Science.gov

Sample records for african oceanic lithosphere

  1. Uppermantle anisotropy and the oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Regan, J.

    1983-01-01

    Published Rayleigh and Love wave phase and group velocity data have been inverted taking into account sphericity, anelastic dispersion, and transverse isotropy. For a PREM-type modular parameterization, the thickness of the high velocity mantle seismic lithosphere (LID) varies in thickness from about 30 km for young ocean to about 50 km for old ocean, much less than previous estimates based on isotropic inversion of similar data. This LID thickness is comparable to the elastic or flexural thickness found from studies of seamount loading and flexure at trenches, suggesting that the thickness of the lithosphere may be controlled by mineralogy, composition, or crystal orientation rather than by temperature alone.

  2. Global equivalent magnetization of the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  3. Deformation of Indian Ocean Lithosphere Implies Highly Non-linear Rheological Law for Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Gordon, Richard; Houseman, Gregory

    2015-04-01

    The width of diffuse oceanic plate boundaries is determined by the rheology of oceanic lithosphere. Here we apply thin viscous sheet models, which have been successfully applied to deformation in several continental deforming zones, to investigate the deformation of oceanic lithosphere in the diffuse oceanic plate boundaries between the India, Capricorn, and Australia plates. We apply kinematic boundary conditions based on the current motion between these plates. We neglect buoyancy forces due to plate thinning or thickening and assume that the thin viscous sheet has the same depth-integrated non-linear viscosity coefficient everywhere. Our initial models have only one adjustable parameter, n, the power-law exponent, with n=1, 3, 10, 30, 100. The predicted width of the deforming zone decreases with increasing n, with n ≥ 30 explaining the observations. This n-value is higher than has been estimated for continental lithosphere, and suggests that more of the strength of oceanic lithosphere lies in layers deforming by faulting or by dislocation glide than for continental lithosphere. To obtain a stress field that better fits the distribution and type of earthquake focal mechanisms in the diffuse oceanic plate boundary, we add a second adjustable parameter, representing the effect of slab-pull stretching the oceanic plate near the Sumatra trench. We show that an average velocity increment on this boundary segment of 5 mm/a (relative to the average velocity of the India and Australia plates) fits the observed distribution of fault types better than velocities of 3.3 mm/a or 10 mm/a.

  4. Flexure and rheology of Pacific oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  5. Mid-Lithospheric boundary below oceans from seismic surface waves

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul; Burgos, Gael; Beucler, Eric; Capdeville, Yann; Mocquet, Antoine

    2014-05-01

    The nature of LithosphereAsthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15300s), we have developed a 3D tomographic model (1st order perturbation theory) of the upper mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, from the changes in orientation of the fast axis of azimuthal anisotropy and from the maximum of the gradient of the radial anisotropy positive anomaly. The LAB depth determinations of the different proxies are consistent for the different oceanic regions. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120-130 km) old ocean lithosphere. LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130-135 km). The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub horizontal profile (70-80 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub horizontal interface (mid-lithospheric boundary) with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the

  6. Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.

    2013-12-01

    The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.

  7. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  8. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    PubMed Central

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045

  9. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Schmid, Florian

    2016-07-01

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  10. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation. PMID:27362231

  11. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-06-29

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  12. The elastic thickness of the lithosphere in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Calmant, Stephane

    1987-09-01

    The effective elastic thickness T(e) of the oceanic lithosphere along the Hawaiian-Emperor, the Marquesas, the Pitcairn-Mururoa-Gloucester (PMG) chains, the Tuamotu archipelago, and the Samoa islands was determined by computing the deflection of a continuous elastic plate under the load of volcanoes and was constrained by the geoid heights over the oceans provided by Seasat. The prediction by Watts (1978) according to which the value of the T(e) should increase with the square root of crustal age of the lithosphere at the time of volcano emplacement was not confirmed; while the T(e) estimate of the Hawaiian-Emperor chain and an isolated estimate in the Samoan group agree with the empirical trend found by Watts, the Marquesas and the PMG chains, as well as the previously analyzed Cook-Austral and Society chains, present anomalously low values which increase only slightly with age.

  13. Seismic structure of the lithosphere beneath the ocean islands near the mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2013-10-01

    Deciphering the seismic character of the young lithosphere near the mid-oceanic ridges (MOR) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs, using the P-to-s conversions isolated from good quality data recorded at 5 broadband seismological stations situated on the ocean Islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform modeling of the P receiver function stacks reveal that the crustal thickness varies between 6 and 8 km with the corresponding depths to the lithosphere asthenosphere boundary (LAB) varying between 43 and 68 km. However, the depth to the LAB at Macquire Island is intriguing in view of the observation of a thick (~ 87 km) lithosphere beneath a relatively young crust. At three other stations i.e., Ascension Island, Sao Jorge and Easter Island, we find evidence for an additional deeper low velocity layer probably related to the presence of a hotspot.

  14. Observations of flexure and the rheology of the oceanic lithosphere

    SciTech Connect

    Bodine, J.H.; Steckler, M.S.; Bodine, J.H.; Watts, A.B.

    1981-05-10

    Observations of flexure indicate that the effective flexural rigidity of oceanic lithosphere is a function of the age of the lithosphere at the time of loading, and hence temperature. We have used a yield stress envelope model constrained by data from experimental rock mechanics to determine how the flexure parameters and rheologic properties of oceanic lithosphere are related. The results of our model for seamounts and oceanic island loads in the interior of plates suggest that following loading, rapid stress relaxation occurs as the plate 'thins' from its short-term to its long-term (>10/sup 6/ years) mechanical thickness. The mechanical thickness, which determines the effective flexural rigidity of the plate, is strongly dependent on temperature and weakly dependent on load size and duration (>1-10 m.y.). The results of our model for convergent plate boundaries suggest that changes in the shape of the Outer Rise along an individual trench system may be due to variations in the horizontal load acting across the boundary (<1 kbar). The model predicts a narrow zone of high strain accumulation seaward of a trench which is in agreement with variations in crustal velocities and seismicity patterns observed along some trench systems.

  15. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Schmid, Florian

    2016-07-01

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere–asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  16. Geoid data and thermal structure of the oceanic lithosphere

    SciTech Connect

    Richardson, W.P.; Stein, S.; Stein, C.A.

    1995-07-15

    A long-standing question is whether old oceanic lithosphere continues cooling as the boundary layer of a halfspace or approaches thermal equilibrium as modeled by a finite thickness plate. Although the latter is the most direct inference from seafloor depths and heat flow, other explanations have been proposed. We investigate this issue using published results for the derivative of the oceanic geoid with age estimated from geoid offsets across fracture zones. Such data have not been used extensively in analyses of the thermal evolution of the lithosphere, primarily because they are inconsistent with two commonly used thermal models; a halfspace or a 125-km-thick plate. Recent studies, however, find that depth and heat flow data are better fit by a thinner (95 km) plate model. We thus compile published geoid slope results, and find that these data, though scattered, can discriminate between the models. Geoid slope changes with age, rather than being constant as predicted for a cooling halfspace. This variation is greater than predicted for a thick plate and is better fit by a thin plate. Geoid data should thus be useful for improving thermal models of the lithosphere. 30 refs., 4 figs., 1 tab.

  17. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    USGS Publications Warehouse

    Denlinger, R.P.; Savage, W.Z.

    1989-01-01

    Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors

  18. Lithospheric transition from the Variscan Iberian Massif to the Jurassic oceanic crust of the Central Atlantic

    NASA Astrophysics Data System (ADS)

    Fernàndez, M.; Marzán, I.; Torne, M.

    2004-08-01

    A 1000-km-long lithospheric transect running from the Variscan Iberian Massif (VIM) to the oceanic domain of the Northwest African margin is investigated. The main goal of the study is to image the lateral changes in crustal and lithospheric structure from a complete section of an old and stable orogenic belt—the Variscan Iberian Massif—to the adjacent Jurassic passive margin of SW Iberia, and across the transpressive and seismically active Africa-Eurasia plate boundary. The modelling approach incorporates available seismic data and integrates elevation, gravity, geoid and heat flow data under the assumptions of thermal steady state and local isostasy. The results show that the Variscan Iberian crust has a roughly constant thickness of ˜30 km, in opposition to previous works that propose a prominent thickening beneath the South Portuguese Zone (SPZ). The three layers forming the Variscan crust show noticeable thickness variations along the profile. The upper crust thins from central Iberia (about 20 km thick) to the Ossa Morena Zone (OMZ) and the NE region of the South Portuguese Zone where locally the thickness of the upper crust is <8 km. Conversely, there is a clear thickening of the middle crust (up to 17 km thick) under the Ossa Morena Zone, whereas the thickness of the lower crust remains quite constant (˜6 km). Under the margin, the thinning of the continental crust is quite gentle and occurs over distances of ˜200 km, resembling the crustal attitude observed further north along the West Iberian margins. In the oceanic domain, there is a 160-km-wide Ocean Transition Zone located between the thinned continental crust of the continental shelf and slope and the true oceanic crust of the Seine Abyssal Plain. The total lithospheric thickness varies from about 120 km at the ends of the model profile to less than 100 km below the Ossa Morena and the South Portuguese zones. An outstanding result is the mass deficit at deep lithospheric mantle levels required

  19. Factors controlling the location of compressional deformation of oceanic lithosphere in the Central Indian Ocean

    NASA Technical Reports Server (NTRS)

    Karner, Garry D.; Weissel, Jeffrey K.

    1990-01-01

    One- and two-dimensional models for the deformation by horizontal compression of an elastic plate containing a preexisting deflection were developed and analyzed in order to explain why the compressionally deformed oceanic lithosphere in the Central Indian-Ocean basin is not located where maximum levels of compressive stress in the Indo-Australian plate were predicted by Cloetingh and Wortel (1985, 1986). It is concluded from the results that the location of the deformed region is controlled by an earlier lithospheric deformation that is attributed to the emplacement of the Afanazy-Nikitin seamount group in Late Cretaceous or early Tertiary time.

  20. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-06-01

    Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push, and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere, and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust, and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2-5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C), and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match toobserved stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This

  1. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-10-01

    Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2-5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C) and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match to observed stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This

  2. Chapman Conference on Generation of the Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Hales, A. L.; Frey, F. A.

    On April 6-10, 1981, the Chapman conference on Generation of the Oceanic Lithosphere was held at Airlie House, Warrenton, Virginia. It was convened by D.C. Presnall, A.L. Hales (both at the University of Texas at Dallas), and F.A. Frey (Massachusetts Institute of Technology). The purpose of the conference was to bring together scientists with diverse specialties to develop a better understanding of the constraints imposed by geophysics, geochemistry, petrology, and tectonics on processes of oceanic lithosphere generation. Sessions were held on the nature of the crust and upper mantle at spreading centers; trace elements and isotopes; experimental petrology; magma chamber dynamics, melt migration, and mantle flow; slow versus fast spreading ridges; Atlantic spreading centers; Pacific spreading centers; and hydrothermal activity, metasomatism, and metamorphism. Fifty-four oral papers and 47 poster papers were presented. One hundred twenty-eight scientists attended from Australia, Canada, Cyprus, Denmark, France, Iceland, Japan, Mexico, United Kingdom, United States, and the USSR.

  3. Local Study of Flexural Rigidity in Old Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Weeraratne, D. S.; Forsyth, D. W.

    2010-12-01

    The half-space cooling model predicts lithosphere thickness and that the depth of the sea floor should increase in proportion to the square root of age due to conductive cooling. For seafloor greater than 70 Ma the seafloor is shallower than the square-root-of-age trend, but global seismic tomography studies are in rough agreement with the half-space cooling model. We conducted a marine bathymetry and seismic study in the western Pacific south of the Shatsky Rise on seafloor ~150 Ma to study this discrepancy. The field area is located at a fossil triple junction straddling a magnetic bight. Several small seamounts located in the study area with excellent bathymetric coverage are surrounded by clear flexural moats. The characteristic wavelength of the flexure indicates that the effective elastic thickness, Te is less than 2 km, suggesting that these seamounts were formed on very young seafloor close to the spreading center 150 My ago. Larger seamounts in the study area appear to have formed later off-axis. We will present admittance results to determine the rigidity and Te of the plate at the time of loading of this later episode of volcanism. These measurements will provide us with a better understanding of how oceanic lithosphere and asthenosphere grow and interact in both time and space.

  4. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process. PMID:9545216

  5. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.

  6. Factors controlling the location of compressional deformation of oceanic lithosphere in the central Indian Ocean

    SciTech Connect

    Karner, G.D.; Weissel, J.K. )

    1990-11-10

    The compression of oceanic lithosphere in the Central Indian Ocean does not occur where recent models for the state of stress in the Indo-Australian plate predict maximum horizontal compressive stress. The Afanazy-Nikitin seamount group, which was erupted in Late Cretaceous or Early Tertiary time, is centrally located in the region where deformation is best developed. The authors suggest that critical wavelength components in the deflection caused by the emplacement of these seamounts were preferentially amplified when north-south directed compression was applied to the northern part of the Indo-Australian plate in the late Miocene. To test this hypothesis, they develop simple one- and two-dimensional models for compression of a thin elastic plate overlying an inviscid fluid, where the plate contains a preexisting deflection. The {le} 2 km peak-to-trough amplitude and 200 km average wavelength characteristics of the broad-scale crustal deformation and the observed east-west trending pattern of free-air gravity anomalies are best matched in the modeling with an applied horizontal compression of 1.5-2.0 {times} 10{sup 13} N/m, and a plate with an effective elastic thickness of 10-15 km at the time of compression. In addition, the lithosphere is particularly susceptible to deformation by horizontal compression if seawater initially filled the deflection due to seamount emplacement, but Bengal Fan sediment fills the additional deflection caused by compression. The value of effective elastic thickness determined for the deformed lithosphere is about a factor of 2 less than values obtained from flexure of comparably aged lithosphere beneath lithosphere in response to horizontal loading. They determine a north-south shortening rate of {approx}1 mm/yr from the amplitude of horizontal compression, the width of the deformed region, and the time interval over which the deformation has occurred.

  7. Fossilized Dipping Fabrics in Continental Mantle Lithosphere as Possible Remnants of Stacked Oceanic Paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, V.; Plomerova, J.; Vecsey, L.; Munzarova, H.

    2015-12-01

    We have examined seismic anisotropy within the mantle lithosphere of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-wave anisotropy delimit domains of the mantle lithosphere, each of them having a consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics in the mantle lithosphere. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  8. Mesozoic thermal evolution of the southern African mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Bell, David R.; Schmitz, Mark D.; Janney, Philip E.

    2003-12-01

    The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150-200 °C isobaric temperature range at 5-6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure. Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a "cratonic" geotherm (˜40 mW m -2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at ˜1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U-Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592-618]. The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at ˜150 Ma to the southeast of the craton, propagating to the west by 108-74 Ma, the craton interior by 85-90 Ma and the far southwest and northwest by 65-70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30-100 Ma earlier and are probably connected. Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow

  9. Metasomatism in the oceanic lithosphere beneath La Palma, Canary Islands

    NASA Astrophysics Data System (ADS)

    Janisch, Astrid; Ntaflos, Theodoros

    2016-04-01

    La Palma is the most active island within the Canary archipelago with historical eruption along the Cumbre Vieja Rift. Mantle peridotite xenoliths brought to the surface during the eruption 1677/78 at the site of San Antonio Volcano, close to Fuencaliente in the south of the island, gives us an excellent opportunity to study an old oceanic lithosphere. The collection of xenoliths comprises sp-harzburgites, sp-lherzolites, sp-dunites and pyroxenites but only the first three were used for this work. Metasomatic processes are evident in all samples. A common feature is a variable channelling of melt flow through the mantle xenoliths displayed in variations from pervasively metasomatized, through veined to dyke intruded peridotites. Orthopyroxene breakdown into olivine, clinopyroxene and glass is evidence for anhydrous melt percolation. Furthermore, fine-grained veins in various thicknesses consisting of olivine, pyroxene as well as amphibole with apatite and phlogopite reveal additional anhydrous and hydrous metasomatic processes, respectively. Peridotites mainly influenced by anhydrous metasomatism exhibit locally phlogopite and/or amphibole around spinel or in glass-veinlets. Pentlandite has been found in all veined samples. Amphiboles are mostly pargasites but kaersutites are also present in the amphibole-bearing veins. Two different types of amphibole veins have been recognized. The first type is an amphibole-apatite-glass-bearing amphibolite, forming a cross-cutting vein that propagates through the xenolith. The amphiboles in this vein are coarse-grained while the disseminated amphiboles are fine-grained. Clinopyroxene always occurs in association with amphibole and in textural equilibrium suggesting that both minerals have grown together. The glass is of tephritic/basanitic to trachy-basaltic composition. The second amphibole-vein contains phlogopite and traces of apatite. Textural evidence (cross-cutting olivine grains and the absence of hydrous minerals in the

  10. Dipping fossil fabrics of continental mantle lithosphere as tectonic heritage of oceanic paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena

    2016-04-01

    Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  11. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.

    PubMed

    Dixon, Jacqueline Eaby; Leist, Loretta; Langmuir, Charles; Schilling, Jean-Guy

    2002-11-28

    A substantial uncertainty in the Earth's global geochemical water cycle is the amount of water that enters the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different mantle components as sampled by ocean island basalts and mid-ocean-ridge basalts. Although all mantle plume (ocean island) basalts seem to contain more water than mid-ocean-ridge basalts, we demonstrate that basalts associated with mantle plume components containing subducted lithosphere--'enriched-mantle' or 'EM-type' basalts--contain less water than those associated with a common mantle source. We interpret this depletion as indicating that water is extracted from the lithosphere during the subduction process, with greater than 92 per cent efficiency.

  12. Gentle Africanized bees on an oceanic island

    PubMed Central

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-01-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. PMID:23144660

  13. Gentle Africanized bees on an oceanic island.

    PubMed

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-11-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture.

  14. Constraints on lithospheric thermal structure for the Indian Ocean from depth and heat flow data

    NASA Technical Reports Server (NTRS)

    Shoberg, Tom; Stein, Carol A.; Stein, Seth

    1993-01-01

    Models for the thermal evolution of oceanic lithosphere are primarily constrained by variations in seafloor depth and heat flow with age. These models have been largely based on data from the Pacific and Atlantic Ocean basins. We construct seafloor age relations for the Indian Ocean which we combine with bathymetric, sediment isopach and heat flow data to derive curves for depth and heat flow versus age. Comparison of these curves with predictions from three thermal models shows that they are better fit by the shallower depths and higher heat flow for the GDH1 model, which is characterized by a thinner and hotter lithosphere than previous models.

  15. Lithospheric structure of the southern African subcontinent from surface wave tomography

    NASA Astrophysics Data System (ADS)

    Raveloson, A.; Nyblade, A.; Mulibo, G.; Mangongolo, A.; Tugume, F.

    2012-12-01

    In this study the lithospheric structure of the southern African subcontinent is examined using a new 3D shear wave velocity model. The lithospheric structure of Africa consists of several Archean cratons and Proterozoic mobile belts. Many intracratonic and rift basin are found within both the Archean and Protozoic terrains. We investigate the 3D shear wave velocity structure of the lithosphere by tomographically modeling Rayleigh wave dispersion curves. Rayleigh waves group velocities from 10 to 125 s period were determined by using multiple-filter and phase-matched techniques. We used seismic events with a magnitude greater than 4.5 and depth shallower than 100 km recorded from 1990 to 2011 on many stations belonging to temporary or permanent networks. We used events and stations within the African plate in an effort to minimize the contributions from outside structure. We constructed the 3D S wave model in two steps. In the first step we measured group velocities of fundamental mode Rayleigh waves. In the second stage we extracted a dispersion curve from the group velocity maps and inverted them to obtain 1D shear wave velocity models. The 1D models are then combined at a regular spatial interval to create a 3D shear wave velocity model. New features revealed in our model include a region of lower wave speeds beneath the cuvette central separating several Archean blocks of the Congo craton and a region of fast lithosphere in northern Mozambique associated with the Ruvuma microplate.

  16. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  17. Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.

    2015-12-01

    Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure

  18. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, Stacey L.; Pratson, Lincoln F.; Karson, Jeffrey A.; Klein, Emily M.

    2016-06-01

    It has recently been estimated that serpentinization within continental lithosphere produces H2 at rates comparable to oceanic lithosphere (both are ~1011 mol H2/yr). Here we present a simple model that suggests that H2 production rates along the mid-oceanic ridge alone (i.e., excluding other marine settings) may exceed continental production by an order of magnitude (~1012 mol H2/yr). In our model, H2 production rates increase with spreading rate and the net thickness of serpentinizing peridotite (S-P) in a column of lithosphere. Lithosphere with a faster spreading rate therefore requires a relatively smaller net thickness of S-P to produce H2 at the same rate as lithosphere with a slower rate and greater thickness of S-P. We apply our model globally, incorporating an inverse relationship between spreading rate and net thickness of S-P to be consistent with observations that serpentinization is more common within lithosphere spreading at slower rates.

  19. Macroscopic strength of oceanic lithosphere revealed by ubiquitous fracture-zone instabilities

    NASA Astrophysics Data System (ADS)

    Cadio, Cécilia; Korenaga, Jun

    2016-09-01

    The origin of plate tectonics is one of the most fundamental issues in earth and planetary sciences. Laboratory experiments indicate that the viscosity of silicate rocks is so strongly temperature-dependent that the entire surface of the Earth should be one immobile rigid plate. The rheology of oceanic lithosphere is, however, still poorly understood, and there exist few constraints on the temperature dependency of viscosity on the field scale. Here we report a new kind of observational constraint based on the geoid along oceanic fracture zones. We identify a large number of conspicuous small-scale geoid anomalies, which cannot be explained by the standard evolution model of oceanic lithosphere, and estimate their source density perturbations using a new Bayesian inversion method. Our results suggest that they are caused most likely by small-scale convection involving temperature perturbations of ∼ 300 K ± 100 K. Such thermal contrast requires the activation energy of mantle viscosity to be as low as 100 ± 50 kJmol-1 in case of diffusion creep, and 225 ± 112 kJmol-1 in case of dislocation creep, substantially reducing the thickness of the stiffest part of oceanic lithosphere. Oceanic lithosphere may thus be broken and bent much more easily than previously thought, facilitating the operation of plate tectonics.

  20. Macroscopic strength of oceanic lithosphere revealed by ubiquitous fracture-zone instabilities

    NASA Astrophysics Data System (ADS)

    Cadio, Cécilia; Korenaga, Jun

    2016-09-01

    The origin of plate tectonics is one of the most fundamental issues in earth and planetary sciences. Laboratory experiments indicate that the viscosity of silicate rocks is so strongly temperature-dependent that the entire surface of the Earth should be one immobile rigid plate. The rheology of oceanic lithosphere is, however, still poorly understood, and there exist few constraints on the temperature dependency of viscosity on the field scale. Here we report a new kind of observational constraint based on the geoid along oceanic fracture zones. We identify a large number of conspicuous small-scale geoid anomalies, which cannot be explained by the standard evolution model of oceanic lithosphere, and estimate their source density perturbations using a new Bayesian inversion method. Our results suggest that they are caused most likely by small-scale convection involving temperature perturbations of ∼ 300 K ± 100 K. Such thermal contrast requires the activation energy of mantle viscosity to be as low as 100 ± 50 kJmol-1 in case of diffusion creep, and 225 ± 112 kJmol-1 in case of dislocation creep, substantially reducing the thickness of the stiffest part of oceanic lithosphere. Oceanic lithosphere may thus be broken and bent much more easily than previously thought, facilitating the operation of plate tectonics.

  1. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy

    2014-05-01

    The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins

  2. Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law

    NASA Astrophysics Data System (ADS)

    Gordon, Richard G.; Houseman, Gregory A.

    2015-06-01

    The width of diffuse oceanic plate boundaries is determined by the rheology of oceanic lithosphere. Here we apply thin viscous sheet models, which have been successfully applied to deformation in several continental deforming zones, to investigate the deformation of oceanic lithosphere in the diffuse oceanic plate boundaries between the India, Capricorn, and Australia Plates. We apply kinematic boundary conditions based on the current motion between these plates. We neglect buoyancy forces due to plate thinning or thickening and assume that the thin viscous sheet has the same depth-integrated nonlinear viscosity coefficient everywhere. Our initial models have only one adjustable parameter, n, the power-law exponent, with n = 1, 3, 10, 30, and 100. The predicted width of the deforming zone decreases with increasing n, with n ≥ 30 explaining the observations. This n value is higher than has been estimated for continental lithosphere and suggests that more of the strength of oceanic lithosphere lies in layers deforming by faulting or by dislocation glide than for continental lithosphere. To obtain a stress field that better fits the distribution and type of earthquake focal mechanisms in the diffuse oceanic plate boundary, we add a second adjustable parameter, representing the effect of slab pull stretching the oceanic plate near the Sumatra Trench. We show that an average velocity increment on this boundary segment of 5 mm a-1 (relative to the average velocity of the India and Australia Plates) fits the observed distribution of fault types better than velocities of 3.3 mm a-1 or 10 mm a-1.

  3. Arctic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion: Constraining Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Alvey, A.; Roberts, A. M.

    2013-12-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust, possible micro-continents and rifted continental margins. Mapping of continental lithosphere thinning factor and crustal thickness from gravity inversion provide predictions of ocean-continent transition structure and magmatic type and continent ocean boundary location independent of magnetic isochrons. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being underlain by oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Moho depths predicted compare well with seismic estimates. Predicted very thin continental or oceanic crust under the North Chuchki

  4. Segmented African Lithosphere Beneath Anatolia Imaged by Teleseismic P-Wave Tomography

    NASA Astrophysics Data System (ADS)

    Biryol, Cemal; Zandt, George; Beck, Susan; Ozacar, Atilla

    2010-05-01

    Anatolia, a part of the Alpine-Himalayan orogenic belt, is shaped by a variety of complex tectonic processes that define the major tectonic provinces across which different deformation regimes exist. Collision related plateau formation dominates the present lithospheric deformation to the east and slab roll-back related back-arc extension takes place in the west. The two zones are connected at the northern part of the region by strike-slip faulting along the right-lateral North Anatolian Fault Zone. Recent seismological studies show that the Eastern Anatolian Plateau (EAP) is supported by hot asthenosphereric material that was emplaced beneath the plateau following the detachment of subducted Arabian lithosphere. The westward continuation of the deeper structure of Anatolia was previously less well constrained due to the lack of geophysical observations. In order to study the deeper lithosphere and mantle structure beneath Anatolia, we used teleseismic P-wave tomography and data from several temporary and permanent seismic networks deployed in the region. A major part of the data comes from the North Anatolian Fault passive seismic experiment (NAF) that consists of 39 broadband seismic stations operated at the north central part of Anatolia between 2005 and 2008. We also used data collected from permanent seismic stations of the National Earthquake Monitoring Center (NEMC) and stations from the Eastern Turkey Seismic Experiment (ETSE). Approximately 34,000 P-wave travel time residuals, measured in multiple frequency bands, are inverted using approximate finite-frequency sensitivity kernels. Our tomograms reveal a fast anomaly that corresponds to the subducted portion of the African lithosphere along the Cyprean Arc. This fast anomaly dips northward beneath central Anatolia with an angle of approximately 45 degrees. However, the anomaly disappears rather sharply to the east beneath the western margin of the EAP and to the west beneath the Isparta Angle. The western

  5. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume.

    PubMed

    Schaefer, Bruce F; Turner, Simon; Parkinson, Ian; Rogers, Nick; Hawkesworth, Chris

    2002-11-21

    The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.

  6. An analytical model of the free H2 produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Pratson, L.; Darrah, T. H.; Karson, J. A.; Klein, E. M.

    2014-12-01

    The free H2 produced by serpentinization within oceanic lithosphere figures prominently in theories regarding (1) the origin and early evolution of life of earth, (2) the basal fuel-source sustaining the sub-seafloor biosphere, (3) the formation of abiogenic hydrocarbons as well as (4) native metal alloys, (5) the geochemical cycles of various elements, and (5) the future use of H2 as a substitute for fossil fuels. Here we present an analytical model that ties H2 production to seafloor spreading rates and the cooling of oceanic lithosphere. If the assumptions underpinning our simplistic model are largely correct, we estimate that global H2 production by the serpentinization of peridoitite within oceanic-lithosphere may be as large as ~9.7x1012 moles H2/year, which is within one or two orders of magnitude of any previous estimates. The model, however, also predicts where globally H2 production should be greatest as well as how far from the axis of a mid-oceanic ridge H2 production should remain significant. We could not rigorously test our model due to sparse and varied measurements of H2 globally however the model suggests a number of systematic relationships and testable predications for future field-based studies. To demonstrate the potential validity and implications our results, we evaluate where all the free-H2 predicted by the model may go given the limited amount known about the H2 budget within the oceans.

  7. Heat Flow, Lower Crustal Thermochronology, and Transient Geotherms in the Mesozoic Southern African Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Bell, D. R.; Bowring, S. A.

    2002-12-01

    There is a well-established debate regarding the role of higher mantle heat flux for accommodating the elevated average surface heat flow in the Proterozoic orogenic belts relative to the Archean cratonic regions of southern Africa1,2. Advocates of steeper off-craton lithospheric mantle thermal gradients commonly support their arguments with thermobarometric data indicating elevated temperatures at a given depth in off-craton versus cratonic mantle xenolith suites3,4, and together such inferences have cemented a paradigm of differential lithospheric thickness between Proterozoic orogenic belts (thin) and Archean cratons (thick). However, this inherently steady-state interpretation of lithospheric thermomechanical structure is at odds with emerging data pointing toward transient thermal perturbations and irreversible chemical modifications to the southern African lithosphere during the Late Mesozoic5,6. This contribution seeks to illustrate how an essentially "cratonic" thermal state in the Proterozoic lithospheric mantle of southern Africa remains compatible with nominally elevated surface heat flow in the same regions. Model geotherms have been constructed utilizing published surface heat flow, heat production and thermal conductivity measurements1, and seismically-derived crustal thickness estimates7. New heat-producing element concentration data for kimberlite-borne high-pressure granulite xenoliths from the Proterozoic domains constrain lower crustal heat production to be in the range of 0.15 to 0.2 μW/m3. A family of geologically realistic crustal heat production models accommodates surface heat flow >50 mW/m2, while maintaining moderate basal mantle heat flux <15 mW/m2, with associated lithospheric mantle geotherms and thickness indistinguishable from those of cratonic mantle. This family of models is further consistent with constraints on pre-Mesozoic lower crustal paleotemperatures of <450°C imposed by rutile U-Pb thermochronology in the craton

  8. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  9. Oceanic lithospheric S wave velocities from the analysis of P wave polarization at the ocean floor

    NASA Astrophysics Data System (ADS)

    Hannemann, Katrin; Krüger, Frank; Dahm, Torsten

    2016-09-01

    Our knowledge of the absolute S wave velocities of the oceanic lithosphere is mainly based on global surface wave tomography, local active seismic or compliance measurements using oceanic infragravity waves. The results of tomography give a rather smooth picture of the actual S wave velocity structure and local measurements have limitations regarding the range of elastic parameters or the geometry of the measurement. Here, we use the P wave polarization (apparent P wave incidence angle) of teleseismic events to investigate the S wave velocity structure of the oceanic crust and the upper tens of kilometres of the mantle beneath single stations. In this study, we present an up to our knowledge new relation of the apparent P wave incidence angle at the ocean bottom dependent on the half space S wave velocity. We analyse the angle in different period ranges at ocean bottom stations (OBS) to derive apparent S wave velocity profiles. These profiles are dependent on the S wave velocity as well as on the thickness of the layers in the subsurface. Consequently, their interpretation results in a set of equally valid models. We analyse the apparent P wave incidence angles of an OBS data set which was collected in the Eastern Mid Atlantic. We are able to determine reasonable S wave velocity-depth models by a three step quantitative modelling after a manual data quality control, although layer resonance sometimes influences the estimated apparent S wave velocities. The apparent S wave velocity profiles are well explained by an oceanic PREM model in which the upper part is replaced by four layers consisting of a water column, a sediment, a crust and a layer representing the uppermost mantle. The obtained sediment has a thickness between 0.3 km and 0.9 km with S wave velocities between 0.7 km s-1 and 1.4 km s-1. The estimated total crustal thickness varies between 4 km and 10 km with S wave velocities between 3.5 km s-1 and 4.3 km s-1. We find a slight increase of the total

  10. An integrated geophysical study of north African and Mediterranean lithospheric structure

    NASA Astrophysics Data System (ADS)

    Dial, Paul Joseph

    1998-07-01

    This dissertation utilizes gravity and seismic waveform modeling techniques to: (1) determine models of lithospheric structure across northern African through gravity modeling and (2) determine lithospheric and crustal structure and seismic wave propagation characteristics across northern Africa and the Mediterranean region. The purpose of the gravity investigation was to construct models of lithospheric structure across northern Africa through the analysis of gravity data constrained by previous geological and geophysical studies. Three lithospheric models were constructed from Bouguer gravity data using computer modeling, and the gravity data was wavelength-filtered to investigate the relative depth and extent of the structures associated with the major anomalies. In the Atlas Mountains area, the resulting earth models showed slightly greater crustal thickness than those of previous studies if a low density mantle region is not included in the models. However, if a low density mantle region (density = 3.25 g/cm3) was included beneath the Atlas, the earth models showed little crustal thickening (38 km), in accord with previous seismic studies. The second portion of the research consisted of seismic waveform modeling of regional and teleseismic events to determine crustal and lithospheric structure across northern Africa and the Mediterranean. A total of 174 seismograms (145 at regional distances (200--1400 km) and 29 with epicentral distances exceeding 1900 km) were modeled using 1-D velocity models and a reflectivity code. At regional distances from four stations surrounding the western Mediterranean basin (MAL, TOL, PTO and AQU) and one station near the Red Sea (HLW), 1-D velocity models can satisfactorily model the relative amplitudes of both the Pnl and surface wave portions of the seismograms. Modeling of propagation paths greater than 1900 km was also conducted across northern Africa and the Mediterranean. The results indicate that the S-wave velocity model

  11. Eastern Termination of the Subducting African Lithosphere Beneath Anatolia Imaged by Teleseismic P-Wave Tomography

    NASA Astrophysics Data System (ADS)

    Biryol, C. B.; Zandt, G.; Beck, S. L.; Ozacar, A.; Schmandt, B.

    2009-12-01

    A variety of complex tectonic processes are active in Anatolia. Collision related plateau formation dominates the present lithospheric deformation toward the east and slab roll-back related back-arc extension takes place toward the west. The two zones are connected at the northern part of the region by strike-slip faulting along the right-lateral North Anatolian Fault. Recent seismological studies show that the Eastern Anatolian Plateau (EAP) is supported by hot asthenosphereric material that was emplaced beneath the plateau following the detachment of subducted Arabian lithosphere. The westward continuation of the deeper structure of Anatolia is less well constrained due to the lack of geophysical observations. In order to study how the deeper lithosphere and mantle structure evolves spatially from east to west, we used teleseismic P-wave tomography and data from several temporary and permanent seismic networks deployed in the region. A major part of the data comes from the North Anatolian Fault passive seismic experiment (NAF) that consists of 39 broadband seismic stations operated at the north central part of Anatolia between 2005 - 2008. We also used data collected from permanent seismic stations of the National Earthquake Monitoring Center (NEMC) and stations from the Eastern Turkey Seismic Experiment (ETSE). Approximately 15,000 P-wave travel time residuals, measured in multiple frequency bands, are inverted using approximate finite-frequency sensitivity kernels. Our tomographic model reveals a fast anomaly that corresponds to the subducted portion of the African lithosphere along the Cyprean Arc. This fast anomaly dips northward beneath central Anatolia with an angle of approximately 45 degrees. However, the anomaly disappears rather sharply east of 36 degree longitude. This eastern edge of the slab also marks the western boundary of the EAP and Arabia-Eurasia collision zone. Beneath EAP our model reveals distributed slow anomalies down to 400 km and upper

  12. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Craig, T. J.; Copley, A.; Jackson, J.

    2014-04-01

    We use body-waveform modelling to constrain the source parameters of earthquakes occurring globally in oceanic lithosphere beneath the subduction zone outer rise and outer trench slope. These data are then used to map the stress state in the lithosphere of the downgoing plate as it bends into the subduction zone. Our results provide new constraints on the faulting of oceanic lithosphere at the outer rise, which is important for understanding the transmission of plate-driving forces through the subduction system. In all cases, shallow normal-faulting earthquakes are observed at the top of the plate, and are separated in depth from any deeper thrust-faulting earthquakes. No temporal variation associated with large thrust-faulting earthquakes on the subduction interface is seen in the depth extent of each type of faulting at the outer rise. The transition depth from trench-normal extension to compression is found to vary in agreement with models in which deformation is driven by the combination of in-plane stresses and bending stresses, resulting principally from slab pull. Combining the seismologically derived constraints on the thickness of the elastic core of the plate with estimates of the plate curvature, we place upper bounds on the strength of the lithosphere at the outer rise, which is required to be ≲300 MPa for a constant yield stress model, or governed by an effective coefficient of friction of ≲0.3.

  13. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  14. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin

    2015-11-01

    Whereas the serpentinization reaction leads to stark differences in the physical properties of mantle rocks at mid-ocean ridges, the chemical changes associated with this reaction are thought to be restricted to the addition of water and the generation of hydrogen ("isochemical" reaction). Here, I compile a geochemical dataset of serpentinized peridotites at mid-ocean ridges evidencing that a decrease by up to 11% of the MgO/SiO2 ratio is associated with serpentinization. This MgO/SiO2 decrease is consistent with the calculated distribution of Mg in the minerals since, during isochemical serpentinization, ∼10% of the Mg should be contained in brucite, an Mg-hydroxide not commonly observed in serpentinized peridotites, which are typically composed of serpentine (Mg3Si2O5(OH)4) and magnetite (Fe3O4). This latter mineralogical assemblage and a decrease of the MgO/SiO2 ratio were only reproduced in numerical models of peridotite reacting with fluids containing aqueous silica at fluid to rock (F/R) ratios greater than 20. At higher F/R ratios, talc (Mg3Si4O10(OH)2) was found to be stable, in agreement with observations in extremely altered samples found at mid-ocean ridges. The potential sources for aqueous silica in the fluid are the alteration of mafic units intruding mantle rocks at slow-spreading ridges. The mineralogical and chemical changes associated with SiO2 gain during serpentinization at mid-ocean ridges will have consequences on abiotic hydrogen production, contribute to a volume increase of 50% and decrease water incorporation during serpentinization by more than 10% compared to "isochemical" serpentinization. These changes will also increase the depth at which fluids are released by dehydration reactions in subduction zones by more than 20 km.

  15. Seismic Tomography of the Arctic: Continental Cratons, Ancient Orogens, Oceanic Lithosphere and Convecting Mantle Beneath (Invited)

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Schaeffer, A. J.

    2013-12-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, reflect primarily the variations in the temperature of the rock at depth. Seismic tomography thus reveals lateral changes in the temperature and thickness of the lithosphere; it maps deep boundaries between tectonic blocks with different properties and with different age of the lithosphere. Our new global, shear-wave tomographic model of the upper mantle and the crust is constrained by an unprecedentedly large number of broadband waveform fits (nearly one million seismograms, with both surface and S waves included) and provides improved resolution of the lithosphere across the whole of the Arctic region, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. In Eurasia, in contrast, cratonic lithosphere extends hundreds of kilometres north of the coast of the continent, beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures in northern Eurasia. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster-spreading ridges globally. South of the ridge, the Nansen Basin shows higher seismic velocities in the upper mantle beneath it, compared to the Amundsen Basin. At 150-250 km depth, most of the oceanic portions of the central Arctic (the

  16. Réunion (Indian Ocean) Oceanic Island Volcanism: Seismic Structure and Heterogeneity of the Upper Lithosphere

    NASA Astrophysics Data System (ADS)

    Hirn, A.

    2002-12-01

    accretionary center. This has also been suggested for Mauritius island, the two fossil accretionary center having been active on different sides of a triple junction, and carried away from each other along the later fracture zone in-between. The available seismic data sample only from the top of the island to the top of the mantle. At this scale they evidence a departure of Réunion from an idealized oceanic hotspot volcanic islands model, as well as the relation of its location with a structural heterogeneity of the underlying lithosphere that appears inherited from its complex origin. These partly unexpected results suggest that the case deserves further sampling at the broader regional scale including Mauritius, and deeper into the mantle

  17. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  18. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.

    PubMed

    Kawakatsu, Hitoshi; Kumar, Prakash; Takei, Yasuko; Shinohara, Masanao; Kanazawa, Toshihiko; Araki, Eiichiro; Suyehiro, Kiyoshi

    2009-04-24

    The mobility of the lithosphere over a weaker asthenosphere constitutes the essential element of plate tectonics, and thus the understanding of the processes at the lithosphere-asthenosphere boundary (LAB) is fundamental to understand how our planet works. It is especially so for oceanic plates because their relatively simple creation and evolution should enable easy elucidation of the LAB. Data from borehole broadband ocean bottom seismometers show that the LAB beneath the Pacific and Philippine Sea plates is sharp and age-dependent. The observed large shear wave velocity reduction at the LAB requires a partially molten asthenosphere consisting of horizontal melt-rich layers embedded in meltless mantle, which accounts for the large viscosity contrast at the LAB that facilitates horizontal plate motions. PMID:19390042

  19. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.

    PubMed

    Kawakatsu, Hitoshi; Kumar, Prakash; Takei, Yasuko; Shinohara, Masanao; Kanazawa, Toshihiko; Araki, Eiichiro; Suyehiro, Kiyoshi

    2009-04-24

    The mobility of the lithosphere over a weaker asthenosphere constitutes the essential element of plate tectonics, and thus the understanding of the processes at the lithosphere-asthenosphere boundary (LAB) is fundamental to understand how our planet works. It is especially so for oceanic plates because their relatively simple creation and evolution should enable easy elucidation of the LAB. Data from borehole broadband ocean bottom seismometers show that the LAB beneath the Pacific and Philippine Sea plates is sharp and age-dependent. The observed large shear wave velocity reduction at the LAB requires a partially molten asthenosphere consisting of horizontal melt-rich layers embedded in meltless mantle, which accounts for the large viscosity contrast at the LAB that facilitates horizontal plate motions.

  20. Highly extended oceanic lithosphere: The basement and wallrocks for the Late Jurassic Rogue-Chetco oceanic arc, Oregon Klamath Mountains

    SciTech Connect

    Yule, J.D.; Saleeby, J.B.

    1993-04-01

    The superbly preserved, coeval Late Jurassic Rogue-Chetco oceanic arc and Josephine inter-arc basin exposed in the western Jurassic belt of the Oregon Klamath Mountains provide a unique opportunity to (1) directly observe the oceanic lithosphere upon which this oceanic arc was constructed, and (2) gain a better understanding of the pre-accretionary dynamic processes that shape oceanic arc and inter-arc basin lithosphere. Field relations exposed in the Roque, Illinois, and Chetco River areas show that (1) plutonic and volcanic rocks of the Rogue-Chetco arc both intruded and conformably overlapped fragmented composite blocks of oceanic crust and serpentinized, dike-filled depleted mantle rocks; and (2) arc growth occurred during regional oblique extension of the oceanic lithosphere resulting in the extreme fragmentation of oceanic crustal rocks and the local exposure of serpentinized mantle rocks on the sea floor. The Rogue-Chetco overlap sequence consists of rhythmically bedded volcanogenic turbidites, chert, argillite, and local deposits of polymict basal breccias. The clasts which comprise the distinctive basal breccias indicate derivation from a dominantly ophiolitic crust and serpentinized mantle source. Source materials for the basal breccias comprise the basement and wallrocks for the Roque-Chetco arc and consist of (1) rifted fragments of western Paleozoic and Triassic belt rocks (Yule and others, 1991) cut by heterogeneous mafic complexes inferred to represent early Josephine age rifting at approximately 165 Ma, (2) fault bounded blocks of massive gabbro, sheeted mafic dikes, pillow lava and breccia overlain by Callovian age chert, and (3) serpentinized depleted mantle peridotite cut by multiple generation of mafic and intermediate dikes. The basement rock types all share a pervasive brittle fragmentation and hydrothermal alteration history that is conspicuously absent in the arc volcanic and plutonic rocks.

  1. A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Sen, Indra Sekhar; Bizimis, Michael; Sen, Gautam; Huang, Shichun

    2011-09-01

    Platinum Group Element (PGE) concentrations in garnet pyroxenite xenoliths from Oahu, Hawaii, are significantly lower than those in mantle peridotites and show fractionated patterns (e.g. Pd N/Os N = 2-10, Pd N/Ir N = 4-24; N = chondrite normalized) and very high Re N/Os N ratios (˜9-248). Mass balance calculations show that the bulk rock pyroxenite PGE inventory is controlled by the presence of sulfide phases. The 187Os/ 188Os ratios of these pyroxenites vary from subchondritic to suprachondritic (0.123-0.164); and the 187Os/ 188Os ratios show good correlations with bulk rock and clinopyroxene major and trace element compositions, and bulk rock PGE and sulfur abundances. These observations suggest that the Os isotope compositions in these pyroxenites largely reflect primary processes in the oceanic mantle and Pacific lithosphere. In contrast, bulk rock 187Os/ 188Os ratios do not correlate with other lithophile isotopic tracers (e.g. Rb-Sr, Sm-Nd, Lu-Hf) which show limited isotopic variability ( Bizimis et al., 2005). This and the lack of 187Os/ 188Os vs. Re/Os correlations suggest that the range in Os isotope ratios is not likely the result of mixing between long-lived depleted and enriched components or aging of these pyroxenites within the Pacific lithosphere after its formation at a mid-oceanic ridge setting some 80-100 million years ago. We interpret the Os isotopes, PGE and lithophile element systematics as the result of melt-lithosphere interaction at the base of the Pacific lithosphere. The major and trace element systematics of the clinopyroxenes and bulk rock pyroxenites and the relatively constant lithophile element isotope systematics are best explained by fractional crystallization of a rather homogenous parental magma. We suggest that during melt crystallization and percolation within the lithosphere, the parental pyroxenite melt assimilated radiogenic Os from the grain boundaries of the peridotitic lithosphere. This radiogenic Os component may

  2. Rapid emplacement of young oceanic lithosphere: argon geochronology of the oman ophiolite.

    PubMed

    Hacker, B R

    1994-09-01

    (40)Ar/(39)Ar dates of emplacement-related metamorphic rocks beneath the Samail ophiolite in Oman show that cooling to <525 degrees C occurred within approximately 1 million years of igneous crystallization of the ophiolite. This unexpectedly short time span and rapid cooling means that old, cold continental or oceanic lithosphere must have been adjacent to the ophiolite during spreading and then been thrust beneath the ophiolite almost immediately afterward.

  3. Structure of the deep oceanic lithosphere in the Northwestern Pacific ocean basin derived from active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Nakamura, Y.; Fujie, G.; Arai, R.; Miura, S.

    2015-12-01

    Many seismological studies have detected the sharp seismic discontinuities in the upper mantle, some of which are interpreted the lithosphere-asthenosphere boundary (LAB). However there are few data at the old Pacific plate, in particular at ocean basin, which is critical information for understanding nature of the oceanic LAB. In 2014 we conducted an active-source refraction/reflection survey along a 1130-km-long line in southeast of the Shatsky Rise. Five ocean bottom seismometers (OBSs) were deployed and recovered by R/V Kairei of JAMSTEC. We used an airgun array with a total volume of 7,800 cubic inches with firing at intervals of 200 m. Multi-channel seismic reflection (MCS) data were also collected with a 444-channel, 6,000-m-long streamer cable. In OBS records the apparent velocity of the refraction waves from the uppermost mantle was high (< 8.6 km/sec), and considered to be caused by preferred orientation of olivine (e.g., Kodaira et al., 2014). Another remarkable feature is wide-angle reflection waves from the deep lithosphere at large (150-500 km) offsets. We applied the traveltime mapping method (Fujie et al., 2006), forward analysis (Zelt and Smith, 1992) and the amplitude modeling (Larsen and Grieger, 1998) to the OBS data. The results show that deep mantle reflectors exist at the depths from 35 to 60 km, and one possible explanation is that these reflectors correspond to patched low velocity zones around the base of the lithosphere. On MCS sections the clear and sharp Moho was imaged only at the southwestern end of the profile, but Moho was ambiguous or even not imaged in the most part of the profile. Since our seismic line covers the oceanic lithosphere with different ages that correspond to different stages of the Shatsky activity, the Moho appearance may reflect the variation of the Shatsky activity.

  4. Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2014-05-01

    Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.

  5. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolites

    NASA Astrophysics Data System (ADS)

    Su, Ben-Xun; Teng, Fang-Zhen; Hu, Yan; Shi, Ren-Deng; Zhou, Mei-Fu; Zhu, Bin; Liu, Fan; Gong, Xiao-Han; Huang, Qi-Shuai; Xiao, Yan; Chen, Chen; He, Yong-Sheng

    2015-11-01

    We present high-precision Fe and Mg isotopic data for the Purang ophiolite, southwestern Tibet, representing the first combined Fe and Mg isotopic study of the oceanic lithosphere hitherto. The δ56Fe and δ26Mg values of the ophiolitic peridotite, dunite and gabbro vary from -0.209 to 0.187‰ and from -0.28 to - 0.14 ‰, respectively. The average δ56Fe of the peridotites is - 0.030 ± 0.143 ‰ (2SD, n = 17), a value indistinguishable from abyssal peridotites and chondrites, and lower than oceanic basalts. The average δ26Mg value of the peridotites is - 0.20 ± 0.10 ‰, a value slightly higher than both chondrites and oceanic basalts. Correlations between δ56Fe and indices of partial melting indicate fractionation of 0.323‰ in δ56Fe between the oceanic lithospheric mantle and the overlying mafic crust during an early episode of partial melting, presumably beneath a spreading centre. Subsequent metasomatism in a supra-subduction zone caused elevated oxygen fugacity and heavy Fe isotopic compositions in the oceanic lithospheric mantle. The dunite with high Ba/La, a proxy for oxygen fugacity, and high δ56Fe values was likely formed during this process of sub-arc mantle-melt interaction. The negatively coupled Fe-Mg isotopic variations of the Purang ophiolite indicate that Mg isotope fractionation may also occur during high-temperature mantle processes. The observed isotopic variations among different lithologies in the ophiolite may satisfactorily account for the isotopic differences between arc lavas and mantle peridotites with respect to oceanic basalts, thus providing implications for crust-mantle differentiation.

  6. A mechanism for decoupling within the oceanic lithosphere revealed in the Troodos ophiolite

    USGS Publications Warehouse

    Agar, S.M.; Klitgord, Kim D.

    1995-01-01

    Contrasting kinematic histories recorded in the sheeted dykes and underlying plutonic rocks of the Troodos ophiolite provide a new perspective on the mechanical evolution of oceanic spreading centres. The kinematic framework of the decoupling zone that partitions deformation between the sheeted dykes and plutonics contrasts with low-angle detachment models for slow-spreading ridges based on continental-rift analogues. A model for the generation of multiple, horizontal decoupling horizons, linked by planar normal faults, demonstrates new possibilities for the kinematic and rheological significance of seismic reflectors in oceanic lithosphere.

  7. Recovering the effective elastic thickness, Te, of oceanic lithosphere in the presence of long wavelength topography

    NASA Astrophysics Data System (ADS)

    Kalnins, L. M.; Watts, A. B.

    2010-05-01

    We have developed a moving window admittance technique to determine the relationship between free-air gravity anomaly and bathymetry as a function of wavelength over the world's ocean basins and their margins. Preliminary results from the western Pacific Ocean show that the technique resolves the effective elastic thickness of the oceanic lithosphere, Te, to better than ±5 km for Te < 30 km over horizontal distances of a few tens of km. In this paper, we investigate the robustness of our results using different tapering schemes (e.g. single versus multitaper) and synthetic tests that illustrate our ability to recover Te in the region of long wavelength features such as trench outer rises, mid-plate swells and mid-ocean ridges. By investigating observed admittances in the Pacific, Indian, and Atlantic Oceans, we have found that there is a 'critical wavelength' that separates the relatively short wavelength contributions of lithospheric flexure to the gravity field from longer wavelength effects such as those associated with mantle dynamics. We examine here this 'critical wavelength' and its implications for swell compensation depths, plate cooling models, and mantle convection.

  8. Water in Hawaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Peslier, Anne H.; Bizimis, Michael

    2015-04-01

    The distribution of water concentrations in the oceanic upper mantle has drastic influence on its melting, rheology, and electrical and thermal conductivities and yet is primarily known indirectly from analyses of OIB and MORB. Here, actual mantle samples, eight peridotite xenoliths from Salt Lake Crater (SLC) and one from Pali in Oahu in Hawaii were analyzed by FTIR. Water contents of orthopyroxene, clinopyroxene, and the highest measured in olivine are 116-222, 246-442, and 10-26 ppm weight H2O, respectively. Although pyroxene water contents correlate with indices of partial melting, they are too high to be explained by simple melting modeling. Mantle-melt interaction modeling reproduces best the SLC data. These peridotites represent depleted oceanic mantle older than the Pacific lithosphere that has been refertilized by nephelinite melts containing <5 weight % H2O. Metasomatism in the Hawaiian peridotites resulted in an apparent decoupling of water and LREE that can be reconciled via assimilation and fractional crystallization. Calculated bulk-rock water contents for SLC (50-96 ppm H2O) are on the low side of that of the MORB source (50-200 ppm H2O). Preceding metasomatism, the SLC peridotites must have been even drier, with a water content similar to that of the Pali peridotite (45 ppm H2O), a relatively unmetasomatized fragment of the Pacific lithosphere. Moreover, our data show that the oceanic mantle lithosphere above plumes is not necessarily enriched in water. Calculated viscosities using olivine water contents allow to estimate the depth of the lithosphere-asthenosphere boundary beneath Hawaii at ˜90 km.

  9. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness <5.2 km (designated as "thin" crust), while 56% of the crustal volume (or 65% of the surface area) is associated with crustal thickness of 5.2-8.6 km thick (designated as "normal" crust). The remaining 39% of the crustal volume (or 26% of the surface area) is associated with crustal thickness >8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic

  10. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    NASA Technical Reports Server (NTRS)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  11. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    USGS Publications Warehouse

    Choy, G.L.; McGarr, A.

    2002-01-01

    The radiated energies, Es, and seismic moments, Mo, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (??a = ?? Es/Mo, where ?? is the modulus of rigidity). The globally averaged ??a for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (??a greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7-29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-??a events. The depth distribution of ??a, which shows peak values somewhat greater than 25 MPa in the depth range 20-25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5-30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10-30 km, our set of high-??a earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of ??a for

  12. Breaking the oceanic lithosphere of a subducting slab: the 2013 Khash, Iran earthquake

    USGS Publications Warehouse

    Barnhart, William D.; Hayes, Gavin P.; Samsonov, S.; Fielding, E.; Seidman, L.

