Science.gov

Sample records for african rift ear

  1. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  2. Kinematics and Dynamics of Observed Along-Rift Surface Motions in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Bangerth, W.; Hager, B. H.; Kreemer, C.; Saria, E.

    2015-12-01

    Geodetic observations of Nubian and Somalian plate interiors measure ~E-W divergence across the East African Rift System (EARS), which, in the absence of slab pull forces, is driven by shallow, lithospheric buoyancy and mantle shear tractions. Previous studies indicate the former drives E-W divergence a with minimal role of basal shear. In addition to E-W extension, an increasing number of Global Navigation Satellite System (GNSS) stations within the deforming zones of the EARS detect an along-rift component of motion that is inconsistent with our current understanding of the EARS. In this work we investigate the kinematics and dynamics of these along-rift motions. We first calculate a strain rate and velocity field by fitting bi-cubic Bessel splines to new and existing GNSS observations. We resolve regions of localized compression and transtension within individual rifts that are corroborated by independent seismic and geologic observations. In a second step we test the competing roles of shallow topographic stresses and sub-lithospheric basal shear stresses acting beneath individual rifts where we observe along-rift surface motions using the finite element code ASPECT to solve for Stokes flow in a 3D regional geodynamic model. We compare predicted surface motions and mantle flow directions from our geodynamic simulations with our new continuous deformation model based on GNSS observations. Our work indicates topside driven upper mantle flow directions correspond with anomalous along-rift surface motions in several key locations, but our modeled rheological structure impedes basal shear stresses (<1-3 MPa) from driving surface deformation where we observe along-rift surface motions. This work suggests along-rift surface motions are decoupled from asthenospheric flow.

  3. Evolutionary model of the oblique rift basins- Central African Rifts

    NASA Astrophysics Data System (ADS)

    Yang, Kenn-Ming; Cheng, I.-Wen; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during basin evolution of Central African Rifts (CAS). In this study, we simulated the formation of oblique-rifting basin with Particle Flow Code 3-Dimensions-(PFC 3D) and compared the simulation results with the tectonic settings of a series of basin in CAS. CAS started to develop in Early Cretaceous (130Ma) and lasted until the Late Cretaceous (85Ma-80Ma). The following collision between the African and Eurasian plates imposed compressional stress on CAS and folded the strata in the rift basins. Although the characteristics of rift basin formation remain controversial, palinspastic sections constructed in this study show that, in the Early Cretaceous, the rift basins are mainly characterized by normal faults and half-grabens. In the Late Cretaceous, the morphology of the rift basins was altered by large-scaled tectonic compression with the active Borogop Fault of regional scale. Also, en echelon trend of normal faults in the basins were measured and the angles between the trend with that of the rift axes of each basin were demonstrated, indicating that the development of CAS was affected by the regional extensional stress with a dextral component during the rifting process and, therefore, the rift basins were formed by oblique-rifting. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, which α are 45°, 60°, 75° and 90° respectively, to simulate basin formation under oblique-rifting process. The study results of simulation

  4. At the tip of a propagating rift - The offshore East African Rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2016-04-01

    Numerous studies have addressed various aspects of the East African Rift system (EARS) but surprisingly few the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of sub-recent extensional deformation. The seismic reflection data reveals that recent normal faulting often utilizes preexisting, deeply buried half-graben structures which likely are related to the formation of the Somali Basin. The ~30 km wide and ~150 km long symmetric graben is in a stage where the linkage of scattered normal faults already did happen, resulting in increased displacement and accommodation of most of the extension across the basin. However, deep earthquakes below the rift indicate a strong and still preserved lithospheric mantle. Extension is becoming diffuse where an onshore suture, subdividing the northern from the southern metamorphic basement onshore Mozambique, is closest to the offshore rift. It appears likely that this suture is the origin for the variation in rifting style, indicating that mantle fabric resulting from a Cambrian collision has been preserved as mechanical anisotropy of the lithospheric mantle. Further south the rift focuses in an about 30 km wide half-graben. An important finding is that the entire offshore branch of the EARS lacks significant volcanism. Along the offshore EARS there are only negligible indications for recent volcanism in the reflection seismic data such as sills and dikes. Apparently the "Comoros mantle plume" (French and Romanowicz, 2015) has a very minor influence on the progressive extensional deformation along the northern Mozambique continental margin, leading eventually to breakup sometimes in the future. Combining structural with earthquake data reveals that the magma

  5. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  6. Present-day kinematics of the East African Rift

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Stamps, D. S.; Delvaux, D.; Hartnady, C. J. H.

    2014-04-01

    The East African Rift (EAR) is a type locale for investigating the processes that drive continental rifting and breakup. The current kinematics of this ~5000 km long divergent plate boundary between the Nubia and Somalia plates is starting to be unraveled thanks to a recent augmentation of space geodetic data in Africa. Here we use a new data set combining episodic GPS measurements with continuous measurements on the Nubian, Somalian, and Antarctic plates, together with earthquake slip vector directions and geologic indicators along the Southwest Indian Ridge to update the present-day kinematics of the EAR. We use geological and seismological data to determine the main rift faults and solve for rigid block rotations while accounting for elastic strain accumulation on locked active faults. We find that the data are best fit with a model that includes three microplates embedded within the EAR, between Nubia and Somalia (Victoria, Rovuma, and Lwandle), consistent with previous findings but with slower extension rates. We find that earthquake slip vectors provide information that is consistent with the GPS velocities and helps to significantly reduce uncertainties of plate angular velocity estimates. We also find that 3.16 Myr MORVEL average spreading rates along the Southwest Indian Ridge are systematically faster than prediction from GPS data alone. This likely indicates that outward displacement along the SWIR is larger than the default value used in the MORVEL plate motion model.

  7. Geochemical evidence for pre- and syn-rifting lithospheric foundering in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.

    2015-12-01

    The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary

  8. The life cycle of continental rifting as a focus for U.S.-African scientific collaboration

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.

    2004-11-01

    The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.

  9. Current kinematics and dynamics of Africa and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.

    2014-06-01

    Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

  10. Passive rifting of thick lithosphere in the southern East African Rift: Evidence from mantle transition zone discontinuity topography

    NASA Astrophysics Data System (ADS)

    Reed, Cory A.; Liu, Kelly H.; Chindandali, Patrick R. N.; Massingue, Belarmino; Mdala, Hassan; Mutamina, Daniel; Yu, Youqiang; Gao, Stephen S.

    2016-11-01

    To investigate the mechanisms for the initiation and early-stage evolution of the nonvolcanic southernmost segments of the East African Rift System (EARS), we installed and operated 35 broadband seismic stations across the Malawi and Luangwa rift zones over a 2 year period from mid-2012 to mid-2014. Stacking of over 1900 high-quality receiver functions provides the first regional-scale image of the 410 and 660 km seismic discontinuities bounding the mantle transition zone (MTZ) within the vicinity of the rift zones. When a 1-D standard Earth model is used for time-depth conversion, a normal MTZ thickness of 250 km is found beneath most of the study area. In addition, the apparent depths of both discontinuities are shallower than normal with a maximum apparent uplift of 20 km, suggesting widespread upper mantle high-velocity anomalies. These findings suggest that it is unlikely for a low-velocity province to reside within the upper mantle or MTZ beneath the nonvolcanic southern EARS. They also support the existence of relatively thick and strong lithosphere corresponding to the widest section of the Malawi rift zone, an observation that is consistent with strain localization models and fault polarity and geometry observations. We postulate that the Malawi rift is driven primarily by passive extension within the lithosphere attributed to the divergent rotation of the Rovuma microplate relative to the Nubian plate, and that contributions of thermal upwelling from the lower mantle are insignificant in the initiation and early-stage development of rift zones in southern Africa.

  11. Experimental Rift Valley fever in West African Dwarf sheep.

    PubMed

    Fagbami, A H; Tomori, O; Fabiyi, A; Isoun, T T

    1975-05-01

    West African Dwarf sheep were challenged with a low mouse brain-passaged Rift Valley fever virus (Ib-AR 55172) isolated from Nigeria. Viraemia, mild febrile reaction and neutralising antibodies were demonstrated in inoculated animals.

  12. Analogies Between the East African Rift Around the Tanzania Craton and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Montesi, L. G.

    2013-12-01

    Continental rifts and oceanic spreading centers both accommodate plate divergence but their morphologies are often quite different. Yet, ultraslow spreading centers, especially the Southwest Indian ridge at the 9 to 16°E area (SWIR), present good analogies for the East African Rift (EAR), including localized volcanism, avolcanic segments, and a continuous but not straight rift axis. The archetypal oceanic spreading center features transform offsets. Volcanism is continuous along the ridge axis and is most vigorous at the center of spreading segments. By contrast, continental rifts do not feature transform offsets. The orientation of the rift can change along strike. Several rift segments are purely tectonic, with relatively isolated volcanic centers. The EAR around the Tanzania Craton clearly shows this kind of morphology. Ultraslow spreading centers share many of these features. The SWIR, in particular, displays dramatic changes in orientation, with volcanism localized at the junction between segments of different obliquity. Melt production and transport are controlled by the effective spreading rate, a combination of plate divergence velocity and rift obliquity. Ultraslow spreading center all have an effective spreading rate less than 13 mm/yr. At that speed the thickness of the thermal boundary layer is similar to the depth from which magma can be effectively extracted, opening the possibility for long-distance transport of magma along axis without extraction. Volcanic centers correspond to the location where the magma transport system first encounters a tectonically damaged zone that enables extraction to the surface. The effective velocity of the EAR in the Kenya dome is less than 4mm/yr firmly on par with ultraslow ridges. In fact, to generate magma by mantle upwelling at such a slow opening rate requires a higher mantle temperature or fertility than in the oceanic domain. Both opening rate and effective velocity increase northward along the Eastern branch

  13. Historical volcanism and the state of stress in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Wadge, Geoffrey; Biggs, Juliet; Lloyd, Ryan; Kendall, Michael

    2016-09-01

    Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking

  14. The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Anja; Prömmel, Kerstin; Cubasch, Ulrich

    2016-09-01

    Several proxy data indicate an aridification of the East African climate during the Neogene, which might be influenced by the orographic changes of the East African Rift System (EARS) induced by tectonic forcing during the last 20 million years. To investigate the impact of the orography and especially of the rifts, the regional climate model CCLM is used, covering the EARS with Lake Victoria in the centre of the model domain. CCLM is driven by the ERA-Interim reanalysis and applied with a double-nesting method resulting in a very high spatial resolution of 7 km. The resolution clearly shows the shoulders and rifts of the western and eastern branch of the EARS and the Rwenzoris within the western branch. To analyse the orographic influence on climate, a new technique of modifying the orography is used in this sensitivity study. The shoulders of the branches are lowered and the rifts are elevated, resulting in a smoothed orography structure with less altitude difference between the shoulders and rifts. The changes in 2 m-temperature are very local and associated with the changes in the orography. The vertically integrated moisture transport is characterised by less vortices, and its zonal component is increased over the branches. The resulting amount of precipitation is mainly decreased west of the western branch and increased in the rift of the western branch. In the eastern branch, however, the changes in the amount of precipitation are not significant. The changes in the precipitation and temperature patterns lead to a shift of biomes towards a vegetation coverage characterised by more humid conditions in the northern part of the model domain and more arid conditions in the South. Thus, the aridification found in the proxy data can be attributed to the orographic changes of the rifts only in the northern model domain.

  15. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  16. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where

  17. Seismicity Patterns and Magmatic Processes in the Rwenzori Region, East-African Rift

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rumpker, G.; Schmeling, H.; Wallner, H.

    2010-12-01

    The 5000m high Rwenzori Mountains are situated within the western branch of the East African Rift System (EARS), at the border between Uganda and the Democratic Republic of Congo. They represent a basement block located within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During a recent seismological campaign we located more than 800 earthquakes per month with magnitudes ranging from 0.5 to 5.1. Vertical sections across the northern parts of the Rwenzoris show, that west of the mountains (towards the rift valley) the focal depths range from 10 to 20 km, whereas the hypocentres go as deep as 30 km on the eastern side. This is in good agreement with Moho-depths derived from receiver functions and implies that all of these events are located within the crust. However, about 30 km east of the northern mountain ridge we located a cluster of 7 events that exhibit an anomalous depth of about 60 km. We can confidently locate these earthquakes within the mantle lithosphere beneath the rift. The existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material relatively close to the surface. We think that these events are possibly related to the evolution of the Rwenzori Mountains. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere. Here we show that the RID-process is indeed capable of explaining the seismic energy release in the mantle. However, in view of the specific hypocentral location of the event cluster, magmatic impregnation processes associated with dyke propagation into the mantle lithosphere may be a more realistic cause for seismic radiation at the observed depth. Crustal earthquakes northeast of the Rwenzori area are relocated with a double-difference algorithm to improve the spatial resolution of seismicity pattern. Several event clusters in the vicinity of the Fort

  18. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery of the African rift system has already proved of great value in structural geological studies. One of the interesting megastructures expressed on the imagery occurs some 40 km east of the eastern margin of the main Ethiopian rift, in Arussi province, and extending between latitude 71/2 and 81/4 deg N. The Badda-Encuolo ridge proves to have been a line of major Tertiary volcanism and probably supplied the thick Trap Series flood basalt sequence exposed farther east in the canyons of the Webi Shebeli drainage system. The ridge itself was built up by the waning activity of the Sagatu line of volcanism. Serendipitious has been the discovery on Mt. Badda of several deeply glaciated valleys, many of which show clearly on the ERTS-1 imagery. It seems that Mt. Badda was one of the most important glacial centers in eastern Africa during the Pleistocene. Three major late-Tertiary trachytic centers lie between the Badda-Encuolo ridge and the rift valley. The relationships of these three volcanoes to each other and to the rift faulting is revealed for the first time by the ERTS-1 imagery, as is the form of the cladera of Baltata and the crater of Chilalo.

  19. Seismicity of the Earth 1900-2013 East African Rift

    USGS Publications Warehouse

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.

  20. Miocene Onset of Extension in the Turkana Depression, Kenya: Implications for the Geodynamic Evolution of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Boone, S.; Gleadow, A. J. W.; Kohn, B. P.; Seiler, C.

    2015-12-01

    The Paleogene-Recent East African Rift System (EARS) is the foremost modern example of continental rifting, providing much of our understanding of the early stages of continental breakup. The EARS traverses two regions of crustal uplift, the Ethiopian and East African Domes, separated by the Turkana Depression. This wide region of subdued topography coincides with the NW-SE trend of the Jurassic-Paleogene Anza Rift. Opinions on the fundamental geodynamic driver for EARS rifting are divided, however, principally between models involving migrating plume(s) and a single elongated 'superplume'. While competing models have similar topographic outcomes, they predict different morphotectonic evolutions for the Turkana Depression. Models inferring southward plume-migration imply that the plume must have passed below the Turkana Depression during the Paleogene, in order to have migrated to the East African Dome by the Miocene. The possible temporal denudational response to such plume activity is testable using low temperature thermochronology. We present apatite fission track (AFT) and (U-Th)/He (AHe), and zircon (U-Th)/He (ZHe) data from the Lapurr Range, an uplifted Precambrian basement block in northern Turkana. Low radiation damage ZHe results displaying an age range of ~70-210 Ma, and combined with stratigraphic evidence, suggest ~4-6 km of Jurassic-Early Cretaceous denudation, probably associated with early Anza Rift tectonism. AFT ages of ~9-15 Ma imply subsequent burial beneath no more than ~4 km of overburden, thus preserving the Jurassic-Cretaceous ZHe ages. Together with AFT results, AHe data (~3-19 Ma) support ~2-4 km of Miocene-Pliocene uplift of the Lapurr Range in the footwall of the E-dipping Lapurr normal fault. Miocene AFT and AHe ages are interpreted to reflect the initiation of the EARS in the Turkana Depression. If extension is associated with plume activity, then upwelling in the Turkana region is unlikely to have started prior to the Miocene, much

  1. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about

  2. Modeling fault kinematics, segment interaction and transfer zone geometry as a function of pre-existing fabrics: the Albertine rift, East African Rift System.

    NASA Astrophysics Data System (ADS)

    Aanyu, Kevin; Koehn, Daniel

    2010-05-01

    This study focuses on the development of the Rwenzori Mountains, an uplift horst block within the northern-most segment of the western branch of the East African Rift System (EARS). Attention is drawn to the role of pre-existing crustal weaknesses left behind by Proterozoic mobile belts that pass around cratonic Archean shields namely the Tanzanian Craton to the southeast and the Congo craton to the northwest. We study how the southward propagating sub-segment of the rift that contains Lake Albert to the north interacts with the northward propagating sub-segment that contains the lakes Edward and George and how this interaction produces the structural geometries observed within and around the Rwenzori horst block. Analogue experiments are used to simulate behavior of the upper crust with pre-cut rubber strips of varying overstep/overlap, placed oblique and/or orthogonal to the extension vector. The points of connection to the basal sheet present velocity discontinuities to localize deformation below the sand. Surface geometry of the developing rifts and section cuts are used to study the kinematics that result from the given boundary conditions. In general we try to model two parallel rifts that propagate towards each other and interact. Results show that greater overstep of rifts produces an oblique shear-dominated transfer zone with deep grabens (max.7.0km) in the adjoining segments. Smaller overlap ends in extension-dominated transfer, offset rift segments without oblique transfer faults to join two adjacent rift arms and produces moderately deep grabens (max.4.6km). When overlap doubles the overstep (SbR5), rifts propagate sub-orthogonal to the extension direction in a rotation-dominated transfer and form shallow valleys (max.2.9km). Whether a block like the Rwenzori Mountains is captured and rotates, depends on the overlap/overstep ratio where the rotation direction of a captured block is determined by the sense of overlap (right- or left-lateral). Fault

  3. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  4. Human Dispersals Along the African Rift Valley in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  5. Minimal Role of Basal Shear Tractions in Driving Nubia-Somalia Divergence Across the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Calais, E.; Iaffaldano, G.; Flesch, L. M.

    2012-12-01

    The Nubian and Somalian plates actively diverge along the topographically high, ~5000 km long East African Rift System (EARS). As no major subduction zones bound Africa, one can assume that the forces driving the Nubia-Somalia plate system result primarily from mantle buoyancies and lateral variation in lithospheric gravitational potential energy. Images from seismic tomography and convection models suggest active mantle flow beneath Africa. However, the contribution from large-scale convection to the force balance driving plate divergence across the EARS remains in question. In this work we investigate the impact of mantle shear tractions on the dynamics of Nubia-Somalia divergence across the EARS. We compare surface motions inferred from GPS observations with strain rates and velocities predicted from dynamic models where basal shear stresses are (1) derived from forward mantle circulation models and (2) inferred from stress field boundary conditions that balance buoyancy forces in the African lithosphere. Upper mantle anisotropy derived from seismic observations beneath Africa provide independent constraints for the latter. Preliminary results suggest that basal shear tractions play a minor role in the dynamics of Nubia-Somalia divergence along the EARS. This result implies mantle-lithosphere decoupling, possibly promoted by a low viscosity asthenosphere. We corroborate the robustness of our results with estimates of upper mantle viscosity based on local upper mantle temperature estimates and rheological parameters obtained from laboratory experiments.

  6. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    NASA Astrophysics Data System (ADS)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition

  7. Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Furman, T.; Hanan, B.

    2005-12-01

    isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.

  8. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1993-08-01

    This overview of the petroleum geology of rift basins in Niger, Chad, and Central African Republic (CAR) is based on exploration work by Exxon and partners in the years 1969-1991. The work included 50,000 km of modern reflection seismic, 53 exploration wells, 1,000,000 km[sup 2] of aeromagnetic coverage, and about 10,500 km of gravity profiles. The results outline ten Cretaceous and Tertiary rift basins, which constitute a major part of the West and Central African rift system (WCARS). The rift basins derive from a multiphased geologic history dating from the Pan-African (approximately 750-550 Ma) to the Holocene. WCARS in the study area is divided into the West African rift subsystem (WAS) and the Central African rift subsystem (WAS) and the Central African rift subsystem (CAS). WAS basins in Niger and Chad are chiefly extensional, and are filled by up to 13,000 m of Lower Cretaceous to Holocene continental and marine clastics. The basins contain five oil (19-43[degrees]API) and two oil and gas accumulations in Upper Cretaceous and Eocene sandstone reservoirs. The hydrocarbons are sourced and sealed by Upper Cretaceous and Eocene marine and lacustrine shales. The most common structural styles and hydrocarbon traps usually are associated with normal fault blocks. CAS rift basins in Chad and CAR are extensional and transtensional, and are filled by up to 7500 m of chiefly Lower Cretaceous continental clastics. The basins contain eight oil (15-39[degrees]API) and one oil and gas discovery in Lower and Upper Cretaceous sandstone reservoirs. The hydrocarbons are sourced by Lower Cretaceous shales and sealed by interbedded lacustrine and flood-plain shales. Structural styles range from simple fault blocks through complex flower structures. The main hydrocarbon traps are in contractional anticlines. Geological conditions favor the discovery of potentially commercial volumes of oil in WCARS basins, of Niger, Chad and CAR. 108 refs., 24 figs., 4 tabs.

