Science.gov

Sample records for african plate motion

  1. African absolute plate motion and True Polar Wander at about 50Ma

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Wessel, P.

    2011-12-01

    Using new data set of seamount ages on the African plate, a model of motion of the African plate relative to the African hotspots are calculated by the Polygonal Finite Rotation Method; PFRM (Harada and Hamano, 2000). The new motion of the African plate has more abrupt change at about 50Ma than the previous models of the African plate mainly due to the PFRM which can allow the finite pole of the plate rotation to move continuously. The new model of the motion fits positions and ages of the almost all seamounts which are created by the African hotspots, whereas the previous models do not fit with positions of northwestern hotspots of the African plate such as Canary, Cape Verde, Meteor and Bathymetric hotspot. The new model suggests that the African plate rotated counter clockwise abruptly at about 50Ma. To compare the 50Ma abrupt change with coeval event at the Pacific plate motion, we utilized the paleomagnetic data from both plates. From the apparent geomagnetic polar wander path of the African plate and African plate motion relative to the African hotspots, we calculated geomagnetic polar motion relative to the African hotspots. Similarly, we calculated geomagnetic polar motion relative to the Pacific hotspots from the Pacific sets of paleomagnetic data and plate motion. The geomagnetic polar motion or true polar wander should be only one, therefore we can calculate relative motion of the African hotspots and the Pacific hotspots. The result shows that there was no significant motion between two groups of hotspots since about 70Ma. The new true polar wander path since 70Ma, thus, presented by averaging the two models of motions, and this has about 90 degree clockwise change of directions at about 50Ma. This study strongly suggests below. 1, There was coeval event of the African plate motion with Hawaii-Emperor bend event at the Pacific plate. 2, There was no significant relative motion between global hotspots for the time scale of 70Myr even though there was

  2. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  3. The satellite magnetic anomaly of Ahaggar - Evidence for African Plate motion

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, C. R.

    1985-01-01

    The Ahaggar volcanic province of North Central Africa is considered a region of excess heat flow (hot spot) and hence elevated Curie isotherm. Using a modified version of the Parker FFT potential field representation, magnetic signals were calculated at Magsat altitudes for models in which the African Plate is both fixed and moving. The moving-plate model extends the Curie isotherm anomaly in the direction of plate motion and provides a satisfactory match to vertical component anomaly data when the magnitude of plate velocity is 0.75 cm/yr. Although the signal levels are marginal for the scalar component anomalies of this region, the same model provides an adequate match to this data set and is clearly preferable to a fixed-plate model.

  4. Relative Motion of Africa Plate with Respect to South African Kalahari Craton

    NASA Astrophysics Data System (ADS)

    Njoroge, Mary; Malservisi, Rocco; Hugentobler, Urs; Voytenko, Denis

    2014-05-01

    The presence of the Rift Valley within the African continent and its eventual propagation southward in the Okavango rift zone (ORZ) strongly affects the regional seismic hazard evaluation. Here we use a comparison of the motion inferred from the South African GPS network TrigNet with the motion of instruments with the rest of the African continent to evaluate the propagation of the Rift Valley to Botswana. We use data from all the available GPS stations located in the Nubian plate to develop two reference frames north and south of the ORZ. The data was processed using two major codes (Bernese and Gipsy-oasis) to evaluate effects on the references due to processing assumptions. Given the importance of uncertainties in understanding the significance of small signals, a full analysis of the Allan Variance of the velocity has been performed. Preliminary results suggest that although still within the limits of the uncertainties, the data are compatible with relative motion between the TrigNet network and the rest of Nubia, and does not exclude a possible counter clockwise rotation of the South African Kalahari craton with respect to the Nubian plate, and thus a southward propagation of the Rift Valley.

  5. The Rift Valley of African Plate in Elasto-Plastic Creeping over Magma Motion

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2016-04-01

    This is a brief note to a problem on the Rift Valley in the eastern Africa. It is said that this valley was formed in an age 20,000,000 years before present though the valley is yet continuing to move eastward at an annual rate of about 5 cm/year in a geographical trend. Adding to some of the scientists tell that the separation threat of the easternAfrica from the mother land of the Africa under the effect of African crust motion over the magma. However, it is now geological understanding that the land of the Africa has been kept its basic coastal configulation in geographic pattern since the time more than 20,000,000 years before present. Sothat, it is hard to consider the above noted African land separation by part could be in the next age in a time scale of 20,000,000 years. As far as, we concern the geographic data obtaoned by the ground based survey of the African typical mountain peaks, the highest mountain peak 5885m (in 1980) is for Kilimanjaro, Kibo Peak though one of the scientific almanacs tells us its peak height as 5890m (in 2009). As for the Mount Kenia, the peak height is as 5199m (in 1980) and 5200m(in 2009). At a glance, it looks to be a trend in altimetry of the African typical mountain. Now, what trends are noted for the peak heights could be taken to suggesting the geological activity on the earth surface to maintain in a spherical shape approximately on the orbit around the Sun. In these several ten years, the digitizing of the data has been promoted even for the topographic patterns on the earth though its time scaling is extremely short comparing to the geological time scaling. Now, it should be found what is effective to monitor any trends of the African crust in motion as well as variations of the mountain peaks.

  6. African plate motions constraining and Euler pole determination using permanent GPS data

    NASA Astrophysics Data System (ADS)

    Deprez, A.; Masson, F.; Doubre, C.; Ulrich, P.

    2012-04-01

    IPGS-EOST, CNRS-Université de Strasbourg, 5 rue Descartes, 67084 Strasbourg Cedex France. GPS data of permanent stations in Africa allowed us to calculate the position time series and the absolute velocity of many points on this continent during a twelve-year period (1999-2011). The data processing was made thanks to the GAMIT/GLOBK software. The results lead us to select reliable sites presenting a quantity of data large enough to limit the uncertainty. We took care too that this sites did not undergo local deformation and, in particular, that they were far from the plate boundaries. Then we adopted a technique based on William's method to remove the data jumps and the seasonal variations from the position time series. Station sets was brought together function of their position and of plate and micro-plate boundaries from precedents studies. The main conclusions of this velocity field study were as follows: (1) We achieve, with coherent data samples, to find pole coordinates for plates and micro-plates defined by Stamps et al. (2007). These coordinates differ slightly from values found in precedent studies (Altamimi et al., 2012 (in review); Stamps et al., 2007), which were taken as a priori values. (2) Many African stations were too recent to give reliable velocity and the pole coordinate accuracy could be improved in the next few years. (3) The presence of large zones of local deformation particularly on both sides of the East African Rift prevents from the use of many data for the pole determination.

  7. Indian and African plate motions driven by the push force of the Réunion plume head.

    PubMed

    Cande, Steven C; Stegman, Dave R

    2011-07-06

    Mantle plumes are thought to play an important part in the Earth's tectonics, yet it has been difficult to isolate the effect that plumes have on plate motions. Here we analyse the plate motions involved in two apparently disparate events--the unusually rapid motion of India between 67 and 52 million years ago and a contemporaneous, transitory slowing of Africa's motion--and show that the events are coupled, with the common element being the position of the Indian and African plates relative to the location of the Réunion plume head. The synchroneity of these events suggests that they were both driven by the force of the Réunion plume head. The recognition of this plume force has substantial tectonic implications: the speed-up and slowdown of India, the possible cessation of convergence between Africa and Eurasia in the Palaeocene epoch and the enigmatic bends of the fracture zones on the Southwest Indian Ridge can all be attributed to the Réunion plume.

  8. Earth science: Plate motion and mantle plumes

    NASA Astrophysics Data System (ADS)

    Müller, R. Dietmar

    2011-07-01

    A model based on geophysical data from the Indian Ocean suggests that a mantle-plume head may once have coupled the motions of the African and Indian tectonic plates, and determined their respective speeds. See Article p.47

  9. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  10. Statistical tests of additional plate boundaries from plate motion inversions

    NASA Technical Reports Server (NTRS)

    Stein, S.; Gordon, R. G.

    1984-01-01

    The application of the F-ratio test, a standard statistical technique, to the results of relative plate motion inversions has been investigated. The method tests whether the improvement in fit of the model to the data resulting from the addition of another plate to the model is greater than that expected purely by chance. This approach appears to be useful in determining whether additional plate boundaries are justified. Previous results have been confirmed favoring separate North American and South American plates with a boundary located beween 30 N and the equator. Using Chase's global relative motion data, it is shown that in addition to separate West African and Somalian plates, separate West Indian and Australian plates, with a best-fitting boundary between 70 E and 90 E, can be resolved. These results are generally consistent with the observation that the Indian plate's internal deformation extends somewhat westward of the Ninetyeast Ridge. The relative motion pole is similar to Minster and Jordan's and predicts the NW-SE compression observed in earthquake mechanisms near the Ninetyeast Ridge.

  11. Present-day plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1977-01-01

    A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

  12. Localised Plate Motion on Venus

    NASA Astrophysics Data System (ADS)

    Ghail, R. C.

    1996-03-01

    The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.

  13. Recent plate motions and crustal deformation

    SciTech Connect

    Lisowski, M. )

    1991-01-01

    Reports by U.S. workers on geodetic measurements of recent plate motions or crustal deformation published in 1987-1990 are reviewed. The review begins with global plate motions, proceeds through plate boundaries in California, Alaska, and the Pacific Northwest, and finishes with volcanic phenomena, monument stability and longevity, and GPS relative position measurements. 184 refs.

  14. Cycloid kinematics of relative plate motion

    SciTech Connect

    Cronin, V.S.

    1987-11-01

    The trajectory of a point on one plate as observed from another plate is generally a complex curve and not a small circle around a single axis of relative motion, as is commonly assumed. The shape of the relative-motion path is given the general name spherical cycloid because of its morphological similarity to cycloid planetary trajectories described by early astronomers. The cycloid relative-motion model predicts that the following phenomena occur during finite displacements: (1) the relative velocity and the curvature of the trajectory of a point on one plate relative to another plate varies systematically; (2) plates wobble relative to one another; and (3) the angle of convergence and/or divergence varies systematically along the length of any given transform fault. The small-circle relative-motion model, whereby transform faults have been considered lines of pure slip along which crust is conserved, is not generally valid for finite relative displacements.

  15. Motion of the Scotia sea plates

    USGS Publications Warehouse

    Thomas, C.; Livermore, R.; Pollitz, F.

    2003-01-01

    Earthquake data from the Scotia Arc to early 2002 are reviewed in the light of satellite gravity and other data in order to derive a model for the motion of plates in the Scotia Sea region. Events with magnitude ???5, which occurred on or near the boundaries of the Scotia and Sandwich plates, and for which Centroid Moment Tensor (CMT) solutions are available, are examined. The newer data fill some of the previous sampling gaps along the boundaries of the Scotia and Sandwich plates, and provide tighter constraints on relative motions. Variations in the width of the Brunhes anomaly on evenly spaced marine magnetic profiles over the East Scotia Ridge provide new estimates of Scotia-Sandwich plate spreading rates. Since there are no stable fracture zones in the east Scotia Sea, the mean azimuth of sea floor fabric mapped by sidescan is used to constrain the direction of spreading. 18 new rate estimates and four azimuths from the East Scotia Ridge are combined with 68 selected earthquake slip vectors from the boundaries of the Scotia Sea in a least-squares inversion for the best-fitting set of Euler poles and angular rotation rates describing the 'present-day' motions of the Scotia and Sandwich plates relative to South America and Antarctica. Our preferred model (TLP2003) gives poles that are similar to previous estimates, except for Scotia Plate motion with respect to South America, which is significantly different from earlier estimates; predicted rates of motion also differ slightly. Our results are much more robust than earlier work. We examine the implications of the model for motion and deformation along the various plate boundaries, with particular reference to the North and South Scotia Ridges, where rates are obtained by closure.

  16. Tomography, the geoid and plate motions

    NASA Technical Reports Server (NTRS)

    Gable, Carl W.; O'Connell, Richard J.

    1991-01-01

    The dynamics of the earth's mantle and its relationship to mantle structure as revealed by seismic tomography, the geoid, and plate motions are discussed in a critical review of U.S. research from the period 1987-1990. Sections are devoted to plates and mantle convection; seismic anomalies, flow, and the geoid; subducted slabs and the 670-km discontinuity; the physical properties of the mantle; plumes; and computational and experimental modeling efforts. Also included is a comprehensive bibliography for the period.

  17. Computer animation of Phanerozoic plate motions

    SciTech Connect

    Scotese, C.R. . Dept. of Geology)

    1992-01-01

    Since 1985, the PALEOMAP Project, in collaboration with research groups both in the US and abroad, has assembled a digital model that describes global plate motions during the last 600 million years. In this paper the authors present a series of computer animations that dynamically illustrates the movement of continents and terranes, and the evolution of the ocean basins since the breakup of the late Precambrian supercontinent. These animations depict the motion of the plates from both equatorial and polar perspectives. Mesozoic and Cenozoic plate tectonic reconstructions are based on a synthesis of linear magnetic anomalies, fracture zone locations, intracontinental rifts, collision and thrust belts, and zones of strike-slip. Paleozoic plate reconstructions, though more speculative, are based on evidence of past subduction, continental collision, and inferred sea floor spreading. The relative longitudinal positions of the continents during the Paleozoic and the width of intervening oceans have been adjusted to best explain changing biogeographic and paleoclimatic patterns. A new paleomagnetic/hot spot reference frame has been constructed that combines paleomagnetic data compiled by Rob Van der Voo (1992) with inferred motion relative to a fixed frame of hot spots. Using probable Early Mesozoic and Paleozoic hot spot tracks on the major continents, the authors have extended plate motions relative to the hot spot reference frame back to 400 million years.

  18. Reconstructing Plate Motions on Europa with GPlates

    NASA Astrophysics Data System (ADS)

    Cutler, B. B.; Collins, G. C.; Prockter, L. M.; Patterson, G.; Kattenhorn, S. A.; Rhoden, A.; Cooper, C. M.

    2015-12-01

    Observations of past plate tectonic - like motions in Europa's icy lithosphere have been reported in previous studies. Quantifying the nature, age, and amount of plate motion is important for geophysical models of Europa's ice shell and for astrobiology, since subsumed pates could drive the flow of nutrients into the subsurface ocean. We have used GPlates software (Williams et al., GSA Today 2012) and a mosaic of regional-resolution Galileo SSI data from orbits E11, E15, E17, and E19 to make interactive reconstructions of both the Northern Falga region (60N, 220W) and the Castalia Macula region (0N, 225W). The advantage of this method is that plate motions are calculated on a sphere, while still maintaining the original Galileo image pieces in their proper geographic locations. Previous work on the Castalia Macula region (Patterson et al. J.Struct.Geol. 2006) and the adjacent Phaidra Linea region (Patterson and Ernst, LPSC 2011) found offsets along spreading boundaries, and then calculated the best fit finite rotations to close those offsets. Though this method is mathematically rigorous and gives a statistical goodness of fit, it is not easy to test multiple hypotheses for candidate piercing points or divisions of candidate plate boundaries. Through the interactive environment, we found that we could better account for observed offsets in this region by breaking it into 32 different plates. Patterson and Ernst broke the Phaidra region into 6 plates which exhibited nonrigid behavior, where our study breaks it into 16 rigid plates. The Northern Falga Regio area is interesting due to the potential for large amounts of subsumption of Europa's icy crust in this location. The previous reconstruction (Kattenhorn and Prockter, Nat.Geosci. 2014) was based on planar geometry, and we have replicated these results using a spherically-based reconstruction. We will present the plate maps and reconstructions for both of these regions, along with the best fit rotation poles.

  19. Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.; Demets, Charles; Stein, Seth

    1989-01-01

    The current motions of the African, Eurasian, and North American plates are examined. The problems addressed include whether there is resolvable motion of a Spitsbergen microplate, the direction of motion between the African and North American plates, whether the Gloria fault is an active transform fault, and the implications of plate circuit closures for rates of intraplate deformation. Marine geophysical data and magnetic profiles are used to construct a model which predicts about 4 mm/yr slip across the Azores-Gibraltar Ridge, and west-northwest convergence near Gibraltar. The analyzed data are consistent with a rigid plate model with the Gloria fault being a transform fault.

  20. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model

    SciTech Connect

    Gripp, A.E.; Gordon, R.G. )

    1990-07-01

    NUVEL-1 is a new global model of current relative plate velocities which differ significantly from those of prior models. Here the authors incorporate NUVEL-1 into HS2-NUVEL1, a new global model of plate velocities relative to the hotspots. HS2-NUVEL1 was determined from the hotspot data and errors used by Minster and Jordan (1978) to determine AM1-2, which is their model of plate velocities relative to the hotspots. AM1-2 is consistent with Minster and Jordan's relative plate velocity model RM2. Here the authors compare HS2-NUVEL1 with AM1-2 and examine how their differences relate to differences between NUVEL-1 and RM2. HS2-NUVEL1 plate velocities relative to the hotspots are mainly similar to those of AM1-2. Minor differences between the two models include the following: (1) in HS2-NUVEL1 the speed of the partly continental, apparently non-subducting Indian plate is greater than that of the purely oceanic, subducting Nazca plate; (2) in places the direction of motion of the African, Antarctic, Arabian, Australian, Caribbean, Cocos, Eurasian, North American, and South American plates differs between models by more than 10{degree}; (3) in places the speed of the Australian, Caribbean, Cocos, Indian, and Nazca plates differs between models by more than 8 mm/yr. Although 27 of the 30 RM2 Euler vectors differ with 95% confidence from those of NUVEL-1, only the AM1-2 Arabia-hotspot and India-hotspot Euler vectors differ with 95% confidence from those of HS2-NUVEL1. Thus, substituting NUVEL-1 for RM2 in the inversion for plate velocities relative to the hotspots changes few Euler vectors significantly, presumably because the uncertainty in the velocity of a plate relative to the hotspots is much greater than the uncertainty in its velocity relative to other plates.

  1. A New Absolute Plate Motion Model for Africa

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Wessel, P.; Müller, D.; Harada, Y.

    2013-12-01

    The India-Eurasia collision, a change in relative plate motion between Australia and Antarctica, and the coeval ages of the Hawaiian Emperor Bend (HEB) and Louisville Bend of ~Chron 22-21 all provide convincing evidence of a global tectonic plate reorganization at ~50 Ma. Yet if it were a truly global event, then there should be a contemporaneous change in Africa absolute plate motion (APM) reflected by physical evidence somewhere on the Africa plate. This evidence might be visible in the Reunion-Mascarene bend, which exhibits many HEB-like features such as a large angular change close to ~50 Ma. Recently, the Reunion hotpot trail has been interpreted as a continental feature with incidental hotspot volcanism. Here we propose the alternative hypothesis that the northern portion of the chain between Saya de Malha and the Seychelles (Mascarene Plateau) formed as the Reunion hotspot was situated on the Carlsberg Ridge, contemporaneously forming the Chagos-Laccadive Ridge on the India plate. We have created a 4-stage model that explores how a simple APM model fitting the Mascarene Plateau can also satisfy the age progressions and geometry of other hotspot trails on the Africa plate. This type of model could explain the apparent bifurcation of the Tristan hotspot chain, the age reversals seen along the Walvis Ridge and the diffuse nature of the St. Helena chain. To test this hypothesis we have made a new African APM model that goes back to ~80 Ma using a modified version of the Hybrid Polygonal Finite Rotation Method. This method uses seamount chains and their associated hotspots as geometric constraints for the model, and seamount age dates to determine its motion through time. The positions of the hotspots can be moved to get the best fit for the model and to explore the possibility that the ~50 Ma bend in the Reunion-Mascarene chain reflects Africa plate motion. We will examine how well this model can predict the key features reflecting Africa plate motion and

  2. Tomography, the geoid and plate motions

    SciTech Connect

    Gable, C.W.; O'connell, R.J. )

    1991-01-01

    The dynamics of the earth's mantle and its relationship to mantle structure as revealed by seismic tomography, the geoid, and plate motions are discussed in a critical review of U.S. research from the period 1987-1990. Sections are devoted to plates and mantle convection; seismic anomalies, flow, and the geoid; subducted slabs and the 670-km discontinuity; the physical properties of the mantle; plumes; and computational and experimental modeling efforts. Also included is a comprehensive bibliography for the period. 248 refs.

  3. Caribbean tectonics and relative plate motions

    NASA Technical Reports Server (NTRS)

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.

    1984-01-01

    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  4. Convection pattern and stress system under the African plate

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1977-01-01

    Studies on tectonic forces from satellite-derived gravity data have revealed a subcrustal stress system which provides a unifying mechanism for uplift, depression, rifting, plate motion and ore formation in Africa. The subcrustal stresses are due to mantle convection. Seismicity, volcanicity and kimberlite magmatism in Africa and the development of the African tectonic and magnetic features are explained in terms of this single stress system. The tensional stress fields in the crust exerted by the upwelling mantle flows are shown to be regions of structural kinship characterized by major concentration of mineral deposits. It is probable that the space techniques are capable of detecting and determining the tectonic forces in the crust of Africa.

  5. Current plate motions. [continental groupings and global modelling

    NASA Technical Reports Server (NTRS)

    Demets, C.; Gordon, R. G.; Argus, D. F.; Stein, S.

    1990-01-01

    A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used. Tectonic implications of the patterns that emerged from the results are discussed. It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; e.g., between the Indian and Australian plates and between the North American and South American plates. Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates.

  6. Plate motion and the secular shift of the mean pole

    NASA Technical Reports Server (NTRS)

    Liu, H.; Carpenter, L.; Agreen, R. W.

    1973-01-01

    The global plate motion indicates that changes in the products of inertia of the earth due to tectonic plate movement may provide a secular shift of the mean pole. A mathematical procedure for calculating this shift based on the plate theory is presented. Explicit expressions were obtained for the dependence of the secular polar shift on the dimensions and locations of the plate boundaries. Numerical results show that the secular motion of the mean pole is 0.0002 sec/year in the direction of 67 W. Hence, it is deduced that the influence of the plate motion on the secular polar shift may account for 10% of the observed value.

  7. Plate Motions, Regional Deformation, and Time-Variation of Plate Motions

    NASA Technical Reports Server (NTRS)

    Gordon, R. G.

    1998-01-01

    The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.

  8. A test of alternative Caribbean plate relative motion models

    NASA Technical Reports Server (NTRS)

    Stein, Seth; Demets, Charles; Gordon, Richard G.; Brodholt, John; Argus, Don

    1988-01-01

    The new NUVEL-1 data set for global relative plate motions is used here to discriminate between the two prevailing models for Caribbean plate motion. One model, by Jordan (1975), assumes that North America-Caribbean motion is reflected by the spreading rate inferred from magnetic anomalies at the Cayman Spreading Center and the azimuths of nearby transforms. The other model, by Sykes et al. (1982), uses rates and azimuths inferred from the geometry of the Lesser Antilles Wadati-Benioff zone. Overall, it is found that the data fit the Jordan geometry better, that the data used in global plate motion models are more suitable than rates and azimuths inferred from the geometry of the Wadati-Benioff zone for determining relative motions, and that incorporation of all relevant plate boundaries is essential.

  9. An Alternative Estimate of the Motion of the Capricorn Plate

    NASA Astrophysics Data System (ADS)

    Burris, S. G.; Gordon, R. G.

    2013-12-01

    Diffuse plate boundaries cover ~15% of Earth's surface and can exceed 1000 km in across-strike width. Deforming oceanic lithosphere in the equatorial Indian Ocean accommodates the motion between the India and Capricorn plates and serves as their mutual diffuse plate boundary. This deforming lithosphere lies between the Central Indian Ridge to the west and the Sumatra trench to the east; the plates diverge to the west of ≈74°E and converge to the east of it. Many data have shown that the pole of rotation between the India and Capricorn plates lies within this diffuse plate boundary [1,2]. Surprisingly, however, the recently estimated angular velocity in the MORVEL global set of angular velocities [3] places this pole of rotation north of prior poles by several degrees, and north of the diffuse plate boundary. The motion between the India and Capricorn plates can only be estimated indirectly by differencing the motion of the India plate relative to the Somalia plate, on the one hand, and the motion of the Capricorn plate relative to Somalia plate, on the other. While the MORVEL India-Somalia angular velocity is similar to prior estimates, the MORVEL Capricorn-Somalia pole of rotation lies northwest of its predecessors. The difference is not caused by new transform azimuth data incorporated into MORVEL or by the new application of a correction to spreading rates for outward displacement. Instead the difference appears to be caused by a few anomalous spreading rates near the northern end of the Capricorn-Somalia plate boundary along the Central Indian Ridge. Rejecting these data leads to consistency with prior results. Implications for the motion of the Capricorn plate relative to Australia will be discussed. [1] DeMets, C., R. G. Gordon, and J.-Y. Royer, 2005. Motion between the Indian, Capricorn, and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed deformation in the equatorial Indian ocean, Geophys. J. Int., 161, 445-468. [2

  10. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.

    1986-01-01

    A satellite laser ranging experiment conducted by NASA since 1972 has measured the relative motion between the North America and Pacific plates in California. Based on these measurements, the 896-km distance between San Diego and Quincy, California, is shortening at 62 + or - 9 mm/yr. This geodetic estimate is consistent with the rate of motion between the two plates, calculated from geological data to be 53 + or - 3 mm/yr averaged over the past few million years.

  11. Plate motions and deformations from geologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    A satellite laser ranging experiment conducted by NASA since 1972 has measured the relative motion between the North America and Pacific plates in California. Based on these measurements, the 896-km distance between San Diego and Quincy, California, is shortening at 62 + or - 9 mm/yr. This geodetic estimate is consistent with the rate of motion between the two plates, calculated from geological data to be 53 + or - 3 mm/yr averaged over the past few million years.

  12. A true polar wander model for Neoproterozoic plate motions

    SciTech Connect

    Ripperdan, R.L. )

    1992-01-01

    Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motions between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.

  13. Present-day plate motions. [ocean bottom movements

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1978-01-01

    An instantaneous plate-motion model, Relative Motion 2 (RM2), is obtained by inverting a data set comprising 110 spreading rates, 78 transform fault azimuths, and 142 earthquake slip vectors. RM2 is compared with angular velocity vectors which best fit the data along individual plate boundaries and, while the model performs close to optimally in most regions, attention is directed to those regions which are not suitably described by the model. Reasons for the discrepancies between RM2 and observations for the India-Antarctica plate boundary, the Pacific-India plate boundary, and the east-west trending transform fault azimuths observed in the French-American Mid-Ocean Undersea Study area are discussed.

  14. Hotspot motion inferred from mantle flow models: implications on global plate reconstructions

    NASA Astrophysics Data System (ADS)

    Steinberger, B.; O'Connell, R. J.

    2003-04-01

    The Hawaiian hotspot track predicted from a plate circuit, assuming that the Hawaiian hotspot is fixed relative to African hotspots, does not fit the observed track: The divergence is steadily increasing back to 43 Ma, and the predicted track does not show a bend. Here we use a model of plumes distorted by global mantle flow to compute hotspot motion, and test whether this motion can explain the misfit. Computations consistently predict a south- to southeastward motion of the Hawaiian hotspot, and a motion of about 1000 km southward during the past 80 Ma is within the range of model results. Thus, we find that our model of hotspot motion can account for the divergence from 0 to 43 Ma, but can not account for the bend and the track prior to 43 Ma. For this, both a rather sharp change in hotspot motion at 43 Ma, and a westward component of hotspot motion prior to 43 Ma would be required, and neither is predicted in the model. However, a combination of modelled hotspot motion and a relatively modest motion between W and E Antarctica - about 15 degrees clockwise rotation of W vs. E Antarctica - would permit a fit to the Hawaiian track from 80 to 43 My. The required deformation could have been accomplished entirely within continental crust, with rates similar to e.g. present extension in the western U.S., and we will argue that it is not in conflict with, but actually supported by geologic evidence.

  15. Correlation between plate motions and tectonic subsidence of sedimentary basins in Africa

    SciTech Connect

    Janssen, M.E. )

    1993-09-01

    From the early Mesozoic until the Holocene, the African continent was generally in a state of extension, based on plate tectonic reconstructions and sedimentary basin subsidence studies. Beginning with the breakup of Gondwana in the Permian-Triassic, this resulted in the formation of the present-day African continental margins and a series of intracontinental rift basins, located mainly on older (late Proterozoic) shear zones. Numerous wells from marginal, as well as intracontinental rift basins, have been backstripped to elucidate their Mesozoic and Tertiary tectonic histories. They show a generally consistent patterns of subsidence and uplift phases in all basins. During the evolution of these basins, the direction of African plate motion changed several times. This was related to the differential opening of the central and south Atlantic oceans, changes in spreading rates in both the Atlantic and Indian oceans, and the collision between Africa and Europe. Episodes of compressional deformation related to these plate tectonic changes are revealed in backstripped tectonic subsidence curves.

  16. Automated Photographic Proper Motions: Selected Fields and Whole Schmidt Plates

    NASA Astrophysics Data System (ADS)

    MacConnell, D. J.; Roberts, W. J.

    1993-12-01

    Scanning of the POSS R--band plates of the northern hemisphere, completed recently at the STScI, together with the scans of the ``Quick-V'' plates taken for the HST Guide Star Catalogue, make possible the determination of proper motions of large numbers of stars in selected--target or survey modes. In the first mode, we have been obtaining motions for stars of kinematic and astrophysical interest as requested by several collaborators (H. Jahreiß- ARI--Heidelberg: candidate nearby stars; J. Liebert - U. of Arizona: hot DAs from the Palomar-Green survey; M. Parthasarathy - Indian Inst. of Astroph.: low-mass, post-AGB stars; P. Green - CfA: high-latitude carbon stars; Rex Saffer: sdO stars). We report on a test of the derived motions for a set of the Naval Observatory parallax program stars and discuss the completeness of the Luyten Two--Tenths Survey. We have also searched for proper motions over entire POSS regions using an overlapping subplate technique. This method is very flexible in that it computes individual relative proper motions against several sets of reference stars, giving a thorough analysis of the errors and providing a check against spurious measuremts due to statistical fluctuations. The method is vulnerable to cosmetic and astrometric defects of the plates, and also fails for large proper motions. Using the existing plate archive it is possible to measure about one million previously unknown proper motions down to 0\\farcs035 and V=17.5. We present a comparison of our results for the region of the NGP with those of other work, and with another selected region near the galactic equator.

  17. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.

    1991-01-01

    NNR-NUVEL1 is presented which is a model of plate velocities relative to the unique reference frame defined by requiring no-net-rotation of the lithosphere while constraining relative plate velocities to equal those in global plate motion model NUVEL-1 (DeMets et al., 1990). In NNR-NUVEL1, the Pacific plate rotates in a right-handed sense relative to the no-net-rotation reference frame at 0.67 deg/m.y. about 63 deg S, 107 deg E. At Hawaii the Pacific plate moves relative to the no-net-rotation reference frame at 70 mm/yr, which is 25 mm/yr slower than the Pacific plate moves relative to the hotspots. Differences between NNR-NUVEL1 and HS2-NUVEL1 are described. The no-net-rotation reference frame differs significantly from the hotspot reference frame. If the difference between reference frames is caused by motion of the hotspots relative to a mean-mantle reference frame, then hotspots beneath the Pacific plate move with coherent motion towards the east-southeast. Alternatively, the difference between reference frames can show that the uniform drag, no-net-torque reference frame, which is kinematically equivalent to the no-net-rotation reference frame, is based on a dynamically incorrect premise.

  18. Controlling the motion of multiple objects on a Chladni plate

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-09-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts.

  19. Controlling the motion of multiple objects on a Chladni plate

    PubMed Central

    Zhou, Quan; Sariola, Veikko; Latifi, Kourosh; Liimatainen, Ville

    2016-01-01

    The origin of the idea of moving objects by acoustic vibration can be traced back to 1787, when Ernst Chladni reported the first detailed studies on the aggregation of sand onto nodal lines of a vibrating plate. Since then and to this date, the prevailing view has been that the particle motion out of nodal lines is random, implying uncontrollability. But how random really is the out-of-nodal-lines motion on a Chladni plate? Here we show that the motion is sufficiently regular to be statistically modelled, predicted and controlled. By playing carefully selected musical notes, we can control the position of multiple objects simultaneously and independently using a single acoustic actuator. Our method allows independent trajectory following, pattern transformation and sorting of multiple miniature objects in a wide range of materials, including electronic components, water droplets loaded on solid carriers, plant seeds, candy balls and metal parts. PMID:27611347

  20. Origin and motion history of the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Hall, Robert; Ali, Jason R.; Anderson, Charles D.; Baker, Simon J.

    1995-12-01

    The Philippine Sea Plate is the one major plate whose Tertiary motion is poorly constrained and whose origin is problematical. Its southern boundary is the Sorong Fault system which is part of a major left-lateral fault system at the northern margin of the Australian plate. The southern part of the plate in eastern Indonesia has been neglected in most syntheses but includes some of the oldest rocks within the plate which are separated from remnant arcs of the Daito Ridge province of the northern Philippine Sea by the West Philippine Central Basin. The east Indonesian islands of the Halmahera-Waigeo region contain a good Mesozoic and Tertiary stratigraphic record indicating a long arc history for the southern part of the plate. New palaeomagnetic data from these islands define two sub-areas: an area forming part of the Philippine Sea Plate north of the Sorong Fault, and an area within the Sorong Fault system. The area north of the fault records a long-term clockwise rotation history whereas that within the fault zone records local rotations interpreted as due to deformation at the plate edge. Rocks of Philippine Sea Plate origin within both areas record similar latitudinal shifts. The rotation of the area north of the Sorong Fault is considered to represent the motion of the southern part of the Philippine Sea Plate. The new data indicate large Tertiary clockwise rotations similar to earlier suggestions for other parts of the plate but record a discontinuous and more complex motion history than previously suggested. For the southern part of the plate there was 40° rotation with northward translation between 0 and 25 Ma, no significant rotation between 25 and 40 Ma, and there was 50° rotation with southward translation between 40 and 50 Ma. We show that the new palaeomagnetic data form part of a single set with earlier palaeomagnetic data from elsewhere in the plate. The translation history of the southern part of the plate in eastern Indonesia can be reconciled

  1. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  2. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  3. Longitudinal wave motion in width-constrained auxetic plates

    NASA Astrophysics Data System (ADS)

    Lim, Teik-Cheng

    2016-05-01

    This paper investigates the longitudinal wave velocity in auxetic plates in comparison to conventional ones, in which the plate is constrained from motion in the width direction. By taking into account the thickness change of the plate and its corresponding change in density, the developed wave velocity is casted not only as a function of Young’s modulus and density, but also in terms of Poisson’s ratio and longitudinal strain. Results show that density and thickness variations compensate for one another when the Poisson’s ratio is positive, but add up when the Poisson’s ratio is negative. Results also reveal that the classical model of longitudinal wave velocity for the plate is accurate when the Poisson’s ratio is about 1/3; at this Poisson’s ratio the influence from density and thickness variations cancel each other. Comparison between the current corrected model and the density-corrected Rayleigh-Lamb model reveals a number of consistent trends, while the discrepancies are elucidated. If the plate material possesses a negative Poisson’s ratio, the deviation of the actual wave velocity from the classical model becomes significant; auxeticity suppresses and enhances the wave velocity in compressive and tensile impacts, respectively. Hence the use of the corrected model is proposed when predicting longitudinal waves in width-constrained auxetic plates, and auxetic materials can be harnessed for effectively controlling wave velocities in thin-walled structures.

  4. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.

    1986-01-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  5. Plate motions and deformations from geologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  6. Confirmation of Arabia plate slow motion by new GPS data in Yemen

    NASA Astrophysics Data System (ADS)

    Vigny, Christophe; Huchon, Philippe; Ruegg, Jean-Claude; Khanbari, Khaled; Asfaw, Laike M.

    2006-02-01

    During the last 10 years, a network of about 30 GPS sites was measured in Djibouti, East Africa. Additional points were also measured in Yemen, Oman, Ethiopia, Iran, and on La Réunion island. Merged with data from the available International GPS Service permanent stations scattered on the different plates in the area (Eurasia, Anatolia, Africa, Arabia, Somalia), this unique data set provides new insight on the current deformation in the Africa-Somalia-Arabia triple junction area and on the Arabian plate motion. Here we show that coherent motions of points in Yemen, Bahrain, Oman, and Iran allow us to estimate a geodetically constrained angular velocity for the Arabian plate (52.59°N, 15.74°W, 0.461°/Myr in ITRF2000). This result differs significantly from earlier determinations and is based upon our vectors in Yemen. They provide new additional data and better geometry for angular velocity determination. Combined with the African and Somalian motions, this new angular velocity results in predicted spreading rates in the Red Sea and the Gulf of Aden which are 15-20% lower than those measured from oceanic magnetic anomalies and thus averaged over the last 3 Myr. With respect to Eurasia, the geodetic motion of Arabia is also about 30% slower than predicted by NUVEL-1A. On the basis of the kinematic results presented here and on other evidence for a similar slower geodetic rate of the Indian plate, we suggest that the whole collision zone between Africa, Arabia, India on one hand and Eurasia on the other hand has slowed down in the last 3 Myr.

  7. Early breakup of Gondwana: constraints from global plate motion models

    NASA Astrophysics Data System (ADS)

    Seton, Maria; Zahirovic, Sabin; Williams, Simon; Whittaker, Joanne; Gibbons, Ana; Muller, Dietmar; Brune, Sascha; Heine, Christian

    2015-04-01

    Supercontinent break-up and amalgamation is a fundamental Earth cycle, contributing to long-term sea-level fluctuations, species diversity and extinction events, long-term greenhouse-icehouse cycles and changes in the long-wavelength density structure of the mantle. The most recent and best-constrained example involves the fragmentation of Gondwana, starting with rifting between Africa/Madagascar and Antarctica in the Early Jurassic and ending with the separation of the Lord Howe microcontinental blocks east of Australia in the Late Cretaceous. Although the first order configuration of Gondwana within modern reconstructions appears similar to that first proposed by Wegener a century ago, recent studies utilising a wealth of new geophysical and geological data provide a much more detailed picture of relative plate motions both during rifting and subsequent seafloor spreading. We present our latest global plate motion model that includes extensive, new regional analyses. These include: South Atlantic rifting, which started at 150 Ma and propagated into cratonic Africa by 145 Ma (Heine et al., 2013); rifting and early seafloor spreading between Australia, India and Antarctica, which reconciles the fit between Broken Ridge-Kergulean Plateau and the eastern Tasman region (Whittaker et al., 2013); rifting of continental material from northeastern Gondwana and its accretion onto Eurasia and SE Asia including a new model of microcontinent formation and early seafloor spreading in the eastern Indian Ocean (Gibbons et al., 2012; 2013; in review; Williams et al., 2013; Zahirovic et al., 2014); and a new model for the isolation of Zealandia east of Australia, with rifting initiating at 100 Ma until the start of seafloor spreading in the Tasman Sea at ~85 Ma (Williams et al., in prep). Using these reconstructions within the open-source GPlates software, accompanied by a set of evolving plates and plate boundaries, we can explore the factors that govern the behavior of plate

  8. Lift generation on a flat plate with unsteady motions

    NASA Astrophysics Data System (ADS)

    Xia, Xi; Mohseni, Kamran

    2013-11-01

    The leading edge vortex (LEV) on an airfoil or wing has been considered to be one of the most important sources of lift enhancement according to several previous experimental and theoretical studies. In this work, the unsteady 2D potential flow theory is employed to model the flow field of a flat plate wing undergoing unsteady motions. A multi-vortices model is developed to model both the leading edge and trailing edge vortices (TEVs), which offers improved accuracy compared with using only single vortex at each separation location. The lift prediction is obtained by integrating the unsteady Blasius equation. It is found that the motion of vortices contributes significantly to the overall aerodynamic force on the flat plate. The results of the simulation are then compared with classical numerical, theoretical and experimental data for canonical unsteady flat plat problems. Good agreement with these data is observed. Moreover, these results suggests that the leading edge vortex shedding for small angles of attack should be modeled differently than that for large angles of attack. Finally, the results of vortex motion vs. lift indicate that the lift enhancement during the LEV ``stabilization'' above the wing is a combined effect of both the LEV and TEV motion.

  9. What drives micro-plate motion and deformation in the northeastern Caribbean plate boundary region?

    NASA Astrophysics Data System (ADS)

    Govers, R. M. A.; Wortel, M. J. R.; van Benthem, S.

    2015-12-01

    The north Caribbean plate boundary zone is a broad deformation zone with several fault systems and tectonic blocks that move with different velocities. The indentation by the Bahamas Platform (the "Bahamas Collision") is generally invoked as a cause of this fragmentation. We propose that a second driver of deformation is the western edge of the south-dipping Puerto Rico slab moving sideways with the North America plate. This proposal derives from our recently imaged tomographic structure of the Lesser Antilles - Puerto Rico slab. The westward motion of the slab edge results in a push on the Caribbean plate further west. We refer to this second mechanism for deformation as "Slab Edge Push". The motion of the North America plate relative to the Caribbean plate causes both drivers to migrate from east to west. The Bahamas Collision and Slab Edge Push have been operating simultaneously since the Miocene. The question is the relative importance of the two mechanisms. We use mechanical finite element models that represent the two mechanisms from the Late Oligocene (30 Ma) to the Present. For the Present, both models successfully reproduce observed deformation, implying that both models are viable. Back in time the Slab Edge Push mechanism better reproduces observations. Neither mechanism successfully reproduces the observed Miocene counter-clockwise rotation of Puerto Rico. We use this rotation to tune a final model that includes fractional contributions of both mechanisms. Both mechanisms contribute equally to the motion of the Caribbean plate. We find that the Slab Edge Push was the dominant driver of deformation in the north Caribbean plate boundary zone since 30 Ma.

  10. Eastern Indian Ocean microcontinent formation driven by plate motion changes

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Williams, S. E.; Halpin, J. A.; Wild, T. J.; Stilwell, J. D.; Jourdan, F.; Daczko, N. R.

    2016-11-01

    The roles of plate tectonic or mantle dynamic forces in rupturing continental lithosphere remain controversial. Particularly enigmatic is the rifting of microcontinents from mature continental rifted margins, with plume-driven thermal weakening commonly inferred to facilitate calving. However, a role for plate tectonic reorganisations has also been suggested. Here, we show that a combination of plate tectonic reorganisation and plume-driven thermal weakening were required to calve the Batavia and Gulden Draak microcontinents in the Cretaceous Indian Ocean. We reconstruct the evolution of these two microcontinents using constraints from new paleontological samples, 40Ar/39Ar ages, and geophysical data. Calving from India occurred at 101-104 Ma, coinciding with the onset of a dramatic change in Indian plate motion. Critically, Kerguelen plume volcanism does not appear to have directly triggered calving. Rather, it is likely that plume-related thermal weakening of the Indian passive margin preconditioned it for microcontinent formation but calving was triggered by changes in plate tectonic boundary forces.

  11. Vertical plate motions in the West Siberian Basin

    NASA Astrophysics Data System (ADS)

    Vibe, Yulia

    2014-05-01

    The West Siberian Basin is a sedimentary basin situated between the Ural Mountains and the Siberian Craton. The Basin has experienced several periods of subsidence and uplift since the arrival of the Siberian Traps c. 250 Ma. Although the Basin is extensively explored and hosts large reserves of Oil and Gas, the forces driving the vertical motions are poorly understood. In this work we attempt to analyse the amount, timing and location of subsidence and uplift in the Basin to shed light on the possible causes of these motions. A detailed description of sedimentary layers is published in a number of Soviet-era books and articles and serves as a basis for our research. This data is first converted into sediment grids through time. Subsequently, the sediments, the sediment load and the compaction are taken into account ('backstripping') to produce the depth of the Basin at respective time steps. With this technique we calculate the tectonic component of subsidence. Uncertainties related to uplift events are estimated by the unconformities in the stratigraphic charts. One of the possible driving forces of vertical motions is a change of force balance arising at plate boundaries. Since active plate tectonics have been absent from West Siberia since the formation of the Urengoy and Khodosey Rifts, c. 250Ma, we study the far-field tectonic effects as a potential driving mechanism. Indeed, some of the significant vertical events in the West Siberian Basin coincide with the major tectonic events around Siberia. An example is the spreading in the Arctic (Eurasian Basin) in the Eocene (56 Ma) which was synchronous with initiation of uplift events in the northern part of West Siberia. In the middle Oligocene (33 Ma), the northern and eastern parts of the basin were subjected to uplift as subsidence migrated southwards and the Basin rose above the sea level. This was coincident with the changes of plate motions in the northern North Atlantic and Indo-European collision.

  12. Ridge-spotting: A new test for Pacific absolute plate motion models

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Müller, R. Dietmar

    2016-06-01

    Relative plate motions provide high-resolution descriptions of motions of plates relative to other plates. Yet geodynamically, motions of plates relative to the mantle are required since such motions can be attributed to forces (e.g., slab pull and ridge push) acting upon the plates. Various reference frames have been proposed, such as the hot spot reference frame, to link plate motions to a mantle framework. Unfortunately, both accuracy and precision of absolute plate motion models lag behind those of relative plate motion models. Consequently, it is paramount to use relative plate motions in improving our understanding of absolute plate motions. A new technique called "ridge-spotting" combines absolute and relative plate motions and examines the viability of proposed absolute plate motion models. We test the method on six published Pacific absolute plate motions models, including fixed and moving hot spot models as well as a geodynamically derived model. Ridge-spotting reconstructs the Pacific-Farallon and Pacific-Antarctica ridge systems over the last 80 Myr. All six absolute plate motion models predict large amounts of northward migration and monotonic clockwise rotation for the Pacific-Farallon ridge. A geodynamic implication of our ridge migration predictions is that the suggestion that the Pacific-Farallon ridge may have been pinned by a large mantle upwelling is not supported. Unexpected or erratic ridge behaviors may be tied to limitations in the models themselves or (for Indo-Atlantic models) discrepancies in the plate circuits used to project models into the Pacific realm. Ridge-spotting is promising and will be extended to include more plates and other ocean basins.

  13. Motion transitions of falling plates via quasisteady aerodynamics.

    PubMed

    Hu, Ruifeng; Wang, Lifeng

    2014-07-01

    In this paper, we study the dynamics of freely falling plates based on the Kirchhoff equation and the quasisteady aerodynamic model. Motion transitions among fluttering, tumbling along a cusp-like trajectory, irregular, and tumbling along a straight trajectory are obtained by solving the dynamical equations. Phase diagrams spanning between the nondimensional moment of inertia and aerodynamic coefficients or aspect ratio are built to identify regimes for these falling styles. We also investigate the stability of fixed points and bifurcation scenarios. It is found that the transitions are all heteroclinic bifurcations and the influence of the fixed-point stability is local.

  14. Age Dependent Absolute Plate and Plume Motion Modeling

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A. P.

    2015-12-01

    Current absolute plate motion (APM) models from 80 - 0 Ma are constrained by the location of mantle plume related hotspot seamounts, in particular those of the Hawaiian-Emperor and Louisville seamount trails. Originally the 'fixed' hotspot hypothesis was developed to explain past plate motion based on linear age progressive intra-plate volcanism. However, now that 'moving' hotspots are accepted, it is becoming clear that APM models need to be corrected for individual plume motion vectors. For older seamount trails that were active between roughly 50 and 80 Ma the APM models that use 'fixed' hotspots overestimate the measured age progression in those trails, while APM models corrected for 'moving' hotspots underestimate those age progressions. These mismatches are due to both a lack of reliable ages in the older portions of both the Hawaii and Louisville seamount trails and insufficient APM modeling constraints from other seamount trails in the Pacific Basin. Seamounts are difficult to sample and analyze because many are hydrothermally altered and have low potassium concentrations. New 40Ar/39Ar Age results from International Ocean Drilling Project (IODP) Expedition 330 Sites U1372 (n=18), U1375 (n=3), U1376 (n=15) and U1377 (n=7) aid in constraining the oldest end of the Louisville Seamount trail. A significant observation in this study is that the age range recovered in the drill cores match the range of ages that were acquired on dredging cruises at the same seamounts (e.g. Koppers et al., 2011). This is important for determining the inception age of a seamount. The sections recovered from IODP EXP 330 are in-situ volcanoclastic breccia and lava flows. Comparing the seismic interpretations of Louisville guyots (Contreras-Reyes et al., 2010), Holes U1372, U1373 and U1374 penetrated the extrusive and volcanoclastic sections of the seamount. The ages obtained are consistent over stratigraphic intervals >100-450 m thick, providing evidence that these seamounts

  15. Flows induced by exponential stretching and shearing plate motions

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick

    2016-11-01

    Boundary-layer solutions for the flow induced by an exponentially stretching surface also sheared in its own plane are given. Prior to this study no similarity solutions have been reported for flows generated by exponentially sheared surfaces concomitant with surface stretching in any form. The method of solution is self-similarity. The results found here are intimately related to those of Magyari and Keller ["Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface," J. Phys. D: Appl. Phys. 32, 577-585 (1999)] who studied the motion and heat transfer induced by an exponentially stretching plate. In addition to two particular cases reported here, a third situation is found where an exponentially stretching surface admits a concomitant arbitrary streamwise shearing motion.

  16. The Hawaii-Emperor Bend: Plate motion, plume motion, or both?

    NASA Astrophysics Data System (ADS)

    Wessel, P.

    2011-12-01

    The Hawaii-Emperor Bend (HEB) has become a lightening rod for studies of absolute plate motion (APM). Initially seen as the clearest evidence for an APM change over an approximately stationary hotspot, recent studies have suggested that the HEB represents no change in APM motion at all. Instead, it has been proposed that there was a rapid retardation of the southward motion of the underlying Hawaii plume at ~ 50 Ma while the Pacific plate continued its otherwise undisturbed westward motion. Some even see this development as further evidence that the hotspot hypothesis is fundamentally flawed and that no plumes exist. Although several lines of inquiry have lead to the revised interpretations of the HEB signature, there are in particular two principal observations that have prompted this proposed major revision: (a) Paleolatitudes inferred from basalt samples recovered from drill cores at several sites along the Emperor chain systematically imply a volcanic origin much further north than the present latitude of the Hawaiian hotspot, and (b) the age progressions along the Emperor and Louisville chains inferred from dated rock samples appear to diverge for ages older than ~55 Ma when a fixed hotspot reference frame is used to relate the two age progressions. While the latter discrepancy can be modeled with relative minor changes in the inter-hotspot distance between Hawaii and Louisville or by appealing to limited hotspot-ridge interactions, the paleolatitude anomaly at 78 Ma is almost 15 degrees. Unless this anomaly only partially reflects plume motion, its sheer magnitude may require a significant revision of Pacific tectonic history and could ultimately drive a stake through the heart of the hotspot hypothesis; critical new data on Louisville seamount paleolatitudes are required to resolve this puzzle. The HEB itself is constrained to have formed around 50-47 Ma, i.e., approximately Chron 21, which is a known period of significant and global plate reorganizations

  17. Proper motions from Schmidt plates. II - The Hyades

    NASA Astrophysics Data System (ADS)

    Reid, Neill

    1992-07-01

    COSMOS scans of photographic plates taken by the Palomar Oschin Schmidt telescope and by the UK Schmidt telescope are used to obtain proper motions for about 450,000 stars within a 112-sq-deg region covering part of the Hyades luster. With epoch differences of 33 to 37 yr, proper motions accurate to 6-12 milliarcsec/yr are obtained, and 393 candidate Hyades to a limiting magnitude of about 15.5, including at least two new white dwarf candidates, are identified. The main-sequence luminosity function determined from this sample is similar to that defined by local field stars, with a broad maximum at about +12. Both the line-of-sight and surface density distributions show evidence for significant mass segregation; the overall proper motion distribution suggests a tight core centered within a much broader distribution. A total mass of 410-480 solar masses and a gravitational binding radius of about 10.5 pc are derived.