    2014-01-01

    [1] Large intermediate depth, intraslab normal faulting earthquakes are a common, dangerous, but poorly understood phenomenon in subduction zones owing to a paucity of near field geophysical observations. Seismological and high quality geodetic observations of the 2013 Mw7.7 Khash, Iran earthquake reveal that at least half of the oceanic lithosphere, including the mantle and entire crust, ruptured in a single earthquake, confirming with unprecedented resolution that large earthquakes can nucleate in and rupture through the oceanic mantle. A rupture width of at least 55 km is required to explain both InSAR observations and teleseismic waveforms, with the majority of slip occurring in the oceanic mantle. Combining our well-constrained earthquake slip distributions with the causative fault orientation and geometry of the local subduction zone, we hypothesize that the Khash earthquake likely occurred as the combined result of slab bending forces and dehydration of hydrous minerals along a preexisting fault formed prior to subduction.

  13. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  14. Seismic evidence of a two-layer lithospheric deformation in the Indian Ocean.

    PubMed

    Qin, Yanfang; Singh, Satish C

    2015-01-01

    Intra-plate deformation and associated earthquakes are enigmatic features on the Earth. The Wharton Basin in the Indian Ocean is one of the most active intra-plate deformation zones, confirmed by the occurrence of the 2012 great earthquakes (Mw≥8.2). These earthquakes seem to have ruptured the whole lithosphere, but how this deformation is distributed at depth remains unknown. Here we present seismic reflection images that show faults down to 45 km depth. The amplitude of these reflections in the mantle first decreases with depth down to 25 km and then remains constant down to 45 km. The number of faults imaged along the profile and the number of earthquakes as a function of depth show a similar pattern, suggesting that the lithospheric mantle deformation can be divided into two layers: a highly fractured fluid-filled serpentinized upper layer and a pristine brittle lithospheric mantle where great earthquakes initiate and large stress drops occur. PMID:26365624

  15. Seismic evidence of a two-layer lithospheric deformation in the Indian Ocean.

    PubMed

    Qin, Yanfang; Singh, Satish C

    2015-01-01

    Intra-plate deformation and associated earthquakes are enigmatic features on the Earth. The Wharton Basin in the Indian Ocean is one of the most active intra-plate deformation zones, confirmed by the occurrence of the 2012 great earthquakes (Mw≥8.2). These earthquakes seem to have ruptured the whole lithosphere, but how this deformation is distributed at depth remains unknown. Here we present seismic reflection images that show faults down to 45 km depth. The amplitude of these reflections in the mantle first decreases with depth down to 25 km and then remains constant down to 45 km. The number of faults imaged along the profile and the number of earthquakes as a function of depth show a similar pattern, suggesting that the lithospheric mantle deformation can be divided into two layers: a highly fractured fluid-filled serpentinized upper layer and a pristine brittle lithospheric mantle where great earthquakes initiate and large stress drops occur.

  16. Flexure and gravity anomalies of the oceanic lithosphere beneath the Louisville seamount

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-08-01

    We have calculated the elastic thickness (Te), flexural deflection, and gravity anomaly of the oceanic crust beneath the Louisville seamount (LSC-03), near the Kermadec trench. A regional-residual separation of the bathymetry was performed to remove the effect of other geologic features (e.g., the trench). We used the uniform density and dense core models to approximate the total mass of the seamount, which was defined as the surface load required for flexural deformation. From the flexure modeling results, we found that more flexural depression was predicted by the uniform density model than by the dense core model. However, the uniform density model predicted a significantly smaller gravity anomaly than observed, whereas the dense core model minimized the prediction misfits reasonably. The best flexure model was found with a Te of 16 km for the uniform density model and 6 km for the dense core model. The flexure computed with the dense core model was consistent with the seismically detected Moho. The flexure modeling for LSC-03, thus, indicates that the dense core model better approximates the inner structure of the LSC-03. Based on the crustal age and geochronology of the given seamount, the age of the oceanic crust at the time of seamount formation (Δt) is 20 Ma. If this is the case, however, the Te estimates from both flexure models require some degree of lithospheric reheating by Louisville hotspot activity. Alternatively, considering the tectonic plate motion of the Osbourn Trough, Δt becomes approximately 4 Ma. This younger lithosphere model is more consistent with the observed flexural deformation and the Te estimate from the dense core model. Therefore, the time that the seamount-induced lithospheric deformation occurred may be far earlier than the age-dated volcanism.

  17. Sequential, Multi-stage Processes for Intraplate and Intraslab Seismogenesis in Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, S. H.

    2011-12-01

    Marine geoscience surveys and thermal modeling have shown that oceanic lithosphere has an extremely complex tenure under the ocean basins and during slab descent involving magmatic, hydrothermal, and tectonic processes, processes that undoubtedly leave a cumulative imprint on plate/slab mineralogy, structure, and fluid makeup. These processes clearly have implications for the physical states of plate materials from ridges to trenches to deep slabs and give insights into the geological and geophysical observables, especially intraplate and intraslab earthquakes. Likely stages of this inheritance include: (1) Shallow melting and stretching deformation at Mid Ocean Ridges (MOR's) produce brittle faulting and earthquakes as well as hydrothermal alteration, segregation into oceanic crust and mantle, and internal plate deformation as indicated by seismic anisotropy. Hydrothermal alteration of faults cutting oceanic crust at MOR's have been posited as possible sources of dehydration fluids or dehydration embrittlement near the original seafloor during subsequent slab descent as an explanation of some intermediate-depth earthquakes. (2) Ocean Island (Plume) Volcanism produce an additional component of magmatic CO2 of deeper origin as well as plate deformation due to mass loading by the island edifices. [Kirby presentation in Session T13, this meeting]. (3) Intraplate deformation especially near triple junctions or other settings where discontinuous lateral boundary stresses propagate into plate interiors. (4) Near-trench deformation associated with plate bending that is expressed by shallow normal-faulting earthquakes, fault scarps on the ocean floor off trenches, and seismic reflections of normal faults, all of which locally indicate that such faulting penetrates well into the lithospheric mantle. It seems likely that even though the thermal conditions in most oceanic plates near trenches are relatively cold, mineral alteration along normal-fault pathways from ingress of

  18. Structures of the oceanic lithosphere-asthenosphere boundary: Mineral-physics modeling and seismological signatures

    NASA Astrophysics Data System (ADS)

    Olugboji, T. M.; Karato, S.; Park, J.

    2013-04-01

    We explore possible models for the seismological signature of the oceanic lithosphere-asthenosphere boundary (LAB) using the latest mineral-physics observations. The key features that need to be explained by any viable model include (1) a sharp (<20 km width) and a large (5-10%) velocity drop, (2) LAB depth at ~70 km in the old oceanic upper mantle, and (3) an age-dependent LAB depth in the young oceanic upper mantle. We examine the plausibility of both partial melt and sub-solidus models. Because many of the LAB observations in the old oceanic regions are located in areas where temperature is ~1000-1200°K, significant partial melting is difficult. We examine a layered model and a melt-accumulation model (at the LAB) and show that both models are difficult to reconcile with seismological observations. A sub-solidus model assuming absorption-band (AB) physical dispersion is inconsistent with the large velocity drop at the LAB. We explore a new sub-solidus model, originally proposed by Karato [2012], that depends on grain-boundary sliding. In contrast to the previous model where only the AB behavior was assumed, the new model predicts an age-dependent LAB structure including the age-dependent LAB depth and its sharpness. Strategies to test these models are presented.

  19. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  20. Spreading-rate dependent mid-ocean ridge processes expressed in Western Atlantic lithosphere

    NASA Astrophysics Data System (ADS)

    Kim, Sangmyung David

    The Far-Offset Active-Source Imaging of Mantle (FAIM) experiment was conducted along an 800-km-long transect in the Western Atlantic to study the evolution of 108-157 m.y. lithosphere. The main transect (Line 1) crosses a transition from slow (13-14 mm/yr in half rate) to ultra-slow (˜8 mm/yr) paleo spreading rates, and thus represents an ideal setting to study spreading-rate dependent processes as expressed in lithospheric structure. This thesis presents results of four analyses efforts along this transect. We present a crustal model based on seismic refraction and wide-angle traveltime modeling, we extend the crustal model to an upper lithosphere density model using gravity constraints, we constrain Poisson's ratio in oceanic Layer 3 using converted shear-wave phases, and we consider regional lithospheric structure by analysis of geoid/topography ratios. The crustal model indicates that a transition in crustal thickness accompanies the spreading-rate change, with the crust produced at slow rates being 1.0-1.5 km thinner. The gravity modeling shows that a density model can be constructed that simultaneously satisfies observed gravity, seismic constraints on crustal thickness, and our expectation of isostasy if ˜1.3 km of low-density material is distributed into the upper 30-60 km of the mantle. This amount of material (˜1.3 km) roughly equals the difference in thickness between slow and ultra-slow spreading crust, suggesting that the thinner crust formed during very slow spreading arises due to melt retention in the mantle rather than decreased mantle melting. Modeling of mode-converted S-wave phases reveals a uniform Poisson's ratio (˜0.27) in the lower crust. Along with the observation of sharp crust/mantle boundary, this result suggests that crust along the FAIM transect is primarily melt-derived igneous crust. Geoid versus topography relationships along Line 1 and nearby parallel tracks show abrupt changes that may originate from lateral changes in mantle

  1. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere.

    PubMed

    Escartín, J; Smith, D K; Cann, J; Schouten, H; Langmuir, C H; Escrig, S

    2008-10-01

    The formation of oceanic detachment faults is well established from inactive, corrugated fault planes exposed on sea floor formed along ridges spreading at less than 80 km Myr(-1) (refs 1-4). These faults can accommodate extension for up to 1-3 Myr (ref. 5), and are associated with one of the two contrasting modes of accretion operating along the northern Mid-Atlantic Ridge. The first mode is asymmetrical accretion involving an active detachment fault along one ridge flank. The second mode is the well-known symmetrical accretion, dominated by magmatic processes with subsidiary high-angle faulting and the formation of abyssal hills on both flanks. Here we present an examination of approximately 2,500 km of the Mid-Atlantic Ridge between 12.5 and 35 degrees N, which reveals asymmetrical accretion along almost half of the ridge. Hydrothermal activity identified so far in the study region is closely associated with asymmetrical accretion, which also shows high levels of near-continuous hydroacoustically and teleseismically recorded seismicity. Increased seismicity is probably generated along detachment faults that accommodate a sizeable proportion of the total plate separation. In contrast, symmetrical segments have lower levels of seismicity, which occurs primarily at segment ends. Basalts erupted along asymmetrical segments have compositions that are consistent with crystallization at higher pressures than basalts from symmetrical segments, and with lower extents of partial melting of the mantle. Both seismic evidence and geochemical evidence indicate that the axial lithosphere is thicker and colder at asymmetrical sections of the ridge, either because associated hydrothermal circulation efficiently penetrates to greater depths or because the rising mantle is cooler. We suggest that much of the variability in sea-floor morphology, seismicity and basalt chemistry found along slow-spreading ridges can be thus attributed to the frequent involvement of detachment faults

  2. Water Content of the Oceanic Lithosphere at Hawaii from FTIR Analysis of Peridotite Xenoliths

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizmis, Michael

    2013-01-01

    Although water in the mantle is mostly present as trace H dissolved in minerals, it has a large influence on its melting and rheological properties. The water content of the mantle lithosphere beneath continents is better constrained by abundant mantle xenolith data than beneath oceans where it is mainly inferred from MORB glass analysis. Using Fourier transform infrared (FTIR) spectrometry, we determined the water content of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in spinel peridotite xenoliths from Salt Lake Crater, Oahu, Hawaii, which are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. Only Ol exhibits H diffusion profiles, evidence of limited H loss during xenolith transport to the surface. Water concentrations (Ol: 9-28 ppm H2O, Cpx: 246-566 ppm H2O, Opx: 116-224 ppm H2O) are within the range of those from continental settings but higher than those from Gakkel ridge abyssal peridotites. The Opx H2O contents are similar to those of abyssal peridotites from Atlantic ridge Leg 153 (170-230 ppm) but higher than those from Leg 209 (10- 14 ppm). The calculated bulk peridotite water contents (94 to 144 ppm H2O) are in agreement with MORB mantle source water estimates and lower than estimates for the source of Hawaiian rejuvenated volcanism (approx 540 ppm H2O) . The water content of Cpx and most Opx correlates negatively with spinel Cr#, and positively with pyroxene Al and HREE contents. This is qualitatively consistent with the partitioning of H into the melt during partial melting, but the water contents are too high for the degree of melting these peridotites experienced. Melts in equilibrium with xenolith minerals have H2O/Ce ratios similar to those of OIB

  3. Lithospheric Accretion and the Nature of Anomalously Thick Oceanic Moho Transition Zone

    NASA Astrophysics Data System (ADS)

    Nedimovic, M.; Carbotte, S.; Tischer, M.; Diebold, J.; Babcock, J.; Harding, A.; Kent, G.; Canales, P.; Detrick, R.

    2004-12-01

    The oceanic Moho transition zone (MTZ) separates layered gabbros of the crust derived by magma crystallization from the uppermost residual peridotites, generally harzburgites, representing mantle rocks. Mapping of the Oman and the Bay of Islands ophiolite complexes, both of which are inferred to be composed of obducted oceanic lithosphere formed at fast spreading ridges, has shown that the MTZ is mostly composed of sills and lenses of gabbro intruded into dunite. Thickness of the MTZ can vary from a few meters to over two kilometres. Within the thick MTZ, individual gabbro sills and lenses can reach thickness of a few hundred meters. Thermal modelling, tomography, compliance and PmS converted wave studies support the geologic evidence and suggest presence of gabbroic melt accumulations within the MTZ, in the vicinity of fast and intermediate spreading centres. However, seismic reflection imaging, which has been instrumental for determining the structure of the oceanic crust and for defining the geometry of axial magma chambers, has not yet been successful at imaging the gabbro sills and gabbro-melt lenses imbedded into dunite, casting some doubt on their existence within the present day oceanic lithosphere. Here we show images of a series of groups of subcrustal reflection events that resulted from our analysis of some 1500 km of multichannel seismic data collected in 2002 across the Juan de Fuca ridge flanks as part of the EW0207 cruise. Because the Moho discontinuity is well imaged along most of the survey track and the inferred crustal thickness is remarkably uniform, the location of these events as being within the MTZ is well constrained. We provide evidence that the imaged events are true subcrustal reflections and discuss why imaging the structure of thick MTZs is challenging when both dunite - gabbro and dunite - gabbro-melt interfaces are strong reflectors of acoustic energy. We also discuss mechanisms for the emplacement of gabbro sills within the dunites

  4. The rifting of continental and oceanic lithosphere: Observations from the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Goodliffe, Andrew Mark

    A detailed marine geophysical survey of the Woodlark Basin has given us a high resolution picture of the evolution of the Woodlark Basin. An algorithm developed for this study, which reconstructs bathymetry and magnetization grids to selected ages, has revealed many of the details of the evolution of this young ocean basin. The Woodlark Basin formed by the nucleation of spreading segments in sites of focused continental rifting. These segments, which are on the order of 100 km long, subsequently grew by propagation. Segments form in an overlapping configuration, resulting in the deformation and rotation of intervening continental lithosphere. Transform faults form some time later, cutting through continental lithosphere to join the tips of the spreading segments. Continental margins formed by nucleation of a spreading segment are distinct from those formed by propagation. Nucleation margins have concordant abyssal hill fabric, continent/ocean boundary and continental rift fabric. The continent/ocean boundary (COB) of propagation margins is discordant with abyssal hill fabric, but may be either concordant or discordant with continental rift fabric. A third type of COB, formed when there is no propagation, results in abyssal hill fabric perpendicular to the COB. Similar geometries result from a COB formed on a transform fault. Seismicity on the margins after the initiation of sea-floor spreading, and the inward curvature of abyssal fabric formed on spreading centers propagating into the continental margin, demonstrate that extension continues on the margins for up to 1 Ma. Large reorientations of the spreading center take place by propagation or synchronous reorientation. The present-day sea-floor reveals that its 500-km-long spreading center reoriented synchronously, without propagation, about 80 ka. There is no evidence of the V-shaped pseudofault geometry typical of spreading center propagation, nor of the progressive fanning of sea-floor fabric characteristic of

  5. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow

    NASA Technical Reports Server (NTRS)

    Stein, Carol A.; Stein, Seth

    1994-01-01

    A significant discrepancy exists between the heat flow measured at the seafloor and the higher values predicted by thermal models of the cooling lithosphere. This discrepancy is generally interpreted as indicating that the upper oceanic crust is cooled significantly by hydrothermal circulation. The magnitude of this heat flow discrepancy is the primary datum used to estimate the volume of hydrothermal flow, and the variation in the discrepancy with lithospheric age is the primary constraint on how the hydrothermal flux is divided between near-ridge and off-ridge environments. The resulting estimates are important for investigation of both the thermal structure of the lithosphere and the chemistry of the oceans. We reevaluate the magnitude and age variation of the discrepancy using a global heat flow data set substantially larger than in earlier studies, and the GDHI (Global Depth and Heat Flow) model that better predicts the heat flow. We estimate that of the predicted global oceanic heat flux of 32 x 10(exp 12) W, 34% (11 x 10(exp 12) W) occurs by hydrothermal flow. Approximately 30% of the hydrothermal heat flux occurs in crust younger than 1 Ma, so the majority of this flux is off-ridge. These hydrothermal heat flux estimates are upper bounds, because heat flow measurements require sediment at the site and so are made preferentially at topographic lows, where heat flow may be depressed. Because the water temperature for the near-ridge flow exceeds that for the off-ridge flow, the near-ridge water flow will be even a smaller fraction of the total water flow. As a result, in estimating fluxes from geochemical data, use of the high water temperatures appropriate for the ridge axis may significantly overestimate the heat flux for an assumed water flux or underestimate the water flux for an assumed heat flux. Our data also permit improved estimates of the 'sealing' age, defined as the age where the observed heat flow approximately equals that predicted, suggesting

  6. A New Estimate for Global Hydrothermal Exchange Between the Oceans and Lithosphere

    NASA Astrophysics Data System (ADS)

    Hasterok, D. P.

    2013-12-01

    We revise the estimated global power deficit due to ventilated hydrothermal circulation (8.0 TW) using an updated global heat flow dataset with >14000 oceanic measurements and a new conductive cooling model of the oceanic lithosphere. This study differs from previous estimates by taking into account (1) non-Gaussian statistics, (2) an improved seafloor age model, (3) a new plate cooling model calibrated directly to heat flow, and (4) the effect of sediment cover on the heat flow deficit and ventilated cutoff age. We obtain the maximum heat flow deficit (difference between predicted and observed) when the data are separated by seafloor areas with <400 m and 400 m of sediment cover. The estimated power deficit (integrated heat flow deficit with respect to area) for areas of thin (<400 m) sediment cover is 7.8 TW and for areas of thick (400 m) is 0.2 TW. The total power deficit, 8.0 TW with 50% of estimates falling between 5.0 and 10.0 TW, represents a 30% reduction in magnitude compared with previous heat flow and fluid flow based estimates. Regions with thick, 400 m, sediment cover experience half the heat flow deficit for one-third of the duration (25 Ma) of regions with thin sediment cover (75 Ma). Based on this study, vigorous fluid exchange between the oceans and seafloor redistributes 30% of heat lost through young oceanic crust. Spatial variation in heat flow deficit relative to estimated conductive heat loss. Variations are calibrated to observed heat flow and constrained by sediment thickness variations.

  7. Further seismological consequences of millefeuille asthenosphere and evolution of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Song, T.

    2011-12-01

    Kawakatsu et al. (2009, Science) proposed a model of an oceanic lithosphere/asthenosphere system in which a lithosphere is underlain by a partially molten asthenosphere consisting of horizontal melt-rich layers embedded in a background melt-free mantle. A simple version of this melt-lubricated ``millefeuille" asthenosphere model, i.e., both lithosphere and asthenosphere are composed of seismically isotropic background materials, results in a long-wavelength equivalent transversely isotropic (TI) medium that predicts peculiar behaviors of seismic waves in terms of the incident angle dependence of both P- and S-wave speeds (Kawakatsu et al., 2009, AGU). In particular, it predicts that Vsv}>V{sh for a S-wave incident angle range of 0-60 degrees, while Vsh}>V{sv for horizontally traveling S-waves (and surface waves), where we follow Aki?&Richards for a definition of SV and SH. This means that this model may have difficulty in explaining Vsh}>V{sv for the asthenosphere reported by Tan and Helmberger (2007, JGR) using multiply reflected SS-wave series, even though it may explain surface wave dispersion data. The effect of millefeuille structure in general is to reduce the value of a parameter ?eta = F/(A-2L) that affects the incident angle dependence of bodywave speeds in resulting TI (Dziewonski?&Anderson, 1981, PEPI), as well as making ?xi = N/L>1, where the notation follows that of Takeuchi?&Saito (1972) and for horizontally traveling S-waves, ?sqrt{N/L}=Vsh}/V{sv>1. It turns out that it is almost impossible to circumvent the aforementioned difficulty if we start from an isotropic background medium. On the other hand, it is possible to construct millefeuille models that show Vsh}>V{sv for a wide range of S-wave incident angles explainable wide range of seismic observations, if we start with a TI medium that show ?xi = N/L>1 and ?varphi = C/A <1. A range of background TI (or more generally orthorhombic) media that explain seismic observations are searched, and

  8. Mantle-crust differentiation of chalcophile elements in the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Ciążela, J.; Dick, H. J.; Koepke, J.; Kuhn, T.; Muszynski, A.; Kubiak, M.

    2014-12-01

    The chalcophile elements, as associated with sulfides, are believed mainly from the study of ophiolites to be generally enriched in the upper mantle, but depleted by magmatic processes in the lower and upper ocean crust. However, studies of some orogenic lherzolites suggest a copper depletion of peridotites in relation to the primitive mantle, suggesting that a portion of the sulfides is melted during decompression and incorporated into the ascending magmas. The rarity of abyssal peridotites and the high degree of their alteration have not allowed these results to be verified in situ in the oceans.Here, we present the first complete study of chalcophile elements based on a suite of rocks from an oceanic core complex (OCC), the Kane Megamullion at 22°30'N at the Mid-Atlantic Ridge. OCCs provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow and ultraslow spreading ridges. The Kane Megamullion is one of the best sampled OCCs in the world, with 1342 rocks from 28 dredge sites and 14 dives. We have made XRF, TD-MS and INAA analyses of 129 representative peridotites, gabbroic rocks, diabases and basalts. Our results suggest a depletion of some peridotites in relation to the primitive mantle (28 ppm Cu). Dunites, troctolites and olivine gabbros are relatively enriched in chalcophile elements. The amount of sulfides decreases gradually with progressive differentiation, reaching a minimum in gabbronorites and diabases. The highest bulk abundance of chalcophile elements in our sample suite was observed in dunites (up to ~ 300 ppm Cu in several samples) and a contact zone between residual peridotite and a mafic vein (294 ppm Cu). Plagioclase-bearing harzburgites, generally formed by late-stage melt impregnation in the mantle, are typically more enriched in Cu than unimpregnated residual peridotites. For these reasons, our initial results indicate sulfide melting during mantle melting, and their local precipitation in

  9. Intra-slab Fluid Flow and Eclogite-facies Metasomatism in Subducted Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Pettke, Thomas; Agard, Philippe; De Hoog, Cees-Jan; Collins, Nathan; Oncken, Onno

    2013-04-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and calcschists were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) magnesite-bearing talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray maps of garnet demonstrate that (i) these samples underwent significant Cr, Mg, Ni enrichment and Fe, Al, V depletion during eclogitic metasomatism and (ii) garnet composition show strong variation from core to rim. These compositional patterns point to a massive, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with possible contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 15 km deeper than the maximum depth reached by these eclogites, could have provided significant amounts of fluid promoting extensive fluid

  10. Volatile-rich partial melts at the oceanic lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Hirschmann, M. M.; Ardia, P.

    2011-12-01

    New seismic observations reinforce interpretations that the seismic low velocity zone beneath oceans, and particularly directly below the lithosphere-asthenosphere boundary, contain small amounts of melt. Experimental and theoretical studies agree that volatile-rich partial melt can be stable in the LVZ, but disagree sharply as to the volatile component- H2O vs. CO2 - chiefly responsible. Hirschmann et al. (2009) argued that hydrous partial melting does not occur in the LVZ for mantle with typical suboceanic H2O concentrations, but Green et al. (2010) argued on the basis of experiments with hydrous peridotite that the mantle in the LVZ with modest (>180 ppm) H2O can be in equilibrium with H2O-saturated partial melts having ~30 wt.% H2O. These observations conflict with experimentally-determined partition coefficients which suggest that near-solidus partial melts of nominally anhydrous peridotite with 200 ppm H2O can have no more than 5 wt% H2O, too little to stabilize hydrous melt along the mantle geotherm. New H2O storage capacity experiments determined for olivine equilibrated with peridotite and hydrous melt at 1400-1500 °C and 5-8 GPa confirm the validity of the Hirschmann et al. (2009) predictions. Consequently, we argue that H2O is not sufficient to stabilize partial melt in the LVZ. However, CO2 and/or CO2 in combination with H2O unavoidably stabilizes small amounts of carbonatite or hydrous carbonated melt at LVZ conditions. The strongest observational evidence for melting in the LVZ is at its shallowest portions, where the so-called G discontinuity indicates a sharp boundary between the LVZ and the overlying lithospheric lid. Recent studies by Kumar and Kawakatsu (2011) and Rychert and Shearer (2011) indicate that the boundary becomes deeper with plate age, consistent with the hypothesis that the boundary represents a volatile-present solidus and inconsistent with chemical boundary layer hypotheses. The seismic observations suggest that the boundary

  11. Lateral Temperature Variations in Upwelling Limbs of the Asthenosphere and its Implications for Thermal Models of the Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Hamza, V. M.; Cardoso, R. R.

    2008-05-01

    Thermal models of the lithosphere proposed to date (the Half-Space Cooling and Plate models) have failed to provide satisfactory accounts of some of the important features in large-scale variations of oceanic heat flow. The systematic difference between model values and observational data have given rise to the so-called "oceanic heat flow paradox", for which no satisfactory solution has been found for over the last forty years. In the present work, we point out that this paradox is a consequence of the model assumption that lateral temperature variations are absent in the sublithospheric mantle. We propose a new thermal model of the oceanic lithosphere that can overcome such inconsistencies. Designated CMI, the new model assumes existence of lateral temperature variations in up-welling limbs of the asthenosphere, similar in character to those commonly observed in tectonothermal processes in the upper crust and in laboratory experiments of thermal plumes. CMI model simulations indicate that the thickness of the young lithosphere increases with distance from the ridge axis, at rates faster than those predicted by Half-Space Cooling and Plate models. As a result, the width of magma injection zone at mid-ocean ridges is relatively narrower in CMI model. Another noteworthy feature of the new model is its ability to provide vastly improved fits for observational heat flow data, in both young (ages less than 55 ma) and old (ages greater than 55 ma) oceanic lithosphere. More importantly, the improved fits to heat flow have been achieved without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation in stable ocean crust. Also, use of CMI model does not lead to artificial discontinuities in the temperature field of the lithosphere, as is the case with GDH reference models. The results of the CMI model provide a better understanding of the global heat flow variations and estimates of global heat loss. In particular, the model is capable of

  12. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.

    PubMed

    Yogodzinski, G M; Lees, J M; Churikova, T G; Dorendorf, F; Wöerner, G; Volynets, O N

    2001-01-25

    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed 'adakites, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments. PMID:11206543

  13. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.

    PubMed

    Yogodzinski, G M; Lees, J M; Churikova, T G; Dorendorf, F; Wöerner, G; Volynets, O N

    2001-01-25

    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed 'adakites, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

  14. Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Kanamori, Hiroo; Stock, Joann; Cormier, Marie-Helene; Legg, Mark

    2014-03-01

    Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent-ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific-North America Plate boundary motion today is concentrated on continental fault systems well to the east, and this region of oceanic crust is generally thought to be within the rigid Pacific Plate. Yet, the 2012 December 14 Mw 6.3 earthquake that occurred about 275 km west of Ensenada, Baja California, Mexico, is evidence for continued tectonism in this oceanic part of the Pacific Plate. The preferred main shock centroid depth of 20 km was located close to the bottom of the seismogenic thickness of the young oceanic lithosphere. The focal mechanism, derived from both teleseismic P-wave inversion and W-phase analysis of the main shock waveforms, and the 12 aftershocks of M ˜3-4 are consistent with normal faulting on northeast striking nodal planes, which align with surface mapped extensional tectonic trends such as volcanic features in the region. Previous Global Positioning System (GPS) measurements on offshore islands in the California Continental Borderland had detected some distributed Pacific and North America relative plate motion strain that could extend into the epicentral region. The release of this lithospheric strain along existing zones of weakness is a more likely cause of this seismicity than current thermal contraction of the oceanic lithosphere or volcanism. The main shock caused weak to moderate ground shaking in the coastal zones of southern California, USA, and Baja California, Mexico, but the tsunami was negligible.

  15. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region

  16. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  17. Multi-scale Seismic Waveform Tomography and the Evolution of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Auer, L.; Boschi, L.; Becker, T. W.; van Driel, M.; Stähler, S. C.; Nissen-Meyer, T.; Sigloch, K.

    2014-12-01

    The advent of high-resolution seismometer array deployments such as USArray, IberArray or the upcoming AlpArray pave the way for significantly enhanced tomographic resolution across their tectonically complex target areas. The optimal interpretation of these datasets requires a new generation of multiple-resolution tomographic imaging approaches. Our recent anisotropic S-wave tomography model SAVANI is adaptive and multi-scale in the sense that it relies on a data-driven adaptive parameterization scheme, which automatically adjusts grid size to local ray sampling density, where demanded by the data. Such automatic rescaling of the parameterization grid provides an efficient means to stepwise improve upon a global background model by updating the tomographic system whenever new observations become available. Since our method employs phase and dispersion measurements from the complete time- and frequency range of the seismic record, it is akin to other types of waveform inversion and sensitive across the entire depth extent of the mantle. We present our current work towards an update of the purely ray-theoretical first version of SAVANI, which involves the reinterpretation of the regional portion of our global dataset using more accurate full-waveform based sensitivity functions that should facilitate an adequate extraction of high-resolution regional structure in areas where data coverage permits it. Adaptive-resolution tomography models, as developed with our algorithm, honour the multi-scale nature of mantle convection, and have various advantages over purely global models when applied in the study of global and regional geodynamics. We focus here on upper mantle dynamics and the evolution of the oceanic lithosphere. Importantly, we find a distinct decorrelation between anisotropy patterns as observed in our tomography and conceptual half-space cooling models or dynamic predictions of anisotropic texture, respectively. This observation implies that sub-oceanic

  18. Metasomatic Enrichment of the Lithosphere and its Potential Implications for the Formation of Oceanic and Continental Alkaline Magmas

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Baker, M. B.; Stolper, E. M.; Muntener, O.

    2009-04-01

    The generation of oceanic and continental intra-plate magmas implied that the source of these magmas was enriched regarding the primitive mantle [1]. However, the nature and origin of the mantle components that melt below oceanic islands are still in debate. A hypothesis proposed that the enriched components which melt below oceanic islands correspond to recycled oceanic crust [2]. Alternatives suggest that these components could correspond to metasomatized continental or oceanic lithosphere [3-5]. However, if these two hypotheses are frequently presented as mutually exclusive, we suggest that theses hypotheses could be complementary. The fact that oceanic crust produces silica-saturated partial melts seems in agrement with the implication of this material in the generation of tholeiitic (i.e., hy- and qtz- normative) magmas from large oceanic islands and continental lava flows as proposed by [6]; however this fact makes it difficult to envision oceanic crust as a major component in the generation of alkaline (i.e., ne-normative) magmas. Experiments on metasomatic veins (hornblendites) and their dehydrated equivalents demonstrate that high-degree melting of these veins followed by variable amounts of interaction of the liquid with surrounding mantle can reproduce key features of the major- and trace-element compositions of alkaline magmas [7]. We suggest two scenarios for the production of alkaline magmas by melting metasomatized lithosphere: (i) the metasomatized lithosphere experiences a thermal perturbation or decompression and thereby melts in situ; or (ii) the metasomatized lithosphere is recycled into the convecting mantle by subduction or delamination and melts during later upwelling (e.g., in a plume). In continental alkaline magmas, the presence of amphibole xenocrysts compositionally similar to amphibole in metasomatic veins is consistent with the "in situ" hypothesis. While such veins may play a role in alkaline magmas for some oceanic islands and

  19. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    altered oceanic crust and lithosphere in the plume source. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Day et al., Geology 2009 [5] Huang et al., GCA 2014

  20. Nature of the seismic lithosphere-asthenosphere boundary within normal oceanic mantle from high-resolution receiver functions

    NASA Astrophysics Data System (ADS)

    Olugboji, Tolulope Morayo; Park, Jeffrey; Karato, Shun-ichiro; Shinohara, Masanao

    2016-04-01

    Receiver function observations in the oceanic upper mantle can test causal mechanisms for the depth, sharpness, and age dependence of the seismic wave speed decrease thought to mark the lithosphere-asthenosphere boundary (LAB). We use a combination of frequency-dependent harmonic decomposition of receiver functions and synthetic forward modeling to provide new seismological constraints on this "seismic LAB" from 17 ocean-bottom stations and 2 borehole stations in the Philippine Sea and northwest Pacific Ocean. Underneath young oceanic crust, the seismic LAB depth follows the ˜1300 K isotherm but a lower isotherm (˜1000 K) is suggested in the Daito ridge, the Izu-Bonin-Mariana trench, and the northern Shikoku basin. Underneath old oceanic crust, the seismic LAB lies at a constant depth ˜70 km. The age dependence of the seismic LAB depth is consistent with either a transition to partial-melt conditions or a subsolidus rheological change as the causative factor. The age dependence of interface sharpness provides critical information to distinguish these two models. Underneath young oceanic crust, the velocity gradient is gradational, while for old oceanic crust, a sharper velocity gradient is suggested by the receiver functions. This behavior is consistent with the prediction of the subsolidus model invoking anelastic relaxation mediated by temperature and water content, but is not readily explained by a partial-melt model. The Ps conversions display negligible two-lobed or four-lobed back azimuth dependence in harmonic stacks, suggesting that a sharp change in azimuthal anisotropy with depth is not responsible for them. We conclude that these ocean-bottom observations indicate a subsolidus elastically accommodated grain-boundary sliding (EAGBS) model for the seismic LAB. Because EAGBS does not facilitate long-term ductile deformation, the seismic LAB may not coincide with the conventional transition from lithosphere to asthenosphere corresponding to a change in

  1. Seismic structure of the crust and lithospheric mantle of the southern African cratonic region

    NASA Astrophysics Data System (ADS)

    Youssof, M.; Thybo, H.; Artemieva, I. M.; Levander, A.

    2013-12-01

    We present a new seismic model for the structure of the crust and lithospheric mantle in southern Africa constrained by a joint study of seismic receiver functions and finite-frequency tomography, using the high-quality data from the South Africa Seismic Experiment (SASE). A) The crust has a highly heterogeneous structure with short wavelength variations in (i) thickness, (ii) composition (reflected in Vp/Vs-ratio calculated for all SASE stations), and (iii) Moho sharpness (which is quantified and mapped for the entire region) (Youssof et al., Tectonophysics, in review). By mapping these three parameters, we distinguish ~20 crustal blocks that do not everywhere coincide with surface tectonic features. Our RFs also demonstrate strong azimuthal anisotropy in the crust, with a typical crustal contribution to the total S-wave splitting of at least 30%. Spatial correlation of the S-wave polarization directions of crustal and mantle anisotropy indicates (i) the presence of three distinct Archean lithospheric terranes and (ii) coupling between the crust and lithospheric mantle in most of the study area, with a strong decoupling in western Kaapvaal where the crustal anisotropy is strongest. The similarity of anisotropy directions in the crust and mantle beneath much of the Kaapvaal craton indicates that (a) the seismic anisotropy originates at the time of cratonization and (b) the observed correspondence between the present direction of absolute plate motion (APM) and lithosphere anisotropy is coincidental. B) A new 3D high-resolution seismic model of the lithospheric mantle has been determined from finite frequency tomographic inversions of teleseismic P- and S- body wave data. The two velocity models are very similar in structure, but differ in the relative P- and S-wave velocity anomalies. We find that: 1) the fast lithospheric keels extends very deep, perhaps to depths of 300-350 km and 250 km beneath the Kaapvaal and Zimbabwe cratons, respectively, and 2) the Archean

  2. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift

    NASA Astrophysics Data System (ADS)

    Bedini, R. M.; Bodinier, J.-L.; Dautria, J.-M.; Morten, L.

    1997-12-01

    Spinel-peridotite xenoliths from Mega (East African Rift, Sidamo region, SE Ethiopia) show variable degrees of recrystallization coupled with trace-element variations. The less recrystallized samples (deformed xenoliths) consist of apatite-bearing porphyroclastic peridotites. They are strongly enriched in LILE (Ba, Th, U, Sr and LREE), with negative anomalies of the HFSE (Nb, Ta, Zr, Hf and Ti). The most recrystallized samples (granular xenoliths) consist of apatite-free peridotites with coarse-grained, granular textures. These samples are depleted or only slightly enriched in LILE and display no significant HFSE anomaly. We suggest that the inverse relationship between recrystallization and trace-element enrichment results from km-scale variation in volume and composition of melts pervasively infiltrated in the lithosphere. The deformed xenoliths record interaction with LILE-enriched small melt fractions, at low melt/rock ratio, while the granular xenoliths were extensively re-equilibrated with a higher fraction of basaltic melt, at higher melt/rock ratio. With a numerical simulation of reactive porous flow at the transition between adiabatic and conductive geotherms in the mantle, it is shown that these two processes were possibly coeval and associated with thermo-mechanical erosion of the lower lithosphere above a mantle plume.

  3. Lithospheric mantle heterogeneity across the continental-oceanic transition, northwest Ross Sea, Antarctica: new evidence from oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Panter, K. S.; Castillo, P.; Deering, C. D.; Kitajima, K.; Valley, J. W.; Hart, S. R.; Kyle, P. R.

    2013-12-01

    Oxygen isotopes and whole rock chemistry from alkali basalt and basanite in the northwest Ross Sea, Antarctica offer new insight on source heterogeneity across the transition from continental to oceanic lithosphere in a magma-poor rifted margin. In situ SIMS analysis of olivine (Fo 79-90) from the most primitive lavas (MgO ≥ 8 wt%, Mg# 53-70, Ni= 115-338 ppm, Cr= 244-540 ppm) yield an average δ18O = 5.18 × 0.60 ‰ (2σ, n=30) for alkali basalt and 5.25 × 0.44 ‰ (2σ, n=52) for basanite (× 0.28 ‰, 2σ precision on a homogeneous olivine standard). These are similar to the range for olivine from mantle peridotite and HIMU type oceanic basalts (δ18O= 5.0 to 5.4 ‰ and 4.9 to 5.2 ‰, respectively [1]), but with greater variability. Lavas in this region experienced little differentiation, have minimal evidence of crustal contamination (87Sr/86Sr < 0.7030, 143Nd/144Nd > 0.5129), and olivine show no correlation between δ18O and Fo content, further suggesting that the δ18O values are source related. Whole-rock chemistry of alkali basalt and basanite are spatially distributed. In general, alkali basalt is found in thicker continental lithosphere with lower Sr (477-672ppm) and Nb/Y (1.2-2.4) than basanite. Basanite is found in oceanic and thinned continental lithosphere with higher Sr (642-1131 ppm) and Nb/Y (2.4-3.6). Variation in degree of silica-undersaturation and Nb/Y can be explained by varying degree of partial melting. While alkali basalt and basanite can result from varying degrees of partial melting of similar source compositions, the presence of amphibole in mantle xenoliths have lead workers in this region to propose contributions from a metasomatic source [2, 3, 4] with variable 206Pb/204Pb ratios [5]. A negative correlation between Nb/Y and δ18O in both rock types suggests that varying degrees of partial melting are tapping sources with different δ18O values; lower degree melts have δ18O ≤ 5.0 ‰ and higher degree melts have δ18O > 5.3

  4. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere.

    PubMed

    Bonatti, Enrico; Ligi, Marco; Brunelli, Daniele; Cipriani, Anna; Fabretti, Paola; Ferrante, Valentina; Gasperini, Luca; Ottolini, Luisa

    2003-05-29

    A 20-Myr record of creation of oceanic lithosphere is exposed along a segment of the central Mid-Atlantic Ridge on an uplifted sliver of lithosphere. The degree of melting of the mantle that is upwelling below the ridge, estimated from the chemistry of the exposed mantle rocks, as well as crustal thickness inferred from gravity measurements, show oscillations of approximately 3-4 Myr superimposed on a longer-term steady increase with time. The time lag between oscillations of mantle melting and crustal thickness indicates that the mantle is upwelling at an average rate of approximately 25 mm x yr(-1), but this appears to vary through time. Slow-spreading lithosphere seems to form through dynamic pulses of mantle upwelling and melting, leading not only to along-axis segmentation but also to across-axis structural variability. Also, the central Mid-Atlantic Ridge appears to have become steadily hotter over the past 20 Myr, possibly owing to north-south mantle flow.

  5. Lithosphere and Asthenosphere Properties beneath Oceans and Continents and their Relationship with Domains of Partial Melt Stability in the Mantle

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.

    2014-12-01

    The depth of the lithosphere-asthenosphere boundary (LAB) and the change in properties across the lithosphere, asthenosphere, and LAB in various tectonic settings are captured in a variety of geophysical data, including seismic velocities and electrical conductivity. A sharp drop in shear wave velocity and increase in electrical conductivity can potentially be caused by the appearance of partial melt at or below the LAB but the chemical and dynamic stability of partial melt across lithosphere and at LAB remain debated. Here I apply the recent models of mantle melting in the presence of water and carbon [1, 2] to evaluate the domains of stability of partial melt both beneath continents and oceans. The model allows prediction of the possible presence, the fraction, and composition of partial melt as a function of depth, bulk C and H2O content, and fO2 [3] in various geologic/tectonic settings. The results show that while a hydrous, carbonated melt is stable only beneath LAB and in the asthenospheric mantle beneath oceans, continental mantle can contain a carbonate-rich melt within the lithosphere. For geotherms corresponding to surface heat flux (SHF) of 40-50 mW m-2, which also match P-T estimates beneath cratons based on thermo-barometry of peridotite xenoliths [4], the solidus of fertile peridotite with trace amount of CO2 and H2O is crossed at depths as shallow as 80-120 km [5]. If elevated geotherms of the Proterozoic and Phanerozoic terrains are applied, carbonatitic melt becomes stable somewhat shallower. These depths are similar to those argued for a mid-lithospheric discontinuity (MLD) where a negative velocity gradient has been detected much shallower than the proposed depth of LAB in many places. With a drop in oxygen fugacity with depth, a freezing of carbonatitic melt may be expected at intermediate depths (~150-200 km). At 200-250 km a hydrous, carbonated silicate melt may reappear owing to the interplay of fO2 and freezing point depression effect of CO

  6. Tectonic Evolution of the Careón Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt.

    PubMed

    Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning

    1999-09-01

    Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.

  7. Tectonic Evolution of the Careón Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt.

    PubMed

    Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning

    1999-09-01

    Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin. PMID:10504137

  8. Support for a Uniformitarian Model of Continental Mantle Lithosphere Formation from the "Near-Cratonic" Composition of Proterozoic Southern African Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Janney, P. E.

    2014-12-01

    The transition at the end of the Archean between the generation of cratonic and mobile belt continental lithosphere is regarded as a first-order change in the mode of generation of continental lithosphere. It is widely debated whether this transition represented a fundamental change in the process by which the lithospheric mantle was generated (i.e., as melting residues of deep-seated mantle upwellings to residues of relatively shallow mantle melting at subduction zones), or whether it primarily reflected a more gradual change in the conditions (i.e., temperatures, depths and degrees of melting) of lithosphere generation in a suprasubduction zone setting. The marked contrast, in many cases, between the major element compositions of peridotite xenoliths from Archean cratons and those from adjacent post-Archean mobile belts has accentuated the significance of this transition. Peridotite xenoliths from the post-Archean mobile belt terranes surrounding the Kaapvaal craton in southern Africa are clearly Proterozoic in age from Re-Os isotope constraints, but they are unusual in that they share several key similarities in composition and mineralogy with Archean Kaapvaal peridotites (e.g., low bulk-rock Al2O3, relatively low modal olivine and high modal orthopyroxene). Although they lack the low FeO and high olivine Mg# values of the most extreme Kaapvaal samples, they show a very large degree of overlap (extending to olivine Mg# values of greater than 93 for example). These similarities support a common mode of origin for cratonic and post-cratonic lithosphere in southern Africa (although varying somewhat in the degrees and depths of melt extraction) and a similar history of post-formation modification. A comparison of the conditions of melt extraction for cratonic and post-cratonic lithosphere inferred from compatible and mildly incompatible trace elements will be presented.

  9. West Indian Ocean variability and East African fish catch.

    PubMed

    Jury, M; McClanahan, T; Maina, J

    2010-08-01

    We describe marine climate variability off the east coast of Africa in the context of fish catch statistics for Tanzania and Kenya. The time series exhibits quasi-decadal cycles over the period 1964-2007. Fish catch is up when sea surface temperature (SST) and atmospheric humidity are below normal in the tropical West Indian Ocean. This pattern relates to an ocean Rossby wave in one phase of its east-west oscillation. Coastal-scale analyses indicate that northward currents and uplift on the shelf edge enhance productivity of East African shelf waters. Some of the changes are regulated by the south equatorial current that swings northward from Madagascar. The weather is drier and a salty layer develops in high catch years. While the large-scale West Indian Ocean has some impact on East African fish catch, coastal dynamics play a more significant role. Climatic changes are reviewed using 200 years of past and projected data. The observed warming trend continues to increase such that predicted SST may reach 30 degrees C by 2100 while SW monsoon winds gradually increase, according to a coupled general circulation model simulation with a gradual doubling of CO(2). PMID:20471674

  10. Generation of tectonic over-pressure inside subducting oceanic lithosphere involving phase-loop of olivine-wadsleyite transition

    NASA Astrophysics Data System (ADS)

    So, Byung-Dal; Yuen, David A.

    2015-03-01

    We conducted a two-dimensional numerical model to analyze the generation of tectonic over-pressure, which is a positive deviation from lithostatic pressure, for deep slabs which are anchored at the 660 km phase boundary. The formation of the ductile shear zone under a compressional tectonic setting induces tectonic over-pressure. We first propose that an apparent shear zone originated from an elastic heterogeneity in the phase loop, which is the two-phase (i.e., olivine and wadsleyite) coexistence interval around the 410 km boundary within subducting oceanic lithospheres, can cause tectonic over-pressure with a range from 0.3 to 1.5 GPa. This over-pressure significantly impacts the formation of the olivine-wadsleyite phase transition. The flattening of the olivine-wadsleyite interface by over-pressure is well-resolved. Therefore, we argue that the over-pressure should be applied when analyzing the phase boundary within the subducting lithosphere. Our results provide a new insight on the interplay among the phase transition, shear zone formation and tectonic over-pressure.

  11. Sensing the Electrical Conductivity of the Upper Mantle and Lithosphere Using Satellite Magnetic Signal Due to Ocean Tidal Flow

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Kuvshinov, A. V.; Sabaka, T. J.; Olsen, N.

    2014-12-01

    A few scientific groups convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in magnetic satellite observations. These results support the idea to recover M2 magnetic signals from Swarm data, and to use these data for constraining lithosphere and upper mantle electrical conductivity in oceanic regions. Induction studies using ionospheric and magnetospheric primary sources with periods of about one day are sensitive to mantle conductivity at a few hundred kilometers depth because of the inductive coupling between primary and induced sources. In contrast, using oceanic tides as a signal allows studying shallower regions since the coupling is galvanic. This corresponds to global electric sounding. In this study we perform global 3-D EM numerical simulations in order to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of sensitivity analysis are discussed, and comparison of the modelled M2 signals with those recovered by Comprehensive Inversion from one year of Swarm data is presented.

  12. The chemical evolution of oceanic and continental lithosphere: Case studies in the US Cordillera

    NASA Astrophysics Data System (ADS)

    Jean, Marlon Mauricio

    Investigations into ophiolite from California demonstrated that these ultramafic rocks formed within the mantle wedge of a subduction zone. Fore-arc locales are dominated by highly refractory peridotite, formed by hydrous-fractional partial melting that began in the garnet stability field and ended in the spinel stability field. These ophiolites also displayed enriched fluid-mobile element concentrations. Based on melt models, these elements should have extremely low concentrations, yet all pyroxenes display enriched compositions. A new algorithm was derived to model this fluid enrichment process, which represents the total addition of material to the mantle wedge source region and can be applied to any refractory mantle peridotite that has been modified by melt extraction and/or metasomatism. Investigations into the interaction of a mantle plume with continental lithosphere demonstrated that Yellowstone-Snake River Plain olivine tholeiites are compatible with genesis from a deep-seated mantle plume and were modeled via mixing of three components. The variable age, thickness, and composition of North American lithosphere guide this process. Drill core near Twin Falls, ID was examined to assess (1) the chemical evolution of olivine tholeiite, (2) how basalt evolves in continental settings, and (3) the dominant fractionation process, e.g., fractional crystallization, Raleigh fractional crystallization, or assimilation fractional crystallization.

  13. Heat Flow and Magnetization in the Oceanic Lithosphere. Ph.D. ThesisSemiannual Report, Nov. 1987 - Apr. 1988

    NASA Technical Reports Server (NTRS)

    Hayling, Kjell Lennart

    1988-01-01

    Two aspects of the processing and interpretation of satellite measurements of the geomagnetic field are described. One deals with the extraction of the part of the geomagnetic field that originates from sources in the earth's atmosphere. The other investigates the possibility of using the thermal state of the oceanic lithosphere to further constrain modelling and interpretation of magnetic anomalies. It is shown that some of the magnetic signal in crustal anomaly maps can be an artifact of the mathematical algorithms that have been used to separate the crustal field from the observed data. Strong magnetic anomalies can be distorted but are probably real, but weak magnetic anomalies can arise from leakage of power from short wavelengths, and will also appear in anomaly maps as repetitions of the strong crustal anomaly. The distortion and the ghost anomalies follow the magnetic dip lines in a way that is similar to actual MAGSAT anomaly fields. This phenomenon will also affect the lower degree spherical harmonic terms in the power spectrum of the crustal field. A model of the magnetic properties of the oceanic crust that has been derived from direct measurements of the rock magnetic properties of oceanic rocks is presented. The average intensity of magnetization in the oceanic crust is not strong enough to explain magnetic anomalies observed over oceanic areas. This is the case for both near surface observations (ship and aeromagnetic data) and satellite altitude observations. It is shown that magnetic sources in the part of the upper mantle that is situated above the Curie isotherm, if sufficiently strong, can produce satellite magnetic anomalies that are comparable to MAGSAT data. The method developed for the study of depth to the Curie isotherm and magnetic anomalies can also be used in inverse modelling of satellite magnetic anomalies when the model is to be adjusted with an annihilator.

  14. Structure of the lithosphere of the northeastern part of the Indian Ocean according to results of two-dimensional structural-density modeling

    NASA Astrophysics Data System (ADS)

    Bulychev, A. A.; Gilod, D. A.; Dubinin, E. P.

    2016-05-01

    From a gravitational field analysis, the lithosphere was regionalized and a structural schematic map of the eastern part of the Indian Ocean was compiled. The area adjacent to the western margin of Australia was studied. The region is characterized by a complex lithospheric structure. It includes heterogeneous blocks of varying age, framed by structures with different morphological and geophysical expression and varying genesis. To clarify the peculiarities of tectonic structures of various genetic types, structural-density modeling was performed. This made it possible to establish certain gravimetric indicators characteristic of structures of various genesis.

  15. Roberts Victor Eclogites: The MacGregor Legacy of Archean Oceanic Lithosphere Subduction and its Role in Craton Formation

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Schmitz, M. D.; Wiechert, U.; Carlson, R. W.

    2005-12-01

    Eclogite xenoliths from the 125 Ma old, Group II, Roberts Victor kimberlite have long been of interest (MacGregor et al, 1968) because of their diversity, abundance, large size, occurrence with peridotite and their high carbon/diamond content. Coesite, corundum, kyanite, Ca-, Mg-, and Fe- rich eclogites are available but those classified as Group I, Group II (as defined by MacGregor, 1970) or diamondiferous were selected with the goal to better understand eclogite petrogenesis, Kaapvaal cratonic keel evolution, diamond formation, and eclogite metasomatism. Recent laser fluorination oxygen isotope data (δ18O) on gt (GI = 5.8 to 6.9; GII = 2.1 to 5.1) match earlier data (Garlick et al, 1971; MacGregor and Manton, 1986), while ion-probe trace element contents of gt (e.g. chondrite normalized Ce G1 = 0.2 to 0.5; GII = 0.002 to 0.07) and cpx (G1 = 7 to 20; GII = 0.2 to 2) and whole-rock Re-Os (G1 Re = 0.19 to 3.41 ppb; GII Re = 0.006 to 0.38 ppb) highlight even more distinct differences between Groups I and II. These differences must be a pre-metamorphic signature of their original protoliths and not just due to pressure differences or partial melting during emplacement. Using ophiolites and composites of oceanic crust as a guide (e.g. MacGregor and Manton, 1986), Group I eclogites could represent the volcanic rocks of Layer 2 of Archean oceanic crust whereas Group II might represent the cumulate, intrusive rocks of Layer 3. Group II eclogites have positive Eu anomalies and lower REE and Re contents which support this idea. The Re-Os systematics of the oceanic lithosphere is poorly known, especially in the Archean, but Roberts Victor eclogite Re-Os and trace element abundances and major element compositions suggest a basaltic komatiitic protolith as might typify slightly hotter ocean ridges in the Archean. A U-Pb age of 3.061±0.006 Ga on zircon grains separated from a Group I Roberts Victor eclogite and a same-age but scattered whole-rock Re-Os isotope array

  16. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore

  17. Inferences of Integrated Lithospheric Strength from Plate-Scale Analyses of Deformation Observed in the Aegean-Anatolian Region and the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory

    2016-04-01

    In the context of a comprehensive review of the rheology and strength of the lithosphere (Marine and Petroleum Geology, 2011, doi:10.1016/j.marpetgeo.2011.05.008), Evgene Burov described the difficulty of extrapolating rock deformation laws derived from laboratory experiments to the time and length scales that apply when the Earth's lithosphere is deformed. Not only does the extrapolation introduce a large uncertainty, but even the relative importance of different possible mechanisms of deformation may be uncertain. Even though lithospheric deformation has a strong conceptual and theoretical basis, it is therefore essential, as Burov argued, that deformation laws for the lithosphere must be calibrated by using observations of deformation that occurs on a lithospheric length scale and at geological strain rates. The influence of regionally varying factors like crustal thickness, geothermal gradient and tectonic environment may induce large variations in how rapidly the lithosphere may deform in response to an applied load, not least in the contrast from continent to ocean. Plates may be deformed by different loading mechanisms but, when deformation is distributed over a broad region, the strain-rate field may be approximately constant with depth and we may integrate the in-plane stress components across the thickness of the lithosphere to derive a depth-averaged constitutive law for the deformation. This approximation is the basis for the thin viscous sheet formulation of lithospheric deformation and, in combination with appropriate observations, it allows us to calibrate the integrated resistance to processes like regional extension or convergence. In this talk I will summarise what we learn about effective lithospheric rheology from two recent studies of the distribution and rates of diffuse deformation of the lithosphere in, firstly the Anatolian-Aegean region, and secondly the Central Indian Ocean. In the first case the distribution of deformation is consistent

  18. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.