  9. Magmatic lithospheric heating and weakening during continental rifting: A simple scaling law, a 2-D thermomechanical rifting model and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Wallner, Herbert

    2012-08-01

    Continental rifting is accompanied by lithospheric thinning and decompressional melting. After extraction, melt is intruded at shallower depth thereby heating and weakening the lithosphere. In a feedback mechanism this weakening may assist rifting and melt production. A one-dimensional kinematic lithospheric thinning model is developed including decompressional melting and intrusional magma deposition. The intrusional heating effect is determined as a function of thinning rate and amount, melting parameters, potential temperature, and the depth range of emplacement. The temperature increases approximately proportionally to the square root of the thinning rate and to the square of the supersolidus potential temperature. Simple scaling laws are derived allowing predicting these effects and the surface heat flux for arbitrary scenarios. Two-dimensional thermomechanical extension models are carried out for a multicomponent (crust-mantle) two-phase (melt-matrix) system with a rheology based on laboratory data including magmatic weakening. In good agreement with the 1-D kinematic models it is found that the lithosphere may heat up by several 100 K. This heating enhances viscous weakening by one order of magnitude or more. In a feedback mechanism rifting is dynamically enforced, leading to a significant increase of rift induced melt generation. Including the effect of lateral focusing of magma toward the rift axis the laws are applied to different segments of the East African Rift System. The amount of intrusional heating increases with maturity of the rift from O(10 K) to up to 200 K or 400 K at the Afar Rift depending on the depth range of the magmatic emplacement.

  10. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  11. Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Silveira, G. M.; Custodio, S.; Chamussa, J.; Lebedev, S.; Chang, S. J.; Ferreira, A. M. G.; Fonseca, J. F. B. D.

    2014-12-01

    Unlike the majority of the East African Rift, the Mozambique region has not been deeply studied, not only due to political instabilities but also because of the difficult access to its most interior regions. An earthquake with M7 occurred in Machaze in 2006, which triggered the investigation of this particular region. The MOZART project (funded by FCT, Lisbon) installed a temporary seismic network, with a total of 30 broadband stations from the SEIS-UK pool, from April 2011 to July 2013. Preliminary locations of the seismicity were estimated with the data recorded from April 2011 to July 2012. A total of 307 earthquakes were located, with ML magnitudes ranging from 0.9 to 3.9. We observe a linear northeast-southwest distribution of the seismicity that seems associated to the Inhaminga fault. The seismicity has an extension of ~300km reaching the Machaze earthquake area. The northeast sector of the seismicity shows a good correlation with the topography, tracing the Urema rift valley. In order to obtain an initial velocity model of the region, the ambient noise method is used. This method is applied to the entire data set available and two additional stations of the AfricaARRAY project. Ambient noise surface wave tomography is possible by computing cross-correlations between all pairs of stations and measuring the group velocities for all interstation paths. With this approach we obtain Rayleigh wave group velocity dispersion curves in the period range from 3 to 50 seconds. Group velocity maps are calculated for several periods and allowing a geological and tectonic interpretation. In order to extend the investigation to longer wave periods and thus probe both the crust and upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry - Meier el al 2004) to augment our dataset with Rayleigh wave phase velocities curves in a broad period range. Using this method we expect to be able to explore the lithosphere

  12. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  13. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  14. Assessment of conventional oil resources of the East African Rift Province, East Africa, 2016

    USGS Publications Warehouse

    Brownfield, Michael E.; Schenk, Christopher J.; Klett, Timothy R.; Mercier, Tracey J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Finn, Thomas M.; Le, Phuong A.; Leathers-Miller, Heidi M.

    2017-03-27

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean conventional resources of 13.4 billion barrels of oil and 4.6 trillion cubic feet of gas in the East African Rift Province of east Africa.

  15. Vector Competence of Selected African Mosquito (Diptera: Culicidae) Species for Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Rift Valley fever (RVF) in Egypt, Yemen, and Saudi Arabia have indicated the potential for this disease to spread from its enzootic areas in sub-Saharan Africa. Because little is known about the potential for most African mosquito species to transmit RVF virus (RVFV), we conducted stud...

  16. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems

    NASA Astrophysics Data System (ADS)

    Castaing, C.

    1991-05-01

    Structural studies conducted in the Lengwe and Mwabvi Karroo basins and in the basement in South Malawi, using regional maps and published data extended to cover Southeast Africa, serve to propose a series of geodynamic reconstructions which reveal the persistence of an extensional tectonic regime, the minimum stress σ3 of which has varied through time. The period of Karroo rifting and the tholeiitic and alkaline magmatism which terminated it, were controlled by NW-SE extension, which resulted in the creation of roughly NE-SW troughs articulated by the Tanganyika-Malawi and Zambesi pre-transform systems. These were NW-SE sinistral-slip systems with directions of movement dipping slightly to the Southeast, which enabled the Mwanza fault to play an important role in the evolution of the Karroo basins of the Shire Valley. The Cretaceous was a transition period between the Karroo rifting and the formation of the Recent East African Rift System. Extension was NE-SW, with some evidence for a local compressional episode in the Lengwe basin. Beginning in the Cenozoic, the extension once more became NW-SE and controlled the evolution in transtension of the Recent East African Rift System. This history highlights the major role of transverse faults systems dominated by strike-slip motion in the evolution and perpetuation of the continental rift systems. These faults are of a greater geological persistence than the normal faults bounding the grabens, especially when they are located on major basement anisotropies.

  17. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  18. Eradication of elephant ear mites (Loxoanoetus bassoni) in two African elephants (Loxodonta africana).

    PubMed

    Wyatt, Jeff; DiVincenti, Louis

    2012-03-01

    Elephant ear mites, not previously described in North America, were eradicated in two African elephants (Loxodonta africana) after six otic instillations of ivermectin at 2-wk intervals. The microscopic examination of a clear, mucoid discharge collected from the external ear canals of two wild-born African elephants housed in a New York State zoo for 25 yr revealed live mites (Loxoaneotus bassoni). The cytologic examination demonstrated no evidence of inflammation or infection. Both elephants were asymptomatic with normal hemograms and serum chemistry panels. A diagnosis of otoacariasis was made. Each elephant was treated six times with 5 ml of 1% ivermectin syrup instilled in each ear canal once every 2 wk. Microscopic examinations of clear mucus collected from each elephant's ear canals 9 days after the first instillation of ivermectin were negative for any life stages of ear mites. Microscopic examinations of mucus collected from both elephants' ear canals at 6, 11, and 16 wk, as well as annually post-treatment for 7 yr, confirmed eradication of the ear mites. The L. bassoni ear mite was first identified in the external ear canals of wild, asymptomatic, lesion-free, African elephants culled in Kruger National Park in South Africa. However, a new species in the same genus of mites (Loxoanoetus lenae) was identified at the necropsy of an 86-yr-old Asian elephant (Elephas maximus) living in a circus in Australia. The autopsy revealed a marked, ballooning distension of bone around the left external acoustic meatus, suggestive of mite-induced otitis externa, as seen in cattle infested with ear mites (Raillieta auris). Elephant health care providers should identify the prevalence of, and consider treatment of, elephants in their care infested with ear mites, given the possible risk for adverse health effects.

  19. Benue trough and the mid-African rift system

    SciTech Connect

    Thomas, D.

    1996-01-29

    Large areas of the Anambra and Gongola basins have distinct petroleum exploration problems: a geologically persistent high geothermal gradient that promoted Cretaceous source rock maturation into the gas phase very early on; intrusive lead-zinc mineralization veins attributed to the Senonian igneous and folding event; and meteoric water-flushing along the periphery of the basins. From preliminary analysis, these basins have to be considered high risk for the discovery of commercial oil accumulations. On the other hand, the petroleum potential of the Bornu basins seems favorable. This Nigerian northernmost rift basin continues into the Kanem basin of western Chad, which has proven oil accumulations in Coniacian deltaic sands. Cretaceous paleofacies is considered to be relatively continuous throughout both basins. Paleo-geothermal history is also considered to be similar, although some igneous activity is recorded in the Bornu basin (Senonian?). There is a very real possibility of kerogen-rich non-marine basal Albo-Aptian basin fill lacustrine source rocks, as found in the Doba basin, could be present in the deepest sections of the Nigerian rift basins. Due to the depths involved, no well is expected to penetrate the incipient graben-fill stage sequences; however, possible oil migration from these tectono-stratigraphic units would certainly enhance the petroleum potential of cooler sections of the rift system. As opposed to interpreted thermogenic gas which seems to be prevalent in the Anambra basin.

  20. Anomalous seafloor mounds in the northern Natal Valley, southwest Indian Ocean: Implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Wiles, Errol; Green, Andrew; Watkeys, Mike; Jokat, Wilfried; Krocker, Ralph

    2014-09-01

    The Natal Valley (southwest Indian Ocean) has a complicated and protracted opening history, as has the surrounding southwest Indian Ocean. Recently collected multibeam swath bathymetry and 3.5 kHz seismic data from the Natal Valley reveal anomalous seafloor mounds in the northern Natal Valley. The significance, of these domes, as recorders of the geological history of the Natal Valley and SE African Margin has been overlooked with little attempt made to identify their origin, evolution or tectonic significance. This paper aims to describe these features from a morphological perspective and to use their occurrence as a means to better understand the geological and oceanographic evolution of this basin. The seafloor mounds are distinct in both shallow seismic and morphological character from the surrounding seafloor of the Natal Valley. Between 25 km and 31 km long, and 16 km and 18 km wide, these features rise some 400 m above the sedimentary deposits that have filled in the Natal Valley. Such macro-scale features have not previously been described from the Natal Valley or from other passive margins globally. They are not the result of bottom water circulation, salt tectonics; rather, igneous activity is favoured as the origin for these anomalous seafloor features. We propose a hypothesis that the anomalous seafloor mounds observed in the Natal Valley are related to igneous activity associated with the EARS. The complicated opening history and antecedent geology, coupled with the southward propagation of the East African Rift System creates a unique setting where continental rift associated features have been developed in a marine setting.

  1. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    PubMed

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism.

  2. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  3. Petroleum geology of rift basins in Niger, Chad, and the Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-03-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad, and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed. This paper is based on proprietary exploration results derived from more than 1 million km{sup 2} of aeromagnetics, 10,520 line km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas, Inc., during the years 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks, and seals, with traps in normal fault blocks and anticlinal closures. There are six oil discoveries in the Termit basin. In Chad and the C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. Key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There are six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and the C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  4. Petroleum geology of rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-08-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed based on proprietary exploration results derived from more than one million km{sup 2} of aeromagnetics, 10,520 line-km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas During 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks and seals, with traps in normal fault blocks and anticlinal closures. There have been six oil discoveries in the Termit basin. In C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood-plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There have been six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  5. A new brachypterous scarab species, Orphnus longicornis (Coleoptera: Scarabaeidae: Orphninae), from the East African Rift.

    PubMed

    Frolov, Andrey; Akhmetova, Lilia

    2015-11-05

    The Afrotropical Region is the center of the diversity of the scarab beetle genus Orphnus MacLeay, 1819 (Coleoptera: Scarabaeidae: Orphninae), with 94 species occurring from Sahel in the north to Little Karoo in the south (Paulian, 1948; Petrovitz, 1971; Frolov, 2008). The East African Rift is one of the richest regions of the Afrotropics housing more than 20 species of Orphnus (Paulian, 1948; Frolov, 2013), most of which are endemic to this region. Yet the scarab beetle fauna of the East African Rift, and especially the Eastern Arc Mountains, is still inadequately studied. Examination of the material housed in the Museum of Natural History of Humboldt-Universität, Berlin, Germany (ZMHUB), revealed a series of brachypterous Orphnus beetles belonging to an undescribed species. The new species is described and illustrated below.

  6. Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system

    NASA Astrophysics Data System (ADS)

    Said, Aymen; Moder, Christoph; Clark, Stuart; Abdelmalak, Mohamed Mansour

    2015-11-01

    Data from 23 wells were used to quantify the sedimentary budgets in the Tanzania coastal basin in order to unravel the uplift chronology of the sourcing area located in the East African Rift System. We quantified the siliciclastic sedimentary volumes preserved in the Tanzania coastal basin corrected for compaction and in situ (e.g., carbonates) production. We found that the drainage areas, which supplied sediments to this basin, were eroded in four episodes: (1) during the middle Jurassic, (2) during the Campanian-Palaeocene, (3) during the middle Eocene and (4) during the Miocene. Three of these high erosion and sedimentation periods are more likely related to uplift events in the East African Rift System and earlier rift shoulders and plume uplifts. Indeed, rapid cooling in the rift system and high denudation rates in the sediment source area are coeval with these recorded pulses. However, the middle Eocene pulse was synchronous with a fall in the sea level, a climatic change and slow cooling of the rift flanks and thus seems more likely due to climatic and eustatic variations. We show that the rift shoulders of the East African rift system have inherited their present relief from at least three epeirogenic uplift pulses of middle Jurassic, Campanian-Palaeocene, and Miocene ages.

  7. U-series Chronology of volcanoes in the Central Kenya Peralkaline Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Negron, L. M.; Ma, L.; Deino, A.; Anthony, E. Y.

    2012-12-01

    We are studying the East African Rift System (EARS) in the Central Kenya Peralkaline Province (CKPP), and specifically the young volcanoes Mt. Suswa, Longonot, and Menengai. Ar dates by Al Deino on K-feldspar phenocrysts show a strong correlation between older Ar ages and decreasing 230Th/232Th, which we interpret to reflect the age of eruption. This system has been the subject of recent research done by several UTEP alumni including Antony Wamalwa using potential field and magnetotelluric (MT) data to identify and characterize fractures and hydrothermal fluids. Also research on geochemical modeling done by John White, Vanessa Espejel and Peter Omenda led to the hypothesis of possible disequilibrium in these young, mainly obsidian samples in their post eruptive history. A pilot study of 8 samples, (also including W-2a USGS standard and a blank) establish the correlation that was seen between the ages found by Deino along with the 230/232Th ratios. All 8 samples from Mt. Suswa showed a 234U/238U ratio of (1) which indicates secular equilibrium or unity and that these are very fresh samples with no post-eruptive decay or leaching of U isotopes. The pilot set was comprised of four samples from the ring-trench group (RTG) with ages ranging from 7ka-present, two samples from the post-caldera stage ranging from 31-10ka, one sample from the syn-caldera stage dated at 41ka, and one sample from the pre-caldera stage dated at 112ka. The young RTG had a 230/232Th fractionation ratio of 0.8 ranging to the older pre-caldera stage with a 230/232Th ratio of 0.6. From this current data and research of 14C ages by Nick Rogers, the data from Longonot volcano was also similar to the 230/232Th ratio we found. Rogers' data places Longonot volcano ages to be no more than 20ka with the youngest samples also roughly around 0.8 disequilibrium. These strong correlations between the pilot study done for Mt. Suswa, 40Ar ages by Deino, along with 14C ages from Rogers have led to the

  8. Upper mantle structure of the Congo Craton and the East African Rift from full wave ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Emry, E.; Shen, Y.; Nyblade, A.; Bao, X.; Flinders, A. F.

    2015-12-01

    The relationship between lithospheric structure, mantle flow, and continental rifting along the East African Rift is the subject of ongoing discussion. The upper mantle beneath the Main Ethiopian Rift and the East African Rift farther south has been seismically imaged following the deployment of several temporary regional arrays. However, due to uneven distribution of seismic arrays, key questions regarding a connection between these upper mantle anomalies at the Turkana Depression and the effect that the thick Congo Craton has on diverting upwelling material towards the East African Rift are poorly resolved. We use overlapping records from several temporary and permanent broadband seismic arrays (1980-2014) located throughout the African continent and surrounding regions in order to image the upper mantle beneath the East African Rift and the Congo Craton where regional seismic arrays have not been deployed. We do this by seismic ambient noise tomography using the recently developed frequency-time normalization (FTN) method to extract empirical Green's functions (EGFs) at periods of 7-250 seconds. We cross correlate the normalized continuous records and stack them to obtain EGFs for each temporally coincident station-station pair. We simulate wave propagation through a spherical Earth using a finite-difference method, measure phase delay times between synthetics and EGFs, and invert them for velocity perturbations with 3D Rayleigh wave sensitivity kernels. We will present results from full-wave ambient noise inversions that illuminate upper mantle structure throughout the continent, with particular focus on the Congo Craton and northern sections of the East African Rift System.

  9. Small-scale thermal upwellings under the northern East African Rift from S travel time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Goes, Saskia; Hammond, James O. S.; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J. Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2016-10-01

    There is a long-standing debate over how many and what types of plumes underlie the East African Rift and whether they do or do not drive its extension and consequent magmatism and seismicity. Here we present a new tomographic study of relative teleseismic S and SKS residuals that expands the resolution from previous regional studies below the northern East African Rift to image structure from the surface to the base of the transition zone. The images reveal two low-velocity clusters, below Afar and west of the Main Ethiopian Rift, that extend throughout the upper mantle and comprise several smaller-scale (about 100 km diameter), low-velocity features. These structures support those of our recent P tomographic study below the region. The relative magnitude of S to P residuals is around 3.5, which is consistent with a predominantly thermal nature of the anomalies. The S and P velocity anomalies in the low-velocity clusters can be explained by similar excess temperatures in the range of 100-200°C, consistent with temperatures inferred from other seismic, geochemical, and petrological studies. Somewhat stronger VS anomalies below Afar than west of the Main Ethiopian Rift may include an expression of volatiles and/or melt in this region. These results, together with a comparison with previous larger-scale tomographic models, indicate that these structures are likely small-scale upwellings with mild excess temperatures, rising from a regional thermal boundary layer at the base of the upper mantle.

  10. Ear wound regeneration in the African spiny mouse Acomys cahirinus

    PubMed Central

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah

    2016-01-01

    Abstract While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four‐millimeter‐diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention. PMID:27499879

  11. Ear wound regeneration in the African spiny mouse Acomys cahirinus.

    PubMed

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah; Tiscornia, Gustavo

    2016-02-01

    While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four-millimeter-diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.

  12. Sismotectonics in the western branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kervyn, François; Mulumba, Jean-Luc; Kipata, Louis; Sebagenzi, Stanislas; Mavonga, Georges; Macheyeki, Athanas; Temu, Elly Bryan

    2013-04-01

    The western branch of the East African rift system is known of its particular seismic activity with larger magnitude (up to Ms 7.3) and more frequent destructive earthquakes than in the eastern branch. As a contribution to the IGCP 601 project Seismotectonic Map of Africa, we compiled the known active faults, thermal springs and historical seismicity in Central Africa. Using the rich archives of the Royal Museum for Central Africa, publications and own field observations, we present a compilation of available data relative to the current seismotectonic activity along the western branch of the East African rift system, in DRC, Rwanda, Burundi and Tanzania. Neotectonic activity related to the western rift branch is in general well expressed and relatively well studied in the eastern flank of this rift branch, in Uganda, Rwanda, Burundi and Tanzania. In contrast, the western flank of this rift branch, largely exposed in the DRC, has attracted less attention. However, data collected during the colonial times show significant sismotectonic activity in East DRC, not only in the western flank of the western rift branch, but extending far westwards up to the margin of the Congo basin. In particular, our predecessors paid a special attention to the mapping and description of thermal springs, noticing that they are often controlled by active faults. In addition, the operators of the relatively dense network of meteorological stations installed in the DRC, Rwanda and Burundi also recorded were with variable level of completeness and detail the earthquakes that they could felt. This provides a rich database that is used to complete the existing knowledge on historical seismicity. An important effort has still to be paid to identify and map potentially active fault due to poor field accessibility, tropical climate weathering and vegetation coverage. The main problem in the compilation of active fault data is that very few of them have been investigated by paleoseismic trenching

  13. Evolution of the SW African passive continental margin during the post-rift phase

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Götze, Hans-Jürgen; Reichert, Christian

    2014-05-01

    The tectonic evolution of the SW African margin and the breakup of the South Atlantic Ocean are still under debate. Furthermore, there are economic interests in terms of hydrocarbon resources. In particular, the understanding of the subsidence history at the SW African passive continental margin can help to investigate the evolution of this margin. For this reason, we aim to reconstruct paleotopographies for three time steps during the post-rift phase (112 Ma to present day). These three time steps are: Cretaceous-Tertiary boundary (67 Ma), Cenomanian-Turonian boundary (93 Ma) and start post-rift (112 Ma). We use a recent regional scale 3D structural model (Maystrenko et al., 2013) as base for our subsidence analysis. This model includes the upper mantle, the crystalline crust, four sedimentary units as well as the water column. The sedimentary units comprise sediments of the (1) Cenozoic, (2) base Turonian-base Cenozoic, (3) base Aptian-base Turonian and (4) pre-Aptian sediments. Therefore, our subsidence reconstruction has the particular advantage that we include as much present day information as possible. In order to reconstruct paleotopographies we calculate the subsidence components separately. On the one hand we determine the thermal subsidence due to cooling of the lithosphere. On the other hand, the load induced subsidence exerted by the preserved sedimentary cover is calculated by applying a backstripping method which considers local isostatic rebound and decompaction. Both the amount of thermal subsidence and the amount of load induced subsidence are then subtracted from the total subsidence which is nowadays observed. Subtracting these individual subsidence components leads to the paleotopographies. The paleotopographies provide information about the long-term behavior of the margin area since the beginning of the post-rift phase. Moreover, the paleotopographies provide the opportunity to estimate vertical movements which have occurred during the post-rift

  14. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  15. Application of P- and S-receiver functions to investigate crustal and upper mantle structures beneath the Albertine branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Gummert, Michael; Lindenfeld, Michael; Wölbern, Ingo; Rümpker, Georg; Kasereka, Celestin; Batte, Arthur

    2014-05-01

    The Rwenzori region at the border between Uganda and the Democratic Republic of Congo is part of the western (Albertine) branch of the East African Rift System (EARS). The region is characterized by a horst structure, the Rwenzori Mountains, reaching elevations of more than 5 km and covering an area of about 120 km by 50 km. The unusual location of the mountain range, between two segments of the Albertine rift, suggests complex structures of the crust and the upper mantle below. In our study, we employ P- and S-receiver functions in order to investigate the corresponding discontinuities of the lithosphere-asthenosphere system. The analyses are based on recordings from a dense network of 33 seismic broadband stations operating in the region for a period of nearly two years, from September 2009 until August 2011. The crustal thickness is analysed by using P-receiver functions and the grid search method of Zhu & Kanamori (2000) which involves the stacking of amplitudes of direct converted (Ps) and multiple phases (PpPs and PpSs) originating from the Moho. The method of S-receiver functions is more effective in analysing deeper discontinuities of the upper mantle, such as the lithosphere-asthenosphere boundary (LAB). The latter method also has the advantage that the interfering influence of multiple phases from shallower discontinuities is avoided. To simplify the analysis of the S-receiver functions, we use an automatic procedure to determine incidence angles used in the rotation from the ZNE system to the ray-centered LQT system. We apply this approach to confirm and significantly extend results from the study of Wölbern et al. (2012), which provided evidence for an intra-lithospheric discontinuity at depths between 54 km and 104 km and the LAB between 135 km and 210 km. Our results provide evidence for significant variations of crustal thickness beneath the region. The Moho depth varies between 20 km beneath the rift valley and 39 km beneath the adjacent rift

  16. Latitudinal Hydrologic Variability Along the East African Rift, Over the Past 200 Kyr

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.