  18. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  19. Fast Paleogene Motion of the Pacific Hotspots from Revised Global Plate Circuit Constraints

    NASA Technical Reports Server (NTRS)

    Raymond, C.; Stock, J.; Cande, S.

    2000-01-01

    Major improvements in late Cretaceous-early Tertiary Pacific-Antarctica plate reconstructions, and new East-West Antarctica rotations, allow a more definitive test of the relative motion between hotspots using global plate circuit reconstructions with quantitative uncertainties.

  20. Kinematics and Dynamics of Observed Along-Rift Surface Motions in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Bangerth, W.; Hager, B. H.; Kreemer, C.; Saria, E.

    2015-12-01

    Geodetic observations of Nubian and Somalian plate interiors measure ~E-W divergence across the East African Rift System (EARS), which, in the absence of slab pull forces, is driven by shallow, lithospheric buoyancy and mantle shear tractions. Previous studies indicate the former drives E-W divergence a with minimal role of basal shear. In addition to E-W extension, an increasing number of Global Navigation Satellite System (GNSS) stations within the deforming zones of the EARS detect an along-rift component of motion that is inconsistent with our current understanding of the EARS. In this work we investigate the kinematics and dynamics of these along-rift motions. We first calculate a strain rate and velocity field by fitting bi-cubic Bessel splines to new and existing GNSS observations. We resolve regions of localized compression and transtension within individual rifts that are corroborated by independent seismic and geologic observations. In a second step we test the competing roles of shallow topographic stresses and sub-lithospheric basal shear stresses acting beneath individual rifts where we observe along-rift surface motions using the finite element code ASPECT to solve for Stokes flow in a 3D regional geodynamic model. We compare predicted surface motions and mantle flow directions from our geodynamic simulations with our new continuous deformation model based on GNSS observations. Our work indicates topside driven upper mantle flow directions correspond with anomalous along-rift surface motions in several key locations, but our modeled rheological structure impedes basal shear stresses (<1-3 MPa) from driving surface deformation where we observe along-rift surface motions. This work suggests along-rift surface motions are decoupled from asthenospheric flow.

  1. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  2. Alignment between seafloor spreading directions and absolute plate motions through time

    NASA Astrophysics Data System (ADS)

    Williams, Simon E.; Flament, Nicolas; Müller, R. Dietmar

    2016-02-01

    The history of seafloor spreading in the ocean basins provides a detailed record of relative motions between Earth's tectonic plates since Pangea breakup. Determining how tectonic plates have moved relative to the Earth's deep interior is more challenging. Recent studies of contemporary plate motions have demonstrated links between relative plate motion and absolute plate motion (APM), and with seismic anisotropy in the upper mantle. Here we explore the link between spreading directions and APM since the Early Cretaceous. We find a significant alignment between APM and spreading directions at mid-ocean ridges; however, the degree of alignment is influenced by geodynamic setting, and is strongest for mid-Atlantic spreading ridges between plates that are not directly influenced by time-varying slab pull. In the Pacific, significant mismatches between spreading and APM direction may relate to a major plate-mantle reorganization. We conclude that spreading fabric can be used to improve models of APM.

  3. The Effect of Plate Motion History on the Longevity of Deep Mantle Heterogeneities

    NASA Astrophysics Data System (ADS)

    Bull, Abigail; Domeier, Mathew; Torsvik, Trond

    2014-05-01

    Numerical studies of mantle convection have attempted to explain tomographic observations that reveal a lower mantle dominated by broad regional areas of lower-than-average shear-wave speeds beneath Africa and the Central Pacific. The anomalous regions, termed LLSVPs ("large low shear velocity provinces"), are inferred to be thermochemical structures encircled by regions of higher-than-average shear-wave speeds associated with Mesozoic and Cenozoic subduction zones. The origin and long-term evolution of the LLSVPs remains enigmatic. It has been proposed that the LLSVP beneath Africa was not present before 240 Ma, prior to which time the lower mantle was dominated by a degree-1 convection pattern with a major upwelling centred close to the present-day Pacific LLSVP and subduction concentrated mainly in the antipodal hemisphere. The African LLSVP would thus have formed during the time-frame of the supercontinent Pangea as a result of return flow in the mantle due to circum-Pacific subduction. An opposing hypothesis, which propounds a more long-term stability for both the African and Pacific LLSVPs, is suggested by recent palaeomagnetic plate motion models that propose a geographic correlation between the surface eruption sites of Phanerozoic kimberlites, major hotspots and Large Igneous Provinces to deep regions of the mantle termed "Plume Generation Zones" (PGZs), which lie at the margins of the LLSVPs. If the surface volcanism was sourced from the PGZs, such a link would suggest that both LLSVPs may have remained stationary for at least the age of the volcanics. i.e., 540 Myr. To investigate these competing hypotheses for the evolution of LLSVPs in Earth's mantle, we integrate plate tectonic histories and numerical models of mantle dynamics and perform a series of 3D spherical thermochemical convection calculations with Earth-like boundary conditions. We improve upon previous studies by employing a new, TPW-corrected global plate motion model to impose surface

  4. Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2015-02-01

    The Ninetyeast Ridge, a linear trace of the Kerguelen hot spot in the Indian Ocean, was emplaced on a rapidly drifting Indian plate. Magma production rates along the ridge track are computed using gravity-derived excess crustal thickness data. The production rates change between 2 and 15 m3/s over timescales of 3-16 Myr. Major variations in magma production rates are primarily associated with significant changes in the Indian plate velocity with low-production phases linked to high plate velocity periods. The lowest magma production rate (2 m3/s) at 62 Ma is associated with the rapid northward drift of Indian plate under the influence of the Reunion mantle plume. The contemporaneous slowing of the African plate coincides with increase in magma production rate along the Walvis Ridge in the Atlantic Ocean. The present study suggests that variations in the Indian plate motion and frequent ridge jumps have a major role in controlling the magma production, particularly on long-period cycles (~16 Myr). Short-period variations (~5 Myr) in magma productions may be associated with intrinsic changes in the plume, possibly due to the presence of solitary waves in the plume conduit.

  5. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  6. Sensitivity analysis of the GNSS derived Victoria plate motion

    NASA Astrophysics Data System (ADS)

    Apolinário, João; Fernandes, Rui; Bos, Machiel

    2014-05-01

    Fernandes et al. (2013) estimated the angular velocity of the Victoria tectonic block from geodetic data (GNSS derived velocities) only.. GNSS observations are sparse in this region and it is therefore of the utmost importance to use the available data (5 sites) in the most optimal way. Unfortunately, the existing time-series were/are affected by missing data and offsets. In addition, some time-series were close to the considered minimal threshold value to compute one reliable velocity solution: 2.5-3.0 years. In this research, we focus on the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) by extending the used data-span: Fernandes et al. (2013) used data until September 2011. We also investigate the effect of adding other stations to the solution, which is now possible since more stations became available in the region. In addition, we study if the conventional power-law plus white noise model is indeed the best stochastic model. In this respect, we apply different noise models using HECTOR (Bos et al. (2013), which can use different noise models and estimate offsets and seasonal signals simultaneously. The seasonal signal estimation is also other important parameter, since the time-series are rather short or have large data spans at some stations, which implies that the seasonal signals still can have some effect on the estimated trends as shown by Blewitt and Lavellee (2002) and Bos et al. (2010). We also quantify the magnitude of such differences in the estimation of the secular velocity and their effect in the derived angular velocity. Concerning the offsets, we investigate how they can, detected and undetected, influence the estimated plate motion. The time of offsets has been determined by visual inspection of the time-series. The influence of undetected offsets has been done by adding small synthetic random walk signals that are too small to be detected visually but might have an effect on the

  7. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    NASA Astrophysics Data System (ADS)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  8. An Elastic Analysis of a Plated Bone to Determine Fracture Gap Motion

    NASA Technical Reports Server (NTRS)

    Cooke, F. W.; Vannah, W. M.

    1985-01-01

    An elastic analysis to determine fracture gap motions occurring in the osteotomized and plated canine femur was performed using the finite element program NASTRAN. The femur was idealized as a hollow right cylinder, and transverse anisotropy was assumed for the elastic properties of the bone. A 3-D 360 degree model consisting of 224 isoparametric quadrilateral hexahedral and 11 beam elements was created. A range of plate stiffnesses was tested by varying the modulus of elasticity of the plate from 207 GPa to 1 GPA. Moments were applied in the plane of the plate, about the axis of the plate, and in the plane of the screws. Results showed that, for plates of typical geometry and elastic modulus under 10 GPa, the contribution to fracture gap motion occurring due to deformation in the bone was negligible compared to that contribution from deformation in the plate.

  9. Absolute plate motions since 130 Ma constrained by subduction zone kinematics

    NASA Astrophysics Data System (ADS)

    Williams, Simon; Flament, Nicolas; Dietmar Müller, R.; Butterworth, Nathaniel

    2015-05-01

    The absolute motions of the lithospheric plates relative to the Earth's deep interior are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, an absolute plate motion (APM) model linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. Absolute plate motion models (or "reference frames") derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Previous studies of contemporary plate motions have used subduction zone kinematics as a constraint on the most likely APM model. Here we use a relative plate motion model to compute these values for the last 130 Myr for a range of alternative reference frames, and quantitatively compare the results. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the 130-70 Ma period, where hotspot reference frames are less well constrained, these models yield a much more dispersed distribution of slab advance and retreat velocities. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global optimisation of trench migration characteristics as a key criterion in the construction of APM models forms the foundation of a new method of constraining APMs (and in particular paleolongitude) in deep geological time.

  10. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.

    PubMed

    Jadamec, Margarete A; Billen, Magali I

    2010-05-20

    The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.

  11. Seismic evidence for convection-driven motion of the North American plate.

    PubMed

    Eaton, David W; Frederiksen, Andrew

    2007-03-22

    Since the discovery of plate tectonics, the relative importance of driving forces of plate motion has been debated. Resolution of this issue has been hindered by uncertainties in estimates of basal traction, which controls the coupling between lithospheric plates and underlying mantle convection. Hotspot tracks preserve records of past plate motion and provide markers with which the relative motion between a plate's surface and underlying mantle regions may be examined. Here we show that the 115-140-Myr surface expression of the Great Meteor hotspot track in eastern North America is misaligned with respect to its location at 200 km depth, as inferred from plate-reconstruction models and seismic tomographic studies. The misalignment increases with age and is consistent with westward displacement of the base of the plate relative to its surface, at an average rate of 3.8 +/- 1.8 mm yr(-1). Here age-constrained 'piercing points' have enabled direct estimation of relative motion between the surface and underside of a plate. The relative displacement of the base is approximately parallel to seismic fast axes and calculated mantle flow, suggesting that asthenospheric flow may be deforming the lithospheric keel and exerting a driving force on this part of the North American plate.

  12. High resolution reconstructions of Southwest Indian Ridge plate motions during the Neogene: Comparison to GPS estimates and implications for global plate motion estimates

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.; Sauter, D.; Calais, E.

    2013-12-01

    Plate kinematic data from the slow-spreading Southwest Indian Ridge (SWIR) are the primary source of information about relative movements between Antarctica and Africa over geologic time and are critical for linking the movements of plates in the Atlantic and Indian Ocean basins. We describe the first high-resolution model of SWIR plate kinematics from the present to 20 Ma, consisting of rotations based on 21 magnetic reversals with ~1 million-year spacing. The new rotations, which are derived from 4822 identifications of magnetic reversals C1n to C6no and 6000 crossings of 21 fracture zones and transform faults, describe in detail the ultra-slow motions of the Nubia, Lwandle, and Somalia plates north of the SWIR relative to the Antarctic plate. A search for the Nubia-Lwandle-Antarctic triple junction with all data since C5n.2 (11.0 Ma) gives a best location at the Andrew Bain transform fault (~32E), in accord with previous work. Plate kinematic data from the SWIR east of the Andrew Bain fracture zone support the existence of the previously proposed Lwandle plate at high confidence level. The likely diffuse Lwandle-Somalia plate boundary north of the SWIR is however only loosely constrained to 45E-52E. After calibrating the new rotations for the biasing effects of finite-width magnetic polarity transition zones (i.e. outward displacement), the new rotations reveal that SWIR plate motion has remained steady from the present back to 7.5 Ma, but was modestly faster (~25%) from 19.6 Ma to 7.5 Ma. GPS estimates of present SWIR plate motions based on more than 100 continuous GPS sites on the Antarctic, Nubia, and Somalia plates are remarkably consistent with SWIR velocities determined with the new geological reconstructions. The superb agreement between the two independent plate motion estimates validates both sets of estimates and our calibration for outward displacement. Implications of the new estimates, including evidence for anomalously wide outward displacement

  13. Brownian motion of a charged test particle in vacuum between two conducting plates

    NASA Astrophysics Data System (ADS)

    Yu, Hongwei; Chen, Jun

    2004-12-01

    The Brownian motion of a charged test particle caused by quantum electromagnetic vacuum fluctuations between two perfectly conducting plates is examined and the mean squared fluctuations in the velocity and position of the test particle are calculated. Our results show that the Brownian motion in the direction normal to the plates is reinforced in comparison to that in the single plate case. The effective temperature associated with this normal Brownian motion could be three times as large as that in the single plate case. However, the negative dispersions for the velocity and position in the longitudinal directions, which could be interpreted as reducing the quantum uncertainties of the particle, acquire positive corrections due to the presence of the second plate, and are thus weakened.

  14. Pacific-North America plate motions - New results from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1990-01-01

    The state of Pacific-North America plate interaction is updated using newest VLBI measurements and newly developed rigid plate tectonic models. Particular attention is given to examining the extent of relative motion between the Pacific plate and the North America plate as measured from their stable interiors, the evidence of Pacific plate deformation off the central California coast, and the distribution of path integrated deformaton east of the San Andreas fault. The information obtained on these questions is discussed in the framework of implications for lithospheric rheology and earthquake hazard.

  15. Plate Kinematic model of the NW Indian Ocean and derived regional stress history of the East African Margin

    NASA Astrophysics Data System (ADS)

    Tuck-Martin, Amy; Adam, Jürgen; Eagles, Graeme

    2015-04-01

    Starting with the break up of Gondwana, the northwest Indian Ocean and its continental margins in Madagascar, East Africa and western India formed by divergence of the African and Indian plates and were shaped by a complicated sequence of plate boundary relocations, ridge propagation events, and the independent movement of the Seychelles microplate. As a result, attempts to reconcile the different plate-tectonic components and processes into a coherent kinematic model have so far been unsatisfactory. A new high-resolution plate kinematic model has been produced in an attempt to solve these problems, using seafloor spreading data and rotation parameters generated by a mixture of visual fitting of magnetic isochron data and iterative joint inversion of magnetic isochron and fracture zone data. Using plate motion vectors and plate boundary geometries derived from this model, the first-order regional stress pattern was modelled for distinct phases of margin formation. The stress pattern is correlated with the tectono-stratigraphic history of related sedimentary basins. The plate kinematic model identifies three phases of spreading, from the Jurassic to the Paleogene, which resulted in the formation of three main oceanic basins. Prior to these phases, intracontinental 'Karoo' rifting episodes in the late Carboniferous to late Triassic had failed to break up Gondwana, but initiated the formation of sedimentary basins along the East African and West Madagascan margins. At the start of the first phase of spreading (183 to 133 Ma) predominantly NW - SE extension caused continental rifting that separated Madagascar/India/Antarctica from Africa. Maximum horizontal stresses trended perpendicular to the local plate-kinematic vector, and parallel to the rift axes. During and after continental break-up and subsequent spreading, the regional stress regime changed drastically. The extensional stress regime became restricted to the active spreading ridges that in turn adopted trends

  16. Constraints from Seamounts on Pacific Plate or Plume Motion Prior to 80 Ma.

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Koppers, A. A. P.; Jackson, M. G.; Finlayson, V.; Konrad, K.

    2015-12-01

    The Hawaii-Emperor and Louisville hotspot tracks have long dominated the data set constraining absolute plate motion models. However, prior to ~80 Ma, multiple shorter, discontinuous hotspot trails and oceanic plateaus have been used to constrain absolute plate motion. Based on this earlier work, a clear Hawaii-Emperor style bend seems apparent around 100 Ma in the West Pacific Seamount Province (WPSP). More importantly, the ongoing debate on a plate versus plume motion origin for the Hawaii-Emperor Bend is applicable here, as the ~100 Ma bend may correspond to a global plate reorganization (Matthews et al., EPSL, 2012). Data for a comparison of bends comes from three groups with similar geographic patterns: 1) Mid-Pacific Mountains, Line Islands; 2) Shatsky Rise, Hess Rise, Musician and Wentworth Seamounts; and 3) Wake Seamounts, Marshall Islands, Magellan Seamounts. Both groups 1 and 2 feature a large igneous province (LIP) at their oldest end: Shatsky Rise and the Mid-Pacific Mountains. According to plate reconstructions these LIPs were constructed near all-ridge triple junctions, thus potential plume-ridge interactions need to be clarified before these LIPs can be used to define an absolute mantle reference frame. In contrast, the volcanoes of the third group (Wake, Marshall, Magellan) did erupt truly intra-plate and we therefore argue that this group provides a constraint on plate motion beyond 80 Ma that is independent of plume-ridge interactions. Since the volcanoes in this group are part of the WPSP, which is densely populated with seamounts, a combination of 40Ar/39Ar ages and Sr-Nd-Pb-Hf isotopes is needed to distinguish different hotspot tracks in this region. Backtracking each volcano through its age to its original eruptive location and using compositional color-coding, reveals groupings and patterns that vary by plate motion model, while the temporal patterns of backtracked locations inform us about potential plume motions.

  17. Contemporary plate motions from Lageos - A decade later

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Klosko, S. M.; Dunn, P. J.; Robbins, J. W.

    1986-01-01

    Progress made due to Lageos tracking and the participation of over 20 countries in the acquisition and analysis of precise range measurements is reviewed. Results of both the observed global and regional plate kinematics are presented. Mission accomplishments include the following: (1) laser technology advancements of more than an order of magnitude in single point range precision over the last ten years, (2) station positioning at the few centimeter accuracy level for annual solutions, and (3) the emergence of a global picture of plate kinematics.

  18. High-resolution Neogene and Quaternary estimates of Nubia-Eurasia-North America Plate motion

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Iaffaldano, G.; Merkouriev, S.

    2015-10-01

    Reconstructions of the history of convergence between the Nubia and Eurasia plates constitute an important part of a broader framework for understanding deformation in the Mediterranean region and the closing of the Mediterranean Basin. Herein, we combine high-resolution reconstructions of Eurasia-North America and Nubia-North America Plate motions to determine rotations that describe Nubia-Eurasia Plate motion at ˜1 Myr intervals for the past 20 Myr. We apply trans-dimensional hierarchical Bayesian inference to the Eurasia-North America and Nubia-North America rotation sequences in order to reduce noise in the newly estimated Nubia-Eurasia rotations. The noise-reduced rotation sequences for the Eurasia-North America and Nubia-North America Plate pairs describe remarkably similar kinematic histories since 20 Ma, consisting of relatively steady seafloor spreading from 20 to 8 Ma, ˜20 per cent opening-rate slowdowns at 8-6.5 Ma, and steady plate motion from ˜7 Ma to the present. Our newly estimated Nubia-Eurasia rotations predict that convergence across the central Mediterranean Sea slowed by ˜50 per cent and rotated anticlockwise after ˜25 Ma until 13 Ma. Motion since 13 Ma has remained relatively steady. An absence of evidence for a significant change in motion immediately before or during the Messinian Salinity Crisis at 6.3-5.6 Ma argues against a change in plate motion as its causative factor. The detachment of the Arabian Peninsula from Africa at 30-24 Ma may have triggered the convergence rate slowdown before 13 Ma; however, published reconstructions of Nubia-Eurasia motion for times before 20 Ma are too widely spaced to determine with confidence whether the two are correlated. A significant discrepancy between our new estimates of Nubia-Eurasia motion during the past few Myr and geodetic estimates calls for further investigation.

  19. A new visualization of the motion of the Indian Plate in the Cenozoic

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Stegman, D. R.

    2011-12-01

    90 million years ago the Indian Plate detached from the ancient supercontinent Gondwana and diverged away from the Antarctic and African plates in a northwest-wards direction. Evidence from magnetic anomalies and paleomagnetic data shows that between 67 and 49 million years ago spreading rates increased the Indian plate to anomalously rapid velocities, with a peak of nearly 200 mm/yr relative to the African plate. Cande and Stegman (2011) have shown new evidence that the Indian Plate acceleration was caused by a push force originating from the Reunion mantle plume. Two notable slowdowns occurred during that time period: a sharp reduction in velocity at 63 million years ago, and another more gradual reduction from 52 to 45 million years ago. The first slowdown coincides with rapidly dwindling flood basalt eruptions caused by the plume head of the Reunion mantle plume. The second slowdown is thought to be due to collision with either the Eurasian continent or a now extinct intermediate plate that may have contained an island arc. We are motivated to create a new visual model using new data and considering the Reunion plume as a driving force. Using the GPlates tectonics modeling software and rotation data developed by the EarthBytes Project we reconstruct the trajectory to develop a velocity vector model of the Indian plate. We use these tools to explore alternative plate reconstructions, such as one that includes a collision between India and a hypothetical intraoceanic arc beginning at 52 Ma (Ali and Aitchison, 2008) to help explain the reduction in plate velocity over the 7 million year span during the second slowdown.

  20. How Plates Pull Transforms Apart: 3-D Numerical Models of Oceanic Transform Fault Response to Changes in Plate Motion Direction

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.

    2015-12-01

    Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.

  1. Relative Motion between the Rivera and North American Plates: Constraints from Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Jaramillo, Said H.; Bandy, William

    2010-05-01

    The direction and velocity of the Rivera Plate in western Mexico relative to the North American plate has been a source of controversy. The southeastern segment of this plate boundary has been the site of one of the largest subduction events observed in Mexico during the last 100 years: the 3 June 1932 earthquake (Mw 8.2). To the northwest of the rupture zone of the 1932 event, however, there are no other known large subduction events, either from the historical or instrumental record. We analyze all focal mechanisms in this northern segment of the plate boundary to define the direction of relative motion between these two plates. The largest event occurred beneath the Tres Marias Escarpment, the earthquake of 4 December 1948. The recomputed magnitude yields Mw 6.4. This event caused widespread damage in a penal colony on the Tres Marias Islands. Although the focal mechanism of the 1948 event is not well constrained, the first arrival data collected shows reverse faulting with P axes oriented in a NE-SW direction. This mechanism coincides with other two fault plane solutions of more recent events. These mechanisms indicate reverse faulting beneath the Tres Marias Escarpment. To the northwest of the Islas Marias, in area where no clear physiographic feature defines the plate limits, we identify a group of strike-slip events, where the E-W trending nodal plane indicates right-lateral motion. These mechanisms suggest that the relative motion between Rivera and North America may be taken up by right-lateral strike slip motion. The accuracy of the locations does not allow to define in detail the geometry of this plate boundary. The slip vectors determined from these focal mechanisms are compared with the flow lines resulting from the various poles of relative motion between Rivera and North America to constrain its location.

  2. A new plate motions model for the central Atlantic region

    NASA Astrophysics Data System (ADS)

    Tassi, L.; Schettino, A.

    2010-12-01

    Although the plate kinematics associated with the opening of the central Atlantic ocean after the break-up of Pangaea has been the subject of several studies since the late 1960s, there are still open problems and debated solutions to the tectonic evolution of this area. In particular, the initial fit of Pangaea, the spreading directions during the early stages of opening, the existence of ridge jumps, and the entity of deformation processes in northwest Africa are still subject to different interpretations by distinct research groups. We performed a reassessment of the central Atlantic plate kinematics since the early Jurassic through a re-examination of marine magnetic anomalies and fracture zone trends. A total of 432 ship tracks from the NGDC GEODAS database for the time interval from 1964 through 1994 in the area comprised between the Fifteen-Twenty FZ and the Azores triple junction were analyzed. The data quality was assessed through the examination of Kp indices, and 191 magnetic profiles were extracted having an azimuth that differed from the fracture zones trend by less than 30° and did not cross any fracture zone. Magnetic data collected during moderately disturbed days (Kp > 5) were also filtered away. The 191 ship track segments were projected onto flow lines that parallel existing fracture zones in order to avoid shape distortion of the magnetic anomalies. Finally, the magnetic data were high-pass filtered to remove trends. A new advanced software tool for the analysis and interpretation of the anomalies was developed in order to improve the reliability of magnetic anomaly identifications. The main result of this work is a new map of the magnetic lineations in the central Atlantic, which overcomes the flaws of previous maps. The structural pattern that results from this study evidences that: 1) a unique spreading direction existed during the early and middle Jurassic, and until the M25 - M21 time interval in the late Jurassic. Such a spreading

  3. Neotectonics of Hispaniola - Plate motion, sedimentation, and seismicity at a restraining bend

    NASA Technical Reports Server (NTRS)

    Mann, P.; Matumoto, T.; Burke, K.

    1984-01-01

    The question as to the extent to which earthquake mechanisms define plate motion is addressed in view of the pattern of Neogene faulting, volcanism, and sedimentation in Hispaniola. The structure of two fault systems that approximately define the northern and southern coasts of the island suggest an east-west trend in relative plate motion, which is consistent with previous findings. The intervening area consists of en echelon mountain ranges thrust up at the restraining bend from the early Miocene. A Pleistocene volcanic province within this area is interpreted as defining a diffuse extensional fault termination of the southern strike-slip fault zone.

  4. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1989-01-01

    The very long baseline interferometry (VLBI) measurements made in the western U.S. since 1979 provide discrete samples of the temporal and spatial deformation field. The interpretation of the VLBI derived rates of deformation requires an examination of geologic information and more densely sampled ground based geodetic data. Triangulation and trilateration data measured on two regional networks, one in the central Mojave Desert and one in the Coast Ranges east of the San Andreas fault, were processed. At the spatial scales spanned by these local geodetic networks, auxiliary geologic and geophysical data were utilized to examine the relation between measured incremental strain and the accommodation of strain seen in local geologic structures, strain release in earthquakes, and principal stress directions inferred from in situ measurements. VLBI data was also processed from stations distributed across the Pacific-North America plate boundary zone in the western U.S. The VLBI data were used to constrain the integrated rate of deformation across portions of the continental plate boundary in California and to provide a tectonic framework to interpret regional geodetic and geologic studies.

  5. Impact of uncertain reference-frame motions in plate kinematic reconstructions: A theoretical appraisal

    NASA Astrophysics Data System (ADS)

    Iaffaldano, Giampiero; Stein, Seth

    2017-01-01

    Geoscientists infer past plate motions, which serve as fundamental constraints for a range of studies, from observations of magnetic isochrons as well as hotspots tracks on the ocean floor and, for stages older than the Cretaceous, from paleomagnetic data. These observations effectively represent time-integrals of past plate motions but, because they are made at present, yield plate kinematics naturally tied to a present-day reference-frame, which may be another plate or a hotspots system. These kinematics are therefore different than those occurred at the time when the rocks acquired their magnetisation or when hotspot-related marine volcanism took place, and are normally corrected for the reference-frame absolute motion (RFAM) that occurred since then. The impact of true-polar-wander events on paleomagnetic data and the challenge of inferring hotspot drifts result in RFAMs being less resolved - in a temporal sense - and prone to noise. This limitation is commonly perceived to hamper the correction of plate kinematic reconstructions for RFAMs, but the extent to which this may be the case has not been explored. Here we assess the impact of uncertain RFAMs on kinematic reconstructions using synthetic models of plate motions over 100 million years. We use randomly-drawn models for the kinematics of two plates separated by a spreading ridge to generate a synthetic magnetisation pattern of the ocean floor. The kinematics we infer from such a pattern are outputs that we correct for synthetic RFAMs using two equivalent methods (a classical one as well as another that we propose and test here) and then compare to the 'true' motions input. We assess the misfits between true and inferred kinematics by exploring a statistically-significant number of models where we systematically downgrade the temporal resolution of RFAM synthetic data and add noise to them. We show that even poorly-resolved, noisy RFAMs are sufficient to retrieve reliable plate kinematic reconstructions

  6. Absolute plate motion changes around 50 Ma in a Global Moving Hotspot Reference Frame

    NASA Astrophysics Data System (ADS)

    Steinberger, B. M.; Doubrovine, P. V.; Torsvik, T. H.

    2011-12-01

    To understand causes of plate motion changes around 50 Ma, it is important to know which plates also have changed their motion relative to the underlying mantle. Towards that end, we have developed a global reference frame that is based on fitting the age progression along five hotspot tracks: Hawaii, Louisville, Tristan, Reunion and New England. We use all available information on relative plate motions and two alternative plate chains - one through East and West Antarctica and one through Australia and Lord Howe Rise - to compute the motion of the Pacific relative to Africa. Our model also considers the predicted motion of these hotspots due to large-scale mantle flow: This flow is computed from mantle density anomalies inferred from seismic tomography. Hereby it is assumed that both seismic velocity and density anomalies in the mantle are due to temperature variations, except in parts of the uppermost mantle (tectosphere) and possibly parts of the lowermost mantle (Large Low Shear Velocity Provinces). We use a radial mantle viscosity structure that is consistent with mineral physics and the Haskell average inferred from postglacial rebound, and that also gives predictions for geoid and global mantle heat flux that agree well with observations. We compute the motion of mantle plume conduits, assuming they are initially vertical, and subsequently get advected with flow, but also rise buoyantly. Our resulting best-fit model yields acceptable fits to all hotspot tracks. It confirms that Pacific plate motion has changed at the time of the bend, but the Hawaiian hotspot has also moved southward by several hundred km. We also consider alternatively a paleomagnetic reference frame, which has been corrected for true polar wander (TPW) by interpreting the coherent rotation component of all continents around their common center of mass as TPW. Due to the TPW correction, both reference frames are rather similar. Bends in apparent polar wander (APW) paths are often

  7. Motion Event Categorisation in a Nativised Variety of South African English

    ERIC Educational Resources Information Center

    Bylund, Emanuel; Athanasopoulos, Panos

    2015-01-01

    The present study seeks to expand the current focus on acquisition situations in linguistic relativity research by exploring the effects of nativisation (the process by which a L2 is acquired as a L1) on language-specific cognitive behaviour. Categorisation preferences of goal-oriented motion events were investigated in South African speakers who…

  8. Anatomy of the Dead Sea transform: Does it reflect continuous changes in plate motion?

    USGS Publications Warehouse

    ten Brink, U.S.; Rybakov, M.; Al-Zoubi, A. S.; Hassouneh, M.; Frieslander, U.; Batayneh, A.T.; Goldschmidt, V.; Daoud, M.N.; Rotstein, Y.; Hall, J.K.

    1999-01-01

    A new gravity map of the southern half of the Dead Sea transform offers the first regional view of the anatomy of this plate boundary. Interpreted together with auxiliary seismic and well data, the map reveals a string of subsurface basins of widely varying size, shape, and depth along the plate boundary and relatively short (25-55 km) and discontinuous fault segments. We argue that this structure is a result of continuous small changes in relative plate motion. However, several segments must have ruptured simultaneously to produce the inferred maximum magnitude of historical earthquakes.

  9. Global plate tectonics and the secular motion of the pole

    NASA Technical Reports Server (NTRS)

    Soler, T.

    1977-01-01

    Astronomical data compiled during the last 70 years by the international organizations providing the coordinates of the instantaneous pole clearly shows a persistent drift of the mean pole. The differential contributions to the earth's second-order tensor of inertia were obtained and applied, resulting in no significant displacement of the earth's principal axis. In view of the above, the effect that theoretical geophysical models for absolute plate velocities may have on an apparent displacement of the mean pole as a consequence of station drifting was analyzed. The investigation also reports new values for the crustal tensor of inertia (assuming an ellipsoidal earth) and the orientation of its axis of figure, reopening the old speculation of a possible sliding of the whole crustover the upper mantle, including the supporting geophysical and astronomic evidence.

  10. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ≈ N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  11. Supercontinent Pangea, Mantle Dynamics, and Reference Frame of Global Plate Motions

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Rudolph, M. L.; Liu, X.

    2014-12-01

    Arguably the most important and challenging goal in geodynamics is to understand the two-way dynamics between tectonic plates and mantle convection. While it has long been recognized that the present-day degree-2 mantle structure as imaged seismically is closely related to the plate motions (Hager and O'Connell, 1981) and their history (<119 Ma) (Ricard et al., 1993; McNamara and Zhong, 2005), recent studies have expanded this concept, from two different perspectives, by seeking connections between Pangea assembly and breakup and mantle structure and dynamics. First, it has been proposed that the large igneous provinces (LIPs) and kimberlite volcanism erupted mainly along the edges of the two major seismically slow anomalies above the core-mantle boundary (often referred to as the Africa and Pacific LLSVPs) (Torsvik et al, 2010). This has led to the proposal that the present-day degree-2 mantle structure has existed for >500 Ma (Torsvik et al., 2014), although its statistical significance has been challenged (Austermann et al., 2013). The proposals of the spatially stable Africa and Pacific LLSVPs and of the LIP eruptions along their edges have also been exploited in attempts to build global plate motion models since the Pangea assembly by providing a plate motion reference frame or inferring true polar wander (TPW) corrections to the plate motions (Torsvik et al., 2014). Second, mantle dynamics studies indicate that degree-1 mantle convection, which is expected with realistic lithospheric and mantle viscosity, may be needed for assembly of a supercontinent (e.g., Pangea) (Zhong et al., 2007). This suggests that the present degree-2 mantle structure may have been formed only after the Pangea assembly from an initially degree-1 structure - a scenario that is consistent with convection calculations with a proxy plate motion model that considers Pangea process (Zhang et al., 2010). In this presentation, in addition to critically reviewing these arguments, we will

  12. Tracking the Australian plate motion through the Cenozoic: Constraints from 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin E.; Knesel, Kurt M.; Vasconcelos, Paulo M.; Schellart, Wouter P.

    2013-09-01

    we use geochronology of Australian intraplate volcanoes to construct a high-resolution plate-velocity record and to explore how tectonic events in the southwest Pacific may have influenced plate motion. Nine samples from five volcanoes yield ages from 33.6 ± 0.5 to 27.3 ± 0.4 Ma and, when combined with published ages from 30 to 16 Ma, show that the rate of volcanic migration was not constant. Instead, the results indicate distinct changes in Australian plate motion. Fast northward velocities (61 ± 8 and 57 ± 4 km/Ma) prevailed from 34 to 30 (±0.5) and from 23 to 16 (±0.5) Ma, respectively, with distinct reductions to 20 ± 10 and 22 ± 5 km/Ma from 30 to 29 (±0.5) Ma and from 26 to 23 (±0.5) Ma. These velocity reductions are concurrent with tectonic collisions in New Guinea and Ontong Java, respectively. Interspersed between the periods of sluggish motion is a brief 29-26 (±0.5) Ma burst of atypically fast northward plate movement of 100 ± 20 km/Ma. We evaluate potential mechanisms for this atypically fast velocity, including catastrophic slab penetration into the lower mantle, thermomechanical erosion of the lithosphere, and plume-push forces; none are appropriate. This period of fast motion was, however, coincident with a major southward propagating slab tear that developed along the northeastern plate margin, following partial jamming of subduction and ophiolite obduction in New Caledonia. Although it is unclear whether such an event can play a role in driving fast plate motion, numerical or analogue models may help address this question.

  13. Different motion modes of a mobile plate on top of a thermally convecting fluid

    NASA Astrophysics Data System (ADS)

    Mao, Yadan; Zhong, Jin-Qiang; Zhang, Jun

    2016-11-01

    Numerical simulations are conducted to model the dynamics of a mobile, insulating plate floating on top of a Rayleigh-Benard convecting fluid with infinite Prandtl number in a two dimensional rectangular domain, which is roughly analogues to the geological model of continent drift over mantle. We focus on the effect of plate size on the dynamic feedback between the plate and the underlying convection. Four different modes of coupling are revealed as plate size varies. Among them, two transient stable modes are identified: 1. a very small plate tends to linger for long time over a cold downwelling bordering two counter-rotating convection cells; 2. a relatively small plate sometimes lingers over an upwelling plume bordering two convection cells with cold downwellings on the edges of the plate. A relatively large plate rides on a moving convection cell and oscillates periodically between the two ends walls. A very large plate executes only small excursions in response to the competition between the two neighbouring cells underneath and no longer touches the end walls. These modes are well related to different continent motions since the breakup of the Pangaea supercontinent.

  14. GPS Constraints on Lesser Antilles Forearc Motion and Rigid Caribbean Plate

    NASA Astrophysics Data System (ADS)

    López, A. M.; Stein, S.; Sella, G.; Dixon, T. H.; Calais, E.; Jansma, P. E.

    2005-05-01

    We are using a decade of Global Positioning System data to address two tectonic problems of the Caribbean (CA) plate; 1) Whether a forearc sliver exists along the Lesser Antilles forearc and if so what is its dynamics and location, and 2) Whether the Caribbean plate is deforming internally. We approach this problem by developing GPS-derived velocity vectors at sites within the CA plate and its boundaries and comparing them to four decades of earthquake data. In a number of subduction zones, misfits between slip vectors and predicted convergence azimuths from Euler vectors suggest the presence of a forearc sliver, where trench-parallel motion is accommodated along a strike-slip fault system. Such a situation may be occurring at the eastern boundary of the CA plate along the Lesser Antilles (LA) forearc, where the North America (NA) plate subducts obliquely. Comparing slip vectors of shallow (0-60 km) thrust events to the predicted motions of GPS-based Euler vectors show a systematic northerly misfit, suggesting a trench-parallel component of motion taken up by the forearc sliver. This possibility can be tested with GPS data from the forearc. In addition, we use new GPS data to constrain the internal rigidity of the plate. Previous GPS work yielded a possible upper bound on internal deformation of 4-6 mm/yr. With an expansion in the data set on critically located stations in the CA plate (SANA, ROJO, CRO1 and AVES), we have computed new sets of Euler vector pairs for the CA-NA and CA-South America plate pairs.

  15. Development of walking analysis system consisting of mobile force plate and motion sensor.

    PubMed

    Adachi, Wataru; Tsujiuchi, Nobutaka; Koizumi, Takayuki; Aikawa, Masataka; Shiojima, Kouzou; Tsuchiya, Youtaro; Inoue, Yoshio

    2011-01-01

    In walking analysis, which is one useful method for efficient physical rehabilitation, the ground reaction force, the center of pressure, and the body orientation data are measured during walking. In the past, these data were measured by a 3D motion analysis system consisting of high-speed cameras and force plates, which must be installed in the floor. However, a conventional 3D motion analysis system can measure the ground reaction force and the center of pressure just on force plates during a few steps. In addition, the subjects' stride lengths are limited because they have to walk on the center of the force plate. These problems can be resolved by converting conventional devices into wearable devices. We used a measuring device consisting of portable force plates and motion sensors. We developed a walking analysis system that calculates the ground reaction force, the center of pressure, and the body orientations and measured a walking subject to estimate this system. We simultaneously used a conventional 3D motion analysis system to compare with our development system and showed its validity for measurements of ground reaction force and the center of pressure.

  16. Late Cretaceous to Paleogene plate motion, mantle flow and polar wander constrained by paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R.

    2011-12-01

    A wide range of investigations including plate circuit analyses, comparisons of the age progression of coeval hotspots on the Pacific plate and geodynamic modeling are consistent with paleomagnetic results that indicate motion of hotspots in Earth's mantle during Late Cretaceous to Paleogene times, with important changes in the rate of motion near 50 Ma. In the Pacific, the change has been hypothesized to reflect plume dynamics and hotspot-ridge capture; in the Cretaceous the two long-lived Pacific hotspots with well-defined age progressive tracks (Hawaii and Louisville) were near ridges that subsequently waned. In the case of the Hawaiian hotspot, the ridge in question appears to have become extinct close to the time of the bend in the hotspot track. Testing whether a deeper component of Pacific mantle flow also changed near 50 Ma requires a higher resolution investigation of reference frames for absolute plate motion. Here we use select paleomagnetic data prior to and after 50 Ma to test prior inferences about absolute plate motion changes and polar wander, and use these analyses to parse components of mantle flow.

  17. Present-day plate motions: Retrieval from the TOPEX/Poseidon orbitography network (DORIS system)

    NASA Technical Reports Server (NTRS)

    Souriau, Annie; Cazenave, Anny; Biancale, R.; Balmino, G.; Dominh, K.; Mazzega, P.; Lemoine, J.-M.; Boucher, Claude; Willis, P.; Kasser, M.

    1991-01-01

    The goal of the proposal is to determine the present motion of the main tectonic plates from the Doppler data of the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) orbitography system, which includes in its final configuration about 50 tracking stations with a world-wide distribution.

  18. Satellite laser ranging and geological constraints on plate motion

    NASA Astrophysics Data System (ADS)

    Harrison, C. G. A.; Douglas, Nancy B.

    1990-10-01

    Satellite laser ranging (SLR) observed baseline rates of change were measured and compared with rates determined from sea floor spreading rates and directions, and earth-quake solutions. With the number of years of observation now over six for many of the baselines, the inaccuracy of determining baseline rates of change has diminished so that in some cases it is less than a few mm per year. Thus, a direct comparison between baseline rates of change and rates of change established using geophysical information (called geological rates) is now feasible. In most cases, there is good agreement between the rates determined from SLR and geological rates, but in some cases there appear to be discrepancies. These discrepancies involve many of the data for which one end of the baseline is either Quincy (California), Huahine (French Polynesia), or Simosato (Japan). A method for looking at the discrepancies for these SLR observatories has been devised which makes it possible to calculate the motion not modeled by the geologic information.

  19. Satellite laser ranging and geological constraints on plate motion

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Douglas, Nancy B.

    1990-01-01

    Satellite laser ranging (SLR) observed baseline rates of change were measured and compared with rates determined from sea floor spreading rates and directions, and earth-quake solutions. With the number of years of observation now over six for many of the baselines, the inaccuracy of determining baseline rates of change has diminished so that in some cases it is less than a few mm per year. Thus, a direct comparison between baseline rates of change and rates of change established using geophysical information (called geological rates) is now feasible. In most cases, there is good agreement between the rates determined from SLR and geological rates, but in some cases there appear to be discrepancies. These discrepancies involve many of the data for which one end of the baseline is either Quincy (California), Huahine (French Polynesia), or Simosato (Japan). A method for looking at the discrepancies for these SLR observatories has been devised which makes it possible to calculate the motion not modeled by the geologic information.

  20. High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-11-01

    We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear

  1. Report of the panel on plate motion and deformation, section 2

    NASA Technical Reports Server (NTRS)

    Bock, Yehuda; Kastens, Kim A.; Mcnutt, Marcia K.; Minster, J. Bernard; Peltzer, Gilles; Prescott, William H.; Reilinger, Robert E.; Royden, Leigh; Rundle, John B.; Sauber, Jeanne M.

    1991-01-01

    Given here is a panel report on the goals and objectives, requirements and recommendations for the investigation of plate motion and deformation. The goals are to refine our knowledge of plate motions, study regional and local deformation, and contribute to the solution of important societal problems. The requirements include basic space-positioning measurements, the use of global and regional data sets obtained with space-based techniques, topographic and geoid data to help characterize the internal processes that shape the planet, gravity data to study the density structure at depth and help determine the driving mechanisms for plate tectonics, and satellite images to map lithology, structure and morphology. The most important recommendation of the panel is for the implementation of a world-wide space-geodetic fiducial network to provide a systematic and uniform measure of global strain.

  2. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

    USGS Publications Warehouse

    Hanks, T.C.

    1977-01-01

    A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.

  3. High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea and Gulf of Aden

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-10-01

    Large gaps and inconsistencies remain in published estimates of Nubia-Somalia plate motion based on reconstructions of seafloor spreading data around Africa. Herein, we use newly available reconstructions of the Southwest Indian Ridge at ˜1-Myr intervals since 20 Ma to estimate Nubia-Somalia plate motion farther back in time than previously achieved and with an unprecedented degree of temporal resolution. At the northern end of the East African rift, our new estimates of Nubia-Somalia motion for six times from 0.78 Ma to 5.2 Ma differ by only 2 per cent from the rift-normal component of motion that is extrapolated from a recently estimated GPS angular velocity. The rate of rift-normal extension thus appears to have remained steady since at least 5.2 Ma. Our new rotations indicate that the two plates have moved relative to each other since at least 16 Ma and possibly longer. Motion has either been steady since at least 16 Ma or accelerated modestly between 6 and 5.2 Ma. Our Nubia-Somalia rotations predict 42.5 ± 3.8 km of rift-normal extension since 10.6 Ma across the well-studied, northern segment of the Main Ethiopian Rift, consistent with 40-50 km estimates for extension since 10.6 Myr based on seismological surveys of this narrow part of the plate boundary. Nubia-Somalia rotations are also derived by combining newly estimated Somalia-Arabia rotations that reconstruct the post-20-Ma opening of the Gulf of Aden with Nubia-Arabia rotations estimated via a probabilistic analysis of plausible opening scenarios for the Red Sea. These rotations predict Nubia-Somalia motion since 5.2 Myr that is consistent with that determined from Southwest Indian Ridge data and also predict 40 ± 3 km of rift-normal extension since 10.6 Ma across the Main Ethiopian Rift, consistent with our 42.5 ± 3.8 km Southwest Indian Ridge estimate. Our new rotations exclude at high confidence level previous estimates of 12 ± 13 and 123 ± 14 km for rift-normal extensions across the Main

  4. Reconstructing plate-motion changes in the presence of finite-rotations noise.

    PubMed

    Iaffaldano, Giampiero; Bodin, Thomas; Sambridge, Malcolm

    2012-01-01

    Understanding lithospheric plate motions is of paramount importance to geodynamicists. Much effort is going into kinematic reconstructions featuring progressively finer temporal resolution. However, the challenge of precisely identifying ocean-floor magnetic lineations, and uncertainties in geomagnetic reversal timescales result in substantial finite-rotations noise. Unless some type of temporal smoothing is applied, the scenario arising at the native temporal resolution is puzzling, as plate motions vary erratically and significantly over short periods (<1 Myr). This undermines our ability to make geodynamic inferences, as the rates at which forces need to be built upon plates to explain these kinematics far exceed the most optimistic estimates. Here we show that the largest kinematic changes reconstructed across the Atlantic, Indian and South Pacific ridges arise from data noise. We overcome this limitation using a trans-dimensional hierarchical Bayesian framework. We find that plate-motion changes occur on timescales no shorter than a few million years, yielding simpler kinematic patterns and more plausible dynamics.

  5. Evidence of lower-mantle slab penetration phases in plate motions.

    PubMed

    Goes, Saskia; Capitanio, Fabio A; Morra, Gabriele

    2008-02-21

    It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.

  6. Changes in Pacific Absolute Plate Motion and Formation of Oceanic Flood Basalt Plateaus

    NASA Astrophysics Data System (ADS)

    Kroenke, L. W.; Wessel, P.

    2006-12-01

    The origin of the large oceanic flood basalt plateaus that are prominent features of the central western Pacific Basin remains unclear. Major changes in Pacific Absolute Plate Motion (APM) have been identified as occurring at 145, 125, 96, and 47 Ma. Formation of the Shatsky Rise (~145 Ma), the Ontong Java Plateau (122+ Ma), the Southern Hess Rise (95±5 Ma), and the Louisiade Plateau (~48 Ma) appear to coincide with these changes. A smaller, but still prominent change in Pacific APM also occurred at 110 Ma when the Northern Hess Rise formed. Although these concurrent events may simply be chance occurrences, initiation of plate tectonic reorganizations upon arrival of mantle plume heads also was proposed by Ratcliff et al. (1998), who suggested that the mantle plume head delivery of hot material to produce flood basalts also had the potential to trigger reorganizations of plate motions. It should be noted, however, that Pacific Rim subduction zone development also coincides with these APM changes, and that the actual cause and effect of each change in APM has yet to be clearly established. Here we present a modified Pacific APM model that uses several older seamount chains (Musicians, Ratak-Gilbert-Ellice, the Wake trails, and the Liliuokalani trails) to constrain the oldest Pacific plate motion using the hybrid technique of Wessel et al (2006).

  7. Relative Motion Between the Rivera and North American Plates Determined from the Slip Directions of Earthquakes

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Jaramillo, Said H.; Bandy, W. L.

    2013-12-01

    So far, the direction and rate of relative motion between the Rivera and the North American plates (RIV-NAM) has been determined by the combination of two Euler poles: Rivera (RIV), with respect to Pacific (PAC), and PAC with respect to North America. Here, we estimate the relative motion of this plate pair (RIV-NAM) assuming that the horizontal projection of the direction of slip of the earthquakes occurring on the RIV-NAM boundaries reflect their relative plate motion. A catalog of earthquakes for which focal mechanisms are reported since 1976 is used in the analysis. Earthquakes were considered in the three segments of the RIV-NAM plate boundary: the subduction zone of the Rivera plate beneath the Jalisco block, the Tres Marias Escarpment and the events associated with the Tamayo Fracture Zone. The best fitting Euler pole is determined using a grid search of 64 potential poles. The slip direction predicted for each grid point is compared to the slip direction of the focal mechanisms of the earthquakes on the plate boundary. The best fitting Euler pole, determined in a root mean square sense (RMS), is located at 21.8°N, 107.6°W. A rate of rotation of 5.3°/year is estimated assuming the seismic earthquake cycle of the 1932 and 1995 great earthquakes represents a lower bound of the rate of plate motion in the subduction zone. The best fitting Euler pole shows that the subduction of the Rivera plate takes place in a direction perpendicular to the trench with a relative velocity of 4.3 cm/year, offshore Manzanillo. The rate of relative motion RIV-NAM decreases from SE to NW. North of approximately 21°N, the subduction of the Rivera plate becomes oblique to the trench and the relative velocity between the two plates decreases to an average of 1.9 cm/year. This slow rate of convergence may explain the rapid decrease of seismicity in the trench and the apparent absence of large earthquakes in this region. In the Tres Marias Escarpment, our best-fitting pole suggests

  8. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia.

