperature that varies in response to monsoonally driven changes in sea surface circulation and regional precipitation. The carbon isotopic record reflects changes in local productivity and global changes in the carbon budget. Since our record has both a strong 100-kyr glacial component and a strong precessional component, it allows us to examine the interaction between high-latitude glacial influence and local precessional influence on the South East Asian monsoon. As seen at other sites in the South China Sea, there is an overall increase in sedimentation rates coming toward the present. Sedimentation rates at this site decrease threefold at 400 Ka, with sedimentation rates ~6 cm/kyr prior to this time and rates of ~20 cm/kyr after. As a consequence, temporal resolution for the latter part of the record varies between 400 and 1000 years, and is >2000 years before 400 ka. We find that sub-Milankovitch variability in both oxygen and carbon isotopes is consistently high throughout glacial-interglacial cycles, +/-0.6 ‰ in δ 18O and +/-0.4 ‰ in δ 13C. Over the last 400 kyrs we find both variability on 3-4 kyr timescales and on

  1. Simulation of East Asian Summer Monsoon (EASM) in SP-CCSM4: Part I—Seasonal mean state and intraseasonal variability

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Stan, Cristiana

    2016-07-01

    The mean state and intraseasonal variability of the East Asian Summer Monsoon (EASM) simulated by the Super-Parameterized Community Climate System Model version 4 (SP-CCSM4) and the conventionally parameterized CCSM4 are evaluated against observations. The SP-CCSM4 model has a better simulation of the May-June-July-August seasonal mean state of EASM than CCSM4, although it produces a dry bias over the EASM area compared to observations. The dry bias in SP-CCSM4 is associated with the erroneous northward displacement of the western North Pacific subtropical high. The SP-CCSM4 model simulates the reasonable monsoon onset and northward propagation of the monsoonal precipitation, yet the rainband marches faster and reaches to a higher latitude than in observations. The mechanisms associated with the northward propagation of the intraseasonal oscillation (ISO) of EASM are also captured by SP-CCSM4. The cyclonic vorticity and the moisture convergence lead the convective activity, favoring the northward propagation of convection. The easterly wind shear and air-sea interaction mechanisms in the model are realistic and show contributions to the northward propagation of the ISO of the model. The SP-CCSM4 model captures many facets of the stepwise northward propagation of the precipitation belt in the EASM region, including the Mei-yu season. However, compared to the observations, in the model the onset of the Mei-yu season takes place 5 days earlier and the duration of the Mei-yu's rainy episode is shorter. The CCSM4 model has large deficiencies in simulating the intraseasonal variability of EASM.

  2. Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoon

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-12-20

    The Earth's monsoon systems are the life-blood of more than two-thirds of the world's population through the rainfall they provide to the mainly agrarian societies they influence. More than 60 experts gathered to assess the current understanding of monsoon variability and to highlight outstanding problems simulating the monsoon.

  3. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean.

    PubMed

    Tierney, Jessica E; Smerdon, Jason E; Anchukaitis, Kevin J; Seager, Richard

    2013-01-17

    The recent decades-long decline in East African rainfall suggests that multidecadal variability is an important component of the climate of this vulnerable region. Prior work based on analysing the instrumental record implicates both Indian and Pacific ocean sea surface temperatures (SSTs) as possible drivers of East African multidecadal climate variability, but the short length of the instrumental record precludes a full elucidation of the underlying physical mechanisms. Here we show that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal. Our results, based on proxy indicators of relative moisture balance for the past millennium paired with long control simulations from coupled climate models, reveal that moist conditions in coastal East Africa are associated with cool SSTs (and related descending circulation) in the eastern Indian Ocean and ascending circulation over East Africa. The most prominent event identified in the proxy record--a coastal pluvial from 1680 to 1765--occurred when Indo-Pacific warm pool SSTs reached their minimum values of the past millennium. Taken together, the proxy and model evidence suggests that Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales. PMID:23325220

  4. A Variable Resolution Gcm Simulation of The Impact of Future Land-use Changes On African Climate

    NASA Astrophysics Data System (ADS)

    Maynard, K.; Royer, J. F.; Chauvin, F.

    Simulations with atmospheric general circulation models (GCM) have generally shown a significant impact of large-scale anthropogenic changes in land cover, on the regional surface climate, particularly for the case of massive tropical deforesta- tion. However these simulations have usually been performed with idealized land- surface changes, and with horizontal resolutions of several hundred kilometers, which does not allow to represent in detail the geographical variations of the land surface processes and their possible feedbacks. To achieve a higher spatial resolution over a selected region, a variable resolution version of the ARPEGE-Climat model, with a zooming technique based on a conformal transformation of the sphere, has been ap- plied to time-slice simulations allowing to reach a resolution of about 100 km over Africa. For the validation of the model a control simulation for the current climate has been performed using a new vegetation database based on satellite data. A time-slice simulation for the middle of the 21-rst century has been performed using the SST anomaly patterns from a coupled atmosphere-ocean transient climate simulation per- formed with a lower resolution version of the ARPEGE-Climat under the conditions of the SRES-B2 scenario of IPCC. In order to specify realistic land cover changes the results of the integrated impact assessment model IMAGE 2.2 from RIVM (Bilthoven) have been used to compute land surface properties on a 0.5 grid over the conti- nents. The impact on the African monsoon of the expected land surface changes in a greenhouse-warmed climate simulated by the high resolution GCM will be illustrated and discussed in this presentation.

  5. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-01-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  6. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  7. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China

    NASA Astrophysics Data System (ADS)

    Yu, F.; Lloyd, J. M.; Zong, Y.; Leng, M. J.; Switzer, A. D.; Yim, W. W.; Huang, G.

    2010-12-01

    Understanding the mid-Holocene dynamics of the East Asian monsoon (EAM) is integral to modelling the Holocene development of the global climate system (Webster et al., 1998). Thus the mid-Holocene EAM history was reconstructed using bulk organic carbon isotopes (δ13C), total carbon to total nitrogen (C/N) ratios and total organic carbon (TOC) from a sediment core (UV1), at a mean resolution of 10 years, from the Pearl River estuary, southern China. Sedimentary δ13C, C/N and TOC from the Pearl River estuary is a good indicator of changes in monsoonal precipitation strength (Zong et al., 2006; Yang et al., 2010), eg sediments buried during a period of high precipitation exhibit a high proportion of terrigenous sediments, and have low δ13C and high C/N, and vice versa (Yu et al., 2010). Results suggest a general decreasing trend in monsoonal precipitation from 6650-2215 cal yr BP due to the weakening insolation over northern hemisphere most likely related to the current precession circle (An, 2000). Superimposed on this trend are apparent dry-wet oscillations at centennial to millennial timescales most likely in response to solar activity. Mismatch between δ13C and results from the Dongge Cave in southern China at millennial-timescale oscillations (Wang et al., 2005), may indicate that the δ13C from the Pearl River estuary reveals changes in precipitation in a broader area than the δ18O from Dongge Cave does. Reference An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171-187. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA and Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308: 854-857. Webster PJ, Magaña VO, Palmer TN, Shukla J and Tomas RA (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 14451-14510. Yang S, Tang M, Yim WWS, Zong Y, Huang G, Switzer

  8. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China

    NASA Astrophysics Data System (ADS)

    Yu, F.; Zong, Y.; Lloyd, J. M.; Leng, M. J.; Switzer, A. D.; Yim, W. W.; Huang, G.

    2012-12-01

    Understanding the mid-Holocene dynamics of the East Asian monsoon (EAM) is integral to modelling the Holocene development of the global climate system (Webster et al., 1998). Thus the mid-Holocene EAM history was reconstructed using bulk organic carbon isotopes (δ13C), total carbon to total nitrogen (C/N) ratios and total organic carbon (TOC) from a sediment core (UV1), at a mean resolution of 7-10 years, from the Pearl River estuary, southern China. Sedimentary δ13C, C/N and TOC from the Pearl River estuary is a good indicator of changes in monsoonal precipitation strength (Zong et al., 2006; Yang et al., 2010; Yu et al., 2010), eg sediments buried during a period of high precipitation exhibit a high proportion of terrigenous sediments, and have low δ13C and high C/N, and vice versa (Yu et al., 2010). Results suggest a general decreasing trend in monsoonal precipitation from 6650 to 2215 cal yr BP because of the weakening Northern Hemisphere insolation most likely related to the current precession circle (An, 2000). Superimposed on this trend are apparent dry-wet oscillations at centennial to millennial timescales most likely in response to solar activity. Mismatch between δ13C and results from the Dongge Cave in southern China at millennial-timescale oscillations (Wang et al., 2005), may indicate that the δ13C from the Pearl River estuary reveals changes in precipitation in a broader area than the δ18O from Dongge Cave does. Reference An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171-187. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA and Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308: 854-857. Webster PJ, Magaña VO, Palmer TN, Shukla J and Tomas RA (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 14451-14510. Yang S, Tang M, Yim WWS, Zong

  9. Variability of the Asian summer monsoon during the penultimate glacial/interglacial period inferred from stalagmite oxygen isotope records from Yangkou cave, Chongqing, Southwestern China

    NASA Astrophysics Data System (ADS)

    Li, T.-Y.; Shen, C.-C.; Huang, L.-J.; Jiang, X.-Y.; Yang, X.-L.; Mii, H.-S.; Lee, S.-Y.; Lo, L.

    2013-11-01

    The orbital-timescale dynamics of the Quaternary Asian summer monsoons (ASM) are frequently attributed to precession-dominated Northern Hemisphere summer insolation. However, this ASM variability is inferred primarily from oxygen isotope records of stalagmites, mainly from Sanbao cave in mainland China, and may not provide a comprehensive picture of ASM evolution. A new spliced stalagmite oxygen isotope record from Yangkou cave tracks summer monsoon precipitation variation from 124-206 thousand years ago in Chongqing, southwest China. When superimposed on the Sanbao record, the Yangkou-inferred precipitation time series is shown to support the strong ASM periods at marine isotope stages (MIS) 6.3, 6.5, and 7.1 and weak ASM intervals at MIS 6.2, 6.4, and 7.0. This consistency confirms that ASM events affected most of mainland China. We show that change in glacial/interglacial (G/IG) ASM intensity was also governed by the Walker Circulation by combining our results with published paleo-Pacific thermal and salinity records. One of the strongest ASM events over the past fiver G/IG cycles, at MIS 6.5, was enhanced by such zonal forcing associated with prevailing trade winds in the Pacific.

  10. The role of African easterly waves on Atlantic tropical cyclone variability

    NASA Astrophysics Data System (ADS)

    Hopsch, Susanna B.

    Coherent vorticity structures were identified at 850hPa over West Africa and the tropical Atlantic in the ERA40 reanalysis. The presence of two dominant source regions for stormtracks over the Atlantic was found. Results show that the southern stormtrack provides most storms that reach the MDR where most tropical cyclones develop. Marked seasonal variability in location and intensity of storms leaving the West African coast exists, which may influence the likelihood of downstream intensification and longevity. There exists considerable year-to-year variability in number of West African storms, both over land and continuing out over the tropical Atlantic Ocean. While the low-frequency variability is well correlated with Atlantic tropical cyclone activity, West African rainfall and SSTs, the interannual variability is found to be uncorrelated. In contrast, variance of 2-6-day-filtered meridional wind, which provides a synoptic-scale measure of AEW activity, shows a significant, positive correlation with TC activity at interannual timescales. The extent to which the nature of AEWs leaving the West African coast is important for influencing the probability of becoming named storms downstream was also explored. The ERA40 dataset has been analyzed for July through September from 1979-2001 to generate a climatology of AEWs leaving the West African coast. A composite view of the structure of the AEWs and their large-scale environment was obtained by identifying all AEWs that were associated with named storms over the MDR. This was compared to the composite of all disturbances that ultimately failed to develop. It is shown that substantial differences in structure and characteristics exist of AEWs that become associated with tropical cyclones and the ones that don't. The most important differences between developing and non-developing AEWs include: (1) Developing AEWs have a distinctive cold-core structure before reaching the West coast. (2) They transform towards more warm

  11. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets

    SciTech Connect

    Lin, Renping; Zhou, Tianjun; Qian, Yun

    2014-02-01

    With the motivation to identify whether or not a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data (NCEP2, ERA40, JRA25, ERA-Interim and MERRA) in reproducing the climatology, interannual variation and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. In order to better understand the variability and long-term trend of GM precipitation, we also examined the major components of water budget, including evaporation, water vapor convergence and the change in local water vapor storage, based on five reanalysis datasets. The results show that all five reanalysis data reasonably reproduce the climatology of GM precipitation. The ERA-Interim (NCEP2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979-2001 along with a strong interannual variability, which is reasonably reproduced by the five sets of reanalysis data. The observed increasing trend of GM precipitation is dominated by the contribution from the North African, North American and Australian monsoons. All five data fail in reproducing the increasing tendency of North African monsoon precipitation. The wind convergence term in water budget equation dominate the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

  12. Indian monsoon variations during three contrasting climatic periods: The Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Sanchez Goñi, Maria Fernanda; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2015-10-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  13. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    NASA Astrophysics Data System (ADS)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  14. Monsoon variability in the northeastern Arabian Sea on orbital- and millennial scale during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Lückge, Andreas; Groeneveld, Jeroen; Steinke, Stephan; Mohtadi, Mahyar; Westerhold, Thomas; Schulz, Hartmut

    2016-04-01

    The Dansgaard-Oeschger oscillations and Heinrich events described in the Greenland ice cores and in North Atlantic and Western Mediterranean sediments are also expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. However, little is known about these fluctuations beyond the reach of the Greenland ice cores. Here, we present high-resolution geochemical, sedimentological as well as micropaleontological data from two cores (SO130-283KL, 987m water depth and SO130-289KL, 571m) off the coast of Pakistan, extending the monsoon record on orbital and millennial scales to the past 200,000 years. The stable oxygen isotope record of the surface-dwelling planktonic foraminifer G. ruber shows a strong correspondence to Greenland ice core δ18O, whereas the deepwater δ18O signal of benthic foraminifera (U. peregrina and G. affinis) reflects patterns recorded in ice cores from Antarctica. Strong shifts in benthic δ18O during stadials/Heinrich events are interpreted to show frequent advances of oxygen-rich intermediate water masses into the Arabian Sea originating from the southern ocean. Alkenone-derived SSTs varied between 23 and 28° C. Highest temperatures were encountered during interglacial MIS 5. Rapid SST changes of 2° C magnitude on millennial scale are overlain by long-term SST fluctuations. Interstadials (of glacial phases) and the cold phases of interglacials are characterized by sediments enriched in organic carbon (up to 4 % TOC) whereas sediments with low TOC contents (< 1 % TOC) appear during stadials and Heinrich events. Shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related and anoxia-indicating proxies. Interstadial inorganic elemental data consistently show that enhanced fluxes of terrestrial-derived sediments are paralleled by productivity maxima, and are characterized by an increased fluvial contribution from the Indus River. In contrast, stadials are

  15. Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation

    NASA Astrophysics Data System (ADS)

    Awasthi, Neeraj; Ray, Jyotiranjan S.; Singh, Ashutosh K.; Band, Shraddha T.; Rai, Vinai K.

    2014-10-01

    present a geochemical and Sr-Nd isotopic study on a sediment core collected from the Andaman Sea in an attempt to reconstruct the Late Quaternary weathering and erosion patterns in the watersheds of the river systems of Myanmar and understand their controlling factors. Age control is based on nine radiocarbon dates and δ18O stratigraphy. The rate of sedimentation was strongly controlled by fluctuations of the monsoon. We identify three major sediment provenances: (1) the Irrawaddy catchment, (2) the western slopes of the Indo-Burman-Arakan (IBA) mountain ranges and the Andaman Islands, and (3) the catchments of Salween and Sittang and the Bengal shelf, with the first two contributing 30-60% of the material. Enhanced contributions from juvenile sources and corresponding positive shifts of δ18O are observed at seven time periods (11-14, 20-23, 36, 45, 53, 57, and 62 ka) of which five are synchronous with cooling of the northern hemisphere, suggesting a link between the changes in sediment provenances and the shifting of the locus of the summer monsoon, southward from the Himalayas, without substantial reduction in intensity. Our data, and that from other cores in the region suggest that an eastward moving surface current disperses sediments, derived from the Bengal shelf and western margin of Myanmar, from the eastern Bay of Bengal into the western Andaman Sea and that its strength has increased since the LGM. The existence of this current during the LGM implies that the Andaman Sea and the Bay of Bengal were well connected during the last glacial period.