    1996-05-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  19. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  20. A common Pan-African Lithospheric Mantle (PALM) source for HIMU-like Pb-isotope signatures in circum-Mediterranean magmas

    NASA Astrophysics Data System (ADS)

    Young, H. P.; Wang, Z.; Brandon, M. T.

    2013-12-01

    Isotopic compositions of widely distributed basaltic rocks of Europe and North Africa are clustered around a point that is displaced from modern MORB in 208Pb/204Pb vs. 206Pb/204Pb, pointing to the 'HIMU' component proposed by Zindler and Hart (1986). This observation was originally highlighted in an abstract by Cebria and Wilson (1995), who suggested that a reservoir of unknown origin exists in the convecting upper mantle of the Mediterranean and coin it the 'European asthenospheric reservoir' or EAR in order to distinguish it from the apparent influence of an additional 'lithospheric' component having a Sr-Nd isotope composition similar to continental crust that is observed in some, but not all, Cenozoic igneous rocks. While this study and most authors agree that the 'lithospheric' component in the model of Cebria and Wilson (1995) is crustal material associated with Cenozoic subduction, explanations for the origin of the HIMU-like EAR reservoir, however, are diverse, ranging from deep plumes to recently subducted slabs. These explanations are problematic. For example, neither plumes nor recent subduction are spatially broad enough to explain all of the EAR occurrences. Alternatively, we argue that both components (lithospheric and EAR) observed by Cebria and Wilson are lithospheric in origin. We propose that the origin of the HIMU-like Pb component is metasomatized sub-continental lithospheric mantle (SCLM). Comparison with synthetic evolution models of a veined mantle show the HIMU-like composition of European Cenozoic igneous rocks can be generated after ~500 Ma (Pilet et al., 2011). Major and trace element compositions of the European alkalic-basalts are similar to experimental melts of amphibole-pyroxenite veins in peridotite (a common feature of the SCLM) (Médard et al., 2006). A likely candidate for a veined 500 Ma SCLM in this region is the 'Pan-African' age terrane that is currently widely distributed from England to the Sahara as well as on the

  1. A scaling law for approximating porous hydrothermal convection by an equivalent thermal conductivity: theory and application to the cooling oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Schmeling, H.; Marquart, G.

    2014-05-01

    In geodynamic models of mid-ocean ridges hydrothermal cooling processes are important to control the temperature and thus the rheological behaviour of the crust. However, the characteristic time scale of hydrothermal convection is considerably shorter than that of viscous flow of mantle material or cooling of the oceanic lithosphere and can hardly be addressed in a conjoined model. To overcome this problem we present an approach to mimic hydrothermal cooling by an equivalent, increased thermal conductivity. First the temperature and pressure dependence of crack related porosity and permeability are derived based on composite theory. A characteristic pore closure depth as a function of pressure, temperature and pore aspect ratio is defined. 2-D porous convection models are used to derive scaling laws for parameterized convection including a Rayleigh-Nusselt number relation for a permeability exponentially decreasing with depth. These relations are used to derive an equivalent thermal conductivity to account for consistently evolving hydrothermal heat transport in thermally evolving systems. We test our approach using a 1-D model for cooling of the oceanic lithosphere. Within the context of our modelling parameters we found a pronounced effect for young lithosphere (younger than 10 Ma) down to about 20 km. Significant deviations of the heat flux versus age from the 1/√t law may occur due to hydrothermal convection. For the bathymetry versus age curves slopes steeper than 1/√t slopes already occur for very young lithosphere. Hydrothermal convection leads to an increase of the total heat flux and heat loss with respect to the classical purely conductive cooling model. Comparison of the total heat flow and its conductive contribution with observations confirm previous suggestions that for young lithosphere heat flow measurements represent only the conductive part, while at older ages the total heat flow is observed. Within their scatter and uncertainties heat flow

  2. Channelized Fluid Flow and Metasomatism in Subducted Oceanic Lithosphere recorded in an Eclogite-facies Shear Zone (Monviso Ophiolite, Italy)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Agard, P.; Pettke, T.

    2012-04-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone: ISZ), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and marbles were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation [Angiboust et al., Lithos, 2011]. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray Cr/Mg maps of garnet demonstrate that (i) these samples underwent significant B, Cr, Mg, Ni and Co enrichment and Fe, V and As depletion during eclogite-facies metamorphism (while Li and Pb behaved inconsistently) and (ii) garnet composition and chemistry of inclusions show extreme variation from core to rim. These compositional patterns point to a massive, pulse-like, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 10 km deeper than the maximum depth

  3. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija

    2015-04-01

    constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.

  4. Conserving mass and energy in cooling models of oceanic lithosphere requires upper mantle origins for trends in subsidence and heat flux and indicates global power of 30 TW

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A. M.; Hamza, V. N.

    2008-12-01

    One-dimensional conductive cooling models of ocean lithosphere fail to predict the lateral variation in oceanic heat flux and provide problematic calculations of subsidence, for reasons enumerated below. Our new model follows conservation laws and shows that bathymetric trends are tied to upper mantle temperature variations, given realistic values for thermal expansivity. Heat flux increases towards mid-ocean ridges due to (1) flux varying across upper mantle convection cells and (2) redistribution of mantle heat (Qmtl) by moving magma, and also by (3) hydrothermal circulation. Foremost, widespread, lateral, uptake of Qmtl as latent heat occurs during deep lithospheric melting but this energy is released near ridges through dike emplacement during seafloor spreading. Redistribution and energy conservation account for the local heat flux maximum near x=1200 km, heretofore unexplained. We show that the trend Qmtl(x) far from the ridge is consistent with behavior near the ridge and measured global power of <30 TW , which is compatible with quasi-steady-state conditions and an enstatite chondrite model for the Earth. Observables, such as the pattern of mid-ocean ridges on the globe, point to layered convection and lack of vigor, and gross characteristics of the Earth are supported by an enstatite chondrite model. Our analysis circumvents problems associated with 1-d conductive cooling models of the lithosphere: (1) Existing models replaced conservation of rock-mass with isostatic balance, which unwittingly created subsidence by converting lithosphere to ocean. (2) Half-space models incorrectly cancelled infinities. (3) Plate models omitted latent heat which is immense. (4) 1-d models only permit vertical contraction. These faulty constructs fitted seafloor depths through erroneous use of volumetric (αV=3αL) thermal expansivity coupled with great leeway in cross-multiplied parameters. The underlying premise that thermal aspects of lithosphere can be separately

  5. Interactions between Oceanic Saharan Air Layer and African Easterly Jet- African Easterly Waves System

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2013-12-01

    Aerosols have robust influences on multi-scale climatic systems and variability. Non-linear aerosol-cloud-climate interactions depend on many parameters such as aerosol features, regional atmospheric dynamics and variability. Although there are remarkable modeling studies indicating that aerosols induce robust modifications in cloud properties, circulations and the hydrological cycle, many of the physical and dynamical processes involving in these complex interactions between aerosols and Earth's system are still poorly understood. Better understanding the contribution of aerosols with atmospheric phenomena and their transient changes are crucial for efforts to evaluate climate predictions by next generation climate models. This study provides strong evidence of mechanistic relationships between perturbations of the oceanic Saharan air layer (OSAL) and anomalies of atmospheric circulations over the eastern tropical Atlantic/Africa. These relationships are characterized using an ensemble of daily datasets including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the Moderate Resolution Imaging Spectro-radiometer (MODIS), and the Sea-viewing Wide Field-of-View Sensor (SeaWIFS) for the boreal summer season. The study is motivated by previous results suggesting that oceanic dust-induced large-scale to meso-scale climatic adjustments. Our hypothesis is that perturbations in OSAL significantly interact with regional climate variability through African Easterly Jet- African Easterly Waves (AEJ-AEW) system. Passive/ active phases of AEWs in the northern and southern-track wave packets are associated with dipole patterns of thermal/dynamical anomalies correlated with perturbations of aerosol optical depth (AOD) in OSAL. Enhanced (suppressed) dust AOD in OSAL are significantly correlated with convective re-circulation within subsidence region of Hadley cell as well as robust mid-level dipole vorticity disturbances downstream of the AEJ core

  6. Magmatic activity at Islas Marias Archipelago, Gulf of California: Oceanic lithosphere with gabbroic sills versus Jurassic-Cretaceous arc components.

    NASA Astrophysics Data System (ADS)

    Schaaf, P. E. G.; Solis-Pichardo, G.; Hernandez-Trevino, T.; Villanueva, D.; Arrieta, G. F.; Rochin, H.; Rodriguez, L. F.; Bohnel, H.; Weber, B.

    2015-12-01

    Islas Marias Archipelago consists of four islands located in the mouth of the Gulf of California. Lithologically three of them (Maria Madre, San Juanito, and Maria Cleofas) are quite similar with a 165-170 Ma metamorphic basement, 75-85 Ma intrusive and extrusive rocks, and a sedimentary sandstone cover, which according to its foraminiferous content recorded multiple uplift and subsidence events related to the opening of the Gulf. However, these units are absent on Maria Magdalena island which is positioned between the other islands. Here, instead, oceanic lithosphere with pillow lavas and gabbroic sills, intercalated with sandstones form the dominant outcrops. Their geochemical and isotopic characteristics are similar to N-MORB with epsilon Nd values around +10 and 87Sr/86Sr of 0.70290. The gabbros are not older than 22 Ma. Magdalena island was obviously uplifted separately from the other islands of the archipelago, probably along a now hidden transform fault system along the East Pacific Rise. Metamorphic and igneous rocks of the other islands can be correlated to lithologically similar units in the Los Cabos Block, Baja California, or to the continental margin units in Sinaloa, Nayarit and Jalisco states when looking at their geochemical and geochronological signatures. Paleomagnetic studies on 35 sampling sites from all 4 islands give evidence for relatively small scale tectonic movements.

  7. Oceanic provenance of lithospheric mantle beneath Lower Silesia (SW Poland) and the two kinds of its "Fe-metasomatism"

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Kukuła, Anna; Ćwiek, Mateusz

    2016-04-01

    Lusatia is surrounded to the West and South West by Al-richer domains (the first Al-rich orthopyroxene occurrences in mantle xenoliths are located in the Rhön Mts. to the West and in Upper Palatinate to the South-West. The low Al content in orthopyroxene, corresponding to that typical for the Lower Silesian European mantle domain, is characteristic for (1) oceanic mantle formed in the mid ocean ridges (MOR) and (2) mantle wedge affected by extreme melting in the supra-subduction zones (SSZ). The SSZ harzburgites contain usually orthopyroxene which is more Al-poor (< 2.0 wt. % Al2O3) than that of the MOR ones (2.0 - 6. 0 wt. % Al2O3; Bonatti & Michael 1989, EPSL 91, 297-311). Thus, we infer that the Lower Silesian SCLM originated rather in the MOR setting. The Lower Silesian B harzburgites were formed by reactive basaltic melt percolation, which lowered the forsterite content in olivine and Mg# in orthopyroxene ("Fe metasomatism"). The B1 harzburgites contain orthopyroxene which is Al poor (see above) irrespectively of forsterite content of coexisting olivine. Thus, the medium which led to the "Fe-metasomatism" must have been also Al-poor. This criterion is met by tholeiitic basaltic melts which originate by multiple polybaric mantle melting in MOR environment. Their percolation in oceanic mantle leads to production of low-Al orthopyroxene (e. g in the peridotites from East Pacific Rise, Dick & Natland 1996 Proc ODP Sci Res, 147, 103-234). Therefore, we suggest that the B1 harzburgites originated by "Fe-metasomatism" also in the MOR setting. The coexistence of A and B1 harzburgites suggests that they represent lithospheric mantle generated in the magma-rich, thus rather fast-spreading, MOR. Textural relationships show that the Al-enriched B2 harzburgites were also affected by "Fe metasomatism", but by alkaline basaltic melt percolating in SCLM during Cenozoic rifting. The crust overlying western part of the Lower Silesian domain of European SCLM belongs to the easternmost

  8. The role of mantle plumes in the evolution of the African segment of Pangea and the formation of the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Peyve, A. A.

    2015-09-01

    In this paper, we discuss a broad range of issues related to the formation of large igneous provinces in the African segment of Pangea on the basis of modern seismic tomography data. The formation of older igneous provinces (Central American and Karoo) is attributed to a prolonged phase of upwelling of hot mantle material or fluids in separate jets within a much larger area than the supposed plume head. Owing to its huge size and the thick, dense continental crust, Pangea acted as a shield promoting the accumulation and lateral channeling of heat energy beneath the lithosphere. The changes in global Earth dynamics and the generation of extensional stresses alone may have led to the breakup of Pangea, triggering the eruption of large volumes of magma over short period of time. The same factors led to the opening of the Atlantic Ocean. We provide arguments that the African superplume represents a Cenozoic structure not associated with the emplacement of the Karoo province. At the same time, the hot material brought under the lithosphere by this superplume synchronously with the start of magmatism in east Africa then spread out to the northwest to form local melting areas in Central and Northwestern Africa. We suggest that magmatic activity within the same region may have lasted, with interruptions, over tens of millions of years. Because of plate motion, these lowvelocity zones acting as heat sources appear to have lost their deep-seated roots, so that mantle reservoirs surviving at the base of the lithosphere may have fed magmatism and drifted together with the lithosphere.

  9. Obduction of old oceanic lithosphere due to reheating and plate reorganization: Insights from numerical modelling and the NE Anatolia - Lesser Caucasus case example

    NASA Astrophysics Data System (ADS)

    Hässig, Marc; Duretz, Thibault; Rolland, Yann; Sosson, Marc

    2016-05-01

    The ophiolites of NE Anatolia and of the Lesser Caucasus (NALC) evidence an obduction over ∼200 km of oceanic lithosphere of Middle Jurassic age (c. 175-165 Ma) along an entire tectonic boundary (>1000 km) at around 90 Ma. The obduction process is characterized by four first order geological constraints: Ophiolites represent remnants of a single ophiolite nappe currently of only a few kilometres thick and 200 km long. The oceanic crust was old (∼80 Ma) at the time of its obduction. The presence of OIB-type magmatism emplaced up to 10 Ma prior to obduction preserved on top of the ophiolites is indicative of mantle upwelling processes (hotspot). The leading edge of the Taurides-Anatolides, represented by the South Armenian Block, did not experience pressures exceeding 0.8 GPa nor temperatures greater than ∼300 °C during underthrusting below the obducting oceanic lithosphere. An oceanic domain of a maximum 1000 km (from north to south) remained between Taurides-Anatolides and Pontides-Southern Eurasian Margin after the obduction. We employ two-dimensional thermo-mechanical numerical modelling in order to investigate obduction dynamics of a re-heated oceanic lithosphere. Our results suggest that thermal rejuvenation (i.e. reheating) of the oceanic domain, tectonic compression, and the structure of the passive margin are essential ingredients for enabling obduction. Afterwards, extension induced by far-field plate kinematics (subduction below Southern Eurasian Margin), facilitates the thinning of the ophiolite, the transport of the ophiolite on the continental domain, and the exhumation of continental basement through the ophiolite. The combined action of thermal rejuvenation and compression are ascribed to a major change in tectonic motions occurring at 110-90 Ma, which led to simultaneous obductions in the Oman (Arabia) and NALC regions.

  10. Nitrogen recycling in subducted oceanic lithosphere: The record in high- and ultrahigh-pressure metabasaltic rocks

    NASA Astrophysics Data System (ADS)

    Halama, Ralf; Bebout, Gray E.; John, Timm; Schenk, Volker

    2010-03-01

    This paper provides the first measurements of the nitrogen (N) concentrations and isotopic compositions of high- and ultrahigh-pressure mafic eclogites, aimed at characterizing the subduction input flux of N in deeply subducting altered oceanic crust (AOC). The samples that were studied are from the Raspas Complex (Ecuador), Lago di Cignana (Italy), the Zambezi Belt (Zambia) and Cabo Ortegal (Spain), together representing subduction to 50-90 km depths. The eclogites contain 2-20 ppm N with δ 15N air values ranging from -1 to +8‰. These values overlap those of altered oceanic crust, but are distinct from values for fresh MORB (for the latter, ˜1.1 ppm N and δ 15N air ˜ -4‰). Based on N data in combination with other trace element data, the eclogite suites can be subdivided into those that are indistinguishable from their likely protolith, AOC, with or without superimposed effects of devolatilization (Lago di Cignana, Cabo Ortegal), and those that have experienced metasomatic additions during subduction-zone metamorphism (Zambezi Belt, Raspas). For the former group, the lack of a detectable loss of N in the eclogites, compared to various altered MORB compositions, suggests the retention of N in deeply subducted oceanic crust. The metasomatic effects affecting the latter group can be best explained by mixing with a (meta)sedimentary component, resulting in correlated enrichments of N and other trace elements (in particular, Ba and Pb) thought to be mobilized during HP/UHP metamorphism. Serpentinized and high-pressure metamorphosed peridotites, associated with the eclogites at Raspas and Cabo Ortegal, contain 3-15 ppm N with δ 15N air values ranging from +3 to +6‰, significantly higher than the generally accepted values for the MORB mantle (δ 15N air ˜ -5‰). Based on their relatively high N contents and their homogeneous and positive δ 15N values, admixing of sedimentary N is also indicated for the serpentinized peridotites. One possible pathway for the

  11. Viscosity structure of the oceanic lithosphere inferred from the differential late Quaternary sea-level variations for the southern Cook Islands

    NASA Astrophysics Data System (ADS)

    Nakada, Masao

    1996-09-01

    that of the asthenosphere, which is possible for mature oceanic lithosphere, the observed differential crustal movement is explained for an internal-load model with density anomalies of less than 20 kg m-3. The volume of the internal load is at most twice the volume of the external load. A high-viscosity layer with an effective viscosity of 1024 Pa s and with a thickness of greater than 60 km is required beneath the top elastic layer with a thickness of 10-15 km. The thickness of thermal lithosphere estimated by the plate age of this region is approximately 80-90 km, regardless of the age-thickness relationship adopted. It is therefore suggested that the major part of the thermal lithosphere is composed of a viscoelastic layer with an effective viscosity of 1024 Pa s and with a relaxation time of 1 Myr.

  12. Carbonate dissolution and transport in aqueous fluids from subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Frezzotti, M.; Huizenga, J.; Selverstone, J.; Compagnoni, R.; Sharp, Z. D.

    2012-12-01

    Subduction zones modulate the long-term carbon cycle. However, the mechanisms for the transfer of carbon from the subducting slab and sediments into the overlying mantle wedge are not well understood. Decarbonation reactions, releasing molecular CO2, were thought to be the primary mechanism. Yet, thermodynamic models show that decarbonation occurs at much greater pressures and temperatures than those found in typical subduction zones (Connolly, 2005. Earth Planet. Sci. Lett. 236, 524-541; Poli, 2009. Earth Planet. Sci. Lett. 278, 350-360). Carbon should therefore be retained in the slab and transported to great depths in the mantle, rather than supply the arc volcanoes. Diamond-bearing fluid inclusions in garnet in oceanic metasedimentary graphite-free rocks from Lago di Cignana (western Alps, Italy) represent the first occurrence of diamond from a low-temperature subduction complex of clearly oceanic origin (T ≤600°C; P ≥3.2 GPa; Groppo et al., 2009. J. Metam. Geol. 27, 207-231). The presence of diamonds in and associated with fluid inclusions provides clear evidence of carbon transport by fluids at depths that are directly relevant to sub-arc slab-mantle fluid transfer during subduction (Frezzotti et al. 2011. Nature G,4, 703-706 ). At room temperature, the fluid inclusions contain liquid water, a vapor bubble, and multiple solid daughter crystals. Daughter crystals include ubiquitous Mg-calcite/calcite and rutile, less common diamond, quartz, paragonite, hydrous/hydrated carbonates, and minor sulfates. The aqueous liquid phase further contains ≥ 0.2 wt%, HCO3-, CO32-, and SO42- ions, along with Si(OH)4(aq) and deprotonated hydrous silica monomers (e.g., SiO(OH)3-(aq), and SiO2(OH)22-(aq)). Fluid inclusions do not contain any detectable molecular CO2 in the vapor phase. This constrains XCO2 in the fluid phase to be < 0.026 (Diamond and Akinfiev, 2003. Fluid phase Eq., 208, 265-290). Thermodynamic calculations demonstrate that in the case of the Lago di

  13. Metamorphosed oceanic lithosphere from the Chunky Gal Mountain complex, Blue Ridge province, North Carolina

    SciTech Connect

    Ranson, W.A.; Garihan, J.M. . Dept. of Geology)

    1993-03-01

    Closely associated dunite and layered troctolite, gabbro, and anorthosite from the Chunky Gal Mountain mafic-ultramafic complex suggest a related ocean floor origin for these lithologies, with regional emplacement by the pre-metamorphic Hayesville-Fries thrust of Taconic age. Anhydrous mineral assemblages of dunitic and troctolitic rocks were more resistant to granulite and upper amphibolite metamorphic episodes, retaining much of their original mineralogy. Dunite consists of fresh polycrystalline olivine with local development of anthophyllite, serpentine, and talc along fractures. Dunite adjacent to mafic amphibolites of the complex contains distinctive cm-scale bands or layers of recrystallized plagioclase( ) of uncertain affinity, possibly veins or rhythmic layers. Troctolitic rocks display reaction textures around fresh olivine and plagioclase. Orthopyroxene growing normal to olivine grain boundaries forms an inner corona, in turn surrounded by a complex symplectite of Cpx + Plag [+-] Grt [+-] Spl. Gabbroic rocks show nearly complete replacement of original mafic minerals. Orthopyroxene survives in a few gabbros but mostly has been replaced by emerald green alumino-magnesio-hornblende. Calcic plagioclase is abundant as subhedral crystals or as oval, polycrystalline clots and pink corundum constitutes an accessory phase. A possible reaction resulting in the observed aluminous assemblage is: Na-Plag + Opx + Di + Spl + fluid = Mg-Hbl + Crn + Ca-Plag. Anorthosites occur as layers 10--50 cm in width within layered troctolites and consist of beautifully recrystallized plagioclase with seriate texture and minor amounts of alumino-magnesio hornblende occurring as fine-grained clots. Contacts between anorthosite and troctolite display the same sort of symplectite formed as an outer corona around olivine in the troctolite.

  14. Lithospheric cooling and thickening as a basin forming mechanism

    NASA Astrophysics Data System (ADS)

    Holt, Peter J.; Allen, Mark B.; van Hunen, Jeroen; Bjørnseth, Hans Morten

    2010-12-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, and lithospheric stretching followed by cooling and thermal subsidence. Neither of these mechanisms works for a group of large basins, sometimes known as "intracontinental sags". In this paper we investigate cooling and thickening of initially thin lithosphere as a basin forming mechanism, by a combination of forward modelling and a backstripping study of two Palaeozoic North African basins: Ghadames and Al Kufrah. These are two of a family of basins, once unified, which lie over the largely accretionary crust of North Africa and Arabia. Such accretionary crust tends to be juvenile, consisting of amalgamated island arcs, accretionary prisms and melanges, and typically has near-normal crustal thicknesses but initially thin mantle lithosphere. Post-accretion subsidence is modelled using a plate cooling model similar to cooling models for oceanic lithosphere. The crustal composition and thickness used in the models are varied around average values of accretionary crust to represent likely heterogeneity. The model allows the lithosphere to thicken as it cools and calculates the resulting isostatic subsidence. Water-loaded tectonic subsidence curves from these forward models are compared to tectonic subsidence curves produced from backstripped wells from Al Kufrah and Ghadames Basins. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. The model produces sediment loaded basins of 2-7 km thickness for the various crustal assemblies over ~ 250 Myr. This shows that lithospheric cooling provides a viable method for producing large basins with prolonged subsidence, without the need for initial extension, provided the condition of initially thin mantle lithosphere is met.

  15. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor

    NASA Astrophysics Data System (ADS)

    Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D.

    2016-03-01

    We analyzed seismic ambient noise and teleseismic waveforms of nine broadband ocean bottom seismometers deployed at a 60 Ma seafloor in the southeastward of Tahiti island, the South Pacific, by the Tomographic Investigation by seafloor ARray Experiment for the Society hotspot project. We first obtained one-dimensional shear wave velocity model beneath the array from average phase velocities of Rayleigh waves at a broadband period range of 5-200 s. The obtained model shows a large velocity reduction at depths between 40 and 80 km, where the lithosphere-asthenosphere boundary might exist. We then estimated shear wave azimuthal anisotropy at depths of 20-100 km by measuring azimuthal dependence of phase velocities of Rayleigh waves. The obtained model shows peak-to-peak intensity of the azimuthal anisotropy of 2%-4% with the fastest azimuth of NW-SE direction both in the lithosphere and asthenosphere. This result suggests that the ancient flow frozen in the lithosphere is not perpendicular to the strike of the ancient mid-ocean ridge but is roughly parallel to the ancient plate motion at depths of 20-60 km. The fastest azimuths in the current asthenosphere are subparallel to current plate motion at depths of 60-100 km. Additional shear wave splitting analysis revealed possible perturbations of flow in the mantle by the hot spot activities and implied the presence of azimuthal anisotropy in the asthenosphere down to a depth of 190-210 km.

  16. Oceanic provenance of lithospheric mantle beneath Lower Silesia (SW Poland) and the two kinds of its "Fe-metasomatism"

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Kukuła, Anna; Ćwiek, Mateusz

    2016-04-01

    Lusatia is surrounded to the West and South West by Al-richer domains (the first Al-rich orthopyroxene occurrences in mantle xenoliths are located in the Rhön Mts. to the West and in Upper Palatinate to the South-West. The low Al content in orthopyroxene, corresponding to that typical for the Lower Silesian European mantle domain, is characteristic for (1) oceanic mantle formed in the mid ocean ridges (MOR) and (2) mantle wedge affected by extreme melting in the supra-subduction zones (SSZ). The SSZ harzburgites contain usually orthopyroxene which is more Al-poor (< 2.0 wt. % Al2O3) than that of the MOR ones (2.0 - 6. 0 wt. % Al2O3; Bonatti & Michael 1989, EPSL 91, 297-311). Thus, we infer that the Lower Silesian SCLM originated rather in the MOR setting. The Lower Silesian B harzburgites were formed by reactive basaltic melt percolation, which lowered the forsterite content in olivine and Mg# in orthopyroxene ("Fe metasomatism"). The B1 harzburgites contain orthopyroxene which is Al poor (see above) irrespectively of forsterite content of coexisting olivine. Thus, the medium which led to the "Fe-metasomatism" must have been also Al-poor. This criterion is met by tholeiitic basaltic melts which originate by multiple polybaric mantle melting in MOR environment. Their percolation in oceanic mantle leads to production of low-Al orthopyroxene (e. g in the peridotites from East Pacific Rise, Dick & Natland 1996 Proc ODP Sci Res, 147, 103-234). Therefore, we suggest that the B1 harzburgites originated by "Fe-metasomatism" also in the MOR setting. The coexistence of A and B1 harzburgites suggests that they represent lithospheric mantle generated in the magma-rich, thus rather fast-spreading, MOR. Textural relationships show that the Al-enriched B2 harzburgites were also affected by "Fe metasomatism", but by alkaline basaltic melt percolating in SCLM during Cenozoic rifting. The crust overlying western part of the Lower Silesian domain of European SCLM belongs to the easternmost

  17. Thick lithosphere, deep crustal earthquakes and no melt: a triple challenge to understanding extension in the western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Selway, K.; Nyblade, A. A.; Brazier, R. A.; Tahir, N. El; Durrheim, R. J.

    2016-02-01

    Geodynamic models predict that rifting of thick, ancient continental lithosphere should not occur unless it is weakened by heating and magmatic intrusion. Therefore, the processes occurring along sections of the western branch of the East African Rift, where ˜150 km thick, Palaeoproterozoic lithosphere is rifting with no surface expression of magmatism, are a significant challenge to understand. In an attempt to understand the apparently amagmatic extension we probed the regional uppermost mantle for signatures of thermal alteration using compressional (Vp) and shear (Vs) wave speeds derived from Pn and Sn tomography. Pervasive thermal alteration of the uppermost mantle and possibly the presence of melt can be inferred beneath the Rungwe volcanic centre, but no signatures on a similar scale were discerned beneath amagmatic portions of the western rift branch encompassing the southern half of the Lake Tanganyika rift and much of the Rukwa rift. In this region, Vp and Vs wave speeds indicate little, if any, heating of the uppermost mantle and no studies have reported dyking. Vp/Vs ratios are consistent with typical, melt-free, olivine-dominated upper mantle. Although our resolution limit precludes us from imaging potential localised magmatic intrusions with dimensions of tens of kilometres, the absence of surface volcanism, the amagmatic upper crustal rupture known to have occurred at disparate locations on the western branch, the presence of lower crustal seismicity and the low temperatures implied by the fast seismic wave speeds in the lower crust and uppermost mantle in this region suggests possible amagmatic extension. Most dynamic models predict that this should not happen. Indeed even with magmatic intrusion, rifting of continental lithosphere >100 km thick is considered improbable under conditions found on Earth. Yield strength envelopes confirm that currently modelled stresses are insufficient to produce the observed deformation along these portions of the

  18. Lithospheric processes

    SciTech Connect

    Baldridge, W.S.; Wohletz, K.; Fehler, M.C.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective was to improve understanding of the origin and evolution of the Earth`s lithosphere by studying selected processes, such as deformation and magmatic intrusion during crustal extension, formation and extraction of mantle melts, fluid transport of heat and mass, and surface processes that respond to deep-seated events. Additional objectives were to promote and develop innovative techniques and to support relevant educational endeavors. Seismic studies suggest that underplating of crust by mantle melts is an important crustal-growth mechanism, that low-angle faults can be seismogenic, and that shear deformation creates mantle anisotropy near plate boundaries. Results of geochemical work determined that magmas from oceanic intraplate islands are derived from a uniform depth in the upper mantle, whereas melts erupted at mid-ocean ridges are mixed from a range of depths. The authors have determined the extent and style of fluid infiltration and trace-element distribution in natural magmatic systems, and, finally, investigated {sup 21}Ne as a tool for dating of surficial materials.

  19. Arctic lithosphere - A review

    NASA Astrophysics Data System (ADS)

    Pease, V.; Drachev, S.; Stephenson, R.; Zhang, X.

    2014-07-01

    This article reviews the characteristics of Arctic lithosphere and the principal tectonic events which have shaped it. The current state-of-knowledge associated with the crust, crustal-scale discontinuities, and their ages, as well as knowledge of the lithosphere as a whole from geophysical data, permits the division of Arctic lithosphere into discrete domains. Arctic continental lithosphere is diverse in age, composition, and structure. It has been affected by at least two periods of thermal overprinting associated with large volumes of magmatism, once in the Permo-Triassic and again in the Aptian. In addition, it was attenuated as the result of at least five phases of rifting (in the late Devonian-early Carboniferous, Permo-Triassic, Jurassic, Early Cretaceous, and Late Cretaceous-Cenozoic). Older phases of consolidation are associated with continental lithosphere and occurred through a series of continent-continent collisions in the Paleozoic. Jurassic and Cretaceous extensional phases are related to the dismembering of Pangea and Eurasia, and were concentrated in the Norway-Greenland and Canadian-Alaskan Arctic regions. Large areas of submarine, hyperextended continental (?) lithosphere developed in parts of the Amerasia Basin. After continental breakup and the accretion of new oceanic lithosphere, the Eurasia and Canada basins were formed.

  20. The meteorology of the Western Indian Ocean, and the influence of the East African Highlands.

    PubMed

    Slingo, Julia; Spencer, Hilary; Hoskins, Brian; Berrisford, Paul; Black, Emily

    2005-01-15

    This paper reviews the meteorology of the Western Indian Ocean and uses a state-of-the-art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44-year re-analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter-annual variability are described, associated with El Nino and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re-analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea-surface temperatures.

  1. A Top to Bottom Lithospheric Study of Africa and Arabia

    SciTech Connect

    Pasyanos, M

    2006-10-31

    We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a wide period range. Including short period group velocities allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems. Crustal shear wave velocities are generally faster in oceanic regions and cratons, and slower in more recent crust and in active and formerly active orogenic regions. Deeper structure, related to the thickness of cratons and modern rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell has had a significantly different impact in the north and the south, indicating specifics of the feature (temperature, time of influence, etc.) to be dissimilar between the two regions. Factoring in other information, it is likely that the southern portion has been active in the past, but that shallow activity is currently limited to the northern portion of the superswell.

  2. A high resolution seismic reflection image for the oceanic LAB (Lithosphere-Asthenosphere Boundary), beneath southern North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Henrys, S. A.; Okaya, D. A.; Savage, M. K.; Sato, H.; Iwasaki, T.; Louie, J. N.; Lamb, S. H.

    2014-12-01

    We present the first high-resolution, multichannel, seismic-reflection image for the base of an oceanic plate. Our image is based on an 85 km-long, ~ 900 station deployment across the lower North Island of New Zealand. 12 x 500 kg dynamite shots were used as seismic sources. Strong reflections at a two way travel time of 9-12 s define the top of the plate that dips to the NW at ~ 12-15 degrees. Between 27-32 s we identify a pair of reflections on some shot gathers that are interpreted to come from a reflection 90-100 km deep, that dips to the NW at 15 degrees. We interpret the reflection pair as marking a Lithosphere-Asthenosphere Boundary (LAB) zone at the base of the Pacific plate. Using all 12 shots we made a CDP-stacked image (maximum fold = 15) that shows the LAB as a double event (2-3 s apart) dipping roughly parallel to the top of the plate and Benioff zone. Shot quality varies but the highest frequencies we record from the base of the plate are ~ 18 Hz, suggesting a boundary zone < 1 km thick. Seismic amplitude attributes, calibrated to the reflection from the top of the plate, indicate P-wave speed drops off at least 8% across the LAB boundary. The double reflection at the LAB is interpreted to be a 10 km-thick layer of low seismic wave speed. Because it is so sharp it cannot be a thermal boundary and must represent some form of mechanical change. Previous attempts to explain the abruptness of seismic wave speed changes at the LAB have appealed to layered zones of ponded melt, or anelastic relaxation due to water accumulating beneath the LAB. Both mechanisms may explain our observations and both would point to low viscosity below the LAB. However, the fact we see a ~ 10 km thick channel, with strong acoustic impedances each side of the channel, suggests a shear zone where plate motion ( ~ 9 cm/y in hotspot reference frame) is taken up and strain rates of ~3 x 10-13 s-1 are generated. This interpreted, low wave-speed, low-viscosity, shear zone appears to be

  3. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Torsvik, T. H.; Labails, C.; van Hinsbergen, D.; Werner, S.; Medvedev, S.

    2012-04-01

    Initially part of Gondwana and Pangea, and now surrounded almost entirely by spreading centres, the African plate moved relatively slowly for the last 200 million years. Yet both Africa's cratons and passive margins were affected by tectonic stresses developed at distant plate boundaries. Moreover, the African plate was partly underlain by hot mantle (at least for the last 300 Ma) - either a series of hotspots or a superswell, or both - that contributed to episodic volcanism, basin-swell topography, and consequent sediment deposition, erosion, and structural deformation. A systematic study of the African plate boundaries since the opening of surrounding oceanic basins is presently lacking. This is mainly because geophysical data are sparse and there are still controversies regarding the ages of oceanic crust. The publication of individual geophysical datasets and more recently, global Digital Map of Magnetic Anomalies (WDMAM, EMAG2) prompted us to systematically reconstruct the ages and extent of oceanic crust around Africa for the last 200 Ma. Location of Continent Ocean Boundary/Continent Ocean Transition and older oceanic crust (Jurassic and Cretaceous) are updates in the light of gravity, magnetic and seismic data and models of passive margin formation. Reconstructed NeoTethys oceanic crust is based on a new model of microcontinent and intr-oceanic subduction zone evolution in this area.The new set of oceanic palaeo-age grid models constitutes the basis for estimating the dynamics of oceanic crust through time and will be used as input for quantifying the paleo-ridge push and slab pull that contributed to the African plate palaeo-stresses and had the potential to influence the formation of sedimentary basins.

  4. SEASAT observations of lithospheric flexure

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.

    1984-01-01

    Models of lithospheric flexure were tested on SEASAT altimetric observations of the geoid over Outer Rises. These altimeter data were found to provide significant new information about the strength of the oceanic lithosphere. Among the significant results derived from altimeter data is confirmation of the proposition that the effective elastic thickness, T sub e, of the lithosphere increases with age in approximate accord with the relation T sub E approximately equals C times one half the age. SEASAT altimeter data over Outer Rises provide an important constraint on mechanical models of the oceanic lithosphere. These data are quite consistent with an experimentally predicted mechanical model of the lithosphere which indicates that this model may be useful in other geodynamic investigations.

  5. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, Benjamin; Löbl, Ulrike; Batte, Arthur; Link, Klemens; Kasereka, Celestine; Rümpker, Georg

    2014-05-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by a bimodal pattern of fast polarizations and an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  6. Seismic Anisotropy of the Lithosphere/Asthenosphere System Beneath the Rwenzori Region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A.; Link, K.; Kasereka, C.; Rumpker, G.

    2014-12-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  7. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean.

    PubMed

    Tierney, Jessica E; Smerdon, Jason E; Anchukaitis, Kevin J; Seager, Richard

    2013-01-17

    The recent decades-long decline in East African rainfall suggests that multidecadal variability is an important component of the climate of this vulnerable region. Prior work based on analysing the instrumental record implicates both Indian and Pacific ocean sea surface temperatures (SSTs) as possible drivers of East African multidecadal climate variability, but the short length of the instrumental record precludes a full elucidation of the underlying physical mechanisms. Here we show that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal. Our results, based on proxy indicators of relative moisture balance for the past millennium paired with long control simulations from coupled climate models, reveal that moist conditions in coastal East Africa are associated with cool SSTs (and related descending circulation) in the eastern Indian Ocean and ascending circulation over East Africa. The most prominent event identified in the proxy record--a coastal pluvial from 1680 to 1765--occurred when Indo-Pacific warm pool SSTs reached their minimum values of the past millennium. Taken together, the proxy and model evidence suggests that Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales.

  8. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean.

    PubMed

    Tierney, Jessica E; Smerdon, Jason E; Anchukaitis, Kevin J; Seager, Richard

    2013-01-17

    The recent decades-long decline in East African rainfall suggests that multidecadal variability is an important component of the climate of this vulnerable region. Prior work based on analysing the instrumental record implicates both Indian and Pacific ocean sea surface temperatures (SSTs) as possible drivers of East African multidecadal climate variability, but the short length of the instrumental record precludes a full elucidation of the underlying physical mechanisms. Here we show that on timescales beyond the decadal, the Indian Ocean drives East African rainfall variability by altering the local Walker circulation, whereas the influence of the Pacific Ocean is minimal. Our results, based on proxy indicators of relative moisture balance for the past millennium paired with long control simulations from coupled climate models, reveal that moist conditions in coastal East Africa are associated with cool SSTs (and related descending circulation) in the eastern Indian Ocean and ascending circulation over East Africa. The most prominent event identified in the proxy record--a coastal pluvial from 1680 to 1765--occurred when Indo-Pacific warm pool SSTs reached their minimum values of the past millennium. Taken together, the proxy and model evidence suggests that Indian Ocean SSTs are the primary influence on East African rainfall over multidecadal and perhaps longer timescales. PMID:23325220

  9. Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (southwest Puerto Rico): a preserved section of Proto-Caribbean oceanic lithospheric mantle?

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Jolly, Wayne T.; Lewis, John F.; Garrido, Carlos J.; Proenza, Joaquín. A.; Lidiak, Edward G.

    2010-05-01

    The Monte del Estado massif is the largest and northernmost serpentinized peridotite belt in southwest Puerto Rico. It is mainly composed of spinel lherzolite and minor harzburgite with variable clinopyroxene modal abundances. Mineral and whole rock major and trace element compositions of peridotites coincide with those of fertile abyssal peridotites from mid ocean ridges. Peridotites lost 2-14 wt% of relative MgO and variable amounts of CaO by serpentinization and seafloor weathering. HREE contents in whole rock indicate that the Monte del Estado peridotites are residues after low to moderate degrees (2-15%) of fractional partial melting in the spinel stability field. However, very low LREE/HREE and MREE/HREE in clinopyroxene cannot be explained by melting models of a spinel lherzolite source and support that the Monte del Estado peridotites experienced initial low fractional melting degrees (~ 4%) in the garnet stability field. The relative enrichment of LREE in whole rock is not due to secondary processes but probably reflects the capture of percolating melt fractions along grain boundaries or as microinclusions in minerals, or the presence of exotic micro-phases in the mineral assemblage. We propose that the Monte del Estado peridotite belt represents a section of ancient Proto-Caribbean (Atlantic) lithospheric mantle originated by seafloor spreading between North and South America in the Late Jurassic-Early Cretaceous. This portion of oceanic lithospheric mantle was subsequently trapped in the forearc region of the Greater Antilles paleo-island arc generated by the northward subduction of the Caribbean plate beneath the Proto-Caribbean ocean. Finally, the Monte del Estado peridotites belt was emplaced in the Early Cretaceous probably as result of the change in subduction polarity of the Greater Antilles paleo-island arc without having been significantly modified by subduction processes.

  10. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Zhang, Li-Yun; Kapp, Paul; Pullen, Alex; Yue, Ya-Hui

    2016-10-01

    The Gangdese belt is dominantly composed of igneous rocks that formed during the northward subduction of Neo-Tethyan oceanic lithosphere beneath the Lhasa terrane and has played a crucial role in understanding the pre-collisional evolution of southern Tibet. This paper presents new geochronological and geochemical (whole-rock major and trace element and Sr-Nd and zircon Hf isotope) data for recently identified volcanic rocks exposed in Changguo area, southernmost part of the Lhasa terrane. Zircon U-Pb dating from six samples yields consistent ages of 237.1 ± 1.1 Ma to 211.7 ± 1.5 Ma for magma emplacement through volcanic eruption, showing the Middle-Late Triassic magmatic activity in the southernmost Gangdese Belt. The Changguo volcanic rocks are mainly composed of basaltic and andesitic rocks and exhibit LILE enrichment and HFSE depletion. They also exhibit relatively uniform Nd-Hf isotopic compositions (εNd(t) = + 5.20 to + 7.74 and εHf(t)zircon = + 10.2 to + 15.9). The basaltic magmas were likely sourced from partial melting of sub-arc mantle wedge that was metasomatized by not only the aqueous fluid derived from subducting altered oceanic crust but also hydrous melt derived from subducting seafloor sediments, and subsequently experienced fractional crystallization and juvenile crustal contamination during ascent. The andesitic magmas were generated by partial melting of mafic-ultramafic metasomes through melt/fluid-peridotite reaction at slab-mantle interface. Taking into account the temporal and spatial distribution of the Early Mesozoic magmatic rocks and regional detrital zircon data, we further propose that the northward subduction of Neo-Tethyan oceanic lithosphere beneath the Lhasa terrane commenced by Middle Triassic.

  11. Small-wavelength geoid and topography anomalies in the South Atlantic Ocean: A clue to new hot-spot tracks and lithospheric deformation

    SciTech Connect

    Fleitout, L.; Dalloubeix, C.; Moriceau, C. )

    1989-07-01

    Numerous small-wavelength elongated features are visible both on filtered geoid maps on topography maps of the South Atlantic Ocean. A number of them are oriented along the directions of absolute plate motion between 80 Ma B.P. and 30 Ma B.P.: N50{degree}E for the African plate and N63{degree}W for the South American plate. Magmatic traces left over fixed convective plumes more numerous than the classical hot-spots best explain these observations. Other traces, especially in the area of the Sandwich subduction zone and on the African plate are oriented in a N50{degree}W direction and seem to indicate large-scale deformation of the oceanic plates.

  12. The relationship between the age of the lithosphere and the composition of oceanic magmas: Constraints on partial melting, mantle sources and the thermal structure of the plates

    NASA Astrophysics Data System (ADS)

    Haase, Karsten M.

    1996-10-01

    On the basis of different proportions and chemical compositions of shield and post-shield magmas, three types of oceanic intraplate volcanism appear to exist. The average SiO 2 contents of primitive melts of most Pacific and Atlantic intraplate lavas show a regular decrease with increasing age of the lithosphere up to 70 Ma. The average pressures of melting of most magmas lie beneath the thermal boundary layer defined by the 1300°C isotherm, in accordance with geophysical models. The average melting pressures of shield tholeiites erupting at the largest hotspots on Earth suggest that erosion of the plate is restricted to strong plumes. Increasing average ratios of (Ce/Yb) N(=chondrite-normalized) and (Tb/Yb) N with increasing age of the lithosphere imply that residual garnet has an increasing influence on the melting of most magmas. An influence of MORB material in intraplate magmas is observed in volcanoes erupting on lithosphere younger than 15 Ma. Correlations between SiO 2 and the rare earth element ratios suggest that the rare earth elements are more strongly influenced by the pressure of melting than by differences in source composition. Lavas with extremely low 143Nd/ 144Nd (e.g. Gough-Tristan da Cunha) have high (Nd/Sm) N for a given SiO 2, in accordance with a long-term enriched mantle source. After a correction for the fractionation occurring at high melting pressures (a recalculation of all averages to 50% SiO 2) the (Nd/Sm) N of most lavas can be modeled by 3-15% melting of depleted mantle sources.

  13. Lattice-Preferred orientations of olivine in subducting oceanic lithosphere derived from the observed seismic anisotropies in double seismic zones

    NASA Astrophysics Data System (ADS)

    Han, Peng; Wei, Dongping; Zhang, Keliang; Sun, Zhentian; Zhou, Xiaoya

    2016-08-01

    Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages, plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones (DSZs) in subduction zones are mainly divided into type I and type II which, respectively, correspond to the Mariana type and Chilean type in most cases. Seismic anisotropy is an important parameter characterizing the geophysical features of the lithosphere, including the subduction zones, and can be described by the two parameters of delay time δt and fast wave polarization direction ϕ. We totally collected 524 seismic anisotropy data records from 24 DSZs and analyzed the statistical correlations between seismic anisotropy and the related physical parameters of DSZs. Our statistical analysis demonstrated that the fast wave polarization directions are parallel to the trench strike with no more than 30° for most type I DSZs, while being nearly perpendicular to the trench strike for type II DSZs. We also calculated roughly linear correlations that the delay time δt increases with dip angles but decreases with subduction rates. A linear equation was summarized to describe the strong correlation between DSZ's subduction angle α DSZ and seismic anisotropy in subduction zones. These results suggest that the anisotropic structure of the subducting lithosphere can be described as a possible equivalent crystal similar to the olivine crystal with three mutually orthogonal polarization axes, of which the longest and the second axes are nearly along the trench-perpendicular and trench-parallel directions, respectively.

  14. The lithosphere

    SciTech Connect

    Not Available

    1983-01-01

    This document is the report of a week-long workshop on problems relating to the interpretations of the composition and dynamics of the lithosphere. A wide range of topics was discussed, dealing not only with the lithosphere itself, but also with possible interactions between the lithosphere and underlying mantle, down to and including the core-mantle boundary zone. Emphasis, very broadly, was on the physical and chemical properties of the lower crust and the subcrustal lithosphere: the physical and chemical characteristics of the prominent seismic discontinuities down to the core-mantle boundary; the nature and patterns of possible convection within the mantle and its relation to the generation, subduction, and intermixing of lithospheric and mantle material; the location and nature and evolution of reservoirs supplying magmas to the crust; and the various models that have been proposed to account for the location, nature, and geological history of these magma reservoirs. The general applicability of the plate tectonics model was assumed, but virtually every widely accepted explanation for the dynamics of that model and of possible unrelated phenomena such as deep-mantle plumes and hot spots was brought into question. 83 refs., 19 figs.

  15. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  16. Formation and evolution of a metasomatized lithospheric root at the motionless Antarctic plate: the case of East Island, Crozet Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles

    2016-04-01

    Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.

  17. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2016-04-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the thickness of lithospheric jumps and corresponding tectonic stress. We analysed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and reasonable assumptions about densities these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. They reveal a small asymmetry between the African and S-American crusts and lithospheres by a few kilometers. On both sides, the continental lithosphere is about 15 - 30km thicker than the oceanic lithosphere. To keep such geoid jumps stable over O(100Ma) fully dynamic models show that lithospheric viscosities must be of the order of 1e23 Pa s.

  18. The onshore-offshore ENCENS project: Imaging the stretching of the continental lithosphere and inception of oceanic spreading in the eastern Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Leroy, S.; Ebinger, C.; D'Acremont, E.; Stuart, G.; Al-Lazki, A.; Tiberi, C.; Autin, J.; Watremez, L.; Beslier, M.; Bellahsen, N.; Lucazeau, F.; Perrot, J.; Mouthereau, F.; Courrèges, E.; Huchon, P.; Rouzo, S.; Balahaf, S.; Sholan, J.; Unternehr, P.; Hello, Y.; Anglade, A.; Desprez, O.; Beguery, L.; Aouji, O.; Daniel, R.; Al Toubi, K.

    2006-12-01

    The eastern Gulf of Aden exemplifies several extensional processes that began 35 Ma ago from continental rifting to seafloor spreading at 2 cm/yr. Thin post-breakup sediment cover reveals the syn- and pre-rift basement fabric and the variable styles of conjugate margins along and across strike. A comprehensive multi- disciplinary study of the eastern part of the northern margin of the Gulf of Aden has been undertaken recently in the framework of the French margins program (GDR Marges) and the NERC with the long term objective to integrate in a consistent model of evolution, field observations where the margins crop out, results of marine geophysical survey where the margins are submerged and seismological observations of deep interior structure. A deep onshore-offshore seismic survey operated by IFREMER-GENAVIR was conducted between February, 3rd and March 14th 2006 off the Dhofar coast (southern Oman). We collect 67 multichannel seismic reflection profiles and 15 seismic refraction profiles acquired thanks to 60 stations. The shots have been recorded by 35 Ocean Bottom Seismometers (15 from IRD-Villefranche sur Mer and 20 from INSU Paris) and 25 seismological stations deployed onland in Southern Oman (18 stations from Encens-UK project funded by NERC and managed by RHUL ; 2 temporary and 4 permanent stations from Sultan Qaboos University ; 1 from ENS Paris). The network has been extended to the southern conjugate margin with 2 broadband stations deployed in Socotra island. The preliminary results show the evolution of the thickness of the crust from 35 km in the upper part of the margin to about 5 km in the ocean-continent transition. From our observations (low angle faults dipping toward the ocean or the continent imaged) we will propose rifting models responsible for the lithospheric stretching. The segmentation of the margins should be also precisely defined thanks to the multibeam bathymetry, the magnetism and the gravity acquired during the cruise.

  19. Metasomatism and Channelized Fluid Flow in Subducted Oceanic Lithosphere: the Record from an Eclogite-facies Shear Zone (Monviso Ophiolite, Italy)

    NASA Astrophysics Data System (ADS)

    Angiboust, S.; Pettke, T.; Agard, P.; Oncken, O.

    2012-12-01

    The Monviso ophiolite Lago Superiore Unit (LSU) constitutes a well-preserved, almost continuous fragment of upper oceanic lithosphere subducted down to ca. 80 km (between 50 and 40 Ma) and later exhumed along the subduction interface. The LSU is made of (i) a variably thick (50-500 m) section of eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body, and of (ii) a serpentinite sole (ca. 1000 m thick). This section is cut by two 10 to 100m thick eclogite-facies shear zones, found at the boundary between basalts and gabbros (Intermediate Shear Zone), and between gabbros and serpentinites (Lower Shear Zone: LSZ). Fragments of mylonitic basaltic eclogites and calcschists were dragged and dismembered within serpentinite schists along the LSZ during eclogite-facies deformation [Angiboust et al., Lithos, 2011]. Metasomatic rinds formed on these fragments at the contact with the surrounding antigorite schists during lawsonite-eclogite facies metamorphism, testifying to prominent fluid-rock interaction along with deformation. We present new petrological and geochemical data on four types of metasomatically altered eclogites (talc-, chlorite-, lawsonite- and phengite-bearing eclogites) and on a (serpentinite-derived) magnesite-bearing talc schist from the block rind. Bulk-rock compositions, in situ LA-ICP-MS analysis and X-ray Cr/Mg maps of garnet demonstrate that (i) these samples underwent significant Cr, Mg, Ni and Co enrichment and Fe, V (and to a lesser extent As) depletion during eclogitic metasomatism and (ii) garnet composition and chemistry of inclusions show extreme variation from core to rim. These compositional patterns point to a massive, pulse-like, fluid-mediated element transfer along with deformation, originating from the surrounding serpentinite (locally, with possible contributions from metasediments-equilibrated fluids). Antigorite breakdown, occurring ca. 15 km deeper than the maximum depth reached

  20. Lithospheric processes

    SciTech Connect

    Baldridge, W.

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  1. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.