    PubMed

    Debayle, Eric; Kennett, Brian; Priestley, Keith

    2005-02-03

    Differences in the thickness of the high-velocity lid underlying continents as imaged by seismic tomography, have fuelled a long debate on the origin of the 'roots' of continents. Some of these differences may be reconciled by observations of radial anisotropy between 250 and 300 km depth, with horizontally polarized shear waves travelling faster than vertically polarized ones. This azimuthally averaged anisotropy could arise from present-day deformation at the base of the plate, as has been found for shallower depths beneath ocean basins. Such deformation would also produce significant azimuthal variation, owing to the preferred alignment of highly anisotropic minerals. Here we report global observations of surface-wave azimuthal anisotropy, which indicate that only the continental portion of the Australian plate displays significant azimuthal anisotropy and strong correlation with present-day plate motion in the depth range 175-300 km. Beneath other continents, azimuthal anisotropy is only weakly correlated with plate motion and its depth location is similar to that found beneath oceans. We infer that the fast-moving Australian plate contains the only continental region with a sufficiently large deformation at its base to be transformed into azimuthal anisotropy. Simple shear leading to anisotropy with a plunging axis of symmetry may explain the smaller azimuthal anisotropy beneath other continents.

  9. Toward a self-consistent, high-resolution absolute plate motion model for the Pacific

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Harada, Yasushi; Kroenke, Loren W.

    2006-03-01

    The hot spot hypothesis postulates that linear volcanic trails form as lithospheric plates move relative to stationary or slowly moving plumes. Given geometry and ages from several trails, one can reconstruct absolute plate motions (APM) that provide valuable information about past and present tectonism, paleogeography, and volcanism. Most APM models have been designed by fitting small circles to coeval volcanic chain segments and determining stage rotation poles, opening angles, and time intervals. Unlike relative plate motion (RPM) models, such APM models suffer from oversimplicity, self-inconsistencies, inadequate fits to data, and lack of rigorous uncertainty estimates; in addition, they work only for fixed hot spots. Newer methods are now available that overcome many of these limitations. We present a technique that provides high-resolution APM models derived from stationary or moving hot spots (given prescribed paths). The simplest model assumes stationary hot spots, and an example of such a model is presented. Observations of geometry and chronology on the Pacific plate appear well explained by this type of model. Because it is a one-plate model, it does not discriminate between hot spot drift or true polar wander as explanations for inferred paleolatitudes from the Emperor chain. Whether there was significant relative motion within the hot spots under the Pacific plate during the last ˜70 m.y. is difficult to quantify, given the paucity and geological uncertainty of age determinations. Evidence in support of plume drift appears limited to the period before the 47 Ma Hawaii-Emperor Bend and, apart from the direct paleolatitude determinations, may have been somewhat exaggerated.

  10. Reevaluation of plate motion models based on hotspot tracks in the Atlantic and Indian Oceans

    SciTech Connect

    Baksi, A.K.

    1999-01-01

    Plate motion models based on hotspot tracks in the Atlantic and Indian Oceans predict minimal movement (less than a few millimeters per year) between these hotspots and their counterparts in the Pacific Ocean for the past {approximately}100 m.yr., whereas plate circuit exercises indicate relative motions of {approximately}20 mm/yr. Hotspot-based models also suggest that the Rajmahal Traps, India, were located {approximately}1,000 km away from the Kerguelen hotspot at {approximately}115 Ma, and the Deccan Traps, India, were located a similar distance from the Reunion hotspot at {approximately}65 Ma; this is at odds with conclusions derived from paleomagnetism, plate circuits, and geochemical parameters that suggest a genetic link between flood basalt provinces in India and hotspots in the Indian Ocean. These divergent views may be explained by plume action {approximately}1,000 km from its center or errors in the hotspot motion models. The latter hypothesis is scrutinized in this article by examination of the radiometric ages for hotspot tracks in the Atlantic and Indian Oceans. The {sup 40}/{sup 39}Ar step-heating data for rocks defining the tracks of the Reunion and Kerguelen hotspots in the Indian Ocean and the Great Metero and Tristan da Cunha hotspots in the Atlantic Ocean are critically reexamined. Of {approximately}35 such ages utilized for deriving plate motion models for the past 130 m.yr., at best, only three ({approximately}32, {approximately}50, and {approximately}52 Ma) in the Indian Ocean and one ({approximately}65 Ma) for the Atlantic Ocean may be treated as crystallization ages. Conclusions based on hotspot track modeling for Late Cretaceous to Eocene time are suspect, and those for the Early to Late Cretaceous period are untenable. In the absence of precise age data for the tracks of hotspots in the Atlantic and Indian Oceans, and inconsistent age progressions noted within a single volcanic chain, plate circuit models serve as the superior technique

  11. Inherited segmentation of the Iberian-African margins and tectonic reconstruction of a diffuse plate boundary.

    NASA Astrophysics Data System (ADS)

    Fernàndez, Manel; Torne, Montserrat; Vergés, Jaume; Casciello, Emilio

    2016-04-01

    Diffuse plate-boundary regions are characterized by non-well defined contacts between tectonic plates thus making difficult their reconstruction through time. The Western Mediterranean is one of these regions, where the convergence between the African and Iberian plates since Late Cretaceous resulted in the Betic-Rif arcuate orogen, the Gulf of Cadiz imbricate wedge, and the Alboran back-arc basin. Whereas the Iberia-Africa plate boundary is well defined west to the Gorringe Bank and along the Gloria Fault, it becomes much more diffuse eastwards with seismicity spreading over both the south-Iberian and north-African margins. Gravity data, when filtered for short wavelengths, show conspicuous positive Bouguer anomalies associated with the Gorringe Bank, the Gulf of Cadiz High and the Ronda/Beni-Bousera peridotitic massifs reflecting an inherited Jurassic margin segmentation. The subsequent Alpine convergence between Africa and Iberia reactivated these domains, producing crustal-scale thrusting in the Atlantic segments and eventually subduction in the proto-Mediterranean segments. The Jurassic segmentation of the Iberia-Africa margins substantiates the double-polarity subduction model proposed for the region characterized by a change from SE-dipping polarity in the Gorringe, Gulf of Cadiz and Betic-Rif domains, to NW-dipping polarity in the proto-Algerian domain. Therefore, the Algerian and Tyrrhenian basins in the east and the Alboran basin in the west are the result of SSE-E and NW-W retreating slabs of oceanic and/or hyper-extended Tethyan domains, respectively.

  12. Pacific-North America plate boundary reorganization in response to a change in relative plate motion: Offshore Canada

    NASA Astrophysics Data System (ADS)

    Rohr, K. M. M.; Tryon, A. J.

    2010-06-01

    The transition from subduction in Cascadia to the transform Queen Charlotte fault along western Canada is often drawn as a subduction zone, yet recent studies of GPS and earthquake data from northern Vancouver Island are not consistent with that model. In this paper we synthesize seismic reflection and gravity interpretations with microseismicity data in order to test models of (1) microplate subduction and (2) reorganization of the preexisting strike-slip plate boundary. We focus on the critical region of outer Queen Charlotte Sound and the adjacent offshore. On much of the continental shelf, several million years of subsidence above thin crust are a counterindicator for subduction. An undated episode of compression uplifted the southernmost shelf, but subsidence patterns offshore show that recent subduction is unlikely to be responsible. Previously unremarked near-vertical faults and a mix of extensional and compressional faults offshore indicate that strike-slip faulting has been a significant mode of deformation. Seismicity in the last 18 years is dominantly strike-slip and shows large amounts of moment release on the Revere-Dellwood fault and its overlap with the Queen Charlotte fault. The relative plate motion between the Pacific and North American plates rotated clockwise ˜6 Ma and appears to have triggered formation of an evolving array of structures. We suggest that the paleo-Queen Charlotte fault which had defined this continental margin retreated northward as offshore distributed shear and the newly formed Revere Dellwood fault propagated to the northwest.

  13. Flexture plate motion-transfer mechanism, beam-splitter assembly, and interferometer incorporating the same

    DOEpatents

    Carangelo, Robert M.; Dettori, Mark D.; Grigely, Lawrence J.; Murray, Terence C.; Solomon, Peter R.; Van Dine, C. Peter; Wright, David D.

    1996-01-01

    A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor.

  14. Flexture plate motion-transfer mechanism, beam-splitter assembly, and interferometer incorporating the same

    DOEpatents

    Carangelo, R.M.; Dettori, M.D.; Grigely, L.J.; Murray, T.C.; Solomon, P.R.; Dine, C.P. Van; Wright, D.D.

    1996-01-23

    A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor. 15 figs.

  15. New Constraints on Baja California-North America Relative Plate Motion Since 11 Ma

    NASA Astrophysics Data System (ADS)

    Bennett, S. E.; Skinner, L. A.; Darin, M. H.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.

    2013-12-01

    Tectonic reconstructions of the Pacific-North America (PAC-NAM) plate boundary across the Gulf of California and Salton Trough (GCAST) constrain the controversial magnitude of Baja California microplate-North America (BCM-NAM) relative motion since middle Miocene time. We use estimates of total PAC-NAM relative dextral-oblique motion from the updated global plate-circuit model (Atwater and Stock, 2013; GSA Cordilleran Mtg) to resolve the proportion of this motion on faults east of the BCM. Modern GPS studies and offset of late Miocene cross-gulf geologic tie points both suggest that BCM has never been completely coupled to the Pacific plate. Thus, our preferred GCAST reconstruction uses 93% BCM-PAC coupling from the present back to 6 Ma. We assume BCM-PAC coupling of 60% between 6 and 7 Ma, and 25% between 7 and 11 Ma, to avoid unacceptable overlap of continental crustal blocks between Baja California and the Sierra Madre Occidental (on stable NAM). Using these coupling ratios and PAC-NAM stage Euler poles, we determine the azimuth and velocity of individual points on the BCM in 1 million year increments back to 11 Ma. This procedure accounts for minor clockwise rotation of BCM that occurred during oblique rifting, and shows how total BCM-NAM relative motion increases from north to south due to greater distance from the Euler pole. Finer-scale restoration of tectonic blocks along significant (>1 km offset) faults, across extensional (e.g. pull-apart and half-graben) basins, and by vertical-axis rotation is constrained by local geologic and marine-geophysical datasets and accomplished via the open-source Tectonic Reconstruct ArcGIS tool. We find that restoration across the Gulf of California completely closes marine basins and their terrestrial predecessors between 6 and 9 Ma. Latest Miocene opening of these basins was coincident with a ~10° clockwise azimuthal change from 8 to 6 Ma in PAC-NAM relative motion, as revealed by the global plate circuit model. The

  16. Absolute plate motion of Africa around Hawaii-Emperor bend time

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Wessel, P.; Müller, R. D.; Williams, S. E.; Harada, Y.

    2015-06-01

    Numerous regional plate reorganizations and the coeval ages of the Hawaiian Emperor bend (HEB) and Louisville bend of 50-47 Ma have been interpreted as a possible global tectonic plate reorganization at ˜chron 21 (47.9 Ma). Yet for a truly global event we would expect a contemporaneous change in Africa absolute plate motion (APM) reflected by physical evidence distributed on the Africa Plate. This evidence has been postulated to take the form of the Réunion-Mascarene bend which exhibits many HEB-like features, such as a large angular change close to ˜chron 21. However, the Réunion hotspot trail has recently been interpreted as a sequence of continental fragments with incidental hotspot volcanism. Here we show that the alternative Réunion-Mascarene Plateau trail can also satisfy the age progressions and geometry of other hotspot trails on the Africa Plate. The implied motion, suggesting a pivoting of Africa from 67 to 50 Ma, could explain the apparent bifurcation of the Tristan hotspot chain, the age reversals seen along the Walvis Ridge, the sharp curve of the Canary trail, and the diffuse nature of the St. Helena chain. To test this hypothesis further we made a new Africa APM model that extends back to ˜80 Ma using a modified version of the Hybrid Polygonal Finite Rotation Method. This method uses seamount chains and their associated hotspots as geometric constraints for the model, and seamount age dates to determine APM through time. While this model successfully explains many of the volcanic features, it implies an unrealistically fast global lithospheric net rotation, as well as improbable APM trajectories for many other plates, including the Americas, Eurasia and Australia. We contrast this speculative model with a more conventional model in which the Mascarene Plateau is excluded in favour of the Chagos-Laccadive Ridge rotated into the Africa reference frame. This second model implies more realistic net lithospheric rotation and far-field APMs, but

  17. Is a 50 Ma Event Recorded in the Absolute Plate Motion of Africa?

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Wessel, P.; Müller, R.; Harada, Y.

    2012-12-01

    There is considerable evidence for a global plate tectonic reorganization at ~Chron 21, as suggested by observed changes in global relative plate motion (RPM). The timings of these events appear to coincide with the age of the Hawaiian Emperor Bend (HEB), i.e., ~47-50 Ma. This 120° bend has traditionally been the poster child for the fixed hotspot hypothesis, suggesting the Pacific plate underwent a change in absolute plate motion (APM) as it moved over a more or less stationary Hawaiian hotspot. However, palaeomagnetic evidence favors southward motion of the Hawaii hotspot during the Emperor stage, limiting the amount of APM change required. In the Indo-Atlantic realm, RPMs involving Africa all seem compatible with a change in Africa APM around ~50 Ma. If this global plate reorganization took place there should also be physical evidence on the Africa plate itself due to the change in Africa APM. A candidate for such evidence may be the Réunion-Mascarene bend, which exhibits many HEB-like features. However, the Réunion hotspot also created the Chagos-Laccadive ridge as it encountered (and later crossed) the Carlsberg Ridge, and the oldest Mascarene section closest to the Seychelles may be continental in origin; thus there is some uncertainty in how to interpret the geometry. Furthermore, published APM models have had difficulty modeling this abrupt change in orientation. To reexamine this problem we derived a new Africa APM model that goes back to ~65 Ma using the Hybrid Polygonal Finite Rotation Method. The modeling incorporates the geometry and ages of seamount chains on the Africa plate and their associated hotspots as suitable constraints on an Africa APM model. The present as well as earlier positions of hotspots can be adjusted to get the best fit for the model. We examine how models with or without a ~50 Ma bend satisfy the geometries and age progressions of hotspot chains on the Africa plate and how well the predictions match observed paleolatitudes.

  18. Intraplate Deformation Due to Motion of Plates over a Nonspherical Earth

    NASA Astrophysics Data System (ADS)

    Woodworth, D.; Gordon, R. G.

    2015-12-01

    The central tenet of plate tectonics is that the plates are rigid. Not long after the acceptance of plate tectonics, however, it was recognized that the motion of plates over a non-spherical Earth should cause intraplate deformation [McKenzie, 1972; Turcotte & Oxburgh, 1974]. Even so, no firm connection between hypothesized deformation and observed deformation has yet been made. An alternative cause of intraplate deformation is the horizontal contraction of lithosphere as it cools with age [Collette, 1974]. The rate of horizontal thermal contraction decreases as ~1/age and the resulting intraplate deformation should be large enough to cause observed plate circuit non-closures [Kumar & Gordon, 2009]. Strain rates thus obtained for 0 Ma-old, 0.1 Ma-old, 1 Ma-old, and 10 Ma-old oceanic lithosphere respectively are 2 × 10-2 Ma-1 (5 × 10-16 s-1), 8 × 10-3 s-1 (3 × 10-16 s-1), 1.5 × 10-3 Ma-1 (5 × 10-17 s-1), 2 × 10-4 Ma-1 (5 × 10-18 s-1) [Mishra & Gordon, 2015]. Across the Pacific Plate, such strains sum to intraplate relative velocities of up to ≈2 mm yr-1 [Kreemer & Gordon, 2014].Here we attempt to quantify rates of intraplate strain due to motion of plates over a nonspherical Earth to compare with strain rates due to horizontal contraction and due to observed intraplate deformation. We determine rates of northward motion of lithosphere using the SKS-MORVEL set of plate angular velocities relative to the deep mantle [Zheng et al., 2014]. Following Turcotte [1974], we use the approximation of a spherical Earth whose radius of curvature changes with the latitudinal motion of the plate. We considered two end-member cases—no radial strain and no change in thickness—in our calculations. We estimate average strain rates for the twenty-five major plates ranging from ~10-11 to 10-4 Ma-1 (3 × 10-25 to 3 × 10-18 s-1). For the Pacific Plate, we estimate strain rates that approach or exceed those due to thermal contraction only in the oldest lithosphere, where

  19. Tectonic implications of post-30 Ma Pacific and North American relative plate motions

    USGS Publications Warehouse

    Bohannon, R.G.; Parsons, T.

    1995-01-01

    The Pacific plate moved northwest relative to North America since 42 Ma. The rapid half rate of Pacific-Farallon spreading allowed the ridge to approach the continent at about 29 Ma. Extinct spreading ridges that occur offshore along 65% of the margin document that fragments of the subducted Farallon slab became captured by the Pacific plate and assumed its motion proper to the actual subduction of the spreading ridge. This plate-capture process can be used to explain much of the post-29 Ma Cordilleran North America extension, strike slip, and the inland jump of oceanic spreading in the Gulf of California. Much of the post-29 Ma continental tectonism is the result of the strong traction imposed on the deep part of the continental crust by the gently inclined slab of subducted oceanic lithosphere as it moved to the northwest relative to the overlying continent. -from Authors

  20. Reconciling geodetic and geological estimates of recent plate motion across the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Calais, E.; Merkouriev, S.

    2017-01-01

    We use recently published, high-resolution reconstructions of the Southwest Indian Ridge to test whether a previously described systematic difference between Global Positioning System (GPS) and 3.16-Myr-average estimates of seafloor spreading rates between Antarctica and Africa is evidence for a recent slowdown in Southwest Indian Ridge seafloor spreading rates. Along the Nubia-Antarctic segment of the ridge, seafloor opening rates that are estimated with the new, high-resolution reconstructions and corrected for outward displacement agree well with geodetic rate estimates and reduce previously reported, highly significant non-closure of the Nubia-Antarctic-Sur plate circuit. The observations are inconsistent with a slowdown in spreading rates and instead indicate that Nubia-Antarctic plate motion has been steady since at least 5.2 Ma. Lwandle-Antarctic seafloor spreading rates that are estimated from the new high-resolution reconstructions differ insignificantly from a GPS estimate, thereby implying steady Lwandle-Antarctic plate motion since 5.2 Ma. Between the Somalia and Antarctic plates, the new Southwest Indian Ridge reconstructions eliminate roughly half of the systematic difference between the GPS and MORVEL spreading rate estimates.We interpret the available observations as evidence that Somalia-Antarctic spreading rates have been steady since at least 5.2 Ma and postulate that the remaining difference is attributable to random and/or systematic errors in the plate kinematic estimates and the combined effects of insufficient geodetic sampling of undeforming areas of the Somalia plate, glacial isostatic adjustment in Antarctica and transient deformation triggered by the 1998 Mw = 8.2 Antarctic earthquake, the 2004 Mw = 9.3 Sumatra earthquake, or possibly other large historic earthquakes.

  1. Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre

    NASA Astrophysics Data System (ADS)

    Schellart, W. P.; Spakman, W.

    2015-07-01

    Unravelling causes for absolute plate velocity change and continental dynamic topography change is challenging because of the interdependence of large-scale geodynamic driving processes. Here, we unravel a clear spatio-temporal relation between latest Cretaceous-Early Cenozoic subduction at the northern edge of the Australian plate, Early Cenozoic Australian plate motion changes and Cenozoic topography evolution of the Australian continent. We present evidence for a ∼4000 km wide subduction zone, which culminated in ophiolite obduction and arc-continent collision in the New Guinea-Pocklington Trough region during subduction termination, coinciding with cessation of spreading in the Coral Sea, a ∼5 cm/yr decrease in northward Australian plate velocity, and slab detachment. Renewed northward motion caused the Australian plate to override the sinking subduction remnant, which we detect with seismic tomography at 800-1200 km depth in the mantle under central-southeast Australia at a position predicted by our absolute plate reconstructions. With a numerical model of slab sinking and mantle flow we predict a long-wavelength subsidence (negative dynamic topography) migrating southward from ∼50 Ma to present, explaining Eocene-Oligocene subsidence of the Queensland Plateau, ∼330 m of late Eocene-early Oligocene subsidence in the Gulf of Carpentaria, Oligocene-Miocene subsidence of the Marion Plateau, and providing a first-order fit to the present-day, ∼200 m deep, topographic depression of the Lake Eyre Basin and Murray-Darling Basin. We propound that dynamic topography evolution provides an independent means to couple geological processes to a mantle reference frame. This is complementary to, and can be integrated with, other approaches such as hotspot and slab reference frames.

  2. Reconciling geodetic and geologic estimates of recent plate motion across the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Calais, E.; Merkouriev, S.

    2016-10-01

    We use recently published, high-resolution reconstructions of the Southwest Indian Ridge to test whether a previously described systematic difference between Global Positioning System (GPS) and 3.16-Myr-average estimates of seafloor spreading rates between Antarctica and Africa is evidence for a recent slowdown in Southwest Indian Ridge seafloor spreading rates. Along the Nubia-Antarctic segment of the ridge, seafloor opening rates that are estimated with the new, high-resolution reconstructions and corrected for outward displacement agree well with geodetic rate estimates and reduce previously reported, highly significant non-closure of the Nubia-Antarctic-Sur plate circuit. The observations are inconsistent with a slowdown in spreading rates and instead indicate that Nubia-Antarctic plate motion has been steady since at least 5.2 Ma. Lwandle-Antarctic seafloor spreading rates that are estimated from the new high-resolution reconstructions differ insignificantly from a GPS estimate, thereby implying steady Lwandle-Antarctic plate motion since 5.2 Ma. Between the Somalia and Antarctic plates, the new Southwest Indian Ridge reconstructions eliminate roughly half of the systematic difference between the GPS and MORVEL spreading rate estimates. We interpret the available observations as evidence that Somalia-Antarctic spreading rates have been steady since at least 5.2 Ma and postulate that the remaining difference is attributable to random and/or systematic errors in the plate kinematic estimates and the combined effects of insufficient geodetic sampling of undeforming areas of the Somalia plate, glacial isostatic adjustment in Antarctica, and transient deformation triggered by the 1998 Mw=8.2 Antarctic earthquake, the 2004 Mw=9.3 Sumatra earthquake, or possibly other large historic earthquakes.

  3. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1991-01-01

    During our participation in the NASA Crustal Dynamics Project under NASA contract NAS-27339 and grant NAG5-814 for the period 1982-1991, we published or submitted for publication 30 research papers and 52 abstracts of presentations at scientific meetings. In addition, five M.I.T. Ph.D. students (Eric Bergman, Steven Bratt, Dan Davis, Jeanne Sauber, Anne Sheehan) were supported wholly or in part by this project during their thesis research. Highlights of our research progress during this period include the following: application of geodetic data to determine rates of strain in the Mojave block and in central California and to clarify the relation of such strain to the San Andreas fault and Pacific-North American plate motions; application of geodetic data to infer post seismic deformation associated with large earthquakes in the Imperial Valley, Hebgen Lake, Argentina, and Chile; determination of the state of stress in oceanic lithosphere from a systematic study of the centroid depths and source mechanisms of oceanic intraplate earthquakes; development of models for the state of stress in young oceanic regions arising from the differential cooling of the lithosphere; determination of the depth extent and rupture characteristics of oceanic transform earthquakes; improved determination of earthquake slip vectors in the Gulf of California, an important data set for the estimation of Pacific-North American plate motions; development of models for the state of stress and mechanics of fold-and-thrust belts and accretionary wedges; development of procedures to invert geoid height, residual bathymetry, and differential body wave travel time residuals for lateral variations in the characteristic temperature and bulk composition of the oceanic upper mantle; and initial GPS measurements of crustal deformation associated with the Imperial-Cerro Prieto fault system in southern California and northern Mexico. Full descriptions of the research conducted on these topics may be

  4. A Globally Self-Consistent Model of Plate Motions Relative to the Hotspots for the Past 48 Million Years

    NASA Astrophysics Data System (ADS)

    Koivisto, E.; Gordon, R. G.

    2012-04-01

    Hotspots are volcanic anomalies, either in an intraplate setting or in the form of excessive volcanism along the plate boundaries, not explained by classic plate tectonics. In the early 70's, along with a deep mantle origin, hotspots were proposed to move so slowly relative to one another such that they could be used as a reference frame fixed in the deep mantle for describing plate motions in an "absolute" sense. Ever since the idea was first introduced, however, the rates of relative hotspot motion, and thus the limits of the hotspot frame of reference, have remained a source of heated debate with suggestions ranging from apparent fixity to rapid motion between the hotspots. The question of inter-hotspot motion is closely related to the estimation of true polar wander—rotation of the whole solid earth relative to the spin axis. A fundamental problem of global tectonics and paleomagnetism is determining which part of apparent polar wander—the apparent movement of age-progressive paleomagnetic poles relative to the continent in question—is due to plate motion, and which part is due to true polar wander. One approach for separating these is available if the hotspots are indeed tracking the motion of the mantle beneath the asthenosphere and are moving slowly relative to one another. In this case, a model of plate motion relative to the hotspots can be used to predict the positions of past paleomagnetic poles relative to the spin axis and thus estimate the amount of true polar wander. Cumulative improvements in the age progression along the hotspot tracks, the geomagnetic reversal time scale, and relative plate reconstructions lead to significant changes in earlier results. In this study, we build on a new method for objectively estimating plate-hotspot rotations and their uncertainties, and on our recent results that have demonstrated no significant motion between the Pacific and Indo-Atlantic hotspots since 48 Ma, and present a globally self-consistent model

  5. High-resolution estimates of Southwest Indian Ridge plate motions, 20 Ma to present

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.; Sauter, D.

    2015-12-01

    We present the first estimates of Southwest Indian Ridge (SWIR) plate motions at high temporal resolution during the Quaternary and Neogene based on nearly 5000 crossings of 21 magnetic reversals out to C6no (19.72 Ma) and the digitized traces of 17 fracture zones and transform faults. Our reconstructions of this slow-spreading mid-ocean ridge reveal several unexpected results with notable implications for regional and global plate reconstructions since 20 Ma. Extrapolations of seafloor opening distances to zero-age seafloor based on reconstructions of reversals C1n (0.78 Ma) through C3n.4 (5.2 Ma) reveal evidence for surprisingly large outward displacement of 5 ± 1 km west of 32°E, where motion between the Nubia and Antarctic plates occurs, but 2 ± 1 km east of 32°E, more typical of most mid-ocean ridges. Newly estimated SWIR seafloor spreading rates are up to 15 per cent slower everywhere along the ridge than previous estimates. Reconstructions of the numerous observations for times back to 11 Ma confirm the existence of the hypothesized Lwandle plate at high confidence level and indicate that the Lwandle plate's western and eastern boundaries respectively intersect the ridge near the Andrew Bain transform fault complex at 32°E and between ˜45°E and 52°E, in accord with previous results. The Nubia-Antarctic, Lwandle-Antarctic and Somalia-Antarctic rotation sequences that best fit many magnetic reversal, fracture zone and transform fault crossings define previously unknown changes in the Neogene motions of all three plate pairs, consisting of ˜20 per cent slowdowns in their spreading rates at 7.2^{+0.9 }_{ -1.4} Ma if we enforce a simultaneous change in motion everywhere along the SWIR and gradual 3°-7° anticlockwise rotations of the relative slip directions. We apply trans-dimensional Bayesian analysis to our noisy, best-fitting rotation sequences in order to estimate less-noisy rotation sequences suitable for use in future global plate reconstructions

  6. Relative Motion of Nubia Plate with Respect to West Africa, Congo and Kalahari Cratons

    NASA Astrophysics Data System (ADS)

    Njoroge, M. W.

    2015-12-01

    The Nubia plate is normally considered to be a rigid plate and as such used in the realization of terrestrial reference frame. Gondwana breakup plate reconstruction, the Cameroon volcanic line, seismicity, and the morphology of the Okavango rift zone (ORZ) suggest the presence of internal deformation within the Nubia plate. To test this hypothesis, six different reference frames were developed from the velocity field of three individual regions (West, Central and South), and of different combinations of them (West+Central, South+Central, and Nubia as a whole). The residual velocities with respect to these references frame help us understand the presence of the relative motion between the different regions thus the stability of the plate. To realize the reference frames, all the publicly available GPS data within the "stable" Nubia plate was processed. Given the small relative velocity, it is important to eliminate eventual biases in the analysis and to have good estimates of uncertainty of the observed velocities. For this reason, velocities were analyzed, and rate uncertainties computed using the Allan variance of rate (AVR) technique, accounting for colored noise. Although geological and geophysical studies indicate the possibility of internal deformation within Nubia, the results of this study shows that the current GPS network is not capable to identify intraplate deformation and within uncertainties Nubia is a single plate. As final note, both the color of the noise and the amplitude of the annual signal of each time series as function of latitude and climatic region were analyzed. The study shows that the noise is approximately flicker for all the good stations independently of the location. On the contrary, the amplitude of the annual signal is strongly dependent on the climate of the regions.

  7. Current Plate Motion Relative to the Hotspots and to the Mantle

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Gordon, R. G.; Argus, D.; Demets, C.; Kreemer, C. W.

    2010-12-01

    We present several new global sets of angular velocities of the plates relative to the deeper mantle. A starting point for our estimate of plate motion relative to the hotspots is HS3, a hotspot data set developed by Gripp & Gordon [2002], which consists of two volcanic propagation rates and eleven segment trends from the Pacific, Nazca, South America, and North America plates. Due to the bias (argon loss) inherent in K-Ar measurements, the volcanic ages in HS3 are probably systematically too young and the volcanic propagation rates are thus probably biased (i.e., they are too high) [Morgan & Phipps Morgan, 2007]. Here we use the difference between an astrogeochronologic-based geomagnetic reversal time scale [Gradstein et al. 2004] and a K-Ar-based geomagnetic reversal time scale [Harland et al. 1982] as a proxy to estimate the recalibration required for K-Ar measurements. This recalibration of K-Ar ages reduces the volcanic propagation rates of the Hawaii hotspot track and the Society hotspot track by 8% and 6% respectively. We incorporate these revised volcanic propagation rates into the HS3B data set, which is merely HS3 corrected for this bias. We combine the HS3B data set with the MORVEL global set of plate relative angular velocities [DeMets et al., 2010] to determine HS3B-MORVEL, a new global set of plate angular velocities relative to the hotspots. Unsurprisingly, the motion of the Pacific plate relative to the hotspots is slower in HS3B-MORVEL than in HS3-NUVEL1A. Because the orientations of seismic anisotropy inferred from shear-wave splitting may in many places indicate the direction of motion of lithosphere relative to the deeper mantle, Kreemer [2009] compiled a data set of 474 shear-wave splitting data, which we refer to as the SKS data set. When we invert these data in a manner similar to his, but using the MORVEL relative angular velocities, we find that the azimuth residuals of SKS-MORVEL are strongly correlated within each plate and do not have

  8. Comparison of Arabian plate motion using satellite laser ranging and GPS observations

    NASA Astrophysics Data System (ADS)

    Alothman, A. O.; Fernandes, R. M.; Schillak, S. R.

    2013-12-01

    Two different space based observations have been used to estimate the velocity of the Arabian plate motion. The first set of observations is using the Saudi Arabia Laser Ranging Observatory (SALRO - 7832), which is situated in the middle of Arabian tectonic plate. Satellite Laser Ranging (SLR) observations of about 20 global SLR stations to LAGEOS-1 and LAGEOS-2 satellites collected for 14 years (1996-2009) have been used to determine Riyadh SLR station positions. The NASA Godard's GEODYN-II orbital software has been used to perform orbit determination of these two satellites. The velocities of SALRO were computed in reference to the ITRF2008 terrestrial reference frame. The second set of observations consists of Global Positioning System (GPS) observations of 15 GPS stations acquired in campaign and continuous mode for the period 2003 to 2009 (having at least 3 years' data span). Multi-year processing of stations having at least 3 years' time span and excluding stations within the deformation zone of Red Sea Ridge, such that they are distributed evenly within the rigid (interior) part of the Arabian plate. The Bernese 5.0/ADNEQ2 and GIPSY/OASIS 6.1 software packages were used to compute the daily solutions of coordinate time series applying the Precise Point Positioning (PPP) strategy. The velocities were estimated with respect to ITRF2008 and four estimates of the angular velocities for the Arabian plate have been computed using different datasets: independent Bernese and GIPSY solutions, combination of the GPS solutions only, and including the SLR solution. We present direct comparison between all different solutions showing that the Arabian tectonic plate motion determined from Riyadh SLR data and GPS data are in a good agreement with recent estimates, in particular with the global geodetic model GEODVEL and the geophysical MORVEL model.

  9. A new GPS velocity field for the Pacific Plate - Part 1: constraints on plate motion, intraplate deformation, and the viscosity of Pacific basin asthenosphere

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique

    2014-12-01

    We combine new, well-determined GPS velocities from Clarion, Guadalupe and Socorro islands on young seafloor in the eastern Pacific basin with newly estimated velocities for 26 GPS sites from older seafloor in the central, western and southern parts of the Pacific Plate to test for deformation within the interior of the Pacific Plate and estimate the viscosity of the asthenosphere below the plate. Relative to a Pacific Plate reference frame defined from the velocities of the 26 GPS sites in other areas of the Pacific Plate, GPS sites on Clarion and Guadalupe islands in the eastern Pacific move 1.2 ± 0.6 mm yr-1 (1σ) towards S09°W ± 38° and 1.9 ± 0.3 mm yr-1 towards S19°E ± 10°, respectively. The two velocities, which are consistent within their 95 per cent uncertainties, both differ significantly from Pacific Plate motion. Transient volcanic deformation related to a 1993-1996 eruption of the Socorro Island shield volcano renders our GPS velocity from that island unreliable for the tectonic analysis although its motion is also southward like those of Clarion and Guadalupe islands. We test but reject the possibilities that drift of Earth's origin in ITRF2008 or unmodelled elastic offsets due to large-magnitude earthquakes around the Pacific rim since 1993 can be invoked to explain the apparent slow southward motions of Clarion and Guadalupe islands. Similarly, corrections to the Pacific Plate GPS velocity field for possible viscoelastic deformation triggered by large-magnitude earthquakes since 1950 also fail to explain the southward motions of the two islands. Viscoelastic models with prescribed asthenospheric viscosities lower than 1 × 1019 Pa s instead introduce statistically significant inconsistencies into the Pacific Plate velocity field, suggesting that the viscosity of the asthenosphere below the plate is higher than 1 × 1019 Pa s. Elastic deformation from locked Pacific-North America Plate boundary faults is also too small to explain the southward

  10. The benefits of extended plate motion history in mantle circulation models

    NASA Astrophysics Data System (ADS)

    Webb, Peter; Davies, Huw; Davies, Rhodri; Hochard, Cyril; Stampfli, Gerard

    2010-05-01

    Mantle Circulation Models (MCMs) are mantle convection simulations conditioned with plate motion history. Due to difficulties in reconstructing plate motions beyond ≈ 120 Ma, MCMs often only incorporate the most recent 120 Myr of plate tectonic evolution. We find that such models are strongly influenced by initial conditions. The development of a new series of tectonic reconstructions extending back to the Triassic (230 Ma) and including careful reconstruction of the oceanic parts of the plates (modified from Stampfli and Borel, 2004, Stampfli et al. 2008 and references therein) should prove to be of huge importance to MCMs. In this study we present a comparison between the traditionally used 120 Myr and the latest 230 Myr plate motion histories. We use the three-dimensional spherical mantle convection code TERRA (Bunge et al., 2003) to simulate convection at Earth like vigour. Here we apply the plate motion history as a surface velocity boundary condition to drive the internal convection of an already well-mixed system. The forward models from a chosen starting point to present day yield information on mantle temperature (as well as pressure, velocity and material properties) throughout the volume. One of the ways to validate our results is to compare these with tomographic models. Seismic tomography provides us with a snapshot of Earth's mantle at present day. Assuming that the mantle is driven largely by thermal convection, we can assume that the seismically fast regions are associated with cooler, denser material. The most significant of these can be interpreted as remnants of subducted slabs (Hafkenscheid et al 2006, van der Meer et al. 2010). We convert the temperatures predicted by the MCM to seismic velocities using the latest techniques (e.g. Cobden et al., 2008) and compare the calculated velocities to a range of seismic tomography models (both P and S wave). This way we can examine the validity of the surface velocity boundary condition and identify

  11. Using "Ridge-Spotting" as a Test for Pacific Absolute Plate Motion Models

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Müller, D.; Williams, S.

    2015-12-01

    In the mid-1990s the "hotspotting" technique was developed to assess the internal consistency of Pacific absolute plate motions (APM) models derived from hotspot trails, with the assumption that mantle plumes were fixed. Being a variant of the Hough transform, hotspotting maps a dated location (1-D geometry) on the seafloor to a flow line (2-D geometry). The accumulation of intersections of these flow lines reveals the optimal location of a fixed hotspot, assuming that the plate motion model is correct. It is the optimal exploratory technique for a planet with moving rigid plates over a set of fixed hotspots. However, it seems increasingly unlikely that we live on such a planet. Avoiding hotspots altogether we introduce "ridge-spotting", another promising technique for a planet with moving rigid plates and fixed ridges. Alas, we may not be living on that planet either. Yet, ridges are expected to undergo slow changes (ridge jumps notwithstanding), but that does not necessarily imply that an optimal APM model should minimize the ridge migration speed. In particular, ridges between stationary continental plates and fast-moving oceanic plates will move relatively fast, and an APM model should be expected to reflect this motion. In contrast, ridges that have been "pinned" by large mantle upwellings for considerable periods of time might be expected to favor APM models that minimize ridge migration. Given the long-lived super-plume mantle upwelling in the Equatorial Pacific it seems possible that the East-Pacific Rise may be a candidate for the second scenario, while the Pacific-Antarctic ridge, pushing the Pacific away from a near-stationary Antarctic continent, may be a candidate for the former. We present the ridge-spotting method and test published Pacific APM models using seafloor formed at the two ridges. Preliminary results indicate that ridge-spotting identifies problematic APM models because they imply unreasonable ridge migration. Fixed hotspot APM models, but

  12. Evaluation of motion platform embedded with dual belt treadmill instrumented with two force plates.

    PubMed

    Sinitski, Emily H; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Motek Medical's Computer Aided Rehabilitation Environment (CAREN)-Extended system is a virtual environment primarily used in physical rehabilitation and biomechanical research. This virtual environment consists of a 180 degree projection screen used to display a virtual scene, a 12-camera motion capture system, and a six degree of freedom actuated platform equipped with a dual-belt treadmill and two force plates. The goal of this article was to investigate the performance characteristics associated with a "treadmill-motion platform" configuration and how system operation can affect the data collected. Platform static and dynamic characteristics were evaluated by translating or rotating the platform over progressively larger distances and comparing input and measured values. Treadmill belt speed was assessed with and without a person walking on the platform and at different orientations. Force plate measurements were examined when the treadmill was in operation, during ambulation, and over time to observe the baseline drift. Platform acceleration was dependent on the distance travelled and system settings. Treadmill speed variability was greatest at faster speeds. Force plate measurements were affected by platform and treadmill operation, contralateral impact forces during gait, and baseline drift. Knowledge of performance characteristics and their effect on outcome data is crucial for effective design of CAREN research protocols and rehabilitation scenarios.

  13. Unsteady motion of a slightly rarefied gas caused by a plate oscillating in its normal direction

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Kosuge, Shingo; Fujiwara, Taiga; Goudon, Thierry

    2017-01-01

    Unsteady motion of a rarefied gas between two parallel plates caused when one of the plates starts a harmonic oscillation in its normal direction is investigated under a slightly rarefied condition, i.e., for small Knudsen numbers. The compressible Navier-Stokes equations are employed and their appropriate temperature jump condition is derived systematically. The equations with the correct boundary conditions are solved numerically to give the unsteady flow field. In particular, the time-periodic solution established at later times is investigated in detail and it is shown that the one-period average of the oscillating part of the momentum and that of the energy transferred from the oscillating plate to the resting one take nonzero values in contrast to the linear theory. This confirms the numerical result based on the Bhatnagar-Gross-Krook model of the Boltzmann equation for intermediate Knudsen numbers [T. Tsuji and K. Aoki, Microfluid. Nanofluid. 16, 1033 (2014), 10.1007/s10404-014-1374-2]. It is also shown that the gas approaches the time-periodic motion exponentially fast in time.

  14. Rigidity and definition of Caribbean plate motion from COCONet and campaign GPS observations

    NASA Astrophysics Data System (ADS)

    Mattioli, Glen; Miller, Jamie; DeMets, Charles; Jansma, Pamela

    2014-05-01

    The currently accepted kinematic model of the Caribbean plate presented by DeMets et al. (2007) is based on velocities from 6 continuous and 14 campaign GPS sites. COCONet is a multi-hazard GPS-Met observatory, which extends the existing infrastructure of the Plate Boundary Observatory in North America into the Caribbean basin. In 2010, UNAVCO in collaboration with UCAR, was funded by NSF to design, build, and initially maintain a network of 50 new cGPS/Met sites and include data from another 50 existing sites in the Caribbean region. The current COCONet siting plan calls for 46 new stations, 21 refurbished stations, and 77 existing stations across 26 nations in the Caribbean region. Data from all COCONet sites flow into the UNAVCO archive and are processed by the PBO analysis centers and are also processed independently by the UTA Geodesy Lab using GIPSY-OASISII (v.6.2) using an absolute point positioning strategy and final, precise orbits, clocks, and Earth orientation parameters from JPL in the IGS08 frame. We present here our refined estimate of Caribbean plate motion by evaluating data from an expanded number of stations with an improved spatial distribution. In order to better constrain the eastern margin of the plate near the Lesser Antilles subduction interface, campaign GPS observations have been collected on the island of Dominica over the last decade. These are combined with additional campaign observations from the western Caribbean, specifically from Honduras and Nicaragua. We have analyzed a total of 117 sites from the Caribbean region, including campaign data and the data from the cGPS stations that comprise COCONet. An updated velocity field for the Caribbean plate is presented and an inversion of the velocities for 24 sites yields a plate angular velocity that differs from previously published models. Our best fitting inversion to GPS velocities from these 24 sites suggests that 2-plate model for the Caribbean is required to fit the GPS

  15. Earthquake slip vectors and estimates of present-day plate motions

    NASA Technical Reports Server (NTRS)

    Demets, Charles

    1993-01-01

    Two alternative models for present-day global plate motions are derived from subsets of the NUVEL-1 data in order to investigate the degree to which earthquake slip vectors affect the NUVEL-1 model and to provide estimates of present-day plate velocities that are independent of earthquake slip vectors. The data set used to derive the first model excludes subduction zone slip vectors. The primary purpose of this model is to demonstrate that the 240 subduction zone slip vectors in the NUVEL-1 data set do not greatly affect the plate velocities predicted by NUVEL-1. A data set that excludes all of the 724 earthquake slip vectors used to derive NUVEL-1 is used to derive the second model. This model is suitable as a reference model for kinematic studies that require plate velocity estimates unaffected by earthquake slip vectors. The slip-dependent slip vector bias along transform faults is investigated using the second model, and evidence is sought for biases in slip directions along spreading centers.

  16. Intraplate deformation, stress in the lithosphere and the driving mechanism for plate motions

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.

    1988-01-01

    During this period work was carried out on three fronts relevant to the understanding of intraplate deformation, stress in the lithosphere, and the driving mechanisms for plate motions: (1) observational constraints, using GPS geodesy on the deformation in the region of the boundry between the Pacific and North American plates in central and southern California; (2) numerical modeling of the effects of temperature dependent lithospheric viscosity on the stress and strain history of extensional regimes; and (3) improvement of estimates of mantle viscosity variation, the long-wave-length density variations in the mantle, and the topography of the core-mantel boundary from modeling of geoid anomalies, nutation, and changes in length of day. These projects are described in more detail, followed by a discussion of meetings attended and a list of abstracts and papers submitted and/or published.

  17. Intraplate deformation, stress in the lithosphere and the driving mechanism for plate motions

    NASA Technical Reports Server (NTRS)

    Albee, Arden L.

    1993-01-01

    The initial research proposed was to use the predictions of geodynamical models of mantle flow, combined with geodetic observations of intraplate strain and stress, to better constrain mantle convection and the driving mechanism for plate motions and deformation. It is only now that geodetic observations of intraplate strain are becoming sufficiently well resolved to make them useful for substantial geodynamical inference to be made. A model of flow in the mantle that explains almost 90 percent of the variance in the observed longwavelength nonhydrostatic geoid was developed.

  18. The Hawaii-Emperor Bend: Clearly a Record of Pacific Plate Motion Change

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Harada, Y.; Kroenke, L. W.; Sterling, A.

    2003-12-01

    As most introductory textbooks will point out, the conventional explanation for the ˜120° change in the trends of the Hawaiian and Emperor chains is a ˜60° change in plate motion over a fixed plume in the mantle. Recently, however, new paleomagnetic and radiometric age data from the Emperor Seamounts have led some scientists to reject the conventional view of the origin of the Hawaii-Emperor bend in favor of a mobile plume. Yet, at the brink of being explained away as the mere consequence of a drifting plume, the fixed hotspot hypothesis now gains support from newly reported radiometric dates of rock samples from seamounts at the bend which reveal an age much older than expected. Unlike the previous younger age ( ˜43 Ma), the older age ( ˜47 Ma) allows the bend to be directly correlated with a period of pronounced, global tectonic reorganizations around Chron 21. Here we present a new Pacific absolute plate motion model, derived from 15 hotspot chains, which does not require hotspot drift in order to satisfy geometric and chronological constraints. By considering this absolute plate motion model with available Pacific paleomagnetic poles we find support for the notion that the spin axis was closer to the Hawaiian hotspot during the formation of the Emperor chain, and this interpretation (polar wander, not hotspot drift) also explains the paleomagnetic latitudes from the Emperor seamounts as well as the lack of coral reefs materials in the drill holes north of Koko Guyot. However, this interpretation is not unique, and drift cannot be summarily ruled out. Yet, if Pacific plumes are drifting then they appear to be moving in unison. Careful examination of the Pacific seafloor reveals additional Pacific trails with bends that appear to be contemporaneous with the Hawaii-Emperor Bend, although conclusive radiometric age data are lacking. Our plate motion model predicts hotspot tracks that fit these bends. Considering all these lines of evidence the fixed hotspot

  19. Numerical simulation of tectonic plates motion and seismic process in Central Asia

    SciTech Connect

    Peryshkin, A. Yu.; Makarov, P. V. Eremin, M. O.

    2014-11-14

    An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutions of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.

  20. A revised estimate of Pacific-North America motion and implications for Western North America plate boundary zone tectonics

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.

    1987-01-01

    Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.

  1. Estimating the stresses within the lithosphere: parameter check with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Werner, Stephanie; Steinberger, Bernhard; "African Plate" Working Group

    2010-05-01

    Several mechanisms control the state of stress within plates on Earth. The list is rather long, but well-known and includes ridge push, mantle drag, stresses invoked by lateral variations of lithospheric density structure and subduction processes. We attempt to quantify the influence of these mechanisms and to construct a reliable model to understand modern and palaeo-stresses using the African plate (TAP) as an example. Previous studies explained stress patterns and their evolution solely by assigning different rheological properties to sub-domains and their boundaries. Such an approach often leads to unrealistically high variations of properties within a modeled plate. In our approach we find the best possible agreement with observations before differentiating between sub-domains of TAP. The finite-element based suite ProShell was utilized to calculate stresses on the real geometry of TAP (non-planar). The approach allows us to combine several data sets and to estimate stresses caused by lateral and vertical distribution of properties within the lithosphere, to quantify the in-plane and bending stresses, to account for forces due to ridge push and mantle heterogeneities and mantle flow. The modeled results are tested and iterated to match the observed stress pattern and potential fields as good as possible. The starting model is based on the CRUST2 data set to construct the model crust and half-space cooling model to approximate properties of the lithospheric mantle. The results however, are not satisfactory, and might be related to oversimplifications in the uniform model of lithosphere or/and to the unrealistic representation of the CRUST2 model in certain areas of TAP. The latter was also shown by simple evaluation using gravity forward modeling of the model boundaries. The model implementation of the crustal structure calculated from simple gravity inversion or derived through isostatical considerations agree better to today's observed stress pattern.

  2. The World Stress Map Database Release 2016 - Global Crustal Stress Pattern vs. Absolute Plate Motion

    NASA Astrophysics Data System (ADS)

    Heidbach, Oliver; Rajabi, Mojtaba; Ziegler, Moritz; Reiter, Karsten

    2016-04-01

    The World Stress Map (WSM) Project was initiated in 1986 under the auspices of the International Lithosphere Program in order to compile the global information on the contemporary crustal stress state. The data come from a wide range of stress indicators such as borehole data (e.g. hydraulic fracturing, borehole breakouts), earthquake focal mechanism solutions, engineering methods (e.g. overcoring), and geological data (e.g. inversion of fault slip measurements). To guarantee the comparability of the different data sources each data record is assessed with the WSM quality ranking scheme. For the 30th anniversary we compiled a new WSM database with 42,410 data records which is an increase by >20,000 data records compared to the WSM 2008 database. In particular we added new data from more than 3,500 deep boreholes and put special emphasis on regions which previously had sparse or no published stress data such as China, Australia, Brazil, Southern Africa, Middle East and Iceland. Furthermore, we fully integrated the Chinese stress database and the Australian stress database. The resulting data increase reveals several areas with regional and local variability of the stress pattern. In particular we re-visited the question whether the plate boundary forces are the key control of the plate-wide stress pattern as indicated by the first release of the WSM in 1989 [Zoback et al, 1989]. As the WSM has now more than 10 times data records and thus a better spatial coverage we first filter the long-wave length stress pattern on a regular grid. We determine at these grid points the difference between absolute plate motion azimuth using the global plate model HS3-NUVEL1A [Gripp and Gordon, 2002] and the mean orientation of the maximum horizontal stress. The preliminary results show that the earlier findings are still valid in principal. However, all plates show in some parts significant deviations from this general trend; some plates such as the Australian Plate show hardly any

  3. Rigidity and definition of Caribbean plate motion from COCONet and campaign GPS observations

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Miller, J. A.; DeMets, C.; Jansma, P. E.

    2015-12-01

    The kinematic model of the Caribbean plate presented by DeMets et al. (2007) is based on velocities from 6 continuous and 14 campaign GPS sites. COCONet is a multi-hazard GPS-Met observatory, which extends the existing infrastructure of the PBO in North America into the Caribbean basin. In 2010, UNAVCO in collaboration with UCAR, was funded by NSF to design, build, and initially maintain a network of 50 new cGPS/Met sites and include data from another 50 existing sites in the Caribbean region. The COCONet siting plan is for 46 new stations, 21 refurbished stations, and 77 existing stations across 26 nations in the Caribbean region. Data from all COCONet sites flow into the UNAVCO archive and are processed by the PBO analysis centers and are also processed independently by the UTA Geodesy Lab using GIPSY-OASISII (v.6.3) using an APP strategy and final, precise orbits, clocks, and EOP from JPL in the IGS08r frame. We present a refined estimate of Caribbean plate motion by evaluating data from an expanded number of stations with an improved spatial distribution. In order to better constrain the eastern margin of the plate near the Lesser Antilles subduction interface, campaign GPS observations have been collected on the island of Dominica over the last decade. These are combined with additional campaign observations from the western Caribbean, specifically from Honduras and Nicaragua. We have analyzed a total of 117 sites from the Caribbean region, including campaign data and the data from the cGPS stations that comprise COCONet. An updated velocity field for the Caribbean plate is presented and an inversion of the velocities for 24 sites yields a plate angular velocity that differs from previously published models. Our best fitting inversion to GPS velocities from these 24 sites suggests that 2-plate model for the Caribbean is required to fit the GPS observations, which implies that the Caribbean is undergoing modest (1-3 mm/yr) deformation within its interior. Some

  4. Shrinking of the Cocos and Nazca Plates due to Horizontal Thermal Contraction and Implications for Plate Non-rigidity and the Non-closure of the Pacific-Cocos-Nazca Plate Motion Circuit

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Kreemer, C.