  16. Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing

    NASA Astrophysics Data System (ADS)

    Beal, L. M.; Hormann, V.; Lumpkin, R.; Foltz, G. R.

    2014-12-01

    We use two decades of drifter and satellite data to examine the monthly evolution of the surface circulation of the Arabian Sea, which reverses annually in response to the Indian monsoon winds. Most significantly, we find that in the transition from winter to summer circulations, northward flow appears along the length of the western boundary as early as March or April, one or two months before the onset of the southwest monsoon winds. This reversal is initiated by annual Rossby waves, which in turn are initiated by wind curl forcing during the previous southwest monsoon. These results lead us to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Previous studies of monsoon circulations with lower temporal resolution have highlighted basin-wide currents and connections that are not found to exist in the monthly fields. In particular, we find that the Northeast Monsoon Current does not reach the western boundary and there is no counter-rotating gyre system during boreal winter. South of the equator, the eastward-flowing South Equatorial Counter Current (SECC) is present year-round, even though equatorial winds are strongly influenced by the monsoons. Semi-annual variability of the SECC is governed by Ekman pumping over the south equatorial gyre (or Seychelles dome) and, surprisingly, it is weakest during the northeast monsoon. This region has important influence on the atmosphere and its link to the monsoons deserves further investigation. The East African Coastal Current feeds into the SECC from the boundary. During the southwest monsoon it overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC after looping back across the equator. This apparent retroflection of the EACC is what was previously known as the southern gyre and is obscured at the surface by strong, locally wind-driven, cross-equatorial Ekman transport. Finally, there is broad, strong eastward flow at

  17. Sensitivity of the mean and variability of Indian summer monsoon to land surface schemes in RegCM4: Understanding coupled land-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Halder, Subhadeep; Dirmeyer, Paul A.; Saha, Subodh Kumar

    2015-09-01

    A relatively simple land surface model, the Biosphere-Atmosphere Transfer Scheme (BATS) and the more complex Community Land Model (CLM3.5) coupled to RegCM4 are used to investigate land-atmosphere feedback processes during the Indian summer monsoon. Model simulations for 27 years show that the mean and interannual variability of rainfall and surface air temperature are affected significantly due to differences in the formulation of evapotranspiration and hydrological processes between BATS and CLM3.5, prescribed land use, land cover data and changes in net radiation. RegCM4 with CLM3.5 (RCLM) shows a reduction in surface moisture flux and precipitation but an increase in surface air temperature over most parts of India as compared to RegCM4 with BATS (RBAT). In terms of the mean and interannual variability of rainfall over central India, RBAT performs better than RCLM. Evapotranspiration over central India is found to be less (more) sensitive to soil wetness variations in RCLM (RBAT) compared to the multimodel estimate from the Global Soil Wetness Project, that is mainly attributed to the differences in ground evaporation and transpiration. Changes in evaporation efficiency between the models also lead to a reduction in the land-atmosphere coupling strength for precipitation in RCLM. Furthermore, such changes decrease the convective instability over central and eastern India in RCLM leading to weakened convection, reduced large-scale moisture convergence and precipitation over land. Observations of soil moisture, surface fluxes, and radiation are needed for better understanding and improvement of coupled land-atmosphere feedbacks in models during the Indian summer monsoon.

  18. Modification of the southern African rainfall variability/ENSO relationship since the late 1960s

    NASA Astrophysics Data System (ADS)

    Richard, Y.; Trzaska, S.; Roucou, P.; Rouault, M.

    Analysis of 149 raingauge series (1946-1988) shows a weak positive correlation between late summer rainfalls (January-March) in tropical southern Africa and the Southern Oscillation Index (SOI). The correlation coefficients have been unstable since World War II. They were close to zero before 1970 and significant thereafter. Before 1970, southern African late summer rainfalls were more specifically correlated with regional patterns of sea surface temperature (SST), mainly over the southwestern Indian Ocean. After 1970, teleconnections with near global SST anomaly patterns, i.e. over the central Pacific and Indian oceans, dominate the regional connections. The increase in the sensitivity of the southern African rainfall to the global SO-related circulation anomalies is simultaneous with the correlation between SOI and more extensive SST anomalies, particularly over the southern Indian Ocean. This feature is part of longer term (decadal), global SST variability, as inferred from statistical analyses. Numerical experiments, using the Météo-France general circulation model ARPEGE-Climat, are performed to test the impact of the observed SST warming in the southern Indian and extratropical oceans during El Niño Southern Oscillation (ENSO) events on southern African rainfall. Simulated results show that ENSO events, which occurred in the relatively cold background of the pre-1970 period in the southern oceans, had a little effect on southern Africa climatic conditions and atmospheric circulation. By contrast, more recent ENSO events, with warmer SST over the southern oceans, lead to a climatic bipolar pattern between continental southern African and the western Indian Ocean, which is characterized by reduced (enhanced) deep convection and rainfall over the subcontinent (the western Indian Ocean). A weaker subtropical high-pressure belt in the southwestern Indian Ocean is also simulated, along with a reduced penetration of the moist southern Indian Ocean trade winds

  19. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.

    2016-06-01

    In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the

  20. Plio-pleistocene African climate

    SciTech Connect

    deMenocal, P.B.

    1995-10-06

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated. 65 refs., 6 figs.

  1. Plio-Pleistocene African Climate

    NASA Astrophysics Data System (ADS)

    Demenocal, Peter B.

    1995-10-01

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated.

  2. Interannual variability and predictability of African easterly waves in a GCM

    NASA Astrophysics Data System (ADS)

    Chauvin, Fabrice; Royer, Jean-François; Douville, Hervé

    2005-04-01

    The interannual variability of African Easterly Waves (AEWs) is assessed with the help of spatio-temporal spectral analysis (STSA) and complex empirical orthogonal functions methods applied to the results of ten-member multiyear ensemble simulations. Two sets of experiments were conducted with the Météo-France ARPEGE-Climat GCM, one with interactive soil moisture (control), and the other with soil moisture relaxed towards climatological monthly means calculated from the control. Composites of Soudano-Sahelian AEWs were constructed and associated physical processes and dynamics were studied in the frame of the waves. It is shown that the model is able to simulate realistically some interannual variability in the AEWs, and that this dynamical aspect of the West African climate is potentially predictable (i.e. signal can be extracted from boundary conditions relatively to internal error of the GCM), especially along the moist Guinean coast. Compared with ECMWF 15-year reanalysis (ERA15), the maximum activity of AEWs is located too far to the South and is somewhat too zonal, but the main characteristics of the waves are well represented. The major impact of soil moisture relaxation in the GCM experiments is to reduce the seasonal potential predictability of AEWs over land by enhancing their internal variability.

  3. African American Adolescents and New Media: Associations with HIV/STI risk behavior and psychosocial variables

    PubMed Central

    Whiteley, Laura B.; Brown, Larry K.; Swenson, Rebecca R.; Romer, Daniel; DiClemente, Ralph J.P.; Salazar, Laura F.; Vanable, Peter A.; Carey, Michael P.; Valois, Robert F.

    2012-01-01

    Objectives Cell phones and online media are used frequently but we know little about their use among African American adolescents. This study examines the frequency of such use and its relationship to psychosocial variables and STI/HIV risk behavior. Setting/Participants 1,518 African American, 13 to 18 years of age, from 2 Northeast U.S. cities (Providence, RI; Syracuse, NY) and 2 Southeast U.S. cities (Columbia, SC; Macon, GA) were assessed from 2008–2009. Design Participants were assessed on frequency of cell phone and Internet use, psychological constructs (depression, life satisfaction, impulsivity) and HIV/STI risk behaviors (history of intercourse, sexual sensation seeking attitudes, peer sexual risks norms) with reliable scales and measures using an audio computer-assisted self-interview. Results Over 90% of African American adolescents used cell phones everyday or most days and 60% used social networking sites everyday or most days (96% used Myspace). Greater requency of cell phone use was associated with sexual sensation seeking (p=.000), riskier peer sexual norms (p=.000), and impulsivity (p=.016). Greater frequency of Internet use was associated with a history of oral/vaginal/anal sex (OR= 1.03, CI=1.0–1.05) and sexual sensation seeking (p=.000). Conclusion These findings suggest that riskier youth are online and using cell phones frequently. The Internet and cell phones maybe useful platforms for targeted health promotion and prevention efforts with AA adolescents. PMID:21749027

  4. Evaluation of the potential of organic geochemical proxies from lake sediments from Central India to reconstruct monsoon variability during the Holocene

    NASA Astrophysics Data System (ADS)

    Sarkar, Saswati; Sachse, Dirk; Wilkes, Heinz; Prasad, Sushma; Brauer, Achim; Strecker, Manfred; Basavaiah, Nathani

    2010-05-01

    A better understanding of the past variations of the Indian Monsoon system, which has a deep societal impact on the subcontinent, is essential to determine its behavior under a changing global climate. We aim to reconstruct the variability of the Indian Monsoon, which has both spatially as well as temporally variable nature, during the last 10,000 years using lipid biomarker abundances and stable isotopes from continuous, high-resolution lake sediments in a climatically sensitive region of Central India. Previous sedimentological and geochemical studies on bulk material from a well dated long lake sediment core covering the last 11,000 years have already shown evidence of rapid changes in lithology, sedimentation rate, paleo lake productivity and supply of terrestrial organic matter. Changes in the abundance of source-specific organic compounds - lipid biomarkers - can be useful for the interpretation of past changes in hydrology and ecosystem of the lake and its catchment area as well as their relation to climatic factors. We have identified a number of suitable biomarker compounds for paleohydrological and environmental reconstruction from surface sediments and short cores. Identified biomarker compounds include both aquatic and terrestrial biomarkers. Among the aquatic biomarkers short chain n-alkanes and phytane, most probably derived from cyanobacteria and microbial biomarkers like moretene, diploptene and other hopenes were present. Additionally long chain n-alkanes from vascular land plants from the lake catchment area were identified. Interestingly, the triterpene lipid tetrahymanol and tetrahymanone was found to be the biomarker of highest concentration in all analyzed surface sediments, with concentrations higher than the ubiquitous short-chain fatty acids. Tetrahymanol is often attributed to certain protozoa and frequently found in hypersaline lakes. However, studies have shown that this lipid can also be found in sizable amounts in phototrophic bacteria

  5. Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki

    NASA Astrophysics Data System (ADS)

    As-syakur, Abd. Rahman; Osawa, Takahiro; Miura, Fusanori; Nuarsa, I. Wayan; Ekayanti, Ni Wayan; Dharma, I. Gusti Bagus Sila; Adnyana, I. Wayan Sandi; Arthana, I. Wayan; Tanaka, Tasuku

    2016-09-01

    Rainfall is among the most important climatic elements of the Maritime Continent. The Maritime Continent rainfall climate is uniquely located in the world's most active convective area. Satellite data measured by the Tropical Rainfall Measuring Mission (TRMM) 3B43 based high-resolution rainfall products represent monthly Maritime Continent rainfall characteristics over 16 years. Several statistical scores were employed to analyse annual means, linear trends, seasonal means, and anomalous Maritime Continent rainfall characteristic percentages. The effects of land and topography on rainfall quantities were also studied and compared with the Global Precipitation Climatology Project (GPCP) gridded precipitation estimates which has low-resolution. Comparison also applied on linear correlation and partial correlation techniques to determine the relationship between rainfall and the El Niño Modoki and El Niño-Southern Oscillation (ENSO; hereafter conventional El Niño). The results show that north-south Maritime Continent precipitation is associated with and generated by the northwest and southeast monsoon patterns. In addition, the large-scale circulations are linked with heavy rainfall over this land-ocean region due to large-scale island-topography-induced convective organization. The rainfall responses to El Niño Modoki and conventional El Niño clearly indicated the times at which the conventional El Niño had a higher impact than El Niño Modoki, especially during northern winter and spring, and vice versa during northern fall, and similarly affect during northern summer. Furthermore, the dynamic movements of rainfall anomaly that are caused by El Niño Modoki and the conventional El Niño events spanned from the southwest during June-July-August (JJA) to throughout the northeast ending in March-April-May (MAM).

  6. Southern African Ozone Trends (1990-2007): Influences of Climate Variability and Anthropogenic Sources

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Balashov, N. V.; Witte, J. C.; Piketh, S.; Coetzee, G. J.; Thouret, V.

    2014-12-01

    Studies of tropospheric ozone trends over the southern African Highveld in the 1990-2007 period present a paradox. We used monthly averaged surface ozone data from 5 South African monitoring stations east of Johannesburg in a linear regression model to show that the cycles associated with the El Niño/La Niña make a considerable contribution to interannual ozone variability through perturbations in cloud cover, temperature and precipitation that interact with photochemistry (see Figure). During El Niño periods, typically sunnier and drier, summertime ozone is enhanced, whereas wetter, cloudier conditions of a La Niña are associated with lower ozone. Interestingly, the 5 stations show very little evidence of a statistically significant trend from 1990 through 2007. Over the same time period, the regression model shows that free tropospheric ozone, from 5-11 km, taken from monthly averaged SHADOZ (Southern Hemisphere ADditional OZonesondes) and MOZAIC (Measurement of Ozone and Water Vapour on Airbus in-service Aircraft) profiles, increased significantly (+20-25%/decade) in late autumn and early winter (May-July). There is also a positive ozone trend near the tropopause in summer (Nov.-Dec.) but none during the oft-studied months of biomass fires (Sept.-Oct.). It is difficult to interpret the seemingly contradictory trends in terms of emissions of ozone precursors that are not well characterized over the Highveld and larger southern African region. However, we ran a series of back-trajectories at 500 and 300 hPa to coincide with the profile sampling times in May-August 1990-2007. Regional contributions are implicated by recirculation in the Johannesburg region. Trajectories also point to long-range transport from the greater African continent, south Atlantic and South America, all known regions of high ozone and in the case of South America, growing pollution from emerging mega-cities.

  7. Monsoon-Enso Relationships: A New Paradigm

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides

  8. Influences of Social and Style Variables on Adult Usage of African American English Features

    PubMed Central

    Craig, Holly K.; Grogger, Jeffrey T.

    2013-01-01

    Purpose In this study, the authors examined the influences of selected social (gender, employment status, educational achievement level) and style variables (race of examiner, interview topic) on the production of African American English (AAE) by adults. Method Participants were 50 African American men and women, ages 20–30 years. The authors used Rapid and Anonymous Survey (RAS) methods to collect responses to questions on informal situational and formal message-oriented topics in a short interview with an unacquainted interlocutor. Results Results revealed strong systematic effects for academic achievement, but not gender or employment status. Most features were used less frequently by participants with higher educational levels, but sharp declines in the usage of 5 specific features distinguished the participants differing in educational achievement. Strong systematic style effects were found for the 2 types of questions, but not race of addressee. The features that were most commonly used across participants—copula absence, variable subject–verb agreement, and appositive pronouns—were also the features that showed the greatest style shifting. Conclusions The findings lay a foundation with mature speakers for rate-based and feature inventory methods recently shown to be informative for the study of child AAE and demonstrate the benefits of the RAS. PMID:22361105

  9. Monsoon research

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Forecasting monsoons is one of four research areas proposed as part of an expanded program of collaborative projects by U.S. and Indian scientists and engineers, according to George A. Keyworth, II, science advisor to President Reagan and director of the Office of Science and Technology Policy (OSTP). The other proposed research areas are health, agriculture and biomass production, and decentralized electrical power sources.During the next 6 months, scientists will ‘scope out research projects’ and detail specific research activities, according to Roger Doyon, head of the Africa and Asia section of the National Science Foundation's (NSF) Directorate for Scientific, Technological, and International Affairs. Most of the actual research will begin with the advent of fiscal 1984.