    2014-12-01

    Within the deep sediments of the large lakes of Africa's Great Rift Valley are continuous environmental records of remarkable antiquity and fidelity. Not only do stratigraphic sections from these basins extend back millions of years, many of the intervals represented contain high-resolution material of decadal resolution or better. East African lake basins remain sparsely sampled however, with only a few long and continuous records available. Our ability to image the lakes using seismic reflection methods greatly exceeds our opportunities for coring and drilling however; assessing stratal relationships observed in the geophysical data permits powerful inferences about past hydrologic changes. With intensive hydrocarbon exploration work underway in East Africa, industry well data can also help constrain and ground truth basin histories. Substantial spatio-temporal hydrologic variability is observed in East African basins over the past 200 kyr. Paleohydrological changes in the late Pleistocene and early Holocene are now well constrained in the northern hemisphere East African topics, with widespread aridity and in some cases lake desiccation observed during Heinrich Event 1. A climate recovery followed in the northern hemisphere East African tropics, with the early Holocene African Humid Period a time of positive water balance across most of the rift valley. The paleohydrology of southern hemisphere tropical East Africa is more equivocal, for instance with negligible draw-down of Lake Malawi at HE1. Whereas these late Pleistocene events represent substantial climate reorganizations, severe droughts during the middle-late Pleistocene (150-65 kyr BP) were far more intense, and produced much more severe drawdowns of Lakes Malawi and Tanganyika. Scientific drill cores, kullenberg cores, and extensive seismic reflection data sets from Lakes Malawi and Tanganyika provide indisputable evidence for lowstands of -500m and -600 m respectively. Climate changes that lowered the

  17. The Rift Valley of African Plate in Elasto-Plastic Creeping over Magma Motion

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2016-04-01

    This is a brief note to a problem on the Rift Valley in the eastern Africa. It is said that this valley was formed in an age 20,000,000 years before present though the valley is yet continuing to move eastward at an annual rate of about 5 cm/year in a geographical trend. Adding to some of the scientists tell that the separation threat of the easternAfrica from the mother land of the Africa under the effect of African crust motion over the magma. However, it is now geological understanding that the land of the Africa has been kept its basic coastal configulation in geographic pattern since the time more than 20,000,000 years before present. Sothat, it is hard to consider the above noted African land separation by part could be in the next age in a time scale of 20,000,000 years. As far as, we concern the geographic data obtaoned by the ground based survey of the African typical mountain peaks, the highest mountain peak 5885m (in 1980) is for Kilimanjaro, Kibo Peak though one of the scientific almanacs tells us its peak height as 5890m (in 2009). As for the Mount Kenia, the peak height is as 5199m (in 1980) and 5200m(in 2009). At a glance, it looks to be a trend in altimetry of the African typical mountain. Now, what trends are noted for the peak heights could be taken to suggesting the geological activity on the earth surface to maintain in a spherical shape approximately on the orbit around the Sun. In these several ten years, the digitizing of the data has been promoted even for the topographic patterns on the earth though its time scaling is extremely short comparing to the geological time scaling. Now, it should be found what is effective to monitor any trends of the African crust in motion as well as variations of the mountain peaks.

  18. Stable isotope-based Plio-Pleistocene ecosystem reconstruction of some of the earliest hominid fossil sites in the East African Rift System (Chiwondo Beds, N Malawi)

    NASA Astrophysics Data System (ADS)

    Lüdecke, Tina; Thiemeyer, Heinrich; Schrenk, Friedemann; Mulch, Andreas

    2014-05-01

    The isotope geochemistry of pedogenic carbonate and fossil herbivore enamel is a powerful tool to reconstruct paleoenvironmental conditions in particular when climate change plays a key role in the evolution of ecosystems. Here, we present the first Plio-Pleistocene long-term carbon (δ13C), oxygen (δ18O) and clumped isotope (Δ47) records from pedogenic carbonate and herbivore teeth in the Malawi Rift. These data represent an important southern hemisphere record in the East African Rift System (EARS), a key region for reconstructing vegetation patterns in today's Zambezian Savanna and correlation with data on the evolution and migration of early hominids across the Inter-Tropical Convergence Zone. As our study site is situated between the well-known hominid-bearing sites of eastern and southern Africa in the Somali-Masai Endemic Zone and Highveld Grassland it fills an important geographical gap for early hominid research. 5.0 to 0.6 Ma fluviatile and lacustrine deposits of the Chiwondo Beds (NE shore of Lake Malawi) comprise abundant pedogenic carbonate and remains of a diverse fauna dominated by large terrestrial mammals. These sediments are also home to two hominid fossil remains, a mandible of Homo rudolfensis and a maxillary fragment of Paranthropus boisei, both dated around 2.4 Ma. The Chiwondo Beds therefore document early co-existence of these two species. We evaluate δ13C data from fossil enamel of different suid, bovid, and equid species and contrast these with δ13C and δ18O values of pedogenic carbonate. We complement the latter with clumped isotope soil temperature data. Results of almost 800 pedogenic carbonate samples from over 20 sections consistently average δ13C = -8.5 ‰ over the past 5 Ma with no significant short-term δ13C excursions or long-term trends. The data from molar tooth enamel of nine individual suids of the genera Metridiochoerus, Notochoerus and Nyanzachoerus support these findings with average δ13C = -10.0 ‰. The absence

  19. Giant Seismites and Megablock Uplift in the East African Rift: Evidence for Late Pleistocene Large Magnitude Earthquakes

    PubMed Central

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M.

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic ‘megablock complex’ that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions. PMID:26042601

  20. Giant seismites and megablock uplift in the East African Rift: evidence for Late Pleistocene large magnitude earthquakes.

    PubMed

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions.

  1. The diagenesis of continental (Karoo-Tertiary?) siliciclastics from an East African rift valley (Rukwa-Tukuyu area), Tanzania

    NASA Astrophysics Data System (ADS)

    Dypvik, Henning; Nesteby, Helge

    1992-07-01

    The diagenetic history of the Karoo and Jurassic/Tertiary beds of East African rift valleys is related to the tectonic activity and sedimentary evolution of the rift valley area. In the Karoo beds early diagenetic calcite and hematite formation are succeeded by mechanical compaction and minor quartz, kaolinite and calcite precipitation. Renewed tectonic activity (possible half-graben formation) and exposure of the Karoo beds in Jurassic/Tertiary time resulted in alluvial fan deposition (the Red Sandstone Group) and associated fresh-water flushing, caliche formation and hematite precipitation. Late diagenetic precipitation of potash feldspar and feldspar leaching were the final controls on the porosity and permeability development of the sediments.

  2. Shaded Relief with Height as Color, Virunga and Nyiragongo Volcanoes and the East African Rift

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.

    These two images show exactly the same area. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision. Elevation is color coded, progressing from green at the lower elevations through yellow to brown at the higher elevations. A false sun in the northwest (upper left) creates topographic shading.

    Lake Kivu is shown as black in the Shuttle Radar Topography Mission version (southwest corner). It lies within the East African Rift, an elongated tectonic pull-apart depression in Earth's crust. The rift extends to the northeast as a smooth lava- and sediment-filled trough. Two volcanic complexes are seen in the rift. The one closer to the lake is the Nyiragongo volcano, which erupted in January 2002, sending lava toward the lake shore and through the city of Goma. East of the rift, even more volcanoes are seen. These are the Virunga volcano chain, which is the home of the endangered mountain gorillas. Note that the terrain surrounding the volcanoes is much smoother than the eroding mountains that cover most of this view, such that topography alone is a good indicator of the extent of the lava flows. But this clear only at the higher spatial resolution of the shuttle mission's data set.

    For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments

  3. Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic

    PubMed Central

    Nakouné, Emmanuel; Kamgang, Basile; Berthet, Nicolas; Manirakiza, Alexandre; Kazanji, Mirdad

    2016-01-01

    Background Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated. Methodology/Principal Findings To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster. Conclusion and significance This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs. PMID:27760144

  4. Early-stage rifting in the southwest East African Rift: Insights from new reflection seismic data from Lakes Tanganyika and Malawi (Nyasa)

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Wood, D. A.; Shillington, D. J.; McCartney, T.; Accardo, N. J.

    2015-12-01

    The western branch of the East African Rift is characterized by modest amounts of mainly amagmatic extension; deeply-subsided, fault-controlled basins; and large-magnitude, deep seismicity. Lakes Tanganyika and Malawi are two of the world's largest lakes, with maximum water depths of 1450 and 700 m respectively. Newly acquired seismic reflection data, along with newly reprocessed legacy data reveal thick sedimentary sections, in excess of 5 km in some localities. The 1980's vintage legacy data from Project PROBE have been reprocessed through pre-stack depth migration in Lake Tanganyika, and similar reprocessing of legacy data from Lake Malawi is forthcoming. New high-fold and large-source commercial and academic data have recently been collected in southern Lake Tanganyika, and in the northern and central basins of Lake Malawi as part of the 2015 SEGMeNT project. In the case of Lake Tanganyika, new data indicate the presence of older sediment packages that underlie previously identified "pre-rift" basement (the "Nyanja Event"). These episodes of sedimentation and extension may substantially predate the modern lake. These deep stratal reflections are absent in many localites, possibly on account of attenuation of the acoustic signal. However in one area of southern Lake Tanganyika, the newly-observed deep strata extend axially for ~70 km, likely representing deposits from a discrete paleolake. The high-amplitude Nyanja Event is interpreted as the onset of late-Cenozoic rifting, and the changing character of the overlying depositional sequences reflects increasing relief in the rift valley, as well as the variability of fluvial inputs, and the intermittent connectivity of upstream lake catchments. Earlier Tanganyika sequences are dominated by shallow lake and fluvial-lacustrine facies, whereas later sequences are characterized by extensive gravity flow deposition in deep water, and pronounced erosion and incision in shallow water depths and on littoral platforms. The

  5. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    SciTech Connect

    Tiercelin, J.J.; Mondeguer, A. ); Thouin, C. ); Kalala, T. )

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  6. InSAR and GPS measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Kervyn, François

    2016-04-01

    Along the East African Rift System (EARS), magma intrusions represent a major component in continental rifting. When these intrusions reach the surface, they cause volcanic eruptions. This is the case of the last flank eruption of Nyamulagira, which occurred from November 6 2011 to April 2012. Nyamulagira is an active shield volcano with a central caldera, located in the eastern part of the Democratic Republic of Congo, along the Kivu segment of the East African Rift System. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e., 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e., several months) eruptions usually emitting larger volumes of lava that take place at larger distance (>8 km) from the central caldera. The 2011-2012 Nyamulagira eruption is of that second type. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) to measure pre-, co and post-eruptive ground displacement associated with the Nyamulagira 2011-2012 eruption. Results suggest that a magma intrusion preceded by two days the eruption. This intrusion corresponded to the migration of magma from a shallow reservoir (~3km) below the caldera to the two eruptive fissures located ~11 km ENE of the central edifice. Available seismic data are in agreement with InSAR results showing increased seismic activity since November 4 2011, with long- and short-period earthquakes swarms. Using analytical models we invert the measured ground displacements during the first co-eruptive month to evaluate the deformation source parameters and the mechanism of magma emplacement for this eruption. GPS data from permanent stations in the KivuGNet network are used to constrain the temporal evolution of the eruption and evaluate far-field deformation, while the InSAR data is more sensitive to the near-field deformation

  7. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly

  8. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    NASA Astrophysics Data System (ADS)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  9. Evolution of the western East African Rift System reflected in provenance changes of Miocene to Pleistocene synrift sediments (Albertine Rift, Uganda)

    NASA Astrophysics Data System (ADS)

    Schneider, Sandra; Hornung, Jens; Hinderer, Matthias

    2016-08-01

    Miocene to Pleistocene synrift sediments in the Albertine Graben reflect the complex geodynamic evolution in the Western branch of the East African Rift System. In this study we focus on the provenance of these siliciclastic deposits to identify sediment sources and supply paths with the ultimate goal to reconstruct the exhumation history of different tectonic blocks during prolonged rifting, with specific focus on the uplift of the Rwenzori Mountains in Uganda. We present framework and heavy mineral petrographic data combined with varietal studies of detrital garnet and rutile, based on logged sediment sections on the Ugandan side of Lake Albert (Kisegi-Nyabusosi area). The analyzed sedimentary units have a feldspatho-quartzose composition and distinct variations in heavy mineral assemblages and mineral chemical composition indicating two provenance changes. The Miocene part of the stratigraphy is dominated by garnet, zircon, tourmaline and rutile, whereas Pliocene to Pleistocene sediment yields high amounts of less stable amphibole and epidote. An abrupt switch in heavy mineral assemblages occurs during the early Pliocene ( 5.5-5.0 Ma) and clearly postdates the formation of Palaeolake Obweruka at 8 Ma. Provenance signatures point to major sediment supply from the northeast and subsequently from the southeast. We interpret this first shift as transition from the pre-rift to the syn-rift stage. In this scenario, formation of Palaeolake Obweruka is due to higher humidity in the upper Miocene, rather than forced rifting. A second change of sediment composition is documented by mineral geochemistry and coincides with fragmentation of Palaeolake Obweruka starting at 2.5 Ma. Detrital garnet in sediment of Miocene to Pliocene age is rich in pyrope and almandine and calculated Zr-in-rutile temperatures range between 550 and 950 °C. In contrast, garnet occurring in Pleistocene sediment (Nyabusosi Formation) has a higher spessartine component and rutile thermometry is

  10. Aerosolized Rift Valley Fever Virus Causes Fatal Encephalitis in African Green Monkeys and Common Marmosets

    PubMed Central

    Hartman, Amy L.; Powell, Diana S.; Bethel, Laura M.; Caroline, Amy L.; Schmid, Richard J.; Oury, Tim

    2013-01-01

    Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV. PMID:24335307

  11. Melt globules as micro-magmachambers: Extreme fractionation in peralkaline nephelinite at Nyiragongo, East African Rift

    NASA Astrophysics Data System (ADS)

    Andersen, Tom; Elburg, Marlina; Erambert, Muriel

    2014-05-01

    Highly peralkaline leucite nephelinite from the active volcano Nyiragongo in the Virunga province of the East African Rift contains globules of iron- and volatile-rich, highly peralkaline silicate glass with (Na+K)/Al up to 18, which has formed as a late differentiate of less peralkaline precursors, probably by fractional crystallization at a shallow level in the volcanic system. Several uncommon minerals coexist with this glass (kalsilite, kirschsteinite, chlorbartonite, götzenite, delhayelite, zirconian cuspidine, rare alkali-barium minerals), while combeite is a near-solidus mineral. Low-variance mineral assemblages define a cooling trend from eruptive temperatures ≥980 ºC to the solidus of extremely peralkaline residual liquids at 600 ºC. Oxygen fugacities well below the QFM buffer (QFM-2 to-3) persisted throughout the magmatic crystallization stage. The oxygen fugacity increased to QFM+1 or higher during the final stage of postmagmatic recrystallization. Highly alkaline, volatile-rich minerals such as delhayelite, götzenite and cuspidine were stabilized by a combination of high peralkalinity and elevated activity of chlorine and fluorine; these conditions persisted to sub-solidus temperatures. The exotic mineralogy in these melt globules is similar to mineral assemblages in agpaitic nepheline syenites. The crystallization hisotory of these globules may be an analogue to fractionation processes in large, agpaitic intrusions (e.g. Ilímaussaq, Greenland), including the interplay of the controlling factors peralkalinity, oxygen- and volatile fugacity.

  12. Extreme peralkalinity in delhayelite- and andremeyerite-bearing nephelinite from Nyiragongo volcano, East African Rift

    NASA Astrophysics Data System (ADS)

    Andersen, Tom; Elburg, Marlina A.; Erambert, Muriel

    2014-10-01

    Highly peralkaline leucite nephelinite from the active volcano Nyiragongo in the Virunga province of the East African Rift contains globules of iron- and volatile-rich, highly peralkaline silicate glass with (Na + K)/Al up to 18 which has formed as a late differentiate of less peralkaline precursors, probably by fractional crystallization at a shallow level in the volcanic system. A number of uncommon minerals coexist with this glass (kalsilite, kirschsteinite, chlorbartonite, götzenite, delhayelite, umbrianite, zirconian cuspidine, andremeyerite (BaFe2Si2O7), other Ba-Fe-Ti silicate minerals, and unnamed alkali-barium phosphate and Zr-Nb-Ti silicate minerals). These minerals are members of late magmatic assemblages that have survived sub-solidus recrystallization. Combeite occurs as a near-solidus mineral. Low-variance mineral assemblages in Nyiragongo nephelinite define a cooling trend from eruptive temperatures ≥ 980 °C to the solidus of extremely peralkaline residual liquids at ca. 600 °C, followed by sub-solidus recrystallization and metasomatism down to ca. 500 °C. Oxygen fugacity well below the QFM buffer (QFM-2 to -3) persisted throughout the magmatic crystallization stage, but increased to above QFM during the final stage of postmagmatic recrystallization. Highly alkaline, volatile-rich minerals such as delhayelite, götzenite and cuspidine were stabilized by a combination of high peralkalinity and elevated activity of chlorine and fluorine; these conditions persisted to sub-solidus temperatures.

  13. The East African rift system in the light of KRISP 90

    USGS Publications Warehouse

    Keller, Gordon R.; Prodehl, C.; Mechie, J.; Fuchs, K.; Khan, M.A.; Maguire, Peter K.H.; Mooney, W.D.; Achauer, U.; Davis, P.M.; Meyer, R.P.; Braile, L.W.; Nyambok, I.O.; Thompson, G.A.