    2015-12-01

    Plate rigidity is the central tenet of plate tectonics. Mounting evidence suggests, however, that significant intraplate deformation occurs in oceanic lithosphere due to horizontal thermal contraction, the rate of which decreases as ≈ 1/age [Kumar & Gordon 2009]. Support for this hypothesis comes from the azimuths of submarine transform faults, which are fit significantly better assuming shrinking plates than by assuming rigid plates [Mishra & Gordon 2015]. Previously we estimated the intraplate velocity field of the Pacific plate accounting for horizontal thermal contraction. The ≈2 mm/yr southeastward motion predicted for the northeastern part of the plate relative to the Pacific-Antarctic Rise may contribute to the non-closure of the Pacific-North America plate motion circuit. In a reference frame in which fix the oldest portion of the Pacific plate, some sites on the plate move up to ≈2 mm/yr [Kreemer & Gordon 2014]. Here we present intraplate velocity fields of the Cocos and Nazca plates and discuss their implications for the non-rigidity of plates and the non-closure of the Pacific-Cocos-Nazca plate circuit, which fails closure by a stunning 14 ±5 mm/yr [DeMets et al. 2010]. If we fix the oldest part of the Cocos plate, intraplate velocities of up to ≈2 mm/yr are estimated, with the fastest motion occurring at the northern end of the plate. If we fix the oldest part of the Nazca plate, displacement rates up to 2 mm/yr are estimated, with the fastest motion occurring in the northeasternmost portion of the plate. In the velocity fields for both plates, the lithosphere adjacent to transform faults along the East Pacific Rise tends to move to the south, which would skew the azimuths of the transform faults clockwise of the values expected for rigid plates, which is the same as the sense of misfit between observed azimuths of transform faults and the azimuths calculated from the MORVEL global set of relative angular velocities [DeMets et al. 2010]. Direct

  5. Deep Mantle Structure As a Reference Frame for Absolute Plate Motions

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Van Der Voo, R.; Doubrovine, P. V.; Burke, K. C.; Steinberger, B. M.; Domeier, M.

    2014-12-01

    Since the Pangea supercontinent formed some 320 million years ago, the majority of large igneous provinces and diamond-bearing rocks (kimberlites) near Earth's surface can be sourced to plumes erupting from the margins of two large thermochemical reservoirs at the core-mantle boundary. Using this surface to core-mantle boundary correlation to locate continents in longitude and a new iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we present a model for plate motion back to earliest Paleozoic time (540 Ma). We have identified six phases of slow, oscillatory true polar wander during the Paleozoic. True polar wander rates (<1 Degree/Myr) are compatible to those in the Mesozoic but plate velocities are on average twice as high. We show that a geologically reasonable model that reconstructs continents in longitude in such a way that large igneous provinces and kimberlites are positioned above the plume generation zones at the times of their formation can be successfully applied to the entire Phanerozoic. Our model is a kinematic model for only the continents. The next step in improving it will be developing a model for the entire lithosphere, including synthetic oceanic lithosphere. This is challenging, but we will demonstrate a full-plate model back to the Late Paleozoic (410 Ma).

  6. Uplift along passive continental margins, changes in plate motion and mantle convection

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Chalmers, James A.; Bonow, Johan M.

    2014-05-01

    The origin of the forces that produce elevated, passive continental margins (EPCMs) is a hot topic in geoscience. It is, however, a new aspect in the debate that episodes of uplift coincide with changes in plate motion. This has been revealed, primarily, by studies of the burial, uplift and exhumation history of EPCMs based on integration on stratigraphic landscape analysis, low-temperature thermochronology and evidence from the geological record (Green et al., 2013). In the Campanian, Eocene and Miocene, uplift and erosion affected the margins of Brazil and Africa (Japsen et al., 2012b). The uplift phases in Brazil coincided with main phases of Andean orogeny which were periods of relatively rapid convergence at the Andean margin of South America (Cobbold et al., 2001). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, Japsen et al. (2012b) suggested that all these uplift events have a common cause, which is lateral resistance to plate motion. Because the uplift phases are common to margins of diverging plates, it was also suggested that the driving forces can transmit across the spreading axis; probably at great depth, e.g. in the asthenosphere. Late Eocene, Late Miocene and Pliocene uplift and erosion shaped the elevated margin of southern East Greenland (Bonow et al., in review; Japsen et al., in review). These regional uplift phases are synchronous with phases in West Greenland, overlap in time with similar events in North America and Europe and also correlate with changes in plate motion. The much higher elevation of East Greenland compared to West Greenland suggests dynamic support in the east from the Iceland plume. Japsen et al. (2012a) pointed out that EPCMs are typically located above thick crust/lithosphere that is closely juxtaposed to thinner crust/lithosphere. The presence of mountains along the Atlantic margin of Brazil and in East

  7. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    NASA Astrophysics Data System (ADS)

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.

    2015-12-01

    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  8. Late Neogene changes in North America and Antarctica absolute plate motions inferred from the Mid-Atlantic and Southwest Indian Ridges spreading histories

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; DeMets, C.

    2016-08-01

    Reconstructions of absolute plate motions underpin our understanding of the plate torque balance, but are challenging due to difficulties in inferring well-dated rates and directions of plate movements from hot spot tracks. Useful information about plate dynamics can be inferred from rapid absolute plate motion changes, as these are linked only to the torque(s) that changed. Here we infer late Neogene changes in the absolute motions of North America and possibly Antarctica from changes in the easier-to-determine relative plate motions recorded along the Arctic, northern Mid-Atlantic and Southwest Indian Ridges. We show that Eurasia/North America and Nubia/North America motions changed by the same amount between 8 and 5 Ma, as may have Nubia/Antarctica and Somalia/Antarctica plate motions. By considering additional, independent constraints on Somalia/India plate motion, we argue that a scenario in which North America and Antarctica absolute motions changed is the simplest one that explains the observed changes in relative motions. We speculate that these changes are linked to the late Neogene dynamics of the Pacific plate.

  9. North America - Caribbean plate motion as constrained by provenance of Eocene beds in Central Guatemala

    NASA Astrophysics Data System (ADS)

    Martens, U.; Gutierrez, A.

    2009-12-01

    The continental Subinal Formation of Central Guatemala is composed of red conglomerates and sandstones that outcrop along the Motagua Valley. The geographic distribution of the Subinal basin is elongate and constrained by the faults of the Motagua system. This suggests the basin developed as a trans-extensional feature associated with strike-slip tectonics at the Caribbean-North American plate boundary. Stratigraphic position of the Subinal implies a post-Cretaceous depositional age, possibly Eocene. This chronologic constraint is supported by detrital zircon geochronology by the LA-ICPMS U-Pb method. The presence of eclogite in conglomerate indicates that HP belts of the Guatemala Suture Complex were already exposed at that time. The study of pebbles in conglomerate indicates that the relative abundance of some clast groups correlates with the rock units exposed north, across the San Agustín fault. This implies provenance from the North American plate and minor motion along this fault. We hypothesize that the Subinal basin was formed as an onland response to the opening of the coveal Cayman Trough.

  10. Seismotectonic features of the African plate: the possible dislocation of a continent

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The African continent is made of seismically active structures with active deformation in between main substratum shields considered as stable continental interiors. Seismically active regions are primarily located along rift zones, thrust and fold mountain belts, transform faults and volcanic fields. The active tectonic structures generated large and destructive earthquakes in the past with significant damage and economic losses in Africa. Although some regions of the continent show a low-level of seismic activity, several large earthquakes (with M > 7) have occurred in the past. The presence of major active faults that generate destructive earthquakes is among the most important geological and geophysical hazards for the continent. National and International scientific projects dealing with the seismic hazards assessment are increasing in seismically active regions in Africa. The UNESCO-SIDA/IGCP (Project 601 http://eost.u-strasbg.fr/~igcp601/) support the preparation and implementation of the "Seismotectonic Map of Africa". Therefore, new seismotectonic data with the regional analysis of earthquake hazards became necessary as a basis for a mitigation of the earthquake damage. A database in historical and instrumental seismicity, active tectonics, stress tensor distribution, earthquake geology and paleoseismology, active deformation, earthquake geodesy (GPS) and gravity, crustal structure studies, magnetic and structural segmentation, volcanic fields, collision tectonics and rifting processes is prepared to constrain the geodynamic evolution of the continent. Taking into account the geological, tectonic and geophysical characteristics, we define six seismotectonic provinces that characterize the crustal deformation. With the previously identified Somalia tectonic block, the seismotectonic and geophysical framework of the continent reveal the existence of the Cameroon volcanic line, the South African tectonic block with transform faulting and Cape folding system

  11. Implications of a comprehensive, spreading-aligned plate motion reference frame in light of seismic anisotropy and global trench migration

    NASA Astrophysics Data System (ADS)

    Becker, T. W.; Schaeffer, A. J.; Lebedev, S.; Conrad, C. P.

    2015-12-01

    An absolute plate motion model is required to address issues such as the thermo-chemical evolution of Earth's mantle, yet all such models have to rely on indirect inferences. Given that azimuthal seismic anisotropy in the uppermost mantle appears to show fast axes parallel to seafloor spreading, we explore a new, spreading-aligned reference frame. We show that this reference frame indeed fits azimuthal seismic anisotropy from surface waves and SKS splitting very well. The corresponding Euler pole (at 64∘E, 61∘S, with rotation of ~0.25∘/Myr) is close to those of hot spot reference frames, as expected if hot spots were due to relatively stationary mantle plumes. The new Euler pole is also close to that of ridge motion minimizing models, and its amplitude broadly consistent with estimates of net rotation generation by mantle convection with strong continental keels and a weak asthenosphere. The finding that relative spreading aligns with absolute plate motions implies that ridges are passive and that transform faults weak, allowing for easy realignment of spreading centers during slab-driven plate reorganizations. We also explore the implications of our new reference frame for slabs where we find that all of the major eastern Pacific subduction zone trenches are rolling back (away from the overriding plate). Fast trench advance is only predicted in regions with strong corner flow and pivoting (Tonga), continental plate interactions (Sumatra and Caribbean), and most clearly in an ocean-ocean setting for the Philippine Sea Plate where double subduction, slab-slab interactions may explain the fast advance of the Marianas. We conclude that a net rotation pole guided by the spreading-aligned model could indeed represent a comprehensive reference frame for present-day plate motions with respect to the deep mantle.

  12. Pacific-North American plate motion from very long baseline interferometry compared with motion inferred from magnetic anomalies, transform faults, and earthquake slip vectors

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.

    1990-01-01

    Geodetic VLBI measurements were used to test whether the Pacific-North American plate velocity averaged over several years of direct observation (1984-1987) equals that averaged over millions of years. It was also tested whether this velocity parallels the San Andreas fault, transform faults and earthquake slip vectors in the Gulf of California, and earthquake slip vectors along the Queen Charlotte fault, along the Alaskan peninsula, and along the Kamchatkan peninsula. The VLBI data provide an estimate of the direction of plate motion that is independent of estimates from fault azimuths and earthquake slip vectors. The Euler vector determined from VLBI was found to be nearly identical to the Euler vector of plate motion model NUVEL-1, which is based on the trends of transform faults, earthquake slip vectors, and spreading rates from marine magnetic anomalies that average motion since 3 Ma. The velocity between the Pacific and North American plates averaged over the past several years equals or nearly equals its velocity averaged over the past several million years, the difference along their boundary nowhere exceeding 4 + or - 7 mm/yr.

  13. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-10-01

    Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2-5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C) and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match to observed stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This

  14. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  15. On the relations between cratonic lithosphere thickness, plate motions, and basal drag

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2002-01-01

    An overview of seismic, thermal, and petrological evidence on the structure of Precambrian lithosphere suggests that its local maximum thickness is highly variable (140-350 km), with a bimodal distribution for Archean cratons (200-220 km and 300-350 km). We discuss the origin of such large differences in lithospheric thickness, and propose that the lithospheric base can have large depth variations over short distances. The topography of Bryce Canyon (western USA) is proposed as an inverted analog of the base of the lithosphere. The horizontal and vertical dimensions of Archean cratons are strongly correlated: larger cratons have thicker lithosphere. Analysis of the bimodal distribution of lithospheric thickness in Archean cratons shows that the "critical" surface area for cratons to have thick (>300 km) keels is >6-8 ?? 106 km2 . Extrapolation of the linear trend between Archean lithospheric thickness and cratonic area to zero area yields a thickness of 180 km. This implies that the reworking of Archean crust should be accompanied by thinning and reworking of the entire lithospheric column to a thickness of 180 km in accord with thickness estimates for Proterozoic lithosphere. Likewise, extrapolation of the same trend to the size equal to the total area of all Archean cratons implies that the lithospheric thickness of a hypothesized early Archean supercontinent could have been 350-450 km decreasing to 280-400 km for Gondwanaland. We evaluate the basal drag model as a possible mechanism that may thin the cratonic lithosphere. Inverse correlations are found between lithospheric thickness and (a) fractional subduction length and (b) the effective ridge length. In agreement with theoretical predictions, lithospheric thickness of Archean keels is proportional to the square root of the ratio of the craton length (along the direction of plate motion) to the plate velocity. Large cratons with thick keels and low plate velocities are less eroded by basal drag than small

  16. Mantle-circulation models with sequential data assimilation: inferring present-day mantle structure from plate-motion histories.

    PubMed

    Bunge, Hans-Peter; Richards, M A; Baumgardner, J R

    2002-11-15

    Data assimilation is an approach to studying geodynamic models consistent simultaneously with observables and the governing equations of mantle flow. Such an approach is essential in mantle circulation models, where we seek to constrain an unknown initial condition some time in the past, and thus cannot hope to use first-principles convection calculations to infer the flow history of the mantle. One of the most important observables for mantle-flow history comes from models of Mesozoic and Cenozoic plate motion that provide constraints not only on the surface velocity of the mantle but also on the evolution of internal mantle-buoyancy forces due to subducted oceanic slabs. Here we present five mantle circulation models with an assimilated plate-motion history spanning the past 120 Myr, a time period for which reliable plate-motion reconstructions are available. All models agree well with upper- and mid-mantle heterogeneity imaged by seismic tomography. A simple standard model of whole-mantle convection, including a factor 40 viscosity increase from the upper to the lower mantle and predominantly internal heat generation, reveals downwellings related to Farallon and Tethys subduction. Adding 35% bottom heating from the core has the predictable effect of producing prominent high-temperature anomalies and a strong thermal boundary layer at the base of the mantle. Significantly delaying mantle flow through the transition zone either by modelling the dynamic effects of an endothermic phase reaction or by including a steep, factor 100, viscosity rise from the upper to the lower mantle results in substantial transition-zone heterogeneity, enhanced by the effects of trench migration implicit in the assimilated plate-motion history. An expected result is the failure to account for heterogeneity structure in the deepest mantle below 1500 km, which is influenced by Jurassic plate motions and thus cannot be modelled from sequential assimilation of plate motion histories

  17. Constraints on plate motions in southern Pakistan and the northern Arabian Sea from the focal mechanisms of small earthquakes

    NASA Astrophysics Data System (ADS)

    Quittmeyer, Richard C.; Kafka, Alan L.

    1984-04-01

    The focal mechanism and depth were determined for nine small earthquakes (M0<1025 dyn cm, M<5.5) that occurred in southern Pakistan and the northern Arabian Sea from an analysis of the vertical component of Rayleigh waves in combination with limited first-motion data. Focal parameters were determined from the Rayleigh waves by using an event-pair method of analysis. For earthquakes that are located very close to each other (<≈ 50 km), the event-pair method is able to remove a significant proportion of propagation effects at all periods in the range of interest (20-50 s). For events separated by more than ≈ 100 km the propagation effects are reduced for only the longer periods (≈ 40-50 s). The earthquakes that were studied provide evidence for a model of plate interactions in the vicinity of the southern Pakistan triple junction. The Owen fracture zone is a transform fault that accommodates right-lateral motion between the Indian and Arabian plates. The plate boundary in the vicinity of the Murray ridge is also partially made up of transform segments that strike subparallel to the Owen fracture zone. Spreading centers may also exist in the vicinity of the Murray ridge but were not documented by seismic or other evidence. The slip azimuths for earthquakes along this boundary are significantly more northerly than those predicted by various regional and worldwide models of plate motion. The Arabian plate is being subducted beneath the Eurasian plate along the southern coast of Pakistan. Slip vectors for earthquakes along this boundary trend northnortheasterly in general agreement with predicted directions. Left-lateral motion is documented along the boundary between the Indian and Eurasian plates in southern Pakistan. The predicted direction of relative motion between these plates is not significantly different from that observed. Two of the earthquakes studied appear to be intraplate in nature. The depth and focal mechanism of one intraplate event, which may

  18. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  19. No-Net-Rotation and Indo-Atlantic Hotspot Reference Frames: Towards a New View of Tectonic Plate Motions and Earth Dynamics

    NASA Astrophysics Data System (ADS)

    Quere, S.; Rowley, D.; Forte, A.; Moucha, R.

    2007-12-01

    A new view of plate tectonics coupled to mantle dynamics is emerging from recent paleomagnetic reconstructions of tectonic plate histories obtained in the hotspot and no-net-rotation reference frames. A number of fundamental differences relative to past plate reconstructions have been discerned. Firstly, in previous models the difference between present-day plate motions in the global hotspot and no-net-rotation reference frames consisted of a westward drift of the lithosphere due to the dominant motion of the Pacific plate in the hotspot frame. In contrast, the new plate motion reconstructions based on the Indo-Atlantic hotspot reference frame now show that the present-day global rotation of the lithosphere is mainly in the South-North direction. Second, we find a more than 100% speed-up of the Nazca plate motion at 35 Ma which we have interpreted in terms of a slab avalanche event below the Nazca-South America plate boundary. This may be the first direct geological evidence for a mantle avalanche event occurring at a time which precedes a significant plate reorganisation. Third, the speed-up of the Nazca plate does not appear to be associated with a jump of the East-Pacific rise, therefore this feature may not be completely passive as previously thought. Fourth, the Hawaiian-Emperor bend which was a key element in previous plate reconstruction based on the assumption of a fixed Hawaiian hotspot, can no longer be explained by a change of direction of the Pacific plate and this corroborates recent studies showing a southward motion of the Hawaiian hotspot. Finally, the new Indo-Atlantic hotspot reconstruction of present-day plate motions is significantly different from the one previously established by Gripp and Gordon (1990) and the model appears to be in greater accord with plate motions predicted by seismic tomography-based mantle convection models.

  20. Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander

    NASA Astrophysics Data System (ADS)

    Chandler, Michael T.; Wessel, Paul; Taylor, Brian; Seton, Maria; Kim, Seung-Sep; Hyeong, Kiseong

    2012-05-01

    The Taylor (2006) hypothesis suggesting a common origin for the Ontong Java, Manihiki, and Hikurangi large igneous provinces provides an opportunity for a quantitative reconstruction and reassessment of the Ontong Java-Louisville hotspot connection. Our plate tectonic reconstructions of the three plateaus into Ontong Java Nui, or greater Ontong Java, combined with models for Pacific absolute plate motion (APM), allow an analysis of this connection. A new survey of the central Ellice Basin confirms easterly fracture zones, northerly abyssal hill fabric, as well as an area of sigmoidally-southeast-trending fracture zones associated with a late-stage spreading reorientation. From the fracture zone trends we derive new rotation poles for a two-stage model of Ellice Basin opening between the Ontong Java and Manihiki Plateaus. We use these and a single stage pole for separation of the Manihiki and Hikurangi Plateaus, together with three different Pacific APMs, to reconstruct the Ontong Java Nui super plateau back to 123 Ma and compare its predicted location with paleolatitude data obtained from the Ontong Java and Manihiki plateaus. Discrepancies between our Ontong Java Nui reconstructions and Ontong Java and Manihiki paleolatitudes are largest for the fixed Pacific hotspot APM. Assuming a Louisville hotspot source for Ontong Java Nui, remaining disparity between Ontong Java Nui's paleo-location at 123 Ma and published paleomagnetic latitudes for Ontong Java plateau imply that 8°-19° of Louisville hotspot drift or true polar wander may have occurred since the formation of Ontong Java Nui. However, the older portions of the Pacific APMs could easily be biased by a similar amount, making a firm identification of the dominant source of misfit difficult. Prior studies required a combined 26° of hotspot drift, octupole bias effects, and true polar wander just to link the Ontong Java Plateau to Louisville. Consequently, we suggest the super plateau hypothesis and our new

  1. Evidence for a post-3.16-Ma change in Nubia-Eurasia-North America plate motions?

    NASA Astrophysics Data System (ADS)

    Calais, E.; DeMets, C.; Nocquet, J.-M.

    2003-11-01

    We combine updated GPS velocities from the Nubian (NU), Eurasian (EU), and North American (NA) plates with 500 new 3.16-Myr-average seafloor spreading rates and nine transform fault azimuths from the northern Atlantic and Arctic basin seafloor spreading centers to estimate and test for changes in the relative motion between these plates. The numerous new seafloor spreading rates and GPS velocities improve our ability to detect recent changes in the relative motions of these plates. The angular velocity vector that best fits the EU-NA GPS velocities lies significantly north of the 3-Ma-average pole, in accord with previously published geologic evidence that the EU-NA pole has migrated northward since ˜3 Ma. Although we also find evidence for a significant post-3-Ma change in NU-NA motion, it is less compelling because the Nubian plate GPS velocity field is sparse and NU-NA seafloor spreading rates appear to have remained steady within the 1 mm yr -1 uncertainties if we systematically decrease the seafloor spreading rates to correct for outward displacement of seafloor spreading magnetic lineations. The NU-EU pole derived from GPS site velocities lies more than 30 angular degrees south of the tightly constrained 3-Ma-average estimate and predicts significantly slower and more oblique present-day NU-EU convergence in the Mediterranean. Both models for NU-EU motion pass a key test for their accuracy, namely, they correctly predict strike-slip motion along the well-mapped Gloria fault east of the Azores. The change to more oblique NU-EU motion may reflect increasing difficulty in maintaining margin-normal convergence within this continent-continent collision zone.

  2. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand's Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion

    NASA Astrophysics Data System (ADS)

    Lamb, Simon; Mortimer, Nick; Smith, Euan; Turner, Gillian

    2016-03-01

    The widely accepted ˜450 km Cenozoic dextral strike-slip displacement on New Zealand's Alpine Fault is large for continental strike-slip faults, but it is still less than 60% of the Cenozoic relative plate motion between the Australian and Pacific plates through Zealandia, with the remaining motion assumed to be taken up by rotation and displacement on other faults in a zone up to 300 km wide. We show here that the 450 km total displacement across the Alpine Fault is an artifact of assumptions about the geometry of New Zealand's basement terranes in the Eocene, and the actual Cenozoic dextral displacement across the active trace is greater than 665 km, with more than 700 km (and <785 km since 25 Ma) occurring in a narrow zone less than 10 km wide. This way, the Alpine Fault has accommodated almost all (>94%) of the relative plate motion in the last 25 Ma at an average rate in excess of 28 mm/yr. It reverses more than 225 km (and <300 km) of sinistral shear through Zealandia in the Late Cretaceous, when Zealandia lay on the margin of Gondwana, providing a direct constraint on the kinematics of extension between East and West Antarctica at this time.

  3. Constraints on Past Plate and Mantle Motion from New Ages for the Hawaiian-Emperor Seamount Chain

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Steinberger, B. M.; Regelous, M.; Koppers, A. A.; Wijbrans, J. R.; Haase, K. M.; Stoffers, P.; Jokat, W.; Garbe-Schoenberg, C.

    2013-12-01

    Estimates of the relative motion between the Hawaiian and Louisville hotspots have consequences for understanding the role and character of deep Pacific-mantle return flow. The relative motion between these primary hotspots can be inferred by comparing the age records for their seamount trails. Our new 40Ar/39Ar ages for 18 lavas from 10 seamounts along the Hawaiian-Emperor Seamount Chain (HESC) show that volcanism started in the sharp portion of the Hawaiian-Emperor Bend (HEB) at ≥47.5 Ma and continued for ≥5 Myr (O'Connor et al., 2013). The slope of the along-track distance from the currently active Hawaiian hotspot plotted versus age is remarkably linear between ~57 and 25 Ma in the central ˜1900 km of the seamount chain, including the HEB. This model predicts an age for the oldest Emperor Seamounts that matches published ages, implying that a linear age-distance relationship might extend back to at least 82 Ma. In contrast, Hawaiian age progression was much faster since at least ~15 Ma and possibly as early as ~27 Ma. Linear age-distance relations for the Hawaii-Emperor and Louisville seamount chains predict ~300 km overall hotspot relative motion between 80 and 47.5 Ma, in broad agreement with numerical models of plumes in a convecting mantle, and paleomagnetic data. We show that a change in hotspot relative motion may also have occurred between ~55 Ma and ~50 Ma. We interpret this change in hotspot motion as evidence that the HEB reflects a combination of hotspot and plate motion changes driven by the same plate/mantle reorganization. O'Connor et al. (2013), Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain. Geochem. Geophys. Geosyst., in press.

  4. Mesozoic Alpine facies deposition as a result of past latitudinal plate motion.

    PubMed

    Muttoni, Giovanni; Erba, Elisabetta; Kent, Dennis V; Bachtadse, Valerian

    2005-03-03

    The fragmentation of Pangaea as a consequence of the opening of the Atlantic Ocean is documented in the Alpine-Mediterranean region by the onset of widespread pelagic sedimentation. Shallow-water sediments were replaced by mainly pelagic limestones in the Early Jurassic period, radiolarian cherts in the Middle-Late Jurassic period, and again pelagic limestones in the Late Jurassic-Cretaceous period. During initial extension, basin subsidence below the carbonate compensation depth (CCD) is thought to have triggered the transition from Early Jurassic limestones to Middle-Late Jurassic radiolarites. It has been proposed that the transition from radiolarites to limestones in the Late Jurassic period was due to an increase in calcareous nannoplankton abundance when the CCD was depressed below the ocean floor. But in modern oceans, sediments below the CCD are not necessarily radiolaritic. Here we present palaeomagnetic samples from the Jurassic-Cretaceous pelagic succession exposed in the Lombardian basin, Italy. On the basis of an analysis of our palaeolatitudinal data in a broader palaeogeographic context, we propose an alternative explanation for the above facies tripartition. We suggest that the Lombardian basin drifted initially towards, and subsequently away from, a near-equatorial upwelling zone of high biosiliceous productivity. Our tectonic model for the genesis of radiolarites adds an essential horizontal plate motion component to explanations involving only vertical variations of CCD relative to the ocean floor. It may explain the deposition of radiolarites throughout the Mediterranean and Middle Eastern region during the Jurassic period.

  5. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The nature and dynamics of time-dependent deformation along major seismic zones including the influence of irregularities in fault geometry on the earthquake cycle, and the processes contributing to the state of stress and rates of strain in plate interior regions were studied. The principle findings of the research are discussed.

  6. Discovering plate boundaries: Laboratory and classroom exercises using geodetic data to develop students' understanding of plate motion

    NASA Astrophysics Data System (ADS)

    Olds, S. E.

    2010-12-01

    To introduce the concept of plate boundaries, typical introductory geology exercises include students observing and plotting the location of earthquakes and volcanoes on a map to visually demarcate plate boundaries. Accompanying these exercises, students are often exposed to animations depicting the movement of Earth’s tectonic plates over time. Both of these teaching techniques are very useful for describing where the tectonics plates have been in the past, their shapes, and where the plates are now. With the integration of data from current geodetic techniques such as GPS, InSAR, LiDAR, students can learn that not only have the tectonic plates moved in the past, but they are moving, deforming, and changing shape right now. Additionally, GPS data can be visualized using time scales of days to weeks and on the scale of millimeters to centimeters per year. The familiar temporal and spatial scales of GPS data also help students understand that plate tectonics is a process that is happening in the present and can ease the transition to thinking about processes that are typically described using deep time, a very difficult concept for students to grasp. To provide a more robust learning environment, UNAVCO has been incorporating high-precision GPS data into free, place-based, data-rich learning modules for educators and students in introductory Earth science courses at secondary and undergraduate levels. These modules integrate new scientific discoveries related to crustal deformation and explore applications of GPS, LiDAR, and InSAR techniques to research. They also provide students with case studies highlighting the process of scientific discovery, providing context and meaning. Concurrent to these efforts, tools to visualize the inter-relationships of geophysical and geologic processes, structures, and measurements including high-precision GPS velocity data are an essential part of the learning materials. Among the suite of visualization tools that UNAVCO has made

  7. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1987-01-01

    The focus of the research was in two broad areas during the most recent 6 month period: the nature and dynamics of time-dependent deformation along major seismic zones, including the influence of irregularities in fault geometry on the earthquake cycles, and the processes contributing to the state of stress and rates of strain in plate interior regions. The principal findings of the research to date are described.

  8. Relative motions of the Australian, Pacific and Antarctic plates estimated by the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeff

    1995-01-01

    Global Positioning System (GPS) measurements spanning approximately 3 years have been used to determine velocities for 7 sites on the Australian, Pacific and Antarctic plates. The site velocities agree with both plate model predictions and other space geodetic techniques. We find no evidence for internal deformation of the interior of the Australian plate. Wellington, New Zealand, located in the Australian-Pacific plate boundary zone, moves 20 +/- 5 mm/yr west-southwest relative to the Australian plate. Its velocity lies midway between the predicted velocities of the two plates. Relative Euler vectors for the Australia-Antarctica and Pacific-Antarctica plates agree within one standard deviation with the NUVEL-1A predictions.

  9. Plate motions at the transition from the Lomonosov Ridge to Eurasian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Artyushkov, Eugene; Chekhovich, Peter; Petrov, Eugene

    2016-04-01

    Distribution of the Cenozoic plate motions in the Amerasian Basin is a serious problem. Cenozoic opening of the Gakkel Ridge has resulted in the eastward drift of the Lomonosov Ridge and Podvodnikov Basin. According to a popular point of view these two structures are separated from the Eurasian continent by the Khatanga-Lomonosov Transform Fault. It is supposed that this fault with a right-lateral displacement of about 300 km begins at the southern end of the Gakkel Ridge, passes between the southern end of the Lomonosov Ridge and the Asian Shelf probably continuing further to the east into the Podvodnikov Basin. During the last decade the area was covered by a number of seismic profiles. In 2007 reference profile A-7 was shot (Kazanin, Ivanov, UNCLOS Symposium, St.-Petersburg, May 26, 27 2014). This longitudinal profile 832 km long includes both seismic reflection and deep seismic profiling. It follows the eastern slope of the Lomonosov Ridge in the north and crosses the Asian Continental Rise and shelf of the Laptev Sea terminating near the Novosibirsk Islands in the south. The quality of the data is very high because at that time the area was completely free of ice. Transform faults with large strike-slip displacement are crossing many sedimentary basins (Liemiszki, Brown, GSA Bull., 1988, v. 100, p. 665-676 and others). In such basins the structure of the sedimentary cover changes completely across the fault. Not only sedimentary beds become disrupted but the thicknesses of synchronous sedimentary units on the fault walls commonly appear to be quite different. This indicates that during their movement the units were far one from another. The Khatanga-Lomonosov Transform Fault, if it exists, should cross profile A-7 in its middle part. The profile includes some normal faults slightly disrupting the sedimentary sequences. However, on both fault walls the thickness of the main units of the sedimentary cover separated by regional unconformities remains the same

  10. New Evidence that the Emperor Seamount Chain Records Motion of the Pacific Plate Relative to the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Gordon, Richard; Seidman, Lily

    2016-04-01

    A key question for Pacific and circum-Pacific tectonics with implications for mantle convection is whether the Emperor seamount chain records the northward motion of the Pacific plate relative to the deep mantle. To investigate this question, we determine a new Pacific plate paleomagnetic pole for ≈60 Ma BP from the analysis of the skewness of marine magnetic anomaly 26r recording Pacific-Farallon motion in low paleolatitudes. We further update a previously published Pacific plate pole for ≈65 Ma from the analysis of anomalies 27r to 31 by incorporating a larger correction for anomalous skewness. These two poles, along with prior poles for 58 Ma and 72 Ma allow us to test how much, if any, the Hawaiian hotspot moved relative to the spin axis for ≈14 Ma of the ≈30 Ma during which the Emperor chain was formed. We find that the Hawaiian hotspot moved insignificantly southward (4 ±17 mm/a (95% confidence limits)) from 72 Ma to 58 Ma while the Pacific plate moved significantly northward (42 ± 17 mm/a (95% confidence limits)). We further compare the apparent polar wander of the Pacific hotspots with that of the Indo-Atlantic hotspots over the past 65 Ma. The two paths indicate a jump of ≈8° in the position of the spin axis relative to global hotspots between ≈60 Ma and ≈45 Ma presumably due to true polar wander.

  11. Early implications of the COCONet GPS velocity field for studies of plate and microplate motions in the Caribbean

    NASA Astrophysics Data System (ADS)

    DeMets, C.

    2013-05-01

    Now entering their 3rd decade, GPS measurements in the Caribbean region have been used to study a wide range of tectonic topics such as the movement of the Caribbean plate relative to North and South America, earthquake cycle effects along the seismically hazardous Caribbean plate boundary faults, and microplate interactions along the complexly deforming Caribbean plate boundaries. The construction of COCONet stands out as the most significant-ever one-time advance in GPS-MET infrastructure in the Caribbean region due to its standardized GPS-MET equipment, its open access to real-time data, and its expansion of coverage relative to pre-existing GPS stations. In this talk, I will show an up-to-date Caribbean region velocity field derived using the most recent version of GIPSY software (release 6.1), the latest satellite orbit products, single-station ambiguity resolution, and a consistent realization of the Caribbean plate reference frame. Consisting of several hundred site velocities, the new velocity field clearly defines how the crust responds to east-to-west changes in the geometry of the Caribbean-North America plate boundary, including the profound effect of the oblique collision zone between the Bahama platform and northern edge of the Caribbean plate. I will discuss implications of the still-maturing COCONet GPS velocities for ongoing studies of Caribbean plate motion and plate rigidity and will also discuss applications of COCONet velocities for testing recently published kinematic estimates for the movements of the Gonave, Puerto Rico, Hispaniola, and southern Jamaica microplates.

  12. Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Beavan, John; McCaffrey, Robert; Berryman, Kelvin; Denys, Paul

    2007-01-01

    The landmass of New Zealand exists as a consequence of transpressional collision between the Australian and Pacific plates, providing an excellent opportunity to quantify the kinematics of deformation at this type of tectonic boundary. We interpret GPS, geological and seismological data describing the active deformation in the South Island, New Zealand by using an elastic, rotating block approach that automatically balances the Pacific/Australia relative plate motion budget. The data in New Zealand are fit to within uncertainty when inverted simultaneously for angular velocities of rotating tectonic blocks and the degree of coupling on faults bounding the blocks. We find that most of the plate motion budget has been accounted for in previous geological studies, although we suggest that the Porter's Pass/Amberley fault zone in North Canterbury, and a zone of faults in the foothills of the Southern Alps may have slip rates about twice that of the geological estimates. Up to 5 mm yr-1 of active deformation on faults distributed within the Southern Alps <100 km to the east of the Alpine Fault is possible. The role of tectonic block rotations in partitioning plate boundary deformation is less pronounced in the South Island compared to the North Island. Vertical axis rotation rates of tectonic blocks in the South Island are similar to that of the Pacific Plate, suggesting that edge forces dominate the block kinematics there. The southward migrating Chatham Rise exerts a major influence on the evolution of the New Zealand plate boundary; we discuss a model for the development of the Marlborough fault system and Hikurangi subduction zone in the context of this migration.

  13. Plate tectonics of the Red Sea and East Africa.

    PubMed

    McKenzie, D P; Davies, D; Molnar, P

    1970-04-18

    The relative motion between the plates on each side of the East African Rift Valley can be obtained from the opening of the Red Sea and the Gulf of Aden. The calculated direction of relative motion agrees well with fault plane solutions for earthquakes north of the equator.

  14. Distribution of the Pacific/North America motion in the Queen Charlotte Islands-S. Alaska plate boundary zone

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stéphane; Hyndman, Roy D.; Flück, Paul; Smith, Alex J.; Schmidt, Michael

    2003-07-01

    We present GPS data that constrain the distribution of the relative Pacific/North America motion across the Queen Charlotte Islands-Alaska Panhandle margin (NW North America). Velocities from a network of 22 campaign and permanent sites indicate that the Pacific/North America transpressive motion is mostly accommodated along the locked Queen Charlotte-Fairweather Fault. A significant portion (6-7 mm/yr) of the relative plate motion is taken up by distributed dextral shear across a ~200 km wide region of the margin. Two models have been proposed to describe how the Pacific/North America convergence is accommodated off the Queen Charlotte Islands: Internal shortening vs. underthrusting of the Pacific plate. Although the GPS data cannot discriminate between the models, they provide strong constraints on the convergence distribution. The significant non-transient motion of GPS sites along the central British Columbia-southern Alaska margin has implications for seismic hazard and tectonic evolution models of the Canadian Cordillera.

  15. Changes in Late Cretaceous-Quaternary Caribbean plate motion directions inferred from paleostress measurements from striated fault planes

    NASA Astrophysics Data System (ADS)

    Batbayar, K.; Mann, P.; Hippolyte, J.

    2013-12-01

    We compiled paleostress analyses from previous research works collected at 591 localities of striated fault planes in rocks ranging in age from Late Cretaceous to Quaternary in the circum-Caribbean and Mexico. The purpose of the study is to quantify a progressive clockwise rotation of the Caribbean plate during its Late Cretaceous to recent subduction of the Proto-Caribbean seaway. Paleostress analysis is based on the assumption that slickenside lineations indicate both the direction and sense of maximum resolved shear stress on that fault plane. We have plotted directions of maximum horizontal stress onto plate tectonic reconstructions of the circum-Caribbean plate boundaries and infer that these directions are proxies for paleo-plate motion directions of the Caribbean plate. Plotting these stress directions onto reconstructions provided a better visualization of the relation of stress directions to blocks at their time of Late Cretaceous to recent deformation. Older, more deformed rocks of Late Cretaceous to Eocene ages yield a greater scatter in derived paleostress directions as these rocks have steeper dips, more pervasive faulting, and were likely affected by large rotations as known from previous paleomagnetic studies of Caribbean plate margins. Despite more scatter in measurements from older rock units, four major events that affected the Caribbean plate and the Great Arc of the Caribbean (GAC) are recognizable from changing orientations of stress directions: 1) Late Cretaceous collision of the GAC with southern Mexico and Colombia is consistent with NE directions of maximum compression in rocks of this age range in southern Mexico and EW directions in Colombia as the GAC approached the Proto-Caribbean seaway; 2) Paleocene-Eocene collision of the GAC with the Bahamas platform in Cuba and Hispaniola and with the South American plate in Venezuela is consistent with CW rotations of stress directions in rocks of these ages in the northern Caribbean and CCW

  16. Balancing shortening and extension around the Adriatic Plate to constrain its independent motion and driving forces since Late Cretaceous time.

    NASA Astrophysics Data System (ADS)

    Le Breton, E.; Handy, M.; Ustaszewski, K. M.

    2015-12-01

    The Adriatic microplate (Adria) is a key player in the geodynamics of the Western Mediterranean area because it separates two major plates, Africa and Europe, that have been converging since Late Cretaceous time. Today, Adria comprises only continental lithosphere and is surrounded by zones of distributed deformation along convergent boundaries (Alps, Apennines, Calabrian Arc, Dinarides-Hellenides,) and back-arc basins (Liguro-Provencal, Tyrrhenian). For a long time, Adria was thought to be a promontory of Africa and thus to have moved coherently with Africa. However, recent re-evaluation of geological and geophysical data from the Alps yields an independent motion path for Adria that features a significant change in the direction and rate of its motion relative to both Africa and Europe since late Cretaceous time. To evaluate this, we first compare existing plate reconstructions of the Western Mediterranean to develop a best-fit model for the motion of Africa, Iberia and the Corsica-Sardinia block relative to Europe. We then use two motion models for Adria in which Adria moved either coherently or independently of Africa since late Cretaceous time. The model for independent Adria motion is further constrained by new estimates of extension and shortening in the Western Mediterranean and Northern Apennines based on field observations and recently published Moho depth maps, seismic profiles along the Gulf of Lion - Sardinian passive margins and the Northern Apennines. Initial results suggest that Miocene extension and opening of the Liguro-Provencal basin exceeds Miocene-to-Recent shortening related to roll-back subduction in the Northern Apennines; we attribute this to counter-clockwise rotation of the Adriatic plate with respect to Europe. Combined with the previously published estimates of shortening in the Alps, this counter-clockwise motion is predicted to have produced significantly less post-Paleogene, orogen-normal shortening in the Dinarides than previously

  17. Understanding plate-motion changes over the past 100 Myr with quantitative models of the coupled lithosphere/mantle system

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2015-04-01

    The volume of geophysical datasets has grown substantially over recent decades. Our knowledge of continental evolution has increased due to advances in interpreting the records of orogeny and sedimentation. Ocean-floor observations now allow one to resolve past plate motions (e.g. in the North Atlantic and Indian Ocean over the past 20 Myr) at temporal resolutions of about 1 Myr. Altogether, these ever-growing datasets allow us to reconstruct the past evolution of Earth's lithospheric plates in greater detail. This is key to unravelling the dynamics of geological processes, because plate motions and their temporal changes are powerful probe into the evolving force balance between shallow- and deep-rooted processes. However, such progress is not yet matched by the ability to quantitatively model past plate-motion changes and, therefore, to test hypotheses on the dominant controls. The main technical challenge is simulating the rheological behaviour of the lithosphere/mantle system, which varies significantly from viscous to brittle. Traditionally computer models for viscous mantle flow on the one hand, and for the motions of the brittle lithosphere on the other hand, have been developed separately. Coupling of these two independent classes of models has been accomplished only for neo-tectonic scenarios, without accounting for the impact of time-evolving mantle-flow (e.g. Iaffaldano and Bunge 2009). However, we have built a coupled model to simulate the lithosphere/mantle system (using SHELLS and TERRA, respectively) through geological time, and to exploit the growing body of geophysical data as a primary constraint on these quantitative models. TERRA is a global spherical finite-element code for mantle convection (e.g. Baumgardner 1985, Bunge et al. 1996, Davies et al. 2013), whilst SHELLS is a thin-sheet finite-element code for lithosphere dynamics (e.g. Bird 1998). Our efforts are focused, in particular, on achieving the technical ability to: (i) simulate the

  18. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  19. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Black, Benjamin; Zhong, Shijie; Manga, Michael; Rudolph, Maxwell L.; Olson, Peter

    2016-07-01

    The Earth's surface volcanism exerts first-order controls on the composition of the atmosphere and the climate. On Earth, the majority of surface volcanism occurs at mid-ocean ridges. In this study, based on the dependence of melt fraction on temperature, pressure, and composition, we compute melt production and degassing rate at mid-ocean ridges from three-dimensional global mantle convection models with plate motion history as the surface velocity boundary condition. By incorporating melting in global mantle convection models, we connect deep mantle convection to surface volcanism, with deep and shallow mantle processes internally consistent. We compare two methods to compute melt production: a tracer method and an Eulerian method. Our results show that melt production at mid-ocean ridges is mainly controlled by surface plate motion history, and that changes in plate tectonic motion, including plate reorganizations, may lead to significant deviation of melt production from the expected scaling with seafloor production rate. We also find a good correlation between melt production and degassing rate beneath mid-ocean ridges. The calculated global melt production and CO2 degassing rate at mid-ocean ridges varies by as much as a factor of 3 over the past 200 Myr. We show that mid-ocean ridge melt production and degassing rate would be much larger in the Cretaceous, and reached maximum values at ˜150-120 Ma. Our results raise the possibility that warmer climate in the Cretaceous could be due in part to high magmatic productivity and correspondingly high outgassing rates at mid-ocean ridges during that time.

  20. Long-lived Seamount Volcanism in the Western Pacific, and Early Cretaceous Motion of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Hirano, N.

    2002-12-01

    Most seamounts, islands, and atolls on the present western Pacific Plate were formed by submarine intraplate volcanism, mainly during the Cretaceous. Some seamount chains in the West Pacific Seamount Province, including the Magellan group, define hotspot trails and plate motions. Samples of peralkaline rhyolite pillow lava and radiolarian-bearing pelagic sedimentary rocks were collected by the Japanese submersible Shinkai6500 from Quesada Seamount (western Magellan Seamount group), on the oceanward slope of the Mariana Trench. The Ar-Ar age of the peralkaline rhyolite is 129.3+/-2.6 Ma, about 10 m.y. younger than the radiolarian age of the oldest intercalated tuffaceous claystone (early Berriasian: approximately 140 Ma). The claystone contains fragments of alkali-basalt glass of the shield-building volcanic stage. Because peralkaline rhyolite commonly erupts during the last stage of shield activity, volcanic activity appears to have lasted for approximately 10 m.y. at Quesada Seamount. Slow Early Cretaceous motion of the Pacific Plate permitted the Quesada edifice to remain above the source hotspot for a long time. At Hemler Seamount on the northeastern tip of Quesada Seamount, a Late Cretaceous Ar-Ar age has previously been reported for nephelinite phenocrysts in strongly alkaline basalt, which also records the rejuvenated stage of a long-lived Early Cretaceous seamount volcano. Such seamount trails can be used to calculate the absolute Early Cretaceous motion of the Pacific Plate; in addition to the Quesada to Hemler SW to NE trail, others have been previously reported from Shatsky Rise and western Mid-Pacific Mountain.

  1. Kinematics of the New Zealand plate boundary: Relative motion by GPS across networks of 1000 km and 50 km spacing

    NASA Technical Reports Server (NTRS)

    Meertens, Charles M.; Rocken, Christian; Perin, Barbara; Walcott, Richard

    1993-01-01

    The NASA/DOSE 'Kinematics of the New Zealand Plate Boundary' experiment is a four-year cooperative Global Positioning System (GPS) experiment involving 6 universities and institutions in New Zealand and the United States. The investigation covers two scales, the first on the scale of plates (approximately 1000 km) and the second is on the scale of the plate boundary zone (approximately 50 km). In the first portion of the experiment, phase A, the objective is to make direct measurements of tectonic plate motion between the Australian and Pacific plates using GPS in order to determine the Euler vector of this plate pair. The phase A portion of this experiment was initiated in December 1992 with the first-epoch baseline measurements on the large scale network. The network will be resurveyed two years later to obtain velocities. The stations which were observed for phase A are shown and listed. Additional regional stations which will be used for this study are listed and are part of either CIGNET or other global tracking networks. The phase A portion of the experiment is primarily the responsibility of the UNAVCO investigators. Therefore, this report concentrates on phase A. The first year of NASA funding for phase A included only support for the field work. Processing and analysis will take place with the second year of funding. The second part of the experiemnt measured relative motion between the Australian and Pacific plates across the pate boundary zone between Hokitika and Christchurch on the South Island of New Zealand. The extent and rate of deformation will be determined by comparisons with historical, conventional surveys and by repeated GPS measurements to be made in two years. This activity was the emphasis of the LDGO portion of the study. An ancillary experiment, phase C, concentrated on plate boundary deformation in the vicinity of Wellington and was done as part of training during the early portion of the field campaign. Details of the objectives of the

  2. Oceanic ridges and transform faults: Their intersection angles and resistance to plate motion

    USGS Publications Warehouse

    Lachenbruch, A.H.; Thompson, G.A.

    1972-01-01

    The persistent near-orthogonal pattern formed by oceanic ridges and transform faults defies explanation in terms of rigid plates because it probably depends on the energy associated with deformation. For passive spreading, it is likely that the ridges and transforms adjust to a configuration offering minimum resistance to plate separation. This leads to a simple geometric model which yields conditions for the occurrence of transform faults and an aid to interpretation of structural patterns in the sea floor. Under reasonable assumptions, it is much more difficult for diverging plates to spread a kilometer of ridge than to slip a kilometer of transform fault, and the patterns observed at spreading centers might extend to lithospheric depths. Under these conditions, the resisting force at spreading centers could play a significant role in the dynamics of plate-tectonic systems. ?? 1972.

  3. RETRACTED: Signatures of downgoing plate-buoyancy driven subduction in motions and seismic coupling at major subduction zones

    NASA Astrophysics Data System (ADS)

    Capitanio, F. A.; Goes, S.; Morra, G.; Giardini, D.

    2007-10-01

    This article has been retracted at the request of the Editor-in-Chief and Authors. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). Reason: after publication, errors were discovered in the plate-motion database that it was based on. This dataset was an updated version of the dataset presented in Sdrolias and Muller (2006), provided to us by the first author. The errors in this version were in the away-from-trench/towards-trench assignment for subduction zones with back-arcs and also due to the fact that the next generation plate model had only partially been completed. These errors affect the conclusions about seismic coupling. They also change some of the points in most of the other plots, and although this does not invalidate the other conclusions, the discussion to reach them would be altered.

  4. Estimates of Continental Plate Motions Derived From Continuous GPS Measurements of Station Coordinates and Velocities, 1996-2004

    NASA Astrophysics Data System (ADS)

    Hutchison, D. A.

    2004-05-01

    , Eurasian, Australian, Pacific, Antarctic, Indian, Nazca and Nubian (the latter compared to NNR NUVEL 1A African) plates. In addition, certain plates previously regarded as belonging to an adjacent, larger continent in NNR NUVEL 1 or 1A are now seen to move significantly differently; e.g., Amurian distinct from Eurasian, Adriatic and Sinai distinct from NNR NUVEL 1A African. North American, Eurasian, Australian and Pacific plates show significantly different rotations in IGS04P02 than predicted by REVEL 2000, yet not from the alignment of REVEL 2000 to IGb00. Certain pairs of adjacent plates show relative Euler poles near their plate boundaries; e.g., Eurasian and North American, Amurian and Eurasian, Amurian and South-China, Adriatic and Eurasian, Arabian and Nubian, Sinai and Nubian, Sinai and Arabian, Nubian and Somali. This phenomenon can be expected when bordering plates show no subduction or obduction. RMS difference between velocities of stations used in Euler pole calculation in IGS04P02 and those expected from NNR NUVEL 1A rise to 4.3 mm/yr in the horizontal component and 8.7 mm/yr in the vertical. The horizontal RMS velocity difference decreases significantly to 2.4 mm/yr when IGS04P02 is compared with REVEL 2000.