  10. Latitudinal Hydrologic Variability Along the East African Rift, Over the Past 200 Kyr

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.

    2014-12-01

    Within the deep sediments of the large lakes of Africa's Great Rift Valley are continuous environmental records of remarkable antiquity and fidelity. Not only do stratigraphic sections from these basins extend back millions of years, many of the intervals represented contain high-resolution material of decadal resolution or better. East African lake basins remain sparsely sampled however, with only a few long and continuous records available. Our ability to image the lakes using seismic reflection methods greatly exceeds our opportunities for coring and drilling however; assessing stratal relationships observed in the geophysical data permits powerful inferences about past hydrologic changes. With intensive hydrocarbon exploration work underway in East Africa, industry well data can also help constrain and ground truth basin histories. Substantial spatio-temporal hydrologic variability is observed in East African basins over the past 200 kyr. Paleohydrological changes in the late Pleistocene and early Holocene are now well constrained in the northern hemisphere East African topics, with widespread aridity and in some cases lake desiccation observed during Heinrich Event 1. A climate recovery followed in the northern hemisphere East African tropics, with the early Holocene African Humid Period a time of positive water balance across most of the rift valley. The paleohydrology of southern hemisphere tropical East Africa is more equivocal, for instance with negligible draw-down of Lake Malawi at HE1. Whereas these late Pleistocene events represent substantial climate reorganizations, severe droughts during the middle-late Pleistocene (150-65 kyr BP) were far more intense, and produced much more severe drawdowns of Lakes Malawi and Tanganyika. Scientific drill cores, kullenberg cores, and extensive seismic reflection data sets from Lakes Malawi and Tanganyika provide indisputable evidence for lowstands of -500m and -600 m respectively. Climate changes that lowered the

  11. Potential Regions of Strong Land-atmosphere Coupling Based on the S2S Project Database: Implications for the Indian Summer Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Halder, S.; Dirmeyer, P.; Cash, B. A.; Adams, J. A.

    2015-12-01

    Advancing the understanding of land-ocean-atmosphere coupled processes and improving the prediction on the sub-seasonal to seasonal (S2S) time scale is important for several sectors such as agriculture, health, disaster management etc. The multi-model S2S database provides an ideal test bed for inter-comparison of model performance in this time scale and improving the understanding of coupled processes. Soil moisture and snow cover have been recognized as potential sources of predictability for temperature and precipitation on this time scale. They can play a crucial role through better initialization and improved representation of land surface processes. In this study, we focus on the identification of potential regions of strong land-atmosphere coupling during March-April-May (MAM) and June-July-August (JJA). A quantification of the land-atmosphere coupling strength in the models is also made on the basis of several coupling indices. Comparison with earlier studies helps us identify the regions where biases in the terrestrial and/or atmospheric segments may affect the overall land-atmosphere coupling strength in individual models. Better representation of land surface processes and accurate initialization of the land surface states during MAM has important implications for variability of Indian summer monsoon rainfall on sub-seasonal time scales, which is also addressed in this study.

  12. Spatial Asian Monsoon variability at MIS 6.2 inferred from oxygen isotope records of stalagmites from Yangkou Cave, Chongqing, China

    NASA Astrophysics Data System (ADS)

    Huang, L.; Li, T.; Yang, X.; Shen, C.

    2011-12-01

    Using the oxygen isotope records of stalagmites collected from different caves in China, Asian Monsoon (AM) variation over past 380 ka has been reconstructed (e.g. Wang et al., 2001, Science, 294, 2345-2348; Yuan et al., 2004, Science, 304, 575-578; Wang et al., 2008, Nature, 451, 1090-1093; Cheng et al., 2009, Science, 326, 248-252; Zhao et al., 2010, EPSL, 298, 191-198). Chinese cave δ18O records show that summer AM intensity primarily follows Northern Hemisphere summer insolation on orbital timescales. However, an unusual stalagmite δ18O-inferred weakest summer AM at the marine isotope stage (MIS) 6.2 (129-136 ka) is recorded in Sanbao Cave (Hubei province; 31°40'N, 110°26'E) (Wang et al., 2008, Nature, 451, 1090-1093). To clarify that this weakest summer AM during the penultimate deglaciation in Hubei province is site-specific or dominant in the entire mainland, we have collected stalagmite samples with deposition time intervals of interest from Yangkou Cave (Chongqing city; 29°2'N, 107°11'E) located about 400 km southwest to Sanbao Cave. Using MC-ICP-MS techniques on these stalagmites with high uranium levels of 1-20 ppm, we can refine the durations and intensities of the summer AM events during the entire MIS 6 and also further understand the spatial variability and possible mechanism for the weakest summer AM at the MIS 6.2.

  13. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Duan, Anmin

    2015-11-01

    Investigating the relationships among different factors impacting the East Asian summer monsoon (EASM) is urgent for improving its predictability. In the present study, two factors, the Tibetan Plateau (TP) atmospheric thermal forcing and the Indian Ocean sea surface temperature basin mode (IOBM), are selected to compare their relative contributions to the interannual variability of the EASM. Both statistical methods and numerical experiments are used to separate and compare their respective influences under realistic circumstances. The results indicate that the IOBM mainly drives an anticyclonic anomaly over the northwestern Pacific in the lower troposphere, which is consistent with the dominant mode of the EASM circulation system. Meanwhile, influences from the TP thermal forcing are primarily on the anticyclonic anomaly over the TP in the upper troposphere, together with the enhanced southwesterly over southern China and a northerly anomaly over northern China in the lower troposphere. Moreover, the TP thermal forcing seems to play a more important role than the IOBM in affecting the main rainfall belt of the EASM, which extends from the middle and lower reaches of the Yangtze River to Japan. Such a rainfall pattern anomaly is directly related to the anomalous northerly over northern China and the resultant stronger moisture convergence over the main rainfall belt region when a strong TP thermal forcing occurs. In addition, the IOBM can increase the precipitation over the southeastern TP during its positive phase and hence enhance the in situ atmospheric heat source to a certain degree.

  14. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  15. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region

  16. Intraindividual Variability in Psychometrically Defined Mild Cognitive Impairment Status in Older African Americans

    PubMed Central

    Gamaldo, Alyssa A.; Allaire, Jason C.; Whitfield, Keith E.

    2013-01-01

    The current study examines day to day variability in psychometrically defined MCI status and potential predictors of changes in MCI status in an independent-living sample of urban dwelling older adults in Baltimore, Maryland. The participant sample consisted of 50 older adults ranging in age from 50 to 80 years. Participants completed health and cognitive measures (i.e. executive function, language, memory, and global cognition) over 8 occasions within a 2–3 week period. After each testing occasion, a post-hoc classification of MCI status was determined using psychometrically defined criteria based upon cognitive performance. Participants who classified as MCI after one assessment often did not meet MCI criteria at subsequent occasions. Daily fluctuations in sleep duration were associated with an increased risk for MCI classification. These results demonstrate that changes in sleep may explain changes in MCI status, particularly for African Americans. PMID:22708537

  17. Short-term variability in the dates of the Indian monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes

    NASA Astrophysics Data System (ADS)

    Yu, Wusheng; Yao, Tandong; Tian, Lide; Ma, Yaoming; Wen, Rong; Devkota, Lochan P.; Wang, Weicai; Qu, Dongmei; Chhetri, Tek B.

    2016-07-01

    This project launched the first study to compare the stable isotopes (δ18O and δD) in daily precipitation at Kathmandu (located on the southern slope of the central Himalayas) and Tingri (located on the northern slope). The results show that low δ18O and δD values of summer precipitation at the two stations were closely related to intense convection of the Indian monsoon. However, summer δ18O and δD values at Tingri were lower than those at Kathmandu, a result of the lift effect of the Himalayas, coupled with convection disturbances and lower temperatures at Tingri. In winter, the relatively high δ18O and δD values at the two stations appears to have resulted from the influence of the westerlies. Compared with those during the summer, the subsidence of the westerlies and northerly winds resulted in relatively high δ18O and δD values of the winter precipitation at Tingri. Winter δ18O and δD values at Kathmandu far exceeded those at Tingri, due to more intense advection of the southern branch of the westerlies, and higher temperatures and relative humidity at Kathmandu. The detailed differences in stable isotopes between the two stations follow short-term variability in the onset date of the Indian monsoon and its retreat across the central Himalayas. During the sampling period, the Indian monsoon onset at Tingri occurred approximately 1 week later than that at Kathmandu. However, the retreat at Tingri began roughly 3 days earlier. Clearly, the duration of the Indian monsoon effects last longer at Kathmandu than that at Tingri. Our findings also indicate that the India monsoon travels slowly northward across the central Himalayas due to the blocking of the Himalayas, but retreats quickly.

  18. The Freshwater Oyster Etheria elliptica as a Tool to Reconstruct Climate Variability across the African Continent

    NASA Astrophysics Data System (ADS)

    Vanhove, D.; Gillikin, D. P.; Kelemen, Z.; Bouillon, S.

    2015-12-01

    The bivalve Etheria elliptica occurs abundantly in (sub)tropical African river basins. We investigate its potential use for the reconstruction of ambient water chemistry and climate by means of stable oxygen isotope ratios in specimens from the Congo river (Kisangani), the Oubangui river (Bangui) and the Victoria Nile (Jinja). Unlike other common African bivalve species, E. elliptica contains distinct organic-rich growth increments, previously suggested to correlate with lunar periodicity. However, cavities in the shell complicate age reading and little is known about the exact timing and continuity of these growth increments. We set up a comparative study between different techniques to visualize and enhance growth features, and find that staining with Mutvei's solution and confocal fluorescence microscopy perform equally well. Despite the presence of cavities, growth lines can generally be followed from umbo to shell margin. Moreover, preliminary δ18O results of two micro-sampled specimens from the Oubangui river show that 12-13 growth lines occur within one year of growth. This corroborates that these increments can be used as temporal anchor points, providing a moon-monthly time frame for sequential microchemistry. In two Congo river specimens, δ18Oshell values vary between -1.9 and -3.8 ‰ (VPDB), in line with a predicted range of -2.1 to -4.1 ‰ based on fortnightly δ18Owater and T monitoring. Reconstructed intra-annual δ18Owater variability from δ18Oshell values and observed T correlates with discharge, reflecting rainfall and runoff variability in the upstream catchment area. In two Victoria Nile specimens, collected 20 km downstream from Lake Victoria, δ18Oshell values are high and relatively constant, varying between +1.8 and +3.2 ‰. Enrichment of 18Oshell is consistent with isotopically heavy rainfall signatures and elevated surface evaporation in Lake Victoria. These first results suggest that E. elliptica is well-suited for the reconstruction

  19. Interannual to interdecadal variability of winter and summer southern African rainfall, and their teleconnections

    NASA Astrophysics Data System (ADS)

    Dieppois, Bastien; Pohl, Benjamin; Rouault, Mathieu; New, Mark; Lawler, Damian; Keenlyside, Noel

    2016-06-01

    This study examines for the first time the changing characteristics of summer and winter southern African rainfall and their teleconnections with large-scale climate through the dominant time scales of variability. As determined by wavelet analysis, the austral summer and winter rainfall indices exhibit three significant time scales of variability over the twentieth century: interdecadal (15-28 years), quasi-decadal (8-13 years), and interannual (2-8 years). Teleconnections with global sea surface temperature and atmospheric circulation anomalies are established here but are different for each time scale. Tropical/subtropical teleconnections emerge as the main driver of austral summer rainfall variability. Thus, shifts in the Walker circulation are linked to the El Niño-Southern Oscillation (ENSO) and, at decadal time scales, to decadal ENSO-like patterns related to the Pacific Decadal Oscillation and the Interdecadal Pacific Oscillation. These global changes in the upper zonal circulation interact with asymmetric ocean-atmospheric conditions between the South Atlantic and South Indian Oceans; together, these lead to a shift in the South Indian Convergence Zone and a modulation of the development of convective rain-bearing systems over southern Africa in summer. Such regional changes, embedded in quasi-annular geopotential patterns, consist of easterly moisture fluxes from the South Indian High, which dominate southerly moisture fluxes from the South Atlantic High. Austral winter rainfall variability is more influenced by midlatitude atmospheric variability, in particular the Southern Annular Mode. The rainfall changes in the southwestern regions of southern Africa are determined by asymmetrical changes in the midlatitude westerlies between the Atlantic and Indian Oceans.

  20. Observed decadal variability of southern African rainfall, their teleconnections, and uncertainties

    NASA Astrophysics Data System (ADS)

    Dieppois, Bastien; Pohl, Benjamin; Rouault, Mathieu; New, Mark; Lawler, Damian; Keenlyside, Noel

    2016-04-01

    This study examines for the first time the changing characteristics of summer and winter southern African rainfall, and their teleconnections with large-scale climate through the dominant timescales of variability. The summer and winter rainfall indices exhibit three significant timescales of variability over the 20th century: interdecadal (15-28 year), quasi-decadal (8-13 year) and interannual (2-8 year). Teleconnections with global sea-surface temperature and atmospheric circulation anomalies, which have been established here using different data sets, are different for each timescale. Uncertainty related to the choice of observed-based SST and reanalysis data sets appears stronger over the winter rainfall region and at the interdecadal timescale. However, only SST and atmospheric anomalies which show an agreement greater than 90% between data sets, or between the members of the reanalysis, have been described. Tropical/subtropical teleconnections emerge as the main driver of summer rainfall variability. Thus, shifts in the Walker circulation are linked to the El Niño Southern Oscillation (ENSO) and, at decadal timescales, to decadal ENSO-like patterns related to the Pacific Decadal Oscillation and the Interdecadal Pacific Oscillation. These global changes in the upper-zonal circulation interact with asymmetric ocean-atmospheric modifications between the South Atlantic and South Indian Oceans; together these lead to shift in the South Indian Convergence Zone, and a modulation of the development of convective rain bearing systems over southern Africa in summer. Such regional changes, embedded in quasi-annular geopotential patterns, consist of easterly moisture fluxes from the Mascarene High, which dominate southerly moisture fluxes from the St Helena High. Winter rainfall variability is more influenced by mid-latitude atmospheric variability, in particular the Southern Annular Mode, but interactions with ENSO remain, especially in the subtropics. Asymmetrical

  1. Recurrent Interannual Climate Modes and Teleconnection Linking North America Warm Season Precipitation Anomalies to Asia Summer Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, H. Y.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, we present results showing that summertime precipitation anomalies over North America and East Asia may be linked via pan-Pacific teleconnection patterns, which are components of two dominant recurring global climate modes. The first mode (Mode-1) features an inverse relationship between rainfall anomaly over the US Midwest/central to the eastern/southeastern regions, coupled to a mid-tropospheric high-low pressure system over the northwest and southeast of the US, which regulates low level moisture transport from the Gulf of Mexico to the Midwest. The regional circulation pattern appears to be a part of a global climate mode spanning Eurasia, the North Pacific, North America, and the Atlantic. This mode is associated with coherent fluctuations of jetstream variability over East Asia, and Eurasia, SST in the North Pacific and the North Atlantic. While Mode-1 is moderately correlated with El Nino-Southern Oscillation (ENSO), it appears to be distinct from it, with strong influences from mid-latitude or possibly from higher latitude processes. Results show that Mode-1 not only has an outstanding contribution to the great flood of 1993, it has large contribution to the US precipitation anomalies in other years. Also noted is an apparent increase in influence of Mode-1 on US summertime precipitation in the last two decades since 1977.

  2. Palaeoclimatic insights into forcing and response of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Mohtadi, Mahyar; Prange, Matthias; Steinke, Stephan

    2016-05-01

    Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.

  3. The monsoon experiment MONEX

    NASA Technical Reports Server (NTRS)

    Das, P. K.

    1979-01-01

    The effects of monsoons in different parts of the world on the Earth's atmosphere were studied by MONEX, India's Monsoon Experiment program. Data were gathered from meteorological satellites, sounding rockets, aircraft, land and shipborne stations.