    1994-01-01

    On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of 100-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. Major scientific goals of this phase of KRISP were to reveal the detailed crustal and upper mantle structure under the Kenya rift, to study the relationship between mantle updoming and the development of sedimentary basins and other shallow structures within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system and within a global perspective and to elucidate fundamental questions such as the mode and mechanism of continental rifting. The KRISP results clearly demonstrate that the Kenya rift is associated with sharply defined lithospheric thinning and very low upper mantle velocities down to depths of over 150 km. In the south-central portion of the rift, the lithospheric mantle has been thinned much more than the crust. To the north, high-velocity layers detected in the upper mantle appear to require the presence of anistropy in the form of the alignment of olivine crystals. Major axial variations in structure were also discovered, which correlate very well with variations in the amount of extension, the physiographic width of the rift valley, the regional topography and the regional gravity anomalies. Similar relationships are particularly well documented in the Rio Grande rift. To the extent that truly comparable data sets are available, the Kenya rift shares many features with other rift zones. For example, crustal structure under the Kenya, Rio Grande and Baikal rifts and the Rhine Graben is generally symmetrically centered on the rift valleys. However, the Kenya rift is distinctive, but not unique, in terms of

  14. Nocardiopsis mwathae sp. nov., isolated from the haloalkaline Lake Elmenteita in the African Rift Valley.

    PubMed

    Akhwale, Juliah Khayeli; Göker, Markus; Rohde, Manfred; Schumann, Peter; Boga, Hamadi Iddi; Klenk, Hans-Peter

    2016-03-01

    During a screening for novel and biotechnologically useful bacteria in haloalkaline lakes, strain No.156(T) was isolated from a sediment sample from lake Elmenteita in the African Rift Valley and studied by a polyphasic taxonomic approach. The strain was observed to form yellow aerial and substrate mycelia; optimal growth was found to be at 30-35 °C in salt concentrations of 6-9 % (w/v) and at pH 7-9. The DNA G+C content of the novel strain was 71 mol%. Analysis of 16S rRNA sequences indicated that the isolate belongs to the genus Nocardiopsis with sequence similarities below 98 % to the type strains of all other representatives of the genus. Mycolic acids were not detected in whole cell methanolysates. The peptidoglycan was found to contain meso-diaminopimelic acid as the diamino acid with no diagnostic sugars. The main polar lipids were identified as phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol but no diphosphatidylglycerol. The predominant menaquinones were MK-11(H8), MK-11(H6), MK-10(H8) and MK-10(H6). Cellular fatty acids were found to consist of saturated and monounsaturated iso- and anteiso-branched acids with 16-18 C-length, tuberculostearic acid (Me18:0), and straight-chain saturated (16:0, 18:0) acids. These characteristics match those of the genus Nocardiopsis. Based on 16S rRNA gene sequence analysis and phenotypic characteristics, a novel species with the name Nocardiopsis mwathae is proposed. The type strain is No.156(T) (=DSM 46659(T) = CECT 8552(T)). The INSDC accession number for the 16S rRNA gene sequence of strain No.156(T) is KF976731.

  15. Influence of pre-existing fabrics on fault kinematics and rift geometry of interacting segments: Analogue models based on the Albertine Rift (Uganda), Western Branch-East African Rift System

    NASA Astrophysics Data System (ADS)

    Aanyu, K.; Koehn, D.

    2011-02-01

    This study aims at showing how far pre-existing crustal weaknesses left behind by Proterozoic mobile belts, that pass around cratonic Archean shields (Tanzania Craton to the southeast and Congo Craton to the northwest), control the geometry of the Albertine Rift. Focus is laid on the development of the Lake Albert and Lake Edward/George sub-segments and between them the greatly uplifted Rwenzori Mountains, a horst block located within the rift and whose highest peak rises to >5000 m above mean sea level. In particular we study how the southward propagating Lake Albert sub-segment to the north interacts with the northward propagating Lake Edward/George sub-segment south of it, and how this interaction produces the structures and geometry observed in this section of the western branch of the East African Rift, especially within and around the Rwenzori horst. We simulate behaviour of the upper crust by conducting sandbox analogue experiments in which pre-cut rubber strips of varying overstep/overlap connected to a basal sheet and oriented oblique and/or orthogonal to the extension vector, are placed below the sand-pack. The points of connection present velocity discontinuities to localise deformation, while the rubber strips represent ductile domain affected by older mobile belts. From fault geometry of developing rift segments in plan view and section cuts, we study kinematics resulting from a given set of boundary conditions, and results are compared with the natural scenario. Three different basal model-configurations are used to simulate two parallel rifts that propagate towards each other and interact. Wider overstep (model SbR3) produces an oblique transfer zone with deep grabens (max. 7.0 km) in the adjoining segments. Smaller overlap (model SbR4) ends in offset rift segments without oblique transfer faults to join the two, and produces moderately deep grabens (max. 4.6 km). When overlap doubles the overstep (model SbR5), rifts propagate sub-orthogonal to the

  16. Evolution of bimodal volcanism in Gona, Ethiopia: geochemical associations and geodynamic implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Gregory, R. T.; Richards, I.; Quade, J.; Ebinger, C. J.

    2013-12-01

    The East African rift system in Ethiopia formed in the Earth's youngest flood basalt province, and provides a natural laboratory to study the geochemistry of bimodal volcanism and its implications for plume-derived magmatism, mantle-lithosphere interactions and evolution of continental rifts from plate extension to rupture. Our geochemical studies of the ~6 Ma to recent eruptive products from Gona within the Afar Rift Zone are understood in context of crustal and upper mantle seismic imaging studies that provide constraints on spatial variations. Geochemical (major element, trace element and isotope) analyses of basalts and rhyolitic tuff from Gona indicate a common magma source for these bimodal volcanics. Light rare earth elements (LREEs) are enriched with a strong negative Eu anomaly and a positive Ce anomaly in some of the silicic volcanic rocks. We observe strong depletions in Sr and higher concentrations of Zr, Hf, Th, Nb and Ta. We hypothesize that the silicic rocks may be residues from a plume-derived enriched magma source, following partial melting with fractional crystallization of plagioclase at shallow magma chambers. The absence of Nb-Ta anomaly shows no crustal assimilation by magmas. Sr isotopes, in conjunction with Nd and Pb isotopes and a strong Ce anomaly could reflect interaction of the parent magma with a deep saline aquifer or brine. Nd isotopic ratios (ɛNd = 1.9 to 4.6) show similarity of the silicic tuffs and basalts in their isotopic compositions except for some ~6 Ma lavas showing MORB-like values (ɛNd = 5 to 8.7) that suggest involvement of the asthenosphere with the plume source. Except for one basaltic tuff, the whole rock oxygen isotopic ratios of the Gona basalts range from +5.8‰ to +7.9‰, higher than the δ values for typical MORB, +5.7. The oxygen isotopes in whole rocks from the rhyolite tuffs vary from 14.6‰ to 20.9‰ while their Sr isotope ratios <0.706, indicative of post-depositional low T alteration of these silicic

  17. Studies on Rift Valley fever in some African murids (Rodentia: Muridae).

    PubMed Central

    Swanepoel, R.; Blackburn, N. K.; Efstratiou, S.; Condy, J. B.

    1978-01-01

    Brains, spleens and livers of 2214 murids, 27 shrews and 7 dormice, trapped at 7 sites in Rhodesia, were tested in 277 pools for the presence of Rift Valley Fever virus. There were no isolations of Rift Valley Fever, but 69 isolations of an unidentified virus were obtained. Sixteen out of 867 sera had low-titre haemagglutination-inhibition activity against Rift Valley Fever antigen, but only one out of 1260 sera had neutralizing antibody. The evidence suggests that murids fail to encounter infection in nature and are unlikely to play a role in circulation and dissemination of Rift Valley Fever virus. Four out of seven widely distributed species of muried, Rhabdomys pumilio, Saccostomys campestris, Aethomys chrysophilus and Lemniscomys griselda, were shown to be capable of circulating amounts of virus likely to be infective for mosquitoes. PMID:632561

  18. Studies on Rift Valley fever in some African murids (Rodentia: Muridae).

    PubMed

    Swanepoel, R; Blackburn, N K; Efstratiou, S; Condy, J B

    1978-04-01

    Brains, spleens and livers of 2214 murids, 27 shrews and 7 dormice, trapped at 7 sites in Rhodesia, were tested in 277 pools for the presence of Rift Valley Fever virus. There were no isolations of Rift Valley Fever, but 69 isolations of an unidentified virus were obtained. Sixteen out of 867 sera had low-titre haemagglutination-inhibition activity against Rift Valley Fever antigen, but only one out of 1260 sera had neutralizing antibody. The evidence suggests that murids fail to encounter infection in nature and are unlikely to play a role in circulation and dissemination of Rift Valley Fever virus. Four out of seven widely distributed species of muried, Rhabdomys pumilio, Saccostomys campestris, Aethomys chrysophilus and Lemniscomys griselda, were shown to be capable of circulating amounts of virus likely to be infective for mosquitoes.

  19. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  20. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  1. The seismotectonics of Southeastern Tanzania: Implications for the propagation of the eastern branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2016-04-01

    Seismicity patterns and focal mechanisms in southeastern Tanzania, determined from data recorded on temporary and permanent AfricaArray seismic stations, have been used to investigate the propagation direction of the Eastern branch of the East African Rift System southward from the Northern Tanzania Divergence Zone (NTDZ). Within the NTDZ, the rift zone is defined by three segments, the Eyasi segment to the west, the Manyara segment in the middle, and the Pangani segment to the east. Results show that most of the seismicity (~ 75%) extends to the south of the Manyara segment along the eastern margin of the Tanzania Craton, and at ~ 6-7° S latitude trends to the SE along the northern boundary of the Ruvuma microplate, connecting with a N-S zone of seismicity offshore southern Tanzania and Mozambique. A lesser amount of seismicity (~ 25%) is found extending from the SE corner of the Tanzania Craton at ~ 6-7° S latitude southwards towards Lake Nyasa. This finding supports a model of rift propagation via the Manyara segment to the southeast of the Tanzania Craton along the northern boundary of the Ruvuma microplate. However, given the limited duration of the seismic recordings used in this study, the possibility of another zone of extension developing to the south towards Lake Nyasa (Malawi) cannot be ruled out. Focal mechanisms along the boundary between the Victoria and the Ruvuma microplates and offshore southeastern Tanzania show a combination of normal and strike slip faulting indicating mainly extension with some sinistral motion, consistent with the mapped geologic faults and a clockwise rotation of the Ruvuma microplate.

  2. Rift Valley fever virus infection in African Buffalo (Syncerus caffer) herds in rural South Africa: Evidence of interepidemic transmission

    USGS Publications Warehouse

    LaBeaud, A.D.; Cross, P.C.; Getz, W.M.; Glinka, A.; King, C.H.

    2011-01-01

    Rift Valley fever virus (RVFV) is an emerging biodefense pathogen that poses significant threats to human and livestock health. To date, the interepidemic reservoirs of RVFV are not well defined. In a longitudinal survey of infectious diseases among African buffalo during 2000-2006, 550 buffalo were tested for antibodies against RVFV in 820 capture events in 302 georeferenced locations in Kruger National Park, South Africa. Overall, 115 buffalo (21%) were seropositive. Seroprevalence of RVFV was highest (32%) in the first study year, and decreased progressively in subsequent years, but had no detectable impact on survival. Nine (7%) of 126 resampled, initially seronegative animals seroconverted during periods outside any reported regional RVFV outbreaks. Seroconversions for RVFV were detected in significant temporal clusters during 2001-2003 and in 2004. These findings highlight the potential importance of wildlife as reservoirs for RVFV and interepidemic RVFV transmission in perpetuating regional RVFV transmission risk. Copyright ?? 2011 by The American Society of Tropical Medicine and Hygiene.

  3. Rift Valley fever virus infection in African buffalo (Syncerus caffer) herds in rural South Africa: evidence of interepidemic transmission.

    PubMed

    LaBeaud, A Desirée; Cross, Paul C; Getz, Wayne M; Glinka, Allison; King, Charles H

    2011-04-01

    Rift Valley fever virus (RVFV) is an emerging biodefense pathogen that poses significant threats to human and livestock health. To date, the interepidemic reservoirs of RVFV are not well defined. In a longitudinal survey of infectious diseases among African buffalo during 2000-2006, 550 buffalo were tested for antibodies against RVFV in 820 capture events in 302 georeferenced locations in Kruger National Park, South Africa. Overall, 115 buffalo (21%) were seropositive. Seroprevalence of RVFV was highest (32%) in the first study year, and decreased progressively in subsequent years, but had no detectable impact on survival. Nine (7%) of 126 resampled, initially seronegative animals seroconverted during periods outside any reported regional RVFV outbreaks. Seroconversions for RVFV were detected in significant temporal clusters during 2001-2003 and in 2004. These findings highlight the potential importance of wildlife as reservoirs for RVFV and interepidemic RVFV transmission in perpetuating regional RVFV transmission risk.

  4. The Thermal History of the East African Rift Lakes Region Since the Last Glacial Maximum Using TEX86 Paleothermometry

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Johnson, T. C.; Werne, J. P.; Schouten, S.; Sinninghe Damsté, J. S.

    2008-12-01

    We present preliminary results from a study using the TEX86 temperature proxy from sediments of East African Rift Lakes (including Lakes Turkana, Albert, and Malawi) to reconstruct the thermal history of tropical Africa for the last ~ 20,000 years at a subcentennial to multicentennial resolution. The TEX86 proxy, based on tetraether membrane lipids produced by lacustrine Crenarchaeota, has been shown to be successful at recording lake surface temperatures of some large lakes, including Lakes Malawi and Tanganyika, while providing unreasonable surface temperatures for lakes that receive a large input of soil material. The East African Rift Lakes are climatically sensitive, with the majority of water loss due to evaporation rather than outflow. Thus, they are useful for paleoclimate studies, being sensitive to even small changes in aridity. Temperature records from the northern and central basins of Lake Malawi agree well and fall within modern surface lake temperatures. A 2.5°C cooling is evident during the Younger Dryas in the northern basin record, with no response seen in the central basin. We are currently investigating mechanisms to explain why both records show a gradual cooling of 3°C during the late Holocene. Lake Albert shows an intriguing two-step cooling during the Younger Dryas, reaching temperatures 2.5°C lower than temperatures preceding or following this interval. The temperature record of Lake Turkana shows an interesting ~ 500 year cyclicity of low temperatures punctuated by abrupt warming events. Lakes Turkana and Albert show TEX86 paleotemperatures considerably lower (8°C cooler in Lake Albert and ~ 4°C cooler in Lake Turkana) than modern surface water temperatures. Although these records appear to fall in the range of temporal variability, these temperature discrepancies may indicate varying Crenarcheotal populations between lakes or other influencing factors.

  5. Thick lithosphere, deep crustal earthquakes and no melt: a triple challenge to understanding extension in the western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Selway, K.; Nyblade, A. A.; Brazier, R. A.; Tahir, N. El; Durrheim, R. J.

    2016-02-01

    Geodynamic models predict that rifting of thick, ancient continental lithosphere should not occur unless it is weakened by heating and magmatic intrusion. Therefore, the processes occurring along sections of the western branch of the East African Rift, where ˜150 km thick, Palaeoproterozoic lithosphere is rifting with no surface expression of magmatism, are a significant challenge to understand. In an attempt to understand the apparently amagmatic extension we probed the regional uppermost mantle for signatures of thermal alteration using compressional (Vp) and shear (Vs) wave speeds derived from Pn and Sn tomography. Pervasive thermal alteration of the uppermost mantle and possibly the presence of melt can be inferred beneath the Rungwe volcanic centre, but no signatures on a similar scale were discerned beneath amagmatic portions of the western rift branch encompassing the southern half of the Lake Tanganyika rift and much of the Rukwa rift. In this region, Vp and Vs wave speeds indicate little, if any, heating of the uppermost mantle and no studies have reported dyking. Vp/Vs ratios are consistent with typical, melt-free, olivine-dominated upper mantle. Although our resolution limit precludes us from imaging potential localised magmatic intrusions with dimensions of tens of kilometres, the absence of surface volcanism, the amagmatic upper crustal rupture known to have occurred at disparate locations on the western branch, the presence of lower crustal seismicity and the low temperatures implied by the fast seismic wave speeds in the lower crust and uppermost mantle in this region suggests possible amagmatic extension. Most dynamic models predict that this should not happen. Indeed even with magmatic intrusion, rifting of continental lithosphere >100 km thick is considered improbable under conditions found on Earth. Yield strength envelopes confirm that currently modelled stresses are insufficient to produce the observed deformation along these portions of the

  6. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  7. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  8. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  9. Regional 3D Numerical Modeling of the Lithosphere-Mantle System: Implications for Continental Rift-Parallel Surface Velocities

    NASA Astrophysics Data System (ADS)

    Stamps, S.; Bangerth, W.; Hager, B. H.

    2014-12-01

    The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.

  10. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift.

    PubMed

    Simoneit, B R; Aboul-Kassim, T A; Tiercelin, J J

    2000-03-01

    Cape Kalamba oil seeps occur at the south end of the Ubwari Peninsula, at the intersection of faults controlling the morphology of the northern basin of the Tanganyika Rift, East Africa. Oil samples collected at the surface of the lake 3-4 km offshore from Cape Kalamba have been studied. The aliphatic hydrocarbon and biomarker compositions, with the absence of the typical suite of polynuclear aromatic hydrocarbons, indicate an origin from hydrothermal alteration of immature microbial biomass in the sediments. These data show a similarity between a tar sample from the beach and the petroleum from the oil seeps, and confirm that the source of these oils is from organic matter consisting mainly of bacterial and degraded algal biomass, altered by hydrothermal activity. The compositions also demonstrate a < 200 degrees C temperature for formation/generation of this hydrothermal petroleum, similar to the fluid temperature identified for the Pemba hydrothermal site located 150 km north of Cape Kalamba. The 14C age of 25.6 ka B.P. obtained for the tar ball suggests that Pleistocene lake sediments could be the source rock. Hydrothermal generation may have occurred slightly before 25 ka B.P., during a dry climatic environment, when the lake level was lower than today. These results also suggest that the Cape Kalamba hydrothermal activity did not occur in connection with an increased flux of meteoric water, higher water tables and lake levels as demonstrated in the Kenya Rift and for the Pemba site. Hydrothermal petroleum formation is a facile process also in continental rift systems and should be considered in exploration for energy resources in such locales.

  11. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  12. Structural Evolution of the Incipient Okavango Rift Zone, NW Botswana

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; Kinabo, B. D.; Modisi, M. P.; Hogan, J. P.; Wheaton, D. D.

    2005-05-01

    Studies of the East African Rift System (EARS) and other continental rifts have significantly improved our understanding of rifting processes; however, we particularly lack studies of the embryonic stages of rift creation. The Okavango Rift Zone (ORZ), NW Botswana is one of few places worldwide where one can study the early stages of continental extension prior to the accumulation of significant amounts of sediments, volcanism, and multiphase deformation that obscure the investigation of these early time processes in more evolved continental rift zones. In this study, gravity and aeromagnetic data have been used to examine the initiation and development of the nascent ORZ. The Okavango basin in NW Botswana is located at the southern tip of the southwestern branch of the EARS. The rift is hosted within the Proterozoic fold and thrust belt of the Ghanzi-Chobe formation. Our objectives include (1) assessing the role of pre-existing structures on the development of rift faults and basin architecture, (2) Examining fault linkage patterns and boarder fault development, and (3) determining the shallow subsurface basin geometry. Aeromagnetic data from the ORZ suggest two main structural trends: 1) northeast-southwest (030- 070o) and 2) northwest - southeast (290 - 320o). The 030- 070o structures occur within the rift zone and throughout the surrounding basement. They form the main bounding fault system of this incipient rift. The NE - SW orientations of rift faults mirror the fold axes and foliation of the basement rocks, suggesting that the basement fabric played an important role in localizing the development of faults within the stress regime present during the initiation of this rift. Additionally, the greatest throw (~400- ~700 m) occurs along the Kunyere (NW dipping) and Tsau faults (SE dipping), defining a full graben as observed on gravity models. This differs from the half-graben model typical of most continental rift zones. Thus, it appears the basin geometry was

  13. A methodology to track temporal dynamics and rainfall thresholds of landslide processes in the East African Rift

    NASA Astrophysics Data System (ADS)

    Monsieurs, Elise; Jacobs, Liesbet; Kervyn, François; Kirschbaum, Dalia; d'Oreye, Nicolas; Derauw, Dominique; Kervyn, Matthieu; Nobile, Adriano; Trefois, Philippe; Dewitte, Olivier

    2015-04-01

    The East African rift valley is a major tectonic feature that shapes Central Africa and defines linear-shaped lowlands between highland ranges due to the action of geologic faults associated to earthquakes and volcanism. The region of interest, covering the Virunga Volcanic Province in eastern DRC, western Rwanda and Burundi, and southwest Uganda, is threatened by a rare combination of several types of geohazards, while it is also one of the most densely populated region of Africa. These geohazards can globally be classified as seismic, volcanic and landslide hazards. Landslides, include a wide range of ground movements, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in terms of recurring impact on the populations, causing fatalities every year and resulting in structural and functional damage to infrastructure and private properties, as well as serious disruptions of the organization of societies. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithologic and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. The source mechanisms underlying landslide triggering and dynamics in the region of interest are still poorly understood, even though in recent years, some progress has been made towards appropriate data collection. Taking into account difficulties of field accessibility, we present a methodology to study landslide processes by multi-scale and multi-sensor remote sensing data from very high to low resolution (Pléiades, TRMM, CosmoSkyMed, Sentinel). The research will address the evolution over time of such data combined with other earth observations (seismic ground based networks, catalogues, rain gauge networks, GPS surveying, field observations) to detect and study landslide occurrence, dynamics and evolution. This research aims to get insights into the rainfall

  14. Ear Tumors

    MedlinePlus

    ... Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis Tumors of the ... Outer Ear Ear Blockages Ear Tumors External Otitis (Swimmer's Ear) Malignant External Otitis Perichondritis NOTE: This is ...