    PubMed

    King, S D; Ritsema, J

    2000-11-10

    Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere. PMID:11073447

  2. Plate Kinematic model of the NW Indian Ocean and derived regional stress history of the East African Margin

    NASA Astrophysics Data System (ADS)

    Tuck-Martin, Amy; Adam, Jürgen; Eagles, Graeme

    2015-04-01

    normal to the plate divergence vector. Away from the active ridges, compressional horizontal stresses caused by ridge-push forces were transmitted through the subsiding oceanic lithosphere, with an SH max orientation parallel to plate divergence vectors. These changes are documented by the lower Bajocian continental breakup unconformity, which can be traced throughout East African basins. At 133 Ma, the plate boundary moved from north to south of Madagascar, incorporating it into the African plate and initiating its separation from Antarctica. The orientation of the plate divergence vector however did not change markedly. The second phase (89 - 61 Ma) led to the separation of India from Madagascar, initiating a new and dramatic change in stress orientation from N-S to ENE-WSW. This led to renewed tectonic activity in the sedimentary basins of western Madagascar. In the third phase (61 Ma to present) asymmetric spreading of the Carlsberg Ridge separated India from the Seychelles and the Mascarene Plateau via the southward propagation of the Carlsberg Ridge to form the Central Indian Ridge. The anti-clockwise rotation of the independent Seychelles microplate between chrons 28n (64.13 Ma) and 26n (58.38 Ma) and the opening of the short-lived Laxmi Basin (67 Ma to abandonment within chron 28n (64.13 - 63.10 Ma)) have been further constrained by the new plate kinematic model. Along the East African margin, SH max remained in a NE - SW orientation and the sedimentary basins experienced continued thick, deep water sediment deposition. Contemporaneously, in the sedimentary basins along East African passive margin, ridge-push related maximum horizontal stresses became progressively outweighed by local gravity-driven NE-SW maximum horizontal stresses trending parallel to the margin. These stress regimes are caused by sediment loading and extensional collapse of thick sediment wedges, predominantly controlled by margin geometry. Our study successfully integrates an interpretation

  3. Intermediate-depth Fracturing of Oceanic Lithosphere in Subduction Zones: Memories from Exhumed High-Pressure Ophiolites

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Oncken, Onno; Agard, Philippe

    2014-05-01

    Understanding processes acting along the subduction interface is crucial to assess lithospheric scale coupling between tectonic plates and mechanisms causing intermediate-depth seismicity. Despite a wealth of geophysical studies aimed at better characterizing/localizing this seismicity, we still critically lack constrains on processes triggering fracturing in regions (40-100km depths; T > 400°C) where deformation is expected to be achieved by plastic flow. We herein attempt to bridge this gap by providing a review of available evidence from brittle deformation patterns in exhumed High Pressure (HP) ophiolites, together with some new, critical observations. Field examples from various ophiolitic terranes (New-Caledonia, W. Alps, Tian Shan…) indicate that brittle deformation under HP conditions generally implies vein filling and precipitation of HP minerals, probably under very high pore fluid pressure conditions. Coalescence of such vein networks could explain some of the seismic events recorded along the fluid-rich subduction interface region. By contrast, HP pseudotachylites (though reported in only few localities so far) are apparently restricted to somehow deeper slab regions where fluid-deficient conditions are prevalent (Corsica, Zambia, Voltri?). The recent discovery of eclogite breccias, found as m-sized dismembered fragments within an eclogite-facies shear zone from the Monviso area (W. Alps), provides a new opportunity to study the genesis of intermediate-depth earthquakes. We herein argue that these eclogite breccias constitute unique remnants from an ancient fault zone associated with intraslab, intermediate-depth seismicity at ca. 80 km depth. The breccia is internally made of 1-10 cm-sized rotated fragments of eclogite mylonite cemented by an eclogite-facies matrix attesting of fracturing and fault sealing under lawsonite-eclogite facies conditions (550°C, 2.5 GPa) during subduction of the Tethyan seafloor. Textural observations and polyphased

  4. Spatial distributions of mineral compositions in the southernmost part of Salahi mantle section, the Oman ophiolite: modification from oceanic lithosphere to subarc mantle

    NASA Astrophysics Data System (ADS)

    Fujii, S.; Takazawa, E.

    2013-12-01

    The northern Oman ophiolite is a former oceanic lithosphere that had been modified by arc-type magmatism during subduction initiation. To investigate how oceanic lithospheric mantle was transformed to subarc mantle we studied the southernmost part of Salahi mantle section in the Oman ophiolite. Our results indicate that mantle peridotites were variably modified from mid-ocean ridge-like signature to subarc-like signature as a result of fluid infiltration from the base of the ophiolite that caused flux melting of residual peridotite and formation of boninitic magma together with highly refractory peridotites. Harzburgites in the southern most Salahi mantle section contain spinels with Cr# (=Cr/[Cr+Al] atomic ratio) in a relatively narrow range (0.46-0.67) while dunites in the same area contain spinels with Cr# in a wider range of 0.43-0.80. Moreover, dunites with relatively high Cr# spinel (greater than 0.7) frequently occur in the eastern part of the study area where a structurally lower level of the mantle section is exposed (high Cr# domain). On the other hand, the dunites with relatively low Cr# spinel (0.47-0.57) occur in the central and basal parts. The southernmost part of Salahi block has foliation plane nearly horizontal. Because of gently wavy structure the central part of the study area exposes slightly higher stratigraphic level in the mantle section relative to the eastern part and to the basal part. Clinopyroxene (cpx) in harzburgites from the high Cr# domain and low Cr# domain show highly LREE-depleted chondrite-normalized REE pattern with [Yb]CH=2-3 and [Ce]CH =0.01-0.02. On the other hand, REE patterns for dunite cpxs in the low spinel Cr# domain are similar to those of harzburgites in the same outcrop. However, cpxs in the dunite from the high spinel Cr# domain are enriched in LREE relative to those of harzburgites in the same outcrop. This suggests a possibility that dunites were reacted with LREE-enriched fluid infiltrated from the base of the

  5. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: Evidence from peridotite xenoliths in the Datong basalts

    NASA Astrophysics Data System (ADS)

    Wang, Chengyuan; Liu, Yongsheng; Min, Ning; Zong, Keqing; Hu, Zhaochu; Gao, Shan

    2016-09-01

    In-situ major and trace elements and Sr isotopic compositions of peridotite xenoliths of the Datong Quaternary alkaline basalt were analyzed to evaluate the influences of the southward subduction of the Paleo-Asian oceanic plate (PAOP) on the lithospheric mantle transformation of the North China Craton (NCC). These peridotite xenoliths including spinel harzburgites and lherzolites were classified into three groups. The type 1 peridotites have the lowest temperatures (961-1007 °C). Clinopyroxenes in these peridotites exhibit LREE-depleted REE patterns and have the lowest 87Sr/86Sr ratios of 0.70243-0.70411. The type 2 and 3 peridotites show higher temperatures (1017-1022 °C). Clinopyroxenes in the type 2 peridotite have V-shaped REE patterns and relatively higher 87Sr/86Sr ratios of 0.70418-0.70465. Clinopyroxenes in the type 3 peridotite have concave-downward REE patterns and unusually high 87Sr/86Sr ratios of 0.70769-0.70929. Carbonatitic veinlets are found in the type 1 peridotites. They show steep LREE-enriched REE patterns with enrichment in LILE and depletion in HFSE, and have the highest 87Sr/86Sr ratios of 0.71145-0.71285. The mineral chemistries and modal calculations suggest that the protolith of these peridotites experienced a variable degree of partial melting. The type 2 and 3 peridotites sampled from deeper depth experienced latter cryptic carbonatitic metasomatism. The carbonatitic veinlets have generally consistent trace element patterns and Sr isotopic ratios with the calculated melts equilibrated with clinopyroxenes in the type 3 peridotite, which may represent the percolated carbonatitic melt quickly solidified in the relatively cold and shallow mantle. The remarkable negative Eu anomalies (0.37-0.61) and highly radiogenic Sr isotopic compositions of the calculated metasomatic agents preclude indicate melt derived from carbonated peridotite or carbonated eclogite but point to a crustal sedimentary origin. Considering the tectonic setting and

  6. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    USGS Publications Warehouse

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  7. Modulation of East African Precipitation by the Indian Ocean Dipole (IOD) and ENSO

    NASA Astrophysics Data System (ADS)

    Shaaban, Ahmed A.

    Tropical East Africa is influenced by two main rainy seasons, during autumn and spring. During autumn, tropical East African precipitation is clearly influenced by Indian Ocean Dipole (IOD) and/or ENSO. During spring, there is no clear SST pattern in the Indian Ocean. The association between El Nino and positive IOD phases is much stronger than the association between La Nina and negative IOD during October and November. During October, the association between El Nino and wet condition over tropical eastern Africa is stronger than association between La Nina and dry conditions. During November, the association between positive IOD and eastern African precipitation is stronger than the association between La Nina and dry conditions. During short wet phases (such as autumn) over eastern Africa, two anticyclones form in the lower troposphere with upper baroclinic structure. These anticyclones decay rapidly by December. These anticyclones are responsible for supplying East Africa with increased moisture. Most strong positive IOD events are associated with wet outcomes over eastern Africa. Not all strong El Nino events lead to wet outcomes. It is well known that during northern spring, precipitation over eastern Africa is not connected to any inter-annual SST modes of variability. During northern spring, SST in Indian Ocean is nearly always sufficiently high to sustain convection, however, convection is not always active. We found that precipitation over eastern Africa during spring is associated with a dipole pattern of outgoing longwave radiation anomaly (OLRA) not associated with SST variability.

  8. Oceanic transform earthquakes with unusual mechanisms or locations - Relation to fault geometry and state of stress in the adjacent lithosphere

    NASA Technical Reports Server (NTRS)

    Wolfe, Cecily J.; Bergman, Eric A.; Solomon, Sean C.

    1993-01-01

    Results are presented of a search for transform earthquakes departing from the pattern whereby they occur on the principal transform displacement zone (PTDZ) and have strike-slip mechanisms consistent with transform-parallel motion. The search was conducted on the basis of source mechanisms and locations taken from the Harvard centroid moment tensor catalog and the bulletin of the International Seismological Center. The source mechanisms and centroid depths of 10 such earthquakes on the St. Paul's, Marathon, Owen, Heezen, Tharp, Menard, and Rivera transforms are determined from inversions of long-period body waveforms. Much of the anomalous earthquake activity on oceanic transforms is associated with complexities in the geometry of the PTDZ or the presence of large structural features that may influence slip on the fault.

  9. Diamonds and the african lithosphere.

    PubMed

    Boyd, F R; Gurney, J J

    1986-04-25

    Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface. PMID:17743571

  10. Diamonds and the african lithosphere.

    PubMed

    Boyd, F R; Gurney, J J

    1986-04-25

    Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface.

  11. Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Frezzotti, Maria-Luce; Huizenga, Jan-Marten; Compagnoni, Roberto; Selverstone, Jane

    2014-10-01

    Microdiamonds in garnet of graphite-free ultrahigh pressure metamorphic (UHPM) rocks from Lago di Cignana (western Alps, Italy) represent the first occurrence of diamond in a low-temperature subduction complex of oceanic origin (T = ∼600 °C; P ⩾ 3.2 GPa). The presence of diamonds in fluid inclusions provides evidence for carbon transport and precipitation in an oxidized H2O-rich C-O-H crustal fluid buffered by mineral equilibria at sub-arc mantle depths. The structural state of carbon in fluid-precipitated diamonds was analyzed with 514 nm excitation source confocal Raman microspectroscopy. The first order peak of sp3-bonded carbon in crystalline diamonds lies at 1331 (±2) cm-1, similar to diamonds in other UHPM terranes. The analysis of the spectra shows additional Raman features due to sp2 carbon phases indicating the presence of both hydrogenated carbon (assigned to trans-polyacetylene segments) in grain boundaries, and graphite-like amorphous carbon in the bulk, i.e. showing a structural disorder much greater than that found in graphite of other UHPM rocks. In one rock sample, disordered microdiamonds are recognized inside fluid inclusions by the presence of a weaker and broader Raman band, downshifted from 1332 to 1328 cm-1. The association of sp3- with sp2-bonded carbon indicates variable kinetics during diamond precipitation. We suggest that precipitation of disordered sp2 carbon acted as a precursor for diamond formation outside the thermodynamic stability field of crystalline graphite. Diamond formation started when the H2O-rich fluid reached the excess concentration of C required for the spontaneous nucleation of diamond. The interplay of rock buffered fO2 and the prograde P-T path at high pressures controlled carbon saturation. Thermodynamic modeling confirms that the C-O-H fluids from which diamond precipitated must have been water rich (0.992

  12. Low densities of drifting litter in the African sector of the Southern Ocean.

    PubMed

    Ryan, Peter G; Musker, Seth; Rink, Ariella

    2014-12-15

    Only 52 litter items (>1cm diameter) were observed in 10,467 km of at-sea transects in the African sector of the Southern Ocean. Litter density north of the Subtropical Front (0.58 items km(-2)) was less than in the adjacent South Atlantic Ocean (1-6 items km(-2)), but has increased compared to the mid-1980s. Litter density south of the Subtropical Front was an order of magnitude less than in temperate waters (0.032 items km(-2)). There was no difference in litter density between sub-Antarctic and Antarctic waters either side of the Antarctic Polar Front. Most litter was made of plastic (96%). Fishery-related debris comprised a greater proportion of litter south of the Subtropical Front (33%) than in temperate waters (13%), where packaging dominated litter items (68%). The results confirm that the Southern Ocean is the least polluted ocean in terms of drifting debris and suggest that most debris comes from local sources. PMID:25455366

  13. Low densities of drifting litter in the African sector of the Southern Ocean.

    PubMed

    Ryan, Peter G; Musker, Seth; Rink, Ariella

    2014-12-15

    Only 52 litter items (>1cm diameter) were observed in 10,467 km of at-sea transects in the African sector of the Southern Ocean. Litter density north of the Subtropical Front (0.58 items km(-2)) was less than in the adjacent South Atlantic Ocean (1-6 items km(-2)), but has increased compared to the mid-1980s. Litter density south of the Subtropical Front was an order of magnitude less than in temperate waters (0.032 items km(-2)). There was no difference in litter density between sub-Antarctic and Antarctic waters either side of the Antarctic Polar Front. Most litter was made of plastic (96%). Fishery-related debris comprised a greater proportion of litter south of the Subtropical Front (33%) than in temperate waters (13%), where packaging dominated litter items (68%). The results confirm that the Southern Ocean is the least polluted ocean in terms of drifting debris and suggest that most debris comes from local sources.

  14. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-12-01

    In eastern East Africa (the southern Ethiopia, eastern Kenya and southern Somalia region), poor boreal spring (long wet season) rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent East African droughts to a stronger Walker circulation, resulting from warming in the Indo-Pacific warm pool and an increased east-to-west sea surface temperature (SST) gradient in the western Pacific, we show that the two dominant modes of East African boreal spring rainfall variability are tied to SST fluctuations in the western central Pacific and central Indian Ocean, respectively. Variations in these two rainfall modes can thus be predicted using two SST indices - the western Pacific gradient (WPG) and central Indian Ocean index (CIO), with our statistical forecasts exhibiting reasonable cross-validated skill (rcv ≈ 0.6). In contrast, the current generation of coupled forecast models show no skill during the long rains. Our SST indices also appear to capture most of the major recent drought events such as 2000, 2009 and 2011. Predictions based on these simple indices can be used to support regional forecasting efforts and land surface data assimilations to help inform early warning and guide climate outlooks.

  15. Chromatographic metasomatism of the Arabian—Nubian lithosphere

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Navon, Oded; Kessel, Ronit

    1997-11-01

    Trace elements and isotopic ratios of calc-alkaline and tholeiitic dikes from the very last stage of the late Proterozoic, Pan-African orogeny in the northern Arabian-Nubian Shield (ANS), and alkali basalts from the overlying Phanerozoic section are used to constrain the composition and model the evolution of the lithospheric mantle in this region. The dikes and basalts are interpreted as lithospheric melts formed during the post-orogenic (and post-subduction) history of the shield. While the mafic member of all suites share a primitive La/Th ratio, the Nb/Th and Ce/Pb are distinct for each suite. The (Nb/Th) PM (primitive mantle normalized) is ˜0.2 in the calc-alkaline dikes and 1.4 in the tholeiitic dikes and the Phanerozoic alkali basalts. The (Ce/Pb) PM ratios are low in the dikes (0.4 in the calc-alkaline and 0.3 in the tholeiitic) and high in the Phanerozoic basalts (2.8). We suggest that the variations in the trace element ratios reflect sampling of different zones in the lithospheric mantle, which were formed by subduction related metasomatism of the mantle wedge. We constructed a chromatographic model to explain this zonation. In this model a plume-derived oceanic lithosphere is subducted and dehydrates at depth. Fluids released from the dehydrating slab metasomatize the overlying wedge and form amphibole-rich channels. Nb is preferentially taken by the amphibole and is enriched only in the lower zones of the column. The other elements (U, Th, REE and especially Pb and Rb) behave incompatibly. They are enriched in the fluid and transported efficiently to the melting zone in the centre of the wedge. Dehydration of the base of the wedge as it descends below the amphibole stability field depletes this region in Pb and Rb. After the end of subduction, the wedge is fossilized and forms the lithospheric mantle. The zone above the Nb concentration front is sampled by the calc-alkaline magmas. The tholeiitic magmas sample the zone below the Nb front. The

  16. Chromatographic metasomatism of the Arabian-Nubian lithosphere

    NASA Astrophysics Data System (ADS)

    Kessel, R.; Navon, O.; Stein, M.

    1997-11-01

    Trace elements and isotopic ratios of calc-alkaline and tholeiitic dikes from the very last stage of the late Proterozoic, Pan-African orogeny in the northern Arabian-Nubian Shield (ANS), and alkali basalts from the overlying Phanerozoic section are used to constrain the composition and model the evolution of the lithospheric mantle in this region. The dikes and basalts are interpreted as lithospheric melts formed during the post-orogenic (and post-subduction) history of the shield. While the mafic member of all suites share a primitive La/Th ratio, the Nb/Th and Ce/Pb are distinct for each suite. The (Nb/Th)PM (primitive mantle normalized) is ~0.2 in the calc-alkaline dikes and 1.4 in the tholeiitic dikes and the Phanerozoic alkali basalts. The (Ce/Pb)PM ratios are low in the dikes (0.4 in the calc-alkaline and 0.3 in the tholeiitic) and high in the Phanerozoic basalts (2.8). We suggest that the variations in the trace element ratios reflect sampling of different zones in the lithospheric mantle, which were formed by subduction related metasomatism of the mantle wedge. We constructed a chromatographic model to explain this zonation. In this model a plume-derived oceanic lithosphere is subducted and dehydrates at depth. Fluids released from the dehydrating slab metasomatize the overlying wedge and form amphibole-rich channels. Nb is preferentially taken by the amphibole and is enriched only in the lower zones of the column. The other elements (U, Th, REE and especially Pb and Rb) behave incompatibly. They are enriched in the fluid and transported efficiently to the melting zone in the centre of the wedge. Dehydration of the base of the wedge as it descends below the amphibole stability field depletes this region in Pb and Rb. After the end of subduction, the wedge is fossilized and forms the lithospheric mantle. The zone above the Nb concentration front is sampled by the calc-alkaline magmas. The tholeiitic magmas sample the zone below the Nb front. The Phanerozoic

  17. The formation of volcanic centers at the Colorado Plateau as a result of the passage of aqueous fluid through the oceanic lithosphere and the subcontinental mantle: New implications for the planetary water cycle in the western United States

    NASA Astrophysics Data System (ADS)

    Sommer, Holger; Regenauer-Lieb, Klaus; Gasharova, Biliana; Jung, Haemyeong

    2012-10-01

    We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as "The Thumb", located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ˜150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ˜150 km (T ≈ 1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ˜138 ppm wt H2O, and the water concentration at the planar defects

  18. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  19. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere. PMID:21979933

  20. The origin of thin lithosphere in continental backarcs: Effect of hydration on mantle lithosphere stability

    NASA Astrophysics Data System (ADS)

    Currie, C. A.; Huismans, R. S.; Beaumont, C.

    2006-12-01

    Nearly all continental backarcs have thin (~ 60 km) lithosphere for 100's of km behind the volcanic arc, even where there has been no extension. One mechanism to produce thin lithosphere is the erosion of normal thickness lithosphere by subduction-related mantle flow. The susceptibility of lithosphere to thinning largely depends on its rheology, which may be related to its state of hydration. Thin backarc lithosphere may reflect (1) a pre-existing weak rheology of lithosphere that has not been extensively dehydrated or (2) a response to rheological weakening by infiltration of slab-derived fluids. To study these processes, we use thermal- mechanical models of subduction of an old (90 Ma) oceanic plate beneath 120 km thick continental lithosphere. For (1), the backarc mantle lithosphere in the reference model has a wet olivine rheology. Subduction-induced mantle flow produces perturbations to the lowermost lithosphere, which are removed through gravitational instability and flow entrainment. The lithosphere then heats conductively, leading to subsequent thinning. Lithosphere that is stronger than wet olivine (less hydrated) does not thin, while weaker lithosphere undergoes more rapid thinning. Mantle lithosphere density influences stability, such that depleted (more buoyant) lithosphere is more stable. Thin backarc lithosphere may be limited to continental mantle that is both hydrated and fertile. This may explain why thin lithosphere of western North and South America backarcs coincides with Phanerozoic terranes that were accreted to older cratons, which may be drier, more refractory and resistant to thinning. For (2), the backarc mantle lithosphere is initially dehydrated with a scaled viscosity of wet olivine x 10 and the source of hydrating fluids is determined by tracking slab dehydration reactions (e.g., basalt-eclogite, serpentine breakdown). As most slab dehydration occurs at shallow depth, thinning of water-weakened lithosphere is restricted to the volcanic

  1. Olivine-gabbros and olivine-rich troctolites genesis through melt-rock reactions in oceanic spreading lithosphere: an experimental study up to 0.7 GPa

    NASA Astrophysics Data System (ADS)

    Francomme, Justine E.; Fumagalli, Patrizia; Borghini, Giulio

    2016-04-01

    Extensive melt-rock reaction and melt impregnation significantly affect not only the physical and chemical properties at mantle-crust transition, but also control the evolution of migrating melts. We performed reactive dissolution and crystallization experiments at pressure ≤ 0.7 GPa in a piston-cylinder apparatus to provide experimental constraints on genesis of olivine-rich troctolites and olivine-gabbros at mantle-crust transition in oceanic spreading lithosphere by melt-rock reaction. Our experiments are carried out by using Salt-Pyrex-Graphite-Magnesium assemblies and graphite-lined platinum capsules. Experimental charges are prepared with three layers: (1) basalt powder, (2) fine powder (1-10μm) of San Carlos olivine (Fo90.1), and (3) carbon spheres used as a melt trap. Three synthetic MORB-type melts have been used, two tholeiitic basalts (Mg#: 0.62, SiO2: 47.70 wt%, Na2O: 2.28 wt% and Mg#: 0.58, SiO2: 49.25 wt%, Na2O: 2.49 wt%) and a primitive one (Mg#: 0.74, SiO2: 48.25 wt%, Na2O: 1.80 wt%), in order to investigate the effect of melt composition. A rock/melt ratio of 0.7 has been kept fixed. Experiments have been conducted at temperatures from 1200 to 1300°C, at both step cooling and isothermal conditions for different run durations (from 12 to 72 hrs). They resulted in layered samples in which all the initial San Carlos olivine powder, analog of a dunitic pluton infiltrated by basaltic melt, is replaced by different lithologies from olivine-rich troctolite to olivine gabbro. In isothermal experiments, reacted melts have been successfully trapped in the carbon spheres allowing their chemical analysis; as expected the reacted melt has a higher Mg# than the initial one (e.g. from Mg#=0.62 to 0.73). Across the different lithologies Mg# of olivine is decreasing from the olivine-rich troctolite to the gabbro. Replacive olivine-rich troctolite has a poikilitic texture with rounded euhedral olivine and interstitial poikilitic plagioclase and clinopyroxene

  2. Lithospheric dynamics near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1992-01-01

    The progress report on research conducted between 15 Mar. - 14 Sep. 1992 is presented. The focus of the research during the first grant year has been on several problems broadly related to the nature and dynamics of time-dependent deformation and stress along major seismic zones, with an emphasis on western North America but with additional work on seismic zones in oceanic lithosphere as well. The principal findings of our research to date are described in the accompanying papers and abstract. Topics covered include: (1) Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake: evidence for conjugate faulting; (2) Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986-1989; (3) present-day crustal deformation in the Salton Trough, southern California; (4) oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the lithosphere; and (5) crustal strain and the 1992 Mojave Desert earthquakes.

  3. NSF Continental Lithosphere Program

    NASA Astrophysics Data System (ADS)

    Mayhew, Michael; MacGregor, Ian

    For several months the Continental Lithosphere Program (CL) of the National Science Foundation has been subject to a major review. The process was stimulated by a series of budget setbacks over the past few years. Although Presidential budget requests have been very favorable for the Division of Earth Sciences (EAR), and there has been strong support within the National Science Foundation and Congress, actual appropriations by Congress have been disappointing.In each year the final allocation to EAR has been affected by external factors beyond the control of the Foundation. In the four fiscal years from 1986 through 1989 the factors include reductions tied to the Gramm-Rudman deficit reduction measures, congressional reaction to the October 1987 stock market crash, and two years of protection for the Ocean Sciences part of the NSF budget that was paid for from the budgets of the Atmospheric and Earth Sciences divisions.

  4. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-03-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices - the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.

  5. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  6. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    The past 5 Ma were marked by systematic shifts towards colder climates and concomitant reorganizations in ocean circulation and marine heat transports. Some of the changes involved plate-tectonic shifts such as the closure of the Panamanian Isthmus and restructuring of the Indonesian archipelago that affected inter-ocean communications and altered the world ocean circulation. These changes induced ocean-atmosphere feedbacks with consequences for climates globally and locally. Two new ICDP and IODP drilling initiatives target these developments from the perspectives of marine and terrestrial palaeoclimatology and the human evolution. The ICDP drilling initiative HSPDP ("Hominid Sites and Paleolakes Drilling Project"; ICDP ref. no. 10/07) targets lacustrine depocentres in Ethiopia (Hadar) and Kenya (West Turkana, Olorgesailie, Magadi) to retrieve sedimentary sequences close to the places and times where various species of hominins lived over currently available outcrop records. The records will provide a spatially resolved record of the East African environmental history in conjunction with climate variability at orbital (Milankovitch) and sub-orbital (ENSO decadal) time scales. HSPDP specifically aims at (1) compiling master chronologies for outcrops around each of the depocentres; (2) assessing which aspects of the paleoenvironmental records are a function of local origin (hydrology, hydrogeology) and which are linked with regional or larger-scale signals; (3) correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability and (4) correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change. Ultimately the aim is to test hypotheses that link physical and cultural adaptations in the course of the hominin evolution to local environmental change and variability. The IODP initiative SAFARI ("Southern African Climates, Agulhas Warm Water Transports and Retroflection

  7. Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system

    NASA Astrophysics Data System (ADS)

    Fairhead, J. D.; Binks, R. M.

    1991-02-01

    Plate tectonic studies of the development of the Central and South Atlantic Oceans using Seasat and Geosat altimeter and magnetic anomaly isochron data now provide quantitative models of seafloor spreading through time. Such models enable an initial assessment of the differential opening between these two oceanic basins to be determined. The Equatorial Atlantic is an integral part of this oceanic rifting process, allowing stresses arising from the differential opening to be dissipated into both the Caribbean and Africa along its northern and southern boundaries respectively. The tectonic model for the West African rift system, based on geological and geophysical studies, shows a series of strike-slip fault zones diverging into Africa from the Gulf of Guinea and dissipating their shear movement into the development of extensional basins orientated perpendicular to these faults zones. The development of the West African rift system was contemporaneous with the early opening of the South Atlantic, continued to develop well after the final breakup of South America from Africa and did not cease until the late Cretaceous when there was a major phase of basin inversion and deformation. Santonian ( ~ 80 Ma) deformation across the Benue Trough (Nigeria) is broadly contemporaneous with dextral shear reactivation of the central African fracture system which, in turn resulted in renewed extension in the Sudan basins during the late Cretaceous and early Tertiary. This paper illustrates the close linkage in both time and space between the history of the African rift basins and the opening of the Atlantic. Both exhibit distinct phases of evolution with the rift basins developing in direct response to the differential opening between the Central and South Atlantic in order to dissipate stresses generated by this opening. The Mesozoic tectonic model proposed is therefore one of an intimate interaction between oceanic and continental tectonics.

  8. Coplanar polychlorinated biphenyl congeners in shark livers from the north-western African Atlantic ocean

    SciTech Connect

    Serrano, R.; Fernandez, M.A.; Hernandez, L.M.

    1997-01-01

    Polychlorinated biphenyls have been widely used by industry throughout the world since 1930. Although their use has been banned in many countries since the late 1970s, they still represent an important class of priority pollutants due to their persistence. Most open uses of these chemicals have been severely curtailed in industrialized nations, but a considerable fraction of past productions is probably still cycling in the ecosphere. In recent years, attention has been focused on the toxicity of PCBs, especially of those congeners showing similar toxicity as the polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDFs). It has been shown that PCB congeners` toxicity largely depends on the chlorine substitution pattern. The most toxic PCB cogeners are those with two para chlorines, at least two meta chlorines and 0-2 ortho chlorines. These so-called {open_quotes}coplanar{close_quotes} (non- mono- and di-ortho) PCB cogeners are able to obtain planar conformation. Recently, toxic equivalence factors have been assigned to coplanar PCBs. Thus determination of individual PCB cogeners is important for evaluating the toxic potentials of PCB residues in, for example, wildlife. This paper presents preliminary results of a study looking at levels of PCB congeners, including coplanar ones, in the liver of six shark species, collected in the North African Atlantic Ocean. 15 refs., 2 figs., 2 tabs.

  9. Episodic Instabilities of Thick Continental Lithosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Jaupart, C. P.; Fourel, L.; Farnetani, C. G.

    2009-12-01

    Although continental interiors are commonly described as stable, many have been subjected to major perturbations. The North American continent, for example, saw the formation or reactivation of four intracratonic basins (Williston, Hudson Bay, Illinois and Michigan) in the Paleozoic about 500 million years ago. These events occurred far from ocean basins and are not related to other tectonic events, and hence have usually been explained as late consequences of earlier orogenies or of mantle plumes impinging the base of the lithosphere. Why and how subsidence affected four neighbouring basins simultaneously in the Paleozoic has not been explained, however. Other important observations are that intracratonic basins and subsidence events tend to recur at the same locations, and that subsidence is rarely preceded by domal uplift. These observations can be explained by the behaviour of thick compositionally buoyant lithosphere that becomes unstable because it is being cooled from above. Laboratory analog experiments, stability theory and numerical simulations in 2-D and 3-D have been conducted to specify the necessary conditions for instability and to illustrate how flow develops and deforms the lithosphere. Numerical solutions accounting for temperature-dependent viscosity show that the compositional viscosity contrast between the lithospheric mantle and the underlying asthenosphere has only a weak effect on flow and deformation. Lithosphere behaviour depends on the Rayleigh number and the buoyancy ratio, which is equal to the ratio of compositional density contrast over the thermal density contrast through the unstable part of the lithosphere. Episodic instabilities are generated at small buoyancy numbers appropriate for geological conditions. Scaling laws for temperature-dependent viscosity fluids will be presented. Little uplift is generated by the instability because the hot upwelling asthenospheric mantle displaces compositionally buoyant colder lithospheric

  10. Sedimentary loading, lithospheric flexure and subduction initiation at passive margins

    SciTech Connect

    Erickson, S.G. . Dept. of Earth Sciences)

    1992-01-01

    Recent theoretical models have demonstrated the difficulty of subduction initiation at passive margins, whether subduction is assumed to initiate by overcoming the shear resistance on a thrust fault through the lithosphere or by failure of the entire lithosphere in bending due to sedimentary loading. A mechanism for subduction initiation at passive margins that overcomes these difficulties incorporates the increased subsidence of a marginal basin during decoupling of a previously locked margin. A passive margin may decouple by reactivation of rift-related faults in a local extensional or strike-slip setting. Flexure of marginal basins by sedimentary loading is modeled here by the bending of infinite and semi-infinite elastic plates under a triangular load. The geometry of a mature marginal basin fits the deflection produced by loading of an infinite plate in which the flexural rigidity of continental lithosphere is larger than that of oceanic lithosphere. Decoupling of such a locked passive margin by fault reactivation may cause the lithospheric bending behavior of the margin to change from that of an infinite plate to that of a semi-infinite plate, with a resultant increase in deflection of the marginal basin. The increase in deflection depends on the flexural rigidities of continental and oceanic lithosphere. For flexural rigidities of 10[sup 30]-10[sup 31] dyn-cm (elastic lithosphere thicknesses 24--51 km), the difference in deflections between infinite and semi-infinite plates is 15--17 km, so that decoupling sinks the top of the oceanic lithosphere to depths of ca 35 km. Additional sedimentation within the basin and phase changes within the oceanic crust may further increase this deflection. Subduction may initiate if the top of the oceanic lithosphere sinks to the base of the adjacent elastic lithosphere.

  11. High-pressure whiteschists from the Ti-N-Eggoleh area (Central Hoggar, Algeria): A record of Pan-African oceanic subduction

    NASA Astrophysics Data System (ADS)

    Adjerid, Zouhir; Godard, Gaston; Ouzegane, Khadidja

    2015-06-01

    the West Gondwana orogenic belt during the Neoproterozoic Pan-African orogeny. The decompression associated with the early phase of exhumation was followed by an important increase in temperature towards granulite-facies conditions, possibly determined by the intrusion of abundant mafic rocks in this region due to delamination of the lithospheric mantle. The Ti-N-Eggoleh area and its high-pressure meta-ophiolitic series apparently belong to the Sérouènout Terrane, which stretches along the eastern margin of the Western Gondwana orogenic belt and consists mainly of oceanic metasediments; they are possibly markers of an ancient, yet unidentified, subduction and suture zone.

  12. Lithospheric Response of the Anatolian Plateau in the Realm of the Black Sea and the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ergun, Mustafa

    2016-04-01

    The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at

  13. Investigating and Imaging the Lithospheric Structure of the Westernmost Mediterranean Using S Receiver Functions

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Butcher, Amber

    2013-04-01

    The Alboran System was created during the Neogene at the western edge of the Alpine-Himalayan orogenic belt, as the result of convergence between the European and African plates. This system includes the Gibraltar Arc, Rif-Betic chain, Atlas Mountains, and Alboran Sea. The evolution from ocean subduction to continental collision, particularly in complex three-dimensional settings such as this, is poorly understood. Advances in this subject are likely to come from multidisciplinary projects, such as PICASSO (Program to Investigate Convective Alboran Sea System Overturn): a study of the Alboran Sea, Atlas Mountains, and Gibraltar arc. Several models have been suggested to explain the tectonics of this system including: continental lithospheric delamination and drips, slab breakoff, and subducting slab rollback. Advances in defining the lithosphere - asthenosphere boundary (LAB) are crucial to understanding the geochemical and geodynamic evolution of the region. Seismic data from ~85 broadband instruments deployed in Morocco and Spain as part of the PICASSO project are being utilized to constrain lithospheric structure beneath this part of the Western Mediterranean via identification of S-to-p conversions from S receiver functions. A previous study indicates that the lithospheric thinning beneath the Atlas High may be the result of mantle upwelling induced thermal erosion, while a more recent imaging study suggests that the LAB could be at depths >200 km, tens of kilometers thicker than previous models. Our preliminary results indicate LAB depths down to ~100 - 110 km near the Straight of Gibraltar and as shallow as ~65 - 80 km under the Atlas High. The primary purpose of this project is to advance our understanding of the structure and evolution of the lithosphere - asthenosphere boundary (LAB) of the Atlas Mountains and surrounding areas.

  14. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  15. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones

  16. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  17. The subduction of young lithosphere

    NASA Astrophysics Data System (ADS)

    Sacks, I. S.

    1983-04-01

    Studies, using a variety of techniques, of the subduction beneath western South America and the southwest Honshu-Kyushu region of Japan indicate that volcano-free segments occur where the subducted and continental lithospheres remain in contact without intervening asthenosphere. The subduction is initiated at normal dip angles, but the plate deforms at some depth (100 km under central Peru) to travel horizontally immediately beneath continental lithosphere. The most plausible reason for this geometry is that the subducted plate is buoyant. A model is developed constrained by age of the plate, bathymetry, and heat flow. Estimates of the density of oceanic plates as a function of age show that younger ocean floor may be less dense than the asthenosphere into which it subducts. If the high-density tranformation of crustal basalt to eclogite is retarded by low temperatures, the plate can remain buoyant to considerable depth for long periods of time. Heat flow data from western South America are consistent with this model.

  18. Using natural laboratories and modeling to decipher lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  19. Lithospheric expression of geological units in central and eastern North America from full waveform tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Huaiyu; French, Scott; Cupillard, Paul; Romanowicz, Barbara

    2014-09-01

    The EarthScope TA deployment has provided dense array coverage throughout the continental US and with it, the opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in the continent. Building upon our previous long-period waveform tomographic modeling in North America, we present a higher resolution 3D isotropic and radially anisotropic shear wave velocity model of the North American lithospheric mantle, constructed tomographically using the spectral element method for wavefield computations and waveform data down to 40 s period. The new model exhibits pronounced spatial correlation between lateral variations in seismic velocity and anisotropy and major tectonic units as defined from surface geology. In the center of the continent, the North American craton exhibits uniformly thick lithosphere down to 200-250 km, while major tectonic sutures of Proterozoic age visible in the surface geology extend down to 100-150 km as relatively narrow zones of distinct radial anisotropy, with Vsv>Vsh. Notably, the upper mantle low velocity zone is present everywhere under the craton between 200 and 300 km depth. East of the continental rift margin, the lithosphere is broken up into a series of large, somewhat thinner (150 km) high velocity blocks, which extend laterally 200-300 km offshore into the Atlantic Ocean. Between the craton and these deep-rooted blocks, we find a prominent narrow band of low velocities that roughly follows the southern and eastern Laurentia rift margin and extends into New England. We suggest that the lithosphere along this band of low velocities may be thinned due to the combined effects of repeated rifting processes and northward extension of the hotspot related Bermuda low-velocity channel across the New England region. We propose that the deep rooted high velocity blocks east of the Laurentia margin represent the Proterozoic Gondwanian terranes of pan-African affinity, which were captured during the Rodinia

  20. Properties of the lithosphere and asthenosphere deduced from geoid observations

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1985-01-01

    Data from the GEOS-3 and SEASAT Satellites provided a very accurate geoid map over the oceans. Broad bathymetric features in the oceans such as oceanic swells and plateaus are fully compensated. It is shown that the geoid anomalies due to the density structures of the lithosphere are proportional to the first moment of the density distribution. The deepening of the ocean basins is attributed to thermal isostasy. The thickness of the oceanic lithosphere increases with age due to the loss of heat to the sea floor. Bathymetry and the geoid provide constraints on the extent of this heat loss. Offsets in the geoid across major fracture zones can also be used to constrain this problem. Geoid bathymetry correlations show that the Hawaiian and Bermuda swells and the Cape Verde Rise are probably due to lithospheric thinning.

  1. SEASAT observations of lithospheric flexure seaward of trenches

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Martin, C. F.

    1983-01-01

    Lithospheric flexure seaward of deep ocean trenches in SEASAT altimeter observations of the marine geoid. In fact, mechanical models of lithospheric flexure can be tested directly on the SEASAT altimeter data. A simple elastic model was used for the oceanic lithosphere and, after least squares adjustments, estimates of model parameters were recovered including Outer Rise (OR) amplitude, OR wavelength, and effective lithospheric thickness. Effective lithospheric thickness was recovered for five regions: the Mariana, the Kuril, the Philippine, the Aleutian and the Middle America OR. These results support the suggestion of Bodine et al. (1981) that effective thickness, T, increased with age of lithosphere in approximate accord with the relation T approximately equals x age to the 1/2 power where C approximately equals 4 km x my to the -1/2 power. Altimetric results agree more closely with this relation than do published results based on bathymetric data. The close agreement with the thickness-age relation suggests that there is no longer any need to assume that significant horizontal compression acts across the Kuril, Marianas and Izo-Bonin trenches. This thickness-age relation implies that flexural strength of the oceanic lithosphere is temperature controlled.

  2. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  3. Lithospheric buoyancy and continental intraplate stresses

    USGS Publications Warehouse

    Zoback, M.L.; Mooney, W.D.

    2003-01-01

    gravitational potential energy by taking a vertical integral over the computed lithosphere density. Our computed values suggest that the thick roots beneath cratons lead to strong negative potential energy differences relative to surrounding regions, and hence exert compressive stresses superimposed on the intraplate stresses derived from plate boundary forces. Forces related to this lithosphere structure thus may explain the dominance of reverse-faulting earthquakes in cratons. Areas of high elevation and a thin mantle lid (e.g., western U.S. Basin and Range, East African rift, and Baikal rift) are predicted to be in extension, consistent with the observed stress regime in these areas.

  4. Preface to "Insights into the Earth's Deep Lithosphere"

    SciTech Connect

    Pasyanos, M E

    2009-11-19

    Dear Readers: I am pleased to present a special issue of Tectonophysics entitled 'Insights into the Earth's Deep Lithosphere.' This compilation sought to capture the flavor of the increasing number of studies that are emerging to investigate the complex lithospheric structure of the earth. This issue evolved out of a Fall 2007 AGU special session entitled 'Understanding the Earth's Deep Lithosphere' that I organized with Irina Artemieva from the University of Copenhagen. For that session, we solicited talks that discussed the increasing number of methods that have surfaced to study various aspects of the earth's deep lithosphere. These methods include seismic, gravity, thermal, geochemical, and various combinations of these methods. The quality of the presentations (2 oral sessions with 16 talks and 23 associated poster presentations) was such that we felt that the emerging topic deserved a dedicated forum to address these questions in greater detail. The availability of new data sets has also improved the number and quality of lithospheric studies. With many new studies and methodologies, a better understanding of both continental and oceanic lithospheres is starting to emerge. Questions remain about the thickness and evolution of the lithosphere, the presence of lithospheric keels, the density and anisotropy of lithospheric roots, mechanisms of lithospheric thinning, and differences between mechanical, thermal and chemical boundary layers. While we did not get contributions on the full gamut of methods and regions, a lot of ground was covered in this issue's manuscripts. Like any collection of papers on the deep lithosphere, the topics are quite varied in methodology, geographic location, and what aspect of the lithosphere being studied. Still, the results highlight the rewarding aspects of earth structure, history, and evolution that can be gleaned. A brief synopsis of the papers contained in this issue is given.

  5. Tag team tectonics: mantle upwelling and lithospheric heterogeneity ally to rift continents (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.

    2013-12-01

    The configuration of continents we know today is the result of several billion years of active Wilson Cycle tectonics. The rifting of continents and subsequent development of ocean basins is an integral part of long-term planetary-scale recycling processes. The products of this process can be seen globally, and the East African Rift System (EARS) provides a unique view of extensional processes that actively divide a continent. Taken together with the adjoining Red Sea and Gulf of Aden, the EARS has experienced over 40 Ma of volcanism and ~30 Ma of extension. While early (pre-rift) volcanism in the region is attributed to mantle plume activity, much of the subsequent volcanism occurs synchronously with continental rifting. Numerous studies indicate that extension and magmatism are correlated: extension leads to decompression melting while magmatism accommodates further extension (e.g. Stein et al., 1997; Buck 2004; Corti 2012). Evaluation of the entire EARS reveals significant geochemical patterns - both spatial and temporal - in the volcanic products. Compositional variations are tied directly to the melt source(s), which changes over time. These variations can be characterized broadly by region: the Ethiopian plateau and Turkana Depression, the Kenya Rift, and the Western Rift. In the Ethiopian plateau, early flood basalt volcanism is dominated by mantle plume contributions with variable input from lherzolitic mantle lithosphere. Subsequent alkaline shield volcanism flanking the juvenile Main Ethiopian Rift records the same plume component as well as contributions from a hydrous peridotitic lithosphere. The hydrous lithosphere does not contribute indefinitely. Instead, young (< 2 Ma) volcanism taps a combination of the mantle plume and anhydrous depleted lithospheric mantle. In contrast, volcanism in the Kenya Rift and the Western Rift are derived dominantly from metasomatized lithospheric mantle rather than mantle plume material. These rifts lie in the mobile

  6. A lithospheric 3D temperature study from the South Atlantic

    NASA Astrophysics Data System (ADS)

    Hirsch, K. K.; Scheck-Wenderoth, M.; Maystrenko, Y.; Sippel, J.

    2009-04-01

    The East African continental margin is a passive volcanic margin that experienced a long post-rifting history after break up in Early Cretaceous times. The break up resulted in the formation of a number of basins along the margin. The by far largest depocentre in the South Atlantic, the Orange Basin, was the location of previously performed studies. These studies of the Orange Basin have been performed to investigate the crustal structure and the temperature evolution of the basin. In this way, they gave way to new insights and to a number of questions. With 3D gravity modelling we found the crust to include high density bodies. Furthermore, a rifting model was developed which explained both the geometry and the thermal constraints of the basin. Now, this study has been extended spatially to cover a larger area and into depth to include the deep lithosphere. The main goal is to combine information on the geometry and properties of the sedimentary part of the system with data on the geometry and physical properties of the deep crust. It was also aimed to integrate both the continental and the oceanic parts of the margin into a consistent 3D structural model on a lithospheric scale. A 3D temperature model was evaluated for the passive continental margin of the South Atlantic including the lithospheric structure of the margin. We evaluate a case study for different scenarios to estimate the influence of sediments and crustal structures on the thermal field. The calculated conductive field is constrained by temperature measurements and 3D gravity modelling. At the Norwegian continental margin it has been found that a differentiation of the physical properties of the lower crust and the mantle is needed between the oceanic and continental domains to explain the observations. We aim to compare the younger setting of the Norwegian continental margin with the old passive margin in the South Atlantic. In particular, the South Atlantic is interesting since the southern half

  7. Impact of Fluid circulation in old oceanic Lithosphere on the seismicity of transfOrm-type plate boundaries: The FLOWS project (EU-COST ES1301)

    NASA Astrophysics Data System (ADS)

    Nuzzo, Marianne; Tomonaga, Yama; Schmidt, Mark; Pinero, Elena; Valadares, Vasco; Reitz, Anja; Gracia, Eulalia; Terrinha, Pedro; Scholz, Florian; Silva, Sonia; Kaul, Norbert; Brennwald, Matthias; Perea, Hector; Hensen, Christian

    2014-05-01

    The recent occurrence of large earthquakes and the discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries. Both processes are intrinsically associated. The COST Action FLOWS seeks to merge the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. At present, study areas include the Azores-Gibraltar Fracture Zone and the North Anatolian Fault which have generated some of the most devastating earthquakes in Europe. Here we present the latest results from recently-discovered deep-sea mud volcanoes (MVs) located at the rim of the Horseshoe Abyssal Plain, western Gulf of Cadiz (NE Atlantic Ocean). An analysis of the molecular and isotopic composition of hydrocarbon and noble gases is performed on fluids collected at the newly-discovered seeps and in MVs located across the active sedimentary wedge of the Gulf of Cadiz. The tectonic and seismic environments involved vary. However, all active seeps are located along crustal strike-slip faults, which clearly control the seepage of the deep-sourced fluids. Our results yield insights into the effects of the interplay of petroleum migration/trapping, deep sediment dewatering and gas hydrate formation on the geochemical signature of natural gas in deep marine sediments. The cross-disciplinary approach fostered by the FLOWS project yields first indications on the relations between tectonics and seismicity and the secondary processes that shape the geochemical compositions of the fluids transported from deeply buried sediments to the seafloor. It highlights the role of strike-slip faults as the locus of deep fluid transport to the

  8. Rejuvenation of the lithosphere by the Hawaiian plume.

    PubMed

    Li, Xueqing; Kind, Rainer; Yuan, Xiaohui; Wölbern, Ingo; Hanka, Winfried

    2004-02-26

    The volcanism responsible for creating the chain of the Hawaiian islands and seamounts is believed to mark the passage of the oceanic lithosphere over a mantle plume. In this picture hot material rises from great depth within a fixed narrow conduit to the surface, penetrating the moving lithosphere. Although a number of models describe possible plume-lithosphere interactions, seismic imaging techniques have not had sufficient resolution to distinguish between them. Here we apply the S-wave 'receiver function' technique to data of three permanent seismic broadband stations on the Hawaiian islands, to map the thickness of the underlying lithosphere. We find that under Big Island the lithosphere is 100-110 km thick, as expected for an oceanic plate 90-100 million years old that is not modified by a plume. But the lithosphere thins gradually along the island chain to about 50-60 km below Kauai. The width of the thinning is about 300 km. In this zone, well within the larger-scale topographic swell, we infer that the rejuvenation model (where the plume thins the lithosphere) is operative; however, the larger-scale topographic swell is probably supported dynamically.

  9. Subduction-Driven Recycling of Continental Margin Lithosphere

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Bezada, Maximiliano; Niu, Fenglin; Palomeras, Imma; Humphreys, Eugene; Carbonell, Ramon; Gallart, Josep; Schmitz, Michael; Miller, Meghan

    2016-04-01

    Subduction recycling of oceanic lithosphere, a central theme of plate tectonics, is relatively well understood. Recycling continental lithosphere is more difficult to recognize, can take a number of different forms, and appears to require an external trigger for initiation. Delamination and localized convective downwelling are two processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. We describe a related process that can lead to the loss of continental lithosphere adjacent to a subduction zone: Subducting oceanic plates can entrain and recycle lithospheric mantle from an adjacent continent and disrupt the continental lithosphere far inland from the subduction zone. Body wave tomograms from dense broadband seismograph arrays in northeastern South America (SA) and the western Mediterranean show larger than expected volumes of positive velocity anomalies which we identify as the subducted Atlantic slab under northeastern SA, and the Alboran slab beneath the Gibraltar arc (GA). The positive anomalies lie under and are aligned with the continental margins at sublithospheric depths. The continental margins along which the subduction zones have traversed, i.e. the northeastern SA plate boundary and east of GA, have significantly thinner lithosphere than expected. The thinner than expected lithosphere extends inland as far as the edges of nearby cratons as determined from receiver function images and surface wave tomography. These observations suggest that subducting oceanic plates viscously entrain and remove continental mantle lithosphere from beneath adjacent continental margins, modulating the surface tectonics and pre-conditioning the margins for further deformation. The latter can include delamination of the entire lithospheric mantle and include the lower crust, as around GA, inferred by results from active and passive seismic experiments. Viscous removal of continental margin lithosphere creates LAB topography leading

  10. Global Seismic Imaging of the Lithosphere Asthenosphere Boundary

    NASA Astrophysics Data System (ADS)

    Tharimena, S.; Rychert, C.; Harmon, N.

    2015-12-01

    The lithosphere asthenosphere boundary (LAB) beneath oceans separates rigid, conductively cooling plates from the underlying warm ductile convecting mantle, characterized by low seismic wave velocities and high attenuation. The depth and nature of the lithosphere asthenosphere boundary is fundamental to our understanding of plate tectonics and mantle convection. Although conductive cooling models establish that oceanic lithosphere cools, thickens and subsides as it ages, this simple realization of the tectonic plates is not well understood. The depth, sharpness, composition and defining mechanism of the LAB remains elusive. Although oceanic lithosphere constitutes the bulk of the tectonic plates, precisely imaging the LAB has proved challenging. Here we use SS precursors from 25 years of seismic data to image and globally map the depth of the LAB across the Pacific, Atlantic and Indian Oceans. The result represents a vast improvement in lateral coverage of discontinuities in comparison to previous results. The depth of the discontinuity varies from 25 to 130 km within an error of ±5 km. We observe a general trend of increasing discontinuity depth with plate age, although some old oceanic lithosphere has shallower discontinuities. Overall, the results are suggestive of two distinct mantle layers.

  11. The Lithospheric Structure of Southern Africa from Magnetotelluric Sounding

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Jones, A. G.; Atekwana, E. A.

    2014-12-01

    Measurements of mantle electrical conductivity, made through the magnetotelluric method, offer considerable insight into the structure of cratonic lithosphere. A particularly expansive data set has been collected in Southern Africa, started through the Southern Africa Magnetotelluric Experiment (SAMTEX) experiment, now continuing north through Zambia as part of the Project for Rift Initiation Development and Evolution (PRIDE) experiment. The combined data set highlights large variability in lithospheric structure that broadly correlates with surface geology: cratonic lithosphere is generally thick and electrically resistive, while much thinner lithosphere is seen beneath mobile belts. In areas of relatively uniform resistivity structure, we have constructed resistivity-depth profiles and use new laboratory data to place constraints on the water content of lithospheric mantle. Uncertainty in our estimates arises from differences between different laboratory results, but our data are generally consistent with a slightly damp upper lithospheric mantle above a dry and strong cratonic root. Other areas show complexity of structure that is difficult to understand using current knowledge of conductivity -the Bushveld complex, where the mantle is highly conductive, is one such example. In southwestern Zambia, the lithosphere is seen to be very thin (around 50km) beneath mobile belt terrain, as was inferred nearly 40 years ago on the basis of high heatflow. The mantle is highly conductive, most likely due to a combination of elevated temperatures, water content and perhaps a trace amount of melting. This anomalous structure may be linked to the southwest propagation of the East African Rift system.

  12. Imaging the Lithospheric - Asthenosphere Boundary Structure of the Westernmost Mediterranean Using S Receiver Functions

    NASA Astrophysics Data System (ADS)

    Butcher, A.; Miller, M. S.; Diaz Cusi, J.

    2013-12-01

    The Iberian microcontinent, in the westernmost portion of the Mediterranean is comprised of the Betic Cordillera Zone, the South Portuguese Zone, the Ossa-Morena Zone, the Central Iberian Zone, the Galicia-Tras Os Montes Zone, the West Asturian-Leonese Zone, and the Cantabrian Zone. These zones were created as a result of three primary stages of Iberian evolution, with the last being the collision of Iberia with in the Late Cretaceous. In northeastern Africa, Neogene convergence between the European and African plates created the Alboran System: comprised of the Gibraltar Arc, Rif-Betics, Atlas Mountains, and Alboran Sea. The primary purpose of this study is to advance our understanding of the structure and evolution of the lithosphere, as well as the lithosphere - asthenosphere boundary (LAB) of the Iberian microcontinent and surrounding areas. Of particular interest is improving our understanding of the evolution from ocean subduction to continental collision that has been taking place in the late stage convergence of this part of the Mediterranean., The region is a particularly complex three-dimensional settings and, several models have been suggested to explain the tectonics of this system including: continental lithospheric delamination and drips, slab breakoff, and subducting slab rollback. Here we use broadband seismic data from 272 broadband instruments deployed in Morocco and Spain as part of the PICASSO and IBERArray (Díaz, J., et al., 2009) projects to constrain lithospheric structure via identification of S-to-p conversions from S receiver functions (SRF). We use SRFs to image the characteristics and structure in terms of seismic velocity discontinuities, including the crust-mantle boundary (Moho) and the lithosphere-asthenosphere boundary (LAB) beneath the region. Our SRFs agree with previous work that suggests that the lithospheric thickness is shallow (~65 km) beneath the Atlas and thickest (~120 km) beneath the Rif. Additionally, LAB structures

  13. Deep thermal structure and thickness of the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Jaupart, C.; Mareschal, J.; Kaminski, E.

    2002-12-01

    There is no doubt that cratonic lithosphere is much thicker than oceanic lithosphere, but large uncertainties remain on its thickness, deep thermal structure, physical properties (density, rheology) and composition. Heat flow and crustal heat production data in North America demonstrate that, in steady-state conditions, heat flow variations are essentially due to changes of crustal heat production. Crustal models in several different geological provinces and considerations on the thermal stability of the crust through geological time constrain the mantle heat flow to be in the range 11-16 mWm-2. For such low values, heat flow data are not sensitive to small, but significant, lateral variations of the mantle heat flow (≈ 20%). Downward extrapolation of temperature profiles requires knowledge of thermal conductivity and heat production in the lithospheric mantle. For a thick lithosphere, surface heat flow is not in equilibrium with the instantaneous heat production and basal heat flow, and surface measurements record a time-average. With current estimates of heat production in the lithospheric mantle (≈ 0.02 mWm-3), thermal models rule out that lithospheric thickness is greater than 330 km. Using heat flow data and other constraints on lithospheric temperatures, such as xenolith (P,T) equilibration conditions, one can only construct geotherms in a stable conductive layer. Thus, comparison with seismic constraints cannot be made without considering the dynamical interactions with the convective mantle. A small-scale convection model shows that temperatures at the base of the continental lithosphere may not be equal to those of the well-mixed (isentropic) oceanic convecting mantle. Constraints on deep lithospheric structure can also be obtained using thermal transients, as recorded for example by sedimentary accumulations in intracratonic basins. The stability of thick roots requires the lithospheric mantle to be compositionally buoyant. Localized thinning results

  14. Lithospheric cooling as a basin forming mechanism within accretionary crust.

    NASA Astrophysics Data System (ADS)

    Holt, P. J.; Allen, M.; van Hunen, J.; Björnseth, H. M.