  4. High resolution variability in the Quaternary Indian monsoon inferred from records of clastic input and paleo-production recovered during IODP Expedition 355

    NASA Astrophysics Data System (ADS)

    Hahn, Annette; Lyle, Mitchell; Kulhanek, Denise; Ando, Sergio; Clift, Peter

    2016-04-01

    The sediment cores obtained from the Indus fan at Site U1457 during Expedition 355 of the International Ocean Discovery Program (IODP) contain a ca. 100m spliced section covering the past ca. 1Ma. We aim to make use of this unique long, mostly continuous climate archive to unravel the millennial scale atmospheric and oceanic processes linked to changes in the Indian monsoon climate over the Quaternary glacial-interglacial cycles. Our aim is to fill this gap using fast, cost-efficient methods (Fourier Transform Infrared Spectroscopy [FTIRS] and X-ray Fluorescence [XRF] scanning) which allow us to study this sequence at a millennial scale resolution (2-3cm sampling interval). An important methodological aspect of this study is developing FTIRS as a method for the simultaneous estimation of the sediment total inorganic carbon and organic carbon content by using the specific fingerprint absorption spectra of minerals (e.g. calcite) and organic sediment components. The resulting paleo-production proxies give indications of oceanic circulation patterns and serve as a direct comparison to the XRF scanning data. Initial results show that variability in paleo-production is accompanied by changes in the quantity and composition of clastic input to the site. Phases of increased deposition of terrigenous material are enriched in K, Al, Fe and Si. Both changes in the weathering and erosion focus areas affect the mineralogy and elemental composition of the clastic input as grain size and mineralogical changes are reflected in the ratios of lighter to heavier elements. Furthermore, trace element compositions (Zn, Cu, Mn) give indications of diagenetic processes and contribute to the understanding of the depositional environment. The resulting datasets will lead to a more comprehensive understanding of the interplay of the local atmospheric and oceanic circulation processes over glacial-interglacial cycles; an essential prerequisite for regional predictions of global climate

  5. A possible link between North Atlantic cooling and dry events in the core SW monsoon region identified from Lonar Lake in central India: Indication of a connection between solar output and monsoon variability

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Prasad, S.; Plessen, B.; Stebich, M.; Anoop, A.; Riedel, N.; Basavaiah, N.

    2013-12-01

    Former comparison of climate sensitive proxies from natural archives of the northern monsoon domain with proxy data from mid and high latitude archives have proven a correlation between the proxies of both regions. But still some ambiguities concerning the mechanisms that drive this correlation exist. During our investigation of a sediment core from Lonar Lake in central India, which covers the complete Holocene sedimentation history of the lake, we could identify several phases of centennial scale climate alteration on the basis of stable carbon and nitrogen isotope ratios, mineralogy, and amino acid derived degradation proxies. These phases correlate with climate sensitive proxies from the North Atlantic region as well as with 14C nuclide production rate, which indicates changes in solar output. The results from this first continuous, high resolution record of Holocene climate history from central India indicate sensitivity of monsoon climate to solar forcing. Additionally, a connection between North Atlantic climate and the climate of a region that is not affected by the Westerlies or shifts of the summer ITCZ to a position south of the investigation site could be identified.

  6. [Integration of demographic variables in development planning: the case of Central African Republic].

    PubMed

    Bm'niyat Bangamboulou-te-niya, D

    1989-06-01

    maternal-child health project created in 1978, and the 2nd national population census is underway. These positive actions have not been integrated into a framework for population and development planning. 4 phases are viewed as necessary if integration of population and development planning is to be achieved in the Central African Republic. These phases are provision of population education to all sectors; research on population variables and links between population and development especially in employment, education, and population distribution; training and integration of skills between political authorities, planners, and researchers; and development of data bases and modelling capabilities. PMID:12178539

  7. Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaila; Sylla, Mouhamadou B.; Camara, Moctar; Gaye, Amadou T.

    2013-07-01

    We analyse the interannual variability of the averaged summer monsoon rainfall over the Sahel from multiple regional climate models driven by the ERA-interim reanalysis and seek to provide effective information for future modelling work. We find that the majority of the models are able to reproduce the rainfall variability with correlation coefficient exceeding 0.5 compared with observations. This is due to a good representation of the dynamics of the main monsoon features of the West African climate such as the monsoon flux, African Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ). Among the models, only HIRHAM fails to reproduce the rainfall variability exhibiting hence a correlation coefficient of -0.2. This deficiency originates from the fact that HIRHAM does not properly capture the variability of monsoon flow and the relationship between rainfall and the AEJ dynamic. We conclude that a good performance of a regional climate model in simulating the monsoon dynamical features variability is of primary importance for a better representation of the interannual variability of rainfall over the Sahel.

  8. Multidecadal to multicentury scale collapses of Northern Hemisphere monsoons over the past millennium

    PubMed Central

    Asmerom, Yemane; Polyak, Victor J.; Rasmussen, Jessica B. T.; Burns, Stephen J.; Lachniet, Matthew

    2013-01-01

    Late Holocene climate in western North America was punctuated by periods of extended aridity called megadroughts. These droughts have been linked to cool eastern tropical Pacific sea surface temperatures (SSTs). Here, we show both short-term and long-term climate variability over the last 1,500 y from annual band thickness and stable isotope speleothem data. Several megadroughts are evident, including a multicentury one, AD 1350–1650, herein referred to as Super Drought, which corresponds to the coldest period of the Little Ice Age. Synchronicity between southwestern North American, Chinese, and West African monsoon precipitation suggests the megadroughts were hemispheric in scale. Northern Hemisphere monsoon strength over the last millennium is positively correlated with Northern Hemisphere temperature and North Atlantic SST. The megadroughts are associated with cooler than average SST and Northern Hemisphere temperatures. Furthermore, the megadroughts, including the Super Drought, coincide with solar insolation minima, suggesting that solar forcing of sea surface and atmospheric temperatures may generate variations in the strength of Northern Hemisphere monsoons. Our findings seem to suggest stronger (wetter) Northern Hemisphere monsoons with increased warming. PMID:23716648

  9. Spatial and temporal variability of (7)Be and (210)Pb wet deposition during four successive monsoon storms in a catchment of northern Laos.

    PubMed

    Gourdin, E; Evrard, O; Huon, S; Reyss, J-L; Ribolzi, O; Bariac, T; Sengtaheuanghoung, O; Ayrault, S

    2014-10-01

    Fallout radionuclides (7)Be and (210)Pb have been identified as potentially relevant temporal tracers for studying soil particles dynamics (surface vs. subsurface sources contribution; remobilization of in-channel sediment) during erosive events in river catchments. An increasing number of studies compared (7)Be: (210)Pb activity ratio in rainwater and sediment to estimate percentages of freshly eroded particles. However, the lack of data regarding the spatial and temporal variability of radionuclide wet deposition during individual storms has been identified as one of the main gaps in these estimates. In order to determine these key parameters, rainwater samples were collected at three stations during four storms that occurred at the beginning of the monsoon (June 2013) in the Houay Xon mountainous catchment in northern Laos. Rainwater (7)Be and (210)Pb activities measured using very low background hyperpure Germanium detectors ranged from 0.05 to 1.72 Bq L(-1) and 0.02 to 0.26 Bq L(-1), respectively. Water δ(18)O were determined on the same samples. Total rainfall amount of the four sampled storms ranged from 4.8 to 26.4 mm (51 mm in total) at the time-fractionated collection point. Corresponding cumulative (7)Be and (210)Pb wet depositions during the sampling period were 17.6 and 2.9 Bq m(-2), respectively. The (7)Be: (210)Pb activity ratio varied (1) in space from 6 to 9 for daily deposition and (2) in time from 3 to 12 for samples successively collected. Intra-event evolution of rainwater (7)Be and (210)Pb activities as well as δ(18)O highlighted the progressive depletion of local infra-cloud atmosphere radionuclide stock with time (washout), which remains consistent with a Raleigh-type distillation process for water vapour. Intra-storm ratio increasing with time showed the increasing contribution of rainout scavenging. Implications of such variability for soil particle labelling and erosion studies are briefly discussed and recommendations are formulated

  10. A Record of Early to Middle Holocene Hydroclimate Variability from the West African Sahel

    NASA Astrophysics Data System (ADS)

    McIntosh, R.; Douglas, P. M.; Warren, C.; Meyers, S. R.; Coutros, P.; Park, D. P.

    2011-12-01

    The African Humid Period (ca. 14.8 to 5.5 ka) is an interval of wet climates across northwest Africa, with evidence for widespread lake basins and savannah vegetation in areas that are now desert. There are few high-resolution continental records of hydrologic variability during the African humid period however. In particular, it remains uncertain how periods of north Atlantic climate variability were expressed in northwest Africa. We present results from a 5.4 meter sediment core from Lake Fati in northern Mali (16.29° N, 3.71° W), which represents the first lake sediment core from the western Sahel. The Lake Fati core contains a continuous record of lake mud from 10.43 to 4.66 kyr BP. Centimeter scale XRF scanning indicates strong covariation between iron, calcium, manganese and phosphorous abundance due to enrichment of these elements during periods of enhanced deposition of authigenic siderite. Preliminary oxygen isotope measurements indicate that authigenic siderite δ18O values are positively correlated with Fe counts, suggesting that siderite deposition increased during drier periods with greater evaporation of lake waters. These drying events occurred on decadal to centennial time scales, with higher-frequency variability during the early Holocene. Peaks in zirconium and titanium abundance coincide with some of the inferred dry periods, suggesting that deposition of aeolian silt coincided with periods of increased evaporation of lake water. A roughly 30 year interval of sand deposition at ~8.33 kyr BP suggests major drying and activation of aeolian sand deposition. This abrupt climate change could be related to the 8.2 ka event in the North Atlantic; further efforts to refine the sediment core age model will constrain the relationship of this rapid drying to abrupt climate change in the North Atlantic. Aluminum and silicon counts co-vary for much of the lake Fati record, and are related to input of terrigenous sediment, primarily during seasonal flooding

  11. Satellite-derived interannual variability of West African rainfall during 1983-88

    NASA Technical Reports Server (NTRS)

    Ba, Mamoudou B.; Frouin, Robert; Nicholson, Sharon E.

    1995-01-01

    Two satellite algorithms for rain estimation are used to study the interannual variability of West African rainfall during contrasting years of the period 1983-88. The first algorithm uses a frequency of occurrence index quantifying the number of times Meteosat thermal infrared radiance below 2.107 W/sq m/sr/micrometer (-40 C) occurs during the rainy season. The second algorithm uses the average Meteosat thermal infrared radiance over the period of interest. Appropriate calibrations are performed using these satellite parameters and ground-based rainfall observations. Separate calibration and equations are considered for each of three suggested subrainfall zones in West Africa: two Sahelian zones located just north of 9 deg N (one east and one west of 5 deg W) and the region extending south from 9 deg N to the coast. Over 80% of the variance in the ground-based rainfall data is explained by both algorithms in regions located north of 9 deg N, but poor correlations between observed and estimated rainfall exist south of 9 deg N. The interannual variability of rainfall in the Sahel is well described by that of cold clouds and average radiances. The satellite estimates also reveal substantial longitudinal variability in the anomaly fields, indicating that some Sahelo-Soudanian areas may receive above average rainfall during a year cataloged as dry. The latitudinal displacement and the extent of the cloud band associated with the intertropical convergence zone (ITCZ), as derived from cold cloud indices, indicate a northward displacement of the ITCZ in some, but not all, wet years in the Sahel. No systematic anomalous southward displacement of the ITCZ is evident in dry years. Drought in the Sahel appears to be more closely linked to the lattitudinal extent and the intensity of the convection within the ITCZ.

  12. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    NASA Astrophysics Data System (ADS)

    Jin, L.; Peng, Y.; Chen, F.; Ganopolski, A.

    2009-08-01

    The impacts of various scenarios of a gradual snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP-0 kyr BP) are studied by using the Earth system model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases over most of Eurasia but in the Southern Asia temperature response is opposite. With the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP-0 kyr BP), the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 kyr BP to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results suggest that the development of snow and ice cover over Tibetan Plateau represents an additional important climate feedback, which amplify orbital forcing and produces a significant synergy with the positive vegetation feedback.

  13. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  14. Use of Machine Learning Techniques for Iidentification of Robust Teleconnections to East African Rainfall Variability in Observations and Models

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris

    2014-01-01

    Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.

  15. Carbonate leaching processes in the Red Clay Formation, Chinese Loess Plateau: Fingerprinting East Asian summer monsoon variability during the late Miocene and Pliocene

    NASA Astrophysics Data System (ADS)

    He, Tong; Chen, Yang; Balsam, William; Qiang, Xiaoke; Liu, Lianwen; Chen, Jun; Ji, Junfeng

    2013-01-01

    High-resolution variations in carbonate minerals from the Jiaxian Red Clay section, located at the northern limit of the present East Asian summer monsoon (EASM) on Chinese Loess Plateau were quantified using Fourier transform infrared spectroscopy. We analyzed a large quantity of sediments dated from the late Miocene to Pliocene (8.2-2.6 Ma). The carbonates in this interval show high-frequency variations alternating between leached and calcareous horizons. The low carbonate contents and high values of magnetic susceptibility and high Rb/Sr ratios were found in the leached zones, a pattern that is consistent with that observed in the overlying Quaternary loess-paleosol sequences. This pattern suggests that East Asian Monsoon (EAM) rainwater enhanced leaching and accumulation processes of carbonate minerals in the Red Clay Formation in a way similar to the loess-paleosol sequence. Seven alternating leached and calcareous zones are identified, suggesting oscillations of the EASM and East Asian winter monsoon intervals. The calcareous zones were also found to have high Zr/Rb ratio. These indications of shifts from a strong EASM to East Asian winter monsoon dominance correlate well with the cooling transition indicated by deep sea δ18O isotopes. This evidence suggests that the EAM was active during the late Miocene and Pliocene and was similar to the Quaternary monsoon. The presence of a strong EAM during the Pliocene Warm Period also raises questions about the hypothesis that past and future warm climate conditions could produce a permanent El Niño-like state.

  16. Long-term Variability of NorthWest African coastal upwelling

    NASA Astrophysics Data System (ADS)

    Wade, Malick; Rodríguez-Fonseca, Belen; Lazar, Alban

    2014-05-01

    The NorthWest African sea surface temperature variability can be due to changes in the coastal upwelling system, which in turn can be due to alterations in local winds, global winds induced by teleconnections and propagation of waves from wind burst in remote regions. The two last processes could be due in turn to changes in the sea surface temperature in extended regions remote from the upwelling region, as changes in Pacific SSTs associated with ENSO, or in the Equatorial Atlantic SSTs. This work demonstrates that the whole signal cannot be explained by local wind/Ekman pumping and large scale winds induced by teleconnections play an important role. Using observational data of SSTs and winds from atmospheric reanalysis, and applying different statistical technics, as correlation analysis, filtering and discriminant analysis, the different influences and its stationarity along the observational period are tested pointing to the non stationarity of El Niño influence in FMA and to other possible predictors influencing in the region.