  15. Petrology of combeite- and götzenite-bearing nephelinite at Nyiragongo, Virunga Volcanic Province in the East African Rift

    NASA Astrophysics Data System (ADS)

    Andersen, Tom; Elburg, Marlina; Erambert, Muriel

    2012-11-01

    The lavas and pyroclastic rocks of Nyiragongo volcano (East African Rift) range in composition from olivine melilitite to nephelinite and minor alkali olivine basalt, and include rare examples of strongly peralkaline combeite nephelinite. In peralkaline nephelinites at Nyiragongo, titanium is hosted in mineral assemblages with Ti-bearing magnetite ± perovskite ± Ti-rich clinopyroxene ± götzenite. Combeite and götzenite occur as groundmass minerals in holocrystalline melilite nephelinite, which also carries kirschsteinite (replacing melilite phenocrysts), recrystallized nepheline + kalsilite phenocryst aggregates and a range of late accessory minerals including delhayelite. The compositions of coexisting nepheline and kalsilite in phenocryst aggregates and groundmass suggest a crystallization temperature of ca. 600 °C for the götzenite- and combeite bearing mineral assemblages. The textural features of the rock agree with an origin of holocrystalline nephelinite (with or without götzenite and combeite) by recrystallization of glass-bearing, nepheline-kalsilite and melilite porphyritic peralkaline nephelinite due to thermal metamorphism and metasomatism within the volcanic edifice. A chemographic analysis of the Ti-bearing mineral assemblages of götzenite-bearing and götzenite-free peralkaline nephelinite suggests that götzenite is stabilized by elevated fluorine activity combined with moderately high (for nephelinite) silica activity. At increasing peralkalinity, götzenite is likely to break down to perovskite-bearing mineral assemblages coexisting with combeite.

  16. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.

    2016-02-01

    The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.

  17. Ear Infection (Middle Ear)

    MedlinePlus

    Ear infection (middle ear) Overview By Mayo Clinic Staff An ear infection (acute otitis media) is most often a bacterial or viral infection that affects the middle ear, the air-filled space behind the eardrum that ...

  18. Chow Bahir rift: A “failed” rift in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    W-Gabriel, Giday; Aronson, James L.

    1987-05-01

    The Chow Bahir rift system is a major graben in a 300-km-broad rift zone recognized in southern Ethiopia between the Kenyan and Ethiopian domes where the East African rift is not well defined. An extinct (failed) rift discovered along the Omo Canyon to the north and on strike with the Chow Bahir rift ceased activity about 4 m.y. ago. Chow Bahir is in a younger stage of abandonment as the main Ethiopian rift propagates south into this region.

  19. Rift Valley fever among domestic animals in the recent West African outbreak.

    PubMed

    Ksiazek, T G; Jouan, A; Meegan, J M; Le Guenno, B; Wilson, M L; Peters, C J; Digoutte, J P; Guillaud, M; Merzoug, N O; Touray, E M

    1989-01-01

    Severe haemorrhagic disease among the human population of the Senegal River Basin brought the Rift Valley fever virus (RVFV) outbreak of 1987 to the attention of science. As in previous RVFV outbreaks, local herdsmen reported a high incidence of abortion and disease in their livestock. Serum samples were obtained from domestic animal populations from areas near Rosso, the best studied focus of human infection, as well as other areas distant from known human disease. Among animals from the area of high incidence of human disease, antibody prevalence was as high as 85%, with approximately 80% of the sera positive for both RVFV IgG- and viral-specific IgM antibodies. In contrast, human populations in the same area had lower RVFV antibody prevalences, 40% or less, with 90% also being IgM-positive. Sera from livestock in coastal areas 280 km south of the epidemic area were negative for RVFV antibodies. Thus, the detection of RVFV specific IgG and IgM antibodies provided evidence of recent disease activity without the requirement to establish pre-disease antibody levels in populations or individuals and without viral isolation. Subsequently, detection of modest levels of IgG and IgM in the Ferlo region, 130 km south of the Senegal River flood plain, established that RVFV transmission also occurred in another area of the basin. Similar serological testing of domestic ungulates in The Gambia, 340 km south of Rosso, demonstrated antibody prevalence consistent with a lower level of recent transmission of RVFV, i.e., 24% IgG-positive with 6% of the positive sera also having RVFV-specific IgM.

  20. Chemistry and chronology of magmatic processes, Central Kenya Peralkaline province, East African Rift

    NASA Astrophysics Data System (ADS)

    Anthony, E.; Deino, A. L.; White, J. C.; Omenda, P. A.

    2014-12-01

    We report here a synthesis of the geochemistry of magma evolution correlated with 40Ar/39Ar, 14 C, and U-series chronology for volcanoes in the Central Kenya Peralkaline Province (CKPP). The volcanic centers - Menengai, Eburru, Olkaria, Longonot, and Suswa - are at the apex of the Kenya Dome, and consist of trachyte, phonolite, comendite, and pantellerite. These volcanic centers are within the graben of the EARS and are characterized by a shield-building phase followed by caldera collapse and subsequent post-caldera eruptions. Geochemical modeling demonstrates that the magmas are the result of fractional crystallization of alkali basaltic magmas and magma mixing. Longonot and Suswa have the most chronologic data -14 C, Ar/Ar and U-series - and they show that the youngest eruptions have 230 Th/232Th of 0.8, which was inherited from the magma system prior to eruption. Subsequent changes in 230 Th/232 Th are due to post-eruptive decay of 230 Th and correlate well with 14 C and Ar/Ar.

  1. The MOZART Project - MOZAmbique Rift Tomography

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F.; Chamussa, J. R.; Domingues, A.; Helffrich, G. R.; Fishwick, S.; Ferreira, A. M.; Custodio, S.; Brisbourne, A. M.; Grobbelaar, M.

    2012-12-01

    Project MOZART (MOZAmbique Rift Tomography) is an ongoing joint effort of Portuguese, Mozambican and British research groups to investigate the geological structure and current tectonic activity of the southernmost tip of the East African Rift System (EARS) through the deployment of a network of 30 broad band seismic stations in Central and Southern Mozambique. In contrast with other stretches of the EARS to the North and with the Kapvaal craton to the West and South, the lithosphere of Mozambique was not previously studied with a dense seismographic deployment on account of past political instability, and many questions remain unanswered with respect to the location and characteristics of the EARS to the south of Tanzania. In recent years, space geodesy revealed the existence of three microplates in and off Mozambique - Victoria, Rovuma, Lwandle - whose borders provide a connection of the EARS to the South West Indian Ridge as required by plate tectonics. However, the picture is still coarse concerning the location of the rift structures. The 2006 M7 Machaze earthquake in Central Mozambique highlighted the current tectonic activity of the region and added a further clue to the location of the continental rift, prompting the MOZART deployment. Besides helping unravel the current tectonics, the project is expected to shed light on the poorly known Mesoproterozoic structure described by Arthur Holmes in 1951 as the Mozambique Belt, and on the mechanisms of transition from stable craton to rifted continental crust, through the development of a tomographic model for the lithosphere. The MOZART network is distributed South of the Zambezi river at average inter-station spaces of the order of 100 km and includes four stations across the border in South Africa. Data exchange was agreed with AfricaArray. The deployment proceeded in two phases in March 2011, and November and December 2011. Decommissioning is foreseen for August 2013. We report preliminary results for this

  2. Holocene phreatomagmatic eruptions alongside the densely populated northern shoreline of Lake Kivu, East African Rift: timing and hazard implications

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Smets, Benoît; Fontijn, Karen; Rukeza, Montfort Bagalwa; De Marie Fikiri Migabo, Antoine; Milungu, Albert Kyambikwa; Namogo, Didier Birimwiragi; Kervyn, François; Kervyn, Matthieu

    2016-11-01

    The Virunga Volcanic Province (VVP) represents the most active zone of volcanism in the western branch of the East African Rift System. While the VVP's two historically active volcanoes, Nyamulagira and Nyiragongo, have built scoria cones and lava flows in the adjacent lava fields, several small phreatomagmatic eruptive centers lie along Lake Kivu's northern shoreline, highlighting the potential for explosive magma-water interaction. Their presence in the densely urbanized Sake-Goma-Gisenyi area necessitates an assessment of their eruptive mechanisms and chronology. Some of these eruptive centers possess multiple vents, and depositional contacts suggest distinct eruptive phases within a single structure. Depositional facies range from polymict tuff breccia to tuff and loose lapilli, often impacted by blocks and volcanic bombs. Along with the presence of dilute pyroclastic density current (PDC) deposits, indicators of magma-water interaction include the presence of fine palagonitized ash, ash aggregates, cross-bedding, and ballistic impact sags. We estimate that at least 15 phreatomagmatic eruptions occurred in the Holocene, during which Lake Kivu rose to its current water level. Radiocarbon dates of five paleosols in the top of volcanic tuff deposits range between ˜2500 and ˜150 cal. year bp and suggest centennial- to millennial-scale recurrence of phreatomagmatic activity. A vast part of the currently urbanized zone on the northern shoreline of Lake Kivu was most likely impacted by products from phreatomagmatic activity, including PDC events, during the Late Holocene, highlighting the need to consider explosive magma-water interaction as a potential scenario in future risk assessments.

  3. Comparative pathogenicity and antigenic cross-reactivity of Rift Valley fever and other African phleboviruses in sheep.

    PubMed Central

    Swanepoel, R.; Struthers, J. K.; Erasmus, M. J.; Shepherd, S. P.; McGillivray, G. M.; Shepherd, A. J.; Hummitzsch, D. E.; Erasmus, B. J.; Barnard, B. J.

    1986-01-01

    Homologous and heterologous haemagglutination-inhibition (HAI), complement-fixation (CF), immunodiffusion (ID) and mouse neutralization tests were performed with the Lunyo (LUN) and a Zimbabwean strain of Rift Valley fever (RVF) virus, the prototype and a South African strain of Arumowot (AMT) virus and prototype strains of Gordil (GOR), Saint-Floris (SAF) and Gabek Forest (GF) viruses, using immune mouse ascitic fluids prepared against these viruses. Reactions of identity occurred in all tests between LUN and the Zimbabwean strains of RVF and between the two strains of AMT virus. Otherwise, cross-reactions occurred between all the phleboviruses in HAI tests, while reactions in CF, ID and neutralization tests were monospecific for virus serotypes, except that weak cross-reaction occurred between GOR and SAF viruses in CF and ID tests. Four sheep infected subcutaneously with the Zimbabwean strain of RVF virus developed transient fever, viraemia, leucopaenia, relative thrombocytopaenia, haemoconcentration and raised serum enzyme levels, which indicated that the sheep had developed necrotic hepatitis. Disseminated focal necrotic hepatitis was confirmed in a sheep killed for examination on day 4 post-infection. The other three sheep recovered uneventfully after only mild depression and anorexia. Groups of three sheep infected with SAF, GOR, AMT and GF viruses had no demonstrable viraemia or other sign of infection or illness, except that the sheep infected with AMT developed mild fever lasting less than 24 h. Antibody responses were monitored at intervals over a period of 24 weeks in all sheep by homologous and heterologous HAI, CF and cell culture neutralization (CPENT) tests. Homologous antibody responses were marked in the RVF-infected sheep and their sera cross-reacted strongly in HAI tests with antigens of the other viruses. The sera of the RVF-infected sheep cross-reacted less markedly in CF and CPENT tests. Homologous antibody responses were poor in all the

  4. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas Christian; Brügmann, Gerhard B.; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Jacob, Dorrit E.; Ssemmanda, Immaculate; Taubald, Heinrich

    2010-10-01

    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18

  5. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de M

  6. European Cenozoic rift system

    NASA Astrophysics Data System (ADS)

    Ziegler, Peter A.

    1992-07-01

    The European Cenozoic rift system extends from the coast of the North Sea to the Mediterranean over a distance of some 1100 km; it finds its southern prolongation in the Valencia Trough and a Plio-Pleistocene volcanic chain crossing the Atlas ranges. Development of this mega-rift was paralleled by orogenic activity in the Alps and Pyrenees. Major rift domes, accompanied by subsidence reversal of their axial grabens, developed 20-40 Ma after beginning of rifting. Uplift of the Rhenish Shield is related to progressive thermal lithospheric thinning; the Vosges-Black Forest and the Massif Central domes are probably underlain by asthenoliths emplaced at the crust/mantle boundary. Evolution of this rift system, is thought to be governed by the interaction of the Eurasian and African plates and by early phases of a plate-boundary reorganization that may lead to the break-up of the present continent assembly.

  7. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture.

    PubMed

    Roberts, Eric M; Todd, Christopher N; Aanen, Duur K; Nobre, Tânia; Hilbert-Wolf, Hannah L; O'Connor, Patrick M; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66-24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7-10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape.

  8. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture

    PubMed Central

    Roberts, Eric M.; Todd, Christopher N.; Aanen, Duur K.; Nobre, Tânia; Hilbert-Wolf, Hannah L.; O’Connor, Patrick M.; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J.

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66–24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7–10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  9. Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Schildgen, Taylor F.; Torres Acosta, Verónica; Melnick, Daniel; Guillemoteau, Julien; Willenbring, Jane; Strecker, Manfred R.

    2017-02-01

    The African Humid Period (AHP) between ∼15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (∼2150 km2), deep (∼300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic 10Be in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr-1. 10Be-derived paleo-erosion rates at ∼11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr-1, and were 2.7 to 6.6 times faster than at present. In contrast, at ∼8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because 10Be-derived erosion rates integrate over several millennia, we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were ∼25 to ∼300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (∼4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern 10Be-based erosion rate of ∼0.013 mm yr-1. Our simulations also flag the two highest 10Be-derived erosion rates at ∼11.8 kyr BP related to non-uniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at ∼15 or ∼12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation.

  10. Extension and Basin Evolution of the East Kivu Graben, Rwanda, East African Rift: Results of New Multichannel Seismic Reflection Imaging

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Zhang, X.; Wood, D.; Mburu, D.

    2012-12-01

    The East Kivu Graben resides within the eastern part of Lake Kivu, the highest Great Lake in the western branch of the East African Rift. The lake is more than 440 m deep in the East Kivu Basin, with a catchment comprised of Precambrian metasedimentary rocks and late-Cenozoic volcanics. Lake Kivu is renowned for its uniquely stratified water column, which is charged with considerable quantities of dissolved CO2 and methane, the former due to magmatic degassing. In February and March 2012 514 km of single- and multi-channel seismic reflection data were acquired in the Rwandan waters of Lake Kivu. The 24-fold multichannel seismic data were acquired aboard a modular research vessel, using a 600 m-long hydrophone streamer and single 40 cubic inch airgun. Extension in the East Kivu basin is largely accommodated along a major N-S striking, east-dipping boundary fault observed along the eastern edge of Iwawa Island, and extending for ~40 km along the length of the basin. Numerous intrabasinal normal faults occur to the east of the boundary fault, commonly displacing the lake floor and controlling the location of modern sublacustrine channels. The deepest sedimentary reflections observed on the new MCS data are 1.2-1.5 km below lake floor, near the center of the basin and boundary fault. Crystalline basement is not observed in these deepest areas however, suggesting the presence of a substantial sedimentary section below the imaged strata. Stratal surfaces dip steeply to the west over large areas of the half-graben basin. An acoustically transparent seismic sequence up to ~25 m thick is observed at the lake floor, which overlies a pronounced erosional unconformity over much of the basin. Some intrabasinal normal faults are draped by and do not penetrate the upper sequences, indicating several generations of fault activity in the basin. The late-Pleistocene exposure surface likely correlates to the previous lake level low stage that persisted prior to volcanic damming by

  11. Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System

    NASA Astrophysics Data System (ADS)

    Mortimer, Estelle; Kirstein, Linda A.; Stuart, Finlay M.; Strecker, Manfred R.

    2016-12-01

    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation

  12. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  13. Mapping Extensional Structures in the Makgadikgadi Pans, Botswana with remote sensing and aeromagnetic data: Implication for the continuation of the East African Rift System in southern Africa

    NASA Astrophysics Data System (ADS)

    Fetkovich, E. J.; Atekwana, E. A.; Abdelsalam, M. G.; Atekwana, E. A.; Katumwehe, A. B.

    2015-12-01

    We used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and aeromagnetic data to map extensional structures in the Makgadikgadi Pans in northeastern Botswana. These pans are a major morphological feature in Southern Africa characterized by the presence of low lying and flat topography with the highest elevation of 945 m. This topography was a result of multiple filling and desiccation of paleo-lakes that accompanied alternation of wetter and dryer climate during the Late Quaternary period. The objective of our study was to map the extent and distribution of normal faults using their morphological expression and magnetic signature, and examine their relationship with paleo-shorelines of the pans. We: (1) Created a hill shade relief map from the SRTM DEM; (2) Extracted regional NW-SE trending topographic profiles across the pans; (3) Constructed displacement profiles for major normal faults; and (4) Created tilt derivative images from the aeromagnetic data. We found that: (1) The northeastern part of the pan is dissected by three morphologically-defined NE-trending normal faults. The along strike continuity of these faults is in the range of 75 and 170 km and they are spaced at ~30 km apart from each other. (2) The topographic profiles suggest that the exposed minimum vertical displacement (EMVD), defined by poorly developed escarpments, is in the range of 0 m and 49 m. (3) The displacement profiles of the faults is characterized by maximum EMVD in the middle of the faults and that it decays towards the fault tips. These faults are also apparent in the aeromagnetic maps where they seem to displace E-W trending Karoo-age dikes. (4) At least the outer paleo-shoreline of the pans is modified by the NE-trending faults. This suggests that the faults are younger than the paleo-shorelines, which is suggested to have been developed between 500 and 100 ka. Traditionally, the southwestern extension of the East African Rift System has been assigned to the

  14. Pierced Ears

    MedlinePlus

    ... Room? What Happens in the Operating Room? Pierced Ears KidsHealth > For Kids > Pierced Ears A A A ... cool, but infected ears do not! Getting Your Ears Pierced It's important to get your ears pierced ...

  15. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  16. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  17. P-wave travel-time tomography reveals multiple mantle upwellings beneath the northern East-Africa Rift

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Civiero, C.; Goes, S. D. B.; Ahmed, A.; Ayele, A.; Doubre, C.; Goitom, B.; Keir, D.; Kendall, M.; Leroy, S. D.; Ogubazghi, G.; Rumpker, G.; Stuart, G. W.

    2014-12-01

    The East African Rift (EAR) shows evidence for active magmatism from the eruption of flood basalts 30 Ma to active volcanism associated with rifting today. Mantle plumes have been invoked as the likely cause. However, the nature of mantle upwelling is debated, with proposed models ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to multiple distinct sources of upwelling along the East-Africa Rift. We present a new relative travel-time tomography model that images detailed P-wave velocities below the northern East-African rift from the surface to lower mantle depths. Data comes from 439 stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time low-velocity structures of ~ 100-km length scales down to depths of 900 km beneath this region. Our images provide evidence of at least two separate low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first, and most pronounced, is beneath the Afar Depression, which extends to at least 900 km depth and a second is located beneath the Main Ethiopian Rift that extends to at least 750 km. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of ~ 100-150 K. Such temperatures are also fully consistent with previous petrological and other geophysical estimates. Furthermore, the separate structures could explain differences in geochemistry of erupted magmas along the rift zone, as well as the dynamic topography seen at the surface. Our findings thus support the involvement of multiple plumes in the evolution of the EAR and a direct connection between lower mantle features and the volcanism at the surface.

  18. Evolution of the broadly rifted zone in southern Ethiopia through gravitational collapse and extension of dynamic topography

    NASA Astrophysics Data System (ADS)

    Emishaw, Luelseged; Laó-Dávila, Daniel A.; Abdelsalam, Mohamed G.; Atekwana, Estella A.; Gao, Stephen S.

    2017-03-01

    The Broadly Rifted Zone (BRZ) is a 315 km wide zone of extension in southern Ethiopia. It is located between the Southern Main Ethiopian Rift and the Eastern Branch of the East African Rift System (EARS) represented by the Kenya-Turkana Rift. The BRZ is characterized by NE-trending ridges and valleys superimposed on regionally uplifted ( 2 km average elevation) terrain. Previous studies proposed that the BRZ is an overlap zone resulted from northward propagation of the Kenya-Turkana Rift and southward propagation of the Southern Main Ethiopian Rift. To understand the relationship between the BRZ's extensional style and its crustal and upper mantle structures, this work first estimated the Moho depth using the two-dimensional (2D) radially-averaged power spectral analysis of the World Gravity Map. Verification of these results was accomplished through lithospheric-scale 2D forward gravity models along E-W profiles. This work found that the Moho topography beneath the BRZ depicts a dome-like shape with a minimum depth of 27 km in the center of the dome. This work proposes that the Moho doming, crustal arching underlying the BRZ and associated topographic uplift are the result of asthenospheric mantle upwelling beneath the BRZ. This upwelling changed to a NE-directed lateral mantle flow at shallower depth. This is supported by seismic tomography imaging which shows slow S-wave velocity anomaly at lithospheric depth of 75 km to 150 km stretching in a NE-SW direction from beneath the BRZ to the Afar Depression. This work proposes that the asthenospheric upwelling created gravitationally unstable dynamic topography that triggered extensional gravitational collapse leading to the formation of the BRZ as a wide rift within the narrow rift segments of the EARS.