    2009-04-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, lithospheric stretching, lithospheric cooling following rifting and, possibly, dynamic topography. In this work forward models have been used to investigate lithospheric growth due to cooling beneath accretionary crust, as a new basin forming mechanism. Accretionary crust is formed from collision of island arcs, accretionary complexes and fragments of reworked older crust at subduction zones, and therefore has thin lithosphere due to melting and increased convection. This is modeled using a 1D infinite half space cooling model similar to lithospheric cooling models for the oceans. The crustal composition and structure used in the models has been varied around average values of accretionary crust to represent the heterogeneity of accretionary crust. The initial mantle lithosphere thickness used in the model was 20 km. The model then allows the lithosphere to thicken as it cools and calculates the subsidence isostatically. The model produces sediment loaded basins of 2-7 km for the various crustal structures over 250 Myrs. Water-loaded tectonic subsidence curves from the forward models were compared to tectonic subsidence curves produced from backstripping wells from the Kufrah and Ghadames basins, located on the accretionary crust of North Africa. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. This shows that lithospheric cooling provides a good method for producing large basins with prolonged subsidence in accretionary crust without the need for initial extension.

  15. The international lithosphere program

    NASA Astrophysics Data System (ADS)

    Flinn, Edward A.

    The International Lithosphere Program is a new international interdisciplinary research program in the solid earth sciences that has been established by the International Council of Scientific Unions (ICSU) at the joint request of the International Union of Geodesy and Geophysics (IUGG) and the International Union of Geological Sciences (IUGS). Its goal is a better understanding of the development of the earth, particularly those aspects upon which human society depends for its well-being.The International Lithosphere Program (ILP) is a natural sequel to a series of international cooperative projects in the geosciences that began with the International Geophysical Year in 1957-58 and continued with the Upper Mantle Project in the 1960's and the International Geodynamics Project (IGP) in the 1970's. In 1977, IUGG and IUGS established an inter-union task group to consider the possibility of a successor to the IGP for the 1980's. The task group, under cochairmen Carl Kisslinger (Cooperative Institute for Research in Environmental Sciences, University of Colorado), foreign secretary of the American Geophysical Union, and J. Henning Illies (Geophysical Institute, University of Karlsruhe, Federal Republic of Germany), invited suggestions and comments from the two unions and the national committees in the member countries. Their report, which was completed late in 1978, proposed a new project on the dynamics, origin, and evolution of the lithosphere. This proposal was approved by the IUGS Executive Committee in December 1979 and by the IUGS Council in June 1980. An inter-union steering committee, established in 1979 under the joint chairmanship of Kisslinger and Illies, developed the organizational framework and constitution of the new program. These were approved by resolution of the ICSU Governing Board in September 1980, and the Inter-Union Commission on the Lithosphere (ICL) was established to implement the program. National members of ICSU were urged to establish

  16. High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western Alps (Etirol-Levaz Slice, Valtournenche, Italy)

    NASA Astrophysics Data System (ADS)

    Fassmer, Kathrin; Obermüller, Gerrit; Nagel, Thorsten J.; Kirst, Frederik; Froitzheim, Nikolaus; Sandmann, Sascha; Miladinova, Irena; Fonseca, Raúl O. C.; Münker, Carsten

    2016-05-01

    The Etirol-Levaz Slice in the Penninic Alps (Valtournenche, Italy) is a piece of eclogite-facies continental basement sandwiched between two oceanic units, the blueschist-facies Combin Zone in the hanging wall and the eclogite-facies Zermatt-Saas Zone in the footwall. It has been interpreted as an extensional allochthon from the continental margin of Adria, emplaced onto ultramafic and mafic basement of the future Zermatt-Saas Zone by Jurassic, rifting-related detachment faulting, and later subducted together with the future Zermatt-Saas Zone. Alternatively, the Etirol-Levaz Slice could be derived from a different paleogeographic domain and be separated from the Zermatt-Saas Zone by an Alpine shear zone. We present Lu-Hf whole rock-garnet ages of two eclogite samples, one from the center of the unit and one from the border to the Zermatt-Saas Zone below. These data are accompanied by a new geological map of the Etirol-Levaz Slice and the surrounding area, as well as detailed petrology of these two samples. Assemblages, mineral compositions and garnet zoning in both samples indicate a clockwise PT-path and peak-metamorphic conditions of about 550-600 °C/20-25 kbar, similar to conditions proposed for the underlying Zermatt-Saas Zone. Prograde garnet ages of the two samples are 61.8 ± 1.8 Ma and 52.4 ± 2.1 Ma and reflect different timing of subduction. One of these is significantly older than published ages of eclogite-facies metamorphism in the Zermatt-Saas Zone and thus contradicts the hypothesis of Mesozoic emplacement. The occurrence of serpentinite and metagabbro bodies possibly derived from the Zermatt-Saas Zone inside the Etirol-Levaz Slice suggests that the latter is a tectonic composite. The basement slivers forming the Etirol-Levaz Slice and other continental fragments were subducted earlier than the Zermatt-Saas Zone, but nonetheless experienced similar pressure-temperature histories. Our results support the hypothesis that the Zermatt-Saas Zone and the

  17. 155,000 years of West African monsoon and ocean thermal evolution.

    PubMed

    Weldeab, Syee; Lea, David W; Schneider, Ralph R; Andersen, Nils

    2007-06-01

    A detailed reconstruction of West African monsoon hydrology over the past 155,000 years suggests a close linkage to northern high-latitude climate oscillations. Ba/Ca ratio and oxygen isotope composition of planktonic foraminifera in a marine sediment core from the Gulf of Guinea, in the eastern equatorial Atlantic (EEA), reveal centennial-scale variations of riverine freshwater input that are synchronous with northern high-latitude stadials and interstadials of the penultimate interglacial and the last deglaciation. EEA Mg/Ca-based sea surface temperatures (SSTs) were decoupled from northern high-latitude millennial-scale fluctuation and primarily responded to changes in atmospheric greenhouse gases and low-latitude solar insolation. The onset of enhanced monsoon precipitation lags behind the changes in EEA SSTs by up to 7000 years during glacial-interglacial transitions. This study demonstrates that the stadial-interstadial and deglacial climate instability of the northern high latitudes exerts dominant control on the West African monsoon dynamics through an atmospheric linkage. PMID:17540896

  18. Adakites from collision-modified lithosphere

    NASA Astrophysics Data System (ADS)

    Haschke, M.; Ben-Avraham, Z.

    2005-08-01

    Adakitic melts from Papua New Guinea (PNG) show adakitic geochemical characteristics, yet their geodynamic context is unclear. Modern adakites are associated with hot-slab melting and/or remelting of orogenic mafic underplate at convergent margins. Rift-propagation over collision-modified lithosphere may explain the PNG adakite enigma, as PNG was influenced by rapid creation and subduction of oceanic microplates since Mesozoic times. In a new (rift) tectonic regime, decompressional rift melts encountered and melted remnant mafic eclogite and/or garnet-amphibolite slab fragments in arc collisional-modified mantle, and partially equilibrated with metasomatized mantle. Alternatively, hot-slab melting in a proposed newborn subduction zone along the Trobriand Trough could generate adakitic melts, but recent seismic P-wave tomographic models lack evidence for subducting oceanic lithosphere in the adakite melt region; however they do show deep subduction zone remnants as a number of high P-wave anomalies at lithospheric depths, which supports our proposed scenario.

  19. Constraints on Lithosphere Rheology from Observations of Volcano-induced Deformation

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2011-12-01

    Mantle rheology at lithospheric conditions (i.e., temperature < 1200 oC) is important for understanding fundamental geodynamic problems including the dynamics of plate tectonics, subducted slabs, and lithosphere-mantle interaction. Laboratory studies suggest that the rheology at lithospheric conditions can be approximately divided into three different regimes: brittle or frictional sliding, semi-brittle, and plastic flow. In this study, we seek to constrain lithospheric rheology, using observations of deformation at seamounts and oceanic islands caused by volcanic loading. Volcano-induced surface deformation depends critically on lithospheric rheology at the time of seamount and oceanic island emplacement and while it changes rapidly on short time-scales it does not change significantly on long time-scales. In an earlier study [Watts and Zhong, 2000], we used the effective elastic thickness at seamounts and oceanic islands inferred from the observations of deformation and gravity to determine an effective activation energy of 120 KJ/mol for lithospheric mantle with Newtonian rheology. We have now expanded this study to incorporate non-Newtonian power-law and frictional sliding rheologies, and more importantly, to include realistic 3-D volcanic load geometries. We use the Hawaiian Islands as an example. We construct 3-D loads for the Hawaiian Islands by applying an appropriate median filter to remove Hawaiian swell topography and correcting for lithospheric age effect on the bathymetry. The loads are then used in 3-D finite element loading models with viscoelastic, non-Newtonian and frictional sliding rheologies to determine the lithospheric response including surface vertical motions and lithospheric stresses. Comparisons of our new model predictions to observations suggest that the activation energy of lithospheric mantle is significantly smaller than most experimentally determined values for olivine at high temperatures, but may be consistent with more recent

  20. Accretion and Subduction of Oceanic Lithosphere: 2D and 3D Seismic Studies of Off-Axis Magma Lenses at East Pacific Rise 9°37-40'N Area and Downgoing Juan de Fuca Plate at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo

    Two thirds of the Earth's lithosphere is covered by the ocean. The oceanic lithosphere is formed at mid-ocean ridges, evolves and interacts with the overlying ocean for millions of years, and is eventually consumed at subduction zones. In this thesis, I use 2D and 3D multichannel seismic (MCS) data to investigate the accretionary and hydrothermal process on the ridge flank of the fast-spreading East Pacific Rise (EPR) at 9°37-40'N and the structure of the downgoing Juan de Fuca plate at the Cascadia subduction zone offshore Oregon and Washington. Using 3D multichannel seismic (MCS) data, I image a series of off-axis magma lenses (OAML) in the middle or lower crust, 2-10 km from the ridge axis at EPR 9°37-40'N. The large OAMLs are associated with Moho travel time anomalies and local volcanic edifices above them, indicating off-axis magmatism contributes to crustal accretion though both intrusion and eruption (Chapter 1). To assess the effect of OAMLs on the upper crustal structure, I conduct 2-D travel time tomography on downward continued MCS data along two across-axis lines above a prominent OAML in our study area. I find higher upper crustal velocity in a region ~ 2 km wide above this OAML compared with the surrounding crust. I attribute these local anomalies to enhanced precipitation of alteration minerals in the pore space of upper crust associated with high-temperature off-axis hydrothermal circulation driven by the OAML (Chapter 2). At Cascadia, a young and hot end-member of the global subduction system, the state of hydration of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes, yet is poorly known. As local zones of higher porosity and permeability, faults constitute primary conduits for seawater to enter the crust and potentially uppermost mantle. From pre-stack time migrated MCS images, I observe pervasive faulting in the sediment section up to 200 km from the deformation front. Yet faults with large throw and

  1. Ocean internal waves off the North American and African coasts from ERTS-1

    NASA Technical Reports Server (NTRS)

    Apel, J. R.; Charnell, R. L.

    1974-01-01

    Periodic features observed in the ocean portions of certain ERTS-1 images have been identified with reasonable certainty as surface manifestations of oceanic internal gravity waves. A series of images taken over the New York Bight, commencing with the 16 July 1972 overpass and continuing on into autumn of 1973, has shown the internal waves to be present when summer solar heating stratifies the water sufficiently well to support such oscillations. When fall and winter wind action mixes the shelf water down to the bottom, the waves no longer appear. In the Bight, the wavelengths range from approximately 400 to 1000 m, with the wave field being most sharply delineated near the edges of the continental shelf, at the mouth of the Hudson Canyon. They appear in packets consisting of several waves separated by 10-15 km, which propagate up on the shelf and disappear.

  2. The Natural History and Conservation of Indian Ocean Humpback Dolphins (Sousa plumbea) in South African Waters.

    PubMed

    Plön, Stephanie; Cockcroft, Victor G; Froneman, William P

    2015-01-01

    Although most knowledge on the biology of Sousa plumbea has primarily come from South African waters, a number of research gaps remain on the natural history and status of the species in the region. Research on two populations in South African waters for which some historical data exist may aid in highlighting long-term changes in the biology and natural history of this little known coastal delphinid. Recent studies on the age, growth and reproduction of animals incidentally caught in shark nets in Richards Bay, KwaZulu-Natal, yielded a lower maximum age estimate of 24 (previously 46) growth-layer-groups (GLGs), sexual maturity of 7.5 and 8 GLGs in males and females (previously 12-13 and 10 GLGs, respectively), an ovulation rate of 0.2 and a 5-year calving interval (previously 0.3 and 3-year calving interval) than previously reported. These differences may be due to a difference in the interpretation of GLGs between observers or a predominance of young males being caught in the shark nets. Stomach content analysis revealed a change in the relative proportions of the main prey items over the past 25 years, but no difference in species richness or diversity was found between the sexes. No change in trophic level was recorded between 1972 and 2009. Field studies in Algoa Bay, Eastern Cape, conducted 16 years apart indicated a decline in the mean group size (from 7 to 3 animals), a decline in the maximum group size (from 24 to 13 animals), an increase in solitary individuals (15.4-36%), and a change in behaviour from predominantly foraging (64-18%) to mainly travelling (24-49%). The observed changes are suggestive of a change in food availability, resulting in a range shift or a potential decline in numbers. These studies indicate the importance of long-term studies to monitor population changes and their possible causes. A number of threats, such as shark nets, pollution (noise and chemical), and coastal development and disturbance, to the humpback dolphin populations

  3. The Natural History and Conservation of Indian Ocean Humpback Dolphins (Sousa plumbea) in South African Waters.

    PubMed

    Plön, Stephanie; Cockcroft, Victor G; Froneman, William P

    2015-01-01

    Although most knowledge on the biology of Sousa plumbea has primarily come from South African waters, a number of research gaps remain on the natural history and status of the species in the region. Research on two populations in South African waters for which some historical data exist may aid in highlighting long-term changes in the biology and natural history of this little known coastal delphinid. Recent studies on the age, growth and reproduction of animals incidentally caught in shark nets in Richards Bay, KwaZulu-Natal, yielded a lower maximum age estimate of 24 (previously 46) growth-layer-groups (GLGs), sexual maturity of 7.5 and 8 GLGs in males and females (previously 12-13 and 10 GLGs, respectively), an ovulation rate of 0.2 and a 5-year calving interval (previously 0.3 and 3-year calving interval) than previously reported. These differences may be due to a difference in the interpretation of GLGs between observers or a predominance of young males being caught in the shark nets. Stomach content analysis revealed a change in the relative proportions of the main prey items over the past 25 years, but no difference in species richness or diversity was found between the sexes. No change in trophic level was recorded between 1972 and 2009. Field studies in Algoa Bay, Eastern Cape, conducted 16 years apart indicated a decline in the mean group size (from 7 to 3 animals), a decline in the maximum group size (from 24 to 13 animals), an increase in solitary individuals (15.4-36%), and a change in behaviour from predominantly foraging (64-18%) to mainly travelling (24-49%). The observed changes are suggestive of a change in food availability, resulting in a range shift or a potential decline in numbers. These studies indicate the importance of long-term studies to monitor population changes and their possible causes. A number of threats, such as shark nets, pollution (noise and chemical), and coastal development and disturbance, to the humpback dolphin populations

  4. Lithospheric age dependence of off-ridge volcano production in the North Pacific

    SciTech Connect

    Batiza, R.

    1981-08-01

    Data for numbers of seamounts on North Pacific Ocean crust of different age indicate that the production rate of new off-ridge seamounts (volcanoes) is proportional to the inverse of the square root of the age of the lithosphere. This observation is consistent with several hypotheses which have been offered to explain the origin of off-ridge oceanic volcanism and, in combination with petrologic and paleomagnetic evidence for small oceanic volcanoes, leads to a new self-consistent model for off-ridge volcanism. In this model, the production rate of off-ridge volcanoes is controlled primarily by the availability of fracture-zone conduit systems in the thickening lithosphere. In contrast, mantle plume or ''hotspot'' volcanoes may punch through the oceanic lithosphere. Decreasing production rate of off-ridge volcanoes on old oceanic lithosphere may be associated with decreasing extent of partial melting of chemically and isotopically heterogeneous mantle material.

  5. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    USGS Publications Warehouse

    Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.

    2014-01-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.

  6. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  7. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hudgins, T. R.; Mukasa, S. B.; Simon, A. C.; Moore, G.; Barifaijo, E.

    2015-05-01

    We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the western branch of the East African Rift System and use these data to investigate the generation of H2O- and CO2-rich melts at up to ~150 km depth. Measured H2O and CO2 concentrations reach ~2.5 and ~1 wt%, respectively, representing some of the highest CO2 concentrations measured in a melt inclusion to date. These measurements represent direct evidence of the high CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has been previously inferred to be necessary for the low mantle potential temperatures in the area. Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 5-12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by molecular dynamics calculations and high-pressure experiments for melt generation at 3-6 GPa; the depth of melting suggested by previous studies in the area. These melt inclusions measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep upper mantle that have been proposed based on experimental and seismic evidence. Primitive-mantle normalized trace element patterns more closely resemble those found in subduction settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be indicate that the measured volatile abundances may be related to Neoproterozoic subduction during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-related metasomatism.

  8. Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados

    NASA Astrophysics Data System (ADS)

    Chien, Chia-Te; Mackey, Katherine R. M.; Dutkiewicz, Stephanie; Mahowald, Natalie M.; Prospero, Joseph M.; Paytan, Adina

    2016-05-01

    Bioassay incubation experiments conducted with nutrients and local atmospheric aerosol amendments indicate that phosphorus (P) availability limited phytoplankton growth in the low-nutrient low-chlorophyll (LNLC) ocean off Barbados. Atmospheric deposition provides a relatively large influx of new nutrients and trace metals to the surface ocean in this region in comparison to other nutrient sources. However, the impact on native phytoplankton is muted due to the high ratio of nitrogen (N) to P (NO3:SRP > 40) and the low P solubility of these aerosols. Atmospheric deposition induces P limitation in this LNLC region by adding more N and iron (Fe) relative to P. This favors the growth of Prochlorococcus, a genus characterized by low P requirements and highly efficient P acquisition mechanisms. A global three-dimensional marine ecosystem model that includes species-specific phytoplankton elemental quotas/stoichiometry and the atmospheric deposition of N, P, and Fe supports this conclusion. Future increases in aerosol N loading may therefore influence phytoplankton community structure in other LNLC areas, thereby affecting the biological pump and associated carbon sequestration.

  9. A global view of the lithosphere-asthenosphere boundary.

    PubMed

    Rychert, Catherine A; Shearer, Peter M

    2009-04-24

    The lithosphere-asthenosphere boundary divides the rigid lid from the weaker mantle and is fundamental in plate tectonics. However, its depth and defining mechanism are not well known. We analyzed 15 years of global seismic data using P-to-S (Ps) converted phases and imaged an interface that correlates with tectonic environment, varying from 95 +/- 4 kilometers beneath Precambrian shields and platforms to 81 +/- 2 kilometers beneath tectonically altered regions and 70 +/- 4 kilometers at oceanic island stations. High-frequency Ps observations require a sharp discontinuity; therefore, this interface likely represents a boundary in composition, melting, or anisotropy, not temperature alone. It likely represents the lithosphere-asthenosphere boundary under oceans and tectonically altered regions, but it may constitute another boundary in cratonic regions where the lithosphere-asthenosphere boundary is thought to be much deeper.

  10. A global view of the lithosphere-asthenosphere boundary.

    PubMed

    Rychert, Catherine A; Shearer, Peter M

    2009-04-24

    The lithosphere-asthenosphere boundary divides the rigid lid from the weaker mantle and is fundamental in plate tectonics. However, its depth and defining mechanism are not well known. We analyzed 15 years of global seismic data using P-to-S (Ps) converted phases and imaged an interface that correlates with tectonic environment, varying from 95 +/- 4 kilometers beneath Precambrian shields and platforms to 81 +/- 2 kilometers beneath tectonically altered regions and 70 +/- 4 kilometers at oceanic island stations. High-frequency Ps observations require a sharp discontinuity; therefore, this interface likely represents a boundary in composition, melting, or anisotropy, not temperature alone. It likely represents the lithosphere-asthenosphere boundary under oceans and tectonically altered regions, but it may constitute another boundary in cratonic regions where the lithosphere-asthenosphere boundary is thought to be much deeper. PMID:19390041

  11. Southern Ocean hotspot tracks and the Cenozoic absolute motion of the African, Antarctic, and South American plates

    NASA Astrophysics Data System (ADS)

    Hartnady, C. J. H.; le Roex, A. P.

    1985-10-01

    A detailed analysis, based on an Antarctica-Africa finite reconstruction at chron C29 (64 Ma), an assumption of no relative wander between the Marion/Prince Edward and Tristan hotspots, and on recently revised bathymetric maps of the Southern Ocean region, shows that the fixed hotspot reference frame is tenable for "absolute" plate motions. Bouvet hotspot, and probably Trinidade as well, also shows little or no Cenozoic relative motion. Contrary to previous models. Bouvet hotspot is unrelated to the Meteor Rise-Cape Rise seamount chain. Instead, the bathymetric data, when compared with the predicted hotspot tracks, indicate another hotspot exists near the southernmost South Atlantic spreading ridge segment. New geochemical evidence from the latter region supports this hypothesis in showing the effects of "plume enrichment" from a source that is compositionally distinct from Bouvet. The peculiar zig-zag shape of the Cape Rise-Meteor Rise lineament is the result of this hotspot crossing the active transform segment of the Falkland-Agulhas Fracture Zone in Late Mesozoic times, followed by an early Cenozoic ridge-jump to the pre-weakened trace on the then South American plate. From the averaged Cenozoic absolute motions of the African, Antarctic, and South American plates, it is evident that Antarctica has been most nearly stationary in an absolute motion sense.

  12. Formation of the Cameroon Volcanic Line by lithospheric basal erosion: Insight from mantle seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Elsheikh, A. A.; Gao, S. S.; Liu, K. H.

    2014-12-01

    The formation mechanism of intraplate volcanism such as that along the Cameroon Volcanic Line (CVL) is one of the controversial problems in global tectonics. Models proposed by previous studies include re-activation of ancient suture zones, lithospheric thinning by mantle plumes, and edge-driven mantle convection. To provide additional constraints on the models for the formation of the CVL, we measured shear-wave splitting parameters at 36 stations in the vicinity of the CVL using a robust procedure involving automatic batch processing and manual screening to reliably assess and objectively rank shear-wave splitting parameters (fast polarization directions and splitting times). The resulting 432 pairs of splitting parameters show a systematic spatial variation. Most of the measurements with ray-piercing points (at 200 km depth) beneath the CVL show a fast direction that is parallel to the volcanic line, while the fast directions along the coastline are parallel to the continental margin. The observations can best be interpreted using a model that involves a channel flow at the bottom of the lithosphere originated from the NE-ward movement of the asthenosphere relative to the African plate. We hypothesize that progressive thinning of the lithosphere through basal erosion by the flow leads to decompression melting and is responsible for the formation of the CVL. The model is consistent with the lack of age progression of the volcanoes in the CVL, can explain the formation of both the continental and oceanic sections of the CVL, and is supported by previous geophysical observations and geodynamic modeling results.

  13. Revisiting the Ridge-Push Force Using the Lithospheric Geoid

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2014-12-01

    The geoid anomaly and driving force associated with the cooling oceanic lithosphere ("ridge push") are both proportional to dipole moment of the density-depth distribution, and allow a reevaluation of the ridge push force using the geoid. The challenge with this approach is to isolate the "lithospheric geoid" from the full geoid signal. Our approach is to use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. However, even this "lithospheric geoid" is noisy, and thus we average over 100 profiles evenly spaced along the global ridge system to obtain an average geoid step associated with the mid-ocean ridges. Because the positive ridge geoid signal is largest near the ridge (and to capture fast-spreading ridges), we evaluate symmetrical profiles extending ±45 m.y. about the ridge. We find an average ridge geoid anomaly of 4.5m, which is equivalent to a 10m anomaly for 100 m.y. old oceanic lithosphere. This geoid step corresponds to a ridge push force of ~2.4 x1012N/m for old oceanic lithosphere of 100 m.y., very similar to earlier estimates of ~2.5 x1012N/m based on simple half-space models. This simple half-space model also predicts constant geoid slopes of about 0.15 m/m.y. for cooling oceanic lithosphere. Our observed geoid slopes are consistent with this value for ages up to 40-50 m.y., but drop off to lower values at greater ages. We model this using a plate cooling model (with a thickness of the order of 125km) to fit the observation that the geoid anomaly and ridge driving force only increase slowly for ages greater than 40 m.y. (in contrast to the half-space model where the linear dependence on age holds for all ages). This reduction of the geoid slope results in a 20% decrease in the predicted ridge push force. This decrease is due to the combined effects of treating the oceanic lithosphere as a cooling plate (vs. a half-space), and the loss of geoidal

  14. Metasomatized lithosphere and the origin of alkaline lavas.

    PubMed

    Pilet, Sébastien; Baker, Michael B; Stolper, Edward M

    2008-05-16

    Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.

  15. The influence of hotspots on crustal accretion of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Li, H.; Lin, J.; Zhu, J.; Tao, C.

    2012-12-01

    We investigated the spatial variations in topography and crustal thickness in the South Atlantic Ocean between 10°N and 60°S, focusing on the influence of hotspots on oceanic crustal accretion. We first calculated residual mantle Bouguer gravity anomaly (RMBA) by subtracting from free-air anomaly (FAA), the effects of seafloor topography, sediment thickness, and lithospheric cooling as a function of crustal age. The RMBA was then inverted to yield a model of gravity-derived oceanic crustal thickness, calibrated by seismically determined profiles globally. Finally, to reveal asymmetry in crustal thickness across the Southern Mid-Atlantic Ridge (SMAR), we rotated the points on the African plate east of the SMAR to their "mirror" conjugate points on the South American plate, using the Euler pole rotation theorem. Results of analysis show that 2.8% by area (1.5% by volume) of the South Atlantic Ocean crust is < 5.2 km, 36% by area (28% by volume) is between 5.2 km and 7.6 km, while 62% by area (71% by volume) is > 7.6 km. The percentages of thickened crust (i.e., > 7.6 km) are larger for the South Atlantic than for the global oceanic crust, revealing significant hotspot influence in the South Atlantic. We further calculated that the average oceanic crustal thickness on the African plate is 0.31 km thicker than that of the South American plate, which might result from more hotspots on the African plate. Prior to 80 Ma, the integrated effect of hotspots appears to be greater on the South American plate than the African plate. During 0 to 80 Ma, however, the asymmetry seems to be reversed, i.e., influence of hotspots on the African plate appears to be greater than on the South American plate. Based on the asymmetry in crustal thickness, we partitioned the South Atlantic into 5 sub-areas: Region 1 (5°N-10°N), Region 2 (5°N-5°S), Region 3 (5°S-20°S), Region 4 (15°S-35°S), and Region 5 (30°S-50°S). In Regions 1, 3 and 5, the average crust thickness is greater on

  16. West African Climate and Linkages with the Atlantic Ocean, the Mediterranean Basin and Eurasia

    NASA Astrophysics Data System (ADS)

    Paz, S.; Tourre, Y. M.

    2010-09-01

    large-scale and multi-temporal circulation, with SLP (SST) ‘footprints' over the Atlantic Ocean (AMO) and the eastern Mediterranean (NAWA) climate, and their linkages with Sahelian climate variability. Winter AMO can thus be viewed as a valuable predictors for Sahel rainfall intensity. The AMO is expected to exhibit a predominantly positive phase for the upcoming decades which could enhance Sahelian rainfall during that period. Within the climate change context, the above results are important in regions where public health and socio-economical issues are highly dependent on multi-temporal climate variability. It is hoped that indices presented here can be used as predictors by modelers and decision-makers to improve mitigation of regional multi-disciplinary impacts from climate variability and contribute to early warning systems (EWS).

  17. The relative role of ocean-atmosphere interaction and African easterly waves in the generation and development of Tropical cyclones in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Cabos, William; Sein, Dmitry; Hodges, Kevin; Jacob, Daniela

    2016-04-01

    We use the regionally coupled ocean - atmosphere model ROM and its atmospheric component REMO in standalone configuration in order to assess the relative role of ocean feedbacks and the African easterly waves in the simulation of tropical cyclonic activity in the Atlantic ocean. To this end, a number of coupled and uncoupled simulations forced by ERA-Interim boundary conditions have been carried out. In one set of simulations, the atmospheric domain includes the Northern Africa land masses, where the easterly waves are formed. In a second set of simulations, the easterly waves are taken from the ERA Interim reanalysis, as atmospheric domain excludes explicitly the African land masses. We study the statistics of modeled tracks of the tropical cyclones in the simulations. We found that the coupling has a strong impact on the number of tropical cyclones generated in the Northern Tropical Atlantic. In the coupled run it was close to the observations, while in the uncoupled runs the number of tropical cyclones was strongly overestimated. The coupling also influences the simulated position of the ITCZ.

  18. Anorogenic plateau formation induced by a heated lithosphere

    NASA Astrophysics Data System (ADS)

    Duesterhoeft, Erik; Oberhänsli, Roland; Wichura, Henry; Bousquet, Romain

    2013-04-01

    Plateau formation processes in geodynamic settings outside of orogens have not been unambiguously established. Those anorogenic plateaus are topographic barriers that reach medium elevations of approximately 1500 m, e.g. South African-, East African- or Mongolian Plateau. They are inferred to be closely link to mantle plumes away from plate boundaries. Such a heat source at the lithosphere-asthenosphere boundary (LAB) have an influence to the density structure of the crust and lithosphere, due to thermal expansion and mineralogical changes. Consequently, these density variations affect topography and thus we hypothesize topographic variations by lithospheric thermal expansion, due to heating processes at the LAB. Based on this hypothesis, we calculated the density distribution along a one-dimensional depth-profile using two different approaches - with and without mineral reactions. Therefore, we present a new petrologic aspect for plateau uplift, because models on plateau uplift generally do not take into account the effects of metamorphic phase transitions and ignore the fact that chemical reactions influence both, the stability of mineral assemblages and rock density. Our model underscores how metamorphic density of the lithosphere varies with depth and reveals how combination of chemical composition of rocks, mineralogy, and geothermal gradient all have significant effects on the density distribution within the lithosphere and ultimately the evolution of anorogenic plateaus. Furthermore, in order to better understand the temporal characteristics of mantle plume related topography we calculated the timing to generate significant topographic uplift. Our results suggest uplift rates of >20 m/Myr within the first 20 Myr after the onset of heating and considerable primary thermal uplift of approximately 700 m after 20 Myr as a viable mechanism for anorogenic plateau formation. In this way, our model may help to explain pre-rift topography of the East-African Plateau

  19. Nature and evolution of Neoproterozoic ocean-continent transition: Evidence from the passive margin of the West African craton in NE Mali

    NASA Astrophysics Data System (ADS)

    Renaud, Caby

    2014-03-01

    The Timétrine massif exposed west of the Pan-African suture zone in northeastern Mali belongs to the passive margin of the West African craton facing to the east intra-oceanic arc assemblages and 730 Ma old pre-collisional calc-alkaline plutons. The Timétrine lithologic succession includes from the base to the top Mesoproterozoic cratonic to passive margin formations overlain by deep-sea Fe-Mg schists. Submarine metabasalts and two ultramafic massifs of serpentinized mantle peridotites are inserted as olistoliths towards the top whereas turbidites of continental origin represent the younger unit. Field and petrological data have revealed a distinct metasedimentary sequence attached to the serpentinized peridotites. It essentially consists of impure carbonates, Fe jaspers and polymictic breccias containing altered blocks of mantle peridotites, most rocks being enriched in detrital chromite. This association is interpreted as reworked chemical and detrital sediments derived from the alteration of mafic-ultramafic rocks. It is argued that mantle exhumation above sea floor took place during the Neoproterozoic rifting and crustal thinning period under possible tropical conditions, as suggested by the large volume of silicified serpentinites. In spite of greenschist facies metamorphic overprint characterized by widespread Fe-rich blue amphiboles that are not diagnostic of high-pressure conditions, it is possible to reconstruct a former ocean-continent transition similar to that evidenced for the Mesozoic period, followed by the deposition of syn-to post rift terrigeneous turbidites roughly coeval with ocean spreading some time before 800 Ma. It is concluded that the serpentinite massifs were tectonically emplaced first in an extensional setting, then incorporated within deep-sea sediments as olistoliths and finally transported westward during late Neoproterozoic collisional tectonics onto the West African craton.

  20. Limiting depth of magnetization in cratonic lithosphere

    NASA Technical Reports Server (NTRS)

    Toft, Paul B.; Haggerty, Stephen E.

    1988-01-01

    Values of magnetic susceptibility and natural remanent magnetization (NRM) of clino-pyroxene-garnet-plagioclase granulite facies lower crustal xenoliths from a kimberlite in west Africa are correlated to bulk geochemistry and specific gravity. Thermomagnetic and alternating-field demagnetization analyses identify magnetite (Mt) and native iron as the dominant magnetic phases (totaling not more than 0.1 vol pct of the rocks) along with subsidiary sulfides. Oxidation states of the granulites are not greater than MW, observed Mt occurs as rims on coarse (about 1 micron) Fe particles, and inferred single domain-pseudosingle domain Mt may be a result of oxidation of fine-grained Fe. The deepest limit of lithospheric ferromagnetism is 95 km, but a limit of 70 km is most reasonable for the West African Craton and for modeling Magsat anomalies over exposed Precambrian shields.

  1. Integrative Analysis of Mantle Lithosphere Rheology

    NASA Astrophysics Data System (ADS)

    Hirth, G.; Collins, J. A.; Molnar, P. H.; Kelemen, P. B.

    2014-12-01

    We will present an analysis of the rheology of mantle lithosphere based on extrapolation of lab-based flow laws, microstructural characterization of mantle shear zones and xenoliths, and the spatial distribution of mantle earthquakes and seismic anisotropy. As a starting point, we illustrate the similarity in the evolution of olivine lattice preferred orientation (LPO) for cm-scale lab samples (e.g., Zhang et al., 2000) and 100 meter-scale shear zones (e.g., Warren et al., 2008; Skemer et al., 2010). This correlation provides strong support for the extrapolation of lab data in both time and scale. The extrapolation of these results to plate-scale processes is supported by the analysis of shear wave splitting across the Alpine Fault on the South Island of New Zealand and its surrounding ocean basins (Zietlow et al., 2014). For the same region, the similarity in the fast Pn azimuth with the fast shear wave polarization directions indicates high strain deformation of relatively cold (~500-700oC) mantle lithosphere across a region 100-200 km wide (Collins and Molnar, 2014). This latter observation suggests that the lithosphere is significantly weaker than predicted by the extrapolation of dislocation creep or Peierls creep flow laws. Weakening via promotion of grain size sensitive creep mechanisms (diffusion creep and DisGBS) is likely at these conditions; however, studies of exhumed mantle shear zones generally indicate that the activation of these processes leads to strain localization at scales <<200 km. These observations motivate us to consider rheological constraints derived from geodetic studies and earthquake depths in regions where deformation of the lithosphere occurs at similar conditions. At face value, these data provide additional support for the extrapolation of lab data; the depth extent of earthquakes is consistent with estimates for the conditions where a transition from stable to unstable frictional sliding occurs (e.g., Boettcher et al., 2007) - and

  2. Shear-wave velocity structure of young Atlantic Lithosphere from dispersion analysis and waveform modelling of Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven

    2016-04-01

    The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.

  3. Lithospheric Response of the Anatolian Plateau in the Realm of the Black Sea and the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ergun, Mustafa

    2016-04-01

    The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at

  4. How thick is the lithosphere?

    PubMed

    Kanamori, H; Press, F

    1970-04-25

    A rapid decrease in shear velocity in the suboceanic mantle is used to infer the thickness of the lithosphere. It is proposed that new and highly precise group velocity data constrain the solutions and imply a thickness near 70 km.

  5. Circum-Arctic lithospheric transects from onshore to offshore

    NASA Astrophysics Data System (ADS)

    Pease, V.; Coakley, B.; Faleide, J. I.; Jokat, W.; Miller, E. L.; Stephenson, R.; Meisling, K. E.

    2015-12-01

    Understanding the evolution of the lithosphere over time involves the integration and interpretation of geological and geophysical data, combined with good knowledge of the physical processes at work in the lithosphere giving rise to past and present structures. Tectonic activity related to the rifting process created the present-day structure of today's Arctic basins and bathymetric highs, and in the process modified older structures and architecture of the crust and lithosphere. The correlation of circum-Arctic terranes and orogens help to not only reconstruct paleogeography but to also define the role and determine the nature of the lithospheric processes that were active in the complex tectonic evolution of the Arctic. CALE (Circum Arctic Lithosphere Evolution), an international and multidisciplinary effort involving c. 35 geologists and geophysicists from ten different countries working to link the onshore and offshore regions across the circum-Arctic region, is a scientific network in it's last year of a 5-year program. Sedimentary cover and crust to mantle cross-sections from onshore to offshore have been created integrating the latest scientific knowledge and data sets available for the Arctic. The project's principal Arctic transects include: Ellesmere-Canada Basin, Pacific Ocean-Lomonosov Ridge through the Bering Strait, across the Laptev Sea rift to the DeLong Islands, Barents and Kara regions across Timan-Pechora and Taimyr. These sections, the culmination of the CALE project, and their principle findings will be presented for the first time with discussion of outstanding issues yet to be resolved.

  6. Lithospheric structure of Africa: insights from its effective elastic thickness variations.

    NASA Astrophysics Data System (ADS)

    Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.

    2009-04-01

    Detailed images of lithospheric structure can help understand how surface deformation is related to Earth's deep structure. A proxy for lithospheric structure is its effective elastic thickness, Te, which mainly depends on its thermal state and composition. We present a new effective elastic thickness, Te, map of the African lithosphere estimated using the coherence function between topography and Bouguer anomaly. The Bouguer anomaly used in this study derives from the EGM 2008 model, which constitutes the highest resolution gravity database over Africa, allowing a significant improvement on lateral resolution in Te. Our map shows that Te is high > 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari presents the thinnest elastic thicknesses and, based on additional seismic and mineral physics studies, we suggest this may reflect modification of the lithosphere by anomalously hot mantle beneath the lithosphere. The effective elastic thickness is lowest beneath the Afar and Main Ethiopian rifts, where the maximum extension and thinnest lithosphere of Africa occur. The Tanzania craton appears as two rigid blocks separated by a relatively low Te area located southwest of lake Victoria. This coincides with the centre of seismic radial anisotropy beneath the craton, suggested to be the Victoria plume head by Weertrane et al. [2003]. Along the eastern branch of the East African rift Te is low and increases abruptly at 2 to 3 degrees South, coinciding with a deepening of earthquake depocenter and a change from narrow to wide rifting. These and other considerations suggest that the southern part of the eastern branch is underlain by thick, rigid cratonic lithosphere. Finally, the northern part of Africa is characterised by low Te on the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces, suggesting that the underlying lithospheric mantle has been thermally thinned. Corridors of low Te connect these volcanic provinces

  7. Lithospheric Architecture Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.

    2015-12-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches 􏰂350 km thick but is thinner (􏰂200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the lithosphere-asthenosphere boundary (LAB) conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  8. Evolution of the lithosphere in Pakistan

    NASA Astrophysics Data System (ADS)

    Farah, Abul; Abbas, Ghazanfar; De Jong, Kees A.; Lawrence, Robert D.

    1984-06-01

    The geological setting of Pakistan in the framework of the modern concept of plate tectonics is unique in the sense that, within an area of about 800,000 km 2, critical tectonic junctions of different interacting plates and microplates are present in an environment where field exposures are excellent. Here we discuss the dynamics of these various plate boundaries. Two types of active plate boundaries are conspicuous: (1) convergent boundaries characterized by continent-continent collision, obduction, and thrusting in the northern region of the Himalaya and by oceanic crust subduction with a volcanic arc and a wide accretionary wedge in the southern region of Chagai and Makran; (2) a transform boundary, the Chaman transform zone, characterized by very large strike-slip and lesser thrusting. The Chaman transform zone connects the Makran convergence zone, where oceanic lithosphere is being subducted beneath the Lut and Afghan microplates, with the Himalayan convergence zone, where the Indo-Pakistan lithosphere is underthrusting Eurasia. The Chaman zone is at present an intracontinental plate boundary with oblique motion, characterized by north-south strike-slip faults and eastward thrusting and folding in the Kirthar-Sulaiman mountain belt. This mountain belt, the northwestern margin of the Indo-Pak subcontinent, was an Atlantic-type margin from the late Paleozoic until the Cretaceous. In the Cretaceous, the continental margin became a plate boundary; a thrust belt was formed in the Paleocene, and fragments of the oceanic crust were obducted, either as thrust sheets (Muslimbagh) or as an ophiolitic melange (Bela and Waziristan).

  9. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite

  10. Seismic Tomography of the Arctic Lithosphere and Asthenosphere

    NASA Astrophysics Data System (ADS)

    Schaeffer, Andrew; Lebedev, Sergei

    2015-04-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, primarily reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere, in addition to delineating the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new, 3D tomographic model of the upper mantle and the crust of the Arctic region is constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provides improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. Sharp velocity gradients in western Canada indicate that the craton boundary at depth closely follows the Rocky Mountain Front. High velocities between the Great Bear Arc and Beaufort Sea provide convincing evidence for the recently proposed 'MacKenzie Craton', unexposed at the surface. In Eurasia, cratonic continental lithosphere extends northwards beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons and intervening Proterozoic belts mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures and deformation fronts. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster

  11. Mechanical heterogeneities and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Petri, Benoit; Mohn, Geoffroy; Schenker, Filippo L.; Schmalholz, Stefan

    2016-04-01

    Detailed geological and geophysical studies of passive margins have highlighted the multi-stage and depth-dependent aspect of lithospheric thinning. Lithospheric thinning involves a variety of structures (normal faults, low angle detachments, extensional shear zones, extraction faults) and leads to a complex architecture of passive margins (with e.g. necking zone, mantle exhumation, continental allochthons). The processes controlling the generation and evolution of these structures as well as the impact of pre-rift inheritance are so far incompletely understood. In this study, we investigate the impact of pre-rift inheritance on the development of rifted margins using two-dimensional thermo-mechanical models of lithospheric thinning. To first order, we represent the pre-rift mechanical heterogeneities with lithological layering. The rheologies are kept simple (visco-plastic) and do not involve any strain softening mechanism. Our models show that mechanical layering causes multi-stage and depth-dependent extension. In the initial rifting phase, lithospheric extension is decoupled: as the crust undergoes thinning by brittle (frictional-plastic) faults, the lithospheric mantle accommodates extension by symmetric ductile necking. In a second rifting phase, deformation in the crust and lithospheric mantle is coupled and marks the beginning of an asymmetric extension stage. Low angle extensional shear zones develop across the lithosphere and exhume subcontinental mantle. Furthemore, crustal allochthons and adjacent basins develop coevally. We describe as well the thermal evolution predicted by the numerical models and discuss the first-order implications of our results in the context of the Alpine geological history.

  12. The Influence of Pleistocene Climatic Changes and Ocean Currents on the Phylogeography of the Southern African Barnacle, Tetraclita serrata (Thoracica; Cirripedia)

    PubMed Central

    Reynolds, Terry V.; Matthee, Conrad A.; von der Heyden, Sophie

    2014-01-01

    The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041–0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures

  13. The influence of Pleistocene climatic changes and ocean currents on the phylogeography of the southern African barnacle, Tetraclita serrata (Thoracica; Cirripedia).

    PubMed

    Reynolds, Terry V; Matthee, Conrad A; von der Heyden, Sophie

    2014-01-01

    The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041-0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures

  14. The influence of Pleistocene climatic changes and ocean currents on the phylogeography of the southern African barnacle, Tetraclita serrata (Thoracica; Cirripedia).

    PubMed

    Reynolds, Terry V; Matthee, Conrad A; von der Heyden, Sophie

    2014-01-01

    The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041-0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures

  15. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  16. Lithospheric structure and compensation mechanisms of the Galapagos Archipelago

    NASA Astrophysics Data System (ADS)

    Feighner, Mark A.; Richards, Mark A.

    1994-04-01

    Volcanic islands of the Galapagos Archipelago are the most recent subaerial expression of the Galapagos hotspot. These islands and numerous seamounts are constructed mainly upon a broad volcanic platform that overlies very young (less than 10 m.y.) oceanic lithosphere just south of the active Galapagos Spreading Center. The 91 deg W fracture zone crosses the platform and creates an estimated 5-m.y. age discontinuity in the lithosphere. Major tectonic features of the Galapagos include an unusually broad distribution of volcanic centers, pronounced structural trends such as the NW-SE Wolf-Darwin Lineament (WDL), and a steep escarpment along the western and southern margins of the archipelago. We use shipboard gravity and bathymetry data along with Geosat geoid data to explain the tectonic and structural evolution of the Galapagos region. We model the gravity anomalies using a variety of compensation models, including Airy isostasy, continuous elastic flexure of the lithosphere, and an elastic plate with embedded weaknesses, and we infer significant lithospheric strength variations across the archipelago. The outboard parts of the southern and western escarpment are flexurally supported with an effective elastic thickness of approximately 12 km. This area includes the large shield volcanoes of Fernandina and Isabela Islands, where the lithosphere regionally supports these volcanic loads. The central platform is weaker, with an elastic thickness of 6 km or less, and close to Airy isostasy. The greatest depths to the Moho are located beneath eastern Isabela Island and the central platform. Thinner lithosphere in this region may account for the broad distribution of volcanoes, the extended period of eruption of the central volcanoes, and their reduced size. The transition from strong to weak lithosphere along the southern escarpment appears to be abrupt, within the resolution of our models, and can be best represented by a free end or faultlike discontinuity. Also

  17. On geoid heights and flexure of the lithosphere at seamounts

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Ribe, N. M.

    1984-12-01

    The sea surface height has now been mapped to an accuracy of better than ±1 m by using radar altimeters on board orbiting satellites. The major influence on the mean sea surface height is the marine geoid which is an equipotential surface. We have carried out preliminary studies of how oceanic volcanoes, which rise above the ocean floor as isolated seamounts and oceanic islands or linear ridges, contribute to the marine geoid. Simple one- and two-dimensional models have been constructed in which it is assumed that the oceanic lithosphere responds to volcanic loads as a thin elastic plate overlying a weak fluid substratum. Previous studies based on gravity and bathymetry data and uplift/subsidence patterns show that the effective flexural rigidity of oceanic lithosphere and the equivalent elastic thickness Te increase with the age of the lithosphere at the time of loading. The models predict that isolated seamounts emplaced on relatively young lithosphere on or near a mid-ocean ridge crest will be associated with relatively low amplitude geoid anomalies (about 0.4-0.5 m/km of height), while seamounts formed on relatively old lithosphere, on ridge flanks, will be associated with much higher amplitude anomalies (1.4-1.5 m/km). Studies of the Seasat altimetric geoid prepared by NASA's Jet Propulsion Laboratory support these model predictions; geoid amplitudes are relatively low over the Mid-Pacific Mountains and Line Islands, which formed on or near a mid-ocean ridge crest, and relatively high over the Magellan Seamounts and Wake Guyots, which formed off ridge. Direct modeling of the altimetric geoid over these features is complicated, however, by the wide spacing of the satellite tracks (which can exceed 100 km) and poor bathymetric control beneath individual satellite tracks. In regions where multibeam bathymetric surveys are available, models can be constructed that fit the altimetric geoid to better than ±1 m. Studies of geoid anomalies over the Emperor seamount

  18. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  19. Lithospheric architecture beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Miller, Meghan S.; Darbyshire, Fiona A.

    2015-07-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches ˜350 km thick but is thinner (˜200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the LAB conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  20. Continuous deformation versus faulting through the continental lithosphere of new zealand

    PubMed

    Molnar; Anderson; Audoine; Eberhart-Phillips; Gledhill; Klosko; McEvilly; Okaya; Savage; Stern; Wu

    1999-10-15

    Seismic anisotropy and P-wave delays in New Zealand imply widespread deformation in the underlying mantle, not slip on a narrow fault zone, which is characteristic of plate boundaries in oceanic regions. Large magnitudes of shear-wave splitting and orientations of fast polarization parallel to the Alpine fault show that pervasive simple shear of the mantle lithosphere has accommodated the cumulative strike-slip plate motion. Variations in P-wave residuals across the Southern Alps rule out underthrusting of one slab of mantle lithosphere beneath another but permit continuous deformation of lithosphere shortened by about 100 kilometers since 6 to 7 million years ago.

  1. Report of the panel on lithospheric structure and evolution, section 3

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Lang, Harold; Mcnutt, Marcia K.; Paylor, Earnest D.; Sandwell, David T.; Stern, Robert J.

    1991-01-01

    The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents.

  2. Understanding lithospheric stresses in Arctic: constraints and models

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Minakov, Alexander; Lebedeva-Ivanova, Nina; Gaina, Carmen

    2016-04-01

    This pilot project aims to model stress patterns and analyze factors controlling lithospheric stresses in Arctic. The project aims to understand the modern stresses in Arctic as well as to define the ways to test recent hypotheses about Cenozoic evolution of the region. The regions around Lomonosov Ridge and Barents Sea are of particular interest driven by recent acquisition of high-resolution potential field and seismic data. Naturally, the major contributor to the lithospheric stress distribution is the gravitational potential energy (GPE). The study tries to incorporate available geological and geophysical data to build reliable GPE. In particular, we use the recently developed integrated gravity inversion for crustal thickness which incorporates up-to-date compilations of gravity anomalies, bathymetry, and sedimentary thickness. The modelled lithosphere thermal structure assumes a pure shear extension and the ocean age model constrained by global plate kinematics for the last ca. 120 Ma. The results of this approach are juxtaposed with estimates of the density variation inferred from the upper mantle S-wave velocity models based on previous surface wave tomography studies. Although new data and interpretations of the Arctic lithosphere structure become available now, there are areas of low accuracy or even lack of data. To compensate for this, we compare two approaches to constrain GPE: (1) one that directly integrates density of modelled lithosphere and (2) one that uses geoid anomalies which are filtered to account for density variations down to the base of the lithosphere only. The two versions of GPE compared to each other and the stresses calculated numerically are compared with observations. That allows us to optimize GPE and understand density structure, stress pattern, and factors controlling the stresses in Arctic.

  3. Timing of maturation of a Neoproterozoic oceanic arc during Pan-African Orogeny: the Asmlil complex (Anti-Atlas, South Morocco)

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Watlet, Arnaud; Vandycke, Sara

    2016-04-01

    Many intra-oceanic paleo-arcs are exposed in the Pan-African belt surrounding the West African Craton. In the Moroccan Anti-Atlas, remnants of Intra-Oceanic Subduction Zone (IOSZ) are preserved in few erosional windows moulded along the Anti-Atlas Major fault. These complexes highlight a Neoproterozoic paleo-suture made of 760 My back-arc ophiolites thrusted to the south onto a dismembered band of oceanic arc relics. The Asmlil arc complex, located in the southern part of the Bou Azzer inlier, is made of (i) 755 to 745 My- intermediate banded gneiss interpreted as metavolcanic products of a juvenile oceanic arc. This latter has been intruded by (ii) medium-grained hornblende-gabbro and dioritic magmas, in turn intruded by (iii) medium- to coarse grained hornblenditic-granodioritic decametric intrusions under sub-magmatic HT conditions. Hornblende-gabbros are made of garnet + amphibole/cpx relics + epidote + rutile paragenesis. Calculated pseudosections yielded P ~ 11-12 kbar for T ranging between 600 and 720°C for garnet growth. Measured Zr-in-rutile thermometer gave slightly higher temperature ranging between 710-790°C. On the field, garnet-rich leucocratic veinlets suggest that moderate partial melting of the mafic rock or localized dehydration reactions took place under garnet-granulite conditions (>800°C for hydrated chemical system). New geochronological data on garnet-bearing leucogabbros constrain their emplacement at 700 ±7 My (U-Pb zircon with low Th/U < 0.3). Cooling age (< 700°C) of these HP-HT rocks yielded to a younger age of 654 ±7 My (U-Pb method on rutile). Geochemical data of each mafic and ultramafic facies (hornblende gabbro, garnet-bearing facies and hornblendite) show typical arc signature (marked by e.g. Nb-Ta anomaly, (La/Sm)N: 0.8-1.6 ; (Nb/La) < 0.46 ; high Nb/Ba ratio ; 0.4 < K2O < 2.1 wt%). Intrusive granodioritic magmas show depleted HREE trend similar to granitoids in the Kohistan paleo-arc. Melting modeling suggests they are

  4. Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment

    NASA Astrophysics Data System (ADS)

    Schmid, Florian; Schlindwein, Vera

    2016-07-01

    While nascent oceanic lithosphere at slow to fast spreading mid-ocean ridges (MOR) is relatively well studied, much less is known about the lithospheric structure and properties at ultraslow MORs. Here we present microearthquake data from a 1 year ocean bottom seismometer deployment at the amagmatic, oblique supersegment of the ultraslow spreading Southwest Indian Ridge. A refraction seismic experiment was performed to constrain upper lithosphere P-velocities and results were used to construct a 1D velocity model for earthquake location. Earthquake foci were located individually and subsequently relocated relative to each other to sharpen the image of seismically active structures. Frequent earthquake activity extends to 31 km beneath the seafloor, indicating an exceptionally thick brittle lithosphere and an undulating brittle-ductile transition that implies significant variations in the along-axis thermal structure of the lithosphere. We observe a strong relation between petrology, microseismicity distribution, and topography along the ridge axis: Peridotite-dominated areas associate with deepest hypocenters, vast volumes of lithosphere that deforms aseismically as a consequence of alteration, and the deepest axial rift valley. Areas of basalt exposure correspond to shallower hypocenters, shallower and more rugged axial seafloor. Focal mechanisms deviate from pure extension and are spatially variable. Earthquakes form an undulating band of background seismicity and do not delineate discrete detachment faults as common on slow spreading ridges. Instead, the seismicity band sharply terminates to the south, immediately beneath the rift boundary. Considering the deep alteration, large steep boundary faults might be present but are entirely aseismic.