  17. Political determinants of variable aetiology resonance: explaining the African AIDS epidemics.

    PubMed

    Hunsmann, M

    2009-12-01

    Notwithstanding the massive social and economic disruptions caused by HIV/AIDS in many sub-Saharan countries, the epidemic does not pose a serious political threat to African governments. Based on an analysis of today's dominant aetiologic framing of HIV/AIDS in sub-Saharan Africa, this paper argues that the behaviour-centred explanatory approach contributes to the political domestication of the epidemic. The behavioural aetiology suffers from a double reductionism: It concentrates on sexual transmission only and, within sexual transmission, it focuses exclusively on the immediate cause of transmission (unprotected sex), omitting that biological co-factors increase populations' vulnerability to infection. By overlooking these non-behaviour-related determinants of sexual HIV transmission, this explanatory approach implicitly blames individual behaviours for the spread of the virus. Conversely, the likely underestimation (if not the outright denial) of iatrogenic HIV transmission exonerates governments and donor agencies. The variable political resonance of different explanatory approaches is not random and the translation of the available bio-medical and epidemiological evidence into prevention measures is politically mediated. PMID:19948897

  18. The First Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons

    SciTech Connect

    Sperber, K R; Yasunari, T

    2005-07-27

    In 2004 the Joint Scientific Committee (JSC) that provides scientific guidance to the World Climate Research Programme (WCRP) requested an assessment of (1) WCRP monsoon related activities and (2) the range of available observations and analyses in monsoon regions. The purpose of the assessment was to (a) define the essential elements of a pan-WCRP monsoon modeling strategy, (b) identify the procedures for producing this strategy, and (c) promote improvements in monsoon observations and analyses with a view toward their adequacy, and addressing any undue redundancy or duplication. As such, the WCRP sponsored the ''1st Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons'' at the University of California, Irvine, CA, USA from 15-17 June 2005. Experts from the two WCRP programs directly relevant to monsoon studies, the Climate Variability and Predictability Programme (CLIVAR) and the Global Energy and Water Cycle Experiment (GEWEX), gathered to assess the current understanding of the fundamental physical processes governing monsoon variability and to highlight outstanding problems in simulating the monsoon that can be tackled through enhanced cooperation between CLIVAR and GEWEX. The agenda with links to the presentations can be found at: http://www.clivar.org/organization/aamon/WCRPmonsoonWS/agenda.htm. Scientific motivation for a joint CLIVAR-GEWEX approach to investigating monsoons includes the potential for improved medium-range to seasonal prediction through better simulation of intraseasonal (30-60 day) oscillations (ISO's). ISO's are important for the onset of monsoons, as well as the development of active and break periods of rainfall during the monsoon season. Foreknowledge of the active and break phases of the monsoon is important for crop selection, the determination of planting times and mitigation of potential flooding and short-term drought. With a few exceptions simulations of ISO are typically poor in all classes of

  19. Orbital and millennial-scale variability in the southernmost reaches of the South American summer monsoon during the last 50 ka BP

    NASA Astrophysics Data System (ADS)

    Chiessi, C. M.; Govin, A.; Mulitza, S.; Campos, M. D.

    2013-05-01

    The South American summer monsoon (SASM) and its related features (e.g., the South Atlantic Convergence Zone) deliver most of the precipitation for the Amazon and La Plata basins, the two largest drainage systems in South America. Marine, cave and lake records mainly from equatorial and tropical South America show that the strength of the SASM fluctuated on orbital and millennial time-scales, with a strong SASM during periods of high austral summer insolation. On millennial time-scales, precipitation in tropical South America to the south of the equator was increased during periods of a weak Atlantic meridional overturning circulation. Nevertheless, there is an almost complete lack of information about changes in precipitation in the subtropics and mid-latitudes of South America. This area comprises the transition from the southernmost reaches of the SASM to the semi-arid northern Patagonia, and is highly sensitive to changes in precipitation because: (i) it mainly receives precipitation during austral summer (related to the SASM); and (ii) it shows a steep gradient in total annual precipitation (going from ca. 1000 mm/yr around 30oS to ca. 200 mm/yr around 40oS). Here we present recently acquired data from the terrigenous fraction of marine sediment core GeoB6308-3 (39.30oS / 53.97oW / 3620 m water depth / 793 cm long) collected off southeastern South America. Our age model is based on 18 14C AMS ages while information about changes in continental climate comes from bulk sediment major element (i.e., Ca, Fe, Al, Si, Ti, K) proportions and Nd isotopes. The core recorded the last ca. 50 ka BP and its terrigenous sediment fraction shows a typical Central-West Argentinean / Patagonian isotopic signature. Through X-ray fluorescence scanning we were able to produce a record with mean temporal resolution of 35 yr. In our presentation, we will discuss changes in the southernmost reaches of the SASM and compare it to other records from South and Central America with the

  20. Modeling Interannual Variations of Summer Monsoons.

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.; Brankovi, .; Viterbo, P.; Miller, M. J.

    1992-05-01

    Results from a set of 90-day integrations, made with a T42 version of the ECMWF model and forced with a variety of specified sea surface temperature (SST) datasets, are discussed. Most of the integrations started from data for 1 June 1987 and 1 June 1988. During the summer of 1987, both the Indian and African monsoons were weak, in contrast with the summer of 1988 when both monsoons were much stronger. With observed SSTs, the model is able to simulate the interannual variations in the global-scale velocity potential and stream-function fields on seasonal time scales. On a regional basis, rainfall over the Sahel and, to a lesser extent, India showed the correct sense of interannual variation, though in absolute terms the model appears to have an overall dry bias in these areas.Additional integrations were made to study the impact of the observed SST anomalies in individual oceans. Much of the interannual variation in both Indian and African rainfall can be accounted for by the remote effect of the tropical Pacific SST anomalies only. By comparison with the effect of the Pacific, interannual variability in Indian Ocean, tropical Atlantic Ocean, or extratropical SSTs had a relatively modest influence on tropical large-scale flow or rainfall in the areas studied.Integrations run with identical SSTs but different initial conditions indicated that for large-scale circulation diagnostics, the impact of anomalous ocean forcing dominated the possible impact of variations in initial conditions. In terms of local rainfall amounts, on the other hand, the impact of initial conditions is comparable with that of SST anomaly over parts of India and Southeast Asia, less so over the Sahel. While this may suggest that a nonnegligible fraction of the variance of month-to-seasonal mean rainfall on the regional scale in the tropics may not be dynanamically predictable, it is also quite possible that the disparity in the apparent predictability of rainfall and circulation anomalies is a

  1. Surface Ozone Variability and Trends over the South African Highveld from 1990 to 2007

    NASA Technical Reports Server (NTRS)

    Balashov, Nikolay V.; Thompson, Anne M.; Piketh, Stuart J.; Langerman, Kristy E.

    2014-01-01

    Surface ozone is a secondary air pollutant formed from reactions between nitrogen oxides (NOx = NO + NO2) and volatile organic compounds in the presence of sunlight. In this work we examine effects of the climate pattern known as the El Niño-Southern Oscillation (ENSO) and NOx variability on surface ozone from 1990 to 2007 over the South African Highveld, a heavily populated region in South Africa with numerous industrial facilities. Over summer and autumn (December-May) on the Highveld, El Niño, as signified by positive sea surface temperature (SST) anomalies over the central Pacific Ocean, is typically associated with drier and warmer than normal conditions favoring ozone formation. Conversely, La Niña, or negative SST anomalies over the central Pacific Ocean, is typically associated with cloudier and above normal rainfall conditions, hindering ozone production. We use a generalized regression model to identify any linear dependence that the Highveld ozone, measured at five air quality monitoring stations, may have on ENSO and NOx. Our results indicate that four out of the five stations exhibit a statistically significant sensitivity to ENSO at some point over the December-May period where El Niño amplifies ozone formation and La Niña reduces ozone formation. Three out of the five stations reveal statistically significant sensitivity to NOx variability, primarily in winter and spring. Accounting for ENSO and NOx effects throughout the study period of 18 years, two stations exhibit statistically significant negative ozone trends in spring, one station displays a statistically significant positive trend in August, and two stations show no statistically significant change in surface ozone.

  2. Impact of potential large-scale and medium-scale irrigation on the West African Monsoon and its dependence on location of irrigated area

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; IM, E. S.

    2014-12-01

    This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and

  3. Variable Production of African American English across Oracy and Literacy Contexts

    ERIC Educational Resources Information Center

    Thompson, Connie A.; Craig, Holly K.; Washington, Julie A.

    2004-01-01

    Many African American students produce African American English (AAE) features that are contrastive to Standard American English (SAE). The AAE-speaking child who is able to dialect shift, that is, to speak SAE across literacy contexts, likely will perform better academically than the student who is not able to dialect shift. Method: This…

  4. Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the role of monsoonal flows, the Madden-Julian Oscillation, tropical cyclones, squall lines and cold pools

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L. E.; Zhang, J.

    2014-08-01

    In a joint NRL/Manila Observatory mission, as part of the 7 SouthEast Asian Studies program (7SEAS), a two-week, late September~2011 research cruise in the northern Palawan Archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a~receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a~narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Nino/Southern Oscillation (ENSO) La Nina year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol lifecycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm-3, non-sea salt PM2.5=1μg m-3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea salt PM2.510-25 μg m-3). These

  5. Do Birds of a Feather Flock Together? The Variable Bases for African American, Asian American, and European American Adolescents' Selection of Similar Friends.

    ERIC Educational Resources Information Center

    Hamm, Jill V.

    2000-01-01

    Examined variability in adolescent-friend similarity in African American, Asian American, and European American adolescents. Found greatest similarity for substance use, modest for academic orientation, and low for ethnic identity. Found that compared with other groups, African Americans chose friends who were less similar in academic orientation…

  6. The role of the New Guinea cross-equatorial flow in the interannual variability of the western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Wei; LinHo; Chou, Chia

    2014-04-01

    The western North Pacific (WNP) monsoon trough from 1958 to 2001 shows a binary-like feature in August and September, with more than half being either an imposing presence or a total absence. One of the major moisture sources maintaining the WNP monsoon trough is the low-level moisture advection laterally driven by the low-level cross-equatorial flow that originates from the Banda Sea and Solomon Sea. By decomposing contributions to the cross-equatorial flow based on the method proposed by Back and Bretherton in 2009, the boundary-layer pressure gradient in the Maritime Continent plays a major role. This pressure gradient is further found to be associated with the densely packed sea surface temperature (SST) gradient near the equator around New Guinea, which is well correlated with the SST anomalies in the equatorial eastern Pacific, a concurrent El Niño/Southern Oscillation (ENSO) condition.

  7. Potential Predictability of the Monsoon Subclimate Systems

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Chang, Y.; Schubert, S.

    1999-01-01

    While El Nino/Southern Oscillation (ENSO) phenomenon can be predicted with some success using coupled oceanic-atmospheric models, the skill of predicting the tropical monsoons is low regardless of the methods applied. The low skill of monsoon prediction may be either because the monsoons are not defined appropriately or because they are not influenced significantly by boundary forcing. The latter characterizes the importance of internal dynamics in monsoon variability and leads to many eminent chaotic features of the monsoons. In this study, we analyze results from nine AMIP-type ensemble experiments with the NASA/GEOS-2 general circulation model to assess the potential predictability of the tropical climate system. We will focus on the variability and predictability of tropical monsoon rainfall on seasonal-to-interannual time scales. It is known that the tropical climate is more predictable than its extratropical counterpart. However, predictability is different from one climate subsystem to another within the tropics. It is important to understand the differences among these subsystems in order to increase our skill of seasonal-to-interannual prediction. We assess potential predictability by comparing the magnitude of internal and forced variances as defined by Harzallah and Sadourny (1995). The internal variance measures the spread among the various ensemble members. The forced part of rainfall variance is determined by the magnitude of the ensemble mean rainfall anomaly and by the degree of consistency of the results from the various experiments.

  8. Terrigenous supplies variability over the past 22,000 yr in the southern South China Sea slope: Relation to sea level and monsoon rainfall changes

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Jiang, Fuqing; Wan, Shiming; Zhang, Jin; Li, Anchun; Li, Tiegang

    2016-03-01

    Changing weathering intensity, sediment transport, and provenance variations over the past 22.0 ka BP have been investigated by high-resolution clay mineralogy, grain-size and stable oxygen isotopes of planktonic foraminifera records along core CG2 recovered from the continental slope of the Sunda Shelf (southern South China Sea). Our results indicated that the reworking of older sediments outcropping on the Sunda Shelf exerted a great influence on the sediment supply during the last glacial and most of the last deglacial, modulated by sea level and monsoon rainfall changes. During the last 9.0 ka BP, relative increased kaolinite and heavier δ18Oseawater values might reflect the higher influence of the tropical Indonesian Islands sources due to the reopen of southern straits, implying the formation of modern oceanic circulation and depositional patterns. High sediment fluxes in core CG2 during Heinrich stadial 1 might be a synthetic result of the intensified monsoon rainfall originated from the southward shift of the Intertropical Convergence Zone and the proximal location of the study core before the flooding of the Sunda Shelf. Fluctuations in smectite/(illite + chlorite) ratios correlated well with monsoon intensity, and periods of strong monsoon rainfall (lighter δ18Oseawater values) were associated with an intensification of erosion of pre-existing, more weathered materials on the Sunda Shelf. Finally, we concluded that sediment composition and mineralogy in the southern South China Sea slope were controlled by varying degrees of reworking on the Sunda Shelf, as well as climatically modulated sediment supply from the Mekong River and southern tropical islands over the last 22.0 ka BP.

  9. Exploring Pacific Climate Variability and Its Impacts on East African Water Resources and Food Security

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Hoerling, M. P.; Hoell, A.; Liebmann, B.; Verdin, J. P.; Eilerts, G.

    2014-12-01

    In 8 out the past 15 boreal springs (1999, 2000, 2004, 2008, 2009, 2011, 2012, and 2013), substantial parts of eastern East Africa experienced very low boreal spring rains. These rainfall deficits have triggered widespread food insecurity, and even contributed to the outbreak of famine conditions in Somalia in 2011. At both seasonal and decadal time scales, new science supported by the USAID Famine Early Warning Systems Network seeks to understand the mechanisms producing these droughts. We present research suggesting that the ultimate and proximate causes of these increases in aridity are i) stronger equatorial Pacific SST gradients and ii) associated increases in the strength of the Indo-Pacific Walker circulation. Using observations and new modeling ensembles, we explore the relative contributions of Pacific Decadal Variability (PDV) and global warming under warm and cold east Pacific Ocean states. This question is addressed in two ways: by using atmospheric GCMs forced with full and ENSO-only SSTs, and ii) by decomposing coupled ocean-atmosphere climate simulations into PDV and non-PDV components. These analyses allow us to explore the Walker circulation's sensitivity to climate change under various PDV states, and inform a tentative bracketing of 2030 climate conditions. We conclude by discussing links to East African development. Regions of high rainfall sensitivity are delineated and intersected with recent changes in population and land cover/land use. The interaction of elevation and climate is shown to create climatically secure regions that are likely to remain viable even under drier and warmer conditions; such regions may be logical targets for agricultural intensification. Conversely, arid low elevation regions are likely to experience substantial temperature impacts. Continued expansion into these areas may effectively create more 'drought' even if rainfall increases.

  10. Novel swine virulence determinant in the left variable region of the African swine fever virus genome.

    PubMed

    Neilan, J G; Zsak, L; Lu, Z; Kutish, G F; Afonso, C L; Rock, D L

    2002-04-01

    Previously we have shown that the African swine fever virus (ASFV) NL gene deletion mutant E70DeltaNL is attenuated in pigs. Our recent observations that NL gene deletion mutants of two additional pathogenic ASFV isolates, Malawi Lil-20/1 and Pr4, remained highly virulent in swine (100% mortality) suggested that these isolates encoded an additional virulence determinant(s) that was absent from E70. To map this putative virulence determinant, in vivo marker rescue experiments were performed by inoculating swine with infection-transfection lysates containing E70 NL deletion mutant virus (E70DeltaNL) and cosmid DNA clones from the Malawi NL gene deletion mutant (MalDeltaNL). A cosmid clone representing the left-hand 38-kb region (map units 0.05 to 0.26) of the MalDeltaNL genome was capable of restoring full virulence to E70DeltaNL. Southern blot analysis of recovered virulent viruses confirmed that they were recombinant E70DeltaNL genomes containing a 23- to 28-kb DNA fragment of the Malawi genome. These recombinants exhibited an unaltered MalDeltaNL disease and virulence phenotype when inoculated into swine. Additional in vivo marker rescue experiments identified a 20-kb fragment, encoding members of multigene families (MGF) 360 and 530, as being capable of fully restoring virulence to E70DeltaNL. Comparative nucleotide sequence analysis of the left variable region of the E70DeltaNL and Malawi Lil-20/1 genomes identified an 8-kb deletion in the E70DeltaNL isolate which resulted in the deletion and/or truncation of three MGF 360 genes and four MGF 530 genes. A recombinant MalDeltaNL deletion mutant lacking three members of each MGF gene family was constructed and evaluated for virulence in swine. The mutant virus replicated normally in macrophage cell culture but was avirulent in swine. Together, these results indicate that a region within the left variable region of the ASFV genome containing the MGF 360 and 530 genes represents a previously unrecognized virulence

  11. Novel Swine Virulence Determinant in the Left Variable Region of the African Swine Fever Virus Genome

    PubMed Central

    Neilan, J. G.; Zsak, L.; Lu, Z.; Kutish, G. F.; Afonso, C. L.; Rock, D. L.