  5. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  6. Combined Plate Motion and Density Driven Flow in the Asthenosphere beneath Saudi Arabia: Evidence from Shearwave Splitting and Seismic Anisotropy

    SciTech Connect

    Hansen, S; Schwartz, S; Al-Amri, A; Rodgers, A

    2006-09-08

    Mantle anisotropy along the Red Sea and across the Arabian Peninsula was analyzed using shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across the Arabian Peninsula to date. Stations near the Gulf of Aqaba display fast orientations aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia However, most of our observations across Arabia are statistically the same (at a 95% confidence level), with north-south oriented fast directions and delay times averaging about 1.4 s. Since end-member models of fossilized anisotropy and present-day asthenospheric flow do not adequately explain these observations, we interpret them as a combination of plate and density driven flow in the asthenosphere. Combining northeast oriented flow associated with absolute plate motion with northwest oriented flow associated with the channelized Afar upwelling along the Red Sea produces a north-south resultant that matches the observations and supports models of active rifting.

  7. Permian and Pennsylvanian tectonic events in eastern California in relation to major plate motions

    SciTech Connect

    Stevens, C.H.; Sedlock, R. ); Stone, P. )

    1993-04-01

    Northwest-trending basins cutting across older northeast-trending facies belts in eastern California opened by Middle Pennsylvanian time and continued to develop and expand into the Early Permian. Basin development was accompanied by east-vergent thrust-faulting in the Early Permian and was followed by development of northeast-trending folds and regional uplift in middle and Late Permian time. These events have been considered products of long-tern sinistral truncation of the western North American continental margin. Later, in the Late Permian, extensional faulting created small northeast-trending basins in which deposition of terrestrial and shallow-marine rocks occurred. The author consider all late Paleozoic tectonism in eastern California to have been driven by plate interactions along the western margin of North America and to be only indirectly related to the late Paleozoic collision between North America and Gondwana. They propose that the truncated part of North America was part of the Paleo-pacific plate. In Nevada the margin of this plate, along which the Havallah assemblage eventually was emplaced, was convergent, but in California the margin bent sharply and became transform. This fault continued as the Mojave-Sonora mega-shear into Mexico where the oceanic part of the Paleopacific plate was subducted under Gondwana, forming an extensive arc now represented by rocks in S. America.

  8. Vector constraints on western U.S. deformation from space geodesy, neotectonics, and plate motions

    NASA Technical Reports Server (NTRS)

    Minster, J. Bernard; Jordan, Thomas H.

    1987-01-01

    The rate-of-slip vector on the San Andreas fault in central California estimated from geodetic and Holocene geological data is inconsistent with the prediction of rigid plate models such as RM2. This well-known 'San Andreas discrepancy' is diagnostic of plate deformation distributed both east of the fault in the Basin and Range and west of the fault along the California continental margin. Constraints on the integrated deformation rates across these two regions consistent with: (1) the kinematical boundary conditions imposed by the rigid plate model; (2) neotectonic and paleoseismic estimates of deformation rates; (3) ground-based geodetic measurements; and (4) rates of change observed by very long baseline interferometry along seven baselines to western U.S. sites are constructed. The space-geodetic data on Basin and Range extension taken over a 4-year interval are compatible with geological observations averaged over the Holocene; the best estimate of its integrated deformation rate, provided by the joint inversion of both data types, is 9.7 + or - 2.1 mm/yr, N 56 deg W + or - 10 deg, too small and in the wrong direction to account entirely for the San Andreas discrepancy. The integral of this deformation, estimated by subtracting the Basin and Range contribution from the discrepancy vector, requires significant right-lateral shear parallel to the San Andreas (13 + or - 5 mm/yr) and some compression perpendicular to it (9 + or - 3 mm/yr).

  9. The origin of large scale structure in mantle convection: Effects of plate motions and viscosity stratification

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter; Richards, Mark A.

    Convection in Earth's mantle is dominated by long-wavelength structure, as evidenced by the very “red” spectra of both seismic velocity heterogeneity in the deep mantle and the non-hydrostatic gravity field, or geoid. Here we show that this large-scale structure may be a consequence of two factors that influence the scale of mantle convection. First, the existence of surface plates, which tend to organize the flow. Second, a substantial increase in lower mantle viscosity for which there is considerable independent geophysical evidence. Combining these two factors in 3-D spherical mantle convection models explains rather well the observed seismic spectrum of mantle heterogeneity.

  10. Basin filling related to the Philippine Sea Plate motion in Beppu Bay, southwest Japan

    NASA Astrophysics Data System (ADS)

    Yamada, Keitaro; Takemura, Keiji; Kuwae, Michinobu; Ikehara, Ken; Yamamoto, Masanobu

    2016-03-01

    Strike-slip basins are one of the most important accumulation spaces for sediment of terrigenous, biogenic, and volcanic origins, and generally include large amount of event deposits. Although these event deposits are important basin filling process, research on this topic, particularly the effects of event deposits, is insufficient. In this study, we discuss sedimentation features based on grain composition and other properties for ca. 3000 year periods in Beppu Bay, which is strike-slip basin located at the western end of an arc-bisecting dextral fault known as Median Tectonic Line (MTL) associated with the northwestward subduction of the Philippine Sea Plate. This sediment is composed of hemipelagic clay and coarser event layers of turbidites referred to as types A, B, and C; ash layers referred to as type D; and other referred to as type E. The turbidite event layers, which accounted for 92% of the total major event layer, with >1 cm thickness, consist of particles related to volcanism, including hydrothermal activity. The events control the regional filling rate and transportation of coarse and heavy volcaniclastic materials. In particular, type A, which accounted for 73% of the total major event layer thickness, is likely induced by earthquakes related to the MTL, according to its age. As a result, the basin filling processes are controlled mainly by tectonics related to the subduction of the Philippine Sea Plate.

  11. Reconstructing mantle heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for mantle-dynamic fitting of past plate motions

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro

    2016-04-01

    The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.

  12. Effect of sodium dodecylbenzene sulfonate on the motion of three-phase contact lines on the Wilhelmy plate surface.

    PubMed

    Karakashev, Stoyan I; Phan, Chi M; Nguyen, Anh V

    2005-11-15

    The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5x10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant.

  13. Identification of stiffness and damping properties of plates by using the local equation of motion

    NASA Astrophysics Data System (ADS)

    Ablitzer, Frédéric; Pézerat, Charles; Génevaux, Jean-Michel; Bégué, Jérôme

    2014-04-01

    This paper deals with the identification of stiffness and damping properties of vibrating structures by an inverse method inspired from the Force Analysis Technique (FAT). The proposed approach uses a local equation of motion assumed a priori, which provides a relative straightforward relationship between the displacement field and material properties. The spatial derivatives of the displacement in the equation are calculated using finite differences. As this operation amplifies measurement noise, a regularization step is applied before solving the inverse problem. A procedure is proposed to automatically adjust the level of regularization. The method also allows one to identify local stiffness and damping on a heterogeneous structure. Illustrations for both homogeneous and heterogeneous cases are shown using simulated and measured displacement fields.

  14. Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate.

    PubMed

    Karapetsas, George; Sahu, Kirti Chandra; Matar, Omar K

    2013-07-16

    We study the two-dimensional dynamics of a droplet on an inclined, nonisothermal solid substrate. We use lubrication theory to obtain a single evolution equation for the interface, which accounts for gravity, capillarity, and thermo-capillarity, brought about by the dependence of the surface tension on temperature. The contact line motion is modeled using a relation that couples the contact line speed to the difference between the dynamic and equilibrium contact angles. The latter are allowed to vary dynamically during the droplet motion through the dependence of the liquid-gas, liquid-solid, and solid-gas surface tensions on the local contact line temperature, thereby altering the local substrate wettability at the two edges of the drop. This is an important feature of our model, which distinguishes it from previous work wherein the contact angle was kept constant. We use finite-elements for the discretization of all spatial derivatives and the implicit Euler method to advance the solution in time. A full parametric study is carried out in order to investigate the interplay between Marangoni stresses, induced by thermo-capillarity, gravity, and contact line dynamics in the presence of local wettability variations. Our results, which are generated for constant substrate temperature gradients, demonstrate that temperature-induced variations of the equilibrium contact angle give rise to complex dynamics. This includes enhanced spreading rates, nonmonotonic dependence of the contact line speed on the applied substrate temperature gradient, as well as "stick-slip" behavior. The mechanisms underlying this dynamics are elucidated herein.

  15. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    NASA Astrophysics Data System (ADS)

    Azzouzi, R.

    2009-04-01

    Western Mediterranean and especially on Morocco. Exploiting parameters of positions and dispersions of these stations within the 1997-2003 period, the motion and the interaction types of interaction between African and Eurasian tectonic plates can be estimated. Similarly, the crustal dynamic parameters of tension of these sites will be computed. The time occupation on repeated observations sites is at least 72 hours. The measurements are continuous on permanent stations. The precise ephemerides are used in GPS computations. The post-treatments are done using commercial and scientific softwares. The coordinates obtained for two consecutive periods to and t within a period of 8 years will be used by programs established for this purpose to estimate crustal dynamic parameters of tension as well as to evaluate the appropriate movements. Even crustal dynamic parameters will be determined on each sites of the GPS-Geodynamics network, whose interest of seismic investigations is very important. This will allow best knowledge of substantial seismic activities of the surrounding zones. It can be deduced by measuring the motions and their parameter tensions using GPS. These estimations will contribute on the earthquake prediction by supervising the strain accumulation and its release in the active areas. For the geodetically aspect the GPS-Geodynamics sites computed in the ITRF frame can be used with other similar ounces' of Africa country and some well selected and convenient IGS, EUREF stations..to determine first the NAFREF and the AFRER frames.

  16. A wide-angle seismic survey of the Hecataeus Ridge, south of Cyprus: a microcontinental block from the African plate docked in a subduction zone?

    NASA Astrophysics Data System (ADS)

    Rahimi, Ayda; Welford, Kim; Hall, Jeremy; Hübscher, Christian; Louden, Keith; Ehrhardt, Axel

    2013-04-01

    Cyprus lies at the southern edge of the Aegean-Anatolian microplate, caught in the convergence of Africa and Eurasia. Subduction of the African plate below Cyprus has probably ceased and this has been attributed to the docking in the subduction zone of the Eratosthenes Seamount microcontinental fragment on the northern edge of the African plate. In early 2010, on R.V. Maria S. Merian, we conducted a wide-angle seismic survey to test the hypothesis that the Hecataeus Ridge, another possible microcontinental block lying immediately offshore SE Cyprus, might be related to an earlier docking event. The upper crust of southern Cyprus is dominated by ophiolites, with seismic velocities of up to 7 km s-1. A wide angle seismic profile along Hecataeus Ridge was populated with 15 Canadian and German ocean-bottom seismographs at 5 km intervals and these recorded shots from a 6000 cu. in. air gun array, fired approximately every 100 m. Rough topography of the seabed has made picking of phases and their modelling a demanding task. Bandpass and coherency filtering have enabled us to pick phases out to around 80 km. Tomographic inversion of short-range first arrivals provided an initial model of the shallow sub-seabed structure. Forward modelling by ray-tracing, using the code of Zelt and Smith, was then used to model crustal structure down to depths of around 20 km, with occasional evidence of reflections from deeper boundaries (Moho?). Modelling results provide good control on P-wave velocities in the top 20 km and some indications of deeper events. There is no evidence of true velocities approaching 7 km/s in the top 20 km below the Ridge that might indicate the presence of ophiolitic rocks. Regional gravity and magnetic field data tend to support this proposition. We thus conclude that Hecataeus Ridge is not composed of characteristically ophiolitic, Cyprus (upper plate) crust, and it might well be derived from the African (lower) plate.

  17. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  18. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  19. Tectonic Plate Parameters Estimated in the International Terrestrial Reference Frame ITRF2008 Based on SLR Stations

    NASA Astrophysics Data System (ADS)

    Kraszewska, Katarzyna; Jagoda, Marcin; Rutkowska, Miłosława

    2016-10-01

    This paper concerns an analysis of the accuracy of estimated parameters Ω (Φ, Λ, ω) which define the tectonic plate motions. The study is based on the velocities of station positions published by ITRF2008 for Satellite Laser Ranging (SLR) technique. The Eurasian, African, North American and Australian plates were used in the analysis. Influence of the number and location of stations on the plate surface on estimation accuracy of the tectonic plate motion parameters was discussed. The results were compared with the APKIM 2005 IGN model. In general, a remarkable concurrence agreement between our solutions and the APKIM 2005 model was found.

  20. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S.

    1998-11-01

    The Magellan Seamount Trail (MST) delineates a northwest trending chain of four Cretaceous guyots in the West Pacific Seamount Province (WPSP). Seamount morphology, 40Ar/ 39Ar geochronology and Sr-Nd-Pb geochemistry of the MST provides evidence for a hotspot origin between the Samoa, Rarotonga and Society hotspots of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The MST yields an excellent linear age progression of 47.6±1.6 mm/yr ( r2=1.000; MSWD = 0.23; 1 σ SE) including Vlinder guyot (95.1±0.5 Ma, n=5; 2 σ SD), Pako guyot (91.3±0.3 Ma, n=3) and Ioah guyot (87.1±0.3 Ma, n=2). The MST also exhibits a small range in Sr-Nd-Pb isotopic compositions indicating enriched mantle sources with an affinity of EMI. Nevertheless, three volcanic events are found out of sequence with linear MST hotspot volcanism: (1) an independent volcanic pedestal was formed 4-7 Myr before shield-volcanism started at Vlinder guyot, (2) a post-erosional volcanic cone was formed at least 20-30 Myr after drowning of Vlinder guyot, and (3) Ita Mai Tai guyot (118.1±0.5 Ma, n=3) was formed 34-36 Myr before the MST hotspot arrived at the predicted location of this guyot. By identifying and ruling out discordant volcanic events, we can use the age progression in MST to test the fixity of its hotspot. When presuming the fixed hotspot hypothesis, the local age progressions of the MST (47.6±1.6 mm/yr) and the copolar Musicians seamount trail (55.8±6.4 mm/yr) are not compatible with their 100-80 Ma Euler pole. We investigate two options: (1) acceptance of a `forced' Euler pole obeying the hotspot hypothesis by using both the age progressions and the azimuths of the studied seamount trails, or (2) acceptance of a `best-fit' Euler pole by using the azimuths of the studied seamount trail exclusively. In the first option, the angular speed of the Pacific plate during the 100-80 Ma stage pole is calculated at 0.502±0.017°/Myr. In the second option, the `best-fit' Euler pole is found

  1. Morphology and kinematics of the rifted margin of West Antarctica in relation to separation from Zealandia and Bellingshausen plate motion

    NASA Astrophysics Data System (ADS)

    Wobbe, F.; Gohl, K.; Chambord, A.; Sutherland, R.

    2012-04-01

    The final breakup of Gondwana occurred during Late Cretaceous time as rifted continental crust of New Zealand separated from West Antarctica. Geophysical data acquired using R/V Polarstern constrain the structure and age of Antarctica's rifted oceanic margin. The Marie Byrd Land sector resembles a typical magma-poor margin with a narrow steep slope and a 145 km wide continent-ocean transition zone (COTZ). Our transect modelled from gravity and seismic reflection data indicates initial continental crust of thickness 24 km that was stretched 90 km. The Bellingshausen sector, east of the Antipodes Fault, is broad and complex with abundant evidence for later volcanism. The COTZ is ~670 km wide and substantial uncertainty remains as to the nature of crust within the COTZ. Extension estimates fall in the range of 106-304 km for this sector. Seafloor magnetic anomalies adjacent to the Marie Byrd Land sector at the longitude of the Pahemo Fracture Zone indicate a full-spreading rate during c33-c31 (80-68 Myr) of 60 mm/yr, increasing to 74 mm/yr at c27 (62 Myr), and then dropping to 22 mm/yr by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates that initial oceanic crust formation was at ~c34y (84 Myr). The high extension rate of 30-60 mm/yr during the initial margin formation is consistent with the relatively sharp and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate relative to Antarctica was slow and complex, and modified the rift morphology through migrating deformation and volcanic centres to create a broad and complex COTZ.

  2. Two-dimensional laser servoing for precision motion control of an ODV robotic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Moore, Kevin L.; Chen, YangQuan; Bahl, Vikas

    2003-09-01

    As an outgrowth of series of projects focused on mobility of unmanned ground vehicles (UGV), an omni-directional (ODV), multi-robot, autonomous mobile parking security system has been developed. The system has two types of robots: the low-profile Omni-Directional Inspection System (ODIS), which can be used for under-vehicle inspections, and the mid-sized T4 robot, which serves as a ``marsupial mothership'' for the ODIS vehicles and performs coarse resolution inspection. A key task for the T4 robot is license plate recognition (LPR). For a successful LPR task without compromising the recognition rate, the robot must be able to identify the bumper locations of vehicles in the parking area and then precisely position the LPR camera relative to the bumper. This paper describes a 2D-laser scanner based approach to bumper identification and laser servoing for the T4 robot. The system uses a gimbal-mounted scanning laser. As the T4 robot travels down a row of parking stalls, data is collected from the laser every 100ms. For each parking stall in the range of the laser during the scan, the data is matched to a ``bumper box'' corresponding to where a car bumper is expected, resulting in a point cloud of data corresponding to a vehicle bumper for each stall. Next, recursive line-fitting algorithms are used to determine a line for the data in each stall's ``bumper box.'' The fitting technique uses Hough based transforms, which are robust against segmentation problems and fast enough for real-time line fitting. Once a bumper line is fitted with an acceptable confidence, the bumper location is passed to the T4 motion controller, which moves to position the LPR camera properly relative to the bumper. The paper includes examples and results that show the effectiveness of the technique, including its ability to work in real-time.

  3. Invariant Solutions for the Unsteady Magnetohydrodynamics (MHD) Flow of a Fourth-Grade Fluid Induced Due to the Impulsive Motion of a Flat Porous Plate

    NASA Astrophysics Data System (ADS)

    Aziz, Taha; Magan, A. B.; Mahomed, F. M.

    2015-02-01

    An analysis is carried out to study the time-dependent flow of an incompressible electrically conducting fourth-grade fluid over an infinite porous plate. The flow is caused by the motion of the porous plate in its own plane with an impulsive velocity V( t). The governing nonlinear problem is solved by invoking the Lie group theoretic approach and a numerical technique. Travelling wave solutions of the forward and backward type, together with a steady state solution, form the basis of our analytical analysis. Further, the closed-form solutions are also compared against numerical results. The essential features of the embedded parameters are described. In particular, the physical significance of the plate suction/injection and magnetic field is studied.

  4. High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea, and Gulf of Aden

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkuryev, S. A.

    2015-12-01

    We estimate Nubia-Somalia rotations at ~1-Myr intervals for the past 20 Myr from newly available, high-resolution reconstructions of the Southwest Indian Ridge and reconstructions of the Red Sea and Gulf of Aden. The former rotations are based on many more data, extend farther back in time, and have more temporal resolution than has previously been the case. Nubia-Somalia plate motion has remained remarkably steady since 5.2 Ma. For example, at the northern end of the East Africa rift, our Nubia-Somalia plate motion estimates at six different times between 0.78 Ma and 5.2 Ma agree to within 3% with the rift-normal component of motion that is extrapolated from the recently estimated Saria et al. (2014) GPS angular velocity. Over the past 10.6 Myr, the Nubia-Somalia rotations predict 42±4 km of rift-normal extension across the northern segment of the Main Ethiopian Rift. This agrees with approximate minimum and maximum estimates of 40 km and 53 km for post-10.6-Myr extension from seismological surveys of this narrow part of the plate boundary and is also close to 55-km and 48±3 km estimates from published and our own reconstructions of the Nubia-Arabia and Somalia-Arabia seafloorspreading histories for the Red Sea and Gulf of Aden. Our new rotations exclude at high confidence level two previously published estimates of Nubia-Somalia motion based on inversions of Chron 5n.2 along the Southwest Indian Ridge, which predict rift-normal extensions of 13±14 km and 129±16 km across the Main Ethiopian Rift since 11 Ma. Constraints on Nubia-Somalia motion before ~15 Ma are weaker due to sparse coverage of pre-15-Myr magnetic reversals along the Nubia-Antarctic plate boundary, but appear to require motion before 15 Ma. Nubia-Somalia rotations that we estimate from a probabilistic analysis of geometric and age constraints from the Red Sea and Gulf of Aden are consistent with those determined from Southwest Indian Ridge data, particularly for the past 11 Myr. Nubia

  5. The Keweenawan (Lake Superior) and Unkar (Arizona) Polar Wander Tracks - Non-Dipole Field, Plate Motion, or Both?

    NASA Astrophysics Data System (ADS)

    Pesonen, L. J.; Korhonen, K.

    2006-12-01

    The Late Precambrian 1.15-1.08 Ga continental drift of Laurentia, and its docking history with Rodinia supercontinent, is poorly defined due to uncertainty on what is causing the very rapidly moving pole as seen along the western arms of the Keweenawan (Lake Superior) and Unkar (SW USA) apw-tracks during this period. There is a general tendency to observe strong (20-30 deg) inclination asymmetries (from R to N) in both data sets which hamper the interpretation. The asymmetry is now oberved also in Arizona intrusions in somewhat similar fashion as seen in Gran Canyon Unkar sedimentary rocks (Donadini et al., 2006). Five models can be offered: (i) very rapid continental drift during the so called "Middle Keweenawan" reversal crossing ( R to N), (ii) significant contribution of the non-dipole field, (iii) unremoved secondary components in both R and N polarity rocks, (iv) non-averaged secular variation and (v) true polar wander (TPW). The last three can be discounted due to lack of evidence. The merits of the plate motion model (apw) are that it is generally in agreement with U-Pb ages, with magnetostratigraphy and with Lake Superior paleointensity data. The apw- model predicts that the age order of the poles of the mafic diabase sheets should be (from oldest to youngest): Arizona R-Lake Superior R-Lake Superior N-Arizona N. The observation that the apws have distinct back- trackings are difficult to treat with this model. The non-dipole model can account of the observed sequence of the poles and it is in concert with new paleointensity data from both regions. The problem with this model is that it requires very high content of the spherical harmonic non-dipole field which does not change sign with the dipole field. Moreover, not all rock types show asymmetric reversals which is difficult to account with this model. We will summarize the latest developments in solving the Middle Keweenawan reversal problem in the light of new paleomagnetic, paleosecular variation and

  6. Seismic and Geodynamic Constraints on Compositional Heterogeneity in the Lower Mantle: Implications for Deeply-Rooted Hot Upwellings Under the African and Pacific Plates

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Glisovic, P.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.; Lu, C.

    2014-12-01

    We present the results of a series of tests that probe the possible existence of compositionally distinct material in the central core of the LLSVPs under the African and Pacific plates using tomography-based mantle flow models that employ several independently-derived viscosity profiles (Mitrovica & Forte 2004, Behn et al. 2004, Steinberger & Calderwood 2006, Forte et al. 2010). We also consider four global tomography models derived from seismic shear velocity data alone (Grand 2002, Panning & Romanowicz 2006, Kustowski et al. 2008, Ritsema et al. 2011). The possible combinations of viscosity and tomography models yield 16 different tests for compositional heterogeneity inside the LLSVPs. In all tests we begin with a mineral physical scaling between lower-mantle shear velocity and density anomalies that assumes thermal effects are dominant everywhere, including within the LLSVPs. We find it is not possible, in any of the tests, to obtain a satisfactory fit to surface geodynamic data, especially the global, long-wavelength gravity anomalies and space-geodetic inferences of excess CMB flattening with a purely thermal interpretation of lower-mantle heterogeneity. If we introduce compositionally-distinct material in the central portions of the LLSVPs, all tests show a notable improvement in the fit to the gravity anomaly and CMB ellipticity data. An optimal reconciliation of the gravity and CMB data is obtained by extending compositional heterogeneity upwards, with maximum-amplitude in the seismic D"-layer and tapering off to negligible values in the mid-mantle. A robust assessment of the dynamical impact of this deeply-rooted compositional heterogeneity is obtained with maps of "mean" convective flow, by averaging the results of all 16 test cases. We find (see map below) dominant lower-mantle upwellings below the axis of the East Pacific Rise (EPR), and under the Caroline Islands in the Western Pacific. Under the African plate we find large-scale upwellings under the

  7. Combined plate motion and density driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy

    SciTech Connect

    Hansen, S; Schwartz, S

    2006-02-08

    A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia was performed by analyzing shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across Saudi Arabia to date. Stations near the Gulf of Aqaba display fast orientations that are aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia. However, most of our observations across Saudi Arabia are statistically the same, showing a consistent pattern of north-south oriented fast directions with delay times averaging about 1.4 s. Fossilized anisotropy related to the Proterozoic assembly of the Arabian Shield may contribute to the pattern but is not sufficient to fully explain the observations. We feel that the uniform anisotropic signature across Saudi Arabia is best explained by a combination of plate and density driven flow in the asthenosphere. By combining the northeast oriented flow associated with absolute plate motion with the northwest oriented flow associated with the channelized Afar plume along the Red Sea, we obtain a north-south oriented resultant that matches our splitting observations and supports models of active rifting processes. This explains why the north-south orientation of the fast polarization direction is so pervasive across the vast Arabian Plate.

  8. Experimental observations of the coupling between induced currents and mechanical motion in torsionally supported square loops and plates

    SciTech Connect

    Bialek, J.M.; Cargulia, G.J.; Ulrickson, M.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1986-11-01

    A series of experiments that were successfully conducted to investigate the coupling between induced currents and rigid body rotation in square loops and plates is presented. The experimental arrangement consisted of a conducting test piece, rigidly mounted in a nonconducting fixture that provided a controlled stiffness against rotation. Electric current were induced in the test loop/plate by pulsing a magnetic field oriented perpendicular to the test piece. This was done in the presence of a constant magnetic field oriented parallel to the loop/plate. The interaction of the induced currents and the background magnetic field produced a net torque about the axis of the test fixture. Measurements were made of the total current flowing around the test piece and the angular rotation versus time. The observed data exhibited the magnetic damping and magnetic stiffness effects that arise in coupled systems and agreed very well with the predicted responses for both the loops and plates.

  9. Is the number of antennal plate organs (sensilla placodea) greater in hygienic than in non-hygienic Africanized honey bees?

    PubMed

    Gramacho, Kátia Peres; Gonçalves, Lionel Segui; Stort, Antônio Carlos; Noronha, Adriana Backx

    2003-09-30

    Hygienic behavior is a desirable trait in honey bees (Apis mellifera L.), as hygienic bees quickly remove diseased brood, interrupting the infectious cycle. Hygienic lines of honey bees appear to be more sensitive to the odors of dead and diseased honey bee brood, and Africanized honey bees are generally more hygienic than are European honey bees. We compared the number of sensilla placodea, antennal sensory structures involved in the perception of odor, in 10 bees from each of six hygienic and four non-hygienic colonies of Africanized honey bees. The sensilla placodea of three of the terminal segments (flagellomeres) of the right antenna of each bee were counted with a scanning electron microscope. There were no significant differences in the mean numbers of sensilla placodea between the hygienic and non-hygienic bees, though the variance was higher in the hygienic group. Flagellomere 4 had significantly more sensilla placodea than flagellomeres 6 and 8. However, there was no significant difference between the other two flagellomeres. As hygienic bees are capable of identifying dead, injured, or infested brood inside a capped brood cell, sensilla placodea probably have an important role in enabling worker bees to sense sick brood. However, we did not find greater numbers of this sensory structure in the antennae of hygienic, compared to non-hygienic Africanized honey bees.

  10. Comparison of base of support size during gait initiation using force-plate and motion-capture system: A Bland and Altman analysis.

    PubMed

    Yiou, E; Teyssèdre, C; Artico, R; Fourcade, P

    2016-12-08

    This study aimed to estimate the error made by investigators when force-plate data are used to approximate base of support size during gait initiation. Step length and step width obtained with a method based on motion capture system (Kinematics method, considered the "gold standard") and with a method based on the centre of pressure traces obtained from a force-plate (Force-plate method) were purposely compared using descriptive statistics and the Bland and Altman (BA) method. Participants (N=19) performed series of gait initiation in Spontaneous and Maximal Velocity Conditions (SVC and MVC, respectively). BA analysis showed that 1) step length and width biases, corresponding to the difference between the two methods, were very small (<2.1%) in both velocity conditions and 2) the 95% limits of agreement of the BA plots ranged between 10% and 15% in absolute value. Repeated measures ANOVA showed that step length was significantly larger in MVC than in SVC, with no velocity X method interaction. There was no significant effect of the method on both step parameters. The present results suggest that the Force-plate method is sufficiently accurate to compare step parameters across conditions. However, researchers should be aware that non-negligible errors might occur when considering individual data.

  11. From transtension to transpression along the northern Caribbean plate boundary off Cuba: implications for the Recent motion of the Caribbean plate

    NASA Astrophysics Data System (ADS)

    Calais, Eric; de Lepinay, Bernard Mercier

    1991-02-01

    Marine geophysical surveys using Seabeam, single-channel seismic reflection, gravimetric and magnetic measurements have been conducted along a segment of the northern Caribbean transcurrent plate boundary (SEACARIB II cruise). The data allow a better definition of the geometry and the tectonic regime of this major strike-slip area. They support the following results: (1) Along the southern Cuban margin, the Oriente fault displays a discontinuous trace, mainly composed of dextral offset, "en echelon" segments. Some pull-apart basins are located between fault segments (Cabo Cruz basin, Chivirico and Baitiquiri basins). In the Windward Passage area, the plate boundary enters into the Tortue Channel and is not connected with the subduction front off northern Hispaniola. (2) The eastern part of the Oriente Deep and the Santiago Promontory are characterised by active compressional tectonics. They form the Santiago Deformed Belt, described here for the first time. This deformed belt can be divided longitudinally into three main segments, each one characterised by a particular tectonic style. Its development is related to a transpressional mechanism along the left-lateral Oriente strike-slip fault. Our observations suggest that a tectonic and kinematic reorganisation occurred recently in this area, probably in the Late Pliocene, which may be compared with the recent geological events recorded on land in the northern Caribbean domain. The precise knowledge of both geometry and structures along the Oriente strike-slip fault south of Cuba provides new constraints for the recent kinematic evolution along the northern Caribbean transcurrent plate boundary: it leads us to infer the existence of a convergence component associated with the slip component along the Oriente transform fault.

  12. Variation of seismic slip in the Gulf of California and the possible effect on geodetic measurements of Pacific-North American plate motion

    NASA Technical Reports Server (NTRS)

    Tajima, Fumiko; Tralli, David M.

    1992-01-01

    A simple dislocation model is used to evaluate the variation of seismic slip in the Gulf of California and the possible effect on geodetic measurements of Pacific-North American plate motion by means of an estimation of the surface displacements due to typical transform events in the gulf. The results of this numerical calculation suggest that if a large transform event (about 1.5 x 10 exp 26 dyne cm) were to occur within 100 to 200 km of a geodetic baseline, the relative distance measurements could be affected by up to 15 mm. This is marginally at the error level of a few millimeters plus 2 parts in 10 exp 8 of baseline length for GOMEX measurements, which thus are sensitive only to the far-field displacement along the plate boundary.

  13. Identification and Estimation of Postseismic Deformation: Implications for Plate Motion Models, Models of the Earthquake Cycle, and Terrestrial Reference Frame Definition

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Bock, Y.; Moore, A. W.; Argus, D. F.; Fang, P.; Liu, Z.; Haase, J. S.; Su, L.; Owen, S. E.; Goldberg, D.; Squibb, M. B.; Geng, J.

    2015-12-01

    Postseismic deformation indicates a viscoelastic response of the lithosphere. It is critical, then, to identify and estimate the extent of postseismic deformation in both space and time, not only for its inherent information on crustal rheology and earthquake physics, but also since it must considered for plate motion models that are derived geodetically from the "steady-state" interseismic velocities, models of the earthquake cycle that provide interseismic strain accumulation and earthquake probability forecasts, as well as terrestrial reference frame definition that is the basis for space geodetic positioning. As part of the Solid Earth Science ESDR System) SESES project under a NASA MEaSUREs grant, JPL and SIO estimate combined daily position time series for over 1800 GNSS stations, both globally and at plate boundaries, independently using the GIPSY and GAMIT software packages, but with a consistent set of a prior epoch-date coordinates and metadata. The longest time series began in 1992, and many of them contain postseismic signals. For example, about 90 of the global GNSS stations out of more than 400 that define the ITRF have experienced one or more major earthquakes and 36 have had multiple earthquakes; as expected, most plate boundary stations have as well. We quantify the spatial (distance from rupture) and temporal (decay time) extent of postseismic deformation. We examine parametric models (log, exponential) and a physical model (rate- and state-dependent friction) to fit the time series. Using a PCA analysis, we determine whether or not a particular earthquake can be uniformly fit by a single underlying postseismic process - otherwise we fit individual stations. Then we investigate whether the estimated time series velocities can be directly used as input to plate motion models, rather than arbitrarily removing the apparent postseismic portion of a time series and/or eliminating stations closest to earthquake epicenters.

  14. 2D Dynamic Models of Subduction: Links between Surface Plate Motion and Deformation in the Transition Zone from Observations of Deep Slab Seismicity

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2015-12-01

    Observations of seismicity and seismic tomography provide constraints on the geometry of slabs within mantle, while compression/tension axis derived from moment tensor solutions provide constraints on the internal deformation of slabs. However, since these observations provide only a somewhat blurred or incomplete snapshot of the slab in time, it is difficult to directly relate these observations to the evolution of the slab geometry and the forces acting on and within the slab. In contrast, plate tectonic reconstructions provide time-dependent constraints on the surface motion of plates and the trench at subduction zones, which are related to the dynamical evolution of the slab. We use 2D geodynamical simulations of subduction to explore the relationship between dynamical process within the deforming slab and the observations of surface plate motion and the state-of-stress in slabs. Specifically we utilize models that include the extended Boussinesq approximation (shear heating and latent heat terms in the energy equation), a layered lithosphere with pyrolite, harzburgite and basalt/eclogite, compositionally-dependent phase transitions, and a composite rheology with yielding. The models employ a weak crustal layer that decouples the overriding and subducting plates and allows for dynamically determined trench motion. Here we show that, 1) multiple phase transitions increase slab folding, 2) ridge push significantly increases trench retreat, and 3) strength of the weak crustal layer influences slab detachment. Compared to past studies a more realistic treatment of the phase transitions makes trench retreat more difficult to generate: a weaker plate may encourage slab retreat but detaches once the slab tip crosses into the transition zone due to the rapid increase in slab density. As suggested by previous studies, slab folding within the transition zone changes the direction of forces on the slab and causes periodic changes from trench retreat to trench advance. We

  15. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab

    PubMed

    Bunge; Grand

    2000-05-18

    The high-resolution seismic imaging of subducted oceanic slabs has become a powerful tool for reconstructing palaeogeography. The images can now be interpreted quantitatively by comparison with models of the general circulation of the Earth's mantle. Here we use a three-dimensional spherical computer model of mantle convection to show that seismic images of the subducted Farallon plate provide strong evidence for a Mesozoic period of low-angle subduction under North America. Such a period of low-angle subduction has been invoked independently to explain Rocky Mountain uplift far inland from the plate boundary during the Laramide orogeny. The computer simulations also allow us to locate the largely unknown Kula-Farallon spreading plate boundary, the location of which is important for inferring the trajectories of 'suspect' terrain across the Pacific basin.

  16. How rigid is a rigid plate? Geodetic constraint from the TrigNet CGPS network, South Africa

    NASA Astrophysics Data System (ADS)

    Malservisi, Rocco; Hugentobler, Urs; Wonnacott, Richard; Hackl, Matthias

    2013-03-01

    Rigidity and continuity of the Nubia plate is a fundamental assumption for the kinematic description, the dynamic implications of its interaction with surrounding plates and ultimately an important constraint to the geodynamics processes involved in continental lithospheric rupture. Geophysical, neotectonic and geodynamics considerations suggest the possibility that the Nubia plate is not completely rigid but could be undergoing internal deformation due to the southward propagation of the East African Rift. Here, we utilize the South African TrigNet geodetic network to evaluate the amount of internal deformation within the South African region and the possibility of motion between South Africa and the rest of the African continent. Our results show that the South African region behaves rigidly, with deformation of the order of 1 nanostrain yr-1 or less. The analysis shows some higher strain rates in the eastern region, and the presence of spatially correlated residuals in the Cape Town region and the region east of Johannesburg. Although not statistically significant, the spatial coherence of those residuals could indicate tectonic activity. A comparison of the Euler vector for the South African region with previously published Euler poles for the Nubia plate as well as the analysis of the residuals of Nubia sites with respect to a `rigid' TrigNet are compatible with clockwise rotation of the South African block with respect to the African continent, consistent with a propagation of the East Africa Rift along the Okavango region.

  17. Large vertical motions and basin evolution in the Outer Continental Borderland off Southern California associated with plate boundary development and continental rifting

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Sorlien, C. C.; Schindler, C. S.; De Hoogh, G.

    2011-12-01

    The Continental Borderland offshore southern California occupies a strategic position along the continental margin. It was the locus of ~75% of Pacific-North America displacement history, it helped accommodate the large-scale (>90°) tectonic rotation of the Western Transverse Ranges province, and is still accommodating potentially 20% of PAC-NAM plate motion today. As such, it represents an ideal natural laboratory to investigate plate boundary evolution and basin development associated with transform initiation, oblique continental rifting, transrotation and transpression. We have been using newly released grids of high-quality industry multichannel seismic (MCS) reflection data, combined with multibeam bathymetry and offshore well data to map and construct digital 3D fault surfaces and stratigraphic reference horizons over large parts of the Outer Continental Borderland. These 3D surfaces of structure and stratigraphy can be used to better understand and evaluate regional patterns of uplift, subsidence, fault interaction and other aspects of plate boundary deformation. In the northern Outer Borderland, mapping in Santa Cruz basin, and across both Santa Rosa and Santa Cruz-Catalina ridges reveals a pattern of interacting high-and low-angle faults, fault reactivation, basin subsidence, folding, and basin inversion. Subsidence since early-Miocene time is significant (up to 4 km) and is much larger than predicted by simple thermal cooling models of continental rifting. This requires additional tectonic components to drive this regional subsidence and subsequent basin inversion. Farther south, a more en echelon pattern of ridges and basins suggests a distributed component of right-lateral shear also contributed to much of the modern Borderland seafloor topography, including major Borderland basins. Vertical motions of uplift and subsidence can be estimated from a prominent early-Miocene unconformity that likely represents a regional, paleo-horizontal, near

  18. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  19. Compilation of Surface Creep on California Faults and Comparison of WGCEP 2007 Deformation Model to Pacific-North American Plate Motion

    USGS Publications Warehouse

    Wisely, Beth A.; Schmidt, David A.; Weldon, Ray J.

    2008-01-01

    This Appendix contains 3 sections that 1) documents published observations of surface creep on California faults, 2) constructs line integrals across the WG-07 deformation model to compare to the Pacific ? North America plate motion, and 3) constructs strain tensors of volumes across the WG-07 deformation model to compare to the Pacific ? North America plate motion. Observation of creep on faults is a critical part of our earthquake rupture model because if a fault is observed to creep the moment released as earthquakes is reduced from what would be inferred directly from the fault?s slip rate. There is considerable debate about how representative creep measured at the surface during a short time period is of the whole fault surface through the entire seismic cycle (e.g. Hudnut and Clark, 1989). Observationally, it is clear that the amount of creep varies spatially and temporally on a fault. However, from a practical point of view a single creep rate is associated with a fault section and the reduction in seismic moment generated by the fault is accommodated in seismic hazard models by reducing the surface area that generates earthquakes or by reducing the slip rate that is converted into seismic energy. WG-07 decided to follow the practice of past Working Groups and the National Seismic Hazard Map and used creep rate (where it was judged to be interseismic, see Table P1) to reduce the area of the fault surface that generates seismic events. In addition to following past practice, this decision allowed the Working Group to use a reduction of slip rate as a separate factor to accommodate aftershocks, post seismic slip, possible aseismic permanent deformation along fault zones and other processes that are inferred to affect the entire surface area of a fault, and thus are better modeled as a reduction in slip rate. C-zones are also handled by a reduction in slip rate, because they are inferred to include regions of widely distributed shear that is not completely

  20. Crustal movement and plate motion as observed by GPS baseline ranging - trial to make teaching materials for middle- and high-school earth science education by teachers

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.

    2009-12-01

    Japanese government established the system for renewing educational personnel certificates in 2007 and mandated the adoption of it in April 2009 (cf. “2007 White Paper on Education, Culture, Sports, Science and Technology”, available at http://www.mext.go.jp/english/). The new system shows that the valid period for each regular certificate after the renewal system adoption (April 1, 2009) is until the end of the fiscal year after ten years from satisfying the qualifications required for the certificate. Only persons who have attended over 30 hours and passed the examination in the certificate renewal courses before the expiration of the valid period can renew their certificate which is valid for next ten years. The purpose of this system is for teachers to acquire the latest knowledge and skills. Certificate renewal courses authorized by Ministry of Education, Culture, Sports, Science and Technology of Japan are offered by universities. Attendees will choose based on their specialty and awareness of issues from the various courses with education curriculums and. To renew their certificates, they should include (1) items regarding the latest trends and issues in education (12 hours) and (2) items regarding their speciality and other educational enhancement (three 6-hours course: total 18 hours). In 2008, before the adoption, provisional certificate renewal courses were offered for trial by more than 100 universities. The author offered a 6-hour course titled by “Development of teaching materials for school pupils to make understand the dynamic motion of the earth - utilising the results of the GPS ranging”. This course was targeted mainly for science teachers of middle- and high-schools. The goal of this course was for the attendees to understand the role of GPS ranging for the direct observation of the crustal movement and plate motion, and to produce the teaching materials possibly used in the classrooms. The offering of this course is aiming finally at

  1. Jurassic Cordilleran dike swarm-shear zones: Implications for the Nevadan orogeny and North American plate motion

    SciTech Connect

    Wolf, M.B.; Saleeby, J.B. )

    1992-08-01

    A cogenetic and coeval tonalitic and mafic dike swarm has been identified within a southern fragment (the Owens Mountain area) of the western Foothills terrane (California). The dikes were mylonitized and transposed (rotated into subparallel orientation) during emplacement, from 155 to 148 Ma (U-Pb zircon data), which coincides in time with the Nevadan orogeny. Steeply southeast-plunging fold axes and S-fold geometries indicate a sinistral-sense of shear, possibly with some dip-slip motion as well. This shear zone may be the southern and possibly deeper extension of the Bear Mountains fault zone. This and other Late Jurassic Cordilleran dike swarms record a complex pattern of sinistral-sense transtension-transpression that developed at the apparent-polar-wander J2 cusp ([approximately] 150 Ma) and during subsequent, rapid, northwestward acceleration of North America. The Late Jurassic Nevadan orogeny is a manifestation of these dramatic changes in magnitude and direction of North American motion.

  2. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    NASA Astrophysics Data System (ADS)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    modulated. These parameters in turn affect the weather and climate (e.g., the Dust Bowl Era, El Ninos, La Ninas, and hurricanes). The stress/strain within the Earth leads to Earth torsion, vibration, and mass redistribution, which leads to tectonic plate motion, seismicity, volcanism, and gravity waves, which drive atmospheric circulation and the teleconnection processes (i.e., a redistribution of magma beneath the plates) via surge tectonics. Various other connections among these processes and parameters will be discussed.

  3. Intraplate deformation and closure of the Australia-Antarctica-Africa plate circuit

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Gordon, Richard G.; Argus, Donald F.

    1988-01-01

    Plate motion data along the Southeast, Southwest, and Central Indian ridges have been reduced to 67 spreading rates, 38 transform fault azimuths, and 135 earthquake slip vectors in order to study the current motion between the Australian, Antarctic, and African plates and to investigate whether this plate circuit obeys closure. Magnetic profiles are modeled to determine rates consistently over a 3-m.y. time-averaging interval, and the new rates are shown to differ from published rates by as much as 5 mm/yr. The results indicate that Indian Ocean plate circuit nonclosure and the deformation that it suggests are much smaller than previously supposed, and support a model in which the significant deformation occurs in a diffuse plate boundary along the equatorial Indian Ocean between the Central Indian Ridge and the Sumatra Trench.

  4. Reconciling the Misfit Between the Yellowstone Plume Trace and Global Plate Motion Models: Channelized and Pancake Plume Flow on Basal Lithospheric Topography

    NASA Astrophysics Data System (ADS)

    Jordan, B. T.

    2001-12-01

    Age-progrssive rhyolitic volcanism from the Owyhee Plateau along the Snake River Plain to the Yellowstone Plateau is widely interpreted as reflecting the motion of the North American plate over a mantle plume. The strongest line of evidence against this interpretation is the misfit between the length of the interpreted plume trace and the length predicted by global plate motion models. As generally represented, the plume trace extends 700 km from the 16.1 Ma McDermitt Caldera to the caldera of the 0.6 Ma Lava Creek Tuff at Yellowstone. Global plate motion models predict a plume trace of 190-340 km in 16 m.y. Extension immediately south of the Snake River Plain has been estimated at 20%, well short of the >100% required to reconcile the misfit. Also complicating the plume interpretation is the position of the feeder dikes of the Columbia River basalts (CRB), widely interpreted as the result of emplacement of the head of the Yellowstone plume, >300 km north of the interpreted plume trace at 16 Ma. Both of these problems can be reconciled by considering the complex results of interaction of a mantle plume with basal lithospheric topography. The predicted position of the plume at 16 Ma, based on plate motion models plus extension, was near the southern end of the Snake River Plain, under thick Precambrian lithosphere. Thinner lithosphere occurred 150 to 200 km west of this point at the boundary with Paleozoic and Mesozoic accreted terranes. The CRB, Steens Basalts (SB), and Northern Nevada Rift (NNR) basalts were erupted through the accreted terranes west of this boundary beginning about 16.5 Ma. Two processes could link this basaltic volcanism to the plume: (1) assuming the plume head was >600 km in diameter, some plume head material would have risen to shallow depths and undergone decompression melting under CRB and SB dikes and the NNR; and (2) flow of plume head and conduit-fed material up a basal lithospheric gradient from under the cratonic lithosphere toward the

  5. Seismicity of the diffusive Iberian/African plate boundary at the eastern terminus of the Azores-Gibraltar Transform fault

    NASA Astrophysics Data System (ADS)

    Lange, D.; Grevemeyer, I.; Matias, L. M.

    2014-12-01

    The plate boundary at the eastern terminus of the Azores-Gibraltar transform fault between Africa and Iberia is poorly defined. The deformation in the area is forced by the slow NW-SE convergence of 4 mm/yr between the oceanic domains of Iberia/Eurasia and Africa and is accommodated over a 200 km broad tectonically-active deformation zone. The region, however, is also characterized by large earthquakes, such as the 1969 Mw=7.9 Horseshoe event and the November 1, 1755 Great Lisbon earthquake with an estimated magnitude of Mw~8.5. The exact location of the source of the 1755 Lisbon earthquake is still unknown. Recent work may suggest that the event occurred in the vicinity of the Horseshoe fault, an oblique thrust fault. However, estimates of tsunami arrival times suggested a source near the Gorringe Bank, a ~180 km-long and ~70 km-wide ridge that has a relieve of ~5000 m. Deep Sea Drilling (DSDP) and rock samples indicated that the bank is mainly composed of serpentinized peridotites with gabbroic intrusions, perhaps being created by overthrusting of the Horseshoe Abyssal Plain onto the Tagus Abyssal Plain in NW direction. Further, the Horseshoe Abyssal Plain is marked by the presence of compressive structures with a roughly NE-SW orientation and E-W trending, segmented, crustal-scale, strike slip faults that extend from the Gorringe Bank to the Gibraltar Arc in the eastern Gulf of Cadiz, which were called "South West Iberian Margin" or SWIM faults. The fault system may mark a developing Eurasia-Africa plate boundary. Two local seismic networks were operated in the area. First, a network of 14 ocean-bottom seismometers (OBS) was operated between April and October 2012 in the vicinity of the Horseshoe fault between 10°W to 11°W, and 35°50'N to 36°10'N. From October 2013 to March 2014 a second network of 15 OBS monitored seismicity at the Gorringe Bank. Both networks benefitted from seismic stations operated in Portugal. The first network provided in the order of

  6. Seismicity and seismotectonics of the diffusive Iberian/African plate boundary: Horseshoe Abyssal Plain and Gorringe Bank

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Lange, Dietrich; Matias, Luis

    2014-05-01

    In the area to the west of the Gibraltar Arc the plate boundary between Africa and Iberia is poorly defined. The deformation in the area is forced by the slow NW-SE convergence of 4 mm/yr between the oceanic domains of Iberia/Eurasia and Africa and is accommodated over a 200 km broad tectonically-active deformation zone. The region, however, is also characterized by large earthquakes and tsunamis, such as the 1969 Mw=7.9 Horseshoe Abyssal Plain earthquake and the November 1, 1755 Great Lisbon earthquake with an estimated magnitude of Mw~8.5. The exact location of the source of the 1755 Lisbon earthquake is still unknown. Recent work may suggest that the event occurred in the vicinity of the Horseshoe fault, an oblique thrust fault. However, estimates of tsunami arrival times suggested a source near the Gorringe Bank, a ~180 km-long and ~70 km-wide ridge that has a relieve of ~5000 m. Deep Sea Drilling (DSDP) and rock samples indicated that the bank is mainly composed of serpentinized peridotites with gabbroic intrusions, perhaps being created by overthrusting of the Horseshoe Abyssal Plain onto the Tagus Abyssal Plain in NW direction. Further, the Horseshoe Abyssal Plain is marked by the presence of compressive structures with a roughly NE-SW orientation and E-W trending, segmented, crustal-scale, strike slip faults that extend from the Gorringe Bank to the Gibraltar Arc in the eastern Gulf of Cadiz, which were called "South West Iberian Margin" or SWIM faults. The fault system may mark a developing Eurasia-Africa plate boundary. Two local seismic networks were operated in the area. First, a network of 14 ocean-bottom seismometers (OBS) was operated between April and October 2012 in the vicinity of the Horseshoe fault between 10°W to 11°W, and 35°50'N to 36°10'N. From October 2013 to March 2014 a second network of 15 OBS monitored seismicity at the Gorringe Bank. Both networks benefitted from seismic stations operated in Portugal. The first network provided in

  7. Structure and breakup history of the rifted margin of West Antarctica in relation to Cretaceous separation from Zealandia and Bellingshausen plate motion

    NASA Astrophysics Data System (ADS)

    Wobbe, F.; Gohl, K.; Chambord, A.; Sutherland, R.