  5. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea: constraints from Sr, Pb and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Altherr, Rainer; Henjes-Kunst, Friedhelm; Baumann, Albrecht

    1990-01-01

    Representative basalts from the axial trough of the Red Sea and from volcanic fields of the Arabian Peninsula ranging in composition from N-type MORB to basanite and in age from Early Miocene to Recent show a limited variation in their isotopic compositions: 87Sr/ 86Sr= 0.70240-0.70361 , 206Pb/ 204Pb= 18.040-19.634 , 207Pb/ 204Pb= 15.496-15.666 , 208Pb/ 204Pb= 37.808-39.710 , 143Nd/ 144Nd= 0.513194-0.512670 . There is a poorly constrained correlation between chemical composition and isotope ratios: with increasing alkalinity, Sr and Pb isotope ratios increase and the Nd isotope ratio tends to decrease. In Pb isotope variation diagrams most of the basalts plot significantly above the NHRLs, irrespective of tectonic setting, i.e. thickness of underlying crust and/or lithosphere. MORBs from the axial trough of the Red Sea have higher Pb isotope ratios for a given 87Sr/ 86Sr than MORBs from the Indian Ocean ridges, including the Carlsberg Ridge. It is therefore suggested that both spreading ridges tap different convective systems in the asthenosphere. The tectonic setting of the basalts is reflected in their Nd sbnd Sr isotope characteristics. Basalts from areas where the continental lithosphere is drastically thinned or absent (i.e. Red Sea axial trough and coastal plain, Afar) plot along a reference line defined by N-type MORB and Tristan da Cunha. Basalts erupted in areas with Pan-African crust of normal thickness and moderately thinned lithospheric mantle (i.e. rift shoulder) are characterized by relative low 143Nd/ 144Nd ratios and plot below the reference line towards an EM I component which is also found in the subcontinental lithospheric mantle. These differences in the Nd sbnd Sr isotopic compositions of the basalts are independent of bulk-rock chemistry and are therefore controlled by tectonic setting alone. It is suggested that the low- 143Nd/ 144Nd trend of basalts from the Arabian rift shoulder is caused by a significant contribution of the pre

  6. Failure strength of icy lithospheres

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1987-01-01

    Lithospheric strengths derived from friction on pre-existing fractures and ductile flow laws show that the tensile strength of intact ice under applicable conditions is actually an order of magnitude stronger than widely assumed. It is demonstrated that this strength is everywhere greater than that required to initiate frictional sliding on pre-existing fractures and faults. Because the tensile strength of intact ice increases markedly with confining pressure, it actually exceeds the frictional strength at all depths. Thus, icy lithospheres will fail by frictional slip along pre-existing fractures at yeild stresses greater than previously assumed rather than opening tensile cracks in intact ice.

  7. Seismic constraints on the lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.

    2014-05-01

    The basic tenet of plate tectonics is that a rigid plate, or lithosphere, moves over a weaker asthenospheric layer. However, the exact location and defining mechanism of the boundary at the base of the plate, the lithosphere-asthenosphere boundary (LAB) is debated. The oceans should represent a simple scenario since the lithosphere is predicted to thicken with seafloor age if it thermally defined, whereas a constant plate thickness might indicate a compositional definition. However, the oceans are remote and difficult to constrain, and studies with different sensitivities and resolutions have come to different conclusions. Hotspot regions lend additional insight, since they are relatively well instrumented with seismic stations, and also since the effect of a thermal plume on the LAB should depend on the defining mechanism of the plate. Here I present new results using S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions including Hawaii, Iceland, Galapagos, and Afar. In particular I focus on the lithosphere-asthenosphere boundary and discontinuities related to the base of melting, which can be used to highlight plume locations. I image a lithosphere-asthenosphere boundary in the 50 - 95 km depth range beneath Hawaii, Galapagos, and Iceland. Although LAB depth variations exist within these regions, significant thinning is not observed in the locations of hypothesized plume impingement from receiver functions (see below). Since a purely thermally defined lithosphere is expected to thin significantly in the presence of a thermal plume anomaly, a compositional component in the definition of the LAB is implied. Beneath Afar, an LAB is imaged at 75 km depth on the flank of the rift, but no LAB is imaged beneath the rift itself. The transition from flank of rift is relatively abrupt, again suggesting something other than a purely thermally defined lithosphere. Melt may also exist in the asthenosphere in these regions

  8. The lithosphere in central Europe—seismological and petrological aspects

    NASA Astrophysics Data System (ADS)

    Babuška, V.; Plomerová, J.

    1992-06-01

    The lithosphere thickness in the Variscan belt of central Europe varies between about 60 and 150 km with typical values of 100-120 km. Our estimates, derived from directionally independent representative P-wave residuals, are in good agreement with magnetotelluric determinations of a layer with increased conductivity in the upper mantle. The large-scale anisotropies of the subcrustal lithosphere beneath four seismological stations determined from spatial variations of relative P residuals vary between 6.5 and 15.2% for P velocities; the S-wave anisotropies determined from SKS polarizations vary between 2.2 and 6.7%. These values are in reasonable agreement with the anisotropies of peridotites determined in laboratory. Systematic spatial variations of the directional terms of relative residuals in dependence on azimuths and incidence angles suggest the existence of large dipping anisotropic structures in the subcrustal lithosphere. The residual patterns at most stations in the Saxothuringicum, Rhenohercynicum and in the Massif Central imply northwesterly orientated dips of the anisotropic structures while stations in the Moldanubicum, the Alpine Foredeep and most of the Alps north of the Insubric line, suggest southeasterly orientated dips. In our interpretation the dipping anisotropic structures may represent paleosubductions which retain olivine preferred orientations originating from an ancient oceanic lithosphere. The Variscides of central Europe may thus represent a collision zone characterized by two systems of paleosubductions divergent relative to the suture between the Moldanubicum and the Saxothuringicum.

  9. Investigating the Lithospheric Structure of Southern Madagascar

    NASA Astrophysics Data System (ADS)

    Tilmann, F. J.; Yuan, X.; Rumpker, G.; Heit, B.; Rambolamana, G.; Rindraharisaona, E.; Priestley, K. F.

    2013-12-01

    The island of Madagascar occupies a key region in both the assembly and the multi-stage breakup of Gondwanaland, itself part of the super-continent Pangaea. Madagascar consists of an amalgamation of continental material, with the oldest rocks being of Archaean age. Its ancient fabric is characterised by several shear zones, some of them running oblique to the N-S trend, in particular in the south of the island. More recently during the Neogene, moderate volcanism has occurred in the Central and Northern part of the island, and there are indications of uplift throughout Eastern Madagascar over the last 10 Ma. Although Madagascar is now located within the interior of the African plate and far away from major plate boundaries (> 1000 km from the East African rift system and even further from the Central and South-West Indian Ridges), its seismic activity indicates that some deformation is taking place, and present-day kinematic models based on geodetic data and earthquake moment tensors in the global catalogues identify a diffuse N-S-oriented minor boundary separating two microplates, which appears to pass through Madagascar. In spite of the presence of Archaean and Proterozoic rocks continent-wide scale studies indicate a thin lithosphere (<120 km) throughout Madagascar, but are based on sparse data and cannot resolve the difference between eastern and western Madagascar. We are operating a ENE-WSW oriented linear array of 25 broadband stations in southern Madagascar, extending from coast to coast and sampling the sedimentary basins in the west as well as the metamorphic rocks in the East, cutting geological boundaries seen at the surface at high angle. The array crosses the prominent Bongolava-Ranotsara shear zone which is thought to have been formed during Gondwanaland assembly. The array recorded the magnitude 5.3 earthquake of January 25, 2013 which occurred just off its western edge. In addition, in May 2013 we have deployed 25 short period sensors in the

  10. Melt-induced weakening of the lithosphere: theory and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Gerya, T.

    2015-12-01

    Melt-induced weakening can play critical role for enabling lithospheric deformation in the areas of intense mantle-derived magmatism, such as mid-ocean ridges, rift zones and hot spots. It implies significant reduction in the long-term brittle strength of the deforming lithosphere subjected to frequent melt percolation episodes. Such weakening corresponds to conditions when shear stress reaches the tensile yield strength of rocks at nearly equal melt and lithostatic pressures. The dominant features of melt transport in this regime are planar, sharply localized zones (dykes) in which melt is transported though the lithosphere from the source region. Mechanical energy dissipation balance shows that the long-term effective strength of the melt-weakened lithosphere is a strain-averaged rather than a time-averaged quantity. Its magnitude is mainly defined by the ratio between melt pressure and lithostatic pressure along dykes during short dyke emplacement episodes, which control most of the lithospheric deformation and mechanical energy dissipation. We quantified the range of expected values of the lithospheric strength by performing 2D numerical hydro-mechanical experiments on melt-bearing rock deformation as well as seismo-mechanical experiments on long-term lithospheric deformation assisted by frequent short-term dyke propagation episodes. These numerical experiments showed that the long-term lithospheric strength in the areas of intense magmatism can be as low as few MPa and is critically dependent on the availability of melt for enabling frequent episodes of dyke propagation through the lithosphere. Short-lived viscous-plastic deformation is localized along propagating weak dykes whereas bulk of the lithosphere only deforms elastically and is subjected to large deviatoric stresses. The experiments suggest that it is not the high strength of the elastically deforming strong lithospheric blocks but the low strength of visco-plastically deforming dykes that define the

  11. Re-Os isotopic constraints on the evolution of the Bangong-Nujiang Tethyan oceanic mantle, Central Tibet

    NASA Astrophysics Data System (ADS)

    Huang, Qi-Shuai; Shi, Ren-Deng; O'Reilly, Suzanne Y.; Griffin, William L.; Zhang, Ming; Liu, De-Liang; Zhang, Xiao-Ran

    2015-05-01

    Geochemical (including Re-Os isotopic) studies of the mantle rocks of ophiolites in the Bangong-Nujiang suture zone in central Tibet have provided a coherent picture of the evolution of the Bangong-Nujiang Tethyan oceanic mantle from mid-ocean ridge (MOR) to subduction-zone (SSZ) settings. Clinopyroxene (cpx)-harzburgites and lherzolites in the Bangong Lake ophiolite were formed in a MOR setting, as demonstrated by the Cr# of spinels (< 0.60) and whole-rock LREE-depleted patterns. Suprachondritic 187Re/188Os ratios (up to 1.833) of cpx-harzburgites and their spinels can be explained by interaction with melts derived from high Re/Os sources. Re-depletion (TRD) model ages (0.48-0.55 Ga) suggest these rocks may represent a Pan-African domain beneath the Gondwana continent. High TiO2 contents of spinels and whole-rock samples imply that the lherzolites were formed through a refertilization process. Similarly, Re-Os isotopic systematics of sulfides in the lherzolites (187Re/188Os: 0.173-1.717, 187Os/188Os: 0.12646-0.17340) demonstrate that they are mixtures of primary and secondary sulfides. 187Os/188Os ratios (0.1211-0.1226) of whole-rock lherzolites give TRD ages of 0.73-0.97 Ga, indicating the presence of Neoproterozoic lithospheric mantle under the spreading ridges. Mantle rocks in the SSZ-type ophiolites from Bangong Lake, Dongqiao and Nagqu reflect the complex evolution of the Bangong-Nujiang oceanic mantle during the SSZ stage. Most harzburgites from the Bangong Lake ophiolite give TRD ages of 1.0-1.5 Ga, possibly representing relics of a Mesoproterozoic lithospheric mantle. However, three samples have both high Os contents (1.32-4.45 ppb) and near-chondritic 187Os/188Os (0.1260-0.1297), and may represent Mesozoic oceanic lithospheric mantle. 187Os/188Os ratios of dunites and harzburgites from the Dongqiao and Nagqu ophiolites vary from 0.1174 to 0.1316 and give TRD ages up to 1.43 Ga, also suggesting the existence of a Mesoproterozoic lithospheric mantle which

  12. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  13. The Middle Neoproterozoic Sidi Flah Group (Anti-Atlas, Morocco): synrift deposition in a Pan-African continent/ocean transition zone

    NASA Astrophysics Data System (ADS)

    Fekkak, A.; Pouclet, A.; Benharref, M.

    2003-08-01

    The Middle Neoproterozoic (Cryogenian) Sidi Flah Group rocks are located in the Saghro inlier of the Eastern Anti-Atlas and consists of siliciclastic detrital sediment, interbedded basaltic lavas and small ultramafic bodies. Sediment deposition occurred in three turbiditic formations of a deep-sea fan environment and was controlled by synsedimentary collapses. The composition of sandstones and typological study of zircons indicate that detrital material came from the gneisses and granites of a proximal craton. The lavas are synsedimentary subaqueous flows. They show chemical signatures of initial rift tholeiites and of plume-related alkaline intraplate basalts. The ultramafic rocks are serpentinized peridotites that were emplaced along N160° synsedimentary faults as numerous bodies 20-50 m in size. Their petrographical (Cr-spinel signature) and chemical features correspond to intracontinental ultramafic cumulates. The emplacement of the ultramafic rocks was associated with hydrothermal activity that generated calcareous and siliceous rocks such as ophicalcites and jaspers. All the features of the sediments, the lavas and the ultramafic bodies strongly suggest a continent-ocean transition geotectonic context, in an advanced stage of continental rifting that we attribute to the pre-Pan-African ocean passive margin extension.

  14. Some Problems of the Lithosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory A.

    2015-04-01

    In 1911 Augustus Love published a monograph: Some Problems of Geodynamics which in part dealt with the problem of isostasy and the support of mountain belts. In doing so he was one of the first authors to use the concept of the lithosphere. Although his analysis used the framework of linear elasticity, he clearly recognised that the evident structural heterogeneity of the Earth's crust could not simply be interpreted in terms of elastic displacement, and he had no simple explanation for what processes had produced the major topographic features of the Earth: continents, oceans and mountain belts. Today we have a far more complete understanding of those processes, but there are still unresolved problems. In this presentation I will focus on two of those problems that are of particular interest in understanding the geological evolution of the continents: the relationship of near-surface faults and ductile deformation in the lithosphere, and the stability of continental lithosphere in actively deforming zones. While the lithosphere certainly manifests elastic strain, most notably in the context of earthquakes and seismic waves, the large strains that have shaped the continents result from diffuse ductile strain at the deeper levels, coupled with movement on fault planes in the upper crust. Although plates in many regions move coherently with little internal deformation, the stresses that act on different parts of a plate may cause broad deformation zones to develop within a plate interior. Plate boundaries that cross continental regions also typically involve broadly distributed deformation. In recent years the distribution of deformation in such regions is measured accurately using GPS, and in general is explained well by a model in which the lithosphere behaves as a thin viscous sheet, albeit with a non-linear temperature-dependent viscosity law. Such models are broadly consistent with laboratory deformation experiments on small rock samples. However, the

  15. Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Burov, E.; d'Acremont, E.; Leroy, S.; Huet, B.; Pourhiet, L.; Bellahsen, N.

    2013-08-01

    Physical properties of the mantle lithosphere have a strong influence on the rifting processes and rifted structures. In particular, in context of rifting, two of these properties have been overlooked: (1) Mohr-Coulomb plasticity (localizing pressure dependent) may not be valid at mantle depths as opposed to nonlocalizing pressure-independent plasticity (hereafter, perfect plasticity), and (2) lithosphere buoyancy can vary, depending on the petrological composition of the mantle. Focussing on the Arabian plate, we show that the lithosphere may be negatively buoyant. We use thermomechanical modeling to investigate the importance of mantle rheology and composition on the formation of a passive margin, ocean-continent transition (OCT) and oceanic basin. We compare the results of this parametric study to observations in the eastern Gulf of Aden (heat flow, refraction seismics and topography) and show that (1) mantle lithosphere rheology controls the margin geometry and timing of the rifting; (2) lithosphere buoyancy has a large impact on the seafloor depth and the timing of partial melting; and (3) a perfectly plastic mantle lithosphere 20 kg m-3 denser than the asthenosphere best fits with observed elevation in the Gulf of Aden. Finally, thermomechanical models suggest that partial melting can occur in the mantle during the Arabian crustal breakup. We postulate that the produced melt could then infiltrate through the remnant continental mantle lithosphere, reach the surface and generate oceanic crust. This is in agreement with the observed narrow OCT composed of exhumed continental mantle intruded by volcanic rocks in the eastern Gulf of Aden.

  16. 3D Crustal and Lithospheric Structures in the Southeastern Mediterranean and Northeastern Egypt

    NASA Astrophysics Data System (ADS)

    Saleh, Salah

    2013-12-01

    Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28-30 km below Cyprus and a depth of 26-28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22-24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33-35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90

  17. Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Kaus, Boris; Thielmann, Marcel

    2016-04-01

    The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving

  18. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary.

    PubMed

    Schmerr, Nicholas

    2012-03-23

    The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.

  19. Revealing the Fine Structures of the Lithosphere Asthenosphere Boundary

    NASA Astrophysics Data System (ADS)

    Olugboji, Tolulope Morayo

    Earth's near surface layer is made of relatively strong materials and often referred to as tectonic plates (or the lithosphere). Below this layer is a softer layer called the asthenosphere. The transition from strong lithosphere to weak asthenosphere is caused by temperature. However, recent high-resolution seismological observations suggest that the transition from the lithosphere to the asthenosphere cannot be attributed to the temperature alone: the change in seismic wave velocity at the boundary is too sharp and too large to be attributed solely to the gradual increase in temperature. There have been hot debates on what causes the observed sharp transition between two layers. In this dissertation, I synthesize insights from seismological observation, in particular receiver functions, with experiments and theory of anelasticity caused by grain-boundary sliding, to test and assess candidate models for the oceanic lithosphere asthenosphere boundary (LAB) as well as the Mid-lithospheric discontinues (MLD) observed in stable continental regions. I conduct new statistical analysis of the results of mineral physics experiments, providing a description of the uncertainties in the parameters of an elastically accommodated grain boundary sliding model (EAGBS). I extend the EAGBS model originally proposed by Karato (2012) to describe and explain the seismological signatures at the oceanic LAB, showing that this hypothesis suitably explains both the oceanic LAB and MLD in the continents within the limits of uncertainties in both mineral physics studies and seismological models. I then describe new supporting evidence for the specific predictions of the EAGBS model using novel seismological technique and data from stations in the oceanic regions. High-resolution receiver function (RF) stacking techniques can provide robust characterization of the age-dependence in the sharpness, depth, and anisotropic fabric within the normal oceanic LAB and underneath 'anomalous' Pacific

  20. The strength of Miranda's lithosphere

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert; Greeley, Ronald

    1991-01-01

    In attempting to understand the endogenic processes which have shaped the surface of an icy satellite, it is desirable to quantify the failure strength of the satellite's lithosphere. In a crust that is fractured on a large scale, frictional sliding along pre-existing fractures occurs in response to lower differential stresses than required to initiate fracture of pristine rock, thus governing failure of a brittle lithosphere. Failure is predicted along favorably oriented fracture planes; if fractures of all orientations are assumed to be present in the crust (as is expected of a heavily cratered lithosphere), frictional failure relations are directly applicable. The Coulomb criterion predicts that the shear stress (sigma sub t) and normal stress (sigma sub n) components on a fracture plane at failure are related as sigma sub t = mu-sigma sub n + S sub o, where S sub o is the cohesion and mu is the coefficient of friction. At moderate to high pressures, the frictional sliding strength of most materials is found to be sigma sub t = 0.85 sigma sub n.

  1. Neoproterozoic oceanic arc remnants in the Moroccan Anti-Atlas: reconstructing deep to shallow arc crustal sequence and tracking Pan-African subduction-accretion processes

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Berger, Julien; Baele, Jean-Marc; Bruguier, Olivier; Diot, Hervé; Ennih, Nasser; Plissart, Gaëlle; Monnier, Christophe; Spagna, Paul; Watlet, Arnaud; Vandycke, Sara

    2015-04-01

    The Pan-African belt of West and North Africa exposes many intra-oceanic arc complexes while they are rather uncommon in Phanerozoic orogenic belts. Intra-Oceanic Subduction Zone (IOSZ) in the Moroccan Anti-Atlas crop out in two tectonic windows moulded along the Anti-Atlas Major fault: the Sirwa (western-) and the Bou Azzer (eastern- part) inliers, associated with 760 Ma back-arc ophiolites. These arc sequences are located at the south of the ophiolites and are named the Iriri-Tachakoucht (Sirwa window) and the Asmlil arc complexes (Bou Azzer inlier). (i) The Iriri-Tachakoucht unit is composed of coarse grained hornblendite lenticular plugs, medium-grained hornblende gabbro dykes intruding andesitic to dacitic porphyroclastic gneiss. The contact between both lithologies is gradual and marked by an increasing migmatitization of the gneisses towards hornblendite intrusions. Phase diagram calculation were performed on garnet-bearing gneisses. Garnet cores have grown during a prograde P-T path up to upper amphibolite facies conditions (660°C at ~9 kbar) and recorded the burial of the Tachakoucht metavolcanics, while rims composition indicates that the rock recrystallized under higher temperature conditions (800°C at 4-5 kbar). These HT conditions match those for hornblendites igneous emplacement (850°C and 4 kbar) and this event leaded to more pronounced but still limited partial melting (< 10% melting) of the porphyroclastic gneisses. New geochronological data on the migmatitic gneiss (zircon U-Pb dating) constrain the protolith age at 733 ±7 Ma (zircons core) and the HT tectono-metamorphic event at 654 ±7 Ma (zircons rim). (ii) The Asmlil arc complex is made of hornblende gabbros and garnet-bearing gabbros intruded under HT conditions by dykes of medium-grained hornblendites, hornblende-gabbros and leucodiorites. These metagabbroic intrusions have been dated at 697 ± 8 Ma (U-Pb zircons). P-T pseudosections were calculated for garnet-bearing gabbros and

  2. Matching Lithosphere velocity changes to the GOCE gravity signal

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla

    2016-07-01

    Authors: Carla Braitenberg, Patrizia Mariani, Alberto Pastorutti Department of Mathematics and Geosciences, University of Trieste Via Weiss 1, 34100 Trieste Seismic tomography models result in 3D velocity models of lithosphere and sublithospheric mantle, which are due to mineralogic compositional changes and variations in the thermal gradient. The assignment of density is non-univocal and can lead to inverted density changes with respect to velocity changes, depending on composition and temperature. Velocity changes due to temperature result in a proportional density change, whereas changes due to compositional changes and age of the lithosphere can lead to density changes of inverted sign. The relation between velocity and density implies changes in the lithosphere rigidity. We analyze the GOCE gradient fields and the velocity models jointly, making simulations on thermal and compositional density changes, using the velocity models as constraint on lithosphere geometry. The correlations are enhanced by applying geodynamic plate reconstructions to the GOCE gravity field and the tomography models which places today's observed fields at the Gondwana pre-breakup position. We find that the lithosphere geometry is a controlling factor on the overlying geologic elements, defining the regions where rifting and collision alternate and repeat through time. The study is carried out globally, with focus on the conjugate margins of the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105---- Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th

  3. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower

  4. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development

    USGS Publications Warehouse

    Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A.

    2008-01-01

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by ???15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling 'millions of undernourished people' as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability. ?? 2008 by The National Academy of Sciences of the USA.

  5. Cenozoic alkali basalts from Jingpohu, NE China: The role of lithosphere asthenosphere interaction

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zhao, Jian-Xin

    2008-06-01

    The geochemistry of Late Cenozoic volcanic rocks from Jingpohu, NE China, provides important constraints on the petrogenesis of continental alkali basalts and lithospheric evolution in the eastern Central Asian Orogenic Belt (CAOB). Miocene-Pleistocene and Holocene basalts from Jingpohu show alkali affinities and are characterized by Ocean Island Basalt (OIB)-like REE and trace element patterns somehow resembling Holocene potassic rocks from Wudalianchi which are considered to be derived from ancient enriched lithospheric mantle. These basalts show depleted Sr-Nd isotopic compositions ( 87Sr/ 86Sr = 0.7039-0.7046, ɛNd = 1.3-6.0) and Dupal-like but unradiogenic Pb isotopic signatures ( 206Pb/ 204Pb = 17.54-17.94, 207Pb/ 204Pb = 15.45-15.54, 208Pb/ 204Pb = 37.71-38.07), comparable to the OIB. The combined geochemical and isotopic signatures are consistent with magma source mixing between a Focal Zone (FOZO)-like asthenospheric mantle component (characterized by enriched Pb and depleted Sr-Nd isotopic compositions) and an isotopically enriched EM1-type subcontinental lithospheric mantle component. Lithospheric thickness inferred from alkali basalts from different regions implies a progressive thinning from west to east in the CAOB, which may be caused by lithosphere-asthenosphere interaction. We propose that upwelling of the asthenosphere and subsequent mechanical and chemical erosion beneath lithospheric mantle induced by subduction of the Pacific plate might have been responsible for the lithospheric thinning in the eastern CAOB. The lithospheric thinning has proceeded in a dischronous way in the western North China Craton, near the Daxinganling-Taihangshan gravity lineament, but this event did not take place in the corresponding area of the CAOB. The lithospheric thinning shows different styles both spatially and temporally in the two tectonic units.

  6. Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary Swell

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Torne, M.; Banda, E.

    1995-12-01

    Deep penetrating multichannel seismic reflection and gravity data have been used to study the lithospheric structure of the Canary Swell. The seismic reflection data show the transition from undisturbed Jurassic oceanic crust, away from the Canary Islands, to an area of ocean crust strongly modified by the Canary volcanism (ACV). Outside the ACV the seismic records image a well layered sedimentary cover, underlined by a bright reflection from the top of the igneous basement and also relatively continuous reflections from the base of the crust. In the ACV the definition of the boundary between sedimentary cover and igneous basement and the crust-mantle boundary remains very loose. Two-dimensional gravity modelling in the area outside the influence of the Canary volcanism, where the reflection data constrain the structure of the ocean crust, suggests a thinning of the lithosphere. The base of the lithosphere rises from 100 km, about 400 km west of the ACV, to 80 km at the outer limit of the ACV. In addition, depth conversion of the seismic reflection data and unloading of the sediments indicate the presence of a regional depth anomaly of an extension similar to the lithospheric thinning inferred from gravity modelling. The depth anomaly associated with the swell, after correction for sediment weight, is about 500 m. We interpret the lithospheric thinning as an indication of reheating of old Mesozoic lithosphere beneath the Canary Basin and along with the depth anomaly as indicating a thermal rejuvenation of the lithosphere. We suggest that the most likely origin for the Canary Islands is a hot spot.

  7. Potential of space-borne GNSS reflectometry to constrain simulations of the ocean circulation. A case study for the South African current system

    NASA Astrophysics Data System (ADS)

    Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik

    2015-11-01

    The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations

  8. Arctic and Antarctic Crustal Thickness and Continental Lithosphere Thinning from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick J.; Alvey, Andy; Vaughan, Alan P. M.; Ferraccioli, Fausto; Jordan, Tom A. R. M.; Roberts, Alan M.

    2013-04-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. Antarctica, both peripherally and internally, experienced poly-phase rifting and continental breakup. We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location for the Polar Regions using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction. The method is carried out in the 3D spectral domain and predicts Moho depth and incorporates a lithosphere thermal gravity anomaly correction. Ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. A correction to the predicted continental lithospheric thinning derived from gravity inversion is made for volcanic material addition produced by decompression melting during continental rifting and seafloor spreading. For the Arctic, gravity data used is from the NGA (U) Arctic Gravity Project, bathymetry is from IBCAO and sediment thickness is from a new regional compilation. For Antarctica and the Southern Oceans, data used are elevation and bathymetry, free-air gravity anomaly, ice and sediment thickness from Smith and Sandwell (2008), Sandwell and Smith (2008) and Laske and Masters (1997) respectively, supplemented by Bedmap2 data south of 60 degrees south. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic, Antarctica and the Southern Ocean. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada

  9. Oceanic isostasy and intraplate stresses

    NASA Astrophysics Data System (ADS)

    Conder, J. A.

    2012-12-01

    Intraplate deformation is, by definition, unexplained by plate tectonics. Because intraplate strain rates are relatively small, dominant intraplate stresses driving observed deformation can derive from a number of different, non-mutually exclusive, sources. Driving processes include, but are not necessarily limited to, gravitational potential energy variations, glacial isostatic adjustment, and tractions at the base of the lithosphere from flow in the underlying asthenosphere. Tractions at the base of the lithosphere have long been suggested to contribute to plate motions as well as intraplate stresses. Any stationary asthenospheric flow field will contribute to plate driving or resistance, depending on whether asthenosphere is leading or lagging the overlying plate. Stationary flows that are also spatially variable will induce tractions imparting differential stress on the overlying lithosphere. One overlooked driver of asthenosphere flow at the asthenosphere-lithosphere boundary that could have implications for understanding intraplate stresses in the oceans is oceanic isostasy. In a manner similar to an icecap on a continent, the addition of ocean mass on top of subsiding lithosphere drives a small degree of flow in the asthenosphere to accommodate the excess mass accumulated on top. Typically, oceanic lithosphere is understood to cool and subside away from mid ocean ridges to a Pratt-like isostasy condition. However, the presence of seawater added on top of subsiding lithosphere necessitates an additional isostatic response that cannot be achieved through densification of lithosphere alone. The basic mathematics behind the isostasy-driven asthenospheric flow demonstrates that the flow is systematically from beneath younger seafloor towards older seafloor. The asthenosphere flux is variable, but systematic across the plate. The flow rate peaks beneath seafloor of about one-quarter the plate age and decreases to zero at the plate extremities. The maximum flow

  10. Ocean Pollution as a Result of Onshore Offshore Petroleum Activities in the African Gulf of Guinea Region

    NASA Astrophysics Data System (ADS)

    Abubakar, B.

    2007-05-01

    increasing cases of pollution of farmlands, rivers, wells and the environment in general. Apart from all these, what is even becoming more worrisome is that none of all these oil firms operating in the region is able to account on how it disposes its industrial toxic waste generated as a result of its industrial activities within the region. Finally Geological strata are adversely destroyed by seismographic activities, Sea creatures are destroyed by oil pollution and Means of livelihood of revering dwellers are often threatened by pollution. RECOMMENDATIONS After identifying how the pollution in the Gulf of Guinea region is increasing in relation to the increasing petroleum activities, I have come up with the following suggestions/recommendations. 1. AFRICAN UNION RESOLUTION The Organization of the Petroleum Exporting Countries (OPEC) in conjunction with the International Atomic Energy Agency (IAEA) should use their capacity to be able to influence the African Union (AU) to pass a resolution banning the illegal dumping of radioactive waste, Gas flaring and Costal bunkering in this part of the world. 2. RESEARCH AND INVESTIGATION The Organization of the Petroleum Exporting Countries, in conjunction with the United Nations Environmental Agency, the International Atomic Energy Agency and with the corporation of the African Union should send team of researchers to come and investigate this trend on petroleum pollution in the Gulf of Guinea region and proffer possible solutions in checking the menace.

  11. Venus Chasmata: A Lithospheric Stretching Model

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Head, J. W.

    1985-01-01

    An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.

  12. Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209

    USGS Publications Warehouse

    Griffin, Dale W.; Westphal, Douglas L.; Gray, Michael A.

    2006-01-01

    The objective of this study was to enhance our understanding of the fate and trans-Atlantic transport of dustborne microorganisms from Northern Africa to the Caribbean and Americas, and more specifically to determine if culturable populations could be detected at a mid-ocean site, closer to the source of dust relative to land-based Caribbean sites, during the early summer months of May and June. Between the dates of 22 May and 30 June 2003, daily air samples were collected and evaluated for the presence of culturable bacterial and fungal colony-forming units (CFU). Here we report a statistically significant correlation between daily atmospheric CFU counts at a mid-ocean research site (???15??N, 45??W) and daily desert dust concentrations as determined by the U.S. Navy's Naval Aerosol Analysis and Prediction System (NAAPS) Global Aerosol Model (Honrath et al. (2004). Journal of Geophysical Research, 109; Johnson et al. (2003). Global Biogeochemical Cycles, 17, 1063; Reid et al. (2004). Geophysical Research Letters, 31; Schollaert, Yoder, Westphal, & O'Reilly (2003). Journal of Geophysical Research, 108, 3191). ?? Springer Science+Business Media B.V. 2006.

  13. First seamount age evidence for significantly slower African plate motion since 19 to 30 Ma

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Stoffers, P.; van den Bogaard, P.; McWilliams, M.

    1999-09-01

    Resolving the time-space (and compositional) evolution of volcanism along long-lived South Atlantic hotspot trails is important to understanding the connection between hotspot volcanism and mantle plumes. 40Ar/39Ar ages are reported here for rocks dredged from a line of five individual seamounts along an ∼290 km northeast to southwest line extending from the vicinity of Saint Helena Island, and also for Circe Seamount. These seamounts were created in a midplate setting and could have formed rapidly (≤1 Myr). The St. Helena Seamount ages reveal a remarkably linear migration rate of volcanism of 20±1 mm/yr for at least the past 19 Myr, which is interpreted as the absolute motion of the African plate. Because this is much slower than estimated for earlier African plate migration it also represents the first evidence based on seamount ages for a significant deceleration (∼33%) of the African plate since at least 19 Ma. However, this change could have occurred as early as 30 Ma when the limited data for the Tristan/Gough hotspot chain are also considered. This deceleration supports a relationship between African plate speed and the upsurge of hotspot volcanism on the African continent at ∼25 Ma. We suggest that the increased number of oceanic African hotspots between ∼19 and 30 Ma points to a link also between major changes in plate motion and the onset and continuation of oceanic hotspot volcanism. Our study supports the assumption that chains of individual, rapidly (?) formed seamounts have considerably more potential of providing clear insights into how mantle plumes interact with overriding lithosphere than do those consisting of uninterrupted, more massive lines of hotspot volcanism.

  14. Convective thinning of the lithosphere: A mechanism for rifting and mid-plate volcanism on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Spohn, T.; Schubert, G.

    1982-01-01

    Thinning of the Earth's lithosphere by heat advected to its base is a possible mechanism for continental rifting and continental and oceanic mid-plate volcanism. It might also account for continental rifting-like processes and volcanism on Venus and Mars. Earth's continental lithosphere can be thinned to the crust in a few tens of million years by heat advected at a rate of 5 to 10 times the normal basal heat flux. This much heat is easily carried to the lithosphere by mantle plumes. The continent is not required to rest over the mantle hot spot but may move at tens of millimeters per year. Because of the constant level of crustal radioactive heat production, the ratio of the final to the initial surface heat flow increases much less than the ratio of the final to initial basal heat flow. For large increases in asthenospheric heat flow, the lithosphere is almost thinned to the crust before any significant change in surface heat flow occurs. Uplift due to thermal expansion upon thinning is a few kilometers. The oceanic lithosphere can be thinned to the crust in less than 10 million years if the heat advection is at a rate around 5 or more times the basal heat flow into 100 Ma old lithosphere. Uplift upon thinning can compensate the subsidence of spreading and cooling lithosphere.

  15. Polarization Anisotropy Along the Anatolian African Plate Boundary

    NASA Astrophysics Data System (ADS)

    Sandvol, E.; Polat, G.; Lough, A.; Sahin, S.; Turkelli, N.

    2006-12-01

    This study focuses on mantle flow beneath and around the Anatolian plate using measurements of seismic anisotropy. Observations of shear wave splitting across the Anatolian plate have a NE-SW fast direction and lag time similar to that observed from temporary broadband stations within the plate, indicating that the anisotropic fabric may be relatively uniform throughout the upper mantle beneath the Anatolian plate. The extensive young basaltic volcanism, regional travel time tomography, and regional phase attenuation tomography all indicate that the lithospheric mantle beneath most of the Anatolian plate has largely been removed or is very thin. Unless exceptionally high anisotropy exists in the thinned lithosphere, the main contribution to the observed delay times (of order 1 s) must therefore be asthenospheric and thus reflect recent asthenospheric flow patterns. One exception appears to be a change in the fast direction across a region of concentrated extension in western Anatolia. We observe a change in the orientation of the splitting that is consistent with the direction of crustal extension. The African-Anatolian plate boundary is made up of two very different convergent margins: the Hellenic arc to the west and the Cyprian arc to the east. There is substantial evidence that the Hellenic arc is retreating and the Cyprian arc is relatively stationary. Furthermore, both earthquake hypocenters and tomographic models indicate that the Cyprian angle of subduction is much less steep than the subduction occurring along the Hellenic arc. This substantial geometric difference implies that there is a tear or gap in the subduction of African oceanic lithosphere beneath the Anatolian plate along what is called the Isparta Angle. We are investigating mantle dynamics and mantle flow around and through this possible tear in the lithosphere. We will use a combination of seismic tomographic methods (surface wave, body wave, and attenuation) as well as neotectonics studies to

  16. Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals?

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-05-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  17. Columnar Aerosol Single-Scattering Albedo and Phase Function Retrieved from Sky Radiance Over the Ocean: Measurements of African Dust

    NASA Technical Reports Server (NTRS)

    Cattrall, Christopher; Carder, Kendall L.; Gordon, Howard R.

    2001-01-01

    The single-scattering albedo and phase function of African mineral dust are retrieved from ground-based measurements of sky radiance collected in the Florida Keys. The retrieval algorithm employs the radiative transfer equation to solve by iteration for these two properties which best reproduce the observed sky radiance using an assumed aerosol vertical structure and measured aerosol optical depth. Thus, no assumptions regarding particle size, shape, or composition are required. The single-scattering albedo, presented at fourteen wavelengths between 380 and 870 nm, displays a spectral shape expected of iron-bearing minerals but is much higher than current dust models allow. This indicates the absorption of light by mineral dust is significantly overestimated in climate studies. Uncertainty in the retrieved albedo is less than 0.02 due to the small uncertainty in the solar-reflectance-based calibration (12.2%) method employed. The phase function retrieved at 860 nm is very robust under simulations of expected experimental errors, indicating retrieved phase functions at this wavelength may be confidently used to describe aerosol scattering characteristics. The phase function retrieved at 443 nm is very sensitive to expected experimental errors and should not be used to describe aerosol scattering. Radiative forcing by aerosol is the greatest source of uncertainty in current climate models. These results will help reduce uncertainty in the absorption of light by mineral dust. Assessment of the radiative impact of aerosol species is a key component to NASA's Earth System Enterprise.

  18. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.

    PubMed

    Hansen, Lars N; Qi, Chao; Warren, Jessica M

    2016-09-20

    Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  19. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.

    PubMed

    Hansen, Lars N; Qi, Chao; Warren, Jessica M

    2016-09-20

    Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary. PMID:27606485

  20. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.; Qi, Chao; Warren, Jessica M.

    2016-09-01

    Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  1. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere

    PubMed Central

    Qi, Chao; Warren, Jessica M.

    2016-01-01

    Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary. PMID:27606485

  2. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Watts, A. B.

    2013-11-01

    long-term rheological properties of the lithosphere are fundamental for understanding both surface tectonics and mantle dynamics on Earth. In this study, we have developed 3-D finite element models for computing the load-induced surface deformation and stress for lithosphere and mantle with realistic nonlinear viscoelastic rheology including the frictional sliding, low-temperature plasticity, and high-temperature creep. We have determined the lithospheric deformation and stress due to volcano loading in the Hawaiian Islands region for the last few million years. By comparing model predictions with seismic observations of the depth to the top of oceanic crust and depth dependence of seismicity in the Hawaiian Islands region, we have sought to constrain lithospheric rheology. Our calculations show that the load-induced surface deformation is controlled by low-temperature plasticity and frictional sliding but is insensitive to high-temperature creep. Lithospheric strength predicted from laboratory-derived low-temperature plasticity needs to be reduced significantly, and a frictional coefficient μf ranging from 0.1 to 0.7 is required in order to account for the observations. However, μf = 0.1 weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the observed depth distribution of seismicity. Our results therefore suggest a value for μf between 0.25 and 0.7. Finally, the maximum stress that accumulates in the deformed lithosphere beneath the Hawaiian Islands is about 100-200 MPa for models that match the observations, and this stress may be viewed as the largest lithospheric stress on Earth.

  3. Deep Continental Crustal Earthquakes and Lithospheric Structure: A Global Synthesis

    NASA Astrophysics Data System (ADS)

    Devlin, S.; Isacks, B. L.

    2007-12-01

    The distribution of earthquake depths within the continental crust defines the seismogenic thickness (TS), over which at least some part of crustal deformation is accommodated by rapid release of stored elastic strains. Intraplate continental seismicity is often thought to be restricted to the upper crust where TS is within the range of 15 to 20 km. This appears consistent with a lithospheric strength profile involving a weak, ductile lower crust located beneath a stronger, brittle upper crust. With the assumption of a strong uppermost mantle lid, this is often referred to the Jelly Sandwich model of lithosphere rheology. Studies in many places, however, document lower crustal earthquakes beneath continents in apparent disagreement with the model. We explore this and related issues through a survey of where and in what tectonic settings deep intraplate earthquakes are well documented in the continental crust. TS reaches Moho depth in many intraplate regions \\--- Sierra Nevada, Colorado Plateau, East African and Baikal Rift Systems, North Island New Zealand, Tien Shan, and the Andean and Alpine forelands. A review of possible deformation mechanisms which could control continental earthquake depth and facilitate seismicity beneath the brittle-ductile transition suggests that the influence of fluids is the only mechanism capable of encouraging earthquake occurrence throughout the continental crust at any tectonic setting. Surface derived fluids can induce pore fluid pressure changes to depths of 25 km and melt-reactions can induce earthquakes at depths throughout continental crust. On a global scale, fluid-enhanced embrittlement is not limited by depth or tectonic environment. We find that deep crustal earthquakes occur where the lithosphere is in a transitional state between primarily stable (e.g., shields) and highly deformed (e.g., U.S. Basin and Range or Southern California). Observations of relative intensity of tectonic deformation and regional percent strain

  4. Anatomy of lithosphere necking during orthogonal rifting

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Cavozzi, Cristian; Storti, Fabrizio

    2013-04-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal-state of rifted margin. The necking shape depends on several parameters, including the extensional strain-rate and thermal layering of the lithosphere. Despite a large number of analogue and numerical modelling studies on lithosphere extension, a quantitative description of the evolution of necking through time is still lacking. We used analogue modelling to simulate in three-dimension the progression of lithosphere thinning and necking during orthogonal rifting. In our models we simulated a typical "cold and young" 4-layer lithosphere stratigraphy: brittle upper crust (loose quartz sand), ductile lower crust (silicon-barite mixture), brittle upper mantle (loose quartz sand), and ductile lower mantle (silicon-barite mixture). The experimental lithosphere rested on a glucose syrup asthenosphere. We monitored model evolution by periodic and coeval laser scanning of both the surface topography and the lithosphere base. After model completion, each of the four layers was removed and the top of the underlying layer was scanned. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for both the whole lithosphere (βz) and the crust (γ). The area of incremental effective stretching (βy) parallel to the extensional direction was obtained from the βz maps.

  5. The Relationship Between Lithospheric Thickness and Tectonic Subsidence in Mildly- Extended Intra-Cratonic Basins

    NASA Astrophysics Data System (ADS)

    Crosby, A.; White, N.; Fishwick, S.

    2008-12-01

    In extensional sedimentary basins, the duration of post-rift subsidence depends on the thermal time constant and hence on the thickness of the lithosphere. It is well known that this thickness varies by at least a factor of two over the continents, and that many intra-cratonic basins have continued to accumulate accommodation space for longer than expected given a standard thickness of 125 km. In this study, we make use of recent advances in mapping the thickness of the lithosphere using surface wave tomography, and a global database of backstripped well-logs, to assess the applicability of the classic pure shear model to the stretching and subsidence of regions where the lithosphere is unusually thick. We start by using the known density structure of oceanic lithosphere, and independent seismic observations of crustal structure and lithosphere thickness, to isostatically quantify the average density depletion of the mantle. We find our observations are consistent with geochemical constraints. Using backstripped wells from basins where there has been only one obvious period of extension, and an adapted stretching model which incorporates temperature and composition-dependent thermal diffusivity and expansivity and the advection of depleted mantle, we then invert observations of tectonic subsidence for both thinning factors and lithospheric thickness, and compare our results with seismic observations at the present day. The subsidence of some basins, such as the Michigan Basin, is consistent with the thicker lithospheric template predicted using seismology. In other cases, such as the West Siberian Basin, the lithospheric thickness estimated from seismic tomography and subsidence analysis disagree. We also find strong local gradients in apparent lithospheric thickness, such as between the Michigan and Illinois Basins. The Congo Basin in central Africa can be explained fairly well by simple extension of locally thick lithosphere. However, the pronounced negative

  6. Strain rate dependency of oceanic intraplate earthquake b-values at extremely low strain rates

    NASA Astrophysics Data System (ADS)

    Sasajima, Ryohei; Ito, Takeo

    2016-06-01

    We discovered a clear positive dependence of oceanic intraplate earthquake (OCEQ) b-values on the age of the oceanic lithosphere. OCEQ b-values in the youngest (<10 Ma) oceanic lithosphere are around 1.0, while those in middle to old (>20 Ma) oceanic lithosphere exceed 1.5, which is significantly higher than the average worldwide earthquake b-value (around 1.0). On the other hand, the b-value of intraplate earthquakes in the Ninety East-Sumatra orogen, where oceanic lithosphere has an anomalously higher strain rate compared with normal oceanic lithosphere, is 0.93, which is significantly lower than the OCEQ b-value (about 1.9) with the same age (50-110 Ma). Thus, the variation in b-values relates to the strain rate of the oceanic lithosphere and is not caused by a difference in thermal structure. We revealed a negative strain rate dependency of the b-value at extremely low strain rates (<2 × 10-10/year), which can clearly explain the above b-values. We propose that the OCEQ b-value depends strongly on strain rate (either directly or indirectly) at extremely low strain rates. The high OCEQ b-values (>1.5) in oceanic lithosphere >20 Ma old imply that future improvement in seismic observation will capture many smaller magnitude OCEQs, which will provide valuable information on the evolution of the oceanic lithosphere and the driving mechanism of plate tectonics.

  7. Deformation in the continental lithosphere

    NASA Astrophysics Data System (ADS)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  8. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2008-08-01

    Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm

  9. Lithospheric Rheology Constrained by Loading of the Hawaiian Islands and its Implications for the Dynamics of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2013-12-01

    Lithospheric rheology is important for understanding crustal and lithospheric dynamics, and the conditions for plate tectonics. For example, numerical modeling studies suggest that plate tectonics emerge from the dynamics of mantle convection when a small coefficient of friction (<0.1) or small yield stress for lithosphere is used. However, lithospheric rheology is not well understood. In this study, we developed 3-D finite element models for computing load-induced surface deformation and stress for lithosphere and mantle with realistic non-linear viscoelastic rheology including the frictional sliding, low-temperature plasticity, and high-temperature creep. We determined the deformation and stress due to volcano loading in the Hawaiian region in the last few million years. By comparing model predictions with seismic observations of the depth to the top of oceanic crust and depth-dependence of seismicity in the Hawaiian region, we sought to constrain lithospheric rheology. Our calculations show that the load-induced surface deformation in the Hawaiian region is controlled by low-temperature plasticity and frictional sliding but is insensitive to high-temperature creep. Lithospheric strength predicted from laboratory derived low-temperature plasticity needs to be reduced significantly to match the observations, together with frictional coefficient in the range from 0.1 to 0.7. However, the small coefficient of friction weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the depth distribution of seismicity at Hawaii. Our results therefore suggest that the coefficient of friction is between 0.25 and 0.7. Finally, maximum lithospheric stress under Hawaiian loads is about 100-200 MPa for models that match the observations, and this stress may be viewed as the largest lithospheric stress on the Earth.

  10. Continents as lithological icebergs: The importance of buoyant lithospheric roots

    USGS Publications Warehouse

    Abbott, D.H.; Drury, R.; Mooney, W.D.

    1997-01-01

    An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.

  11. Seismic evidence for the layered mantle lithosphere: a comparsion between Zagros and South Africa

    NASA Astrophysics Data System (ADS)

    Sodoudi, Forough; Kind, Rainer

    2014-05-01

    depths of 260-280 km, which most likely represents the lithosphere-asthenosphere boundary. Based on our result, the Kalahari lithosphere may have survived multiple episodes of intense magmatism and collisional rifting during the billions of years of its history, which left their imprint in its internal layering. Beneath the Zagros collision zone we find a 200 km thick lithosphere, which most likely represents the Arabian lithosphere that has been strongly deformed, thickened and depleted. Thus, similar processes such as those that occurred beneath shields may have taken place beneath the Zagros. In contrast, we observe a thin lithosphere of about 80-90 km beneath Central Iran and Alborz. Our results also suggest the presence of remnants of the fossil Neo-Tethys subduction at depths ranging between 80-150 km within the Arabian lithosphere. This dipping structure can be seen beneath the Zagros collision zone and disappear towards the northeast beneath Central Iran and Alborz. These findings may support the idea of a breakoff of the oceanic Neo-Tethyan slab beneath Central Iran, which results in an asthenospheric upwelling and thinning of the Iranian lithosphere beneath Central Iran and Alborz.

  12. Corona Formation on Venus Via Extension and Lithospheric Instability

    NASA Astrophysics Data System (ADS)

    Piskorz, D.; Elkins-Tanton, L. T.; Smrekar, S. E.

    2014-12-01

    Given the absence of plate tectonics on Venus, the origin of major rift systems like Parga Chasma is unclear. As Venus and Earth have similar radii and radiogenic abundances, we assume they have a similar internal structure and composition. Venus does not appear to have plate tectonics, and its surface displays a range of volcanic and tectonic features, including those that are both similar and dissimilar to those on Earth. In order to understand how Venus loses its heat, we study coronae at Parga Chasma. There are over 500 quasi-circular volcano-tectonic features called coronae on Venus, 131 of which are associated with Parga Chasma. Are these coronae important in the formation of the rift, or vice versa? How do they contribute to planetary heat loss? Coronae are believed to form via small-scale mantle upwellings, lithospheric instability, or a combination thereof. However, the genetic link between the coronae and rifts has remained unclear. By drawing an analogy to the East African Rift, we propose a mechanism for the formation of off-rift coronae due to the rifting process. We model the interaction of a rising mantle plume associated with a rift with a preexisting layer of dense material at the lithosphere-mantle boundary and show that a rift and its associated off-rift coronae may be genetically linked. We calculate the resulting surface topographies, melt volumes, and Bouguer gravity anomalies and find a correlation to observations.

  13. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  14. Yellowstone hotspot-continental lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Jean, Marlon M.; Hanan, Barry B.; Shervais, John W.

    2014-03-01

    The Snake River Plain represents 17 m.y. of volcanic activity that took place as the North American continent migrated over a relatively fixed magma source, or hotspot. We present new Pb, Sr, and Nd data for a suite of 25 basalts collected from Western and Central Snake River Plain (SRP). The new isotope data, combined with previously published data from the SRP, provide a traverse of the Wyoming craton margin, from the 87Sr/86Sr = 0.706 line boundary of western SRP with Phanerozoic accreted terranes, east through the central and eastern SRP, to the Yellowstone Plateau. Low-K basalts from the western SRP, overlain by high-K basalts, provide a temporal record of regional source variation from ∼16.8 to 0.2 Ma. Principal Component Analysis (PCA) of the new and previously published SRP basalt Pb isotopes reveals that >97% of the total variability is accounted for by mixing between three end-members and is consistent with a sublithospheric Yellowstone hotspot mantle source with a radiogenic isotope composition similar to the mantle source of the early Columbia River Basalt Group (CRBG) and two continental lithosphere end-members, heterogeneous in age and composition. We use the SRP Pb, Sr, and Nd isotope data to model the Yellowstone Hotspot-continental lithosphere interaction by three component mixing between two continental lithospheric components, Archean lithosphere (CL1) that represents older lithosphere underlying the Yellowstone Plateau in the east, and Paleoproterozoic lithosphere (CL2) representing the younger lithosphere underlying the SRP in the west near the craton margin, and a sublithospheric end-member, representing the Yellowstone hotspot (PL). The results suggest a continuous flow of PL material westward as the NA continental lithosphere migrated over the upwelling hotspot along a shoaling gradient in the sub-continental mantle lithosphere. The model shows a decrease in Total Lithosphere end-members (CL1 + CL2) and the Lithosphere Ratio (CL1/CL2

  15. African dust phosphorus fertilizing the Amazon and the Atlantic Ocean is derived from marine sediments and igneous rocks - no indication for Bodélé diatomite contribution

    NASA Astrophysics Data System (ADS)

    Gross, Avner; Castido, Danilo; Pio, Casimero; Angert, Alon

    2013-04-01

    signatures. The diatomite in the Bodélé depression have lower P concentrations (550-900 µg P g/dust) and fall off the mixing line describe by our samples. These findings implies that the bio-available P delivered by dust from West Africa to the Central Atlantic Ocean and later to the Amazon basin is derived from a mixture of igneous origin and marine sedimentary origin, and that in contrast to previous claims, the Bodélé diatomite is not a major dust-P source. In addition, we found that African dust-P concentrations are between 2 folds to 10 folds higher then generally accounted for in modeling studies.

  16. Geoid Height and Swell-Push Force in the Lithospheres of Venus and the Earth

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.

    2002-12-01

    The thermal boundary layer model for the cooling oceanic lithosphere [Turcotte and Oxburgh, J. Fluid. Mech. V. 28, 1967] provides a remarkably accurate description of seafloor depth, heat flow, lithospheric strength, and swell-push force. However the global stress field of the Earth is still poorly determined because the slab-pull force dominates. Don Turcotte [J. Geophys. Res., v. 98, 1993] proposed that lithospheric cooling is the dominant convective mechanism on Venus and therefore the swell-push force dominates the stress field of the Venusian lithosphere. Is this simple model consistent with observations of faults and fractures on Venus? I use new high-resolution geoid and topography models for Venus and the Earth to construct planetary stress and compare these with observations of small-scale surface structure. Venus has a very high correlation between geoid height and topography at all wavelengths so it is reasonable to assume that the swell-push force dominates. This swell-push body force is applied to a uniform thickness elastic shell over an inviscid sphere, to calculate the present-day global strain field [Sandwell et al., ICARUS, v. 129, 1997]; areas of positive geoid height are in a state of extension while areas of negative geoid height are in a state of compression. This model strain pattern is highly correlated with the global strain patterns inferred from Magellan-derived maps of wrinkle ridges and rift zones. Much of the observed deformation matches the present-day model strain orientations suggesting that most of the rifts on Venus and many of the wrinkle ridges formed in a stress field similar to the present one. In contrast to Venus, the correlation between geoid height and topography on the Earth is poor for spherical harmonic degrees less than 9. Moreover, stress in the Earth's lithosphere is the sum of three forces, slab pull, swell push and asthenospheric drag. These complications make it difficult to uniquely establish the global stress

  17. Lithospheric controls on Earth evolution

    NASA Astrophysics Data System (ADS)

    Mole, D. R.; Fiorentini, M.; Thebaud, N.; McCuaig, C.; Cassidy, K.; Kirkland, C.; Belousova, E.