    2002-01-01

    Previously we have shown that the African swine fever virus (ASFV) NL gene deletion mutant E70ΔNL is attenuated in pigs. Our recent observations that NL gene deletion mutants of two additional pathogenic ASFV isolates, Malawi Lil-20/1 and Pr4, remained highly virulent in swine (100% mortality) suggested that these isolates encoded an additional virulence determinant(s) that was absent from E70. To map this putative virulence determinant, in vivo marker rescue experiments were performed by inoculating swine with infection-transfection lysates containing E70 NL deletion mutant virus (E70ΔNL) and cosmid DNA clones from the Malawi NL gene deletion mutant (MalΔNL). A cosmid clone representing the left-hand 38-kb region (map units 0.05 to 0.26) of the MalΔNL genome was capable of restoring full virulence to E70ΔNL. Southern blot analysis of recovered virulent viruses confirmed that they were recombinant E70ΔNL genomes containing a 23- to 28-kb DNA fragment of the Malawi genome. These recombinants exhibited an unaltered MalΔNL disease and virulence phenotype when inoculated into swine. Additional in vivo marker rescue experiments identified a 20-kb fragment, encoding members of multigene families (MGF) 360 and 530, as being capable of fully restoring virulence to E70ΔNL. Comparative nucleotide sequence analysis of the left variable region of the E70ΔNL and Malawi Lil-20/1 genomes identified an 8-kb deletion in the E70ΔNL isolate which resulted in the deletion and/or truncation of three MGF 360 genes and four MGF 530 genes. A recombinant MalΔNL deletion mutant lacking three members of each MGF gene family was constructed and evaluated for virulence in swine. The mutant virus replicated normally in macrophage cell culture but was avirulent in swine. Together, these results indicate that a region within the left variable region of the ASFV genome containing the MGF 360 and 530 genes represents a previously unrecognized virulence determinant for domestic swine

  12. Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the northwestern Indian Ocean: the southwest and northeast monsoon, 1992 1993

    NASA Astrophysics Data System (ADS)

    Veldhuis, Marcel J. W.; Kraay, Gijsbert W.; Van Bleijswijk, Judith D. L.; Baars, Martien A.

    1997-03-01

    Phytoplankton abundance, composition, primary production and growth rate were measured in the Somali Basin, the Gulf of Aden, and the southern part of the Red Sea during the SW monsoon (May-Aug 1992) and NE monsoon (Jan-Feb 1993). Strong upwelling (SST <20°C) occurred between 7° and 11°N along the Somali coast during July. Diatoms dominated in patchy blooms of phytoplankton north of Ras Hafun at the border of the Somali Current. Picophytoplankton (mainly Synechococcus and pico-eukaryotes) were present, but their contribution to the total chlorophyll a content was less than 30%. Nutrient concentrations in the main upwelling wedge south of Ras Hafun were high (nitrate over 15 μM), but chlorophyll a concentrations remained relatively low (≤0.6 mg.m -3) both in the freshly upwelled water of the Somali Current and downstream around Socotra Island and in the Great Whirl. In the latter areas, nutrients were not depleted (nitrate concentration varied between 3 and 8 μM) but primary production did not exceed 1 g C.m -2.day -1 as mixed layer depth largely exceeded the euphotic zone depth. Primary production for the whole northern Somali Basin showed a mean of 1.25 g C.m -2.day -1 (range 0.8-2.8 g C.m -2. day -1). During the NE monsoon, phytoplankton was dominated by picophytoplankton (up to 80% of total chlorophyll a content; dominated by Synechococcus, pico-eukaryotes and Prochlorococcus). Strong winds resulted in nutrient entrainment from deeper water. Surface values of chlorophyll a were ca 0.3 mg.m -3 and mean primary production of the Somali Basin was 0.8 g C.m -2. day -1 (range 0.5-1.0 g C.m -2. day -1). In the southern Red Sea and Gulf of Aden a reverse seasonal pattern occurred. During the SW monsoon, both areas were oligotrophic, including a deep chlorophyll maximum. Phytoplankton was dominated by picoplankton, namely Synechococcus. Primary production was low (0.5-0.6 g C.m -2. day -1 h). During the NE monsoon winter cooling resulted in deep vertical mixing

  13. Anxiety Disorders in Caucasian and African American Children: A Comparison of Clinical Characteristics, Treatment Process Variables, and Treatment Outcomes.

    PubMed

    Gordon-Hollingsworth, Arlene T; Becker, Emily M; Ginsburg, Golda S; Keeton, Courtney; Compton, Scott N; Birmaher, Boris B; Sakolsky, Dara J; Piacentini, John; Albano, Anne M; Kendall, Philip C; Suveg, Cynthia M; March, John S

    2015-10-01

    This study examined racial differences in anxious youth using data from the Child/Adolescent Anxiety Multimodal Study (CAMS) [1]. Specifically, the study aims addressed whether African American (n = 44) versus Caucasian (n = 359) children varied on (1) baseline clinical characteristics, (2) treatment process variables, and (3) treatment outcomes. Participants were ages 7-17 and met DSM-IV-TR criteria for generalized anxiety disorder, social phobia, and/or separation anxiety disorder. Baseline data, as well as outcome data at 12 and 24 weeks, were obtained by independent evaluators. Weekly treatment process variables were collected by therapists. Results indicated no racial differences on baseline clinical characteristics. However, African American participants attended fewer psychotherapy and pharmacotherapy sessions, and were rated by therapists as less involved and compliant, in addition to showing lower mastery of CBT. Once these and other demographic factors were accounted for, race was not a significant predictor of response, remission, or relapse. Implications of these findings suggest African American and Caucasian youth are more similar than different with respect to the manifestations of anxiety and differences in outcomes are likely due to treatment barriers to session attendance and therapist engagement. PMID:25293650

  14. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  15. Paleoenvironmental evolution and Asian monsoon variability on the southern Tibetan Plateau during the late Quaternary: A comparison of two lake records

    NASA Astrophysics Data System (ADS)

    Börner, Nicole; Gifty Akita, Lailah; Jochum, Klaus Peter; Plessen, Birgit; Frenzel, Peter; Zhu, Liping; Schwalb, Antje

    2016-04-01

    The Tibetan Plateau affects the global atmospheric circulation and is thus a key region to study the Asian monsoon system. It is also one of the most sensitive areas to global climate change as, for example, the temperature rise is twice the global average (0.4°C per decade [1]). To understand the recent climate change and predict future climate scenarios it is necessary to investigate past climate changes. The comparison of high-resolution multi-proxy records from Nam Co (4719 m a.s.l., 30°40'N, 90°50'E) and Tangra Yumco (4549 m a.s.l., 31°13'N, 86°43'E) aims to infer long term variations in strength and extent of the Asian monsoon system on the southern Tibetan Plateau. Multi-proxy analysis, including the oxygen and carbon isotope signatures of bulk sediments and the chemical composition of ostracod shells (stable isotopes, trace elements), were carried out on two long cores (10.4 m and 11.5 m), covering the past 24,000 years and 18,000 years, respectively, in order to reconstruct lake level changes and related environmental parameters, i.e. salinity, temperature and productivity. The records from Nam Co and Tangra Yumco show high similarity throughout the late Quaternary with small temporal differences in onset and duration of climatic changes. The Last Glacial Maximum is dominated by dry and cold conditions and is followed by gradually increasing temperatures and moisture, only interrupted by a dry phase, which coincides with the "Heinrich 1 event" in the North Atlantic region. A significant transition to wetter conditions and rising lake levels is indicated around 15,500 cal years BP, suggesting a strengthening of summer monsoon precipitation. The Bølling/Allerød is characterized by increased meltwater input, followed by cold and arid conditions during the Younger Dryas. The early Holocene is marked by increasing temperatures and precipitation, being the wettest period within our record, characterized by the highest lake levels, lake stratification and

  16. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography

    NASA Technical Reports Server (NTRS)

    Demenocal, Peter B.; Rind, David

    1993-01-01

    A general circulation model was used to investigate the sensitivity of Asian and African climate to prescribed changes in boundary conditions with the objective of identifying the relative importance of individual high-latitude glacial boundary conditions on seasonal climate and providing a physical basis for interpreting the paleoclimate record. The circulation model is described and results are presented. Insolation forcing increased summer Asian monsoon winds, while increased high-latitude ice cover strengthened winter Asian trade winds causing decreased precipitation. These factors had little effect on African climate. Cooler North Atlantic sea surface temperatures enhanced winter trade winds over North Africa, southern Asian climate was relatively unaffected. Reducing Asian orography enhanced Asian winter circulation while decreasing the summer monsoon. These model results suggest that African and southern Asian climate respond differently to separate elements of high-latitude climate variability.

  17. Study of the Space-Time Variability of the Precipitations in the semi Arid Tropics Areas like African Sahel

    NASA Astrophysics Data System (ADS)

    Ladoy, P.

    2003-12-01

    One of the difficulty of decision making in the matter of climate in semi arid tropics areas like African Sahel, is to manage the high time space variability of the atmospheric fields. For example, the high time space variability of the rain fields (intermittency) is explained by the multiplicity of time space scales which involves. A multifractal approach of the field is assumed. Some aspects of the study are related to : o Down scaling adaptations of the outputs of global climate models to regional and local scales; o Prediction of extremes events : floods, droughts or "dry spells". Studies are developed by the African Centre for Meteorological Application for Development (ACMAD) This Centre, located in Niamey, Niger, acts as an African institution for weather and climate. Its long term goals are to : - reduce the dryness effects or any other catastrophe related to the climatic conditions such as the tropical cyclone, the floods and the storms; - to develop methodologies and techniques for weather and climate application at the national and sub-regional level; The basic activities to realize this objectives are: - the collection and analysis of hydrometeorological data; - the dissemination of climatic information for the early alarm in the fields related to the agriculture or the management of resources in water and energy; - the dissemination in due time of useful information on the weather and climate; - the connected of the variability and of the climatic change, and such as their impact upon the economy, - the development of strategies of appropriate responses to the impact of the desertification, floods, tropical cyclones,

  18. The East Asian summer monsoon: an overview

    NASA Astrophysics Data System (ADS)

    Yihui, Ding; Chan, Johnny C. L.

    2005-06-01

    The present paper provides an overview of major problems of the East Asian summer monsoon. The summer monsoon system over East Asia (including the South China Sea (SCS)) cannot be just thought of as the eastward and northward extension of the Indian monsoon. Numerous studies have well documented that the huge Asian summer monsoon system can be divided into two subsystems: the Indian and the East Asian monsoon system which are to a greater extent independent of each other and, at the same time, interact with each other. In this context, the major findings made in recent two decades are summarized below: (1) The earliest onset of the Asian summer monsoon occurs in most of cases in the central and southern Indochina Peninsula. The onset is preceded by development of a BOB (Bay of Bengal) cyclone, the rapid acceleration of low-level westerlies and significant increase of convective activity in both areal extent and intensity in the tropical East Indian Ocean and the Bay of Bengal. (2) The seasonal march of the East Asian summer monsoon displays a distinct stepwise northward and northeastward advance, with two abrupt northward jumps and three stationary periods. The monsoon rain commences over the region from the Indochina Peninsula-the SCS-Philippines during the period from early May to mid-May, then it extends abruptly to the Yangtze River Basin, and western and southern Japan, and the southwestern Philippine Sea in early to mid-June and finally penetrates to North China, Korea and part of Japan, and the topical western West Pacific. (3) After the onset of the Asian summer monsoon, the moisture transport coming from Indochina Peninsula and the South China Sea plays a crucial “switch” role in moisture supply for precipitation in East Asia, thus leading to a dramatic change in climate regime in East Asia and even more remote areas through teleconnection. (4) The East Asian summer monsoon and related seasonal rain belts assumes significant variability at

  19. Impact of Demographic Variables on African-American Student Athletes' Academic Performance

    ERIC Educational Resources Information Center

    Reynolds, Lacey; Fisher, Dwalah; Cavil, J. Kenyatta

    2012-01-01

    Since the passage of Proposition 48 (NCAA, 1984), African-American student-athletes entering National Collegiate Athletic Association (NCAA) major colleges and universities have meet new challenges in their future as student-athletes. This major change altered the landscape of the future of college athletics particularly for students of color.…

  20. Variable Use of Features Associated with African American English by Typically Developing Children

    ERIC Educational Resources Information Center

    Jackson, Janice E.; Pearson, Barbara Zurer

    2010-01-01

    Purpose: The well-known decline in the use of African American English (AAE) features by groups of school-aged AAE-speaking children was reexamined for patterns of overt-, zero-, and mixed-marking for individual features and individual speakers. Methods: Seven hundred twenty-nine typically developing children between the ages of 4 and 12--511…

  1. Relational Variables and Life Satisfaction in African American and Asian American College Women

    ERIC Educational Resources Information Center

    Berkel, LaVerne A.; Constantine, Madonna G.

    2005-01-01

    The authors explored associations among relationship harmony, perceived family conflicts, relational self-concept, and life satisfaction in a sample of 169 African American and Asian American college women. As hypothesized, higher relational self-concept, or the extent to which individuals include close relationships in their self-concepts, and…

  2. Bay of Bengal: coupling of pre-monsoon tropical cyclones with the monsoon onset in Myanmar

    NASA Astrophysics Data System (ADS)

    Fosu, Boniface O.; Wang, Shih-Yu Simon

    2015-08-01

    The pre-monsoon tropical cyclone (TC) activity and the monsoon evolution in the Bay of Bengal (BoB) are both influenced by the Madden-Julian Oscillation (MJO), but the two do not always occur in unison. This study examines the conditions that allow the MJO to modulate the monsoon onset in Myanmar and TC activity concurrently. Using the APHRODITE gridded precipitation and the ERA-Interim reanalysis datasets, composite evolutions of monsoon rainfall and TC genesis are constructed for the period of 1979-2010. It is found that the MJO exhibits a strong interannual variability in terms of phase and intensity, which in some years modulate the conditions for BoB TCs to shortly precede or form concurrently with the monsoon onset in Myanmar. Such a modulation is absent in years of weaker MJO events. Further understanding of the interannual variability of MJO activity could facilitate the prediction of the monsoon onset and TC formation in the BoB.

  3. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon--a remote sensing study.

    PubMed

    Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K

    2013-05-01

    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements. PMID:22930185

  4. Comparing the effect of modeled climatic variables on the distribution of African horse sickness in South Africa and Namibia.

    PubMed

    Liebenberg, Danica; van Hamburg, Huib; Piketh, Stuart; Burger, Roelof

    2015-12-01

    Africa horse sickness (AHS) is a lethal disease of horses with a seasonal occurrence that is influenced by environmental conditions that favor the development of Culicoides midges (Diptera: Ceratopogonidae). This study compared and evaluated the relationship of various modeled climatic variables with the distribution and abundance of AHS in South Africa and Namibia. A comprehensive literature review of the historical AHS reported data collected from the Windhoek archives as well as annual reports from the Directorate of Veterinary services in Namibia were conducted. South African AHS reported data were collected from the South African Department of Agriculture, Forestry, and Fisheries. Daily climatic data were extracted for the time period 1993-2011 from the ERA-interim re-analysis dataset. The principal component analysis of the complete dataset indicated a significant statistical difference between Namibia and South Africa for the various climate variables and the outbreaks of AHS. The most influential parameters in the distribution of AHS included humidity, precipitation, evaporation, and minimum temperature. In South Africa, temperature had the most significant effect on the outbreaks of AHS, whereas in Namibia, humidity and precipitation were the main drivers. The maximum AHS cases in South Africa occurred at temperatures of 20-22° C and relative humidity between 50-70%. Furthermore, anthropogenic effects must be taken into account when trying to understand the distribution of AHS. PMID:26611969

  5. Understanding the influence of global scale climate modes on inter-annual variability of African precipitation using CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, P. S.; Zaitchik, B.