  19. Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer).

    PubMed

    Beechler, B R; Manore, C A; Reininghaus, B; O'Neal, D; Gorsich, E E; Ezenwa, V O; Jolles, A E

    2015-04-22

    The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB- buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations.

  20. Clinical, virological and serological response of the West African dwarf sheep to experimental infection with different strains of Rift Valley fever virus.

    PubMed

    Tomori, O

    1979-03-01

    West African dwarf sheep were inoculated with three different strains of Rift Valley fever virus (RVFV). Using infective mouse serum as the source of virus classical RVFV disease characterised by sudden onset, a sharp but transient febrile response, viraemia, abortions and the development of specific RVFV antibodies in surviving animals was observed. The severity of clinical response was, however, dependent on the strain of virus used, with animals inoculated with Smithburn's neuroadapted strain showing a milder response than those inoculated with either the Nigerian or Lunyo strain. The inoculation of sheep with RVFV infective mouse brain material of the three different strains resulted in a mild febrile response with low level viraemia. Immune sera from sheep inoculated with both the Nigerian and Smithburn's neurotropic strains did not neutralise the Lunyo virus strain in a mouse intracerebral neutralisation test; the reverse, however, was not the case. The findings indicate that the West African dwarf sheep is highly susceptible to RVFV infection and that previous reports of only a mild clinical response following inoculation with the Nigerian strain were due to infective mouse brain rather than infective mouse serum.

  1. Swimmer's Ear

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Swimmer's Ear KidsHealth > For Kids > Swimmer's Ear Print A ... continue How Do I Know if I Have Swimmer's Ear? Swimmer's ear may start with some itching, ...

  2. Ear Tubes

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media interested ... throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through the ...

  3. Genetic evidence for Rift Valley fever outbreaks in Madagascar resulting from virus introductions from the East African mainland rather than enzootic maintenance.

    PubMed

    Carroll, Serena A; Reynes, Jean-Marc; Khristova, Marina L; Andriamandimby, Soa Fy; Rollin, Pierre E; Nichol, Stuart T

    2011-07-01

    Rift Valley fever virus (RVFV), a mosquito-borne phlebovirus, has been detected in Madagascar since 1979, with occasional outbreaks. In 2008 to 2009, a large RVFV outbreak was detected in Malagasy livestock and humans during two successive rainy seasons. To determine whether cases were due to enzootic maintenance of the virus within Madagascar or to importation from the East African mainland, nine RVFV whole genomic sequences were generated for viruses from the 1991 and 2008 Malagasy outbreaks. Bayesian coalescent analyses of available whole S, M, and L segment sequences were used to estimate the time to the most recent common ancestor for the RVFVs. The 1979 Madagascar isolate shared a common ancestor with strains on the mainland around 1972. The 1991 Madagascar isolates were in a clade distinct from that of the 1979 isolate and shared a common ancestor around 1987. Finally, the 2008 Madagascar viruses were embedded within a large clade of RVFVs from the 2006-2007 outbreak in East Africa and shared a common ancestor around 2003 to 2004. These results suggest that the most recent Madagascar outbreak was caused by a virus likely arriving in the country some time between 2003 and 2008 and that this outbreak may be an extension of the 2006-2007 East African outbreak. Clustering of the Malagasy sequences into subclades indicates that the viruses have continued to evolve during their short-term circulation within the country. These data are consistent with the notion that RVFV outbreaks in Madagascar result not from emergence from enzootic cycles within the country but from recurrent virus introductions from the East African mainland.

  4. Understanding Chad Basin Evolution Since Miocene: Climate and Vegetation Simulations, Roles of Orbital Parameters and East African Rift.

    NASA Astrophysics Data System (ADS)

    Sepulchre, P.; Ramstein, G.; Krinner, G.; Schuster, M.; Fluteau, F.; Kageyama, M.; Tiercelin, J.; Vignaud, P.; Brunet, M.

    2004-12-01

    Since the discovery of the earliest hominid known, Chad basin is a major place to study paleoclimates and hominid evolution. This discovery implies to re-evaluate the "East Side Story" paradigm for early hominids. To achieve this goal, we have performed numerical simulations to quantify the climatic and vegetation response of the Rift Uplift. We used a zoomed (144 X 108) AGCM (LMDz from IPSL). On the one hand, offline continental biosphere model (ORCHIDEE) has been used to simulate the vegetation response over western and eastern parts of the rift. On the other hand, since geomorphologic evidences have shown that from Upper Miocene to mid-Holocene Lake Chad had known several level oscillations leading to a huge lake known as Mega Lake Chad (MLC), we also ran atmospheric simulations to demonstrate, with boundary conditions at 6 000 BP, that orbital forcing allowed the existence of a MLC. Volume and surface of the lake have been calculated using an adapted lake model. These simulations have shown that the ITCZ shift induced by the mid-Holocene orbital parameters drives the existence of a MegaChad. Our model result having been tested successfully for the last occurrence of the MLC, we will apply it to Upper Miocene accounting for topographic changes, in order to reconstruct as accurately as possible the first hominids environments.

  5. A Review of New and Anticipated High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Hominin Evolution and Demography

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.

    2014-12-01

    Our understanding of Late Tertiary/Quaternary climate and environmental history in East Africa has, to date, largely been based on outcrop and marine drill core records. Although these records have proven extremely valuable both in reconstructing environmental change and placing human evolution in an environmental context, their quality is limited by resolution, continuity, uncertainties about superposition and outcrop weathering. To address this problem, long drill core records from extant ancient lakes and lake beds are being collected by several research groups. Long cores (up to 100s of m.) from basin depocenters in both the western and eastern rifts are now available spanning nearly the entire latitudinal range of the East Africa Rift. This network of core records, especially when coupled with outcrop data, is providing an opportunity to compare the nature of important global climate transitions (especially glacial/interglacial events and precessional cycles) across the continent, thereby documenting regional heterogeneity in African climate history. Understanding this heterogeneity is critical for realistically evaluating competing hypotheses of environmental forcing of human evolution, and especially ideas about the dispersal of anatomically modern humans out of Africa in the early Late Pleistocene. In particular, understanding the hydrological and paleoecological history of biogeographic corridors linking eastern Africa, the Nile River Valley and the Levant is likely to be vastly improved through comparative analysis of these new drill cores over the next few years. Because we do not a priori know the primary forcing factors affecting this environmental history, it will essential to develop the best possible age models, employing multiple and novel geochronometric tools to make these comparisons.

  6. Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (Syncerus caffer) in the Kruger National Park and Hluhluwe-iMfolozi Park, South Africa.

    PubMed

    Fagbo, Shamsudeen; Coetzer, Jacobus A W; Venter, Estelle H

    2014-10-16

    Rift Valley fever and lumpy skin disease are transboundary viral diseases endemic in Africa and some parts of the Middle East, but with increasing potential for global emergence. Wild ruminants, such as the African buffalo (Syncerus caffer), are thought to play a role in the epidemiology of these diseases. This study sought to expand the understanding of the role of buffalo in the maintenance of Rift Valley fever virus (RVFV) and lumpy skin disease virus (LSDV) by determining seroprevalence to these viruses during an inter-epidemic period. Buffaloes from the Kruger National Park (n = 138) and Hluhluwe-iMfolozi Park (n = 110) in South Africa were sampled and tested for immunoglobulin G (IgG) and neutralising antibodies against LSDV and RVFV using an indirect enzyme-linked immunosorbent assay (I-ELISA) and the serum neutralisation test (SNT). The I-ELISA for LSDV and RVFV detected IgG antibodies in 70 of 248 (28.2%) and 15 of 248 (6.1%) buffaloes, respectively. Using the SNT, LSDV and RVFV neutralising antibodies were found in 5 of 66 (7.6%) and 12 of 57 (21.1%), respectively, of samples tested. The RVFV I-ELISA and SNT results correlated well with previously reported results. Of the 12 SNT RVFV-positive sera, three (25.0%) had very high SNT titres of 1:640. Neutralising antibody titres of more than 1:80 were found in 80.0% of the positive sera tested. The LSDV SNT results did not correlate with results obtained by the I-ELISA and neutralising antibody titres detected were low, with the highest (1:20) recorded in only two buffaloes, whilst 11 buffaloes (4.4%) had evidence of co-infection with both viruses. Results obtained in this study complement other reports suggesting a role for buffaloes in the epidemiology of these diseases during inter-epidemic periods.

  7. Geophysical evidence of Cretaceous volcanics in Logone Birni Basin (Northern Cameroon), Central Africa, and consequences for the West and Central African Rift System

    NASA Astrophysics Data System (ADS)

    Loule, Jean-Pierre; Pospisil, Lubomil

    2013-01-01

    Detailed analyses and interpretation realized by combining existing 2D reflection seismic and Gravity/Magnetic data of the Logone Birni Basin (LBB) in the West and Central African Rift System (WCAS) have revealed the distribution of the main buried volcanic bodies as well as their relationships with the structural and tectonic evolution of this basin. The volcanic activity in the LBB is restricted to the Cretaceous period. Three main volcanic episodes are identified and are associated to the Neocomian, Late Albian and Cenomanian-Turonian rifting phases respectively. The volcanic bodies within the Lower Cretaceous are either lying directly on basement or are mainly interbedded with the contemporaneous sediments whereas the Upper Cretaceous bodies are morphologically expressed in the forms of dykes and sills. The volcanic activity was more intense in the western region of the central LBB (Zina sub-basin) along the Cameroon-Nigeria border whereas it was scanty and scattered in the other parts of the basin. The main volcanic dykes are found on the flanks of the major faults bounding basement horsts or in crestal positions in association with syndepositional faults. Although WCAS is associated with large amount of crustal extension and minor volcanism, the intense volcanic activity observed in LBB during the Cretaceous suggests that the intrusive zone during this period was confined to the basement beneath the study area flanked respectively to the north, south and southwest by the Lake Chad, Poli and Chum triple junctions. Tensional stresses generated by this localized domal uplift accounts for most of the observed tectonic structures where major faults transected the entire lithosphere, thus providing conduits for magma migration.

  8. Expansion of sugarcane monoculture: associated impacts and management measures in the semi-arid East African Rift Valley, Ethiopia.

    PubMed

    Beza, Solomon A; Assen, Mohammed A

    2017-03-01

    The study examined the expansion of sugarcane monoculture over the period 1957-2010 and its implications for land degradation and land management measures in the semi-arid northern Main Ethiopian Rift Valley. It used multi-scale and multi-temporal imageries aided by qualitative surveying to investigate the dynamics of land use and cover changes. The study applied both a pixel-based supervised classification and feature extraction methods at subclass levels and merged them into major compatible and comparable land use and cover groups. The results indicated a substantial transformation in the landscape over 53 years (1957-2010), which is attributed to expansion of sugarcane plantation, saline lake water, and smallholder farmland and settlements. The land use and cover changes culminated in reduction of native vegetation cover and biodiversity loss, encroachment of non-native species, and occurrence of soil salinity. Major causes that justify the changes include (1) macro-economic changes and policy shifts towards agricultural development, (2) change in underground hydrology, (3) population growth, and (4) sedentarization of the traditional pastoral community. Proper measures should aim at addressing the trade-off between economic development and environmental sustainability. Moreover, management opportunities should base on the understanding of socioeconomic and biophysical settings and balance the sustenance of the local people and ecological function of the area.

  9. Ear Disorders

    MedlinePlus

    ... ear, where they make your eardrum vibrate. The vibrations are transmitted through three tiny bones, called ossicles, in your middle ear. The vibrations travel to your inner ear, a snail-shaped ...

  10. Your Ears

    MedlinePlus

    ... gross and useful. continue The Middle Ear: Good Vibrations After sound waves enter the outer ear, they ... take those sound waves and turn them into vibrations that are delivered to the inner ear. To ...

  11. Ear emergencies

    MedlinePlus

    ... an ear injury, avoid nose blowing and getting water in the injured ear. Treat ear infections right ... FDR Medical Services/Millard Fillmore Suburban Hospital, Buffalo, NY. Also reviewed by David Zieve, MD, MHA, ...

  12. Ear barotrauma

    MedlinePlus

    ... Ear popping - barotrauma; Pressure-related ear pain; Eustachian tube dysfunction - barotrauma ... air pressure outside of the body. The Eustachian tube is a connection between the middle ear and ...

  13. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010–2011)

    PubMed Central

    Jori, Ferran; Alexander, Kathleen A.; Mokopasetso, Mokganedi; Munstermann, Suzanne; Moagabo, Keabetswe; Paweska, Janusz T.

    2015-01-01

    Rift Valley fever (RVF) is endemic in many countries in Sub-Saharan Africa and is responsible for severe outbreaks in livestock characterized by a sudden onset of abortions and high neonatal mortality. During the last decade, several outbreaks have occurred in Southern Africa, with a very limited number of cases reported in Botswana. To date, published information on the occurrence of RVF in wild and domestic animals from Botswana is very scarce and outdated, despite being critical to national and regional disease control. To address this gap, 863 cattle and 150 buffalo sampled at the interface between livestock areas and the Chobe National Park (CNP) and the Okavango Delta (OD) were screened for the presence of RVF virus (RVFV) neutralizing antibodies. Antibodies were detected in 5.7% (n = 863), 95% confidence intervals (CI) (4.3–7.5%) of cattle and 12.7% (n = 150), 95% CI (7.8–19.5%) of buffalo samples. The overall prevalence was significantly higher (p = 0.0016) for buffalo [12.7%] than for cattle [5.7%]. Equally, when comparing RVF seroprevalence in both wildlife areas for all pooled bovid species, it was significantly higher in CNP than in OD (9.5 vs. 4%, respectively; p = 0.0004). Our data provide the first evidence of wide circulation of RVFV in both buffalo and cattle populations in Northern Botswana and highlight the need for further epidemiological and ecological investigations on RVF at the wildlife–livestock–human interface in this region. PMID:26664990

  14. Statistical Modeling of the Abundance of Vectors of West African Rift Valley Fever in Barkédji, Senegal

    PubMed Central

    Talla, Cheikh; Diallo, Diawo; Dia, Ibrahima; Ba, Yamar; Ndione, Jacques-André; Sall, Amadou Alpha; Morse, Andy; Diop, Aliou; Diallo, Mawlouth

    2014-01-01

    Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005–2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision-making to improve

  15. Statistical modeling of the abundance of vectors of West African Rift Valley fever in Barkédji, Senegal.

    PubMed

    Talla, Cheikh; Diallo, Diawo; Dia, Ibrahima; Ba, Yamar; Ndione, Jacques-André; Sall, Amadou Alpha; Morse, Andy; Diop, Aliou; Diallo, Mawlouth

    2014-01-01

    Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005-2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision-making to improve RVF

  16. Post-rift uplift, paleorelief and sedimentary fluxes: the case example of the African margin of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.; Dauteuil, O.

    2012-04-01

    Several attempts have been made to identify different paleosurfaces since the classical works of Lester King (1942, 1949) at the scale of Africa. Thermochronologists and river geomorphologists criticized this approach. This criticism mainly concerned the age of the surfaces, that were (1) poorly constraints and (2) a king of catechism on which all studies must refer. Nevertheless, those planation surfaces exist and are key features of the present-day morphology of Africa. In details, real planation surfaces are (1) no more than two or three and (2) can be deformed and then merged together. Those surfaces are incised by large smooth valleys, called pediments or glacis (with some semantic differences between English and French-speaking geomorphologists). Those pediments formed a pre-network of rivers, later re-incised by the present-day incised narrow valleys. Those different morphological structures can be dated using (1) their merge with sedimentary basins, (2) their relationship with the different types of dated weathering periods and (3) their relationships with volcanism. They also can be used as a proxy of the deformation based on the differences of elevation of the planations surfaces or on the shape of the pediments. From the Orange River to the Cameroon Volcanic Line, including the Congo Cuvette, two planations surfaces were identified (the Bauxitic or African surface, the intermediate surface), at least two generations of pediment valleys and the present-day incised valley network. The African surface is of Late Paleocene to Middle Eocene age with a climax during this last period and two major periods of uplift can be identified and mapped (1) Late Eocene-Early Oligocene and (2) Lower Miocene. Most of the relief is fossil since that period, excepted in the Angola Mountains were deformations are active during Plio-Pleistocene times. Those uplifts of smoother, most of the time weathered, relief than today, had important consequences on the petrology and the

  17. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  18. Ear Pieces

    ERIC Educational Resources Information Center

    DiJulio, Betsy

    2011-01-01

    In this article, the author describes an art project wherein students make fanciful connections between art and medicine. This project challenges students to interpret "ear idioms" (e.g. "blow it out your ear," "in one ear and out the other") by relying almost entirely on realistic ear drawings, the placement of them, marks, and values. In that…

  19. Götzenite- and combeite-bearing mineral assemblages in peralkaline nephelinite at Nyiragongo, East African Rift: Recrystallization around a degassing alkaline magma chamber

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Elburg, M.; Erambert, M.

    2012-04-01

    In most igneous rocks, the high field strength elements (HFSE) titanium and zirconium reside in minerals such as ilmenite, titanite, zircon and baddelyite. In some highly peralkaline igneous rocks (agpaitic nepheline syenite, elpidite granite) these minerals are not stable, and the HFSE form complex, Na-, Ca- and volatile bearing silicate minerals. The central crater of Nyiragongo volcano in the East African Rift has a semi-permanent lava lake which may be regarded as a high-level magma chamber open to the atmosphere. The lavas and pyroclastic rocks of Nyiragongo range in composition from olivine melilitite to nephelinite and minor alkali olivine basalt. The nephelinites range from metaluminous to peralkaline compositions, including strongly peralkaline combeite nephelinite. In fresh peralkaline nephelinite, titanium is hosted in different minerals or mineral assemblages with titanomagnetite ± perovskite ± Ti-rich clinopyroxene, but in some holocrystalline, thermally metamorphosed nephelinites, götzenite (ideally Na2Ca5Ti(Si2O7)2F4) is the main Ti-bearing mineral. Götzenite is stable with combeite (Na2Ca2Si3O9), diopside and kirschsteinite, which replace primary magmatic minerals and glassy groundmass. The compositions of coexisting nepheline and kalsilite suggest recrystallization temperatures between 500 and 600 °C. A chemographic analysis of the sub-solidus mineral assemblages of götzenite-bearing and götzenite-free peralkaline nephelinite suggests that götzenite is stabilized by elevated fluorine activity combined with moderately high (for nephelinite) silica activity. At increasing peralkalinity, götzenite is likely to break down to perovskite-bearing mineral assemblages coexisting with combeite. The presence of götzenite- and combeite-bearing nephelinite at Nyiragongo is due to the influence of fluorine-rich fluids degassing from magma stored in the lava lake.

  20. Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African subduction

    NASA Astrophysics Data System (ADS)

    Bauernhofer, A. H.; Hauzenberger, C. A.; Wallbrecher, E.; Muhongo, S.; Hoinkes, G.; Mogessie, A.; Opiyo-Akech, N.; Tenczer, V.

    2009-12-01

    Amphibolites and orthogneisses from the Taita Hills-Galana River area (SE Kenya) indicate their broad geological-tectonic setting. There are groups of subduction-related rocks which show characteristic REE (rare earth element) patterns and enrichment or varying concentrations of HFS (high field strength) elements. The groups can be assigned to tectonostratigraphic domains marked by different structural styles (e.g., thrust- or strike slip dominated). Tholeiitic gneisses, often emerging as folded and isolated (ridge-shaped) leucocratic bodies, belong to a group of rocks located between the thrust- and strike-slip domain. Compared to calc-alkaline gneisses of the area they contain more mafic inclusions and have lower LIL (large ionic lithophile), HFS and light REE values. These gneisses have chemical characteristics of M-type granitoids of oceanic island arc signature. Intrusion ages of ~955-845 Ma determined for these rocks suggest early Pan-African subduction. Mafic to ultramafic rocks from the Pare mountains of NE Tanzania show evidence of ophiolitic cumulates, subduction settings were also observed for the granulite areas in central and southern Tanzania. Together with the widespread arc settings documented in the Arabian-Nubian Shield, the presented data supports the continuation of an island-continental arc range across Kenya-Tanzania to Mozambique.

  1. Ear trauma.

    PubMed

    Eagles, Kylee; Fralich, Laura; Stevenson, J Herbert

    2013-04-01

    Understanding basic ear anatomy and function allows an examiner to quickly and accurately identify at-risk structures in patients with head and ear trauma. External ear trauma (ie, hematoma or laceration) should be promptly treated with appropriate injury-specific techniques. Tympanic membrane injuries have multiple mechanisms and can often be conservatively treated. Temporal bone fractures are a common cause of ear trauma and can be life threatening. Facial nerve injuries and hearing loss can occur in ear trauma.