    2011-12-01

    The Archean eon represents an important time in the evolution of our planet, during which tectonic activity was vigorous and the rate of crustal recycling extremely energetic [Hawkesworth and Kemp, 2006]. Although apparently inhospitable to complex forms of life, the Archean Earth was shaped by geological processes, which prepared the ground for the establishment of a complex biosphere-hydrosphere-atmosphere at ~2.0 Ga [Kump and Barley, 2007]. Therefore, a more comprehensive understanding of Archean cratonic architecture may provide crucial insights into the geodynamic and ecological evolution of our planet. Spatially distributed felsic crustal rocks (granitoids/volcanics) from the Yilgarn Craton of Western Australia were analysed for U-Pb zircon geochronology, Lu-Hf zircon and Sm-Nd whole-rock isotopes. Using this data, a number of 'time-slices' (isotopic contour maps constrained by U-Pb zircon age) were plotted. The isotope maps show a network of lithospheric blocks of varying age and genesis which represent the intra-cratonic architecture of the Yilgarn Craton. Within this architecture, there are multiple Earth systems which vary in space and time. The major systems under first-order control appear to be heat flux, magmatism, sedimentary environment and isostacy. Whether an area is juvenile (eHf>0) or evolved (eHf<0) indicates the level of mantle input and by proxy heat input into the crust. In turn, isotopic nature can be used as a proxy for lithospheric thickness, with evolved blocks having more extensive vertical accretion and addition of plume head restites than juvenile regions. These thickness contrasts are believed to control the localisation of plume melts and subsequent volcanism into shallower, juvenile, craton-margins [Begg et al., 2010]. Thickness variations also control the level of isostatic equilibrium of a 'block' relative to the geoid, with implications for emergence, topography and subsequent depositional and ecological environments. Spatial

  18. Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation

    USGS Publications Warehouse

    Mueller, S.; Choy, G.L.; Spence, W.

    1996-01-01

    Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.

  19. Constraining lithosphere deformation mode evolution for the Iberia-Newfoundland rifted margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto

    2015-04-01

    The deformation of lithosphere and asthenosphere and its evolution during continental rifting leading to breakup and seafloor spreading initiation is poorly understood. The resulting margin architecture and OCT structure is complex and diverse, and observations at magma poor margins includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. A coupled kinematic-dynamic model of lithosphere and asthenosphere deformation has been used to investigate the sequence of lithosphere deformation modes for 2 conjugate margin profiles for the Iberia-Newfoundland rifted margins. We use the observed water-loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation, to test and constrain lithosphere and asthenosphere deformation models. A sequence of lithosphere deformation modes is represented by a succession of flow-fields, which are generated by a 2D finite element viscous flow model (FE-Margin), and is used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (e.g. Braun et al. 2000) is also kinematically included. The methodology of Katz et al., 2003 is used to predict melt generation by decompressional melting. The magnitude of extension used in the modelling is consistent with that proposed by Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  20. Rifting on Venus: Implications for lithospheric structure

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1985-01-01

    Lithospheric strength envelopes on Venus are reviewed and their implications for large scale rifting are discussed. Their relationship to crustal thicnesses and thermal gradients are explored. Also considered are the implications of a theory for rift formation.

  1. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction.

    PubMed

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-01-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere. PMID:27009463

  2. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-03-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  3. Life in the lithosphere, kinetics and the prospects for life elsewhere.

    PubMed

    Cockell, Charles S

    2011-02-13

    The global contiguity of life on the Earth today is a result of the high flux of carbon and oxygen from oxygenic photosynthesis over the planetary surface and its use in aerobic respiration. Life's ability to directly use redox couples from components of the planetary lithosphere in a pre-oxygenic photosynthetic world can be investigated by studying the distribution of organisms that use energy sources normally bound within rocks, such as iron. Microbiological data from Iceland and the deep oceans show the kinetic limitations of living directly off igneous rocks in the lithosphere. Using energy directly extracted from rocks the lithosphere will support about six orders of magnitude less productivity than the present-day Earth, and it would be highly localized. Paradoxically, the biologically extreme conditions of the interior of a planet and the inimical conditions of outer space, between which life is trapped, are the locations from which volcanism and impact events, respectively, originate. These processes facilitate the release of redox couples from the planetary lithosphere and might enable it to achieve planetary-scale productivity approximately one to two orders of magnitude lower than that produced by oxygenic photosynthesis. The significance of the detection of extra-terrestrial life is that it will allow us to test these observations elsewhere and establish an understanding of universal relationships between lithospheres and life. These data also show that the search for extra-terrestrial life must be accomplished by 'following the kinetics', which is different from following the water or energy. PMID:21220278

  4. Life in the lithosphere, kinetics and the prospects for life elsewhere.

    PubMed

    Cockell, Charles S

    2011-02-13

    The global contiguity of life on the Earth today is a result of the high flux of carbon and oxygen from oxygenic photosynthesis over the planetary surface and its use in aerobic respiration. Life's ability to directly use redox couples from components of the planetary lithosphere in a pre-oxygenic photosynthetic world can be investigated by studying the distribution of organisms that use energy sources normally bound within rocks, such as iron. Microbiological data from Iceland and the deep oceans show the kinetic limitations of living directly off igneous rocks in the lithosphere. Using energy directly extracted from rocks the lithosphere will support about six orders of magnitude less productivity than the present-day Earth, and it would be highly localized. Paradoxically, the biologically extreme conditions of the interior of a planet and the inimical conditions of outer space, between which life is trapped, are the locations from which volcanism and impact events, respectively, originate. These processes facilitate the release of redox couples from the planetary lithosphere and might enable it to achieve planetary-scale productivity approximately one to two orders of magnitude lower than that produced by oxygenic photosynthesis. The significance of the detection of extra-terrestrial life is that it will allow us to test these observations elsewhere and establish an understanding of universal relationships between lithospheres and life. These data also show that the search for extra-terrestrial life must be accomplished by 'following the kinetics', which is different from following the water or energy.

  5. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction.

    PubMed

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-03-24

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  6. Seismic anisotropy of the subcrustal lithosphere in Europe: Another clue to recognition of accreted terranes?

    NASA Astrophysics Data System (ADS)

    Babuška, Vladislav; Plomerová, J.

    P-wave residuals computed relative to a reference Earth model and normalized for effects originating in focal regions and along ray paths in the deep mantle provide information on deep lithospheric structure. The variations of the directionally independent representative average residuals, which are computed for waves arriving from different azimuths and with steep incidence angles, reflect compositional and thermal inhomogeneities. In our model they are attributed to variations of the lithosphere thickness. On the other hand, the variations of relative residuals that depend on the angles of azimuth and incidence form spatial patterns suggesting the existence of large-scale dipping anisotropic structures in the subcrustal lithosphere. The P-velocity anisotropy of these structures (9-11% on the average) agrees with the anisotropy of olivine ultramafites as measured in the laboratory. Orientations of the deep anisotropic structures change in the vicinity of important tectonic suture zones, for example, at the suture between the Saxothuringicum and Moldanubicum in central Europe, at the Insubric line in the Alps, and at the deep contact between the Rhodopean Massif and the Moesian Platform in the central Balkans. The structures probably retain preferred orientations of olivine crystals originating from an ancient oceanic lithosphere and may thus represent relict paleosubduction zones by which the continental lithosphere grew in the past.

  7. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    PubMed Central

    Guex, Jean; Pilet, Sebastien; Müntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Sell, Bryan; Schaltegger, Urs

    2016-01-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here we present a synthesis of ammonite biostratigraphy, isotopic data and high precision U-Pb zircon dates from the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. We explain these transitions as a result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere before CO2 became the dominant gas. This model offers an explanation of why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere. PMID:27009463

  8. Preliminary models of normal fault development in subduction zones: lithospheric strength and outer rise deformation

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Billen, M. I.

    2010-12-01

    A characteristic feature of global subduction zones is normal faulting in the outer rise region, which reflects flexure of the downgoing plate in response to the slab pull force. Variations in the patterns of outer rise normal faulting between different subduction zones likely reflects both the magnitude of flexural induced topography and the strength of the downgoing plate. In particular, the rheology of the uppermost oceanic lithosphere is likely to strongly control the faulting patterns, which have been well documented recently in both the Middle and South American trenches. These recent observations of outer rise faulting provide a unique opportunity to test different rheological models of the oceanic lithosphere using geodynamic numerical experiments. Here, we develop a new approach for modeling deformation in the outer rise and trench regions of downgoing slabs, and discuss preliminary 2-D numerical models examining the relationship between faulting patterns and the rheology of the oceanic lithosphere. To model viscous and brittle deformation within the oceanic lithosphere we use the CIG (Computational Infrastructure for Geodynamics) finite element code Gale, which is designed to solve long-term tectonic problems. In order to resolve deformation features on geologically realistic scales (< 1 km), we model only the portion of the subduction system seaward of the trench. Horizontal and vertical stress boundary conditions on the side walls drive subduction and reflect, respectively, the ridge-push and slab-pull plate-driving forces. The initial viscosity structure of the oceanic lithosphere and underlying asthenosphere follow a composite viscosity law that takes into account both Newtonian and non-Newtonian deformation. The viscosity structure is consequently governed primarily by the strain rate and thermal structure, which follows a half-space cooling model. Modification of the viscosity structure and development of discrete shear zones occurs during yielding

  9. Global tectonics since the breakup of Pangea 180 million years ago: evolution maps and lithospheric budget

    NASA Astrophysics Data System (ADS)

    Weijermars, Ruud

    Pangea, the Earth's youngest single supercontinent, broke up 180 million years ago. Tectonic plates were subsequently formed by dispersal of the continental fragments and accretion of new oceanic lithosphere. The configurations of all the major lithospheric plates at 0, 20, 65, 95, 140, 180 Ma BP are reconstructed on six globes of the Earth, each with a radius of 10 cm. It appears that plate boundaries maintain a remarkably close fit on model globes of constant radii if the reconstructions include the recovery of subducted spreading patterns. This is illustrated with maps in equatorial orthographic, oblique orthographic and transverse Hammer-Aitoff projections. The snug fit of the tectonic plates at every tested time since the breakup of Pangea 180 Ma BP is consistent with the theory of plate tectonics on a non-expanding Earth and contradicts rapidly expanding Earth models. The areas of oceanic lithosphere produced and consumed during the past 180 Ma BP are estimated from surface measurements of the globes reconstructed on the basis of particular assumptions. These measurements suggest a consistent increase in the production rate of oceanic lithosphere during the past 140 Ma. It was decided to revise the assumptions and see if alternative reconstructions of the ancient spreading patterns on the floors of the Tethys and Eo-Pacific oceans could avoid implying an increase of lithospheric production rates with time. This appeared to be possible. The revised maps suggest that ophiolites older than 180 Ma BP may have been obducted in Cenozoic collision zones of the Himalayas, Andes, Rockies, and the western part of the Banda Arc (Timor, New Guinea). Estimates of the ocean floor production and consumption budget appear to be quite similar for both map series, and only the possible ranges are summarized here, time averaged for the past 180 Ma. World-wide production and consumption of oceanic lithosphere appears to have varied between 2.6 and 3.5 km 2 a -1 at most. The mean

  10. Multi-dimensional Crustal and Lithospheric Structure of the Atlas Mountains of Morocco by Magnetotelluric Imaging

    NASA Astrophysics Data System (ADS)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.

    2014-12-01

    The PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project were designed to collect high resolution, multi-disciplinary lithospheric scale data in order to understand the tectonic evolution and lithospheric structure of the western Mediterranean. The over-arching objectives of the magnetotelluric (MT) component of the projects are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structure of the Atlas Mountains, and (ii) to test the hypotheses for explaining the purported lithospheric cavity beneath the Middle and High Atlas inferred from potential-field lithospheric modeling. We present the results of an MT experiment we carried out in Morocco along two profiles: an approximately N-S oriented profile crossing the Middle Atlas, the High Atlas and the eastern Anti-Atlas to the east (called the MEK profile, for Meknes) and NE-SW oriented profile through western High Atlas to the west (called the MAR profile, for Marrakech). Our results are derived from three-dimensional (3-D) MT inversion of the MT data set employing the parallel version of Modular system for Electromagnetic inversion (ModEM) code. The distinct conductivity differences between the Middle-High Atlas (conductive) and the Anti-Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approx. 60 km). In all inverse solutions, the crust and the upper mantle show resistive signatures (approx. 1,000 Ωm) beneath the Anti-Atlas, which is the part of stable West African Craton. Partial melt and/or exotic fluids enriched in volatiles produced by the melt can account for the high middle to lower crustal and uppermost mantle conductivity in the Folded Middle Atlas, the High Moulouya Plain and the

  11. Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from S receiver functions analysis

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Piana Agostinetti, Nicola

    2011-12-01

    Mediterranean tectonics has been characterized by an irregular, complex temporal evolution with episodic rollback and retreat of the subducted plate followed by period of slow trench-migration. To provide insight into the geodynamics of the Calabrian arc, we image the characteristics and lithospheric structure of the convergent, Apulian and Hyblean forelands at the cusps of the arc. Specifically we investigate the crustal and lithospheric thicknesses using teleseismic S-to-p converted phases, applied to the Adria-Africa plate margin for the first time. We find that the Moho in the Apulian foreland is nearly flat at ˜30 km depth, consistent with previous P receiver functions results, and that the Hyblean crustal thickness is more complex, which can be understood in terms of the nature of the individual pieces of carbonate platform and pelagic sediments that make up the Hyblean platform. The lithospheric thicknesses range between 70-120 km beneath Apulia and 70-90 km beneath Sicily. The lithosphere of the forelands at each end of the Calabrian arc are continental in nature, buoyant compared to the subducting oceanic lithosphere and have previously been interpreted as mostly undeformed carbonate platforms. Our receiver function images also show evidence of lithospheric erosion and thinning close to Mt. Etna and Mt. Vulture, two volcanoes which have been associated with asthenospheric upwelling and mantle flow around of the sides the slab. We suggest that as the continental lithosphere resists being subducted it is being thermo-mechanically modified by toroidal flow around the edges of the subducting oceanic lithosphere of the Calabrian arc.

  12. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica

    NASA Astrophysics Data System (ADS)

    Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.

    2016-01-01

    Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal

  13. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Pilet, Sebastien; Guex, Jean; Muntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Schaltegger, Urs

    2016-04-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries combined with geochronological data in order to establish the sequence of events that initiate two of the major mass extinctions recorded in Earth's history. This synthesis demonstrates that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. The initial regressive events recorded at T-J and Pl-To boundaries seem difficult to reconcile either with large initial CO2 degassing associated with plume activity or by volatile-release (CO2, CH4, Cl2) from deep sedimentary reservoirs during contact metamorphism associated to dykes and sills intrusion because massive CO2 degassing is expected to produce super greenhouse conditions. We evaluate, here, an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Petrological constraints on primary magmas indicate that the mantle is hotter and melts more extensively to produce LIP lavas than for current oceanic islands basalts. However, available data suggest that the Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. The presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. This initial step of thermal erosion / thermal heating of the cratonic lithosphere is critical to understand the volatile budget associated with LIPs while

  14. Melt-rich channel observed at the lithosphere-asthenosphere boundary.

    PubMed

    Naif, S; Key, K; Constable, S; Evans, R L

    2013-03-21

    The lithosphere-asthenosphere boundary (LAB) separates rigid oceanic plates from the underlying warm ductile asthenosphere. Although a viscosity decrease beneath this boundary is essential for plate tectonics, a consensus on its origin remains elusive. Seismic studies identify a prominent velocity discontinuity at depths thought to coincide with the LAB but disagree on its cause, generally invoking either partial melting or a mantle dehydration boundary as explanations. Here we use sea-floor magnetotelluric data to image the electrical conductivity of the LAB beneath the edge of the Cocos plate at the Middle America trench offshore of Nicaragua. Underneath the resistive oceanic lithosphere, the magnetotelluric data reveal a high-conductivity layer confined to depths of 45 to 70 kilometres. Because partial melts are stable at these depths in a warm damp mantle, we interpret the conductor to be a partially molten layer capped by an impermeable frozen lid that is the base of the lithosphere. A conductivity anisotropy parallel to plate motion indicates that this melt has been sheared into flow-aligned tube-like structures. We infer that the LAB beneath young plates consists of a thin, partially molten, channel of low viscosity that acts to decouple the overlying brittle lithosphere from the deeper convecting mantle. Because this boundary layer has the potential to behave as a lubricant to plate motion, its proximity to the trench may have implications for subduction dynamics. PMID:23518564

  15. Imaging the lithosphere of rifted passive margins using waveform tomography: North Atlantic, South Atlantic and beyond

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Schaeffer, Andrew; Celli, Nicolas Luca

    2016-04-01

    Lateral variations in seismic velocities in the upper mantle reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our 3D tomographic models of the upper mantle and the crust at the Atlantic and global scales are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons, including those in North America, Greenland, northern and eastern Europe, Africa and South America. The dominant, large-scale, low-velocity feature is the global system of mid-ocean ridges, with broader low-velocity regions near hotspots, including Iceland. Currently active continental rifts show highly variable expression in the upper mantle, from pronounced low velocities to weak anomalies; this correlates with the amount of magmatism within the rift zone. Rifted passive margins have typically undergone cooling since the rifting and show more subtle variations in their seismic-velocity structure. Their thermal structure and evolution, however, are also shaped by 3D geodynamic processes since their formation, including cooling by the adjacent cratonic blocks inland and heating by warm oceanic asthenosphere.

  16. Offshore Southern California lithospheric velocity structure from noise cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Bowden, D. C.; Kohler, M. D.; Tsai, V. C.; Weeraratne, D. S.

    2016-05-01

    A new shear wave velocity model offshore Southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, is used to measure ambient noise correlation functions and Rayleigh wave dispersion curves which are inverted for 3-D shear wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now >200 km wide continental shelf. Our velocity model suggests the persistence of the uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying the San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground-shaking simulations for risk estimates.

  17. Melt-rich channel observed at the lithosphere-asthenosphere boundary.

    PubMed

    Naif, S; Key, K; Constable, S; Evans, R L

    2013-03-21

    The lithosphere-asthenosphere boundary (LAB) separates rigid oceanic plates from the underlying warm ductile asthenosphere. Although a viscosity decrease beneath this boundary is essential for plate tectonics, a consensus on its origin remains elusive. Seismic studies identify a prominent velocity discontinuity at depths thought to coincide with the LAB but disagree on its cause, generally invoking either partial melting or a mantle dehydration boundary as explanations. Here we use sea-floor magnetotelluric data to image the electrical conductivity of the LAB beneath the edge of the Cocos plate at the Middle America trench offshore of Nicaragua. Underneath the resistive oceanic lithosphere, the magnetotelluric data reveal a high-conductivity layer confined to depths of 45 to 70 kilometres. Because partial melts are stable at these depths in a warm damp mantle, we interpret the conductor to be a partially molten layer capped by an impermeable frozen lid that is the base of the lithosphere. A conductivity anisotropy parallel to plate motion indicates that this melt has been sheared into flow-aligned tube-like structures. We infer that the LAB beneath young plates consists of a thin, partially molten, channel of low viscosity that acts to decouple the overlying brittle lithosphere from the deeper convecting mantle. Because this boundary layer has the potential to behave as a lubricant to plate motion, its proximity to the trench may have implications for subduction dynamics.

  18. Assimilating lithosphere and slab history in 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Gurnis, Michael; Flament, Nicolas

    2015-01-01

    We develop methods to incorporate paleogeographical constraints into numerical models of mantle convection. Through the solution of the convection equations, the models honor geophysical and geological data near the surface while predicting mantle flow and structure at depth and associated surface deformation. The methods consist of four constraints determined a priori from a plate history model: (1) plate velocities, (2) thermal structure of the lithosphere, (3) thermal structure of slabs in the upper mantle, and (4) velocity of slabs in the upper mantle. These constraints are implemented as temporally- and spatially-dependent conditions that are blended with the solution of the convection equations at each time step. We construct Earth-like regional models with oceanic and continental lithosphere, trench migration, oblique subduction, and asymmetric subduction to test the robustness of the methods by computing the temperature, velocity, and buoyancy flux of the lithosphere and slab. Full sphere convection models demonstrate how the methods can determine the flow associated with specific tectonic environments (e.g., back-arc basins, intraoceanic subduction zones) to address geological questions and compare with independent data, both at present-day and in the geological past (e.g., seismology, residual topography, stratigraphy). Using global models with paleogeographical constraints we demonstrate (1) subduction initiation at the Izu-Bonin-Mariana convergent margin and flat slab subduction beneath North America, (2) enhanced correlation of model slabs and fast anomalies in seismic tomography beneath North and South America, and (3) comparable amplitude of dynamic and residual topography in addition to improved spatial correlation of dynamic and residual topography lows.

  19. Varying Structure and Physical Properties of the Lithosphere Subducting Beneath Indonesia, Consequences on the Subduction

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Dyment, J.

    2013-12-01

    We make inferences on the structure, age and physical properties of the subducting northern Wharton Basin lithosphere by (1) modeling the structure and age of the lithosphere subducted under the Sumatra trench through three-plate reconstructions involving Australia, Antarctica, and India, and (2) superimposing the resulting fracture zones and magnetic isochrons to the geometry of the subducting plate as imaged by seismic tomography. The model of Pesicek et al. (2010) was digitized and smoothed in order to get a realistic topography of the subducting plate. The fracture zone and magnetic isochron geometry was draped on this topography assuming a N18°E direction of subduction. This model provides an effective means to study the effect of varying physical properties of the subducting lithosphere on the subduction along the Sumatra trench. 1) The age of the oceanic lithosphere determines its thickness and buoyancy, then its ability to comply with or resist subduction. We define the "subductability" of the lithosphere as the extra weight applied on the asthenosphere by the part of the bulk lithospheric density exceeding the asthenospheric density. A negative subductability means that the bulk lithospheric density is lower than the asthenospheric density, i.e. the plate will resist subduction, which is the case for lithosphere less than ~23 Ma. The area off Sumatra corresponds to oceanic lithosphere formed between 80 and 38 Ma, with a lower subductability than other areas along the Sunda Trench. 2) The spreading rate at which the oceanic lithosphere was formed has implications of the structure and composition of the oceanic crust, and therefore on its rheology. In a subduction zone, the contact between the subducting and overriding plates is often considered to be the top of the oceanic crust and the overlying sediments. The roughness of this interface and the rheology of its constitutive material are essential parameters constraining the slip of the down going plate in

  20. Wilson study cycles: Research relative to ocean geodynamic cycles

    NASA Technical Reports Server (NTRS)

    Kidd, W. S. F.

    1985-01-01

    The effects of conversion of Atlantic (rifted) margins to convergent plate boundaries; oceanic plateaus at subduction zones; continental collision and tectonic escape; southern Africa rifts; and global hot spot distribution on long term development of the continental lithosphere were studied.

  1. The crust and lithosphere thicknesses in South America: trying to find the lithosphere- asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Heit, B.; Sodoudi, F.; Yuan, X.; Bianchi, M.; Kind, R.

    2007-05-01

    During the past years, a series of seismological investigations have been carried out to study the crustal and mantle structures all over the world. In South America, this investigation has not been an easy task as there are different regions where the geodynamics involves the subduction of an oceanic plate, the building of a mountain range as the Andes, the interaction with older lithosphere as the Brazilian Shield and the presence of active deformation fronts between the last two regions. In order to investigate the thickness of the lithosphere in such a complex context we have performed S-wave receiver function analysis (Vinnik and Farra, 2000; Li et al., 2004). The S receiver function technique looks for the S-to-P converted waves at seismic discontinuities beneath a station in the same way as the conventional P receiver function method that deals with P-to-S conversions. The S receiver function technique have proved to be useful to map the Moho and the LAB in many regions where other methods (i.e. surface waves) failed to provide reliable information (e.g. Li et al., 2004; Kumar et al., 2004a, 2004b; Sodoudi et al., 2006). We present here the results of S receiver function technique that has been applied to all the available temporary seismic experiments (e.g. BANJO, SEDA, REFUCA, BLSP) and the permanent stations from the IRIS network. We have been able to investigate the upper mantle discontinuities at all the depths beneath the stations and obtained coherent Moho depths along the entire Andes and in other South American continental regions. The LAB has been clearly detected below some stations, particularly those that are located far away from the subduction zone. By comparing our results with those from the P receiver functions, we have been able to further constrain the thicknesses of the crust and LAB in different regions including shields, mobile belts, basins and mountain ranges. At many stations we have also been able to map the upper mantle

  2. Subduction of continental lithosphere in the Banda Sea region: Combining evidence from full waveform tomography and isotope ratios

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; De Wit, Maarten; van Bergen, Manfred

    2010-09-01

    We provide new insight into the subduction of old continental lithosphere to depths of more than 100 km beneath the Banda arc, based on a spatial correlation of full waveform tomographic images of its lithosphere with He, Pb, Nd and Sr isotope signatures in its arc volcanics. The thickness of the subducted lithosphere of around 200 km coincides with the thickness of Precambrian lithosphere as inferred from surface wave tomography. While the deep subduction of continental material in continent-continent collisions is widely recognised, the analogue process in the arc-continent collision of the Banda region is currently unique. The integrated data suggest that the late Jurassic ocean lithosphere north of the North Australian craton was capable of entraining large volumes of continental lithosphere. The Banda arc example demonstrates that continental lithosphere in arc-continent collisions is not generally preserved, thus increasing the complexity of tectonic reconstructions. In the particular case of Timor, the tomographic images indicate that this island is not located directly above the northern margin of the North Australian craton, and that decoupled oceanic lithosphere must be located at a considerable distance north of Timor, possibly as far north as the northern margin of the volcanically extinct arc sector. The tomographic images combined with isotope data suggest that subduction of the continental lithosphere did not lead to the delamination of its complete crust. A plausible explanation involves delamination within the continental crust, separating upper from lower crustal units. This interpretation is consistent with the existence of a massive accretionary complex on Timor island, with evidence from Pb isotope analysis for lower-crust involvement in arc volcanism; and with the approximate gravitational stability of the subducted lithosphere as inferred from the tomographic images. The subduction of continental lithosphere including crustal material beneath

  3. Geophysical Signatures of Adjoining Lithospheric Domains

    NASA Astrophysics Data System (ADS)

    Gradmann, S.; Kaiser, J.

    2014-12-01

    Lithospheres of different age have distinctly different characteristics regarding their composition, thermal and density structure. Major differences exist between cratons and the Phanerozoic domains and mobile belts. We here investigate how the lateral transition from one lithospheric domain to another is reflected in the geophysical signatures, the seismic velocities, gravity, topography and geoid. We combine geophysical-petrological forward modeling with a comparison to worldwide occurrences of adjoining lithospheric domains. Three distinctly different mantle types (Archean, Proterozoic, Phanerozoic) are used to calculate the geophysical signatures of a range of possible lateral transition zones. The mantle types are characterized by their different elemental composition, from which stable mineral phases and bulk physical properties are derived. Usually, older SCLM (sub-lithospheric mantle) is more depleted in heavier minerals and thereby lighter, but this effect is mainly counterbalanced by the increased density caused by long-term thermal cooling. At the edges of cratons, changes in the thermal structure affect this balance. A range of models is tested for the effects of lateral variations in the crustal and SCLM structure (thickness, smoothness of thickness changes) and mantle compositions. Abrupt changes in composition and lithosphere thickness generally cause distinct topographic lows or ridges. In the real world, these may be offset by respective adjustments in Moho depth, crustal structure or sediment infill. Gradual variations in lithosphere thickness, however, only show minor geophysical signatures. A possible expression of adjoining lithospheric domains is the Scandinavian Mountain Belt in Norway at the edge of Proterozoic Baltica. Although many of the present-day topographic features are unlikely to have existed since the Precambrian, the evolution of the cratons (rejuvenation of the craton edges) may have assisted in shaping the present

  4. A lithospheric instability origin for the Cameroon Volcanic Line

    NASA Astrophysics Data System (ADS)

    Milelli, L.; Fourel, L.; Jaupart, C.

    2012-06-01

    The Cameroon Volcanic Line (CVL) is an enigmatic structure that defies common dynamic models of melt generation and volcanic activity on Earth. There, magma generation and intrusion has been sustained for more than 70 Myr over a 1600 km long chain straddling the ocean-continent boundary, with no detectable spatial age progression. The chain is nearly perpendicular to the coastline and terminates in a Y-shaped structure that has not been affected by absolute plate motions, implying that the mantle upwelling that feeds magmatic activity is attached to the continent. We propose that this form of volcanism is due to a new type of instability that may develop within the subcontinental lithospheric mantle at the edge of a continent. Laboratory experiments document how lithosphere beneath a continental block of finite size can become unstable due to cooling from above. The instability pattern is made of linear upwellings and downwellings that converge radially towards the center of the continent in an outer region and an array of polygonal cells in a central region. The pattern is characterized by branching structures that are reminiscent of the strike and Y-shaped outline of the CVL. The instability develops over long timescales with small rates of upwelling and melting, and is attached to the continent by construction. Downwellings adjacent to upwellings induce compression in the crust, which may account for deformation in the Benue trough just before the onset of CVL magmatism.

  5. Thermal structure of the lithosphere: a petrologic model.

    PubMed

    Macgregor, I D; Basu, A R

    1974-09-20

    A preliminary evaluation of the thermal history of the upper mantle as determined by petrologic techniques indicates a general correspondence with theoretically derived models. The petrologic data supply direct information which may be used as an independent calibration of calculated models, serve as a base for evaluating the assumptions of the theoretical approach, and allow more careful selection of the variables describing mantle thermal properties and processes. Like the theoretical counterpart, the petrological approach indicates that the lithosphere is dominated by two thermal regimes: first, there is a continental regime which cools at rates of the order of 10(9) years and represents the longterm cooling of the earth. Secondly, superimposed on the continental evolution is the thermal event associated with the formation of an oceanic basin, and which may be thought of as a 10(8) year convective perturbation on the continental cycle. Of special interest is petrologic evidence for a sudden steepening of the thermal gradients across the lithosphere-asthenosphere boundary not seen in the theoretical models. The unexpected change of slope points to the need for a critical reevaluation of the thermal processes and properties extant in the asthenosphere. The potential of the petrologic contribution has yet to be fully realized. For a start, this article points to an important body of independent evidence critical to our understanding of the earth's thermal history.

  6. Renewal: Continential lithosphere evolution as a function of tectonic environment

    SciTech Connect

    McMillan, N.J.; Baldridge, W.S.

    1995-06-01

    The Cenozoic tectonic environment and stress regime of the southwestern United States have changed dramatically from compression during shallow-angle subduction during the Laramide orogeny in the early Cenozoic to the current mode of Basin and Range extension. Questions remain unresolved concerning the causes of this transition, including the timing of the initiation of extension (estimates range from 36 to 25 Ma), and is the Basin and Range simply an mega-example of back-arc extension, or is extension related to the subduction of an oceanic spreading center about 30 Ma? We have examined the patterns of magmagenesis and geochemical composition through Cenozoic time in southern New Mexico. We have defined four magma sources that have contributed to Cenozoic magmas. Immediately following the Laramide, magmas contain substantial contributions from the lower crust. Mid-Tertiary extension is related to the eruption of rhyolitic ash-flow tuffs and basalts. The basalts were generated by melting of the lithospheric mantle; intercalated rhyolites have a strong upper crustal signature. Eruption of basalts and andesites with sources in the lithospheric mantle and lower crust continued for several million years after rhyolitic volcanism ceased. The region was nearly void of volcanic activity for 16 million years despite continued extension, but at 10 Ma, basalts derived from the asthenosphere began to erupt.

  7. Microcrystalline diamonds in the oceanic lithosphere and their nature

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Sevastyanov, V. S.; Karpov, G. A.; Shilobreeva, S. N.; Maksimov, A. P.

    2016-07-01

    The carbon isotope composition of microdiamonds found in products of the Tolbachik Volcano eruption, Kamchatka (porous lavas and ash), was studied. The isotope composition of microdiamonds (with an average value of δ13C =-25.05‰) is close to that of microsized carbon particles in lavas (from-28.9 to-25.3‰). The general peculiarities of the diamond-forming environment include (1) no evidence for high pressure in the medium; (2) a reduced environment; and (3) mineralogical evidence for the presence of a fluid. The geochemical data characterizing the type of diamonds studied allow us to suggest that they were formed in accordance with the mechanism of diamond synthesis during cavitation in a rapidly migrating fluid, which was suggested by E.M. Galimov.

  8. Imaging the continental lithosphere: Perspectives from global and regional anisotropic seismic tomography

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Schaeffer, Andrew

    2016-04-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Lateral variations in isotropic-average seismic velocities reflect variations in the temperature of the rocks at depth. Seismic tomography thus also provides a proxy for lateral changes in the temperature and thickness of the lithosphere. It can map the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new global, anisotropic, 3D tomographic models of the upper mantle and the crust are constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provide improved resolution of the lithosphere at the global scale, compared to other available models. The most prominent high-velocity anomalies, seen down to around 200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The tomography resolves the deep boundaries of the cratons even where they are not exposed and difficult to map at the surface. Our large waveform dataset, with complementary large global networks and high-density regional array data, also produces improved resolution of azimuthal anisotropy patterns, so that regional-scale variations related to lithospheric deformation and mantle flow can be resolved, in particular in densely sampled regions. The depth of the boundary between the cold, rigid lithosphere (preserving ancient, frozen anisotropic fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently) can be inferred from the depth layering of seismic anisotropy and its comparison to the past and present plate motions. Beneath oceans, the lithosphere-asthenosphere boundary (LAB) is defined clearly by the layering of anisotropy, with a dependence on

  9. Observational Constraints on Lithospheric Rheology and Their Implications for Lithospheric Dynamics and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2014-12-01

    Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes

  10. Regional 3D Numerical Modeling of the Lithosphere-Mantle System: Implications for Continental Rift-Parallel Surface Velocities

    NASA Astrophysics Data System (ADS)

    Stamps, S.; Bangerth, W.; Hager, B. H.

    2014-12-01

    The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.

  11. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Abdelsalam, M.; Ali, K. A.; Bingen, B.; Collins, A. S.; Fowler, A. R.; Ghebreab, W.; Hauzenberger, C. A.; Johnson, P. R.; Kusky, T. M.; Macey, P.; Muhongo, S.; Stern, R. J.; Viola, G.

    2013-10-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world´s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of

  12. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution☆

    PubMed Central

    Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; Macey, P.; Muhongo, S.; Stern, R.J.; Viola, G.

    2013-01-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara–Congo–Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian–Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite–Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650–620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo–Tanzania–Bangweulu Cratons and the Zimbabwe–Kalahari Craton. They closed during the ∼600–500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600–550 Ma extension is recorded in the Arabian–Nubian Shield and the Eastern Granulite–Cabo Delgado Nappe Complex. Later ∼550–480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings

  13. Martian lithospheric thickness from elastic flexure theory

    NASA Technical Reports Server (NTRS)

    Thurber, C. H.; Toksoz, M. N.

    1978-01-01

    The thickness of the elastic lithosphere in the Tharsis region of Mars is estimated from effects due to the surface load of Olympus Mons. Deformation (vertical displacement) and stress are calculated using elastic flexure theory for a range of possible lithospheric thicknesses (T), modeling the lithosphere as a thin elastic shell and the interior as a Newtonian fluid. For T below 150 km, displacement and stress rise rapidly with decreasing thickness. For T near 100 km, deformation of the region surrounding the volcano would be clearly visible in the topography, and resulting tensional stresses exceeding 5 kbar should produce observable fracturing at the surface. In contrast, for T near 200 km deformation is minimal and the tensional stress, being less than a kilobar, would not result in extensive fracturing. Since significant deformation and fracturing are not observed, it is concluded that the Martian elastic lithosphere is at least 150 km in thickness. Seismic, tectonic, and gravity observations all suggest a thick Martian lithosphere as well.

  14. The evolution of fault geometry and lithosphere mechanical response to faulting during lithosphere hyper-extension at magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Gómez Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan

    2016-04-01

    The geometry of upper lithosphere extensional faulting and the mechanical response of the lithosphere during continental breakup are controversial. The lithosphere response to extensional faulting at magma-poor rifted margins controls the distribution of thinned continental crust, exhumed mantle, continental allochthons and syn-tectonic sediments leading to the complexity of heterogeneous structure of hyper-extended domain at these margins. In order to better understand the evolving fault geometry and lithosphere mechanics during magma-poor rifted margin formation, we investigate extensional faulting for the tectonic end-members of continental rifting and slow sea-floor spreading. We presume that these end-members faulting styles both contribute to lithosphere thinning during rifted margin evolution as continental rifting evolves into sea-floor spreading. For continental rifting, large extensional faults that rupture the seismogenic brittle upper lithosphere have been shown to be planar and steeply dipping by earthquake seismology and geodesy (Stein and Barrientos 1985; Jackson 1987). These results are supported by seismic reflection imaging and structural modelling of rift basins (Kusznir et al., 1991, 1995). Individual fault heaves for continental rifting seldom exceeds approximately 10 km. The effective elastic thickness, used to parameterize lithosphere flexural strength for syn-tectonic response to extensional faulting during continental rifting, are typically between 1.5 and 3 km. For slow-spreading ocean ridges we examine extensional fault geometry and lithosphere flexural response to cumulative faulting. We focus on the TAG area (deMartin et al., 2007) and the 15°N area (Schroeder et al., 2007) of the Mid-Atlantic Ridge using a flexural isostatic extensional faulting model (Buck 1988; Kusznir et al., 1991). Modelling of fault controlled bathymetry at slow-spreading ocean ridges shows that active extensional faults at depth have a steep dip (50° - 70

  15. Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents

    NASA Astrophysics Data System (ADS)

    Zheng, J. P.; Lee, C.-T. A.; Lu, J. G.; Zhao, J. H.; Wu, Y. B.; Xia, B.; Li, X. Y.; Zhang, J. F.; Liu, Y. S.

    2015-01-01

    Continents are underlain by thick, cold thermal boundary layers. Thermal contraction should render these boundary layers negatively buoyant and unstable; this is why old, cold oceanic lithospheres subduct. However, the ancient lithospheric roots of many continents appear to have existed for billions of years. In the common view, this preservation is due to the fact that the thermal boundary layers are compositionally distinct from the ambient mantle in that they are highly melt-depleted and dehydrated; the former provides positive buoyancy and the latter provides strength. Here, we show using mantle xenoliths that the Precambrian South China Block originally was underlain by highly depleted mantle, but has been refertilized via silicate melts generated from the asthenosphere. It is now more fertile than the ambient convecting mantle and is intrinsically denser by more than 1.5%. Achieving sufficient melt generation for refertilization is only possible if the lithosphere is thin enough to provide "headspace" for decompression melting. Thus, continental boundary layers thinner than the maximum depth of melting should experience refertilization, whereas thicker continents would altogether suppress melting and hence the potential for refertilization. We propose that refertilization, once initiated, will destabilize the base of the continent; this in turn will increase the amount of "headspace" and promote further refertilization, resulting in a positive feedback that could culminate in lithospheric destruction. By contrast, continents that are thick enough may not experience significant refertilization. This suggests that initial lithospheric thickness, as well as lithospheric composition, may be important for defining the fate of continents.

  16. Geodynamic Models for Various Styles of Melting in the Lithosphere Delamination Process

    NASA Astrophysics Data System (ADS)

    Gogus, Oguz; Ueda, Kosuke; Gerya, Taras; Gün, Erkan

    2016-04-01

    Lithospheric delamination in the sense of peel away of the mantle lithosphere from the overlying crust may occur during and at the terminal phase of the orogenic cycle and it has been recognized as a significant geodynamic process to identify the elevated surface topography, widespread magmatism and distinct crustal deformation patterns (i.e extension and shortening). However, the role of decompression melting of the mantle and slab melting in conjunction with the delamination of the lithosphere as well as the resulting magmatism/surface topography remains uncertain. In this work, by using thermomechanical numerical experiments we investigate the evolution and emplacement of the melt produced by slab-derived fluids and the decompression melting under an accretionary crust. Our numerical experiments with varying activation volume of the mantle lithosphere and the asthenospheric mantle as well as plate convergence velocity aims to configure the orogenic evolution from ocean lithosphere subduction to delamination in the course of melt related weakening process. Our results suggest that the entrainments of the melting induced by the subducting slab reaches under the accretionary wedge and fosters the plate decoupling/delamination between accretionary crust and the underlying mantle lithosphere. With all parameters kept the same and the convergence velocity of Vp = 4 cm/year, decrease in the activation volume in the mantle nearly 5% results in the % 70 increase for the amount of decompression melting, therefore the widening the delamination zone. Surface elevation above the zone of delamination may lower the topography at least 1 km due to the crustal stretching as a response to melt induced weakening of the crust. When there is no decompression melting under the delamination zone the surface crust may uplift as much 3 km. Our results may explain the role of melting and widesprad magmatic activity under the orogenic plateaus where they are underlain by weak accretionary

  17. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  18. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    NASA Astrophysics Data System (ADS)

    McCrory, P. A.; Constantz, J. E.; Hunt, A. G.; Blair, J. L.

    2016-06-01

    Helium isotopic ratios (3He/4He) observed in 25 mineral springs and wells above the Cascadia forearc provide a marker for fluids derived from Juan de Fuca lithosphere. This exploratory study documents a significant component of mantle-derived helium within forearc springs and wells, and in turn, documents variability in helium enrichment across the Cascadia forearc. Sample sites arcward of the forearc mantle corner generally yield significantly higher ratios (˜1.2-4.0 RA) than those seaward of the corner (˜0.03-0.7 RA). 3He detected above the inner forearc mantle wedge may represent a mixture of both oceanic lithosphere and forearc mantle sources, whereas 3He detected seaward of the forearc mantle corner likely has only an oceanic source. The highest ratios in the Cascadia forearc coincide with slab depths (˜40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (˜25-30 km) beneath sites seaward of the corner. These observations provide independent evidence that tremor is associated with deep fluids, and further suggest that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through the ductile upper mantle and lower crust.

  19. Lithospheric stress patterns: A global view

    NASA Astrophysics Data System (ADS)

    Zoback, Mary Lou; Burke, Kevin

    The present-day lithospheric stress state is the result of a variety of forces that act on and within the tectonic plates forming the Iithosphere. Knowledge of this stress state provides important constraints on forces acting at a variety of scales and, hence, helps to solve scientific problems of interest to a wide spectrum of scientists and engineers.Six years of effort by scientists from all over the world (listed at end of article) brought together under the International Lithosphere Program (ILP) of the joint International Union of Geodesy and Geophysics/International Union of Geological Sciences (IUGG/IUGS) Interunion Commission on the Lithosphere culminated in the July 1992 publication of the World Stress Map and nineteen accompanying research papers in a special issue of the Journal of Geophysical Research-Solid Earth (volume 87, number B8). Figure 1 shows a reduced version of the published 1:40,000,000 color map.

  20. Upper mantle flow and lithospheric dynamics beneath the Eurasian region

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Jiang, G.; Jia, Z.; Gao, R.; Fu, R.

    2010-12-01

    Evidence from seismic tomography, geothermal and short wavelength geoid anomalies reveals the existence of small-scale convective systems in the upper mantle, with scales ranging from 500 km to 700 km. It is reasonable to suggest that these small-scale convective systems probably control the regional tectonic structure and the dynamical processes of the lithosphere. Here we have calculated the patterns of small-scale convection in the upper mantle for the Eurasian region (20°E~170°E,15°N~75°N), using the anomaly of isostatic gravity. The results show that the regional lithospheric tectonics is strongly correlated with the upper mantle flow in the Eurasian region. Two intensive convective belts against the weak background convection can be recognized from convection patterns in this region: Alpine-Himalayan collision belt and West Pacific island arc-underthrust belt. Alpine-Himalayan belt is caused by the collision between the northern plate (Eurasian plate) and the southern plates (African plate and Indian plate). West Pacific island arc-underthrust belt is caused by the subduction of the Pacific plate beneath the Eurasian plate. Both of them are also seismotectonic belts. The collision and the subduction are two important geological events occurred since Mesozoic era and Cenozoic era in the Eurasian region. Therefore, the mantle flows may be one of the main driving forces of two events. In addition, most plate boundaries in this region can be recognized and the characteristics of upper mantle convection are different completely between the Eurasian plate and the plates around it (African plate, Arabian plate, Indian plate, Philippine Sea plate and Pacific plate). Main structures and geodynamic characteristics of the Eurasian can also be explained by our model results. The Tibet plateau is located in the intensive convective belt. Around the belt, the upwelling materials push the lithosphere to lift unitarily and form the plateau. Towards the north of the Tibet

  1. Feedbacks between deformation and reactive melt transport in the mantle lithosphere during rifting

    NASA Astrophysics Data System (ADS)

    Tommasi, A.; Baptiste, V.; Vauchez, A. R.; Fort, A.

    2014-12-01

    The East-African rift associates lithospheric thinning with extensive volcanism. Melts, even at low fractions, reduce the mantle viscosity. They also carry and exchange heat, mainly via reactions (latent heat), modifying the temperature and the rheology, which in turn controls their transport through the lithospheric mantle. Analysis of microstructures and crystal preferred orientations of mantle xenoliths from different localities along the East-African rift system highlights strong feedbacks between deformation, melt transport, and thermal evolution in the lithospheric mantle. Microstructures change markedly from south (young) to north (mature rift). In Tanzania, mylonitic to porphyroclastic peridotites predominate in on-axis localities, while off-axis ones are coarse-granular to porphyroclastic, pointing to heterogeneous deformation and variable annealing due to local interaction with fluids or to different time lags between deformation and extraction. Mylonites point to strain localization but there is no evidence for dominant grain boundary sliding: ubiquituous intracrystalline deformation in olivine and orthopyroxene and strong CPO record dislocation creep with dominant [100] glide in olivine. Synkinematic replacement of opx by olivine in both mylonitic and porphyroclastic peridotites suggests that deformation continued in the presence of melt under near-solidus conditions. This heating was transient: exsolutions in opx record cooling before extraction. Mega peridotites, which sample the southern border of the Ethiopian plateau, are coarse-porphyroclastic and show widespread metasomatism by basalts or by evolved volatile-rich low melt fractions. The former predated or was coeval to deformation, since olivine and pyroxene CPO are coherent. Exsolutions in opx imply that the high primary equilibration temperatures, which are consistent with the coarse-grained microstructures, are linked to transient heating. Finally, the fine-grained polygonal microstructures

  2. Water and its influence on the lithosphere-asthenosphere boundary.

    PubMed

    Green, David H; Hibberson, William O; Kovács, István; Rosenthal, Anja

    2010-09-23

    The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the

  3. Water and its influence on the lithosphere-asthenosphere boundary.

    PubMed

    Green, David H; Hibberson, William O; Kovács, István; Rosenthal, Anja

    2010-09-23

    The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the

  4. Present Lithospheric Deformation and Asthenospheric Flow beneath the Central Mongolia

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Guan, J.; Gao, M.; Munkhuu, U.; Demberel, S. G.

    2013-12-01

    The Central Asian Orogeny Belt (CAOB), which separates the Siberia Shield to the north from the Sino-Korean Craton and Tarim Craton to the south and extends from the Ural Orogeny in the west to the Western Pacific Subduction Zone in the east, is one of the World's largest Paleozoic orogeny zone, with more than 50% juvenile crust. CAOB provides a unique place to study the continental growth process and mechanism. 68 broadband seismometers were deployed for 2 years in the central Mongolian from August 2011, funded by the international cooperation project of Ministry of Science and Technology of China----The Geophysical Investigation and Deep Structure Modeling for Seismic Hazard Assessment in the Far East (2011DFB20120). As a part of the joint project, the aim of the passive seismic observation (CM Array) is to investigate the deep structure of the Central Mongolia. Upper mantle deformation features are deduced from the splitting of the teleseismic shear wave such as SKS and SKKS phases. At the temporary CM array across the central Mongolia, we observe delay times of SKS splitting ranging from 0.8 to more than 2.0s. The observed SKS fast direction at most of the stations is dominated by NW-SE, which is almost orthogonal to the trend of lithospheric structure, striking in NE-SW in the central and eastern Mongolia and thought to be formed by the closure of the Mongol-Okhotsk ocean from the Devonian to Triassic. Such a feature implies that the fossil lithospheric deformation may not be preserved in the central Mongolia, even though the finial closure of the Mongol-Okhostk ocean occurred at the end of Triassic. It is noted that the angular difference between the fast direction and the APM for most of the stations is within 40°; such a difference could be considered to be within the uncertainty but also may reflect a true differential motion between the Earth surface and the convective mantle. The present-day deformation of Mongolia started at the end of the Oligocene

  5. COOL: Crust of the Oman Ophiolite and its Lithosphere - a passive seismic experiment

    NASA Astrophysics Data System (ADS)

    Weidle, Christian; Agard, Philippe; Ducassou, Céline; El-Hussain, Issa; Prigent, Cécile; Meier, Thomas

    2014-05-01

    Plate tectonics has established a framework for geoscientists to understand most geologic/tectonic processes that shaped our present-day Earth. 'Obduction', the emplacement of young, dense oceanic lithosphere (ophiolites) on top of older lighter continental lithosphere remains, however, a rather odd phenomenon. Some ophiolites are fundamentally similar to young oceanic crust and it is hence assumed that they were obducted as thrust sheets at the onset of continental subduction in a previously intra-oceanic subduction setting. The Peri-Arabic obduction corresponded to a spectacular, almost synchronous thrust movement along thousands of km from Turkey to Oman. At the eastern margin of the Arabian plate, the world's largest and best preserved ophiolite was emplaced in only a few My during Upper Cretaceous and is exposed today atop the Oman Mountain range. Although being the best studied ophiolite in the world, rather little is still known about the internal structure of the ophiolite and the Oman Mountains. The dimension of the ophiolite is large enough (~700 km) to be studied with seismological methods, providing thus a rare setting to investigate oceanic crust on land without ocean bottom installations. We have deployed a network of 40 broadband seismometers across the Oman Mountains in Oct/Nov 2013 for passive seismic registration for a duration of ca. 15 months. The network is complemented by 10 permanent stations in the area operated by the Earthquake Monitoring Center in Oman. Aims of the project include: - Seismological imaging of the geometry and internal properties of obducted oceanic, and its underlying continental lithosphere. - Regional tomographic velocity models will provide constraints on geodynamic processes that led to large scale obduction. - Investigating the "quiet" Makran subduction zone for local seismicity will improve understanding of seismic hazard on the eastern Arabian plate.

  6. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  7. Quantitative petrological constraints on the depth of the Lithosphere-Asthenosphere boundary and the implications for changes in cratonic lithosphere thickness through time

    NASA Astrophysics Data System (ADS)

    Mather, K. A.; Pearson, G.; Kjarsgaard, B. A.

    2010-12-01

    between the eruption of the kimberlite and today. Explanation of these differences is crucial to an improved understanding of craton evolution through time, and the nature of the LAB itself. McKenzie, D., Jackson, J., and Priestley, K., 2005, Thermal structure of oceanic and continental lithosphere: Earth and Planetary Science Letters, v. 233, p. 337-349. Yuan, H. and Romanowicz, B., 2010, Lithospheric layering in the North American craton: Nature, v. 466 doi:10.1038/nature09332

  8. Global relationship between oceanic geoid and topography

    NASA Technical Reports Server (NTRS)

    Cazenave, A.; Dominh, K.; Allegre, C. J.; Marsh, J. G.

    1986-01-01

    The transfer function of geoid over topography as a function of wavelength is derived. The relationship between oceanic geoid and seafloor depth is analyzed. The correction of the geoid and topological data for thermal cooling of the oceanic lithosphere, sediment loading, and crustal thickening induced by volcanism under large ocean plateaus is discussed. The global residual depth and geoid anomalies are computed. The admittance and correlation between residual depth and geoid anomalies as a function of wavelength are examined.

  9. Coupling Thermo-Mecanical Simulation and Stratigraphic Modelling: Impact of Lithosphere Deformation on Stratigraphic Architecture of Passive Margin Basins

    NASA Astrophysics Data System (ADS)

    Rouby, D.; Huismans, R. S.; Braun, J.

    2013-12-01

    The aim of this study is to revise the view of the long-term stratigraphic trends of passive margins to include the impact of the coupling between the lithosphere deformation and the surface processes. However, modeling coupling lithosphere deformation and surface processes usually address large-scale deformation processes, i.e. they cannot resolve the stratigraphic trend of the simulated basins. On the other hand, models dedicated to stratigraphic simulation do not include these feedbacks of erosion/sedimentation on deformation processes. The recent development of a numerical modeling tool, coupling the thermal and flexural evolution of the lithosphere and including the (un)loading effects of surface processes in 3D (Flex3D; J. Braun), allows us to propose a new procedure to investigate, in 3D, the evolution of passive margins, from the scale of the lithosphere to the detailed stratigraphic architecture, including syn- and post-rift phases and onshore and offshore domains. To do this, we first simulate the syn-rift phase of lithosphere stretching by thermo-mechanical modeling (Sopal, R. Huismans). We use the resulting lithosphere geometry as input of the 3D flexural modeling to simulate the post-rift evolution of the margin. We then use the resulting accumulation and subsidence histories as input of the stratigraphic simulation (Dionisos, D. Granjeon) to model the detailed stratigraphic architecture of the basin. Using this procedure, we evaluate the signature of various boundary conditions (lithosphere geometries and thermal states, stretching distributions, surface processes efficiencies and drainage organization) in the uplift/subsidence and denudation histories as well as the stratigraphic architecture of the associated sedimentary basins. We apply the procedure to the case study of passives margins surrounding the West African craton, for which we have compiled data constraining the denudation and accumulation history, and the long term stratigraphic

  10. The lithosphere thermal structure of the Southeast Asia: constrained by Vs data

    NASA Astrophysics Data System (ADS)

    Chuanhai, Yu; Xiaobin, Shi; Qunshu, Tang; Xiaoqiu, Yang

    2016-04-01

    The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. As we all know, the tectonic evolution is closely related to the deep thermal structure state. Therefore, an accurate estimation of lithosphere thermal structure and lithosphere thickness is important in extracting information on tectonics and geodynamics. Though the thermal regime could be calculated with the observed surface heat flow, there are many uncertainties in the calculated deep thermal state. In this study, we calculated the deep lithosphere thermal structure of Southeast Asia regions by employing an empirical relationship between Vs and temperature, from the calculated temperature-depth profiles, we can identify the base of the thermal lithosphere. The results show that the temperature contours at 80km depth is about 200-300°C higher in the rifted basins and oceanic basins such as Andaman Sea, Thailand Bay, Thailand Rift Basin, South China Sea than in the plateaus and subduction zones such as Khorat Plateau, Sumatra Island and Philippine Trench regions. Generally, the thermal state indicated by the temperature contours at 80 km depth is in agreement with those suggested by the observed surface heat flow. The temperature at 100 km and 200 km depth in Southeast Asia regions is 1450-1500°C and 1650-1780°C which suggest that the study regions might have a higher thermal state than other regions. Our results also show that the estimated thickness of the lithosphere are 85-95 km in the regions of Subduction and collision regions surrounding the study area such as Java trench system, Sumatra trench system, Indo-Asian collision suture zone, Taiwan orogenic belt, Luzon Island, Celebes Island and Northeast of Borneo and becomes smaller toward the South China Sea. In the South China

  11. Far-offset Airgun Imaging of the Mantle: Lithospheric Anisotropy of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Gaherty, J. B.; Lizarralde, D.; Collins, J. A.; Hirth, G.