    2012-04-01

    Geophysical data acquired using R/V Polarstern constrain the structure and age of the rifted oceanic margin of West Antarctica. West of the Antipodes Fracture Zone, the 145 km wide continent-ocean transition zone (COTZ) of the Marie Byrd Land sector resembles a typical magma-poor margin. New gravity and seismic reflection data indicates initial continental crust of thickness 24 km, that was stretched 90 km. Farther east, the Bellingshausen sector is broad and complex with abundant evidence for volcanism, the COTZ is ˜670 km wide, and the nature of crust within the COTZ is uncertain. Margin extension is estimated to be 106-304 km in this sector. Seafloor magnetic anomalies adjacent to Marie Byrd Land near the Pahemo Fracture Zone indicate full-spreading rate during c33-c31 (80-68 Myr) of 60 mm yr-1, increasing to 74 mm yr-1 at c27 (62 Myr), and then dropping to 22 mm yr-1 by c22 (50 Myr). Spreading rates were lower to the west. Extrapolation towards the continental margin indicates initial oceanic crust formation at around c34y (84 Myr). Subsequent motion of the Bellingshausen plate relative to Antarctica (84-62 Myr) took place east of the Antipodes Fracture Zone at rates <40 mm yr-1, typically 5-20 mm yr-1. The high extension rate of 30-60 mm yr-1 during initial margin formation is consistent with steep and symmetrical margin morphology, but subsequent motion of the Bellingshausen plate was slow and complex, and modified rift morphology through migrating deformation and volcanic centers to create a broad and complex COTZ.

  8. Intermediate crust (IC); its construction at continent edges, distinctive epeirogenic behaviour and identification as sedimentary basins within continents: new light on pre-oceanic plate motions

    NASA Astrophysics Data System (ADS)

    Osmaston, Miles F.

    2014-05-01

    Introduction. The plate tectonics paradigm currently posits that the Earth has only two kinds of crust - continental and oceanic - and that the former may be stretched to form sedimentary basins or the latter may be modified by arc or collision until it looks continental. But global analysis of the dynamics of actual plate motions for the past 150 Ma indicates [1 - 3] that continental tectospheres must be immensely thicker and rheologically stiffer than previously thought; almost certainly too thick to be stretched with the forces available. In the extreme case of cratons, these tectospheric keels evidently extend to 600 km or more [2, 3]. This thick-plate behaviour is attributable, not to cooling but to a petrological 'stiffening' effect, associated with a loss of water-weakening of the mineral crystals, which also applies to the hitherto supposedly mobile LVZ below MORs [4, 5]. The corresponding thick-plate version of the mid-ocean ridge (MOR) process [6 - 8], replacing the divergent mantle flow model, has a deep, narrow wall-accreting axial crack which not only provides the seismic anisotropy beneath the flanks but also brings two outstanding additional benefits:- (i) why, at medium to fast spreading rates, MOR axes become straight and orthogonally segmented [6], (ii) not being driven by body forces, it can achieve the sudden jumps of axis, spreading-rate and direction widely present in the ocean-floor record. Furthermore, as we will illustrate, the crack walls push themselves apart at depth by a thermodynamic mechanism, so the plates are not being pulled apart. So the presence of this process at a continental edge would not imply the application of extensional force to the margin. Intermediate Crust (IC). In seeking to resolve the paradox that superficially extensional structures are often seen at margins we will first consider how this MOR process would be affected by the heavy concurrent sedimentation to be expected when splitting a mature continent. I reason

  9. The metallogenic role of east-west fracture zones in South America with regard to the motion of lithospheric plates (with an example from Brazil)

    USGS Publications Warehouse

    Kutina, J.; Carter, William D.; Lopez, F.X.

    1978-01-01

    The role of east-west fracture zones in South America is discussed with regard to global fracturing and the motion of lithospheric plates. A set of major NW-trending lineaments has been derived which show a tendency to be spaced equidistantly and may correspond to a set of east-west fractures in the "pre-drift" position of the South American plate. Statistical analysis of linears in the ERTS-mosaics shows that NW-fractures are also among the most important ones in the Andes region, suggesting that the above major lineaments extend into the basement of the Andes. Some of the old major fractures, trending east-west in the present orientation of South America, are discussed and their NE orientation in the pre-drift position of the plate is considered. An example of structural control of ore deposition in the Brazilian Shield is presented, using the maps of the RADAM Project. It is concluded that the small tin-bearing granitic bodies concentrated in the region of Sao Felix do Xingu in the state of Para represent upper parts of an unexposed granitoid massif which is controlled by the intersection of a major east-west fracture zone probably represents westward extension of the Patos Lineament of the easternmost part of Brazil, connected with the east-west fracture zone of the Para state through the basement of the Maranhao Basin (Sineclise do Maranhao-Piaui). It is expected that the proposed "Patos-Para Lineament" extends further westward and may similarly control, at intersections with fractures of other trends, some mineralization centers in the western part of the state of Para and in the state of Amazonas.

  10. WormAssay: a novel computer application for whole-plate motion-based screening of macroscopic parasites.

    PubMed

    Marcellino, Chris; Gut, Jiri; Lim, K C; Singh, Rahul; McKerrow, James; Sakanari, Judy

    2012-01-01

    Lymphatic filariasis is caused by filarial nematode parasites, including Brugia malayi. Adult worms live in the lymphatic system and cause a strong immune reaction that leads to the obstruction of lymph vessels and swelling of the extremities. Chronic disease leads to the painful and disfiguring condition known as elephantiasis. Current drug therapy is effective against the microfilariae (larval stage) of the parasite, but no drugs are effective against the adult worms. One of the major stumbling blocks toward developing effective macrofilaricides to kill the adult worms is the lack of a high throughput screening method for candidate drugs. Current methods utilize systems that measure one well at a time and are time consuming and often expensive. We have developed a low-cost and simple visual imaging system to automate and quantify screening entire plates based on parasite movement. This system can be applied to the study of many macroparasites as well as other macroscopic organisms.

  11. WormAssay: A Novel Computer Application for Whole-Plate Motion-based Screening of Macroscopic Parasites

    PubMed Central

    Marcellino, Chris; Gut, Jiri; Lim, K. C.; Singh, Rahul; McKerrow, James; Sakanari, Judy

    2012-01-01

    Lymphatic filariasis is caused by filarial nematode parasites, including Brugia malayi. Adult worms live in the lymphatic system and cause a strong immune reaction that leads to the obstruction of lymph vessels and swelling of the extremities. Chronic disease leads to the painful and disfiguring condition known as elephantiasis. Current drug therapy is effective against the microfilariae (larval stage) of the parasite, but no drugs are effective against the adult worms. One of the major stumbling blocks toward developing effective macrofilaricides to kill the adult worms is the lack of a high throughput screening method for candidate drugs. Current methods utilize systems that measure one well at a time and are time consuming and often expensive. We have developed a low-cost and simple visual imaging system to automate and quantify screening entire plates based on parasite movement. This system can be applied to the study of many macroparasites as well as other macroscopic organisms. PMID:22303493

  12. Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: An example from the northeastern Caribbean plate margin

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Taylor, F. W.; Edwards, R. Lawrence; Ku, Teh-Lung

    1995-06-01

    The pattern of folding, faulting, and late Quaternary coral-reef uplift rates in western and central Hispaniola (Haiti and Dominican Republic) suggest that the elongate Gonave microplate, a 190,000-km 2 area of the northeastern Caribbean plate, is in the process of shearing off the Caribbean plate and accreting to the North American plate. Late Cenozoic transpression between the southeastern Bahama Platform and the Caribbean plate in Hispaniola has inhibited the eastward motion of the northeastern corner of the plate. Transpression is manifested in western and central Hispaniola by the formation of regional scale folds that correspond to present-day, anticlinal topographic mountain chains continuous with offshore anticlinal ridges. Areas of most rapid Quaternary uplift determined from onland coral reefs 125 ka and younger, coincide with the axial traces of these folds. Offshore data suggest recent folding and faulting of the seafloor. Onshore reef data do not conclusively require late Quaternary folding, but demonstrate that tectonic uplift rates of the axial areas of the anticlines decrease from the Northwest Peninsula of Haiti (0.37 mm/yr) to to the central part of the coast of western Haiti (0.19 mm/yr) to the south-central part of western Haiti (0 mm/yr). Formation of the 1200-km-long Enriquillo-Plantain Garden-Walton fault zone as a 'bypass' strike-slip fault has isolated the southern edge of the Gonave microplate and is allowing continued, unimpeded eastward motion of a smaller Caribbean plate past the zone of late Neogene convergence and Quaternary uplift of coral reefs in Hispaniola. Offshore seismic reflection data from the Jamaica Passage, the marine strait separating Jamaica and Haiti, show that the Enriquillo-Plantain Garden fault zone forms a narrow but deep, active fault-bounded trough beneath the passage. The active fault is continuous with active faults mapped onshore in western Haiti and eastern Jamaica; the bathymetric deep is present because the

  13. Kinematic model for out-of-sequence thrusting: Motion of two ramp-flat faults and the production of upper plate duplex systems

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry L.

    2013-06-01

    Kinematic models developed here suggest a bewildering array of structural styles can be generated during out-of-sequence thrusting. Many of these structures would be difficult to distinguish from a normally stacked thrust sequence and the process can produce younger-on-older faults that could easily be misinterpreted as normal faults. This paper considers a small subset of this problem within a large model space by considering structures that develop along a pair of ramp-flat faults that are moving simultaneously, or sequentially. Motion on the lower ramp warps the structurally higher fault due to fault-bend folding and when the fault ruptures through the warp it transfers a horse to the upper hanging wall. Continuity of the process generates what is referred to here as an "upper plate duplex" to distinguish the structure from a conventional duplex. Kinematic parameters are developed for two models within this general problem: 1) a system with a fixed ramp in the lower thrust, overridden by an upper thrust; and 2) a double-duplex system where a conventional duplex develops along the lower fault at the same time as an upper plate duplex is formed along the upper fault. The theory is tested with forward models using 2D Move software and these tests indicate different families of structural styles form in association with relative scaling of ramp systems, slip-ratio between faults, and aspect ratios of horse blocks formed in the upper-plate duplex. A first-order result of the analysis is that an upper plate duplex can be virtually indistinguishable from a conventional duplex unless the trailing branch lines of the horses are exposed or imaged; a condition seldom met in natural exposures. Restoration of an upper-plate duplex produces counterintuitive fault geometry in the restored state, and thus, restorations of upper plate duplexes that erroneously assume a conventional duplex model would produce restored states that are seriously in error. In addition, in most of

  14. Iberian plate kinematics: A jumping plate boundary between Eurasia and Africa

    USGS Publications Warehouse

    Srivastava, S.P.; Schouten, Hans; Roest, W.R.; Klitgord, Kim D.; Kovacs, L.C.; Verhoef, J.; Macnab, R.

    1990-01-01

    THE rotation of Iberia and its relation to the formation of the Pyrenees has been difficult to decipher because of the lack of detailed sea-floor spreading data, although several models have been proposed1-7. Here we use detailed aeromagnetic measurements from the sea floor offshore of the Grand Banks of Newfoundland to show that Iberia moved as part of the African plate from late Cretaceous to mid-Eocene time, with a plate boundary extending westward from the Bay of Biscay. When motion along this boundary ceased, a boundary linking extension in the King's Trough to compression along the Pyrenees came into existence. Finally, since the late Oligocene, Iberia has been part of the Eurasian plate, with the boundary between Eurasia and Africa situated along the Azores-Gibraltar fracture zone.

  15. Plio-Quaternary paleostresses in the Atlantic passive margin of the Moroccan Meseta: Influence of the Central Rif escape tectonics related to Eurasian-African plate convergence

    NASA Astrophysics Data System (ADS)

    Chabli, Ahmed; Chalouan, Ahmed; Akil, Mostapha; Galindo-Zaldívar, Jesús; Ruano, Patricia; Sanz de Galdeano, Carlos; López-Garrido, Angel Carlos; Marín-Lechado, Carlos; Pedrera, Antonio

    2014-07-01

    The Atlantic Moroccan Meseta margin is affected by far field recent tectonic stresses. The basement belongs to the variscan orogen and was deformed by hercynian folding and metamorphism followed by a post-Permian erosional stage, producing the flat paleorelief of the region. Tabular Mesozoic and Mio-Plio-Quaternary deposits locally cover the Meseta, which has undergone recent uplift, while north of Rabat the subsidence continues in the Gharb basin, constituting the foreland basin of the Rif Cordillera. The Plio-Quaternary sedimentary cover of the Moroccan Meseta, mainly formed by aeolian and marine terraces deposits, is affected by brittle deformations (joints and small-scale faults) that evidence that this region - considered up to date as stable - is affected by the far field stresses. Striated faults are recognized in the oldest Plio-Quaternary deposits and show strike-slip and normal kinematics, while joints affect up to the most recent sediments. Paleostress may be sorted into extensional, only affecting Rabat sector, and three main compressive groups deforming whole the region: (1) ENE-WSW to ESE-WNW compression; (2) NNW-SSE to NE-SW compression and (3) NNE-SSW compression. These stresses can be attributed mainly to the NW-SE oriented Eurasian-African plate convergence in the western Mediterranean and the escape toward the SW of the Rif Cordillera. Local paleostress deviations may be related to basement fault reactivation. These new results reveal the tectonic instability during Plio-Quaternary of the Moroccan Meseta margin in contrast to the standard passive margins, generally considered stable.

  16. Slab dragging and the recent geodynamic evolution of the western Mediterranean plate boundary region

    NASA Astrophysics Data System (ADS)

    Spakman, Wim; Chertova, Maria V.; van den Berg, Arie P.; Thieulot, Cedric; van Hinsbergen, Douwe J. J.

    2016-04-01

    The Tortonian-Present geodynamic evolution of the plate boundary between North Africa and Iberia is characterized by first-order enigmas. This concerns, e.g., the diffuse tectonic activity of the plate boundary; the crustal thickening below the Rif; the closing of the northern Moroccan marine gateways prior to the Messinian Salinity Crisis; crustal extension of the central to eastern Betics; the origin and sense of motion of the large left-lateral Trans Alboran Shear Zone (TASZ) and Eastern Betic Shear Zone (EBSZ); and lithosphere delamination of the North African continental edge. Many explanations have been given for each of these seemingly disparate tectonic features, which invariably have been addressed in the plate tectonic context of the NW-SE relative plate convergence between the major plates since the Tortonian, mostly independently from each other. Usually there is no clear role for the subducted slab underlying the region, except for presumed rollback, either to SW or to the W, depending on the type of observations that require explanation. Here we integrate the dynamic role of the slab with the NW-SE relative plate convergence by 3-D numerical modelling of the slab evolution constrained by absolute plate motions (Chertova et al., JGR,2014 & Gcubed 2014). By combining observations and predictions from seismology, geology, and geodesy, with our numerical 3-D slab-mantle dynamics modelling, we developed a new and promising geodynamic framework that provides explanations of all noted tectonic enigmas in a coherent and connected way. From the Tortonian until today, we propose that mantle-resisted slab dragging combines with the NW-SE plate convergence across the (largely) unbroken plate boundary to drive the crustal deformation of the region. Slab dragging is the lateral transport, pushing or pulling, of slab through the mantle by the absolute motion of the subducting plate (Chertova et al., Gcubed, 2014). Because the slab is connected to both the Iberian

  17. Feynman's wobbling plate

    NASA Astrophysics Data System (ADS)

    Tuleja, Slavomir; Gazovic, Boris; Tomori, Alexander; Hanc, Jozef

    2007-03-01

    In the book Surely You Are Joking, Mr. Feynman! Richard Feynman tells a story of a Cornell cafeteria plate being tossed into the air. As the plate spun, it wobbled. Feynman noticed a relation between the two motions. He solved the motion of the plate by using the Lagrangian approach. This solution didn't satisfy him. He wanted to understand the motion of the plate by analyzing the motion of its individual particles and the forces acting on them. He was successful, but he didn't tell us how he did it. We provide an elementary explanation for the two-to-one ratio of wobble to spin frequencies, based on an analysis of the motion of the particles and the forces acting on them. We also demonstrate the power of numerical simulation and computer animation to provide insight into a physical phenomenon and guidance on how to do the analysis.

  18. The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Ambrosius, B. A. C.; Noomen, R.; Bastos, L.; Wortel, M. J. R.; Spakman, W.; Govers, R.

    2003-08-01

    Studies of intra- and inter-plate deformation typically need a model describing the motions of the stable part of the tectonic plates for reference purposes. We have developed DEOS2k, a model for the current motion of seven major tectonic plates derived from space-geodetic observations. This paper focuses on relative motion between Africa and Eurasia. In the past, this motion has been poorly established because of poor data coverage for Africa. DEOS2k is based on ITRF2000 [Altamimi et al., 2002] and new African GPS observations. It is an improvement over the NUVEL-1A model for predicting the present-day relative motions of these two plates. DEOS2k predicts in northeastern Africa that Africa-Eurasia relative motion is about 40% smaller in magnitude than NUVEL-1A and trends more to the northwest. This is consistent with independent local geodetic observations. A similar shift in orientation, clockwise, is observed at the western tip of the plate boundary.

  19. Fault Segmentation and Earthquake Generation in the Transition from Strike-slip to Subduction Plate Motion, Saint Elias Orogen, Alaska and Yukon (Invited)

    NASA Astrophysics Data System (ADS)

    Bruhn, R. L.; Shennan, I.; Pavlis, T. L.

    2010-12-01

    The structural transition from strike-slip motion along the Fairweather transform fault to subduction on the Aleutian megathrust occurs within the collision zone between the Yakutat microplate and southern Alaska. The collision is marked by belts of thrust and strike-slip faulting both within the microplate and along its margins, forming a complex fault network that mechanically interacts with rupturing of the Aleutian megathrust on one hand, and the Fairweather transform fault on the other. For example, stress released by M8+ earthquakes within the central and eastern parts of the Yakutat microplate in 1899 may have constrained the 1964 rupture on the Aleutian megathrust to the western part of the microplate. However, megathrust earthquakes circa 900 BP and 1500 BP may have ruptured farther east than in 1964, generating earthquakes of significantly greater magnitude and tsunami potential. Structurally, the thrust-faulting earthquake of Sept. 10, 1899 occurred on faults that are loaded primarily by the Fairweather transform, but the earlier event of Sept. 4 is more closely linked to the Aleutian megathrust. Large reverse faults that rise off of the megathrust are superimposed on older structures within the microplate; creating complex duplex and wedge fault geometries beneath the mountains onshore that link to simpler fault propagation folds offshore. These lateral variations in fault network style correlate with 1) permanent uplift of the coast at ≈ 1 cm/yr in the Yakataga region of the microplate, 2) an abrupt change in structural style and orientation across the Kayak Island - Bering Glacier deformation zone, and 3) the seaward limit of ruptures in the 1899 earthquakes which occurred beneath the mountains onshore. Future goals include refining locations of earthquake source faults and determining the recurrence history of earthquakes within the Yakutat microplate. The history of rupturing within the microplate offshore is of particular interest given the

  20. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  1. Inter- and intra-plate deformation at North American plate boundaries

    NASA Technical Reports Server (NTRS)

    Beavan, John

    1986-01-01

    Alaska tectonics and earthquake hazard studies; Southern California tectonics (block rotation); spreading near the Salton Trough; California plate motion (fault zone kinematics); and Caribbean plate motion investigations are examined.

  2. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  3. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  4. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  5. Hotspot Motion, Before and After the Hawaiian-Emperor Bend

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R. K.

    2014-12-01

    Hawaiian hotspot motion of >40 mm/yr is best documented by paleomagnetic investigations of basalt cores recovered by ocean drilling of the Emperor seamounts during ODP Leg 197 (Tarduno et al., 2003). These data indicate that the trend of the Emperor Seamounts dominantly records motion of the hotspot in the mantle, further suggesting that the great Hawaiian-Emperor bend (HEB) reflects mainly a change in hotspot motion. Data used for Pacific "absolute plate motion models" for times before the age of the HEB are also internally inconsistent with a fixed hotspot assumption; at present the best way to estimate Pacific absolute plate motion prior to the HEB bend is through use of predictions derived from plate circuits (e.g. Doubrovine and Tarduno, 2008). These analyses predict much less motion for the hotspot responsible for the Louisville Seamount chain, as has been observed by paleomagnetic analyses of cores recovered by IODP Expedition 330 (Koppers et al., 2012). Together, the ocean drilling data sets favor hotspot-specific processes to explain high drift rates, such as the model whereby the Hawaiian mantle plume was captured by a ridge in the Late Cretaceous, and subsequent changes in sub-Pacific mantle flow resulted in the trend of the Emperor Seamounts (Tarduno et al., 2009). However, the question of whether there is a smaller signal of motion between groups of hotspots remains. Plate circuit analyses yield a small discrepancy between predicted and actual hotspot locations for times between ca. 47 Ma and 10 Ma that could be a signal of continued southward migration of the Hawaiian hotspot. Alternatively, this could reflect the motion of the group of Indo-Atlantic hotspots relative to Hawaii. New paleomagnetic data from Midway Atoll (ca. 27 Ma) suggests little difference with the present-day latitude of the plume, indicating that the rate of motion of either the Hawaiian hotspot, or the Indo-Atlantic hotspot group, was about 15 mm/yr between 47 and 27 Ma. This

  6. Plate tectonics of the Mediterranean region.

    PubMed

    McKenzie, D P

    1970-04-18

    The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.

  7. Experimental observations of the coupling between induced currents and mechanical motion in torsionally supported square loops and plates. Part 2. Data inventory

    SciTech Connect

    Weissenburger, D.W.; Bialek, J.M.; Cargulia, G.J.; Ulrickson, M.; Knott, M.J.; Turner, L.R.; Wehrle, R.B.

    1984-12-01

    A series of experiments was successfully conducted to investigate the coupling between induced currents and rigid body rotation in square loops and plates. The experiments were performed with the Fusion Electromagnetic Induction Experiment (FELIX) facility at the Argonne National Laboratory. The observed data exhibited the magnetic damping and magnetic stiffness effects ehich arise in coupled systems and agreed very well with previous analytic calculations.

  8. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  9. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  10. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part II: Introducing Euler Poles Using Baja-North America Relative Plate Motion Across the Gulf of California

    NASA Astrophysics Data System (ADS)

    Loveless, J. P.; Bennett, S. E. K.; Cashman, S. M.; Dorsey, R. J.; Goodliffe, A. M.; Lamb, M. A.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere (RCL) initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum, including lectures, labs, and in-class activities that can be used as a whole or individually. This component of the curriculum introduces students to the Euler pole description of relative plate motion (RPM) by examining the tectonic interactions of the Baja California microplate and North American plate. The plate boundary varies in rift obliquity along strike, from highly oblique and strike-slip dominated in the south to slightly less oblique and with a larger extensional component in the north. This Google Earth-based exercise provides students with a visualization of RPM using small circle contours of the local direction and magnitude of Baja-North America movement on a spherical Earth. Students use RPM to calculate the fault slip rates on transform, normal, and oblique-slip faults and examine how the varying faulting styles combine to accommodate RPM. MARGINS results are integrated via comparison of rift obliquity with the structural style of rift-related faults around the GOC. We find this exercise to fit naturally into courses about plate tectonics, geophysics, and especially structural geology, given the similarity between Euler pole rotations and stereonet-based rotations of structural data.

  11. Present-day kinematics of the East African Rift

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Stamps, D. S.; Delvaux, D.; Hartnady, C. J. H.

    2014-04-01

    The East African Rift (EAR) is a type locale for investigating the processes that drive continental rifting and breakup. The current kinematics of this ~5000 km long divergent plate boundary between the Nubia and Somalia plates is starting to be unraveled thanks to a recent augmentation of space geodetic data in Africa. Here we use a new data set combining episodic GPS measurements with continuous measurements on the Nubian, Somalian, and Antarctic plates, together with earthquake slip vector directions and geologic indicators along the Southwest Indian Ridge to update the present-day kinematics of the EAR. We use geological and seismological data to determine the main rift faults and solve for rigid block rotations while accounting for elastic strain accumulation on locked active faults. We find that the data are best fit with a model that includes three microplates embedded within the EAR, between Nubia and Somalia (Victoria, Rovuma, and Lwandle), consistent with previous findings but with slower extension rates. We find that earthquake slip vectors provide information that is consistent with the GPS velocities and helps to significantly reduce uncertainties of plate angular velocity estimates. We also find that 3.16 Myr MORVEL average spreading rates along the Southwest Indian Ridge are systematically faster than prediction from GPS data alone. This likely indicates that outward displacement along the SWIR is larger than the default value used in the MORVEL plate motion model.

  12. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  13. Plate-mantle coupling from post-Pangea plate kinematics

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Dietmar Müller, R.; Seton, Maria; Flament, Nicolas

    2015-04-01

    Convection in the Earth's mantle that involves plates at the surfaces gives rise to plate velocities that vary through time and depend on the balance of plate boundary forces, with the present-day providing a snapshot of this ongoing process. However, present-day plate velocities do not capture plate behaviour over geologically representative timeframes and thus cannot be used to evaluate factors limiting plate velocities. Previous studies investigated the effects of continental keels on plate speeds by either using the present-day snapshot or a limited number of reconstructed plate configurations, often leading to conflicting results. For example, an early assumption was that continental keels (especially cratons) were unlikely to impede fast plate motions because India's velocity approached ~20 cm/yr in the Eocene prior to the collision with Eurasia. We employ a modern plate reconstruction approach with evolving global topological plate boundaries for the post-Pangea timeframe (since 200 Ma) to evaluate factors controlling plate velocities. Plate boundary configurations and plate velocities are extracted from the open-source and cross-platform plate reconstruction package GPlates (www.gplates.org) at 1 Myr intervals. For each plate, at each timestep, the area of continental and cratonic lithosphere is calculated to evaluate the effect on plate velocities. Our results support that oceanic plates tend to be 2-3 times faster than plates with large portion of continental plate area, consistent with predictions of numerical models of mantle convection. The fastest plates (~8.5 cm/yr RMS) are dominated by oceanic plate area and high subducting portion of plate perimeter, while the slowest plates (~2.6-2.8 cm/yr RMS) are dominated by continental plate area and bounded by transforms and mid-oceanic ridge segments. Importantly, increasing cratonic fractions (both Proterozoic and Archean lithosphere) significantly impede plate velocities, suggesting that deep continental

  14. Irregular effects of tilting of foundation and probable connection with plate tectonic motions Results of many years standing measurements of long water-tubes and horizontal pendulums tiltmeters in Geodynamic Laboratory of SRC in Ksiaz

    NASA Astrophysics Data System (ADS)

    Kaczorowski, Marek

    such as air pressure loading effects, seasonal variations of mean temperature, non-tidal loading effects of ocean origin, variations of level of ground water, and other seasonal effects as reasons of large clinometric signals. Azimuths of resultant tilts of these signals are close to direction of plate tectonic motions observed by GPS and laser permanent stations in surrounding of Geodynamic Laboratory. Probability that large clinometric signals are produced by recent plate tectonic motions is increasing by special geometry of orogen in which laboratory was situated as well as its contact with Sudetic marginal fold. Keywords: Geodynamic, Earth tides, plumb line variations, non-tidal effects, tiltmeters, plate tectonic.

  15. Plume and plate controlled hotspot trails in the South Atlantic

    NASA Astrophysics Data System (ADS)

    O'Connor, John; Jokat, Wilfried; le Roex, Anton; Class, Cornelia; Wijbrans, Jan; Keßling, Stefanie; Kuiper, Klaudia; Nebel, Oliver

    2013-04-01

    Discovering if hotspots observed on the Earth's surface are explained by underlying plumes rising from the deep mantle or by shallow plate-driven processes continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of age-progressive volcanic trails recording past plate motion relative to surface hotspots and their causal plumes. Using the icebreaker RV Polarstern, we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth's two largest and deepest regions of slower-than-average seismic wave speed - the Africa Low Shear Wave Velocity Province - caused by a massive thermo-chemical 'pile' on the core-mantle boundary. We showed recently using Ar/Ar isotopic ages - and crustal structure and seafloor ages - that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O'Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. If the distribution of hotspot trails reflects where plume melts could or could not penetrate the continental or oceanic lithosphere then plumes could have been active for significantly longer than indicated by their volcanic chains. This provides a mechanism for extended late stage interplay between deep mantle

  16. The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian plate and surrounding regions in the Middle East

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Reilinger, Robert

    1992-01-01

    A detailed study was made of the consequences of the Arabian plate convergence against Eurasia and its effects on the tectonics of Anatolia and surrounding regions of the eastern Mediterranean. A primary source of information is time rates of change of baseline lengths and relative heights determined by repeated SLR measurements. These SLR observations are augmented by a network of GPS stations in Anatolia, Aegea, and Greece, established and twice surveyed since 1988. The existing SLR and GPS networks provide the spatial resolution necessary to reveal the details of ongoing tectonic processes in this area of continental collision. The effort has involved examining the state of stress in the lithosphere and relative plate motions as revealed by these space based geodetic measurements, seismicity, and earthquake mechanisms as well as the aseismic deformations of the plates from conventional geodetic data and geological evidence. These observations are used to constrain theoretical calculations of the relative effects of: (1) the push of the Arabian plate; (2) high topography of Eastern Anatolia; (3) the geometry and properties of African-Eurasian plate boundary; (4) subduction under the Hellenic Arc and southwestern Turkey; and (5) internal deformation and rotation of the Anatolian plate.

  17. Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.

    ERIC Educational Resources Information Center

    Chamberlain, Valerie Elaine

    1989-01-01

    Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…

  18. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  19. Moving Divertor Plates in a Tokamak

    SciTech Connect

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  20. A global-scale plate reorganization event at 105-100 Ma

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Seton, Maria; Müller, R. Dietmar

    2012-11-01

    subduction zone, to the east of Australia and New Zealand, respectively, resulted in very young crust entering the trench and we suggest that by 105-100 Ma there was insufficient negative buoyancy to drive subduction. Finally, we propose that the plume push force of the Bouvet plume, that erupted near the African-Antarctic-South American triple junction, contributed to plate motion changes in the southern Atlantic region.

  1. Origin of Small Tectonic Plates

    NASA Astrophysics Data System (ADS)

    Mallard, C.; Coltice, N.; Seton, M.; Müller, D.; Tackley, P.

    2015-12-01

    The plate tectonic theory allowed to split the Earth surface into 6 (Le Pichon 1968) to 52 tectonic plates (Bird 2003). These plates are separated into two groups: the first of 7 large plates and the second of numerous smaller plates (Morra et al 2013). Previous studies using the reconstruction of the past 200 My, suggest that the size of large plates is driven by mantle flow. But the tools employed are descriptive (Morra et al 2013, Sornette and Pisarenko 2003), hence ignoring forces and physical principles within the lithosphere and the mantle. The processes at the origin of small plates remain unknown. We developed a new approach to explain the plate sizes. We demonstrate that the physics of convection drives it. We applied plate tectonics theory on 3D spherical convection models generating plate-like motions, which give access to a complete survey of data: velocities, viscosity and heat flow. Our data show that (1) the large plates depend on the dominating scale of the convective flow due to the initiation or the shutdown of subductions; (2) the smaller plates are generated thanks to large variability of regional stresses along subduction zone by slab pull and suction influenced by the geometry of trenches. Our results are consistent with the quick reorganizations of back-arc basins occuring synchronously with the modification of subduction zones geometry around the Pacific plate (Sdrolias et al 2004). Hence, we conclude that (1) the decreasing number of small plates in the plate reconstructions back in time is an artifact induced by their short lifetime, that is why they are artificially ignored; (2) the geometry of past trenches is simplified leading to an underestimation of the length of subduction zones.

  2. Dynamics and stress field of the Eurasian plate

    NASA Astrophysics Data System (ADS)

    Warners-Ruckstuhl, Karin; Govers, Rob; Wortel, Rinus

    2013-04-01

    extent, to lithospheric density structure and normal pressure from mantle flow. Stress observations require collision forces on the India-Eurasia boundary of 7.2 - 10.5 T N/m and on the Arabia-Eurasia boundary of 1.3 - 2.3 T N/m. Implication of mechanical equilibrium of the plate is that forces on the contacts with the African and Australian plates amount to 1.0 - 2.1 and 0 - 0.8 T N/m, respectively. The inferred collision forces are part of the best-fitting overall set of forces acting on the Eurasian plate, satisfying constraints from basic mechanics, absolute plate motion and stress field. We use our results to assess the validity of the classical view that the mean elevation of an orogenic plateau can be taken as a measure of the magnitude of the compressive (in this case: collision-related) forces involved. We find that for both the Tibetan and the Iranian plateau, two plateaus with significantly different average elevations, the horizontal force derived from the excess gravitational potential energy (collapse force) is in balance with the collision force, thus confirming the hypothesis of balanced topography.

  3. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    NASA Astrophysics Data System (ADS)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    The Indian Ocean formed as a result of the fragmentation and dispersal of East Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major events such as the Kerguelen, Marion and Reunion hotspot inception and the Indo-Eurasian collision. A broad model for evolution of the Indian Ocean was proposed in the early 1980s. Subsequently, French scientists collected a large amount of magnetic data from the western and southern parts of the Indian Ocean while Indian and Australian scientists collected considerable volumes of magnetic data from the regions of Indian Ocean around their mainlands. Using these data, the Indian, French and Australian researchers independently carried out investigations over different parts of the Indian Ocean and provided improved models of plate kinematics at different sectoral plate boundaries. Under two Indo-French collaborative projects, detailed magnetic investigations were carried out in the Northwestern and Central Indian Ocean by combining the available magnetic data from conjugate regions. Those projects were complemented by additional area-specific studies in the Mascarene, Wharton, Laxmi and Gop basins, which are characterized by extinct spreading regimes. These Indo-French projects provided high resolution and improved plate tectonic models for the evolution of the conjugate Arabian and Eastern Somali basins that constrain the relative motion between the Indian-African (now Indian-Somalian) plate boundaries, and the conjugate Central Indian, Crozet and Madagascar basins that mainly constrain the relative motions of Indian-African (now Capricorn-Somalian) and Indian-Antarctic (now Capricorn-Antarctic) plate boundaries. During the same period, Australian scientists carried out investigations in the southeastern part of the Indian Ocean and provided an improved understanding of the plate tectonic evolution of the Indian

  4. Beyond plate tectonics - Looking at plate deformation with space geodesy

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  5. Earth's Decelerating Tectonic Plates (Invited)

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Rowley, D. B.; Quere, S.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2009-12-01

    We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data (Simmons et al., GJI 2009) to explore the impact of time-dependent changes in mantle buoyancy forces on tectonic plate accelerations. This plate-coupled mantle convection model incorporates a viscosity structure that reconciles both glacial isostatic adjustment and global convection-related data sets (Mitrovica & Forte, EPSL 2004) and it successfully reproduces present-day plate velocities, global surface gravity and topography data. This convection model predicts the recent deceleration of several major plates in the Pacific and Indo-Atlantic hemispheres. Independent verification of these predictions is a fundamental test of the plausibility of the buoyancy forces and rheological structure in the convection model. To this end, we consider marine magnetic anomaly and space geodetic constraints on tectonic plate motions to determine a new global map of present-day rates of change of plate velocities. This map shows that several major plates, such as the Pacific, Africa and Nazca plates are presently decelerating and that they contribute to a globally-averaged slowdown in tectonic plate speeds. These joint geologic-geodetic inferences of plate decelerations are consistent with those predicted by our tomography-based convection model.

  6. Caribbean plate interactions

    SciTech Connect

    Ball, M. )

    1993-02-01

    Vector analysis of plate motions, derived from studies of Atlantic magnetic lineations and fracture zone trends, indicates the following relative movements between the Caribbean, North American, and South American Plates. (1) During Early Jurassic to Early Cretaceous, the North American Plate moved 1900 km westward and 900 km northward relative to the South American Plate. A broad zone including the Caribbean region, i.e., the zone between the North and South America Plates, was a site of left-lateral shear and north-south extension. (2) During Early Cretaceous to Late Cretaceous, the North American Mate moved an additional 1200 km westward relative to South America across this zone. (3) During Late Cretaceous to the end of the Eocene, the North American Plate moved 200 km westward and 400 km northward relative to the South American Plate. (4) From the end of the Eocene to near the end of the Miocene, North America converged on South America some 200 km and moved 100 km eastward relative to it. Through the Mesozoic and earliest Tertiary history of the Caribbean, the region was a shear zone within which left-lateral displacement exceeded 3000 km and north-south extension exceeded 1300 km. In regard to time, 80% of the history of the Caribbean region is one of north-south extension and left-lateral shear. In terms of space, 97% of the shear is left-lateral and the ratio of divergence versus convergence is 7 to 1. Thus, characterizing the Caribbean region, and the Atlantic to its east, as a zone of north-south extension and left-lateral shear, is a fair generalization.

  7. Time Evolution of the Mantle Thermal Structure in the African Hemisphere Before and After the Formation of Pangea

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Zhong, S.

    2008-12-01

    The present-day mantle structure is characterized by the African and Pacific superplumes surrounded by subduction slabs. This structure has been demonstrated to result from dynamic interaction between mantle convection and surface plate motion history in the last 120 Ma. With similar techniques, mantle structure has been constructed back to about 100 Ma ago. However, due to the lack in global plate motion reconstructions further back in time, mantle structure for earlier times is poorly understood, despite of their importance in understanding the continental tectonics and volcanisms. Zhong et al. (2007) suggested that the mantle structures alternate between spherical harmonic degrees-1 and -2 structures, modulated by supercontinent processes. In their model, a supercontinent forms in the hemisphere with cold downwellings, and after supercontinent formation, the cold downwellings are replaced with hot upwellings due to return flows associated with circum-supercontinent subduction. This model implies that the African superplume is younger than 330 Ma when Pangea was formed, which is supported by volcanic activities recorded on continents around Pangea time. By using paleomagnetic-geologically reconstructed continental motions between 500 and 200 Ma in a three-dimensional spherical models of mantle convection, this study, for the first time, investigates the time evolution of mantle structures in the African hemisphere associated with Pangea formation. We show that cold downwellings first develop in the mantle between the colliding Laurentia and Gondwana, and that the downwellings are then replaced by upwellings after the formation of Pangea and as circum-Pangea subduction is initiated, consistent with Zhong et al. (2007) and Li et al. (2008). We find that the return flows in response to the circum-Pangea subduction are responsible for the upwellings below Pangea. We also find that even if the mantle in the African hemisphere is initially occupied by hot upwellings

  8. The moving plate capacitor paradox

    NASA Astrophysics Data System (ADS)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2000-03-01

    For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  9. The Development and Evaluation of a Portion Plate for Youth: A Pilot Study

    ERIC Educational Resources Information Center

    Bohnert, Amy M.; Randall, Edin T.; Tharp, Stephanie; Germann, Julie

    2011-01-01

    Objective: To develop and evaluate a portion plate for adolescents (Nutri-plate). Methods: Sixteen African American adolescents (mean age = 12.94 years; 66% male) were randomized to participate in either plate design or nutrition education sessions. Adolescents' input was used to create the Nutri-plate, and participants' food selection and intake…

  10. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    Intermittent Plate Tectonics A basic premise of Earth Science is that plate tectonics has been continuously operating since it began early in Earth's history. Yet, plate-tectonic theory itself, specifically the collisional phase of the Wilson Cycle, constitutes a process that is capable of stopping all plate motion. The plausibility of a plate-tectonic hiatus is most easily illustrated by considering the expected future of the present-day plate-tectonic configuration. Since the opening of the Atlantic at ~200 ma, the area of the Atlantic basin has been growing at the expense of the Pacific. If this trend continues, relative plate motion models predict that in ~350 my, the Pacific Ocean basin will effectively close leading to widespread continent-continent collisions. Since a continent-continent collision represents the termination of subduction locally, the accumulated effect of all collisions is to stop subduction globally. In this scenario, ridges would then stop spreading and young oceanic lithosphere would cool, reaching a steady-state thickness of 100 km in about 80 my, based on the properties of oceanic lithosphere today. This would constitute the stoppage of plate tectonics. The presumption that plate tectonics never stops in the face of continental collisions is equivalent to requiring that subduction flux is approximately constant through time, such that subduction initiation roughly balances subduction termination. Such a balance then raises several questions about the subduction initiation process. When and how does subduction initiate? Is there a detectible relationship between subduction cessation and subduction initiation? We can gain some guidance into these questions by examining the plate motion history over the last 200 my. Subduction initiation has occurred over the last 80 my in three intra- oceanic subduction zones: Aleutians, Marianas-Izu-Bonin and Tonga-Kermadec in the Pacific basin. In these cases, however, subduction initiation would not

  11. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  12. Bayesian noise-reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ˜20 Ma: Implications for Nubia/Somalia relative motion

    NASA Astrophysics Data System (ADS)

    Iaffaldano, Giampiero; Hawkins, Rhys; Sambridge, Malcolm

    2014-04-01

    of Nubia/Somalia relative motion since the Early Neogene is of particular importance in the Earth Sciences, because it (i) impacts on inferences on African dynamic topography; and (ii) allows us to link plate kinematics within the Indian realm with those within the Atlantic basin. The contemporary Nubia/Somalia motion is well known from geodetic observations. Precise estimates of the past-3.2-Myr average motion are also available from paleo-magnetic observations. However, little is known of the Nubia/Somalia motion prior to ˜3.2 Ma, chiefly because the Southwest Indian Ridge spread slowly, posing a challenge to precisely identify magnetic lineations. This also makes the few observations available particularly prone to noise. Here we reconstruct Nubia/Somalia relative motions since ˜20 Ma from the alternative plate-circuit Nubia-Arabia-Somalia. We resort to trans-dimensional hierarchical Bayesian Inference, which has proved effective in reducing finite-rotation noise, to unravel the Arabia/Somalia and Arabia/Nubia motions. We combine the resulting kinematics to reconstruct the Nubia/Somalia relative motion since ˜20 Ma. We verify the validity of the approach by comparing our reconstruction with the available record for the past ˜3.2 Myr, obtained through Antarctica. Results indicate that prior to ˜11 Ma the total motion between Nubia and Somalia was faster than today. Furthermore, it featured a significant strike-slip component along the Nubia/Somalia boundary. It is only since ˜11 Ma that Nubia diverges away from Somalia at slower rates, comparable to the present-day one. Kinematic changes of some 20% might have occurred in the period leading to the present-day, but plate-motion steadiness is also warranted within the uncertainties.

  13. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  14. Downgoing plate controls on overriding plate deformation in subduction zones

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Davies, Rhodri; Goes, Saskia; Davies, Huw; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Although subduction zones are convergent margins, deformation in the upper plate can be extensional or compressional and tends to change through time, sometimes in repeated episodes of strong deformation, e.g, phases of back-arc extension. It is not well understood what factors control this upper plate deformation. We use the code Fluidity, which uses an adaptive mesh and a free-surface formulation, to model a two-plate subduction system in 2-D. The model includes a composite temperature- and stress-dependent rheology, and plates are decoupled by a weak layer, which allows for free trench motion. We investigate the evolution of the state of stress and topography of the overriding plate during the different phases of the subduction process: onset of subduction, free-fall sinking in the upper mantle and interaction of the slab with the transition zone, here represented by a viscosity contrast between upper and lower mantle. We focus on (i) how overriding plate deformation varies with subducting plate age; (ii) how spontaneous and episodic back-arc spreading develops for some subduction settings; (iii) the correlation between overriding plate deformation and slab interaction with the transition zone; (iv) whether these trends resemble observations on Earth.

  15. Computing relative plate velocities: a primer

    SciTech Connect

    Bevis, M.

    1987-08-01

    Standard models of present-day plate motions are framed in terms of rates and poles of rotation, in accordance with the well-known theorem due to Euler. This article shows how computation of relative plate velocities from such models can be viewed as a simple problem in spherical trigonometry. A FORTRAN subroutine is provided to perform the necessary computations.

  16. The transition from linear to diffuse plate boundary in the Azores-Gibraltar region: results from a thin-sheet model

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, Ivone; Fernàndez, Manel; Torne, Montse; Bird, Peter

    2001-10-01

    We use the thin-sheet plane-stress approach to study the present-day dynamic behavior of the plate boundary between Eurasia and Africa along the Azores-Gibraltar region. This plate boundary, which extends from the Azores triple junction to the Gibraltar strait, shows a tectonic regime that changes from transtension in the west to transpression in the east, with a strike-slip motion in its central segment. Seismological data reveal that the western and central segments are currently marked by a linear series of earthquakes indicating that the plate boundary is located in a narrow zone. In contrast, the eastern segment is not so well defined and deformation spreads over a much broader area. To apply the thin-sheet approach, we combined heat flow, elevation and crustal thickness data to calculate the steady-state geotherm and the total strength of the lithosphere. Several models with different fault friction coefficients and geometries at the eastern segment of the plate boundary were tested. Results are compared with the maximum compressive stress directions from the World Stress Map, and the calculated seismic strain rates and slip vectors from earthquake data. The best fitting models are consistent with the rotation pole of Argus et al. [D.F. Argus et al., J. Geophys. Res. 94 (1989) 5585-5602], and show that the rheological behavior of the plate boundary must necessarily change from the western and central segments to the eastern segment. The diffuse character of the plate boundary east of the Gorringe Bank is dominated by the transition from oceanic to continental lithosphere, the weakness of the Alboran domain, and the convergence between the African and the Eurasian plates. The displacement of the Alboran domain relative to the African plate may play a major role in stress propagation through the Iberian Peninsula and its Atlantic margin.

  17. The rapid drift of the Indian tectonic plate.

    PubMed

    Kumar, Prakash; Yuan, Xiaohui; Kumar, M Ravi; Kind, Rainer; Li, Xueqing; Chadha, R K

    2007-10-18

    The breakup of the supercontinent Gondwanaland into Africa, Antarctica, Australia and India about 140 million years ago, and consequently the opening of the Indian Ocean, is thought to have been caused by heating of the lithosphere from below by a large plume whose relicts are now the Marion, Kerguelen and Réunion plumes. Plate reconstructions based on palaeomagnetic data suggest that the Indian plate attained a very high speed (18-20 cm yr(-1) during the late Cretaceous period) subsequent to its breakup from Gondwanaland, and then slowed to approximately 5 cm yr(-1) after the continental collision with Asia approximately 50 Myr ago. The Australian and African plates moved comparatively less distance and at much lower speeds of 2-4 cm yr(-1) (refs 3-5). Antarctica remained almost stationary. This mobility makes India unique among the fragments of Gondwanaland. Here we propose that when the fragments of Gondwanaland were separated by the plume, the penetration of their lithospheric roots into the asthenosphere were important in determining their speed. We estimated the thickness of the lithospheric plates of the different fragments of Gondwanaland around the Indian Ocean by using the shear-wave receiver function technique. We found that the fragment of Gondwanaland with clearly the thinnest lithosphere is India. The lithospheric roots in South Africa, Australia and Antarctica are between 180 and 300 km deep, whereas the Indian lithosphere extends only about 100 km deep. We infer that the plume that partitioned Gondwanaland may have also melted the lower half of the Indian lithosphere, thus permitting faster motion due to ridge push or slab pull.

  18. Locomotion of a flapping flexible plate

    NASA Astrophysics Data System (ADS)

    Hua, Ru-Nan; Zhu, Luoding; Lu, Xi-Yun

    2013-12-01

    The locomotion of a flapping flexible plate in a viscous incompressible stationary fluid is numerically studied by an immersed boundary-lattice Boltzmann method for the fluid and a finite element method for the plate. When the leading-edge of the flexible plate is forced to heave sinusoidally, the entire plate starts to move freely as a result of the fluid-structure interaction. Mechanisms underlying the dynamics of the plate are elucidated. Three distinct states of the plate motion are identified and can be described as forward, backward, and irregular. Which state to occur depends mainly on the heaving amplitude and the bending rigidity of the plate. In the forward motion regime, analysis of the dynamic behaviors of the flapping flexible plate indicates that a suitable degree of flexibility can improve the propulsive performance. Moreover, there exist two kinds of vortex streets in the downstream of the plate which are normal and deflected wake. Further the forward motion is compared with the flapping-based locomotion of swimming and flying animals. The results obtained in the present study are found to be consistent with the relevant observations and measurements and can provide some physical insights into the understanding of the propulsive mechanisms of swimming and flying animals.

  19. Plate tectonics, damage and inheritance.

    PubMed

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  20. Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data

    NASA Astrophysics Data System (ADS)

    Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.

    2014-12-01

    Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and

  1. Proper motion survey with the forty-eight inch Schmidt telescope. 33: Proper motions for 3478 faint stars

    NASA Technical Reports Server (NTRS)

    Luyten, W. J.

    1972-01-01

    Data for the motions of 3478 stars are presented. The data were obtained with the automated-computerized plate scanner and measuring machine. Only data for those stars for which no earlier determination of proper motions are included.

  2. Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the Calabria subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Schellart, Wouter P.; Duarte, João. C.

    2015-10-01

    In nature, subducting slabs and overriding plate segments bordering subduction zones are generally embedded within larger plates. Such large plates can impose far-field boundary conditions that influence the style of subduction and overriding plate deformation. Here we present dynamic laboratory models of progressive subduction in three-dimensional space, in which the far-field boundary conditions at the trailing edges of the subducting plate (SP) and overriding plate (OP) are varied. Four configurations are presented: Free (both plates free), SP-Fixed, OP-Fixed, and SP-OP-Fixed. We investigate their impact on the kinematics and dynamics of subduction, particularly focusing on overriding plate deformation. The results indicate that the variation in far-field boundary conditions has an influence on the slab geometry, subduction partitioning, and trench migration partitioning. Our models also indicate that in natural (narrow) subduction zones, assuming a homogeneous overriding plate, the formation of back-arc basins (e.g., Tyrrhenian Sea, Aegean Sea, and Scotia Sea) is generally expected to occur at a comparable location (250-700 km from the trench), irrespective of the boundary condition. In addition, our models indicate that the style of fore-arc deformation (shortening or extension) is influenced by the mobility of the overriding plate through controlling the force normal to the subduction zone interface (trench suction). Our geodynamic model that uses the SP-OP-Fixed setup is comparable to the Calabria subduction zone with respect to subduction kinematics, slab geometry, trench curvature, and accretionary configuration. Furthermore, the model can explain back-arc and fore-arc extension at the Calabria subduction zone since the latest middle Miocene as a consequence of subduction of the narrow Calabrian slab and the immobility of the subducting African plate and overriding Eurasian plate. This setting induced strong trench suction, driving fore-arc extension, and

  3. Tectonics of oblique plate boundary systems

    NASA Astrophysics Data System (ADS)

    Díaz-Azpiroz, Manuel; Brune, Sascha; Leever, Karen A.; Fernández, Carlos; Czeck, Dyanna M.

    2016-12-01

    The relative displacement between lithospheric plates normally results in obliquely deforming plate boundaries. This is simply caused by the fact that, on plate tectonics basis, irregularly shaped plate boundaries are rarely perpendicular or parallel to small-circle rotation paths, which describe plate motion on a sphere (Fig. 1a). Global current relative plate motions estimated from geological data (DeMets et al., 2010; Argus et al., 2011) and GPS measurements (e.g., Kreemer et al., 2003; Argus et al., 2010) provide insight to the prevalent degrees of obliquity on Earth's surface. Based on these global data sets, Philippon and Corti (2016), statistically show that current orthogonal boundaries (obliquity angle smaller than 10°) represent around 8% of the total boundary length whereas strike-slip boundaries (obliquity angle larger than 80°) are encountered in < 10% of the total boundary length. Therefore, around 80% of active plate boundaries present oblique relative motions. Furthermore, changes in plate kinematics leading to migration or jumps in the rotation poles necessarily cause obliquity along former pure strike-slip or convergent/divergent boundaries (Fig. 1b).