  2. Hawaii Rifts

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  3. Crustal Structure beneath the Rwenzori Region of the Albertine Rift using Ambient-Noise Tomography

    NASA Astrophysics Data System (ADS)

    Kaviani, A.; Paul, A.; Rumpker, G.

    2015-12-01

    In this study we investigate the crustal structure beneath the Rwenzori region by analyzing a 1-year ambient-noise data set recorded by a network of 33 broadband seismic stations that have operated between September 2009 and August 2011. The Rwenzori region, located between the Democratic Republic of Congo and Uganda, is part of the western (Albertine) branch of the East African Rift System (EARS). The region of study is situated between the Albert Rift and the Edward Rift segments and covers an area of approximately 120 km by 50 km. The main objective of the seismological experiment was to address the questions of the uplift of the Rwenzori Mountains in an extensional regime and the absence of a crustal root beneath the mountain range. Any model proposed to address these questions requires the knowledge of the structure of the Rwenzori horst and surrounding rift shoulders. Previous results from local travel-time tomography revealed the presence of low-velocity anomalies in the upper crust beneath the mountain range relative to higher velocities in the surrounding shoulders. However, since the stations used in the previous study only covered the northern part of the region, the resolution of the models proposed by the body-wave tomography was very low beneath the Rwenzori Mountains. Hence, the limits of the Rwenzori horst at depth relative to the rift shoulders are still poorly known. The main objective of our ambient-noise tomography (ANT) is to provide an explanation for the building of Rwenzori Mountains. Due to the small aperture of the seismological network, we are mainly interested in the shallow crustal structure including the boundaries between the central Rwenzori horst and the surrounding rift shoulders as well as the variations in the thickness of the sedimentary basins. We expect that the ANT images will be able to delineate the boundaries between the main tectonic features including the limits of the Rwenzori horst at depth.

  4. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  5. Ear Infections

    MedlinePlus

    ... surgery. An ENT surgically inserts tubes inside your child’s middle ear. The tubes relieve the pressure and allow ... the risks of surgically inserting tubes inside my child's middle ear? What are the risks of not?Should ...

  6. Your Ears

    MedlinePlus

    ... Protect your hearing by wearing earplugs at loud music concerts and around noisy machinery, like in wood ... For Parents MORE ON THIS TOPIC Can Loud Music Hurt My Ears? What Is an Ear Infection? ...

  7. Ear tag

    MedlinePlus

    ... the opening of the ear are common in newborn infants. In most cases, these are normal. However, they ... M. Editorial team. Related MedlinePlus Health Topics Common Infant and Newborn Problems Ear Disorders Skin Conditions Browse the Encyclopedia ...

  8. Ear examination

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003340.htm Ear examination To use the sharing features on this page, ... ear References King EF, Couch ME. History, physical examination, and the preoperative evaluation. In: Flint PW, Haughey ...

  9. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  10. Hydrological constraints of paleo-Lake Suguta in the Northern Kenya Rift during the African Humid Period (15-5 ka BP)

    NASA Astrophysics Data System (ADS)

    Junginger, Annett; Trauth, Martin H.

    2013-12-01

    During the African Humid Period (AHP, 15-5 ka BP) an almost 300 m deep paleo-lake covering 2200 km2 developed in the Suguta Valley, in the Northern Kenya Rift. Data from lacustrine sediments and paleo-shorelines indicate that a large paleo-lake already existed by 13.9 ka BP, and record rapid water level fluctuations of up to 100 m within periods of 100 years or less, and a final lowstand at the end of the AHP (5 ka BP). We used a hydro-balance model to assess the abruptness of these water level fluctuations and identify their causes. We observed that fluctuations within the AHP were caused by abrupt changes in precipitation of 26-40%. Despite the absence of continuous lacustrine data documenting the onset of the AHP in the Suguta Valley, we conclude from the hydro-balance model that only an abrupt onset to the AHP, prior to 14.8 ka BP, could have led to high water levels recorded. The modeling results suggest that the sudden increase in rainfall was the direct consequence of an eastward migration of the Congo Air Boundary (CAB), caused by an enhanced atmospheric pressure gradient between East Africa and southern Asia during a northern hemisphere (NH) summer insolation maximum. In contrast, the end of the AHP must have been gradual despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the study area. This abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during September-October. This change would have meant that the only rain source was the Intertropical Convergence Zone (ITCZ), which would have carried a greater amount of moisture during the short rainy season thus slowing the fall in water level over a period of about 1000 years in association with the reduction in insolation. The results of this study provide an indication of the amount of time available for humans in north-eastern Africa to adapt

  11. Geomorphometric reconstruction of post-eruptive surfaces of the Virunga Volcanic Province (East African Rift), constraint of erosion ratio and relative chronology

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu

    2016-04-01

    Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes

  12. Ear wax

    MedlinePlus

    ... wax plug. Tip your head to allow the water to drain. You may need to repeat irrigation several times. To avoid damaging your ear or causing an infection: Never irrigate the ear if the eardrum may have a hole in it. Do not irrigate the ear with ...

  13. Cauliflower Ear

    MedlinePlus

    ... Room? What Happens in the Operating Room? What's Cauliflower Ear? KidsHealth > For Kids > What's Cauliflower Ear? A A A Have you ever seen ... looks bumpy and lumpy? The person might have cauliflower ear. That sure is a funny name. Let's ...

  14. Cauliflower Ear

    MedlinePlus

    ... los dientes Video: Getting an X-ray What's Cauliflower Ear? KidsHealth > For Kids > What's Cauliflower Ear? Print A A A Have you ever ... looks bumpy and lumpy? The person might have cauliflower ear. That sure is a funny name. Let's ...

  15. Seismological investigation of the Okavango Rift, Botswana

    NASA Astrophysics Data System (ADS)

    Yu, Youqiang

    The mechanisms of rifting have been intensively investigated using geological and geophysical techniques beneath mature rift zones. However, current understanding on the earliest stages of rifting is seriously limited. Here we employ recently archived data from 17 broadband seismic stations traversing northern Botswana to conduct the first shear wave splitting and mantle transition zone (MTZ) studies within the Okavango Rift Zone (ORZ). The ORZ is an incipient continental rift situated at the terminal of the southwestern branch of the East African Rift System. The resulting normal MTZ thickness and consistently rift-parallel fast polarizations imply an absence of significant thermal anomalies in the upper mantle, ruling out the role of mantle plumes in the initiation of the ORZ. The observed anisotropy beneath the ORZ and adjacent areas is mainly attributed to the relative movement between the lithosphere and asthenosphere with regional contributions from fabrics in the lithosphere and flow deflection by the bottom of the lithosphere. Our observations imply that the initiation and development of the ORZ can be initiated following a passive mode from the consequences of relative movements between the South African block and the rest of the African plate along a zone of lithospheric weakness between the Congo and Kalahari cratons. In addition, an approach was developed to effectively remove the near surface reverberations in the resulting receiver functions, decipher the P-to-S converted phases associated with the Moho discontinuity, and thus resolve sub-sediment crustal structure beneath stations sitting on a low-velocity sedimentary layer.

  16. Distribution of fault activity in the early stages of continental breakup: an analysis of faults and volcanic products of the Natron Basin, East African Rift, Tanzania

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2012-12-01

    Recent magmatic-tectonic crises in Ethiopia (e.g. 2005 Dabbahu rifting episode, Afar) have informed our understanding of the spatial and temporal distribution of strain in magmatic rifts transitioning to sea-floor spreading. However, the evolving contributions of magmatic and tectonic processes during the initial stages of rifting, is a subject of ongoing debate. The <5 Ma northern Tanzania and southern Kenya sectors of the East Africa Rift provide ideal locations to address this problem. We present preliminary findings from an investigation of fault structures utilizing aerial photography and satellite imagery of the ~35 km wide Natron rift-basin in northern Tanzania. Broad-scale structural mapping will be supplemented by field observations and 40Ar-39Ar dating of lava flows cut by faults to address three major aspects of magma-assisted rifting: (1) the relative timing of activity between the border fault and smaller faults distributed across the width of the rift; (2) time-averaged slip rates along rift-zone faults; and (3) the spatial distribution of faults and volcanic products, and their relative contributions to strain accommodation. Preliminary field observations suggest that the ~500 m high border fault system along the western edge of the Natron basin is either inactive or has experienced a reduced slip rate and higher recurrence interval between surface-breaking events, as evidence by a lack of recent surface-rupture along the main fault escarpments. An exception is an isolated, ~2 km-long segment of the Natron border fault, which is located in close proximity (< 5km) to the active Oldoinyo Lengai volcano. Here, ~10 m of seemingly recent throw is observed in volcaniclastic deposits. The proximity of the fault segment to Oldoinyo Lengai volcano and the localized distribution of fault-slip are consistent with magma-assisted faulting. Faults observed within the Natron basin and on the flanks of Gelai volcano, located on the eastern side of the rift, have

  17. Implications of new gravity data for Baikal Rift zone structure

    NASA Technical Reports Server (NTRS)

    Ruppel, C.; Kogan, M. G.; Mcnutt, M. K.

    1993-01-01

    Newly available, 2D Bouguer gravity anomaly data from the Baikal Rift zone, Siberia, indicate that this discrete, intracontinental rift system is regionally compensated by an elastic plate about 50 km thick. However, spectral and spatial domain analyses and isostatic anomaly calculations show that simple elastic plate theory does not offer an adequate explanation for compensation in the rift zone, probably because of significant lateral variations in plate strength and the presence of subsurface loads. Our results and other geophysical observations support the interpretation that the Baikal Rift zone is colder than either the East African or Rio Grande rift.

  18. How many rifts are there in West Africa?

    NASA Astrophysics Data System (ADS)

    Freeth, S. J.

    1984-02-01

    The West African Rift System has, for the last ten years, been thought to consist of five interconnected rifts extending from the Gulf of Guinea deep into the heart of Africa. Careful re-examination of the geophysical evidence makes it quite clear that there are only three interconnected rifts in West Africa; the Lower Benue Rift which extends to the northeast from the Gulf of Guinea to a triple junction near Chum, and the Gongola and Yola Rifts which extend to the north and east, respectively, from the Chum triple junction. These three rifts opened during the earlier part of the Mesozoic and were subsequently filled with Cretaceous sediments. The evidence for two further rifts, the Ati Rift and the Fort Archambault Rift which were thought to extend to the northeast and southeast, respectively, from a triple junction at the eastern end of the Yola Rift, does not stand up to re-examination. The "Ati Rift" was thought to follow a major linear positive gravity anomaly which had been mapped beneath the Quaternary sediments of the Chad Basin. The main gravity anomaly is separated from the Yola Rift by over 300 km and is probably due to a linear body of basic volcanic or volcano-clastic rocks associated with a suture of Pan-African age. Within the gap, between the main anomaly and the Yola Rift, there are three localised positive anomalies which relate to a gabbro of Precambrian age, a band of dense meta-sediments within the Basement Complex and an acid igneous complex of Palaeogene age. The anomaly as a whole is therefore a sequence of unrelated anomalies, none of which are due to features of Mesozoic age. The "Fort Archambault Rift" was thought to follow a major linear negative gravity anomaly which has been mapped beneath the Quaternary sediments of the Chad Basin. To a large extent the negative anomaly overlies the fosse de Baké-Birao (Baké-Birao Basin) which is itself part of a far larger structure that extends, parallel to the southern margin of the West African

  19. Ear Problems

    MedlinePlus

    ... YesNoDo you have thick pus-filled or bloody drainage from the ear canal that started after a ... bone behind the ear, or from an ENLARGED LYMPH NODE.Self CareURGENTSEE YOUR DOCTOR RIGHT AWAY.Start ...

  20. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the "west" relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  1. The Timing of Early Magmatism and Extension in the Southern East African Rift: Tracking Geochemical Source Variability with 40Ar/39Ar Geochronology at the Rungwe Volcanic Province, SW Tanzania

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Class, C.; Maqway, M. D.; Boniface, N.; Manya, S.; Hemming, S. R.

    2014-12-01

    The Rungwe Volcanic Province is the southernmost expression of volcanism in the East African Rift System. Rungwe magmatism is focused in a transfer zone between two weakly extended rift segments, unlike more developed rifts where magmatism occurs along segment axes (e.g. mid-ocean ridges). Rungwe was selected as the site of the multinational SEGMeNT project, an integrated geophysical, geochronological and geochemical study to determine the role of magmatism during early stage continental rifting. Argon geochronology is underway for an extensive collection of Rungwe volcanic rocks to date the eruptive sequence with emphasis on the oldest events. The age and location of the earliest events remains contested, but is critical to evaluating the relationship between magmatism and extension. Dated samples are further analyzed to model the geochemistry and isotopic signature of each melt's source and define it as lithospheric, asthenospheric, or plume. Given the goals, the geochronology focuses on mafic lavas most likely to preserve the geochemical signature of the mantle source. Groundmass was prepared and analyzed at the LDEO AGES lab. Twelve preliminary dates yield ages from 8.5 to 5.7Ma, consistent with prior results, supporting an eruptive episode concurrent with tectonic activity on the Malawi and Rukwa border faults (Ebinger et al., JGR 1989; 1993). Three additional samples yield ages from 18.51 to 17.6 Ma, consistent with the 18.6 ±1.0 Ma age obtained by Rasskazov et al. (Russ. Geology & Geophys. 2003). This eruptive episode is spatially limited to phonolite domes in the Usangu Basin and a mafic lava flow on the uplifted Mbeya Block. These eruptions predate the current tectonic extensional structure, suggesting magmatism predates extension, or that the two are not highly interdependent. No Rungwe samples dated yet can be the source of the of 26Ma carbonatitic tuffs in the nearby Songwe River Basin sequence (Roberts et al., Nature Geoscience 2012). Isochron ages

  2. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  3. Swimmer's ear

    MedlinePlus

    ... or a respiratory infection such as a cold. Swimming in unclean water can lead to swimmer's ear. ... very well after it has gotten wet. Avoid swimming in polluted water. Use earplugs when swimming. Try ...

  4. Pierced Ears

    MedlinePlus

    ... you run the risk of getting infected ears. Metal Matters Your first earrings should have gold posts ( ... infection and swelling. Later, you may find some metals cause an allergic reaction. You're probably wondering ...

  5. [Rift Valley fever].

    PubMed

    Pépin, M

    2011-06-01

    Rift Valley Fever (RVF) is a zoonotic arbovirosis. Among animals, it mainly affects ruminants, causing abortions in gravid females and mortality among young animals. In humans, RVF virus infection is usually asymptomatic or characterized by a moderate fever. However, in 1 to 3% of cases, more severe forms of the disease (hepatitis, encephalitis, retinitis, hemorrhagic fever) can lead to the death of infected individuals or to major sequels. The RVF virus (Bunyaviridae, genus Phlebovirus) was identified for the first time in the 1930s in Kenya. It then spread over almost all African countries, sometimes causing major epizootics/epidemics. In 2000, the virus was carried out of Africa, in the Middle East Arabian Peninsula. In 2007-2008, Eastern-African countries, including Madagascar, reported significant episodes of RVF virus, this was also the case for the Comoros archipelago and the French island of Mayotte. This ability to spread associated with many vectors, including in Europe, and high viral loads in infected animals led the health authorities worldwide to warn about the potential emergence of RVF virus in areas with a temperate climate. The awareness has increased in recent years with climate changes, which may possibly modify the vector distribution and competence, and prompted many RVF virus-free countries to better prepare for a potential implantation of RVF.

  6. Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (Syncerus caffer) in the Kruger National Park and Hluhluwe-iMfolozi Park, South Africa.

    PubMed

    Fagbo, Shamsudeen; Coetzer, Jacobus A W; Venter, Estelle H

    2014-10-16

    Rift Valley fever and lumpy skin disease are transboundary viral diseases endemic in Africa and some parts of the Middle East, but with increasing potential for global emergence. Wild ruminants, such as the African buffalo (Syncerus caffer), are thought to play a role in the epidemiology of these diseases. This study sought to expand the understanding of the role of buffalo in the maintenance of Rift Valley fever virus (RVFV) and lumpy skin disease virus (LSDV) by determining seroprevalence to these viruses during an inter-epidemic period. Buffaloes from the Kruger National Park (n = 138) and Hluhluwe-iMfolozi Park (n = 110) in South Africa were sampled and tested for immunoglobulin G (IgG) and neutralising antibodies against LSDV and RVFV using an indirect enzyme-linked immunosorbent assay (I-ELISA) and the serum neutralisation test (SNT). The I-ELISA for LSDV and RVFV detected IgG antibodies in 70 of 248 (28.2%) and 15 of 248 (6.1%) buffaloes, respectively. Using the SNT, LSDV and RVFV neutralising antibodies were found in 5 of 66 (7.6%) and 12 of 57 (21.1%), respectively, of samples tested. The RVFV I-ELISA and SNT results correlated well with previously reported results. Of the 12 SNT RVFV-positive sera, three (25.0%) had very high SNT titres of 1:640. Neutralising antibody titres of more than 1:80 were found in 80.0% of the positive sera tested. The LSDV SNT results did not correlate with results obtained by the I-ELISA and neutralising antibody titres detected were low, with the highest (1:20) recorded in only two buffaloes, whilst 11 buffaloes (4.4%) had evidence of co-infection with both viruses. Results obtained in this study complement other reports suggesting a role for buffaloes in the epidemiology of these diseases during inter-epidemic periods.

  7. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi).

    PubMed

    Lüdecke, Tina; Schrenk, Friedemann; Thiemeyer, Heinrich; Kullmer, Ottmar; Bromage, Timothy G; Sandrock, Oliver; Fiebig, Jens; Mulch, Andreas

    2016-01-01

    The development of East African savannas is crucial for the origin and evolution of early hominins. These ecosystems, however, vary widely in their fraction of woody cover and today range from closed woodland to open grassland savanna. Here, we present the first Plio-Pleistocene long-term carbon isotope (δ(13)C) record from pedogenic carbonate and Suidae teeth in the southern East African Rift (EAR). These δ(13)C data from the Chiwondo and Chitimwe Beds (Karonga Basin, Northern Malawi) represent a southern hemisphere record in the EAR, a key region for reconstructing vegetation patterns in today's Zambezian Savanna, and permit correlation with data on the evolution and migration of early hominins in today's Somali-Masai Endemic Zone. The sediments along the northwestern shore of Lake Malawi contain fossils attributed to Homo rudolfensis and Paranthropus boisei. The associated hominin localities (Uraha, Malema) are situated between the well-known hominin bearing sites of the Somali-Masai Endemic Zone in the Eastern Rift and the Highveld Grassland in southern Africa, and fill an important geographical gap for hominin research. Persistent δ(13)C values around -9‰ from pedogenic carbonate and suid enamel covering the last ∼4.3 Ma indicate a C3-dominated closed environment with regional patches of C4-grasslands in the Karonga Basin. The overall fraction of woody cover of 60-70% reflects significantly higher canopy density in the Malawi Rift than the Eastern Rift through time. The discrepancy between the two savanna types originated in the Late Pliocene, when the Somali-Masai ecosystem started to show increasing evidence for open, C4-dominated landscapes. Based on the Malawi δ(13)C data, the evolution of savanna ecosystems in Eastern Africa followed different patterns along the north-south extent of the EAR. The appearance of C4-grasses is considered a driver of evolutionary faunal shifts, but despite the difference of ecosystem evolution in the north, similar

  8. Causes of unrest at silicic calderas in the East African Rift: New constraints from InSAR and soil-gas chemistry at Aluto volcano, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin A.; Pyle, David M.; Lewi, Elias; Yirgu, Gezahegn; Caliro, Stefano; Chiodini, Giovanni; Clor, Laura E.; Fischer, Tobias P.

    2016-08-01

    Restless silicic calderas present major geological hazards, and yet many also host significant untapped geothermal resources. In East Africa, this poses a major challenge, although the calderas are largely unmonitored their geothermal resources could provide substantial economic benefits to the region. Understanding what causes unrest at these volcanoes is vital for weighing up the opportunities against the potential risks. Here we bring together new field and remote sensing observations to evaluate causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER). Interferometric Synthetic Aperture Radar (InSAR) data reveal the temporal and spatial characteristics of a ground deformation episode that took place between 2008 and 2010. Deformation time series reveal pulses of accelerating uplift that transition to gradual long-term subsidence, and analytical models support inflation source depths of ˜5 km. Gases escaping along the major fault zone of Aluto show high CO2 flux, and a clear magmatic carbon signature (CO2-δ13C of -4.2‰ to -4.5‰). This provides compelling evidence that the magmatic and hydrothermal reservoirs of the complex are physically connected. We suggest that a coupled magmatic-hydrothermal system can explain the uplift-subsidence signals. We hypothesize that magmatic fluid injection and/or intrusion in the cap of the magmatic reservoir drives edifice-wide inflation while subsequent deflation is related to magmatic degassing and depressurization of the hydrothermal system. These new constraints on the plumbing of Aluto yield important insights into the behavior of rift volcanic systems and will be crucial for interpreting future patterns of unrest.