    2001-12-01

    Melt extraction and associated mantle flow beneath a spreading center produces coherent fabric in olivine-rich mantle rocks that is retained in the mantle lithosphere as it translates away from the ridge. Observations of seismic anisotropy provide a means to map this mantle fabric and thus flow associated with ridge processes. Refraction and surface-wave studies have successfully delineated the anisotropic structure of Pacific lithosphere, and to first order, these results agree with simple passive-spreading models of the mid-ocean ridge. Numerical models suggest that slow-spreading lithosphere may be characterized by anisotropy that is very different than that observed in the Pacific due to the possible influence of buoyancy-driven upwelling and along-axis flow. Unfortunately, observations of anisotropy in the Atlantic and other slow-spreading environments are limited to long-period surface waves, and the details of lithospheric fabric in such regions are largely unknown. We investigate the anisotropic structure of old Atlantic lithosphere using refraction data recorded during the FAIM (Far-offset Airgun Imaging of the Mantle) experiment. This experiment consisted of airgun shots to a 700-km-long linear array of 16 ocean-bottom seismometers (OBS), with an additional 3 OBS deployed perpendicular to the main array, located 150 km SW, 75-km SW, and 75-km NE from the line. The shots were also recorded by a broad-band seismometer deployed on Bermuda, perpendicular to the line approximately 350 km NE. Preliminary analysis of one of the off-line instruments indicates that refracted arrivals were successfully recorded to a source-receiver distance of over 250 km. These data will provide azimuthal record sections that span up to 160 degrees. The travel-time residuals from these data will be corrected for along-path heterogeneity using the results of the primary refraction profile, and the remaining azimuthal variation will be modeled for the direction, magnitude and depth

  12. The magma ocean as an impediment to lunar plate tectonics

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  13. The magma ocean as an impediment to lunar plate tectonics

    NASA Astrophysics Data System (ADS)

    Warren, P. H.

    1993-03-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  14. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    PubMed

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-01-01

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust. PMID:24589693

  15. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton

    PubMed Central

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M.; Xiao, Yan

    2014-01-01

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ7Li in Archean lithospheric mantle. The δ7Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from −27 to +21, in marked deviation from the δ7Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1–2 ppm). The Li abundances and δ7Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ7Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ7Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust. PMID:24589693

  16. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    PubMed

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  17. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Burov, E. B.

    2003-08-01

    Plate flexure is a phenomenon that describes how the lithosphere responds to long-term (>105 yr) geological loads. By comparing the flexure in the vicinity of ice, volcano, and sediment loads to predictions based on simple plate models it has been possible to estimate the effective elastic thickness of the lithosphere, Te. In the oceans, Te is the range 2-50 km and is determined mainly by plate and load age. The continents, in contrast, are characterised by Te values of up to 80 km and greater. Rheological considerations based on data from experimental rock mechanics suggest that Te reflects the integrated brittle, elastic and ductile strength of the lithosphere. Te differs, therefore, from the seismogenic layer thickness, Ts, which is indicative of the depth to which anelastic deformation occurs as unstable frictional sliding. Despite differences in their time scales, Te and Ts are similar in the oceans where loading reduces the initial mechanical thickness to values that generally coincide with the thickness of the brittle layer. They differ, however, in continents, which, unlike oceans, are characterised by a multi-layer rheology. As a result, Te≫Ts in cratons, many convergent zones, and some rifts. Most rifts, however, are characterised by a low Te that has been variously attributed to a young thermal age of the rifted lithosphere, thinning and heating at the time of rifting, and yielding due to post-rift sediment loading. Irrespective of their origin, the Wilson cycle makes it possible for low values to be inherited by foreland basins which, in turn, helps explain why similarities between Te and Ts extend beyond rifts into other tectonic regions such as orogenic belts and, occasionally, the cratons themselves.

  18. Global lithospheric imaging using teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Spieker, K.; Halpaap, F.; Farestveit, M.; Sawade, L.; Zijerveld, L.

    2015-12-01

    Project GLImER (Global Lithospheric Imagining using Earthquake Recordings) aims to conduct a global survey of lithospheric interfaces using converted teleseismic body waves. Data from permanent and temporary seismic networks worldwide will be processed automatically to produce global maps of key interfaces (Moho, intra-lithospheric interfaces, lithosphere-asthenosphere boundary). In this presentation, we discuss the challenges associated with automating the analysis of converted waves and the potential of the resulting data products to be used in novel imaging approaches. With regards to automation, we address in particular the search for an optimal deconvolution method in receiver function analysis. To do so, we carry out a systematic comparison of various commonly used deconvolution methods and find that all methods produce equally robust receiver functions provided that a suitable regularization parameter is found. We further note that a suitable regularization can be found objectively for most approaches, thus challenging the belief that only time-domain deconvolution is a viable option for receiver function automation. With regards to imaging applications, we investigate how the resulting global database of receiver functions will be amenable to existing processing approaches as well as new approaches adapted from seismic exploration, including industry-based interpretation tools.

  19. Variations in lithospheric thickness on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, C. L.; Sandwell, David T.

    1992-01-01

    Recent analyses of Magellan data have indicated many regions exhibiting topograhic flexure. On Venus, flexure is associated predominantly with coronae and the chasmata with Aphrodite Terra. Modeling of these flexural signatures allows the elastic and mechanical thickness of the lithosphere to be estimated. In areas where the lithosphere is flexed beyond its elastic limit the saturation moment provides information on the strength of the lithosphere. Modeling of 12 flexural features on Venus has indicated lithospheric thicknesses comparable with terrestrial values. This has important implications for the venusian heat budget. Flexure of a thin elastic plate due simultaneously to a line load on a continuous plate and a bending moment applied to the end of a broken plate is considered. The mean radius and regional topographic gradient are also included in the model. Features with a large radius of curvature were selected so that a two-dimensional approximation could be used. Comparisons with an axisymmetric model were made for some features to check the validity of the two-dimensional assumption. The best-fit elastic thickness was found for each profile crossing a given flexural feature. In addition, the surface stress and bending moment at the first zero crossing of each profile were also calculated. Flexural amplitudes and elastic thicknesses obtained for 12 features vary significantly. Three examples of the model fitting procedures are discussed.

  20. Imaging Lithospheric Structure beneath the Indian continent

    NASA Astrophysics Data System (ADS)

    Maurya, S.; Montagner, J. P.; Mangalampally, R. K.; Stutzmann, E.; Burgos, G.; Kumar, P.; Davuluri, S.

    2015-12-01

    The lithospheric structure and thickness to the LAB are the most debated issues, especially beneath continents. In this context, the structure and thickness of the Indian lithosphere has been controversial. Paleomagnetic data reveals that the Indian continent moved northwards at exceptionally high speeds (18-20 cm/year) and subsequently slowed down to 4-5 cm/year after its collision with Asia ≈40 Myr ago. This super mobility has been explained by an unusually thin Indian lithosphere (≈100 km; Kumar et al., 2007) in contradiction with the thick lithosphere that commonly underlies old cratonic nuclei. It is pertinent to note that the thermobarometric estimates on the ultramafic xenoliths from 65 Myr kimberlites of the Central India (Babu et al. 2009) suggest an approximately 175 km thick lithosphere. Also, recent results of P and S wave travel time tomography of India suggest that the lithospheric roots are not uniformly thick on a regional scale. Although high velocity roots typical of Precambrian shields are preserved beneath a few cratons of the Indian shield, they seem to have suffered attrition, in the plume ravaged regions like the NDVP and the Southern SGT (Singh et al., 2014). We assembled a new massive surface wave database towards obtaining 3D isotropic and anisotropic models for the Indian sub-continent, using surface waves. This necessitated processing of data from more than 500 seismic broadband stations across India and surrounding regions. Surface waves group and phase dispersion measurements are performed in a broad frequency range (16-250s). Our phase velocity anomaly maps recover most of the known geological structures. The cratons are associated with high velocity (4-6%) anomalies till 200 sec, with the WDC being faster than the EDC. Slow velocities in NW India and very high velocity anomalies (6-8%) beneath the central part of the Indo-Gangetic plains are possibly associated with the subducting Indian lithosphere. The LAB depths inferred from

  1. Lithospheric structure of the central Pacific: early returns from the NoMelt experiment

    NASA Astrophysics Data System (ADS)

    Lin, P.; Gaherty, J. B.; Lizarralde, D.; Collins, J. A.; Evans, R. L.; Hirth, G.

    2013-12-01

    Recent advances in laboratory measurements and theoretical models of the seismic properties of mantle rocks predict seismic velocity profiles for mature oceanic lithosphere that are fundamentally inconsistent with the best observations of seismic velocities in two ways. Observations of strong positive velocity gradients with depth, and a very sharp and very shallow low-velocity asthenosphere boundary (LAB), both suggest that non-thermal factors such as bulk composition, mineral fabric, grain size, and dehydration play important roles in controlling the formation of the lithosphere, and thus the underlying LAB. There is little consensus on which of these factors are dominant, in part because observations of detailed lithosphere structure are limited. In 2011-2013, we conducted the NoMelt experiment on ~70 Ma Pacific lithosphere between the Clarion and Clipperton fracture zones. The experiment consists of a 600x400 km array of broad-band (BB) ocean bottom seismometers (OBS) and magnetotelluric (MT) instruments, and an active-source reflection/refraction experiment. The BB OBS array was recovered in January 2013, and we present preliminary observations derived from one year's recording of teleseismic earthquakes, which will constrain anisotropic velocity and anelasticity structure based on surface waves, shear-wave splitting, and direct and converted body waves. Of the 27 deployed instruments, 21 were recovered, all of which produced useful data on the seismometer and/or the differential pressure gauge in the 10-100 s period band. We have identified at least 38 energetic events that produced outstanding P and S body waves, which we will use for receiver-function analyses to look for the reflected and converted body waves. High signal-to-noise Rayleigh waves are observed from over 26 events with Mw 6.5 or larger, and useful Love waves are observed on several stations for 2 events greater than Mw 7.1. These observations will be used to produce a radially anisotropic

  2. Lithospheric flexure at the Hawaiian Islands and its implications for mantle rheology

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Watts, Anthony

    2014-05-01

    The response of the lithosphere to long-term geological loads such as volcanoes, sediments and ice provide important insights to both plate mechanics and mantle dynamics. One of the largest loads on Earth's surface are the shield volcanoes that comprise the Hawaiian Islands in the Central Pacific Ocean. We have developed a 3-D finite element model for calculating the flexure and stress associated with the emplacement of an arbitrary-shaped volcano load on a crust and mantle with realistic non-linear viscoelastic rheology, including frictional sliding, low-temperature plasticity, and high-temperature creep. By comparing model predictions with seismic reflection and refraction observations of the depth to the top of the oceanic crust and the depth dependence of seismicity at the Hawaiian Islands, we have been able to constrain the long-term rheological properties of intraplate, plume influenced, Late Cretaceous (83-96 Ma) oceanic lithosphere. Our calculations show that while the load-induced surface flexure is insensitive to high-temperature creep, it is sensitive to both the frictional sliding and low-temperature plasticity laws. Results show that a frictional coefficient ranging from 0.25 to 0.70 and a low-temperature plasticity law that is significantly weaker than ones recently proposed from experimental rock mechanics data are required in order to account for the observations. For example, a frictional coefficient of 0.1 weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the observed depth distribution of seismicity while the low-temperature plasticity law of Mei et al (2010) strengthens the deep part of the lithosphere so much that it predicts too small an amplitude and long a wavelength flexure compared to the observed. Our best fit model suggest the maximum stress that accumulates in the flexed lithosphere beneath the Hawaiian Islands is 100-200 MPa, and

  3. Spatial variations of effective elastic thickness of the Lithosphere in the Southeast Asia regions

    NASA Astrophysics Data System (ADS)

    Shi, Xiaobin; Kirby, Jon; Yu, Chuanhai; Swain, Chris; Zhao, Junfeng

    2016-04-01

    The effective elastic thickness Te corresponds to the thickness of an idealized elastic beam that would bend similarly to the actual lithosphere under the same applied loads, and could provide important insight into rheology and state of stress. Thus, it is helpful to improve our understanding of the relationship between tectonic styles, distribution of earthquakes and lithospheric rheology in various tectonic settings. The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, and suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. The Cenozoic southeastward extrusion of the rigid Indochina Block due to the Indo-Asian collision resulted in the drastic surface deformation in the western area. Therefore, a high resolution spatial variation map of Te might be a useful tool for the complex Southeast Asia area to examine the relationships between surface deformation, earthquakes, lithospheric structure and mantle dynamics. In this study, we present a high-resolution map of spatial variations of Te in the Southeast Asia area using the wavelet method, which convolves a range of scaled wavelets with the two data sets of Bouguer gravity anomaly and topography. The topography and bathymetry grid data was extracted from the GEBCO_08 Grid of GEBCO digital atlas. The pattern of Te variations agrees well with the tectonic provinces in the study area. On the whole, low lithosphere strength characterizes the oceanic basins, such as the South China Sea, the Banda sea area, the Celebes Sea, the Sulu Sea and the Andaman Sea. Unlike the oceanic basins, the continental fragments show a complex pattern of Te variations. The Khorat plateau and its adjacent area show strong lithosphere characteristics with a Te range of 20-50 km, suggesting that the Khorat plateau is the strong core of the Indochina Block. The West

  4. Magnetic mineralogy of the Mercurian lithosphere

    NASA Astrophysics Data System (ADS)

    Strauss, Becky; Feinberg, Joshua; Johnson, Catherine

    2016-04-01

    Mercury and Earth are the only inner solar system planets with present-day core-dynamo magnetic fields, in contrast to the past fields of Mars and the Moon and the absence of evidence for a past or present field at Venus. Recently, the MESSENGER mission also measured magnetic fields from lithospheric magnetization on Mercury for the first time. These fields are consistent with remanent magnetization held by rocks exposed to an ancient, internally generated planetary magnetic field. However, the conditions for magnetization in the lithosphere of Mercury are unique among terrestrial planets, and the mechanisms for the acquisition (induced versus remanent) and alteration of magnetization are still unknown. We investigate the physical and chemical environment of Mercury's crust, past and present, to establish the conditions in which magnetization may have been acquired and subsequently modified. Three factors are particularly crucial to the determination of crustal composition and iron mineralogy: the temperature profile of the lithosphere and its evolution over time, redox conditions in the planet's crust and mantle, and the iron content of the lithosphere. We explore potential mechanisms for remanence acquisition and alteration on Mercury, whose surface environment is distinct from that of other inner solar system planets in that it is both very hot and highly reducing. The long-term thermal history of Mercury's crust plays an important role in the longevity of any crustal magnetization, which may be subject to remagnetization through thermal, viscous, and shock mechanisms. This thermal and compositional framework isused to constrain plausible candidate magnetic mineralogies, which can then be analyzed in terms of their capacity to acquire and retain magnetic remanence that is detectable from satellite orbit. We propose a suite of minerals and materials that could be carriers of remanence in the lithosphere of Mercury, including iron alloys, silicides, and sulfides.

  5. Estimating lithospheric properties at Atla Regio, Venus

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1994-01-01

    Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.

  6. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics

    NASA Astrophysics Data System (ADS)

    Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.; Lowry, A. R.

    2009-09-01

    Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~ 400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in

  7. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Metois, M.; Fernandez, M.; Verges, J.; Fullea, J.; Lowry, A. R.

    2009-12-01

    Detailed information on lateral variations in lithospheric properties can aid in understanding how surface deformation relates to deep Earth processes. The effective elastic thickness, Te, of the lithosphere is a proxy for lithospheric strength. Here, we present a new Te map of the African lithosphere estimated from coherence analysis of topography and Bouguer anomaly data. The latter data set derives from the EGM 2008 model, the highest resolution gravity database over Africa, enabling a significant improvement in lateral resolution of Te. The methodology used for Te estimation improves upon earlier approaches by optimally combining estimates from several different window sizes and correcting for an estimation bias term. Our analysis finds that Te is high, ~ 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari exhibits the lowest Te. Based in part on published seismic and mineral physics constraints, we suggest this may reflect modification of Kalahari lithosphere by anomalously hot asthenospheric mantle. Similarly, the Tanzania craton exhibits relatively lower Te east of Lake Victoria, where a centre of seismic radial anisotropy beneath the craton has been located and identified with a plume head, thus suggesting that here too, low Te reflects modification of cratonic lithosphere by an underlying hot mantle. The lowest Te in Africa occurs in the Afar and Main Ethiopian rifts, where lithospheric extension is maximum. In the western Ethiopian plateau a local Te minimum coincides with published images of a low P and S seismic velocity anomaly extending to ~400 km depth. Finally, the Darfur, Tibesti, Hoggar and Cameroon line vo provinces lcanic are characterised by low Te and no deep-seated seismic anomalies in the mantle. Corridors of relatively low Te connect these volcanic provinces to the local Te minima within the western Ethiopian plateau. We interpret the low Te to indicate thinner lithosphere within the corridors than in

  8. Electrical conductivity in the precambrian lithosphere of western canada

    PubMed

    Boerner; Kurtz; Craven; Ross; Jones; Davis

    1999-01-29

    The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.

  9. A comparison of Sr-Nd-Pb isotopes in young and old continental lithospheric mantle: Patagonia and eastern China

    USGS Publications Warehouse

    Zartman, R.E.; Futa, K.; Peng, Z.C.

    1991-01-01

    It is commonly accepted that beneath the continental crust lies a keel of lithospheric mantle, which extends 50-200 kilometres downward to a transition zone into the asthenosphere. The chemical and physical properties of this reservoir are best known through studies of the basalts and xenoliths that provide samples of the subcrustal mantle. Although sharing many characteristics with oceanic island basalts, some continental basalts become increasingly distinct isotopically as crustal age increases, strongly supporting a permanent association between crust and mantle. Five models are discussed that relate the isotopic composition of the continental lithospheric mantle to that of other parts of the terrestrial system, which may be involved in its origin and evolution. The potential locations of the contribution components and the mechanisms and timing of their assembly into lithosphere are considered. -from Authors

  10. Understanding plate-motion changes over the past 100 Myr with quantitative models of the coupled lithosphere/mantle system

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2015-04-01

    The volume of geophysical datasets has grown substantially over recent decades. Our knowledge of continental evolution has increased due to advances in interpreting the records of orogeny and sedimentation. Ocean-floor observations now allow one to resolve past plate motions (e.g. in the North Atlantic and Indian Ocean over the past 20 Myr) at temporal resolutions of about 1 Myr. Altogether, these ever-growing datasets allow us to reconstruct the past evolution of Earth's lithospheric plates in greater detail. This is key to unravelling the dynamics of geological processes, because plate motions and their temporal changes are powerful probe into the evolving force balance between shallow- and deep-rooted processes. However, such progress is not yet matched by the ability to quantitatively model past plate-motion changes and, therefore, to test hypotheses on the dominant controls. The main technical challenge is simulating the rheological behaviour of the lithosphere/mantle system, which varies significantly from viscous to brittle. Traditionally computer models for viscous mantle flow on the one hand, and for the motions of the brittle lithosphere on the other hand, have been developed separately. Coupling of these two independent classes of models has been accomplished only for neo-tectonic scenarios, without accounting for the impact of time-evolving mantle-flow (e.g. Iaffaldano and Bunge 2009). However, we have built a coupled model to simulate the lithosphere/mantle system (using SHELLS and TERRA, respectively) through geological time, and to exploit the growing body of geophysical data as a primary constraint on these quantitative models. TERRA is a global spherical finite-element code for mantle convection (e.g. Baumgardner 1985, Bunge et al. 1996, Davies et al. 2013), whilst SHELLS is a thin-sheet finite-element code for lithosphere dynamics (e.g. Bird 1998). Our efforts are focused, in particular, on achieving the technical ability to: (i) simulate the

  11. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.

    PubMed

    Pearson, D G; Nowell, G M

    2002-11-15

    The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that

  12. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.

    PubMed

    Pearson, D G; Nowell, G M

    2002-11-15

    The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that

  13. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms

  14. Plume- Ridge Lithospheric Interactions: Cases of Afar (Africa)

    NASA Astrophysics Data System (ADS)

    Montagner, J. P.; Stutzmann, E.; Sicilia, D.; Sebai, A.; Beucler, E.; Silveira, G.; Cara, M.; Debayle, E.; Leveque, J. J.

    2003-04-01

    Detection of mantle plumes in geophysical and geochemical data is controversial and trigger vigorous debates. It remains unclear how plumes are formed, their origin at depth, and whether they act independently from plate tectonics. We may learn about the role of plumes in mantle dynamics by studying their interactions with lithosphere and crust below ridges and the way in which they perturb the flow pattern in the uppermost mantle. Several regional tomographic studies of seismic velocity and anisotropy around several hotspots were obtained during the last 2 years. Their lateral resolution is smaller than 1000km and they enable to make qualitative intercomparison between Afar (Horn of Africa Program), Azores (COSEA project) in the Atlantic, La Reunion in the Indian Ocean and Pacific provinces hotspots. These models demonstrate that there is not only one family of plumes but several ones. Some plumes are confined in the uppermost 200km but a few can originate in the transition zone and even at the Core-mantle Boundary for superplumes. Seismic anisotropy which is a good marker of deformation processes and mantle flow pattern, shows that the interaction between a plume and a ridge below the lithosphere can occur over distances larger than 1000km, via sublithospheric channels. The existence of LACs (Low Anisotropy Channels) below the Pacific plate seems to be intimately related to the active hotspots in Central Pacific and indicate a future reorganization of plate boundaries. Another important consequence of the interaction between plume and ridge is the triggering of secondary convection in the asthenosphere, which will be discussed during the presentation.

  15. Imaging the Subduction of Continental Lithosphere in the Banda Sea Region

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; De Wit, M.; van Bergen, M.

    2014-12-01

    We present a 3D tomographic model of Australasia obtained by full seismic waveform inversion. Our model features a sharp lateral velocity contrast extending to >200 km depth, coincident with the abrupt transition from low to high Helium ratios in arc volcanics near 123°E (see figure). The joint analysis of the tomographic model and isotope data (for He, Pb, Nd, Sr) suggests that the North Australian craton subducted beneath the Banda Sea to around 100 km depth. The continuous increase of computing power combined with advances in numerical seismology allow us to develop full waveform inversion techniques that translate complete seismograms into 3D Earth models. The natural incorporation of any type of body and surface waves in full waveform inversion improves tomographic resolution in terms of both resolution length and amplitude recovery. We applied full waveform inversion to Australasia, including the Sunda and Banda arcs. The correlation of the tomographic model with isotope signatures of arc volcanics supports the shallow-angle subduction of North Australian lithosphere. The integrated data suggest that the late Jurassic ocean lithosphere north of the North Australian craton was capable of entraining large volumes of continental lithosphere. A plausible explanation involves delamination within the continental crust, separating upper from lower crustal units. This interpretation is consistent with the existence of a massive accretionary complex on Timor island, with evidence from Pb isotope analysis for lower-crust involvement in arc volcanism; and with the approximate gravitational stability of the subducted lithosphere as inferred from the tomographic images. The Banda arc example demonstrates that continental lithosphere in arc-continent collisions may not generally be preserved, thus increasing the complexity of tectonic reconstructions and models of recycling continental crust.

  16. Continental collision slowing due to viscous mantle lithosphere rather than topography.

    PubMed

    Clark, Marin Kristen

    2012-02-29

    Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.

  17. Continental collision slowing due to viscous mantle lithosphere rather than topography.

    PubMed

    Clark, Marin Kristen

    2012-03-01

    Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved. PMID:22382982

  18. Constraining the rheology of the lithosphere and upper mantle with geodynamic inverse modelling

    NASA Astrophysics Data System (ADS)

    Kaus, Boris; Baumann, Tobias

    2016-04-01

    The rheology of the lithosphere is of key importance for the physics of the lithosphere. Yet, it is probably the most uncertain parameter in geodynamics as experimental rock rheologies have to be extrapolated to geological conditions and as existing geophysical methods such as EET estimations make simplifying assumptions about the structure of the lithosphere. In many geologically interesting regions, such as the Alps, Andes or Himalaya, we actually have a significant amount of data already and as a result the geometry of the lithosphere is quite well constrained. Yet, knowing the geometry is only one part of the story, as we also need to have an accurate knowledge on the rheology and temperature structure of the lithosphere. Here, we discuss a relatively new method that we developed over the last few years, which is called geodynamic inversion. The basic principle of the method is simple: we compile available geophysical data into a realistic geometric model of the lithosphere and incorporate that into a thermo-mechanical numerical model of lithospheric deformation. In order to do so, we have to know the temperature structure, the density and the (nonlinear) rheological parameters for various parts of the lithosphere (upper crust, upper mantle, etc.). Rather than fixing these parameters we assume that they are all uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology, we first perform a geodynamic inversion of a synthetic forward model of intra-oceanic subduction with known parameters. This requires solving an inverse problem with 14-16 parameters, depending on whether temperature is assumed to be known or not. With the help of a massively parallel direct-search combined with a Markov Chain Monte Carlo method, solving the inverse problem

  19. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: a review

    USGS Publications Warehouse

    Behrendt, John C.

    1999-01-01

    -middle Cretaceous translation between East Antarctica and Pacific West Antarctica. Because a great amount of crustal extension in late Cenozoic time is unlikely, alternate mechanisms have been proposed for the late Cenozoic volcanism. Its vast volume and the ocean island basalt chemistry of the exposed late Cenozoic alkaline volcanic rocks were interpreted as evidence for a mantle plume head. An alternative or supplemental explanation to the mantle plume hypothesis is significantly greater lower lithosphere (mantle) stretching resulting in greater decompression melting than the limited Cenozoic crustal extension allows. Because of very slow rates of late Cenozoic extension in the West Antarctic Rift System, the amount of advected heat is small compared with the conductive heat. Therefore, phase transition probably would not explain the large subsidence with low extension observed in the West Antarctic Rift System. (C) 1999 Elsevier Science B.V.

  20. The Thinning of the lithosphere before Magmatic Spreading is Established at the Western End of the Cocos-Nazca Rift

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Schouten, H.

    2015-12-01

    The transition from rifting of oceanic lithosphere to full magmatic spreading is examined at the Galapagos triple junction (GTJ) where the tip of the Cocos-Nazca spreading center (called C-N Rift) is propagating westward and breaking apart 0.5 Ma lithosphere formed at the East Pacific Rise near 2 15'N. Bathymetric mapping of the western section of the C-N Rift is limited, but sufficient to obtain a first-order understanding of how seafloor spreading is established. An initial rifting stage is followed by rifting with magma supply and lastly, full magmatic spreading is established. The flexural rotation of normal faults that border the rift basins is used to document thinning of the effective elastic thickness of the lithosphere before magmatic spreading begins. The earliest faults show small outward rotation (1-5 degrees) for their offset suggesting that they cut thick lithosphere. Subsequent faults closer to the axis have larger outward rotations (up to 35-40 degrees) with larger offset indicating that the lithosphere was much thinner at the time of faulting and that low-angle detachment faults are forming. It is during late stage rifting and prior to full magmatic spreading that detachment faults such as the Intrarift ridge along Hess Deep rift are observed. Studies of low-angle detachment faulting during continental breakup at the Woodlark Basin suggest that their formation signals the input of magma beneath the rift. If this also is the case at the C-N Rift then magma is being supplied beneath Hess Deep rift. The axis of the segment immediately east of Hess Deep rift is characterized by a shallow graben with small seamounts scattered along it, typical of segments farther to the east, and we infer that full magmatic seafloor spreading has been established here. Our results provide new information on the formation of divergent boundaries in oceanic lithosphere, and place constraints on the supply of magma to a newly developing plate boundary.

  1. Global isostatic geoid anomalies for plate and boundary layer models of the lithosphere

    NASA Technical Reports Server (NTRS)

    Hager, B. H.

    1981-01-01

    Commonly used one dimensional geoid models predict that the isostatic geoid anomaly over old ocean basins for the boundary layer thermal model of the lithosphere is a factor of two greater than that for the plate model. Calculations presented, using the spherical analogues of the plate and boundary layer thermal models, show that for the actual global distribution of plate ages, one dimensional models are not accurate and a spherical, fully three dimensional treatment is necessary. The maximum difference in geoid heights predicted for the two models is only about two meters. The thermal structure of old lithosphere is unlikely to be resolvable using global geoid anomalies. Stripping the effects of plate aging and a hypothetical uniform, 35 km, isostatically-compensated continental crust from the observed geoid emphasizes that the largest-amplitude geoid anomaly is the geoid low of almost 120 m over West Antarctica, a factor of two greater than the low of 60 m over Ceylon.

  2. International lithosphere program - Exploiting the geodynamics revolution

    NASA Technical Reports Server (NTRS)

    Flinn, E. A.

    1984-01-01

    After presenting a development history of the application of spacecraft technology in the field of earth dynamics, which encompasses the measurement of the motion and the large scale deformation of the tectonic plates as well as the monitoring of earth's gravity and magnetic fields, attention is given to the International Lithosphere Program (ILP). ILP studies the dynamics and evolution of the lithosphere, with a view to earth resources identification and geological hazard reduction. Among the major problems being addressed is the mechanism by which magmas are generated, extruded, and intruded, at convergent and divergent plate boundaries and within plates. By contrast to current understanding of rifting, almost nothing is known about how the process of subduction begins. The methods used to measure tectonic plate phenomena are: laser ranging to both the moon and man-made satellites, and VLBI.

  3. The lithosphere of Ellesmere Island and adjacent northwestern Greenland (CALE 'A' transect onshore)

    NASA Astrophysics Data System (ADS)

    Stephenson, R.; Schiffer, C.; Oakey, G. N.

    2013-12-01

    Ellesmere Island, in Canada's Arctic, comprises a series of ~SW-NE trending tectonic provinces, the crustal structure and geological expression of which represent a combination of interplate, accretionary orogenesis in the Palaeozoic (Caledonian equivalent and Ellesmerian orogenies) and intraplate orogenesis in the Cenozoic (Eurekan Orogeny). The present-day topography of Ellesmere Island is closely related to the crustal architecture of these tectonic provinces, which includes the adjacent polar continental margin. A two-dimensional lithosphere-scale model is presented that crosses Ellesmere Island from northern Baffin Bay to the Arctic Ocean, part of Transect 'A' of the Circum-Arctic Lithosphere Evolution (CALE) project. The model is based on gravity and magnetic data constrained by mapped geological structure as well as a not yet unpublished Receiver Function study, based on teleseismic data acquired between 2010 and 2012 by a passive seismological array on Ellesmere Island called 'ELLITE'. In northern Baffin Bay and on parts of the polar margin of Ellesmere Island (and adjacent northwestern Greenland), published crustal scale seismic refraction velocity models also provide some constraint to the lithosphere model. The most recent tectonic event governing the geological and physiographic character of Ellesmere Island is the Eurekan Orogeny, an intraplate orogeny that developed as a consequence of North Atlantic-Arctic plate reorganisations and the resulting convergence of Greenland against Ellesmere Island in the Palaeogene. The basement of the Eurekan orogen comprises Precambrian-aged lithosphere in its northernmost (Pearya terrane) and southeasternmost (Greenland-Canada craton) parts as well as possibly younger lithosphere accreted during Palaeozoic orogenesis in central Ellesmere Island. Its southern margin, marking the southern terminus of the constructed lithosphere model, comprises the late Precambrian-Early Palaeozoic passive continental margin of

  4. Magnesium isotopic heterogeneity across the cratonic lithosphere in eastern China and its origins

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Ke, Shan; Liu, Yi-Can; Li, Shu-Guang

    2016-10-01

    Available data in the literature have demonstrated a broad magnesium (Mg) isotope range for mantle and lower continental crustal rocks, implying an isotopically heterogeneous continental lithosphere, but its origin has not been thoroughly understood. Here, to investigate the primary cause of lithospheric Mg isotopic heterogeneity, we report major-trace elements, Sr and Mg isotope data for thirty deep-seated mafic xenoliths, which sampled different lithospheric depths in the southeastern North China Craton (NCC). The xenoliths are classified into three types based upon petrology and mineralogy, sampling from middle continental crust (Group I), lower continental crust (Group II) and lithospheric mantle (Group III), respectively. The Group I xenoliths have mantle-like to slightly high δ26Mg values (- 0.32 ‰ to + 0.01 ‰), whereas some of the Group II xenoliths have very low δ26Mg values (- 0.93 ‰ to - 0.07 ‰), reflecting substantial reaction with intracrustal carbonate-derived fluids. Combined with data in the literature, the results suggest that the Mg isotopic composition of the lower continental crust is much more heterogeneous and lighter on average relative to the middle continental crust. Except for one sample, the Group III xenoliths have extremely low δ26Mg values (- 1.23 ‰ to - 0.73 ‰), the lightest among values already reported for mantle-derived rocks including peridotites and basalts. They also have highly variable 87Sr/86Sr ratios, of 0.70387 to 0.71675. The covariation of Mg and Sr isotopes in Group III xenoliths can be explained by Mg and Sr isotopic exchange reactions during mantle metasomatism, implying that the sub-continental mantle has been significantly modified by fluids derived from recycled carbonate-pelite bearing oceanic crust. Together with the metasomatism age of ∼400 Ma obtained for one Group III xenolith, the results provide new evidence for the presence of extremely low-δ26Mg rocks in the lithosphere and indicate ancient

  5. Magmatism at passive margins: Effect of depth-dependent rifting and depleted continental lithospheric counterflow

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Huismans, Ritske

    2016-04-01

    Rifted continental margins may have a variety of structural and magmatic styles, resulting in narrow or wide, magma-dominated or magma-poor conjugate margins. Some magma-poor margins differ from the classical uniform extension (McKenzie) model in that continental crust breaks up significantly earlier or later than continental mantle lithosphere and establishment of mature mid-ocean ridge is significantly delayed. The best-known examples are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I) with a narrow transition between oceanic and continental crust; and 2) ultra-wide central South Atlantic margins (Type II) where the continental crust spans wide regions while the mantle lithosphere beneath has been removed. These margins are explained by depth-dependent extension. In this study, we perform 2D thermo-mechanical finite element numerical experiments to investigate magmatism at passive margins with depth-dependent extension. A melting prediction model is coupled with the thermo-mechanical model, in which temperature, density and viscosity feedbacks are considered. For the standard models, the crust is either strong and coupled (Type I-A models), or weak and decoupled (Type II-A models) with mantle lithosphere. In addition, models with a buoyant, depleted (cratonic) lower mantle lithosphere (referred as C models) are also investigated. We illustrate that Type I-A/C models develop Type I narrow margins, whereas Type II-A/C models develop Type II wide margins. In the C models, the buoyant lower mantle lithosphere flows laterally towards the ridge (i.e. the counterflow), resulting in the exhumation (in Type I-C models) or underplating (in Type II-C models) of the continental mantle lithosphere. Magmatic productivity is strongly prohibited when counterflow is developed. We argue that Type I-A and I-C models are comparable with the Aden Gulf rifted margins and the Iberia-Newfoundland conjugate margins, respectively. The Type II-A/C models are consistent

  6. Flexural deformation of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior work focused primarily on the Adriatic and northern Ionian regions. The results of these studies have been summarized previously, and so are only briefly discussed. More recent work focuses on two different topics: (1) analysis of foredeep basin geometry, sedimentary style, and thrust belt structure in light of the kinematics at the associated plate boundary and subduction zone dynamics; and (2) the evolution and plate strength of early Proterozoic lithosphere.

  7. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    NASA Astrophysics Data System (ADS)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (< 35 km), most of the southern part of the rift is underlain by thick crust (~40‒44 km). Different from the Moho, the MLD is shallower beneath the axis of the Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  8. Ambient noise tomography of the Cameroon Volcanic Line and Northern Congo craton: new constraints on the structure of the lithosphere

    NASA Astrophysics Data System (ADS)

    Guidarelli, M.; Aoudia, A.

    2016-03-01

    We investigate the lithospheric structure of Cameroon inverting Rayleigh waves obtained from the cross-correlation of ambient seismic noise. We correlate seismic records between 32 broad-band stations and we obtain good quality Rayleigh waves for 310 interstation paths. We measure group velocity dispersion curves from the reconstructed Rayleigh waves in the period range 10-35 s and we invert the group velocities for tomographic images. After the tomography the group velocities are then inverted, together with longer period group velocity measurements from existing literature, to compute a 3-D S-wave velocity model of the Cameroon lithosphere down to 100 km depth. Our results provide an unprecedented mapping of the physical properties of the different crustal units and their correlations with surface geology, as well as with mantle lithospheric variations. The Cameroon Volcanic Line (CVL) appears as a segmented feature exhibiting different physical properties along strike. The active Mt Cameroon volcano is underlain by very low velocities, unlike the other segments of the CVL. The along-strike variations in crustal structure suggest that lateral heterogeneities in lithospheric thickness and physical properties have influenced the location and distribution of magmatism. The crust beneath the Central African Shear Zone exhibits a sizeable low velocity anomaly. The lithosphere beneath Cameroon is characterised by a heterogeneous crust with a relatively constant thickness and a low velocity uppermost mantle at the edge of the Congo Craton. Our results favour processes combining small-scale upwelling at the edge of a thick lithosphere and reactivation of Precambrian basement structures to explain the distribution of Holocene-Recent magmatism and plateau uplift. Our results also indicate that Mt Cameroon and surroundings areas are the most at risk zones for magmatic activity during this stage of CVL development.

  9. What major faults look like, and why this matters for lithospheric dynamics

    NASA Astrophysics Data System (ADS)

    Fagereng, Ake

    2016-04-01

    Earthquakes involve seconds to minutes of frictional sliding on a discontinuity, likely of sub-cm thickness, within a damage zone. Earthquakes are separated by an interseismic period of hundreds to thousands of years, during which a number of healing and weakening processes occur within the fault zone. The next earthquake occurs as shear stress exceeds frictional resistance, on the same or a different discontinuity as the previous event, embedded within the fault damage zone. After incremental damage and healing in multiple earthquake cycles, the fault zone rock assemblage evolves to a structure and composition distinctly different from the host rock(s). This presentation presents field geology evidence from a range of settings, to discuss the interplay between the earthquake cycle, long-term deformation, and lithospheric rheology. Classic fault zone models are based on continental transforms, which generally form discrete faults in the upper crust, and wide, anastomosing shear zones in the lower crust. In oceanic crust, transforms are considered frictionally weak, and appear to exploit dyke margins and joint surfaces, but also locally cross-cut these structures in anastomosing networks. In the oceanic lower crust and upper mantle, serpentinisation significantly alters fault structure. In old continental crust, previous deformation events leave a heterogeneous geology affecting active faulting. For example, the amagmatic, southern East African Rift has long been thought to exploit weak Proterozoic 'mobile belts'. However, detailed look at the Bilila-Mtakataka border fault in Malawi indicates that this fault locally exploits weak foliation in existing deformed zones, but also locally forms a new set of anastomosing fault surfaces cross-cutting existing weak foliation. In exhumed lower crust, the Antarctic Maud Belt provides an example of multiple phases of plastic deformation, where the second event is only visible in localised shear zones, likely inherited from the

  10. LAB and other lithospheric discontinuities below Cratons

    NASA Astrophysics Data System (ADS)

    Sodoudi, Forough

    2013-04-01

    Cratons are extremely stable continental areas of the Earth's crust, which have been formed and remained largely unchanged since Precambrian. However, their formation and how they survived destruction over billions of years remains a subject of debate. Seismic properties of the cratonic lithosphere reflect its composition and physical state and obtain basic constraints on processes of the formation and evolution of continents. Insight on these issues may be gained by determining the depth and the nature of the Lithosphere-Asthenosphere Boundary (LAB), which is a necessary element of the plate tectonic theory. However, It has proved quite "elusive" beneath the oldest continental areas. What is missing to date is a consensus on the feature that would correspond to the LAB and whether such a feature exists everywhere beneath cratons. The relatively recently developed S receiver function technique employing S-to-P conversions appears promising for detecting the LAB with a sufficiently high resolution and density. A growing number of regional observations obtained from S receiver function studies has detected discontinuities characterized by a significant negative velocity contrast in the upper mantle. However, challenges still remain in detecting the S-to-P conversions from the LAB beneath the Precambrian cratons. Some recent SRF studies observed a deep (> 160 km) negative velocity contrast beneath cratons and interpreted it as the LAB. For example, a deep LAB at about 250 km was reported beneath the Kalahari craton by different authors. Similar results were also obtained beneath some parts of the Canadian shield, East European Craton, Australia, the Arabian Shield and Tanzania craton. In contrast, other SRF studies found no evidence for negative discontinuities at these depths in the North American craton, in Kalahari craton or in Australia. Instead they revealed a very sharp negative velocity gradient at much shallower depth (60-150 km), leading some authors to infer

  11. Generation of Continental Rifts, Basins and Swells by Lithosphere Instabilities

    NASA Astrophysics Data System (ADS)

    Milelli, L.; Fourel, L.; Jaupart, C. P.

    2012-12-01

    blocks of finite size that became unstable due to cooling from above and describe the peculiar horizontal planform that developed. Dynamical behaviour depends on three dimensionless numbers, a Rayleigh number for the unstable block, a buoyancy number that scales the intrinsic density contrast to the thermal one and the aspect ratio of the block. Within the block, instability develops in two different ways in an outer annulus and in an inner region. In the outer annulus, upwellings and downwellings take the form of radial rolls spaced regularly. In the interior region, the planform adopts the more familiar form of polygonal cells. Translated to geological conditions, such instabilities should manifest themselves as linear rifts striking at a right angle to the continent-ocean boundary and an array of domal uplifts, volcanic swells and basins in the continental interior. The laboratory data lead to simple scaling laws for the dimensions and spacings of the convective structures. For the sub-continental lithospheric mantle, these dimensions and distances take values in the 500-1000 km range, close to geological examples. The large intrinsic buoyancy of Archean lithospheric roots prevents this type of instability, which explains why the widespread volcanic activity that currently affects Western Africa is confined to post-Archean domains.

  12. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process. PMID:15286370

  13. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  14. Re-Os systematics of the lithospheric mantle beneath the Western Ross Sea area, Antarctica: depletion ages and dynamic response during rifting

    NASA Astrophysics Data System (ADS)

    Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.

    2013-12-01

    that the lithospheric mantle beneath Mount Morning, Pipecleaner Glacier, and White Island stabilized between 1.6-1.7 Ga, while Sulfur Cones and Franklin Island stabilized between 1.9-2.0 Ga. Conical Hill stabilized at ~2.3 Ga. The 2.0 Ga aluminachron stabilization age at Franklin Island supports the persistence of thinned subcontinental lithosphere 200 km into the rift basin. Based on our findings, we propose a Paleoproterozoic stabilization of the lithosphere now located beneath the western WARS in the study area, which may be coeval with the formation of crust along the central Transantarctic Mountains [8], although it is older than the directly overlying crust. We attribute the 3.2 and 3.3 Ga Re-depletion ages of the lithospheric mantle beneath Foster Crater to the formation of the East Antarctic Shield in the Archean and suggest the persistence of the Archean lithosphere through the Pan-African and Ross orogenies. [1] Behrendt, 1999 Global Planet Change (23) 25-44, [2] Bannister et al., 2003 Geophys J Int (155) 870-884, [3] Baranov 2011 Izv Phys Earth (47)1058-1070, [4] Ritzwoller et al 2001 JGR (106) 30645-30670, [5] Handler et al. 1997 EPSL (151) 61-75, [6] Janney et al. 1997 J Petrol (51) 1849-1890, [7] Walker et al. 1989 GCA (53) 1583-1595, [8] Goodge 1999 Geology (27) 1007-1010

  15. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness

    NASA Astrophysics Data System (ADS)

    Steinberger, Bernhard

    2016-04-01

    Large-scale topography may be due to several causes, including (1) variations in crustal thickness and density structure, (2) oceanic lithosphere age differences, (3) subcrustal density variations in the continental lithosphere and (4) convective flow in the mantle beneath the lithosphere. The last contribution in particular may change with time and be responsible for continental inundations; distinguishing between these contributions is therefore important for linking Earth's history to its observed geological record. As a step towards this goal, this paper aims at such distinction for the present-day topography: the approach taken is deriving a `model' topography due to contributions (3) and (4), along with a model geoid, using a geodynamic mantle flow model. Both lithosphere thickness and density anomalies beneath the lithosphere are inferred from seismic tomography. Density anomalies within the continental lithosphere are uncertain, because they are probably due to variations in composition and temperature, making a simple scaling from seismic to density anomalies inappropriate. Therefore, we test a number of different assumptions regarding these. As a reality check, model topography is compared, in terms of both correlation and amplitude ratio, to `residual' topography, which follows from observed topography after subtracting contributions (1) and (2). The model geoid is compared to observations as well. Comparatively good agreement is found if there is either an excess density of ≈0.2 per cent in the lithosphere above ≈150 km depth, with anomalies below as inferred from tomography, or if the excess density is ≈0.4 per cent in the entire lithosphere. Further, a good fit is found for viscosity ≈1020 Pa s in the asthenosphere, increasing to ≈1023 Pa s in the lower mantle above D'. Results are quite dependent on which tomography models they are based on; for some recent ones, topography correlation is ≈0.6, many smaller scale features are matched

  16. Geochemical Evolution of Cratonic Lithospheric Mantle: A 3.6 Ga Story of Persistence and Transformation (Invited)

    NASA Astrophysics Data System (ADS)

    O'Reilly, S. Y.; Griffin, W. L.; Pearson, N. J.

    2013-12-01

    of this Mg-rich ancient SCLM relative to the asthenosphere, results in the persistence today of low-density, rheologically coherent Archean domains (including relict blobs in rifted ocean basins and commonly, preservation of old crustal domains (the 'life-raft' model)). Secondly, the enduring (and volumetrically dominating) Archean lithospheric mantle domains represent a reservoir for metasomatic enrichment over their 3.5 billion year history, creating a potentially metallogenicalally ly fertile mantle impregnated with critical elements (e.g. Au, Cu, Ni? and platinum group elements). Thirdly, the formation of Archean cratons provided an architectural lithospheric mantle-scape of regions with contrasting rheology, composition and depth penetration. The cohesive Archean domains control magma and fluid pathways around their margins, and may act as both sinks and sources for element exchange; they may explain the occurrence of basaltic magmas with the geochemical signatures of ancient lithospheric components.

  17. Study of the time evolution of the lithosphere

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1983-01-01

    The behavior and mechanical properties of the lithosphere were studied. This is a prerequisite to an understanding of the mechanisms and processes that occur in the Earth's mantle, which are masked by the lithospere. Geoid heights derived from the GEOS-3 and SEASAT radar altimeters were used. The correlation between bathymetry and geoid heights gives information on the mechanical properties of the lithosphere, such as its thickness, which is related to the age of the lithospheric plate. By probing in several locations spanning various temporal situations, the time evolution of the lithospheric plates were retraced.

  18. Transient creep and convective instability of the lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2012-12-01

    Laboratory experiments with rock samples show that transient creep, at which strain grows with time and strain rate decrease at constant stress, occurs while creep strains are sufficiently small. The transient creep at high temperatures is described by the Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. At the transient creep, the effective viscosity, found in the study of postglacial flows, differs significantly from the effective viscosity, which characterizes convective flow, since timescales of these flows are very different. Besides, the transient creep changes the elastic crust thickness estimated within the power-law rheology of the lithosphere. Two problems of convective stability for the lithosphere with the Andrade rheology are solved. The solution of the first problem shows that the state, in which large-scale convective flow in the mantle occurs under lithospheric plates, is unstable and must bifurcate into another more stable state at which the lithospheric plates become mobile and plunge into the mantle at subduction zones. If the lithosphere had the power-law fluid rheology, the effective viscosity of the stagnant lithospheric plates would be extremely high and the state, in which large-scale convection occurs under the stagnant plates, would be stable that contradicts plate tectonics. The mantle convection forms mobile lithospheric plates if the effective viscosity of the plate is not too much higher than the effective viscosity of the underlying mantle. The Andrade rheology lowers the plate effective viscosity corresponding to the power-law fluid rheology and, thus, leads to instability of the state in which the plates are stagnant. The solution of the second stability problem shows that the state, in which the lithospheric plate

  19. The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Barry, Peter H.; Hilton, David R.; Burgess, Ray; Pearson, D. Graham; Taylor, Lawrence A.

    2015-03-01

    New helium isotope and trace-element abundance data are reported for pyroxenites and eclogites from South Africa, Siberia, and the Beni Bousera Massif, Morocco that are widely interpreted to form from recycled oceanic crustal protoliths. The first He isotope data are also presented for Archaean peridotites from the Kaapvaal (South Africa), Slave (Canada), and Siberian cratons, along with recently emplaced off-craton peridotite xenoliths from Kilbourne Hole, San Carlos (USA) and Vitim (Siberia), to complement existing 3He/4He values obtained for continental and oceanic peridotites. Helium isotope compositions of peridotite xenoliths vary from 7.3 to 9.6 RA in recently (<10 kyr) emplaced xenoliths, to 0.05 RA in olivine from cratonic peridotite xenoliths of the 1179 Ma Premier kimberlite, South Africa. The helium isotope compositions of the peridotites can be explained through progressive sampling of 4He produced from radiogenic decay of U and Th in the mineral lattice in the older emplaced peridotite xenoliths. Ingrowth of 4He is consistent with generally higher 4He concentrations measured in olivine from older emplaced peridotite xenoliths relative to those from younger peridotite xenoliths. Collectively, the new data are consistent with pervasive open-system behaviour of He in peridotite xenoliths from cratons, mobile belts and tectonically-active regions. However, there is probable bias in the estimate of the helium isotope composition of the continental lithospheric mantle (6.1 ± 2.1 RA), since previously published databases were largely derived from peridotite xenoliths from non-cratonic lithosphere, or phenocrysts/xenocrysts obtained within continental intraplate alkaline volcanics that contain a contribution from asthenospheric sources. Using the new He isotope data for cratonic peridotites and assuming that significant portions (>50%) of the Archaean and Proterozoic continental lithospheric mantle are stable and unaffected by melt or fluid infiltration on

  20. Lithospheric models of the North American continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd

    2015-04-01

    We constructed NACr14, a 3D model of the North American (NA) crust, based on the most recent seismic data from the USGS database. In comparison with the global crustal model CRUST 1.0, NACr14 is more heterogeneous, showing a larger spatial variability of the thickness and average velocities of the crustal layers. Velocities of the lower crust vary in a larger range than those of the other layers, while the thickness of all the three layers is on average between 11 and 13 km. The largest velocities of the crystalline crust (>6.6 km/s) reflect the presence of a 7.x layer (>7.0 km/s) in the lowermost part of the crust. Using NACr2014, a regional (NA07) and a global (SL201sv) tomography model, and gravity data, we apply an iterative technique, which jointly interprets seismic tomography and gravity data, to estimate temperature and compositional variations in the NA upper mantle. The results obtained demonstrate that temperature of the cratonic mantle is up to 150°C higher than when using a uniform compositional model. The differences between the two tomography models influence the results more strongly than possible changes of the depth distribution of compositional variations. Strong negative compositional density anomalies, corresponding to Mg # >92, characterize the upper mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton. The Proterozoic upper mantle of the western and more deformed part of the NA cratons, appears weakly depleted (Mg# ~91) when NA07 is used, in agreement with the results based on the interpretation of xenolith data. When we use SL2013sv, the same areas are locally characterized by high density bodies, which might be interpreted as the effect due to fragments of subducted slabs, as those close to the suture of the Appalachians and Grenville province. We used the two thermal models to estimate the integrated strength and the effective elastic thickness (Te) of the lithosphere. In the

  1. Isostasy and Flexure of the Lithosphere

    NASA Astrophysics Data System (ADS)

    McNutt, Marcia

    When I first began graduate work in geophysics nearly 30 years ago, there was, thankfully only a small body of written material I needed to read and comprehend prior to diving into my own research. Much has happened since then, and I often wonder how new graduate students today come up to speed in their areas of specialization. The answer is now obvious for any students undertaking research in broadly-defined areas involving lithospheric flexure and isostasy: they simply read Tony Watts' new book.

  2. Assimilating lithosphere and slab history in 4-D dynamic Earth models (Invited)

    NASA Astrophysics Data System (ADS)

    Bower, D. J.; Gurnis, M.

    2013-12-01

    We develop a "progressive data assimilation" method to incorporate paleogeographical constraints into numerical simulations of convection in the Earth's mantle. This enables convection models to honor geophysical and geological data near the surface while offering predictive power at greater depths by the solution of Stokes flow. The method consists of four constraints determined a priori from a plate tectonic reconstruction model: (1) plate velocities, (2) thermal structure of the lithosphere, (3) thermal structure of slabs in the upper mantle, and (4) descent velocity of slabs in the upper mantle. These constraints are implemented as temporally- and spatially-dependent boundary conditions that are blended with the Stokes flow solution at each time step in the convection code. We construct Earth-like regional models with oceanic and continental lithosphere, trench migration, oblique subduction, and asymmetric subduction to demonstrate the application of the method to a variety of geological settings, including the possibility of flat slab subduction. Furthermore, we test the robustness of the method by computing the temperature, velocity, and buoyancy flux in the lithosphere and slab. Finally, convection simulations in the full sphere are used to make a variety of predictions that range from the present day structure of the mantle to the evolution of surface deformation and topography.

  3. Determination of sub-lithospheric stress due to mantle convection using GOCE gradiometric data over Iran

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Romeshkani, Mohsen

    2015-11-01

    Sub-lithospheric stress due to mantle convection can be determined from gravimetric data based on Runcorn's theory. In this paper, the satellite gradiometric data of the recent European satellite mission, the Gravity field and steady-state Ocean Circulation Explorer (GOCE) is used to determine the sub-lithospheric stress locally in Iran. The method of S function (SF) with numerical differentiation is developed further and an integral equation connecting satellite gradiometric data to SF is presented. The integral equation will be used to invert the real gradiometric data of GOCE to recover the SF. Later on, the sub-lithospheric shear stresses, which are the northward and eastward derivatives of the SF, are computed numerically. Our numerical results show that the mean squares error of the recovered SF is smaller than the values of the SF meaning that the recovery process is successful. Also, the recovered stress has a good agreement with the tectonic boundaries and active seismic points of the world stress map (WSM) database. This stress reaches amplitude of 100 MPa in the territory.

  4. Lithospheric Controls on the Rifting of Continents at Slow Rates of Extension

    NASA Astrophysics Data System (ADS)

    Armitage, J. J.; Henstock, T. J.; Minshull, T. A.; Hopper, J. R.

    2004-12-01

    The North Atlantic Igneous Province (NAIP) has escaped a simple explanation for its vast size and thickness. The region has a complicated history with many sedimentary basins that may or may not contain oceanic lithosphere and that pre-date the NAIP by between 20 and 100 Ma. Should these regions of pre-thinned lithosphere be ignored however in models that hope to explain the presence of the NAIP? We use the major and rare earth composition of melts generated within our dynamic model of extension of the lithosphere to predict seismic velocities within the emplaced igneous material. Previous models of the North Atlantic make the case clear for the presence of an exhaustible thermal anomaly that lay under the lithosphere. We test models with a 200 m°C, 50 km thick thermal anomaly beneath 125 km thick lithosphere to the sensitivity to regions of pre-thinning. The mantle potential temperature is 1325 m°C. The aim is to assess the importance of such failed rift basins. Extensional events that have stretching factors more than 3 to 4; pre-date the rift by 20 to 40 Myrs