    2013-12-01

    Continental Africa is characterized by considerable spatio-temporal variability of precipitation, which is associated with extreme events such as droughts and floods, that have serious impacts on environment, economy and society. Such variability in precipitation distribution, both in temporal and spatial scale, exerts a profound influence on local and regional water budget and on human and natural systems sensitive to climate variations at timescales of seasons to decades. The present study aims to quantify the large-scale processes that drive rainfall variability over Africa at seasonal and inter-annual timescales. We examine how well these processes are represented in the present generation of climate models for historical conditions and examine projection for mid-21st century. Ten coupled models in Climate Model Intercomparison Project (CMIP5) along with observational datasets of precipitation (Climate Research Unit (CRU)) and Reynolds sea surface temperature (SST) analysis are used to study and compare annual and seasonal variation of precipitation over Africa (between 1960-2005 time period). Principal component and correlation analysis performed on observational datasets show that El Niño/Southern Oscillation (ENSO) variability and global SST have a dominant impact on rainfall variability over Africa. As expected, models performing in CMIP5 vary greatly in their representation of SST variability, including that related to ENSO, as well as in the strength of association between SST variability and precipitation over various regions of Africa. Some models resemble the observed relationships while others associate African precipitation variability with other remote drivers. Under future conditions (RCP8.5 scenario, averaged between 2060-2099), some models project a maintenance or intensification of current associations while others project nonstationary change. We consider the implications of this diversity for climate impact studies and future model

  6. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  7. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    NASA Astrophysics Data System (ADS)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  8. Energetics and monsoon bifurcations

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-04-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  9. Autoencoder-based identification of predictors of Indian monsoon

    NASA Astrophysics Data System (ADS)

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.

    2016-02-01

    Prediction of Indian summer monsoon uses a number of climatic variables that are historically known to provide a high skill. However, relationships between predictors and predictand could be complex and also change with time. The present work attempts to use a machine learning technique to identify new predictors for forecasting the Indian monsoon. A neural network-based non-linear dimensionality reduction technique, namely, the sparse autoencoder is used for this purpose. It extracts a number of new predictors that have prediction skills higher than the existing ones. Two non-linear ensemble prediction models of regression tree and bagged decision tree are designed with identified monsoon predictors and are shown to be superior in terms of prediction accuracy. Proposed model shows mean absolute error of 4.5 % in predicting the Indian summer monsoon rainfall. Lastly, geographical distribution of the new monsoon predictors and their characteristics are discussed.

  10. A revised picture of the structure of the ``monsoon'' and land ITCZ over West Africa

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon E.

    2009-06-01

    This article presents an overview of the land ITCZ (Intertropical Convergence Zone) over West Africa, based on analysis of NCAR-NCEP Reanalysis data. The picture that emerges is much different than the classic one. The most important feature is that the ITCZ is effectively independent of the system that produces most of the rainfall. Rainfall linked directly to this zone of surface convergence generally affects only the southern Sahara and the northern-most Sahel, and only in abnormally wet years in the region. A second feature is that the rainbelt normally assumed to represent the ITCZ is instead produced by a large core of ascent lying between the African Easterly Jet and the Tropical Easterly Jet. This region corresponds to the southern track of African Easterly Waves, which distribute the rainfall. This finding underscores the need to distinguish between the ITCZ and the feature better termed the “tropical rainbelt”. The latter is conventionally but improperly used in remote sensing studies to denote the surface ITCZ over West Africa. The new picture also suggests that the moisture available for convection is strongly coupled to the strength of the uplift, which in turn is controlled by the characteristics of the African Easterly Jet and Tropical Easterly Jet, rather than by moisture convergence. This new picture also includes a circulation feature not generally considered in most analyses of the region. This feature, a low-level westerly jet termed the African Westerly Jet, plays a significant role in interannual and multidecadal variability in the Sahel region of West Africa. Included are discussions of the how this new view relates to other aspects of West Africa meteorology, such as moisture sources, rainfall production and forecasting, desertification, climate monitoring, hurricanes and interannual variability. The West African monsoon is also related to a new paradigm for examining the interannual variability of rainfall over West Africa, one that

  11. Interannual Variability of South-Eastern African Summer Rainfall. Part 1: Relationships with Air-Sea Interaction Processes

    NASA Astrophysics Data System (ADS)

    Rocha, Alfredo; Simmonds, Ian

    1997-03-01

    This paper investigates the role that air-sea interaction processes may play in interannual variability of south-eastern African summer rainfall. The principal spatial modes of south-eastern African summer rainfall are first identified using principal component analysis. Four modes are retained. The most important mode of variability is found to represent rainfall variability over most of the domain, particularly in the regions to the south.The influence of ENSO (as measured by the SOI) on summer rainfall is investigated in detail for different SOI leads. The relationship is such that during the summer following the onset of an ENSO event, south-eastern Africa tends to experience dry conditions. Strongest relationships are found with the SOI leading rainfall by about 3 to 6 months.A second index, the Brandon-Marion Index (BMI) which is indicative of changes in the pressure field over the Indian Ocean correlates with rainfall better than the SOI. Strongest correlations are found when this index leads rainfall by about 1 to 3 months. More importantly, a partial correlation analysis reveals that the BMI influences rainfall independently of ENSO. Both the SOI and the BMI are potential predictors of summer rainfall.An investigation of rainfall associations with global SST anomalies reveals areas in the tropical Indian and Pacific Oceans that are linked with rainfall changes over the subcontinent. The relationship is such that warm anomalies tend to be followed by dry conditions over much of south-eastern Africa. Strongest relationships are found when SSTs lead the rainfall season by about 1 to 3 months. Well-defined atmospheric anomalies are identified during dry south-eastern African summers. These include, amongst others, anomalously warm tropospheric temperatures and marked low-level cyclonic circulation anomalies over the central Indian Ocean, which generate abnormally weak easterly winds along much of the south-eastern coast of Africa. These perturbations to the

  12. Monsoons: AMIP simulations of the 1987 and 1988 drought and flood regimes

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1993-10-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation models ability to simulate tropical climate and variability (Simulation of Monsoon Variability, WCRP-68, 1992). In an effort to better understand the necessary conditions for the simulation of a phenomenologically correct Indian Monsoon, we present analyses of simulations associated with the Atmospheric Model Intercomparison Project, a coordinated effort to simulate the 1979--88 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. Diagnostics, such as those performed under the auspices of the Monsoon Numerical Experimentation Group have been evaluated to address questions regarding the predictability of monsoon extremes. Particular attention has been devoted to the 1987 and 1988 Indian monsoon drought and flood regimes associated with El Nino and La Nina conditions in the Pacific.

  13. Drug Addiction and Stress-Response Genetic Variability: Association Study in African Americans

    PubMed Central

    Levran, Orna; Randesi, Matthew; Li, Yi; Rotrosen, John; Ott, Jurg; Adelson, Miriam; Kreek, Mary Jeanne

    2014-01-01

    Summary Stress is a significant risk factor in the development of drug addictions and in addiction relapse susceptibility. This hypothesis-driven study was designed to determine if specific SNPs in genes related to stress response are associated with heroin and/or cocaine addiction in African Americans. The analysis included 27 genes (124 SNPs) and was performed independently for each addiction. The sample consisted of former heroin addicts in methadone maintenance treatment (n = 314), cocaine addicts (n = 281), and controls (n = 208). Fourteen SNPs showed nominally significant association with heroin addiction (p < 0.05), including the African-specific, missense SNP rs5376 (Asn334Ser) in the galanin receptor type 1 gene (GALR1) and the functional FKBP5 intronic SNP rs1360780. Thirteen SNPs showed association with cocaine addiction, including the synonymous SNPs rs237902, in the oxytocin receptor gene (OXTR), and rs5374 in GALR1. No signal remained significant after correction for multiple testing. Four additional SNPs (GALR1 rs2717162, AVP rs2282018, CRHBP rs1875999, and NR3C2 rs1040288) were associated with both addictions and may indicate common liability. The study provides preliminary evidence for novel association of variants in several stress related genes with heroin and/or cocaine addictions and may enhance the understanding of the interaction between stress and addictions. PMID:24766650

  14. Drug addiction and stress-response genetic variability: association study in African Americans.

    PubMed

    Levran, Orna; Randesi, Matthew; Li, Yi; Rotrosen, John; Ott, Jurg; Adelson, Miriam; Kreek, Mary Jeanne

    2014-07-01

    Stress is a significant risk factor in the development of drug addictions and in addiction relapse susceptibility. This hypothesis-driven study was designed to determine if specific SNPs in genes related to stress response are associated with heroin and/or cocaine addiction in African Americans. The analysis included 27 genes (124 SNPs) and was performed independently for each addiction. The sample consisted of former heroin addicts in methadone maintenance treatment (n = 314), cocaine addicts (n = 281), and controls (n = 208). Fourteen SNPs showed nominally significant association with heroin addiction (p < 0.05), including the African-specific, missense SNP rs5376 (Asn334Ser) in the galanin receptor type 1 gene (GALR1) and the functional FKBP5 intronic SNP rs1360780. Thirteen SNPs showed association with cocaine addiction, including the synonymous SNPs rs237902, in the oxytocin receptor gene (OXTR), and rs5374 in GALR1. No signal remained significant after correction for multiple testing. Four additional SNPs (GALR1 rs2717162, AVP rs2282018, CRHBP rs1875999, and NR3C2 rs1040288) were associated with both addictions and may indicate common liability. The study provides preliminary evidence for novel association of variants in several stress-related genes with heroin and/or cocaine addictions and may enhance the understanding of the interaction between stress and addictions. PMID:24766650

  15. The Relationships among Student Characteristic Variables, Student Engagement Variables, and the Academic Performance of African American Male Students at Two-Year Colleges

    ERIC Educational Resources Information Center

    Redman Mingo, Valarie A.

    2010-01-01

    As the body of research on the experiences of African American males in higher education continues to grow, additional research is needed on the impact of two-year college attendance on African American male students (Flowers, 2006). Since the two-year college system is the "primary portal" to higher education for a number of African American…

  16. Exploratory Analysis of the Effects of Anxiety on Specific Quantifiable Variables of African-American High School Students Enrolled in Advanced Academics

    ERIC Educational Resources Information Center

    James, Carmela N.

    2013-01-01

    The purpose of this study was to examine the attrition rate of the African American high school student enrolled in advanced academics by looking at the effects of specific quantifiable variables on state-trait anxiety scores. More specifically, this study was concerned with the influence of demographic and school related factors on the…

  17. Variability of African Farming Systems from Phenological Analysis of NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Vrieling, Anton; deBeurs, K. M.; Brown, Molly E.

    2011-01-01

    Food security exists when people have access to sufficient, safe and nutritious food at all times to meet their dietary needs. The natural resource base is one of the many factors affecting food security. Its variability and decline creates problems for local food production. In this study we characterize for sub-Saharan Africa vegetation phenology and assess variability and trends of phenological indicators based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over the season (cumNDVI) which is a proxy for net primary productivity. Results are aggregated at the level of major farming systems, while determining also spatial variability within farming systems. High temporal variability of cumNDVI occurs in semiarid and subhumid regions. The results show a large area of positive cumNDVI trends between Senegal and South Sudan. These correspond to positive CRU rainfall trends found and relate to recovery after the 1980's droughts. We find significant negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and in Tanzania. For each farming system, causes of change and variability are discussed based on available literature (Appendix A). Although food security comprises more than the local natural resource base, our results can perform an input for food security analysis by identifying zones of high variability or downward trends. Farming systems are found to be a useful level of analysis. Diversity and trends found within farming system boundaries underline that farming systems are dynamic.

  18. Evolving the linkages between North American Monsoon Experiment research and services in the binational monsoon region

    NASA Astrophysics Data System (ADS)

    Ray, A. J.

    2007-05-01

    Multi-year drought, high interannual precipitation variability, and rapid population growth present major challenges to water resources and land managers in the U.S. Southwest and binational monsoon region. The NAME strategy to improve warm season precipitation forecasts is paying off in the understanding of the system and its potential predictability, illustrated by a special issue of the Journal of Climate with about 25 articles and numerous other published papers (e.g. Higgins and Gochis et al. 2006; Gutzler et al. 2004, Higgins et al. 2003). NOAA now has set a goal to NAME and other initiatives also have the potential to provide key insights, such as historic information regarding onset and overall strength of the monsoon as it affects stakeholder interests in flooding, soil moisture, vegetation health, and summer water demand. However, the usual avenues for scientific output, such as peer-reviewed publications and web sites designed for use by climate and weather experts, do not adequately support the flow of knowledge to operational decisionmakers. A recent workshop on Monsoon Region climate Applications in Guaymas, Sonora identified several areas in which monsoon science might contribute to reducing societal vulnerability, as well as some research findings that are suited to transition into model development and operations at service providers including NOAA and SMN. They recommended that products are needed that interpret climate forecasts for water resource management applications, and developing new regionally-tailored climate information products. This presentation will discuss how to enhance the flow of monsoon information and predictions to stakeholders by linking user-oriented perspectives with research results from NAME and other programs, including a new effort for a North American Monsoon Forecast Forum which plans to develop periodic consolidated North American Monsoon outlooks.

  19. Sampling strategies and variability in fruit pulp micronutrient contents of west and central african bananas and plantains (Musa species).

    PubMed

    Davey, Mark W; Stals, Ellen; Ngoh-Newilah, Gérard; Tomekpe, Kodjo; Lusty, Charlotte; Markham, Richard; Swennen, Rony; Keulemans, Johan

    2007-04-01

    The variability in fruit micronutrient contents in a selection of Central and West African Musa varieties cultivated under standardized field conditions was studied. Analysis of the within-fruit, within-hand, and within-plant as well as the between-plant variations demonstrated that both provitamin A carotenoids (pVACs) and mineral micronutrient (Fe, Zn) contents vary significantly across all sample groups. The variations in pVACs contents appear to be at least partly related to differences in the developmental status of the fruit, but the observed trends were genotype-specific. The mean pVACs concentrations per genotype indicated that there is substantial genetic variation in the fruit pVACs contents between Musa cultivars, with orange-fleshed plantain varieties (AAB) having generally higher fruit pVACs contents than dessert bananas (AAA). It was not possible to identify consistent trends between the sampling position and fruit Fe/Zn contents. Once the within-bunch micronutrient variability has been accounted for, the mean variations in fruit micronutrient contents between individual plants of a variety generally fell to within acceptable limits. Results are discussed within the framework of standardizing sampling and developing strategies to screen for the nutritional values of new and existing Musa varieties. PMID:17346062

  20. The Role of Vegetation-Climate Interaction and Interannual Variability in Shaping the African Savanna.

    NASA Astrophysics Data System (ADS)

    Zeng, Ning; Neelin, J. David

    2000-08-01

    Using a coupled atmosphere-land-vegetation model of intermediate complexity, the authors explore how vegetation-climate interaction and internal climate variability might influence the vegetation distribution in Africa. When the model is forced by observed climatological sea surface temperature (SST), positive feedbacks from vegetation changes tend to increase the spatial gradient between desert regions and forest regions at the expense of savanna regions. When interannual variation of SST is included, the climate variability tends to reduce rainfall and vegetation in the wetter regions and to increase them in the drier regions along this gradient, resulting in a smoother desert-forest transition. This effect is most dramatically demonstrated in a model parameter regime for which multiple equilibria (either a desertlike or a forestlike Sahel) can exist when strong vegetation-climate feedbacks are allowed. However, the presence of a variable SST drives the desertlike state and the forestlike state toward an intermediate grasslike state, because of nonlinearities in the coupled system. Both vegetation and interannual variability thus play active roles in shaping the subtropical savanna ecosystem.