  4. African Aesthetics

    ERIC Educational Resources Information Center

    Abiodun, Rowland

    2001-01-01

    No single traditional discipline can adequately supply answers to the many unresolved questions in African art history. Because of the aesthetic, cultural, historical, and, not infrequently, political biases, already built into the conception and development of Western art history, the discipline of art history as defined and practiced in the West…

  5. African Pentecostalism

    ERIC Educational Resources Information Center

    Garrard, David J.

    2009-01-01

    The diversity of African Pentecostalism, its early colonial and missionary history and its current characteristics are described and analysed. Reference is made to methods of training and forms of leadership, and suggestions are made about the reasons for its growth and persistence. (Contains 19 notes.)

  6. Plate electronics

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Using a Cray T3D supercomputer and a simple assumption about the physical character of Earth's mantle, a pair of researchers from the University of California at Berkeley have built a computer model that may help explain why the planet's tectonic plates look the way they do.In creating a three-dimensional numerical simulation of convection in the Earth's interior, UC researchers Hans-Peter Bunge and Mark Richards simplified their model to account for just one major physical effect: that the viscosity of the mantle increases with depth. Reviewing some recent—but not yet widely accepted—seismic data, Bunge and Richards assumed for the sake of the model that the viscosity of the mantle increases by a factor of 30 from the lithosphere to the core-mantle boundary. Relying on that assumption, the pair ran the model for nearly three weeks on a supercomputer at Los Alamos National Laboratory and found that the simulation produced an effect similar to what we see on the surface of Earth. The model produced a surface paralleling the actual width of plates and the geometry of the plate boundaries.

  7. Minimal Role of Basal Shear Tractions in Driving Nubia-Somalia Divergence Across the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Calais, E.; Iaffaldano, G.; Flesch, L. M.

    2012-12-01

    The Nubian and Somalian plates actively diverge along the topographically high, ~5000 km long East African Rift System (EARS). As no major subduction zones bound Africa, one can assume that the forces driving the Nubia-Somalia plate system result primarily from mantle buoyancies and lateral variation in lithospheric gravitational potential energy. Images from seismic tomography and convection models suggest active mantle flow beneath Africa. However, the contribution from large-scale convection to the force balance driving plate divergence across the EARS remains in question. In this work we investigate the impact of mantle shear tractions on the dynamics of Nubia-Somalia divergence across the EARS. We compare surface motions inferred from GPS observations with strain rates and velocities predicted from dynamic models where basal shear stresses are (1) derived from forward mantle circulation models and (2) inferred from stress field boundary conditions that balance buoyancy forces in the African lithosphere. Upper mantle anisotropy derived from seismic observations beneath Africa provide independent constraints for the latter. Preliminary results suggest that basal shear tractions play a minor role in the dynamics of Nubia-Somalia divergence along the EARS. This result implies mantle-lithosphere decoupling, possibly promoted by a low viscosity asthenosphere. We corroborate the robustness of our results with estimates of upper mantle viscosity based on local upper mantle temperature estimates and rheological parameters obtained from laboratory experiments.

  8. The Biggest Plates on Earth. Submarine Ring of Fire--Grades 5-6. Plate Tectonics.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach how tectonic plates move, what some consequences of this motion are, and how magnetic anomalies document the motion at spreading centers do. The activity provides learning objectives, a list of needed materials, key vocabulary words, background information, day-to-day procedures, internet connections, career…

  9. Impact on multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Kim, B. S.; Moon, F. C.

    1977-01-01

    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated.

  10. Were aspects of Pan-African deformation linked to Iapetus opening?

    NASA Astrophysics Data System (ADS)

    Grunow, Anne; Hanson, Richard; Wilson, Terry

    1996-12-01

    The convergence recorded in some Pan-African deformational belts (sensu lato) in South America, Africa, Madagascar, southern India, Sri Lanka, and Antarctica is temporally correlated with opening of the Iapetus ocean. We propose a model in which continent-continent collision and closure of the Adamastor ocean between the Amazon West African Rio de La Plata cratons and the São Francisco Congo Kalahari cratons in the late Neoproterozoic are linked to rifting and orthogonal spreading between Laurentia and the South American cratons. By the Early Cambrian, the cratons in South America and Africa were assembled as West Gondwana. Closure of the Mozambique ocean, which appears to have extended across Antarctica between Lützow-Holm Bay and the Shackleton Range, resulted in continued convergence between the Congo Kalahari Queen Maud Land block and East Gondwana in the Cambrian. Coeval deformation in the Transantarctic Mountains may be related to the obliquity of the Antarctic margin relative to Iapetus spreading directions. Initiation of voluminous arc magmatism along the paleo-Pacific margin of Gondwana in the Early Cambrian is broadly synchronous with the cessation of intra-Gondwana Pan-African deformation, possibly reflecting a change in plate motions at the time of final Gondwana assembly. The new subduction regime along the Gondwana margin in the Early Cambrian may be linked to the closure of the Iapetus ocean basin.

  11. African-American Biography.

    ERIC Educational Resources Information Center

    Martin, Ron

    1995-01-01

    Suggests sources of information for African American History Month for library media specialists who work with students in grades four through eight. Gale Research's "African-American Reference Library," which includes "African-America Biography,""African-American Chronology," and "African-American Almanac,"…

  12. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  13. Chinese hyper-susceptibility to vection-induced motion sickness

    NASA Technical Reports Server (NTRS)

    Stern, Robert M.; Hu, Senqi; Leblanc, Ree; Koch, Kenneth L.

    1993-01-01

    Little is known about the factors that control individual differences in susceptible to motion sickness. A serendipitous observation in our laboratory that most Chinese subjects become motion sick prompted this study. We used a rotating optokinetic drum to provoke motion sickness and compared gastric responses and symptom reports of Chinese, European-American, and African-American subjects. There was no difference in the responses of European-American and African-American subjects; however, Chinese subjects showed significantly greater disturbances in gastric activity and reported significantly more severe symptoms. We suggest that this hypersusceptibility presents a natural model for the study of physiological mechanisms of nausea and other symptoms of motion sickness.

  14. African Trypanosomiasis

    DTIC Science & Technology

    2011-06-01

    infection by protozoan hemo- flagellates of the Trypanosoma brucei complex, 2 subspe- cies of which cause disease in humans: Trypanosoma bru- cei gambiense...public release; distribution unlimited 13. SUPPLEMENTARY NOTES See also ADA545141. Chapter 3 from e-book, Topics on the Pathology of Protozoan and...the brief ferry crossing. 2 3 • Topics on The paThology of proTozoan and invasive arThropod diseases Three severe epidemics of African trypanosomiasis

  15. Current motion and short-term deformations in the Suez Sinai area from GPS observations

    NASA Astrophysics Data System (ADS)

    Riguzzi, Federica; Pietrantonio, Grazia; Piersanti, Antonio; Mahmoud, Salah M.

    2006-07-01

    We analyze observations from eight GPS campaigns carried out between 1997 and 2005 on a network of 13 sites in the Suez-Sinai area, where separation between the African and the Arabian plates takes place. This is the key area to understand if and in which way Sinai behaves like a sub-plate of the African plate and the role played by seismic and geodetic (long-term) deformation release. Our analysis shows that, on average, the Suez-Sinai area motion, in terms of ITRF00 velocities, matches the African plate motion defined by the NNR-NUVEL-1A model. The horizontal principal strain rate axes estimated separately in the Gulf of Suez area and in the northern Sinai vary from compression across the Gulf (-2.2 ± 1.2) × 10 -8 year -1 to NE extension (1.0 ± 1.5) × 10 -8 year -1 in the North, showing the presence of two distinct domains, so that in our opinion Sinai cannot be considered simply a unique rigid block. The analysis of GPS baseline length variations shows short-term deformations across the Gulf of Suez, reaching up a maximum value of more than 1 cm in 8 years. Since current geodynamical models do not predict significant tectonic deformation in this area, we work under the hypothesis that a contribute may be expected by post-seismic relaxation effects. Under this hypothesis, we compare the baselines length variations with the post-seismic relaxation field associated with five major local earthquakes occurred in the area, testing two different viscoelastic models. Our results show that the detected short-term deformations are better modeled for viscosity values of 10 18 Pa s in the lower crust and 10 20 Pa s in the asthenosphere. However, since the modeled post-seismic effect results modest and a certain amount of the detected deformation is not accounted for, we think that an improved modeling should take into account the lateral heterogeneities of crust and upper mantle structures.

  16. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  17. Motion Predicts Clinical Callus Formation

    PubMed Central

    Elkins, Jacob; Marsh, J. Lawrence; Lujan, Trevor; Peindl, Richard; Kellam, James; Anderson, Donald D.; Lack, William

    2016-01-01

    Background: Mechanotransduction is theorized to influence fracture-healing, but optimal fracture-site motion is poorly defined. We hypothesized that three-dimensional (3-D) fracture-site motion as estimated by finite element (FE) analysis would influence callus formation for a clinical series of supracondylar femoral fractures treated with locking-plate fixation. Methods: Construct-specific FE modeling simulated 3-D fracture-site motion for sixty-six supracondylar femoral fractures (OTA/AO classification of 33A or 33C) treated at a single institution. Construct stiffness and directional motion through the fracture were investigated to assess the validity of construct stiffness as a surrogate measure of 3-D motion at the fracture site. Callus formation was assessed radiographically for all patients at six, twelve, and twenty-four weeks postoperatively. Univariate and multivariate linear regression analyses examined the effects of longitudinal motion, shear (transverse motion), open fracture, smoking, and diabetes on callus formation. Construct types were compared to determine whether their 3-D motion profile was associated with callus formation. Results: Shear disproportionately increased relative to longitudinal motion with increasing bridge span, which was not predicted by our assessment of construct stiffness alone. Callus formation was not associated with open fracture, smoking, or diabetes at six, twelve, or twenty-four weeks. However, callus formation was associated with 3-D fracture-site motion at twelve and twenty-four weeks. Longitudinal motion promoted callus formation at twelve and twenty-four weeks (p = 0.017 for both). Shear inhibited callus formation at twelve and twenty-four weeks (p = 0.017 and p = 0.022, respectively). Titanium constructs with a short bridge span demonstrated greater longitudinal motion with less shear than did the other constructs, and this was associated with greater callus formation (p < 0.001). Conclusions: In this study of

  18. Motion analysis report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.

    1985-01-01

    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations.

  19. Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Stein, Seth

    1990-01-01

    A model for the present-day motion of the Rivera plate relative to the North America, Cocos, and Pacific plates is derived using new data from the Pacific-Rivera rise and Rivera transform fault, together with new estimates of Pacific-Rivera motions. The results are combined with the closure-consistent NUVEL-1 global plate motion model of DeMets et al. (1990) to examine present-day deformation in southwestern Mexico. The analysis addresses several questions raised in previous studies of the Rivera plate. Namely, do plate motion data from the northern East Pacific rise require a distinct Rivera plate? Do plate kinematic data require the subduction of the Rivera plate along the seismically quiescent Acapulco trench? If so, what does the predicted subduction rate imply about the earthquake recurrence interval in the Jalisco region of southwestern Mexico?

  20. Liquid repellency by a moving plate

    NASA Astrophysics Data System (ADS)

    Bouillant, Ambre; Anais Gauthier Team; David Quere Team; Christophe Clanet Team

    2016-11-01

    Moving solids can repel impacting drops, owing to their motion. Provided the solid velocity is larger than a threshold value, air entrained at the vicinity of the moving plate prevents the drop from wetting, and makes it bounce. In addition, the rebound is oblique, which enhances the evacuation of liquid. We discuss experiments and models on this theme, and extend them to case of small droplets (such as formed in a spray) found to be even more efficiently repelled by the moving plate.

  1. Locomotion of a flapping flexible plate in ground effect

    NASA Astrophysics Data System (ADS)

    Lu, Xi-Yun; Tang, Chao

    2015-11-01

    Locomotion of a three-dimensional flapping flexible plate in ground effect is studied numerically by the coupled solution of the fluid flow and the plate motion. When the leading-edge of the flexible plate is forced to take a vertical oscillation near a ground, the plate moves freely due to the fluid-structure interaction. Mechanisms underlying the dynamics of the plate near the ground are elucidated. The ground effect can enhance propulsive speed and improve propulsive efficiency, especially in the medium bending stiffness regime. The analysis of unsteady dynamics and deformation of plate indicates that the ground effect becomes weaker for more flexible plate. Therefore it is found that a suitable degree of flexibility can improve the propulsive performance in ground effect. The vortical structure and pressure distribution around the plate and their connection with the dynamics of the plate are also investigated.

  2. Towards modelling the evolution of intra plate stress: the Eurasian plate 20 Ma.

    NASA Astrophysics Data System (ADS)

    Quéré, Sandrine; Ruckstuhl, Karin; Wortel, Rinus; Govers, Rob; Hochard, Cyril; Stampfli, Gérard

    2010-05-01

    In this study, we investige the evolution of the intra plate stress field. We use the classical characterisation of forces acting regionally on a plate such as 'slab pull/suction', 'ridge push' and 'mantle drag' as used by Forsyth & Uyeda (1975), Chapple & Tullis (1977) and later by Wortel et al. (1991) and Govers & Meijer (2001). So far, the interaction between the lithosphere and the underlying mantle flow was oversimplified and implemented via a coupling cœfficient in the direction of the plate motion and we propose improving this specific interaction. As the shear stress field at the base of the plates is unknown in the past, we propose using a mantle flow simulation induced by the imposition of past plate motions on top of a 3D spherical mantle convective code. To that purpose, we employ the new plate motion reconstruction developed by Stampfli et al. (2008) and a 3D convective code where plates are dynamically coupled to the mantle (Quéré & Forte, 2006). The first plate on which we apply this method is the Eurasian plate as Eurasia is a large plate with a small velocity (not attached to its own subduction zone) and the debate on the main driving forces acting on Eurasia is still going on. The stress field 20 Ma resulting from all plate tectonic forces is calculated by assuming mechanical equilibrium in an homogeneous elastic shell using the plane stress approximation. As direct stress indicators for the past are rare, the predicted paleo-stress field is compared to pertinent data from orogens and extensional basins which will provide new clues to oil exploration teams.

  3. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  4. Accurate Simulation of Acoustic Emission Sources in Composite Plates

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Gorman, M. R.

    1994-01-01

    Acoustic emission (AE) signals propagate as the extensional and flexural plate modes in thin composite plates and plate-like geometries such as shells, pipes, and tubes. The relative amplitude of the two modes depends on the directionality of the source motion. For source motions with large out-of-plane components such as delaminations or particle impact, the flexural or bending plate mode dominates the AE signal with only a small extensional mode detected. A signal from such a source is well simulated with the standard pencil lead break (Hsu-Neilsen source) on the surface of the plate. For other sources such as matrix cracking or fiber breakage in which the source motion is primarily in-plane, the resulting AE signal has a large extensional mode component with little or no flexural mode observed. Signals from these type sources can also be simulated with pencil lead breaks. However, the lead must be fractured on the edge of the plate to generate an in-plane source motion rather than on the surface of the plate. In many applications such as testing of pressure vessels and piping or aircraft structures, a free edge is either not available or not in a desired location for simulation of in-plane type sources. In this research, a method was developed which allows the simulation of AE signals with a predominant extensional mode component in composite plates requiring access to only the surface of the plate.

  5. African Outreach Workshop 1974.

    ERIC Educational Resources Information Center

    Schmidt, Nancy J.

    This report discusses the 1974 African Outreach Workshop planned and coordinated by the African Studies Program at the University of Illinois at Urbana-Champaign. Its major aim was to assist teachers in developing curriculum units on African using materials available in their local community. A second aim was for the African Studies Program to…

  6. Africans in America.

    ERIC Educational Resources Information Center

    Hart, Ayanna; Spangler, Earl

    This book introduces African-American history and culture to children. The first Africans in America came from many different regions and cultures, but became united in this country by being black, African, and slaves. Once in America, Africans began a long struggle for freedom which still continues. Slavery, the Civil War, emancipation, and the…

  7. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  8. Growth Plate Fractures

    MedlinePlus

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for injury. But because they ... to a unique injury called a growth plate fracture. Growth plates are areas of cartilage located near ...

  9. Dynamics of an inverted flexible plate in a uniform flow

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Liu, Nan-Sheng; Lu, Xi-Yun

    2015-07-01

    The dynamics of an inverted flexible plate with a free leading-edge and a fixed trailing-edge in a uniform flow has been studied numerically by an immersed boundary-lattice Boltzmann method for the fluid flow and a finite element method for the plate deformation. Mechanisms underlying the dynamics of the fluid-plate system are elucidated systematically. A series of distinct states of the plate deformation and motion are identified and can be described as straight, flapping, deflected, deflected-flapping, and asymmetric-flapping states. Which state to occur depends mainly on the bending stiffness and aspect ratio of the plate. The forces exerted on the plate and the elastic strain energy of the plate are analyzed. It is found that the flapping state can improve the conversion of fluid kinetic energy to elastic strain energy. In addition, the effects of the mass ratio of the plate and the fluid, the Reynolds number, and the angle of attack of the uniform flow on the dynamics and the elastic strain energy of flexible plate are also investigated in detail. The vortical structures around the plate are given to discuss the connection of the evolution of vortices with the plate deformation and motion. The results obtained in this study provide physical insight into the understanding of the mechanisms on the dynamics of the fluid-plate system.

  10. Neogene Caribbean plate rotation and associated Central American tectonic evolution

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Burke, K.

    1983-01-01

    A theoretical model of the opening of the Cayman Trough is developed on the basis of geological evidence from a wide area. It is proposed that strike slip motion began about 30 Myr ago and proceeded at a rate of 37 + or - 6 mm/yr for a total of 1100 km of relative plate displacement, and that Central America Underwent an anticlockwise rotation with internal plate deformation. Maps of the reconstructed motion are provided.

  11. East African and Kuunga Orogenies in Tanzania - South Kenya

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Hauzenberger, C. A.; Tenczer, V.

    2012-04-01

    Tanzania and southern Kenya hold a key position for reconstructing Gondwana consolidation because here different orogen belts with different tectonic styles interfere. The older, ca. 650-620 Ma East African Orogeny resulted from the amalgamation of arc terranes in the northern Arabian-Nubian Shield (ANS) and continental collision between East African pieces and parts of the Azania terrane in the south (Collins and Pisarevsky, 2005). The change form arc suturing to continental collision settings is found in southern Kenya where southernmost arcs of the ANS conjoin with thickened continental margin suites of the Eastern Granulite Belt. The younger ca. 570-530 Ma Kuunga orogeny heads from the Damara - Zambesi - Irumide Belts (De Waele et al., 2006) over Tanzania - Mozambique to southern India and clashes with the East African orogen in southern-central Tanzania. Two transitional orogen settings may be defined, (1) that between island arcs and inverted passive continental margin within the East African Orogen and, (2) that between N-S trending East African and W-E trending Kuungan orogenies. The Neoproterozoic island arc suites of SE-Kenya are exposed as a narrow stripe between western Azania and the Eastern Granulite belt. This suture is a steep, NNW stretched belt that aligns roughly with the prominent southern ANS shear zones that converge at the southern tip of the ANS (Athi and Aswa shear zones). Oblique convergence resulted in low-vorticity sinstral shear during early phases of deformation. Syn-magmatic and syn-tectonic textures are compatible with deformation at granulite metamorphic conditions and rocks exhumed quickly during ongoing transcurrent motion. The belt is typified as wrench tectonic belt with horizontal northwards flow of rocks within deeper portions of an island arc. The adjacent Eastern Granulite Nappe experienced westward directed, subhorizontal, low-vorticity, high temperature flow at partly extreme metamorphic conditions (900°C, 1.2 to 1.4 GPa

  12. Inversion for the driving forces of plate tectonics

    NASA Technical Reports Server (NTRS)

    Richardson, R. M.

    1983-01-01

    Inverse modeling techniques have been applied to the problem of determining the roles of various forces that may drive and resist plate tectonic motions. Separate linear inverse problems have been solved to find the best fitting pole of rotation for finite element grid point velocities and to find the best combination of force models to fit the observed relative plate velocities for the earth's twelve major plates using the generalized inverse operator. Variance-covariance data on plate motion have also been included. Results emphasize the relative importance of ridge push forces in the driving mechanism. Convergent margin forces are smaller by at least a factor of two, and perhaps by as much as a factor of twenty. Slab pull, apparently, is poorly transmitted to the surface plate as a driving force. Drag forces at the base of the plate are smaller than ridge push forces, although the sign of the force remains in question.

  13. Plate-induced Miocene extension in southern California

    SciTech Connect

    Stuart, W.D. Univ. of California, Santa Barbara, CA )

    1992-01-01

    Miocene crustal extension in southern California can be explained by the interaction of tectonic plates in relative motion. The Pacific, Juan de Fuca, and Farallon (Guadalupe) plates are represented by flat elastic plates surrounded by an infinite elastic plate, the eastern part of which represents the North America plate. Forcing is by assigned subduction pull, and tractions at all plate boundaries satisfy a viscous constitutive law. Plate bottoms are stress-free. In the first part of the solution plate velocities and boundary tractions are found from static equilibrium. Then principal horizontal stresses and strains in plate interiors caused by tractions and subduction pull are found by a boundary element procedure. Using plate boundary geometry from Stock and Hodges for early- and mid-Miocene times, it is found that the portion of the North America plate margin between the Mendocino and Rivera triple junctions has maximum extensional strain directed westward. This result is generally consistent with directions associated with metamorphic core complex formation in southern California. The model is also consistent with extensional strain and rotation sense of crustal blocks in the vicinity of Los Angeles, as inferred by Luyendyk and others from paleomagnetic data. In the model the greatest extensional strain of the North America plate occurs near the Pacific-North America transform, in the area above the absent Farallon slab. Extension direction varies from northwest to southwest according to plate geometry, subduction pull (Juan de Fuca and Guadalupe), and plate boundary tractions.

  14. Absolute Plate Velocities from Seismic Anisotropy: Importance of Correlated Errors

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Zheng, L.; Kreemer, C.

    2014-12-01

    The orientation of seismic anisotropy inferred beneath the interiors of plates may provide a means to estimate the motions of the plate relative to the deeper mantle. Here we analyze a global set of shear-wave splitting data to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. The errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11º Ma-1 (95% confidence limits) right-handed about 57.1ºS, 68.6ºE. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2°) differs insignificantly from that for continental lithosphere (σ=21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4°) than for continental lithosphere (σ=14.7°). Two of the slowest-moving plates, Antarctica (vRMS=4 mm a-1, σ=29°) and Eurasia (vRMS=3 mm a-1, σ=33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈5 mm a-1 to result in seismic anisotropy useful for estimating plate motion.

  15. High-intensity acoustic tests of a thermally stressed plate

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1991-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  16. Geometrically Nonlinear Transient Analysis of Laminated Composite Plates.

    DTIC Science & Technology

    1982-03-01

    theory (CPT), in which normals to the midsurface before deformation are assumed to remain straight and normal to the midsurface after deformation (i.e...the plate are negligible when compared to the inplane stresses, and normals to the plate midsurface before deformation remain straight but not...necessarily normal to the midsurface after deformation. $ Equations of motion The plate under consideration is composed of a finite number of orthotropic

  17. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  18. Motion Sickness

    MedlinePlus

    ... but it is more common in children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling and cold sweats. It can then lead to dizziness and nausea and vomiting. Your brain senses movement by getting signals from your inner ears, eyes, ...

  19. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  20. Uplift of Zagros Mountains slows plate convergence

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)

  1. Plate kinematics of the central Atlantic during the Oligocene and early Miocene

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Macchiavelli, Chiara

    2016-04-01

    A new plate motions model for the northwest Africa-North America Plate pair during the Oligocene and early Miocene is presented. The model is accompanied by a high-resolution isochron map for the central Atlantic region, resulting from a re-examination of 423 ship tracks from the NGDC data base for the area between the 15°20' FZ and the Azores triple junction. A new digital model of fracture zones for this region and a set of 309 magnetic profiles crossing the Oligocene to recent oceanic crust within the study area allowed to determine accurate finite reconstruction poles for the North America-northwest Africa conjugate plate pair between the early Miocene (Chron 6) and the early Oligocene (Chron 13). For times older than Chron 7 (˜25 Ma), the finite reconstruction poles were calculated using a reliable data set coming exclusively from the region south of the Canary Islands FZ (˜32°N), which allowed to test the rigidity of the northwest African oceanic lithosphere during the Oligocene-early Miocene phase of Atlas orogeny. A comparison of theoretical magnetic isochrons with observed magnetic lineations systematically shows that anomalously high spreading rates occurred in the area north of the Canary Islands FZ before Chron 7, thereby suggesting that the formation of the Atlas mountain, rather than being a localized intracontinental process, was logically linked to the central Atlantic spreading history. Thus, an independent Moroccan Plate could have existed during the Oligocene-early Miocene time interval, which included both the oceanic lithosphere north of the Canary Islands FZ and the northern Maghrebian areas of Morocco, Algeria and Tunisia. In this eventuality, the Atlas mountain belt should be reinterpreted as a giant flower structure associated with dextral transpression.

  2. Creation of the Cocos and Nazca plates by fission of the Farallon plate

    NASA Astrophysics Data System (ADS)

    Lonsdale, Peter

    2005-08-01

    Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos-Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30-20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1-2 km high and parallel to "absolute" Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific-Nazca rise. (ii) For 1-2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly ("Nazca-like") course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos

  3. On the Origin of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Bercovici, D.

    2014-12-01

    The emergence of plate tectonics was Earth's defining moment. How and when platetectonics started is shrouded in mystery because of the paucity of observations in theArchean as well the challenge of understanding how plates are generated. The damage theoryof lithospheric weakening by grain-reduction provides a physical framework for plategeneration. This model builds on grain-scale processes to elucidate planetary-scaletectonics, and is consistent with lab and field observations of polycrystalline rocks andlithospheric shear zones. The grain-damage model accounts for the evolution of damage andhealing (by grain growth) at various planetary conditions, hence predicts plate boundaryformation and longevity, and how they depend on surface environment. For example, the onset of prototectonics is predicted to require clement conditions tokeep healing from erasing weak zones; conversely, cool conditions possibly requiredtectonics to draw down primordial CO2. Thus whether tectonics preceded a cool climate (andwater) or vice versa is immaterial as they likely needed each other or neither wouldexist. Sparse evidence that prototectonics co-initiated with liquid water hints at thelink between tectonics, water and surface conditions. The establishment of wide-spread plate tectonics started between >4Ga and 2.7Ga, and mayhave taken over a billion years to develop. Under Earth-like conditions, combininggrain-damage with intermittent Archean protosubduction produces persistent weak zones thataccumulate to yield well developed plates within 1Gyrs. In contrast, Venus' hottersurface conditions promotes healing and prohibits weak zone accumulation, which explainswhy plate tectonics failed to spread on our sister planet. Damage and weak-zone inheritance may also influence plate evolution and reorganization inthe modern era. Changes in plate direction, such as reflected in the Emperor-Hawaiianbend, leave weak zones misaligned with plate motion, causing oblique plate boundaries

  4. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  5. African Americans and Glaucoma

    MedlinePlus

    ... Involved News About Us Donate In This Section African Americans and Glaucoma email Send this article to a ... glaucoma is the leading cause of blindness in African Americans. Half of those with glaucoma don't know ...

  6. Black African Traditional Mathematics

    ERIC Educational Resources Information Center

    Zaslavsky, Claudia

    1970-01-01

    Discusses the traditional number systems and the origin of the number names used by several African peoples living south of the Sahara. Also included are limitations in African mathematical development, and possible topics for research. (RP)

  7. Role of mantle flow in Nubia-Somalia plate divergence

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Iaffaldano, G.; Calais, E.

    2015-01-01

    Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.

  8. The African Connection

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2012-01-01

    From student and faculty exchanges to joint research projects, U.S. universities maintain a broad spectrum of collaborative relationships with African universities. It's unclear how many U.S. colleges and universities have partnerships with African universities. The African Studies Association, an organization of scholars, doesn't keep that kind…

  9. Biomechanics and biology of plate fixation of distal radius fractures.

    PubMed

    Freeland, Alan E; Luber, Kurre T

    2005-08-01

    The fracture management principles of anatomic or near anatomic reduction, fracture stabilization, minimal operative trauma, and early joint motion are paramount in man-aging unstable distal radial fractures. The operative approach and plate selection should correlate with the fracture configuration. Plates have the advantages of providing secure fixation throughout the entire healing process without protruding wires or pins and allowing early and intensive forearm, wrist, and digital exercises. Disadvantages include additional operative trauma, including fragment devascularization; some additional risk of wrist stiffness; occasional tendon rupture; and at times, the need for plate removal. New developments in plate and screw design and operative strategies, fragment specific fixation, and plate strength have improved results with plate fixation. Fixed angle blades and locking screws and pegs enhance overall plate stability, support the articular surface of the distal radius, and are effective in fractures occurring in osteopenic bone.

  10. Eastern segment of the Azores-Gibraltar line (central-eastern Atlantic) : An oceanic plate boundary with diffuse compressional deformation

    NASA Astrophysics Data System (ADS)

    Sartori, R.; Torelli, L.; Zitellini, N.; Peis, D.; Lodolo, E.

    1994-06-01

    New seismic-reflection images across the eastern segment of the Azores-Gibraltar line west of the collisional area between the African and Iberian plates have revealed a complex pattern of compressional deformation involving the Mesozoic oceanic lithosphere. The compressional deformation developed in a region of slow plate convergence and is diffused, at different lithospheric levels, across an area spanning ˜200 km from the Gorringe Ridge to the Seine Plain. The convergence between the African and Iberian plates has been active since Tertiary time, and our results indicate that no subduction zone exists across this part of the plate boundary.

  11. Obliquity along plate boundaries

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  12. Plating Tank Control Software

    SciTech Connect

    Krafcik, John

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  13. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  14. Social motility in African trypanosomes: fact or model?

    PubMed

    Bastin, Philippe; Rotureau, Brice

    2015-02-01

    African trypanosomes grown on agarose plates exhibit behaviours akin to social motility. This phenomenon has not been observed in vivo so far but recently turned out to be instrumental in the definition of two specific stages of the parasite cycle and as a tool to probe for trypanosome sensing functions.

  15. Malachite green photosensitive plates.

    PubMed

    Solano, C

    1989-08-15

    An experimental study of the behavior of malachite green sensitized plates was carried out. The transmittance variation of the irradiated plates was taken as a parameter. It has been observed that photoreduction in the malachite green plates is present only when ammonium dichromate is added to the plates. The introduction of external electron donors does not improve the photochemical reaction. It has been determined that malachite green molecules form a weak complex with the dichromate molecules and this complex can only be destroyed photochemically. This effect can explain the limited response of the malachite green dichromated plates.

  16. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  17. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  18. An updated digital model of plate boundaries

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2003-03-01

    A global set of present plate boundaries on the Earth is presented in digital form. Most come from sources in the literature. A few boundaries are newly interpreted from topography, volcanism, and/or seismicity, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and/or geodesy. In addition to the 14 large plates whose motion was described by the NUVEL-1A poles (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Pacific, Philippine Sea, South America), model PB2002 includes 38 small plates (Okhotsk, Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head, Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea, Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo'ou, Tonga, Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano, Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps-Persia-Tibet mountain belt, the Philippine Islands, the Peruvian Andes, the Sierras Pampeanas, or the California-Nevada zone of dextral transtension into plates; instead, they are designated as "orogens" in which this plate model is not expected to be accurate. The cumulative-number/area distribution for this model follows a power law for plates with areas between 0.002 and 1 steradian. Departure from this scaling at the small-plate end suggests that future work is very likely to define more very small plates within the orogens. The model is presented in four digital files: a set of plate boundary segments; a set of plate outlines; a set of outlines of the orogens; and a table of characteristics of each digitization step along plate boundaries, including estimated relative velocity vector and classification into one of 7 types (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge

  19. Mechanical testing for three-dimensional motion analysis reliability.

    PubMed

    Miller, Emily; Kaufman, Kenton; Kingsbury, Trevor; Wolf, Erik; Wilken, Jason; Wyatt, Marilynn

    2016-10-01

    The purpose of this study was to use simple mechanical tests to evaluate the reliability of three-dimensional motion analysis systems and biomechanical models. Three different tests were conducted at four motion analysis laboratories where clinical care and research studies are routinely performed. The laboratories had different motion capture systems, different types and number of cameras, different types and numbers of force plates and different biomechanical models. These mechanical tests evaluated the accuracy of the motion capture system, the integration of the force plate and the motion capture system, and the strength of the biomechanical model used to calculate rotational kinematics. Results of motion capture system accuracy tests showed that, for all labs, the error between the measured and calculated distances between markers was less than 2mm and 1° for marker separations which ranged from 24mm to 500mm. Results from the force plate integration tests demonstrated errors in center of pressure calculation of less than 4mm across all labs, despite varied force plate and motion system configurations. Finally, errors across labs for single joint rotations and for combined rotations at the hip and knee were less than 2° at the hip and less than 10° at the knee. These results demonstrate that system accuracy and reliability can be obtained allowing the collection of comparable data across different motion analysis laboratories with varying configurations and equipment. This testing is particularly important when multi-center studies are planned in order to assure data consistency across labs.

  20. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  1. Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Turco, Eugenio

    2009-08-01

    A new central Pangaea fit (type A) is proposed for the late Ladinian (230 Ma), together with a plate motions model for the subsequent phases of rifting, continental breakup and initial spreading in the central Atlantic. This model is based on: (1) a reinterpretation of the process of formation of the East Coast Magnetic Anomaly along the eastern margin of North America and the corresponding magnetic anomalies at the conjugate margins of northwest Africa and the Moroccan Meseta; (2) an analysis of major rifting events in the central Atlantic, Atlas and central Mediterranean and (3) a crustal balancing of the stretched margins of North America, Moroccan Meseta and northwest Africa. The process of fragmentation of central Pangaea can be described by three major phases spanning the time interval from the late Ladinian (230 Ma) to the Tithonian (147.7 Ma). During the first phase, from the late Ladinian (230 Ma) to the latest Rhaetian (200 Ma), rifting proceeded along the eastern margin of North America, the northwest African margin and the High, Saharan and Tunisian Atlas, determining the formation of a separate Moroccan microplate at the interface between Gondwana and Laurasia. During the second phase, from the latest Rhaetian (200 Ma) to the late Pliensbachian (185 Ma), oceanic crust started forming between the East Coast and Blake Spur magnetic anomalies, whereas the Morrocan Meseta simply continued to rift away from North America. During this time interval, the Atlas rift reached its maximum extent. Finally, the third phase, encompassing the time interval from the late Pliensbachian (185 Ma) to chron M21 (147.7 Ma), was triggered by the northward jump of the main plate boundary connecting the central Atlantic with the Tethys area. Therefore, as soon as rifting in the Atlas zone ceased, plate motion started along complex fault systems between Morocco and Iberia, whereas a rift/drift transition occurred in the northern segment of the central Atlantic, between Morocco

  2. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  3. Reduced dynamical model of the vibrations of a metal plate

    NASA Astrophysics Data System (ADS)

    Moreno, D.; Barrientos, Bernardino; Perez-Lopez, Carlos; Mendoza-Santoyo, Fernando; Guerrero, J. A.; Funes, M.

    2005-02-01

    The Proper Orthogonal Decomposition (POD) method is applied to the vibrations analysis of a metal plate. The data obtained from the metal plate under vibrations were measured with a laser vibrometer. The metal plate was subject to vibrations with an electrodynamical shaker in a range of frequencies from 100 to 5000 Hz. The deformation measurements were taken on a quarter of the plate in a rectangular grid of 7 x 8 points. The plate deformation measurements were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total energy of the deformation is contained within the first six POD modes. The essential features of the deformation are thus described by only the six first eigenfunctions. A reduced order model for the dynamical behavior is then constructed using Galerkin projection of the equation of motion for the vertical displacement of a plate.

  4. Defining the plate boundaries in the Azores region

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Bastos, L.; Miranda, J. M.; Lourenço, N.; Ambrosius, B. A. C.; Noomen, R.; Simons, W.

    2006-08-01

    The Azores Archipelago occupies the boundary zone where three major tectonic plates (Eurasia, Nubia, and North America) meet to form the Azores Triple Junction. Repeat observations from six campaigns carried out between 1993 and 2001 for the TANGO network of GPS sites now allow reliable estimations of the current motions of the involved plates at millimeter-scale resolution. Analysis of these space-geodetic data demonstrates that, during the observation period, Santa Maria Island followed the average Nubian plate movement and Graciosa Island mimicked the average Eurasian plate behavior. All other GPS sites display intermediate behavior, consistent with their locations within the active inter-plate deformation area. The active deformation area is well modeled by an elastic half-space approach, with the segmentation of the Eurasian-Nubian plate boundary constrained by other geophysical data.

  5. Thermodynamic energy exchange in a moving plate capacitor

    NASA Astrophysics Data System (ADS)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  6. Thermodynamic energy exchange in a moving plate capacitor.

    PubMed

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.

  7. Auditory Motion Elicits a Visual Motion Aftereffect

    PubMed Central

    Berger, Christopher C.; Ehrsson, H. Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates. PMID:27994538

  8. Subduction Drive of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2003-12-01

    shrinking oceans, forcing rapid Pacific spreading. Slabs suck forward overriding arcs and continental lithosphere, plus most subjacent mantle above the transition zone. Changes in sizes of oceans result primarily from transfer of oceanic lithosphere, so backarcs and expanding oceans spread only slowly. Lithosphere parked in, or displaced from, the transition zone, or mixed into mid-upper mantle, is ultimately recycled, and regional variations in age of that submerged lithosphere may account for some regional contrasts in MORB. Plate motions make no kinematic sense in either the "hotspot" reference frame (HS; the notion of fixed plumes is easily disproved) or the no-net-rotation frame (NNR) In both, for example, many hinges roll forward, impossible with gravity drive. Subduction-drive predictions are fulfilled, and paleomagnetic data are satisfied (as they are not in HS and NNR), in the alternative framework of propulsionless Antarctica fixed relative to sluggish lower mantle. Passive ridges migrate away from Antarctica on all sides, and migration of these and other ridges permits tapping fresh asthenosphere. (HS and NNR tend to fix ridges). Ridge migration and spreading rates accord with subduction drive. All trenches roll back when allowance is made for back-arc spreading and intracontinental deformation. Africa rotates slowly toward subduction systems in the NE, instead of moving rapidly E as in HS and NNR. Stable NW Eurasia is nearly stationary, instead of also moving rapidly, and S and E Eurasian deformation relates to subduction and rollback. The Americas move Pacificward at almost the full spreading rates of passive ridges behind them. Lithosphere has a slow net westward drift. Reference: W.B. Hamilton, An alternative Earth, GSA Today, in press.

  9. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  10. Flow of nanofluid past a Riga plate

    NASA Astrophysics Data System (ADS)

    Ahmad, Adeel; Asghar, Saleem; Afzal, Sumaira

    2016-03-01

    This paper studies the mixed convection boundary layer flow of a nanofluid past a vertical Riga plate in the presence of strong suction. The mathematical model incorporates the Brownian motion and thermophoresis effects due to nanofluid and the Grinberg-term for the wall parallel Lorentz force due to Riga plate. The analytical solution of the problem is presented using the perturbation method for small Brownian and thermophoresis diffusion parameters. The numerical solution is also presented to ensure the reliability of the asymptotic method. The comparison of the two solutions shows an excellent agreement. The correlation expressions for skin friction, Nusselt number and Sherwood number are developed by performing linear regression on the obtained numerical data. The effects of nanofluid and the Lorentz force due to Riga plate, on the skin friction are discussed.

  11. Plate tectonics drive tropical reef biodiversity dynamics

    NASA Astrophysics Data System (ADS)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  12. Plate tectonics drive tropical reef biodiversity dynamics.

    PubMed

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc

    2016-05-06

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  13. Numerical modelling of instantaneous plate tectonics

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.

    1974-01-01

    Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.

  14. Plate tectonics drive tropical reef biodiversity dynamics

    PubMed Central

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-01-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103

  15. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  16. Episodic tectonic plate reorganizations driven by mantle convection

    NASA Astrophysics Data System (ADS)

    King, Scott D.; Lowman, Julian P.; Gable, Carl W.

    2002-10-01

    Periods of relatively uniform plate motion were interrupted several times throughout the Cenozoic and Mesozoic by rapid plate reorganization events [R. Hey, Geol. Soc. Am. Bull. 88 (1977) 1404-1420; P.A. Rona, E.S. Richardson, Earth Planet. Sci. Lett. 40 (1978) 1-11; D.C. Engebretson, A. Cox, R.G. Gordon, Geol. Soc. Am. Spec. Pap. 206 (1985); R.G. Gordon, D.M. Jurdy, J. Geophys. Res. 91 (1986) 12389-12406; D.A. Clague, G.B. Dalrymple, US Geol. Surv. Prof. Pap. 1350 (1987) 5-54; J.M. Stock, P. Molnar, Nature 325 (1987) 495-499; C. Lithgow-Bertelloni, M.A. Richards, Geophys. Res. Lett. 22 (1995) 1317-1320; M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. It has been proposed that changes in plate boundary forces are responsible for these events [M.A. Richards, C. Lithgow-Bertelloni, Earth Planet. Sci. Lett. 137 (1996) 19-27; C. Lithgow-Bertelloni, M.A. Richards, Rev. Geophys. 36 (1998) 27-78]. We present an alternative hypothesis: convection-driven plate motions are intrinsically unstable due to a buoyant instability that develops as a result of the influence of plates on an internally heated mantle. This instability, which has not been described before, is responsible for episodic reorganizations of plate motion. Numerical mantle convection experiments demonstrate that high-Rayleigh number convection with internal heating and surface plates is sufficient to induce plate reorganization events, changes in plate boundary forces, or plate geometry, are not required.

  17. The San Andreas fault experiment. [gross tectonic plates relative velocity

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  18. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system

    NASA Astrophysics Data System (ADS)

    Martin-Short, Robert; Allen, Richard M.; Bastow, Ian D.; Totten, Eoghan; Richards, Mark A.

    2015-12-01

    Tectonic plates are underlain by a low-viscosity mantle layer, the asthenosphere. Asthenospheric flow may be induced by the overriding plate or by deeper mantle convection. Shear strain due to this flow can be inferred using the directional dependence of seismic wave speeds--seismic anisotropy. However, isolation of asthenospheric signals is challenging; most seismometers are located on continents, whose complex structure influences the seismic waves en route to the surface. The Cascadia Initiative, an offshore seismometer deployment in the US Pacific Northwest, offers the opportunity to analyse seismic data recorded on simpler oceanic lithosphere. Here we use measurements of seismic anisotropy across the Juan de Fuca and Gorda plates to reconstruct patterns of asthenospheric mantle shear flow from the Juan de Fuca mid-ocean ridge to the Cascadia subduction zone trench. We find that the direction of fastest seismic wave motion rotates with increasing distance from the mid-ocean ridge to become aligned with the direction of motion of the Juan de Fuca Plate, implying that this plate influences mantle flow. In contrast, asthenospheric mantle flow beneath the Gorda Plate does not align with Gorda Plate motion and instead aligns with the neighbouring Pacific Plate motion. These results show that asthenospheric flow beneath the small, slow-moving Gorda Plate is controlled largely by advection due to the much larger, faster-moving Pacific Plate.

  19. On the rotation and pitching of flat plates

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.

    2016-11-01

    Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.

  20. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  1. Plating methods, a survey

    NASA Technical Reports Server (NTRS)

    Berkowitz, J. B.; Emerson, N. H.

    1972-01-01

    Results are presented of a comprehensive search of the literature available, much of which has been generated by the research centers of NASA and its contractors, on plating and coating methods and techniques. Methods covered included: (1) electroplating from aqueous solutions; (2) electroplating from nonaqueous solutions; (3) electroplating from fused-salt baths; (4) electroforming; (5) electroless plating, immersion plating, and mirroring; (6) electroplating from gaseous plasmas; and (7) anodized films and conversion coatings.

  2. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  3. CALUTRON FACE PLATE

    DOEpatents

    Brobeck, W.M.

    1959-08-25

    The construction of a removable cover plate for a calutron tank is described. The plate is fabricated of a rectangular frame member to which is welded a bowed or dished plate of thin steel, reinforced with transverse stiffening ribs. When the tank is placed between the poles of a magnet, the plate may be pivoted away from the tank and magnet and is adapted to support the ion separation mechanism secured to its inner side as well as the vacuum load within the tank.

  4. Cenozoic motion between East and West Antarctica

    PubMed

    Cande; Stock; Muller; Ishihara

    2000-03-09

    The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Ross Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Cenozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world.

  5. Understanding African American Males

    ERIC Educational Resources Information Center

    Bell, Edward Earl

    2010-01-01

    The purpose of this study was to assess the socialization skills, self-esteem, and academic readiness of African American males in a school environment. Discussions with students and the School Perceptions Questionnaire provided data for this investigation. The intended targets for this investigation were African American students; however, there…

  6. Africans Away from Home.

    ERIC Educational Resources Information Center

    Clarke, John Henrik

    Africans who were brought across the Atlantic as slaves never fully adjusted to slavery or accepted its inevitability. Resistance began on board the slave ships, where many jumped overboard or committed suicide. African slaves in South America led the first revolts against tyranny in the New World. The first slave revolt in the Caribbean occurred…

  7. Educating African American Males

    ERIC Educational Resources Information Center

    Bell, Edward E.

    2010-01-01

    Background: Schools across America spend money, invest in programs, and sponsor workshops, offer teacher incentives, raise accountability standards, and even evoke the name of Obama in efforts to raise the academic achievement of African American males. Incarceration and college retention rates point to a dismal plight for many African American…

  8. 16 Extraordinary African Americans.

    ERIC Educational Resources Information Center

    Lobb, Nancy

    This collection for children tells the stories of 16 African Americans who helped make America what it is today. African Americans can take pride in the heritage of these contributors to society. Biographies are given for the following: (1) Sojourner Truth, preacher and abolitionist; (2) Frederick Douglass, abolitionist; (3) Harriet Tubman, leader…

  9. Keeping African Masks Real

    ERIC Educational Resources Information Center

    Waddington, Susan

    2012-01-01

    Art is a good place to learn about our multicultural planet, and African masks are prized throughout the world as powerfully expressive artistic images. Unfortunately, multicultural education, especially for young children, can perpetuate stereotypes. Masks taken out of context lose their meaning and the term "African masks" suggests that there is…

  10. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  11. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  12. Earthquakes and plate tectonics

    USGS Publications Warehouse

    Spall, H.

    1977-01-01

    An explanation is to be found in plate tectonics, a concept which has revolutionized thinking in the Earth sciences in the last 10 years. The theory of plate tectonics combines many of the ideas about continental drift (originally proposed in 1912 by Alfred Wegener in Germany) and sea-floor spreading (suggested originally by Harry Hess of Princeton University). 

  13. Geodesy by radio interferometry - Evidence for contemporary plate motion

    NASA Technical Reports Server (NTRS)

    Herring, T. A.; Shapiro, I. I.; Clark, T. A.; Ma, C.; Ryan, J. W.

    1986-01-01

    Analysis of 211 very long baseline interferometry observing sessions carried out between November 1979 and August 1984 has yielded estimates of the distances between various radio telescopes located in North America and Europe. The average rate of change of the distances between four radio telescopes in North America (Haystack Observatory, Massachusetts; Westford Radio Telescope, Massachusetts; George R. Agassiz Station, Texas; and Owens Valley Radio Observatory, California) and one in Europe (Onsala Space Observatory, Sweden) obtained from the analysis of these data is 19 + or 10 mm/yr, where the (68 percent confidence interval) standard deviation is for the estimate of the rate of change of the Haystack-Onsala baseline length, the one determined most accurately from these data. This estimate of the standard deviation is dominated by the effects of correlated systematic errors due mostly to errors in the model used for the atmospheric delay which introduces errors in each baseline length estimate of 40 mm standard deviation and 60 days correlation time. (By contrast the statistical standard deviation is only 2 mm/yr). The estimated geologic rates of change of these baseline lengths, averaged over 10 to the 6th years, are 15 to 17 + or - 3 mm/yr for the various North American sites to Ondala.

  14. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.

    1990-01-01

    An analysis of geodetic data in the vicinity of the Crustal Dynamics Program (CDP) site at Vandenberg Air Force Base (VNDN) is presented. The utility of space-geodetic data in the monitoring of transient strains associated with earthquakes in tectonically active areas like California is investigated. Particular interest is in the possibility that space-geodetic methods may be able to provide critical new data on deformations precursory to large seismic events. Although earthquake precursory phenomena are not well understood, the monitoring of small strains in the vicinity of active faults is a promising technique for studying the mechanisms that nucleate large earthquakes and, ultimately, for earthquake prediction. Space-geodetic techniques are now capable of measuring baselines of tens to hundreds of kilometers with a precision of a few parts in 108. Within the next few years, it will be possible to record and analyze large-scale strain variations with this precision continuously in real time. Thus, space-geodetic techniques may become tools for earthquake prediction. In anticipation of this capability, several questions related to the temporal and spatial scales associated with subseismic deformation transients are examined.

  15. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  16. Turbine vane plate assembly

    DOEpatents

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  17. Neotropical Africanized honey bees have African mitochondrial DNA.

    PubMed

    Smith, D R; Taylor, O R; Brown, W M

    1989-05-18

    Non-indigenous African honey bees have invaded most of South and Central America in just over 30 years. The genetic composition of this population and the means by which it rapidly colonizes new territory remain controversial. In particular, it has been unclear whether this 'Africanized' population has resulted from interbreeding between African and domestic European bees, or is an essentially pure African population. Also, it has not been known whether this population expanded primarily by female or by male migration. Restriction site mapping of 62 mitochondrial DNAs of African bees from Brazil, Venezuela and Mexico reveals that 97% were of African (Apis mellifera scutellata) type. Although neotropical European apiary populations are rapidly Africanized by mating with neotropical African males, there is little reciprocal gene flow to the neotropical African population through European females. These are the first genetic data to indicate that the neotropical African population could be expanding its range by female migration.

  18. Unsteady aerodynamics of fluttering and tumbling plates

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Pesavento, U.; Wang, Z. Jane

    2005-10-01

    We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.

  19. Pulse propagation in a laminated composite plate and nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Ju, T. H.; Datta, S. K.

    1992-01-01

    The surface response of a laminated composite plate with delamination cracks has been studied in this paper. The objective of this study is to analyze the surface response both in the time and frequency domains due to delamination cracks at different depths in a cross-ply composite plate. For reasons of simplicity, attention has been focused here on two-dimensional (plane-strain) motions. The source of excitation is taken to be a line vertical force acting perpendicular to the fibers in a lamina. Numerical results are presented, showing peak responses at certain resonance frequencies. A comparison of these results with those for a uniaxial graphite epoxy plate shows characteristic differences.