  1. Atmospheric model intercomparison project: Monsoon simulations

    SciTech Connect

    Sperber, K.R.; Palmer, T.N.

    1994-06-01

    The simulation of monsoons, in particular the Indian summer monsoon, has proven to be a critical test of a general circulation model`s ability to simulate tropical climate and variability. The Monsoon Numerical Experimentation Group has begun to address questions regarding the predictability of monsoon extremes, in particular conditions associated with El Nino and La Nina conditions that tend to be associated with drought and flood conditions over the Indian subcontinent, through a series of seasonal integrations using analyzed initial conditions from successive days in 1987 and 1988. In this paper the authors present an analysis of simulations associated with the Atmospheric Model Intercomparison Project (AMIP), a coordinated effort to simulate the 1979--1988 decade using standardized boundary conditions with approximately 30 atmospheric general circulation models. The 13 models analyzed to date are listed. Using monthly mean data from these simulations they have calculated indices of precipitation and wind shear in an effort to access the performance of the models over the course of the AMIP decade.

  2. Summer monsoon response of the Northern Somali Current, 1995

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Fischer, Jürgen; Garternicht, Ulf; Quadfasel, Detlef

    Preliminary results on the development of the northern Somali Current regime and Great Whirl during the summer monsoon of 1995 are reported. They are based on the water mass and current profiling observations from three shipboard surveys of R/V Meteor and on the time series from a moored current-meter and ADCP array. The monsoon response of the GW was deep-reaching, to more than 1000m. involving large deep transports. The northern Somali Current was found to be disconnected from the interior Arabian Sea in latitude range 4°N-12°N in both, water mass properties and current fields. Instead, communication dominantly occurs through the passages between Socotra and the African continent. From moored stations in the main passage a northward throughflow from the Somali Current to the Gulf of Aden of about 5 Sv was determined for the summer monsoon of 1995.

  3. Mechanism of spatio-temporal transition to monsoon and prospects for prediction

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Bookhagen, Bodo; Kurths, Juergen

    2016-04-01

    The variability of the Indian monsoon onset has an enormous effect on more than 1.7 billion people. Consequently, understanding the mechanisms of the transition to monsoon and its successful forecasting is not only a question of great interest, but also a significant scientific challenge. Here we address the problem of the spatial and temporal organization of the abrupt transition to the Indian monsoon. The analysis of observational data uncovers that there is a threshold behavior at the transition to monsoon over the central part of India. Based on these observations, we consider the transition to monsoon from a dynamic system perspective and propose a novel mechanism of a spatio-temporal transition to monsoon. Our approach has several advantages in comparison to existing explanations of the Indian Monsoon nature: it describes the abrupt transition to monsoon in a chosen region of the Indian subcontinent, the spatial propagation and variability of the Indian Monsoon onset along the axis of advance of monsoon, and allows to explain the "bogus" monsoon onsets. In addition, based on this approach we develop a novel prediction scheme for forecasting of monsoon timing. Unlike most predictability methods, our scheme does not rely on precipitation analysis, but on air temperature and relative humidity, which are well-represented both in models and observations. The proposed scheme predicts the onset and withdrawal dates more than two weeks and a month earlier than existing methods, respectively. In addition, the scheme allows the inclusion of the information about the El-Niño-Southern Oscillation in the forecasting of onset and withdrawal dates, thereby, significantly improving the prediction of monsoon timing during anomalous years associated with the El-Niño-Southern Oscillation. Finally, the proposed scheme can be directly implemented into the existing long-range forecasting system of the monsoon's timing.

  4. Transient coupling relationships of the Holocene Australian monsoon

    NASA Astrophysics Data System (ADS)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.

    2015-08-01

    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  5. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  6. CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS.

    PubMed

    McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H; Clark, Samuel J; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A

    2014-06-01

    The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure-this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026

  7. Variability of the Tsushima Warm Current during the Pleistocene and its relationship with the evolution of the East Asian Monsoon. Preliminary results from IODP Expedition 346 (Sites U1427 and U1428/29) based on benthic ostracod assemblages.

    NASA Astrophysics Data System (ADS)

    Bassetti, M. A.; Alvarez Zarikian, C. A.; Toucanne, S.; Yasuhara, M.; Holbourn, A. E.; Sagawa, T.; Tada, R.; Murray, R. W.

    2014-12-01

    The semi-enclosed marginal sea bordered by the Eurasian continent, the Korean peninsula and the Japanese Islands has an average depth of 1350 m and is connected with other marginal seas in the region by shallow and narrow straits. At present, the Tsushima Warm Current (TWC), a branch of the Kuroshio Current, is the only warm current flowing into the marginal sea west of Japan. The TWC carries both subtropical water originating from the North Pacific and fresher runoff water derived from East China Sea continental shelf. The northerly flow of the TWC through the shallow Tsushima Straits is ultimately controlled by relative sea level variations over time. IODP Expedition 346 Sites U1427 and U1428/29 are ideally located to record changes in (i) the intensity of the influx of the TWC, and (ii) the intermediate ventilation of the marginal sea over the last million years. The Japan Sea Intermediate Water (JSIW) corresponds to a vertical salinity minimum, found below the TWC, between 200 and 400-500 m water depth. The JSIW shows a relatively high oxygen concentration, related to the deep water convection in winter and linked to fresh water supply during winter monsoon intervals. Based on recent observations, it is thought during glacial and interglacial conditions, and millennial scale climate cycles the intensity of deep and intermediate water currents varied but the mechanisms of such variations are not fully known. Microfossil faunal proxies can be used for tracking bottom environmental conditions related to variability of the bottom water circulation intensity. Here, we present preliminary results obtained using ostracods (benthic microcrustaceans) that are abundant in the sedimentary sequences recovered at Sites U1427 and U1428/29, and are known to react sensitively to changes in water masses physico-chemical parameters. In particular, the variability of the genus Krithe through time is correlated with the sortable silt (carbonate-free, 10-63 µm sediment size

  8. An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2

    NASA Astrophysics Data System (ADS)

    Zhang, Lixia; Zhou, Tianjun

    2014-01-01

    The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulating global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-s1, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negative pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Niña years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Niña years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical ascent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMP, especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon.

  9. Food Security Through the Eyes of AVHRR: Changes and Variability of African Food Production

    NASA Astrophysics Data System (ADS)

    Vrieling, A.; de Beurs, K. M.; Brown, M. E.

    2008-12-01

    Food security is defined by FAO as a situation that exists when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life. Despite globalization and food trade, access to food remains a major problem for an important part of Africa's population. As a contribution to the food security analysis we identify at a coarse scale where trends and high interannual variability of food production occur within Africa. We use the 8-km resolution AVHRR NDVI 15-day composites of the GIMMS group (1981-2006). Two methods were applied to extract phenology indicators from the dataset. The indicators are start of season, length of season, time of maximum NDVI, maximum NDVI, and cumulated NDVI over the season. To focus the analysis on food production we spatially aggregate the annual indicators at sub-national level using a general crop mask. Persistent changes during the 26-year period were assessed using trend analysis on the yearly aggregated indicators. These trends may indicate changes in production, and consequent potential increases of food insecurity. We evaluate then where strong interannual variability of phenology indicators occurs. This relates to regular shortages of food availability. For Africa, field information on phenology or accurate time series of production figures at the sub-national scale are scarce. Validating the outcome of the AVHRR analysis is consequently difficult. We propose to use crop-specific national FAOSTAT yield statistics. For this purpose, we aggregate phenology outputs per country using specific masks for the major staple food crops. Although data quality and scale issues influence results, for several countries and crops significant positive correlations between indicators and crop production exist. We conclude that AVHRR-derived phenology information can provide useful inputs to food security analysis.

  10. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability

    NASA Astrophysics Data System (ADS)

    Staubwasser, M.; Sirocko, F.; Grootes, P. M.; Segl, M.

    2003-04-01

    Planktonic oxygen isotope ratios off the Indus delta reveal climate changes with a multi-centennial pacing during the last 6 ka, with the most prominent change recorded at 4.2 ka BP. Opposing isotopic trends across the northern Arabian Sea surface at that time indicate a reduction in Indus river discharge and suggest that later cycles also reflect variations in total annual rainfall over south Asia. The 4.2 ka event is coherent with the termination of urban Harappan civilization in the Indus valley. Thus, drought may have initiated southeastward habitat tracking within the Harappan cultural domain. The late Holocene drought cycles following the 4.2 ka BP event vary between 200 and 800 years and are coherent with the evolution of cosmogenic 14C production rates. This suggests that solar variability is one fundamental cause behind Holocene rainfall changes over south Asia.

  11. Trends and Variability in Pastoral Resources in the West African Sahel

    NASA Astrophysics Data System (ADS)

    Hanan, N. P.

    2014-12-01

    The geography of water and nutrients in the savannas of West Africa has shaped the development of a system of migratory cattle movements ("transhumance") in which herds travel north during the rainy season to graze the nutritious grasslands of the Sahel and return south in the dry season to graze in fallow lands and on agricultural residue. Cattle in this system gain most of their body mass while grazing in the Sahel and frequently lose mass on their dry season range. The Sahel is, therefore, at the heart of extensive livestock production systems in West Africa. However, there is increasing concern regarding how climate change will impact the region, while human population growth and economic development require increased agricultural and livestock production. The future for pastoral production systems in West Africa is, therefore, uncertain. This presentation combines remote sensing of vegetation structure and phenology with a watershed-scale tree-grass ecohydrology model, to explore how key resources for Sahelian pastoralist communities (forage and surface water for livestock, woody biomass for fuel) respond to climate variability and extreme events, conditioned by human management of grazing, fire and fuel-wood harvest. Mortality of woody species and loss of herbaceous cover during the Sahelian droughts of the 1970's and 1980's significantly perturbed vegetation dynamics and ecohydrological interactions, perturbations from which the region is still recovering. The re-greening and reforestation of the Sahel reported by many authors is, in part, an expression of this recovery. Future trajectories of change in pastoral resources in the Sahel, in particular forage availability and drinking water, are explored using climate change ensembles.

  12. Within-Day Variability of Fatigue and Pain Among African Americans and Non-Hispanic Whites With Osteoarthritis of the Knee

    PubMed Central

    SMITH, DYLAN M.; PARMELEE, PATRICIA A.

    2016-01-01

    Objective Fatigue is common among persons with osteoarthritis (OA), but little is known about racial/ethnic differences in the prevalence, correlates, or dynamics of fatigue in OA. This research therefore used experience sampling methodology (ESM) to examine fatigue and pain at global and momentary levels among African Americans and non-Hispanic whites with OA. Methods Thirty-nine African Americans and 81 non-Hispanic whites with physician-diagnosed knee OA completed a baseline interview and an ESM protocol assessing fatigue, pain, and mood 4 times daily for 7 days. In addition to analyzing basic group differences, multilevel modeling examined within- versus between-subject patterns and correlates of variability in momentary fatigue, controlling for demographics and other potential confounders. Results Both racial groups experienced moderate levels of fatigue; however, there were clear individual differences in both mean fatigue level and variability across momentary assessments. Mean fatigue levels were associated with global pain and depression. Increase in fatigue over the course of the day was much stronger among non-Hispanic whites than African Americans. Momentary fatigue and pain were closely correlated. Mean fatigue predicted variability in mood; at the momentary level, both fatigue and pain were independently associated with mood. Conclusion Fatigue is a significant factor for both African Americans and non-Hispanic whites with OA, and is negatively related to quality of life. Pain symptoms, at both the momentary level and across individuals, were robust predictors of fatigue. Although overall levels of reported symptoms were similar across these 2 groups, the pattern of fatigue symptoms across the day differed. PMID:26315851

  13. Desert Dust and Monsoon Rain

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2014-01-01

    For centuries, inhabitants of the Indian subcontinent have know that heavy dust events brought on by strong winds occur frequently in the pre-monsoon season, before the onset of heavy rain. Yet scientists have never seriously considered the possibility that natural dust can affect monsoon rainfall. Up to now, most studies of the impacts of aerosols on Indian monsoon rainfall have focused on anthropogenic aerosols in the context of climate change. However, a few recent studies have show that aerosols from antropogenic and natural sources over the Indian subcontinent may affect the transition from break to active monsoon phases on short timescales of days to weeks. Writing in Nature Geoscience, Vinoj and colleagues describe how they have shown that desert dust aerosols over the Arabian Sea and West Asia can strenghten the summer monsoon over the Indial subcontinent in a matter of days.

  14. What is the timing of orbital-scale monsoon changes?

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.

    2006-04-01

    A major (but little noted) divergence of opinion has developed among climate scientists over the orbital-scale periodicity and phasing of tropical monsoon variations. Kutzbach (1981. Monsoon climate of the early Holocene: climate experiment with Earth's orbital parameters for 9000 years ago. Science 214, 59-61) proposed that monsoons are driven by northern summer insolation at the precession period, but Clemens and Prell (1990. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: eolian records from the lithogenic component of deep-sea sediments. Paleoceanography 5, 109-145; 2003. A 350,000-year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Marine Geology 201, 35-51) inferred a more complicated response tied to latent heat transfer from the Southern Hemisphere. Because tropical monsoons affect climate over a vast area, resolving this divergence is an important task for the climate community. The purpose of this note is to highlight definitive evidence from high-resolution dating of speleothem calcite that provides unambiguous support for the Kutzbach hypothesis.

  15. African easterly wave energetics on intraseasonal timescales

    NASA Astrophysics Data System (ADS)

    Alaka, Ghassan J., Jr.

    East Atlantic tropical cyclone generation is associated with positive PKE events than with negative PKE events. Easterly wave activity is then examined in a regional model. The Advanced Research Weather Research and Forecasting (WRF-ARW) simulates West African monsoon climatology more accurately than the WRF Nonhydrostatic Mesoscale Model (WRF-NMM). Although the WRF-NMM produces more realistic boreal summer rainfall than the WRF-ARW, it fails to accurately simulate the AEJ and other key West African monsoon features. Parameterizations within the WRF-ARW are scrutinized as well, with the WRF single-moment 6-class microphysics and the Noah land surface model outperforming Thompson microphysics and the RUC land surface model. Three ten-year WRF-ARW experiments are performed to investigate the role of external forcing on intraseasonal variability in West Africa. In addition to a control simulation, two sensitivity experiments remove 30-90-day variability from the boundary conditions (for all zonal wavenumbers and just for eastward zonal wavenumbers 0-10). Overall, intraseasonal variability of AEWs shows only modest differences after the removal of all 30-90-day input into the model boundary conditions. PKE and PAPE budgets reveal that simulated positive PKE events in West Africa are preceded by extensions of the AEJ into East Africa, which enhance barotropic and baroclinic energy conversions in this region. This jet extension is associated with warm lower-tropospheric temperature anomalies in the eastern Sahara. In West Africa, the amplitude of PKE and PAPE budget terms exhibit a similar evolution (even in the sensitivity experiments) as in the reanalysis products.

  16. Recent change of the global monsoon precipitation (1979-2008)

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Liu, Jian; Kim, Hyung-Jin; Webster, Peter J.; Yim, So-Young

    2012-09-01

    The global monsoon (GM) is a defining feature of the annual variation of Earth's climate system. Quantifying and understanding the present-day monsoon precipitation change are crucial for prediction of its future and reflection of its past. Here we show that regional monsoons are coordinated not only by external solar forcing but also by internal feedback processes such as El Niño-Southern Oscillation (ENSO). From one monsoon year (May to the next April) to the next, most continental monsoon regions, separated by vast areas of arid trade winds and deserts, vary in a cohesive manner driven by ENSO. The ENSO has tighter regulation on the northern hemisphere summer monsoon (NHSM) than on the southern hemisphere summer monsoon (SHSM). More notably, the GM precipitation (GMP) has intensified over the past three decades mainly due to the significant upward trend in NHSM. The intensification of the GMP originates primarily from an enhanced east-west thermal contrast in the Pacific Ocean, which is coupled with