  20. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1998-01-01

    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  1. Age distribution of Ocean Drill sites across the Central Walvis Ridge indicates plate boundary control of plume volcanism in the South Atlantic

    NASA Astrophysics Data System (ADS)

    O'Connor, John M.; Jokat, Wilfried

    2015-08-01

    The Tristan-Gough hotspot trail on the African plate consists of the Walvis Ridge and a younger province of seamounts and islands. In order to determine the relative motion between the African plate and the Tristan-Gough hotspot it is essential to resolve changes in the age and morphology of the Walvis Ridge. A significant problem is, however, to establish how the vigor and flow of hotspot material to the mid-ocean ridge constructed the Walvis Ridge. We have addressed this issue by measuring an 40Ar/39Ar stratigraphy at three sites across the central Walvis Ridge sampled by Ocean Drilling (DSDP Leg 74). The age-distance relation of volcanism, together with geophysical, geochemical and paleodepth information, suggests collectively that hotspot volcanism was occurring locally c. 72 Ma on an elevated segment of the mid-ocean ridge located close to the Tristan-Gough hotspot. As the mid-ocean ridge migrated away from the hotspot (c. 36 km/Ma) between c. 72 Ma and 68 Ma, hotspot material continued flowing to the mid-ocean ridge and the Walvis Ridge shoaled rapidly (c. 500 m/Ma) to the west, on seafloor that might have been subsiding at a rate consistent with normal crustal cooling. This apparent correlation points to the possibility of an inverse relation between the volume flux of hotspot volcanism and the distance between the mid-ocean ridge and the Tristan-Gough hotspot. We infer that since c. 93 Ma the geometry and motion of the mid-ocean ridge determined where the hotspot material that built the Walvis Ridge was channeled to the plate surface. Furthermore, interplay between hotspot flow, and the changing geometry of the mid-ocean ridge as it migrated relative to the Tristan-Gough hotspot, might explain the age and morphology of the Walvis Ridge. Our finding provides further evidence that the distribution of hotspot volcanism in the southeast Atlantic expresses interaction between deep mantle (plume) and shallow plate tectonic and asthenosphere processes.

  2. New evidence suggesting segmentation of Cocos Plate

    SciTech Connect

    Lew, L.R.; Sauermann, R.P.; De Boer, J.

    1985-02-01

    Compilation and analysis of geophysical and geological data indicate that the Cocos plate consists of three segments that have individual poles of rotation and independent motion vectors. Contoured heat-flow and gravity maps of the region delineate the boundaries of the segments within the Cocos plate. These segments have different focal-plane solutions along the Middle America Trench and different sedimentary-basin configurations within the Central America-Mexico island arc. Recent studies of seismic data from the region also have suggested that the subducted Cocos plate consists of three segments. The proposed northern and central segments are separated by the northeast-trending Siqueros-Tehuantepec Ridge fracture zone. The proposed central and southern segments are separated by the northeast-trending Costa Rica fracture zone that is located just northwest of the Cocos Ridge and extends from the Galapagos rift to the central valley of Costa Rica. Poles of rotation and relative motion vectors have been calculated with respect to the Caribbean plate for each segment. The northern segment is moving N75/sup 0/E, oblique to the trench; the central segment is moving N50/sup 0/E, perpendicular to the trench; the southern segment is moving north, perpendicular to the trench. The Siqueros-Tehuantepec and Costa Rice fracture zones appear to join with tectonized zones that dissect the Central America-Mexico island arc and extend across the Caribbean plate, suggesting that it too is segmented. Structural and stratigraphic data from the sedimentary basins on the island arc suggest that these fracture zones have existed throughout the Tertiary history of the region.

  3. Pixelated neutron image plates

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  4. Intramedullary plate fixation of a distal humerus fracture: a case report.

    PubMed

    Russell, George V; Pearsall, Albert W

    2002-05-01

    A case of a complex distal humeral fracture is presented. The patient lacked sufficient bony architecture to allow for conventional reconstruction. A technique is described using an intramedullary plate to obtain bony stabilization and permit early range of motion exercises.

  5. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    NASA Astrophysics Data System (ADS)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  6. Active NE-SW Compressional Strain Within the Arabian Plate

    NASA Astrophysics Data System (ADS)

    Floyd, M. A.; ArRajehi, A.; King, R. W.; McClusky, S.; Reilinger, R. E.; Douad, M.; Sholan, J.; Bou-Rabee, F.

    2012-12-01

    Motion of the Arabian plate with respect to Eurasia has been remarkably steady over more than 25 Myr as revealed by comparison of geodetic and plate tectonic reconstructions (e.g., McQuarrie et al., 2003, GRL; ArRajehi et al., 2010, Tectonics). While internal plate deformation is small in comparison to the rate of Arabia-Eurasia convergence, the improved resolution of GPS observations indicate ~ NE-SW compressional strain that appears to affect much of the plate south of latitude ~ 30°N. Seven ~ NE-SW oriented inter-station baselines all indicated shortening at rates in the range of 0.5-2 mm/yr, for the most part with 1-sigma velocity uncertainties < 0.4 mm/yr. Plate-scale strain rates exceed 2×10-9/yr. The spatial distribution of strain can not be resolved from the sparse available data, but strain appears to extend at least to Riyadh, KSA, ~ 600 km west of the Zagros Fold and Thrust Belt that forms the eastern, collisional boundary of the Arabian plate with Eurasia (Iran). Geodetic velocities in the plate tectonic reference frame for Arabia, derived from magnetic anomalies in the Red Sea (Chu and Gordon, 1998, GJI), show no significant E-W motion for GPS stations located along the Red Sea coast (i.e., geodetic and plate tectonic spreading rates across the Red Sea agree within their resolution), in contrast to sites in the plate interior and along the east side of the plate that indicate east-directed motions. In addition, NE-SW contraction is roughly normal to ~ N-S striking major structural folds in the sedimentary rocks within the Arabian Platform. These relationships suggest that geodetically observed contraction has characterized the plate for at least the past ~ 3 Myr. Broad-scale contraction of the Arabian plate seems intuitively reasonable given that the east and north sides of the plate are dominated by active continental collision (Zagros, E Turkey/Caucasus) while the west and south sides are bordered by mid-ocean ridge spreading (Red Sea and Gulf of

  7. Bifurcation theory applied to aircraft motions

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1985-01-01

    Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-degree-of-freedom motions of an aircraft or a flap about a trim position. The bifurcation theory analysis reveals that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion bifurcates from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable (subcritical). For the pitching motion of a flap-plate airfoil flying at supersonic/hypersonic speed, and for oscillation of a flap at transonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritical. This and the predicted amplitude of the bifurcation periodic motion are in good agreement with experiments.

  8. Plate convergence west of Patagonia and the Antarctic Peninsula since 61 Ma

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Scott, Benjamin G. C.

    2014-12-01

    A new plate kinematic model portrays plate motions immediately west and south of Drake Passage in the southeast Pacific Ocean. Overall intermediate-to-slow rate spreading generated oceanic lithosphere as the Phoenix plate diverged from the Antarctic plate. The model shows a history of Phoenix plate motion that is interpretable as having been affected by a northeast-increasing gradient in the slab pull force since chron 18 (39 Ma), during which time newer, less dense lithosphere was subducting in the southwest than in the northeast. The model allows first calculations of Phoenix-Farallon (Nazca) plate motion parameters in the south Pacific plate circuit. Using these parameters, it is possible to show that the simplest assumptions about the ridge's segmentation, length and migration are consistent with existing suggestions of its location from consideration of slab window-related volcanism at sites in South America around 50 and 20 Ma. The parameters thus define ridge locations that can be used to define which plates were subducting beneath South America and the Magallanes and Antarctic plates, and when. We consider the relationships between the plate convergence rate, obliquity and the history of magmatism on the Antarctic Peninsula and at the North Patagonian batholith, showing that magmatic pulses can be related to accelerations in the plate convergence rate. Between these settings, Phoenix-South American plate motion was almost parallel to the Fuegian trench. Here, magmatism in Paleocene to early Miocene times must be related to the presence of a slab subducted beneath the region by the less oblique collision further north. Later magmatism can be related to migration of the Phoenix-Farallon ridge and Phoenix-Farallon-Antarctic triple junction into the area south of the Fuegian margin, which brought it into slow low-obliquity convergence with first Farallon and then Antarctic plate lithosphere.

  9. Epeirogeny and plate tectonics

    NASA Technical Reports Server (NTRS)

    Menard, H. W.

    1975-01-01

    Vertical motions of the earth crust and their causes are considered in relation to epeirogenic phenomena. Factors discussed include: external loading and unloading; bending at subduction zones; internal density changes; and dynamic effects of mantle motion. The relationship between epeirogeny and drift is briefly reviewed along with oceanic epeirogeny.

  10. African American Suicide

    MedlinePlus

    ... accounted for 83.8% of Caucasian elderly suicides. • Firearms were the predominant method of suicide among African ... per 100,000 annually. Source: Centers for Disease Control and Prevention. National Vital Statistics System. Mortality Data. ...

  11. Obesity and African Americans

    MedlinePlus

    ... and Management System Report to Congress Knowledge Center Capacity Building Information Services Events Calendar Resource Guide Justice ... Workforce Diversity Grants Youth Program Grants Other Grants Planning and Evaluation Grantee Best Practices Black/African American ...

  12. Designing Assemblies Of Plates

    NASA Technical Reports Server (NTRS)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  13. Plate tectonics: Metamorphic myth

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2016-01-01

    Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist.

  14. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors.

  15. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  16. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  17. What's On Your Plate?

    MedlinePlus

    ... Table of Contents What's On Your Plate? Smart Food Choices for Healthy Aging www.nia.nih.gov/health/ ... calories in" and "calories out," and making good food choices as you age. Shopping Tips See how planning ...

  18. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  19. Inter-plate aseismic slip on the subducting plate boundaries estimated from repeating earthquakes

    NASA Astrophysics Data System (ADS)

    Igarashi, T.

    2015-12-01

    Sequences of repeating earthquakes are caused by repeating slips of small patches surrounded by aseismic slip areas at plate boundary zones. Recently, they have been detected in many regions. In this study, I detected repeating earthquakes which occurred in Japan and the world by using seismograms observed in the Japanese seismic network, and investigated the space-time characteristics of inter-plate aseismic slip on the subducting plate boundaries. To extract repeating earthquakes, I calculate cross-correlation coefficients of band-pass filtering seismograms at each station following Igarashi [2010]. I used two data-set based on USGS catalog for about 25 years from May 1990 and JMA catalog for about 13 years from January 2002. As a result, I found many sequences of repeating earthquakes in the subducting plate boundaries of the Andaman-Sumatra-Java and Japan-Kuril-Kamchatka-Aleutian subduction zones. By applying the scaling relations among a seismic moment, recurrence interval and slip proposed by Nadeau and Johnson [1998], they indicate the space-time changes of inter-plate aseismic slips. Pairs of repeating earthquakes with the longest time interval occurred in the Solomon Islands area and the recurrence interval was about 18.5 years. The estimated slip-rate is about 46 mm/year, which correspond to about half of the relative plate motion in this area. Several sequences with fast slip-rates correspond to the post-seismic slips after the 2004 Sumatra-Andaman earthquake (M9.0), the 2006 Kuril earthquake (M8.3), the 2007 southern Sumatra earthquake (M8.5), and the 2011 Tohoku-oki earthquake (M9.0). The database of global repeating earthquakes enables the comparison of the inter-plate aseismic slips of various plate boundary zones of the world. I believe that I am likely to detect more sequences by extending analysis periods in the area where they were not found in this analysis.

  20. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    SciTech Connect

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  1. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  2. Positive battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John R. (Inventor)

    1985-01-01

    The power characteristics of a lead acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). Positive plate potential must be kept high enough to prevent reduction of the tin oxide to tin by utilizing an oversized, precharged positive paste.

  3. Ride Motion Simulator Safety Assessment Report

    DTIC Science & Technology

    2013-07-01

    many seat comfort tests in the laboratory. Figure 5-4 Z-axis position command vs. feedback during playback of a drive file 2013-MBT-SAR-RMS...resistant base material • design safety factor >> 4 • redundant attachment fasteners platform Seat attach plate • high strength aluminum base...freedom (DOF), single occupant motion base designed to recreate the ?ride? of nearly any ground vehicle with high precision and accuracy. The simulator

  4. Isla del Coco, on Cocos Plate, Converges with Isla de San Andrés, on the Caribbean Plate, at 78 mm/yr

    NASA Astrophysics Data System (ADS)

    Protti, M.; Gonzalez, V. M.; Freymueller, J. T.; Doelger, S.

    2013-05-01

    Isla del Coco is the only land mass of the Cocos Plate that emerges above sea level. This makes it the only place where Cocos Plate motion can be measured using Global Navigation Satellite System (GNSS) monitoring. Global Positioning System (GPS) observations have been carried out sporadically over more than two decades on Isla del Coco, allowing precise measurement of the motion of the Cocos Plate. Recently, in May 2011, a continuous GPS station was built and instrumented at Isla del Coco, in Wafer Bay, by OVSICORI UNA and UNAVCO, as part of the COCONet regional GNSS network. Position time series from this CGPS station (ISCO: Isla del Coco) show a steady motion of Isla del Coco at a speed of 90.9±1.5mm/yr in the N35oE direction in ITRF2008 and convergence with the Caribbean Plate at 78±1mm/yr. This result is consistent with the findings of the earliest GPS studies, and agrees within uncertainty with the estimated convergence rate of 76.4±2.6 mm/yr of the MORVEL plate motion model. MORVEL is based on an average over the last 780,000 years, and our result suggests that Cocos Caribbean plate motions have been constant over that time interval.

  5. Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate

    NASA Astrophysics Data System (ADS)

    Beaman, Melissa; Sager, William W.; Acton, Gary D.; Lanci, Luca; Pares, Josep

    2007-10-01

    Understanding of Pacific plate tectonics and geodynamics is aided by refinement of the plate's apparent polar wander path (APWP). We improved the Late Cretaceous and early Cenozoic APWP by analyzing a large, diverse paleomagnetic data set that combines core sample, seamount magnetic anomaly model, and marine magnetic anomaly skewness data. Our preferred APWP has five mean paleomagnetic poles representing the Oligocene (30 Ma), Late (39 Ma) and Early (49 Ma) Eocene, and Paleocene (61 Ma) epochs and the Maastrichtian (68 Ma) stage. Along with a published 80 Ma pole, the APWP shows a stillstand from ˜ 80 to ˜ 49 Ma punctuating the large overall northward drift of the plate. The two youngest poles imply resumption of northward motion during mid-Eocene time with another change of polar motion after ˜ 30 Ma. If unaffected by other phenomena (e.g., true polar wander or change in time-averaged magnetic field geometry), the stillstand implies negligible northward plate motion during the period of Emperor Seamounts formation, contrary to most accepted plate motion models. The stillstand is consistent with paleomagnetic data from the Emperor Seamounts, which imply southward motion of the Hawaiian melting anomaly. It also implies significant westward drift of the hotspot if the Pacific plate was moving west at rates similar to the later Cenozoic. In addition, changes in polar wander after ˜ 49 Ma are consistent with changes of north Pacific plate boundaries.

  6. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, S. N.

    1986-01-01

    Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.

  7. Vortex induced motion in compliant structures

    NASA Astrophysics Data System (ADS)

    Song, Arnold; Tuttman, Max; Breuer, Kenneth

    2008-11-01

    The coupling of the unsteady shedding of vortices from the leading and trailing edges of a flat plate can lead to large scale oscillations of a structure. Examples of these large motions abound in engineered structures (Traffic signs vibrating in the wind, wing flutter, chattering venetian blinds, etc.) and in nature (the rustling of leaves on a tree in the wind). In all of these examples, the efficiency of energy extraction from the flow to the structure increases dramatically as the vortex shedding and structural vibrations near resonance. As the motion becomes more exaggerated, the fluid-structure interaction becomes increasingly nonlinear as the motion of the plate becomes increasingly important to the vortex shedding dynamics. We present experimental results from two related systems tested in a low speed wind tunnel (using high-speed videography, PIV and hotwire anemometry) (i) a rectangular cantilevered flat plate free to bend and twist, and (ii) a flexible ribbon pinned at its two ends and exposed to the flow. In both systems, a rich phase map of vortex-induced vibrations is described in which both mechanisms for vortex shedding and structural vibration can be tuned independently using geometry, material properties and flow conditions.

  8. Global plate boundary evolution and kinematics since the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  9. Tectonics of the Nazca-Antarctic plate boundary

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  10. High intensity acoustic tests of a thermally stressed aluminum plate in TAFA

    NASA Technical Reports Server (NTRS)

    Ng, Chung Fai; Clevenson, Sherman A.

    1989-01-01

    An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.

  11. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  12. Instability of a cantilevered flexible plate in viscous channel flow

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Lucey, A. D.

    2005-10-01

    The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.

  13. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  14. Crustal thinning between the Ethiopian and East African Plateaus from modeling Rayleigh wave dispersion

    SciTech Connect

    Benoit, M H; Nyblade, A A; Pasyanos, M E

    2006-01-17

    The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.

  15. Cadmium plating replacements

    SciTech Connect

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  16. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  17. The determination of present-day tectonic motions from laser ranging to LAGEOS

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Kolenkiewicz, R.; Dunn, P. J.; Torrance, M. H.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Pavlis, E. C.; Douglas, N. B.; Fricke, S. K.

    Over twelve years of laser ranging to the LAGEOS spacecraft have enabled the motions of the Earth's crust to be determined at approximately twenty laser tracking sites around the world. These motions show the surface of the Earth to be moving in general accord with the theory of plate tectonics and to deviate from the principle of rigid plates only in regions near plate boundaries. In western North America, along the Pacific and North America Plate boundary, the motions of the individual sites move considerably less than the full plate motion, primarily since motion is spread over a series of faults across a relatively broad boundary zone. Between Quincy (in northern California) and Monument Peak (40 km east of San Diego) the relative motion determined in our solution is only 26±2 mm/yr compared to the AM0-2) of Minster & Jordan (1978). In Australia, the relative motion of Yaragadee with respect to Hawaii is, from our solution, -89±2 mm/yr compared to the AM0-2 predicted value of -103 mm/yr. The motion between the South American site at Arequipa, Peru and Greenbelt on the North American Plate, is in close agreement with the geologic model; having only a few mm/yr compression. The motion across the Mid-Atlantic Ridge between Greenbelt and Wettzell (on the Eurasian Plate) is, from our solution, determined to be 14±2 mm/yr compared to an AM0-2 predicted rate of 21 mm/yr. The relative motion of Hawaii and Arequipa is 80±3 mm/yr from our solution compared to the geologically predicted 66 mm/yr.

  18. The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. Ph.D. Thesis - Johns Hopkins Univ., 1991

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1991-01-01

    Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.

  19. Coccidioidomycosis in African Americans

    PubMed Central

    Ruddy, Barbara E.; Mayer, Anita P.; Ko, Marcia G.; Labonte, Helene R.; Borovansky, Jill A.; Boroff, Erika S.; Blair, Janis E.

    2011-01-01

    Coccidioidomycosis is caused by Coccidioides species, a fungus endemic to the desert regions of the southwestern United States, and is of particular concern for African Americans. We performed a PubMed search of the English-language medical literature on coccidioidomycosis in African Americans and summarized the pertinent literature. Search terms were coccidioidomycosis, Coccidioides, race, ethnicity, African, black, and Negro. The proceedings of the national and international coccidioidomycosis symposia were searched. All relevant articles and their cited references were reviewed; those with epidemiological, immunologic, clinical, and therapeutic data pertaining to coccidioidomycosis in African Americans were included in the review. Numerous studies documented an increased predilection for severe coccidioidal infections, coccidioidomycosis-related hospitalizations, and extrapulmonary dissemination in persons of African descent; however, most of the published studies are variably problematic. The immunologic mechanism for this predilection is unclear. The clinical features and treatment recommendations are summarized. Medical practitioners need to be alert to the possibility of coccidioidomycosis in persons with recent travel to or residence in an area where the disease is endemic. PMID:21193657

  20. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  1. Mental Health and African Americans

    MedlinePlus

    ... Minority Population Profiles > Black/African American > Mental Health Mental Health and African Americans Poverty level affects mental health ... compared to 120% of non-Hispanic whites. 1 MENTAL HEALTH STATUS Serious psychological distress among adults 18 years ...

  2. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  3. Subduction controls the distribution and fragmentation of Earth’s tectonic plates

    NASA Astrophysics Data System (ADS)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R. Dietmar; Tackley, Paul J.

    2016-07-01

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  4. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    PubMed

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  5. Reduced Plating Ignitron

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)

    2014-01-01

    An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.

  6. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  7. License plate detection algorithm

    NASA Astrophysics Data System (ADS)

    Broitman, Michael; Klopovsky, Yuri; Silinskis, Normunds

    2013-12-01

    A novel algorithm for vehicle license plates localization is proposed. The algorithm is based on pixel intensity transition gradient analysis. Near to 2500 natural-scene gray-level vehicle images of different backgrounds and ambient illumination was tested. The best set of algorithm's parameters produces detection rate up to 0.94. Taking into account abnormal camera location during our tests and therefore geometrical distortion and troubles from trees this result could be considered as passable. Correlation between source data, such as license Plate dimensions and texture, cameras location and others, and parameters of algorithm were also defined.

  8. Microscopic derivation of open quantum Brownian motion

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya; UKZN Team

    2015-03-01

    Recently a model of open quantum Brownian motion (OQBM) [M. Bauer, D. Bernard, A. Tilloy, Phys. Rev. A 88 (2013) 062340] was introduced as a scaling limit of Open Quantum Walks (OQWs) [S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, J. Stat. Phys. 147 (20120 832]. OQBM is a new type of quantum Brownian motion where the dynamics of the Brownian particle not only depends on the interactions with a thermal environment, but also depends on the state of the internal degrees of freedom of the Brownian particle. Here, we present the microscopic derivation of the OQBM for a Brownian particle with two internal degrees of freedom. Examples of the dynamics for initial Gaussian and non-Gaussian distributions are presented. This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  9. Global and Chaotic Dynamics for a Parametrically Excited Thin Plate

    NASA Astrophysics Data System (ADS)

    ZHANG, W.

    2001-02-01

    The global bifurcations and chaotic dynamics of a parametrically excited, simply supported rectangular thin plate are analyzed. The formulas of the thin plate are derived by von Karman-type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, theory of normal form is used to give the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, global bifurcation analysis of the parametrically excited rectangular thin plate is given by a global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is found by numerical simulation.

  10. Spirit's Tracks around 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. The rover is visible. So is the 'Low Ridge' feature where Spirit was parked with an 11-degree northerly tilt to maximize sunlight on the solar panels during the southern winter season. Tracks made by Spirit on the way to 'Home Plate' and to and from 'Tyrone,' an area of light-toned soils exposed by rover wheel motions, are also evident. The original image is catalogued as PSP_001513_1655_red and was taken Sept. 29, 2006.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  11. The Struggles over African Languages

    ERIC Educational Resources Information Center

    Maseko, Pam; Vale, Peter

    2016-01-01

    In this interview, African Language expert Pam Maseko speaks of her own background and her first encounter with culture outside of her mother tongue, isiXhosa. A statistical breakdown of South African languages is provided as background. She discusses Western (originally missionary) codification of African languages and suggests that this approach…

  12. Narcolepsy in African Americans

    PubMed Central

    Kawai, Makoto; O'Hara, Ruth; Einen, Mali; Lin, Ling; Mignot, Emmanuel

    2015-01-01

    Study Objectives: Although narcolepsy affects 0.02–0.05% of individuals in various ethnic groups, clinical presentation in different ethnicities has never been fully characterized. Our goal was to study phenotypic expression across ethnicities in the United States. Design/Setting: Cases of narcolepsy from 1992 to 2013 were identified from searches of the Stanford Center for Narcolepsy Research database. International Classification of Sleep Disorders, Third Edition diagnosis criteria for type 1 and type 2 narcolepsy were used for inclusion, but subjects were separated as with and without cataplexy for the purpose of data presentation. Information extracted included demographics, ethnicity and clinical data, HLA-DQB1*06:02, polysomnography (PSG), multiple sleep latency test (MSLT) data, and cerebrospinal fluid (CSF) hypocretin-1 level. Patients: 182 African-Americans, 839 Caucasians, 35 Asians, and 41 Latinos with narcolepsy. Results: Sex ratio, PSG, and MSLT findings did not differ across ethnicities. Epworth Sleepiness Scale (ESS) score was higher and age of onset of sleepiness earlier in African Americans compared with other ethnicities. HLA-DQB1*06:02 positivity was higher in African Americans (91.0%) versus others (76.6% in Caucasians, 80.0% in Asians, and 65.0% in Latinos). CSF hypocretin-1 level, obtained in 222 patients, was more frequently low (≤ 110 pg/ml) in African Americans (93.9%) versus Caucasians (61.5%), Asians (85.7%) and Latinos (75.0%). In subjects with low CSF hypocretin-1, African Americans (28.3%) were 4.5 fold more likely to be without cataplexy when compared with Caucasians (8.1%). Conclusions: Narcolepsy in African Americans is characterized by earlier symptom onset, higher Epworth Sleepiness Scale score, higher HLA-DQB1*06:02 positivity, and low cerebrospinal fluid hypocretin-1 level in the absence of cataplexy. In African Americans, more subjects without cataplexy have type 1 narcolepsy. Citation: Kawai M, O'Hara R, Einen M, Lin L

  13. Nuclear reactor alignment plate configuration

    SciTech Connect

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  14. Plate Kinematics in Northeast Asia Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Steblov, G. M.; King, R. W.; Herring, T. A.; Scholz, C. H.; Bürgmann, R.; Frolov, D. I.; Levin, V. Y.

    2004-05-01

    GPS observations in Siberia combined with global observations, collected in 1995-2003, allow us to improve constraints on the geometry and relative motion of the Eurasian (EUR), North American (NAM), and Pacific (PAC) plates [1]. In contrast to our earlier work and to other published studies, we estimate simultaneously both the relative plate rotation vectors (RV) and the translation rate of the reference frame (RF) which is treated as a free parameter. With this approach, we get identical values of RV regardless of which RF is used. Our estimate of RV for the EUR-NAM pair and the estimate based on the ITRF2000 catalog differ significantly because of the non-uniform sampling of EUR in ITRF2000, with most stations clustered in Europe. There are small (<1 mm/yr) but systematic plate-residual velocities within stable EUR, westward in Siberia and eastward in Europe, which, if real, indicate a small relative motion of these formerly independent plates. By comparing velocities relative to EUR and to NAM, we conclude that east Siberia to the east of the Cherskiy Range belongs to the North American plate. This fact was assumed in the literature for three decades but not proven because of uncertainties with the plate boundary arising from the ambiguous seismicity. Smaller plates in east Asia, such as Amurian and Okhotsk, are not required by the GPS velocities in our analysis. [1] Steblov, G.M., M.G. Kogan, R.W. King, C.H. Scholz, R. Bürgmann, and D.I. Frolov, Imprint of the North American Plate in Siberia revealed by GPS, Geophys. Res. Lett., 30(18), 1924, doi:10.1029/2003GL017805, 2003.

  15. The Plate Tectonics Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  16. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  17. Growth Plate Injuries

    MedlinePlus

    ... or crushed, the growth plate may close prematurely, forming a bony bridge or “bar.” The risk of ... this publication: James S. Panagis, M.D., M.P.H., NIAMS/NIH; R. Tracy Ballock, M.D., Case ...

  18. INL HIP Plate Fabrication

    SciTech Connect

    B. H. Park; C. R. Clark; J. F. Jue

    2010-02-01

    This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.

  19. The genetic structure and history of Africans and African Americans.

    PubMed

    Tishkoff, Sarah A; Reed, Floyd A; Friedlaender, Françoise R; Ehret, Christopher; Ranciaro, Alessia; Froment, Alain; Hirbo, Jibril B; Awomoyi, Agnes A; Bodo, Jean-Marie; Doumbo, Ogobara; Ibrahim, Muntaser; Juma, Abdalla T; Kotze, Maritha J; Lema, Godfrey; Moore, Jason H; Mortensen, Holly; Nyambo, Thomas B; Omar, Sabah A; Powell, Kweli; Pretorius, Gideon S; Smith, Michael W; Thera, Mahamadou A; Wambebe, Charles; Weber, James L; Williams, Scott M

    2009-05-22

    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies.

  20. An analytic model of convection in a system with layered viscosity and plates

    NASA Astrophysics Data System (ADS)

    Crowley, John W.; O'Connell, Richard J.

    2012-01-01

    the LVL viscosity, relative to the lower mantle, can promote plate motion by providing a lubricating layer. However, a very low viscosity LVL beneath a strong plate can decouple plate and mantle and inhibit plate motion, producing a solution with a slow moving plate and a channelized flow in the LVL. Thus, a LVL can sometimes inhibit rather than promote plate tectonics.

  1. Elective: African Literature.

    ERIC Educational Resources Information Center

    Jenkins, Kenneth V.

    The make-up of a course in African literature for high school students is discussed. It is pointed out that the course can be constructed on already familiar lines. High school students will be able to describe clearly, for example, the relationship between environment and character or the dilemma of characters caught between traditional values…

  2. African Americans and Agriculture.

    ERIC Educational Resources Information Center

    Morgan, Joan

    2000-01-01

    Reviews the opportunities available in the field of agriculture for African American students and notes efforts of the 136 colleges of agriculture to publicize their offerings and recruit students. Profiles six black leaders in agriculture, highlighting their achievements in research and aid to developing countries. A table provides data on annual…

  3. African Literature: Selected Resources.

    ERIC Educational Resources Information Center

    Deschenes, Martin O.; Waters, Harold A.

    This bibliography of resources for the teaching of African literature includes over 100 citations of books, textbooks, anthologies, plays, novels, short stories, and periodicals in French and English. Publishing house addresses, audiovisual aids, professional organizations, and a course list are also cited. The books are listed under the following…

  4. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  5. Multipactor saturation in parallel-plate waveguides

    SciTech Connect

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  6. Nonlinear effects in the coupled response of tiles bonded to a plate

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1985-01-01

    The coupled response to a large impulse on tiles bonded to a finite plate is studied. The analysis includes geometric nonlinearity born from boundary restraint in the plane, which stiffens the plate transversely. It also includes material nonlinearities born from plasticity of the plate's material and from properties of a polymer bond including memory and dissipation. The equations of motion are solved by the Galerkin method using linearized eigenfunctions of the system as trial functions. A strip of plate which is one tile wide is modeled.

  7. What Are Growth Plate Injuries?

    MedlinePlus

    ... nih.gov November 2014 What Are Growth Plate Injuries? Fast Facts: An Easy-to-Read Series of Publications ... Some inherited disorders 1 What Are Growth Plate Injuries? Fast Facts: An Easy-to-Read Series of Publications ...

  8. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  9. Global Plate Reconstructions, Pacific Plate Apparent Polar Wander, and the Origin of the Bend in the Hawaiian-Emperor Chain

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.

    2011-12-01

    A key tectonic event near 50 Ma B.P. is the formation of the bend in the Hawaiian-Emperor hotspot track. A central question about the formation of the bend is whether it represents a change in plate motion or a change in motion of the Hawaiian hotspot or some combination of the two. In this presentation I will review results of mainly recent work with Rice collaborators and consider the implications for the bend. Koivisto et al. (2011) present an updated test of the fixed-hotspot approximation comparing the observed positions of Indo-Atlantic hotspot tracks with those predicted from Pacific plate hotspot tracks and the global plate motion circuit through Antarctica. This updated study indicates 2 to 5 mm/a motion between hotspots for the past 48 Ma,that is, since the formation of the bend in the Hawaiian-Emperor chain. The confidence limits include zero and thus are consistent with no motion between Pacific hotspots and Indo-Atlantic hotspots for the past 48 Ma. This does not necessarily imply that the hotspots are fixed, as the uncertainties allow for motion up to 8 to 12 mm/a, but does exclude higher rates. When we examine predictions for times preceding 48 Ma B.P. we obtain very different results, however, the apparent rates of inter-hotspot motion increase to about 45-55 ± 20 mm/a. One explanation is that hotspots moved rapidly relative to one another before 48 Ma B.P. and then slowed dramatically at roughly the age of the elbow. An alternative explanation is that as we go further back in time the global plate motion circuit through Antarctica is less reliable. The possibility of motion between East and West Antarctica will be considered. Paleomagnetic data can be used to discriminate between these alternatives. The paleomagnetic results of Petronotis & Gordon [1989], Acton & Gordon [1994], Horner-Johnson & Gordon [2010], Zheng et al. [this meeting], and Boswell et al. [this meeting] will be reviewed and implications discussed.

  10. A diffuse plate boundary model for Indian Ocean tectonics

    NASA Technical Reports Server (NTRS)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  11. In Vivo Imaging Reveals Composite Coding for Diagonal Motion in the Drosophila Visual System

    PubMed Central

    Zhou, Wei; Chang, Jin

    2016-01-01

    Understanding information coding is important for resolving the functions of visual neural circuits. The motion vision system is a classic model for studying information coding as it contains a concise and complete information-processing circuit. In Drosophila, the axon terminals of motion-detection neurons (T4 and T5) project to the lobula plate, which comprises four regions that respond to the four cardinal directions of motion. The lobula plate thus represents a topographic map on a transverse plane. This enables us to study the coding of diagonal motion by investigating its response pattern. By using in vivo two-photon calcium imaging, we found that the axon terminals of T4 and T5 cells in the lobula plate were activated during diagonal motion. Further experiments showed that the response to diagonal motion is distributed over the following two regions compared to the cardinal directions of motion—a diagonal motion selective response region and a non-selective response region—which overlap with the response regions of the two vector-correlated cardinal directions of motion. Interestingly, the sizes of the non-selective response regions are linearly correlated with the angle of the diagonal motion. These results revealed that the Drosophila visual system employs a composite coding for diagonal motion that includes both independent coding and vector decomposition coding. PMID:27695103

  12. Motion through syntactic frames.

    PubMed

    Feist, Michele I

    2010-04-01

    The introduction of Talmy's (1985, 2000) typology sparked significant interest in linguistic relativity in the arena of motion language. Through careful analysis of the conflation patterns evident in the language of motion events, Talmy noted that one class of languages, V-languages, tends to encode path along with the fact of motion in motion verbs, while a second class, S-languages, tends to encode manner. In the experimental literature, it was reasoned that speakers may be expected to extend novel verbs in accordance with the lexicalization patterns of their native languages. However, the results regarding this prediction are mixed. In this paper, I examine the interplay between the meaning encoded in the motion verb itself and the meaning encoded in the motion description construction, offering a Gricean explanation for co-occurrence patterns and, by extension, for the mixed results. I then explore the implications of this argument for research on possible language effects on thought in this domain.

  13. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  14. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  15. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  16. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  17. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  18. Mechanisms in Thermal Mechanical Forming of Plates.

    DTIC Science & Technology

    1987-05-01

    specific locations within the plate is discussed, and recommendations for further research are made. Keywords: Metal plates; Ship plates; Material forming; Thermomechanics; Edge effect ; Laser line heating.

  19. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  20. Elastic plate spallation

    NASA Technical Reports Server (NTRS)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  1. Martian plate tectonics

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    1994-03-01

    The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses

  2. Electronic Equipment Cold Plates

    DTIC Science & Technology

    1976-04-01

    equations for such a flow regiae. For laainar flow and Moderate teaperature differwwe« between the well «nd coolant, a aodifled Sieder -Tate...con- figuration. The heat-transfer coefficients, therefore, were determined by using both the Sieder -Tate and McAdams equations and the coaputed...values used In the analytical predictions. As with th* previous cold Plates, the Sieder -Tate equation gave too low of values for the heat- transfer

  3. The Plate Overlap Technique.

    DTIC Science & Technology

    1978-07-31

    INTRODUCTION 1 II. NOTATION 2 III. THE GNOMONIC PROJECTION 4 IV . THE PLATE OVERLAP TECHNIQUE 6 A. MOTIVATION 6 B. FORNULATION 9 C. ON STATISTICAL RIGOR 14 D...and new hardware. Since this aim was clearly recognized long ago, wherever possible in earlier documents or software development flexibility was...reader should see 1, 2, and 3. The procedures one should use to update stellar positions are discussed in 4 with applica- tions to the SAOC in 5. Non

  4. Armor Plate Surface Roughness Measurements

    DTIC Science & Technology

    2005-04-01

    Armor Plate Surface Roughness Measurements by Brian Stanton, William Coburn, and Thomas J. Pizzillo ARL-TR-3498 April 2005... Armor Plate Surface Roughness Measurements Brian Stanton, William Coburn and Thomas J. Pizzillo Sensors and Electron Devices Directorate...October 2004 5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Armor Plate Surface Roughness Measurements 5c. PROGRAM ELEMENT NUMBER

  5. The Personal Motion Platform

    NASA Technical Reports Server (NTRS)

    Park, Brian Vandellyn

    1993-01-01

    The Neutral Body Posture experienced in microgravity creates a biomechanical equilibrium by enabling the internal forces within the body to find their own balance. A patented reclining chair based on this posture provides a minimal stress environment for interfacing with computer systems for extended periods. When the chair is mounted on a 3 or 6 axis motion platform, a generic motion simulator for simulated digital environments is created. The Personal Motion Platform provides motional feedback to the occupant in synchronization with their movements inside the digital world which enhances the simulation experience. Existing HMD based simulation systems can be integrated to the turnkey system. Future developments are discussed.

  6. Measurement of visual motion

    SciTech Connect

    Hildreth, E.C.

    1984-01-01

    This book examines the measurement of visual motion and the use of relative movement to locate the boundaries of physical objects in the environment. It investigates the nature of the computations that are necessary to perform this analysis by any vision system, biological or artificial. Contents: Introduction. Background. Computation of the Velocity Field. An Algorithm to Compute the Velocity Field. The Computation of Motion Discontinuities. Perceptual Studies of Motion Measurement. The Psychophysics of Discontinuity Detection. Neurophysiological Studies of Motion. Summary and Conclusions. References. Author and Subject Indexes.

  7. Wear of connector contacts exposed to relative motion

    NASA Astrophysics Data System (ADS)

    Wilk, R. A.

    Connectors play a significant role in the performance, cost, and reliability of electronic equipment. In connection with the development of the system interconnection design, a factor which is often overlooked is related to the importance of connector selection and mounting to minimize relative motion between contacts during vibration encountered in handling, transportation, and service. This motion can lead to the loss of protective coatings (gold and nickel) due to frictional wear. If this happens, fretting corrosion of the base metals may occur. The produced damage can adversely affect performance due to increased joint resistance, eventually causing intermittent contacts. The present investigation is concerned with the study of different style contacts (tuning fork, box, and circular) to determine their endurance and wear characteristics when exposed to relative motion created by vibration. All contacts investigated were fabricated from brass, beryllium copper, or phosphor bronze, and had .00127 mm minimum gold plating over .00127 mm minimum nickel plating.

  8. Influence of overriding plate velocity changes on slab dip and deformation: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Hertgen, Solenn; Martinod, Joseph

    2016-04-01

    Over geological times, plate reorganization associated with mantle convection led to changes in absolute plate velocities, which may in turn have impacted the geometry of the subducting plate as well as the overriding plate regime of deformation. Indeed, previous studies have shown a very good correlation between the absolute motion of the overriding plate on one hand and slab dip and overriding plate deformation on the other hand: extension and steep slab are associated with an overriding plate moving away from the trench while shortening and shallow slab occur if the upper plate goes the other way. However, these correlations are established when subduction has reached a steady-state regime and for a constant motion of the overriding plate over the subducting plate, which may not always be the case on Earth. The response of the subduction system to changes in absolute overriding plate velocity still remain an open question. In this study, we conducted a set of 3-D mantle-scale laboratory models of subduction in which we incrementally changed the velocity of the overriding plate to reproduce changes of velocities that may arise from variations of far-field boundary conditions in Nature. We first show that strain rates in the overriding plate are correlated with overriding plate absolute velocity but also that the regime of deformation adjusts rapidly to changes of velocity. This may explain for instance why despite the subduction has been continuous beneath South America since at least the middle Jurassic, shortening along its active margin is only recorded episodically, the main phases of Andean orogeny roughly corresponding to periods of South American plate westward acceleration. We also show that slab dip adjusts to changes of overriding plate velocity but it requires several Myr before it stabilizes. It may explain why the correlation between absolute overriding plate motion and slab dip from the analysis of present-day subduction zones is only moderate, part

  9. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  10. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    PubMed

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  11. Understanding traditional African healing

    PubMed Central

    MOKGOBI, M.G.

    2015-01-01

    Traditional African healing has been in existence for many centuries yet many people still seem not to understand how it relates to God and religion/spirituality. Some people seem to believe that traditional healers worship the ancestors and not God. It is therefore the aim of this paper to clarify this relationship by discussing a chain of communication between the worshipers and the Almighty God. Other aspects of traditional healing namely types of traditional healers, training of traditional healers as well as the role of traditional healers in their communities are discussed. In conclusion, the services of traditional healers go far beyond the uses of herbs for physical illnesses. Traditional healers serve many roles which include but not limited to custodians of the traditional African religion and customs, educators about culture, counselors, social workers and psychologists. PMID:26594664

  12. Motion compensator for holographic motion picture camera

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  13. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  14. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  15. Ectoparasites of African Mammals.

    DTIC Science & Technology

    1976-11-30

    This study consisted of ectoparasites from approximately 100,000 African small mammals, representing probably more than 500 species of which many are...study of ectoparasites may provide information concerning interactions among animal reservoirs of disease, and (3) an understanding of ecological...parameters for ectoparasites and their hosts may enhance understanding of epidemiological patterns. Of the four major groups dealt with, considerably more

  16. The Rivera-Cocos Plate Boundary Revisited

    NASA Astrophysics Data System (ADS)

    Bandy, W. L.; Mortera-Gutierrez, C. A.; Michaud, F.; Ortega Ramírez, J.

    2013-05-01

    The nature of the boundary between the Rivera and Cocos plates has long been controversial. Early studies (predominantly earthquake studies) suggested that it was a NE oriented left lateral transform boundary. With the collection of multi-beam bathymetric data during the SEAMAT cruise of the N/O Jean Charcot in 1987 it became clear that this early proposal was not entirely correct as no clear transform morphology was observed. Shortly after the SEAMAT campaign, three main proposals emerged to explain this lack of transform morphology. The first two proposals favored the results of earthquake studies over the new multibeam data. The first proposed that the boundary is indeed a left-lateral transform boundary, you just cannot see it. In other words, it was a diffuse boundary and the resolution of the multi-beam data was not sufficient to reveal the associated deformation. The second proposal was that it was an east-west oriented, dextral transform, the proposal being based on the results of an earthquake directivity analysis. The third proposal favored the morphologic data over the earthquake data and proposed that the plate boundary was not a transform boundary, but was instead a divergent boundary, at least near the Middle America Trench in what is now called the EL Gordo Graben. Implicit in this proposal was that the earthquake activity did not reflect plate motions but rather were the result of local stresses. Since 2002, several marine geophysical campaigns have been conducted in the area of the Rivera-Cocos plate boundary with the aim of resolving this debate. During the 2002 BART and FAMEX campaigns of the N/O L'ATALANTE, multibeam bathymetric and seafloor backscatter data were collected along the boundary. During the MARTIC04 and MARTIC05 campaigns of the B/O EL PUMA dense total field magnetic surveys were conducted covering the entire plate boundary. Lastly, the multibeam coverage obtained during the BART/FAMEX campaigns was extended northward during the

  17. Diversity among African Pygmies

    PubMed Central

    Ramírez Rozzi, Fernando V.; Sardi, Marina L.

    2010-01-01

    Although dissimilarities in cranial and post-cranial morphology among African pygmies groups have been recognized, comparative studies on skull morphology usually pull all pygmies together assuming that morphological characters are similar among them and different with respect to other populations. The main aim of this study is to compare cranial morphology between African pygmies and non-pygmies populations from Equatorial Africa derived from both the Eastern and the Western regions in order to test if the greatest morphological difference is obtained in the comparison between pygmies and non-pygmies. Thirty three-dimensional (3D) landmarks registered with Microscribe in four cranial samples (Western and Eastern pygmies and non-pygmies) were obtained. Multivariate analysis (generalized Procrustes analysis, Mahalanobis distances, multivariate regression) and complementary dimensions of size were evaluated with ANOVA and post hoc LSD. Results suggest that important cranial shape differentiation does occur between pygmies and non-pygmies but also between Eastern and Western populations and that size changes and allometries do not affect similarly Eastern and Western pygmies. Therefore, our findings raise serious doubt about the fact to consider African pygmies as a homogenous group in studies on skull morphology. Differences in cranial morphology among pygmies would suggest differentiation after divergence. Although not directly related to skull differentiation, the diversity among pygmies would probably suggest that the process responsible for reduced stature occurred after the split of the ancestors of modern Eastern and Western pygmies. PMID:21049030

  18. Human African trypanosomiasis.

    PubMed

    Lejon, Veerle; Bentivoglio, Marina; Franco, José Ramon

    2013-01-01

    Human African trypanosomiasis or sleeping sickness is a neglected tropical disease that affects populations in sub-Saharan Africa. The disease is caused by infection with the gambiense and rhodesiense subspecies of the extracellular parasite Trypanosoma brucei, and is transmitted to humans by bites of infected tsetse flies. The disease evolves in two stages, the hemolymphatic and meningoencephalitic stages, the latter being defined by central nervous system infection after trypanosomal traversal of the blood-brain barrier. African trypanosomiasis, which leads to severe neuroinflammation, is fatal without treatment, but the available drugs are toxic and complicated to administer. The choice of medication is determined by the infecting parasite subspecies and disease stage. Clinical features include a constellation of nonspecific symptoms and signs with evolving neurological and psychiatric alterations and characteristic sleep-wake disturbances. Because of the clinical profile variability and insidiously progressive central nervous system involvement, disease staging is currently based on cerebrospinal fluid examination, which is usually performed after the finding of trypanosomes in blood or other body fluids. No vaccine being available, control of human African trypanosomiasis relies on diagnosis and treatment of infected patients, assisted by vector control. Better diagnostic tools and safer, easy to use drugs are needed to facilitate elimination of the disease.

  19. Objects in Motion

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2008-01-01

    Objects in motion attract children. The following activity helps children explore the motion of bodies riding in a vehicle and safely demonstrates the answer to their questions, "Why do I need a seatbelt?" Children will enjoy moving the cup around, even if all they "see" is a cup rather than understanding it represents a car. They will understand…

  20. Teaching Projectile Motion

    ERIC Educational Resources Information Center

    Summers, M. K.

    1977-01-01

    Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)

  1. Making Sense of Motion

    ERIC Educational Resources Information Center

    King, Kenneth

    2005-01-01

    When watching a small child with a toy car, it is seen that interest in motion comes early. Children often suggest speed through sounds such as "RRRrrrRRRooooommMMMmmmm" as the toy car is made to speed up, slow down, or accelerate through a turn. Older children start to consider force and motion studies in more detail, and experiences in school…

  2. Aristotle, Motion, and Rhetoric.

    ERIC Educational Resources Information Center

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  3. Body Motion and Graphing.

    ERIC Educational Resources Information Center

    Nemirovsky, Ricardo; Tierney, Cornelia; Wright, Tracy

    1998-01-01

    Analyzed two children's use of a computer-based motion detector to make sense of symbolic expressions (Cartesian graphs). Found three themes: (1) tool perspectives, efforts to understand graphical responses to body motion; (2) fusion, emergent ways of talking and behaving that merge symbols and referents; and (3) graphical spaces, when changing…

  4. Naive Conceptions of Motion.

    ERIC Educational Resources Information Center

    McCloskey, Michael

    Two experiments were conducted to characterize the system of beliefs that make up the naive impetus theory of motion and to determine what effects physics instruction has on students' conceptions of motion. Thirteen college students were asked to solve several quantitative problems and were interviewed about their answers in the first experiment.…

  5. Measuring mandibular motions

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Rositano, S.; Taylor, R. C.

    1977-01-01

    Mandibular motion along three axes is measured by three motion transducers on floating yoke that rests against mandible. System includes electronics to provide variety of outputs for data display and processing. Head frame is strapped to test subject's skull to provide fixed point of reference for transducers.

  6. Object motion analysis study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.

  7. The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation

    PubMed Central

    Kjosness, Kelsey M; Hines, Jasmine E; Lovejoy, C Owen; Reno, Philip L

    2014-01-01

    The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus. PMID:25279687

  8. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  9. Self-propulsion of a flapping flexible plate near the ground

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Huang, Haibo; Gao, Peng; Lu, Xi-Yun

    2016-09-01

    The self-propulsion of a three-dimensional flapping flexible plate near the ground is studied using an immersed boundary-lattice Boltzmann method for fluid flow and a finite-element method for plate motion. When the leading edge of the flexible plate is forced into a vertical oscillation near the ground, the entire plate moves freely due to the fluid-structure interaction. The mechanisms underlying the dynamics of the plate near the ground are elucidated. Based on the propulsive behaviors of the flapping plate, three distinct regimes due to the ground effect can be qualitatively identified. These regimes can be described briefly as the expensive, benefited, and uninfluenced propulsion regimes. The analysis of unsteady dynamics and plate deformation indicates that the ground effect becomes weaker for a more flexible plate. We have found that a suitable degree of flexibility can improve propulsion near the ground. The vortical structure around the plate and the pressure distribution on the plate are analyzed to understand propulsive behaviors. The results obtained in this study can provide some physical insights into the propulsive mechanisms of a flapping flexible plate near the ground.

  10. Self-propulsion of a flapping flexible plate near the ground.

    PubMed

    Tang, Chao; Huang, Haibo; Gao, Peng; Lu, Xi-Yun

    2016-09-01

    The self-propulsion of a three-dimensional flapping flexible plate near the ground is studied using an immersed boundary-lattice Boltzmann method for fluid flow and a finite-element method for plate motion. When the leading edge of the flexible plate is forced into a vertical oscillation near the ground, the entire plate moves freely due to the fluid-structure interaction. The mechanisms underlying the dynamics of the plate near the ground are elucidated. Based on the propulsive behaviors of the flapping plate, three distinct regimes due to the ground effect can be qualitatively identified. These regimes can be described briefly as the expensive, benefited, and uninfluenced propulsion regimes. The analysis of unsteady dynamics and plate deformation indicates that the ground effect becomes weaker for a more flexible plate. We have found that a suitable degree of flexibility can improve propulsion near the ground. The vortical structure around the plate and the pressure distribution on the plate are analyzed to understand propulsive behaviors. The results obtained in this study can provide some physical insights into the propulsive mechanisms of a flapping flexible plate near the ground.

  11. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle.

    PubMed

    Tarduno, John A; Duncan, Robert A; Scholl, David W; Cottrell, Rory D; Steinberger, Bernhard; Thordarson, Thorvaldur; Kerr, Bryan C; Neal, Clive R; Frey, Fred A; Torii, Masayuki; Carvallo, Claire

    2003-08-22

    The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.

  12. African<