  9. Cosmetic ear surgery

    MedlinePlus

    Otoplasty; Ear pinning; Ear surgery - cosmetic; Ear reshaping; Pinnaplasty ... Cosmetic ear surgery may be done in the surgeon's office, an outpatient clinic, or a hospital. It can be performed under ...

  10. Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: implications for Nubia-Somalia kinematics

    NASA Astrophysics Data System (ADS)

    Erbello, Asfaw; Corti, Giacomo; Sani, Federico; Kidane, Tesfaye

    2016-04-01

    The Main Ethiopian Rift (MER), at the northern termination of the East African Rift, is an ideal locale where to get insights into the long-term motion between Nubia and Somalia. The rift is indeed one of the few places along the plate boundary where the deformation is narrow: its evolution is thus strictly related to the kinematics of the two major plates, whereas south of the Turkana depression a two-plate model for the EARS is too simplistic as extension occurs both along the Western and Eastern branches and different microplates are present between the two major plates. Despite its importance, the kinematics responsible for development and evolution of the MER is still a matter of debate: indeed, whereas the Quaternary-present kinematics of rifting is rather well constrained, the plate kinematics driving the initial, Mio-Pliocene stages of extension is still not clear, and different hypothesis have been put forward, including: polyphase rifting, with a change in direction of extension from NW-SE extension to E-W extension; constant Miocene-recent NW-SE extension; constant Miocene-recent NE-SW extension; constant, post-11 Ma extension consistent with the GPS-derived kinematics (i.e., roughly E-W to ESE-WNW). To shed additional light on this controversy and to test these different hypothesis, in this contribution we use new crustal-scale analogue models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The extension direction is indeed one of the most important parameters controlling the architecture of continental rifts and the relative abundance and orientation of different fault sets that develop during oblique rifting is typically a function of the angle between the extension direction and the orthogonal to the rift trend (i.e., the obliquity angle). Since the trend of the MER varies along strike, and consequently it is

  11. The Role of Rift Obliquity During Pangea Fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  12. Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses

    PubMed Central

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration. PMID:24146922

  13. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    The past 5 Ma were marked by systematic shifts towards colder climates and concomitant reorganizations in ocean circulation and marine heat transports. Some of the changes involved plate-tectonic shifts such as the closure of the Panamanian Isthmus and restructuring of the Indonesian archipelago that affected inter-ocean communications and altered the world ocean circulation. These changes induced ocean-atmosphere feedbacks with consequences for climates globally and locally. Two new ICDP and IODP drilling initiatives target these developments from the perspectives of marine and terrestrial palaeoclimatology and the human evolution. The ICDP drilling initiative HSPDP ("Hominid Sites and Paleolakes Drilling Project"; ICDP ref. no. 10/07) targets lacustrine depocentres in Ethiopia (Hadar) and Kenya (West Turkana, Olorgesailie, Magadi) to retrieve sedimentary sequences close to the places and times where various species of hominins lived over currently available outcrop records. The records will provide a spatially resolved record of the East African environmental history in conjunction with climate variability at orbital (Milankovitch) and sub-orbital (ENSO decadal) time scales. HSPDP specifically aims at (1) compiling master chronologies for outcrops around each of the depocentres; (2) assessing which aspects of the paleoenvironmental records are a function of local origin (hydrology, hydrogeology) and which are linked with regional or larger-scale signals; (3) correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability and (4) correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change. Ultimately the aim is to test hypotheses that link physical and cultural adaptations in the course of the hominin evolution to local environmental change and variability. The IODP initiative SAFARI ("Southern African Climates, Agulhas Warm Water Transports and Retroflection

  14. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data

    USGS Publications Warehouse

    Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, Kim D.

    1992-01-01

    Recent multichannel seismic reflection data from Lake Baikal, located in a large, active, continental rift in central Asia, image three major stratigraphic units totalling 3.5 to 7.5 km thick in four subbasins. A major change in rift deposition and faulting between the oldest and middle-rift units probably corresponds to the change from slow to fast rifting. A brief comparison of the basins of Lake Baikal with those of the East African rift system highlights differences in structural style that can be explained by differences in age and evolution of the surrounding basement rocks. -from Authors

  15. Evolution of the Lake Victoria basin in the context of coeval rift initiation in East Africa: a 3D numerical model approach

    NASA Astrophysics Data System (ADS)

    Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.

    2015-04-01

    Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic

  16. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower

  17. Listening to Nature's orchestra with peculiar ears

    NASA Astrophysics Data System (ADS)

    Yager, David D.

    2003-04-01

    Insects use hearing for the crucial tasks of communicating with conspecifics and avoiding predators. Although all are based on the same acoustic principles, the diversity of insect ears is staggering and instructive. For instance, a South African grasshopper demonstrates that hearing conspecific calls is possible over distances 1 km with ears that do not have tympana. Actually, these creatures have six pairs of ears that play different roles in behavior. In numerical contrast, praying mantises have just a single ear in the ventral midline. The ear is very effective at detecting ultrasonic bat cries. However, the bioacoustics of sound transduction by two tympana facing each other in a deep, narrow slit is a puzzle. Tachinid flies demonstrate that directional hearing at 5 kHz is possible with a pair of ears fused together to give a total size of 1 mm. The ears are under the fly's chin. Hawk moths have their ears built into their mouthparts and the tympanum is more like a hollow ball than the usual membrane. As an apt last example, cicada ears are actually part of the orchestra: their tympana function both in sound reception and sound production.

  18. Helium isotope ratios in Ethiopian Rift basalts

    NASA Astrophysics Data System (ADS)

    Scarsi, P.; Craig, H.

    1996-11-01

    Helium isotope ratios were measured in olivine and pyroxene phenocrysts from basalts of the Ethiopian Rift Valley and Afar Depression between 6° and 15°N and 37° and 43°E. 3He/4He ratios range from 6 to 17 times the atmospheric value (RA = 1.4 × 10-6), that is, from ratios less than typical MORB (depleted mantle) helium (R/RA= 8 ± 1) to ratios similar to high-3He hotspots and to the Yellowstone hotspot (R/RA= 16.5). The high 3He/4He ratios occur all along the Ethiopian Rift and well up into the Afar Depression, with a maximum value of 17.0 RA at 8°N in the Rift Axis and a high value of 14.2 RA in the central Tat'Ali sector of the Afar Depression. The ratios decrease to MORB-like values near the edge of the Red Sea, and to sub-MORB ratios (5-6 RA) at the northern end of the Rift (Zula Peninsula) and at the southern end, at lakes Abaya and Chamo. The Ethiopian Rift provides the only continental hotspot terrain in which helium isotope ratios can be compared in detail between volcanic lavas and associated geothermal and volcanic gases, a primary motivation for this work. Comparison with our previously measured ratios in fluids and gases (range 2-15 RA) shows excellent agreement in the areas sampled for both lavas and fluids, and indicates that high-temperature volcanic fluids can be used for establishing helium isotope signatures in such terrains. The high-3He values in both fluids and basalts show that a Primitive Mantle (PM) component is required and that a Lower Mantle High-3He plume is strongly involved as a driving force in the rifting process of the East African Rift System.

  19. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hudgins, T. R.; Mukasa, S. B.; Simon, A. C.; Moore, G.; Barifaijo, E.

    2015-05-01

    We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the western branch of the East African Rift System and use these data to investigate the generation of H2O- and CO2-rich melts at up to ~150 km depth. Measured H2O and CO2 concentrations reach ~2.5 and ~1 wt%, respectively, representing some of the highest CO2 concentrations measured in a melt inclusion to date. These measurements represent direct evidence of the high CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has been previously inferred to be necessary for the low mantle potential temperatures in the area. Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 5-12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by molecular dynamics calculations and high-pressure experiments for melt generation at 3-6 GPa; the depth of melting suggested by previous studies in the area. These melt inclusions measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep upper mantle that have been proposed based on experimental and seismic evidence. Primitive-mantle normalized trace element patterns more closely resemble those found in subduction settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be indicate that the measured volatile abundances may be related to Neoproterozoic subduction during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-related metasomatism.

  20. Seismic anisotropy beneath the incipient Okavango rift: Implications for rifting initiation

    NASA Astrophysics Data System (ADS)

    Yu, Youqiang; Gao, Stephen S.; Moidaki, Moikwathai; Reed, Cory A.; Liu, Kelly H.

    2015-11-01

    This study represents the first shear-wave splitting investigation of the Okavango rift zone (ORZ), an incipient continental rift belonging to the East African rift system in northern Botswana. Analysis of broadband seismic data recorded along a 750 km long profile of 22 stations traversing the ORZ and adjacent Congo and Kalahari cratons and several Precambrian orogenic zones reveals dominantly NE-SW fast orientations, which are parallel to both the absolute plate motion direction (based on the NNR-NUVEL-1A model) and the trend of most tectonic boundaries, including that of the ORZ. Spatial coherence analysis of the splitting parameters and correspondence between the observed fast orientations and the trend of tectonic features indicate that the main source of observed anisotropy is most likely in the upper asthenosphere, probably due to simple shear associated with the relative movement of the lithosphere against the asthenosphere. The presence of consistently rift-parallel fast orientations and normal splitting times in the ORZ and most parts of southern Africa implies that neither an upper mantle plume nor small-scale convection is the dominant source for rift initiation and development. The first shear-wave splitting measurements in the vicinity of the ORZ favor a model in which continental rifting develops in response to intra-plate relative movement of continental blocks along zones of weakness produced by ancient tectonic events.

  1. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Review Date 8/ ...

  2. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect

    Winn, R.D. Jr.; Steinmetz, J.C. ); Kerekgyarto, W.L. )

    1993-11-01

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  3. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  4. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  5. What Is an Ear Infection?

    MedlinePlus

    ... the germs bother your outer ear, it's called swimmer's ear. The middle ear is a small pocket ... What's Hearing Loss? Taking Care of Your Ears Swimmer's Ear Perforated Eardrum What's Earwax? Contact Us Print ...

  6. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  7. How Mountains Become Rifts

    NASA Astrophysics Data System (ADS)

    Buiter, S. J.; Tetreault, J. L.

    2015-12-01

    Rifting often initiates on former continental collision zones. For example, the present-day passive margins of the Atlantic and Indian Oceans formed after continental break-up occurred on relatively young and very old sutures, such as Morocco-Nova Scotia and East Antarctica-Australia, respectively. Rifts may localize on former collision zones for several reasons: orogens are thermally weak because of the increase in heat producing elements in their thicker crustal root, the inherited thrust faults form large-scale heterogeneities, and in the case of young sutures, extensional collapse of the orogen may help initiate rifting. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture using numerical experiments. We first explicitly prescribe collisional structures in the initial setup, such as increased crustal thickness and inherited thrust faults. Varying the prescribed structures results in different rift to break-up durations and margin widths. Our second series of experiments creates a collision zone through subduction and closure of an ocean. We confirm that post-collisional collapse is not a sufficient trigger for continental rifting and that a change in regional plate motions is required. When extension occurs, the weak former subduction interface and the elevated temperatures in the crustal nappe stack work in tandem as the main deformation localizers for continental rifting. Our experiments show that different approaches of initiating a continental rift result in different dynamics of the crust and mantle, thereby impacting rift geometry, rift to break-up duration, and exhumation of subduction-related sediments and oceanic crust.

  8. Swimmer's Ear (For Parents)

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Swimmer's Ear (Otitis Externa) KidsHealth > For Parents > Swimmer's Ear (Otitis ... español Otitis del nadador (otitis externa) About Swimmer's Ear Otitis externa (OE) — commonly known as swimmer's ear — ...

  9. Volcanism at rifts

    SciTech Connect

    White, R.S.; McKenzie, D.P.

    1989-07-01

    The earth's outer shell rifts continuously, stretching and splitting both on the ocean's floor and on continents. Every 30 million years or so the rifting becomes cataclysmic, releasing continent-size floods of magma. This paper explains that the same mechanism is at work in both cases, the difference being in the slightly hotter temperature of the parent mantle for spectacular volcanic outbursts. Two kinds of evidence are described: quantitative descriptions of rock melting and a wide range of observations made on the rifted edges of continents and in the oceans that have opened between them.

  10. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  11. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  12. Evolution, distribution, and characteristics of rifting in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; Corti, Giacomo; Sani, Federico; Bonini, Marco; Balestrieri, Maria-Laura; Molin, Paola; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2014-04-01

    Southern Ethiopia is a key region to understand the evolution of the East African rift system, since it is the area of interaction between the main Ethiopian rift (MER) and the Kenyan rift. However, geological data constraining rift evolution in this remote area are still relatively sparse. In this study the timing, distribution, and style of rifting in southern Ethiopia are constrained by new structural, geochronological, and geomorphological data. The border faults in the area are roughly parallel to preexisting basement fabrics and are progressively more oblique with respect to the regional Nubia-Somalia motion proceeding southward. Kinematic indicators along these faults are mainly dip slip, pointing to a progressive rotation of the computed direction of extension toward the south. Radiocarbon data indicate post 30 ka faulting at both western and eastern margins of the MER with limited axial deformation. Similarly, geomorphological data suggest recent fault activity along the western margins of the basins composing the Gofa Province and in the Chew Bahir basin. This supports that interaction between the MER and the Kenyan rift in southern Ethiopia occurs in a 200 km wide zone of ongoing deformation. Fault-related exhumation at ~10-12 Ma in the Gofa Province, as constrained by new apatite fission track data, occurred later than the ~20 Ma basement exhumation of the Chew Bahir basin, thus pointing to a northward propagation of the Kenyan rift-related extension in the area.

  13. Turbidite systems of lacustrine rift basins: Examples from the Lake Kivu and Lake Albert rifts, East Africa

    NASA Astrophysics Data System (ADS)

    Zhang, Xuewei; Scholz, Christopher A.

    2015-07-01

    The Holocene turbidite systems of Lake Kivu and the Pliocene turbidite systems of Lake Albert in the East African Rift were examined using high-resolution 2-D and 3-D seismic reflection data and sediment core information. Based on investigations of seismic facies and lithofacies, several key turbidity-flow depositional elements were observed, including channels, overbank levees with sediment waves, and depositional lobes. Analyses of the sources of the recent and ancient turbidite systems in these two extensional basins suggest that flood-induced hyperpycnal flows are important triggers of turbidity currents in lacustrine rift basins. From source to sink, sediment dispersal, facies distribution, and depositional thickness of the turbidite systems are strongly influenced by rift topography. The Lake Kivu and Lake Albert rifts serve as excellent analogues for understanding the sedimentary patterns of lacustrine turbidites in extensional basins.

  14. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  15. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  16. The Pathogenesis of Rift Valley Fever

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2011-01-01

    Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis. PMID:21666766

  17. The pathogenesis of Rift Valley fever.

    PubMed

    Ikegami, Tetsuro; Makino, Shinji

    2011-05-01

    Rift Valley fever (RVF) is an emerging zoonotic disease distributed in sub-Saharan African countries and the Arabian Peninsula. The disease is caused by the Rift Valley fever virus (RVFV) of the family Bunyaviridae and the genus Phlebovirus. The virus is transmitted by mosquitoes, and virus replication in domestic ruminant results in high rates of mortality and abortion. RVFV infection in humans usually causes a self-limiting, acute and febrile illness; however, a small number of cases progress to neurological disorders, partial or complete blindness, hemorrhagic fever, or thrombosis. This review describes the pathology of RVF in human patients and several animal models, and summarizes the role of viral virulence factors and host factors that affect RVFV pathogenesis.

  18. Fault Orientations at Obliquely Rifted Margins: Where? When? Why?

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    Present-day knowledge of rifted margin formation is largely based on 2D seismic lines, 2D conceptual models, and corroborated by 2D numerical experiments. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, worldwide more than 75% of all rifted margin segments have been formed under significant obliquity exceeding 20° (angle measured between extension direction and rift trend normal): During formation of the Atlantic Ocean, oblique rifting dominated at the sheared margins of South Africa and Patagonia, the Equatorial Atlantic margins, separation of Greenland and North America, and it played a major role in the protracted rift history of the North East Atlantic. Outside the Atlantic Ocean, oblique rifting occurred during the split between East and West Gondwana, the separation of India and Australia, India and Madagascar, Australia and Antarctica, as well as Arabia and Africa. It is presently observed in the Gulf of California, the Aegean and in the East African Rift. Despite its significance, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Results are thoroughly compared to previous analogue experiments, which yields many similarities but also distinct differences for late rift stages and for high obliquity. Even though the model

  19. Kantis: A new Australopithecus site on the shoulders of the Rift Valley near Nairobi, Kenya.

    PubMed

    Mbua, Emma; Kusaka, Soichiro; Kunimatsu, Yutaka; Geraads, Denis; Sawada, Yoshihiro; Brown, Francis H; Sakai, Tetsuya; Boisserie, Jean-Renaud; Saneyoshi, Mototaka; Omuombo, Christine; Muteti, Samuel; Hirata, Takafumi; Hayashida, Akira; Iwano, Hideki; Danhara, Tohru; Bobe, René; Jicha, Brian; Nakatsukasa, Masato

    2016-05-01

    Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.

  20. Otoplasty (Cosmetic Ear Surgery)

    MedlinePlus

    ... is typically done on both ears to optimize symmetry. Otoplasty can be done at any age after ... your ears — including their placement, size, shape and symmetry. The doctor might also take pictures of your ...

  1. Ear Infection and Vaccines

    MedlinePlus

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  2. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  3. Swimmer's Ear (External Otitis)

    MedlinePlus

    ... ears. This is especially true if they use cotton swabs or dangerously sharp small objects, like hair ... all objects out of your ear canals — including cotton swabs — unless your doctor has told you it's ...

  4. Middle ear infection (image)

    MedlinePlus

    A middle ear infection is also known as otitis media. It is one of the most common of childhood infections. With this illness, the middle ear becomes red, swollen, and inflamed because of bacteria ...

  5. Swimmer's Ear (For Parents)

    MedlinePlus

    ... or inserting foreign objects like bobby pins or paper clips into the ear can all increase the ... discharge from the ear to help identify which bacteria or fungi are causing the infection. Over-the- ...

  6. Ear surgery - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100016.htm Ear surgery - series—Normal anatomy To use the sharing ... Overview This image demonstrates normal appearance of the ears in relation to the face. Review Date 10/ ...

  7. Swimmer's Ear (External Otitis)

    MedlinePlus

    ... can be caused by many different types of bacteria or fungi. It usually develops in ears that are exposed to moisture. People who get OE often have been diving or swimming for long periods of time. This can bring infectious bacteria directly into the ear canal. Swimmer's ear occurs ...

  8. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  9. [Middle ear physiology].

    PubMed

    Ayerbe, I; Négrevergne, M; Ucelay, R; Sanchez Fernandez, J M

    1999-01-01

    The middle ear forms part of the sound transformer mechanism, together with the outer ear and the conducting system of the inner ear. An intermediate sensory organ, sensitive to acoustic vibration, and linked to the inner ear, the middle ear made its appearance during the period of adaptation of marine creatures to a terrestrial habitat; its presence is therefore a phylogenetic requirement. It is classical to ascribe three functions to the middle ear: the transmission of acoustic vibrations from the tympanic membrane to the cochlea, impedance matching between the air in the external auditary meatus and the labyrinthine fluids, and protection of the inner ear by means of the acoustic reflex. If the classical mechanical explanation has been able to explain its function, the conceptualization of its physiology in terms of energy allows an even better understanding, as well as providing and explanation for the paradoxes which arise in clinical practice when the classical model is used.

  10. Exploring the contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.; de Monserrat, Albert; White, Lloyd; Hall, Robert

    2016-04-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia. This includes in northern and central Sulawesi as well as in eastern- and westernmost New Guinea. The periods of extension are associated with sedimentary basin growth as well as phases of crustal melting and rapid uplift. This is recorded through seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provide some control on the rates of processes, indicating that rates of extension are typically at least twice as fast and potentially an order of magnitude faster than the fastest rates applied for more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). Here we explore a suite of experiments more appropriate for rifting episodes in Eastern Indonesia, and compare the evolution of these 'fast' (20-100 mm/year full rate) rifting models to experiments with the same crustal geometries rifting at ~5-20 mm/year. In particular, we explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and whether we can produce the p-T-t paths implied by recent onshore geological studies.

  11. Continental rifting and the origin of Beta Regio, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.

    1981-01-01

    Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.

  12. Rift Valley fever vaccines

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2009-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines. PMID:19837291

  13. Volcanism at Rifts.

    ERIC Educational Resources Information Center

    White, Robert S.; McKenzie, Dan P.

    1989-01-01

    Investigates the nature of catastrophic volcanism and the rifting process. Describes two kinds of evidence: quantitative descriptions of rock melting and a wide range of observations. Discusses examples of continent growth in the North Atlantic, India and the Seychelles islands, and the South Atlantic. (YP)

  14. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  15. Continental rifting - Progress and outlook

    SciTech Connect

    Baker, B.H.; Morgan, P.

    1981-07-21

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  16. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    NASA Astrophysics Data System (ADS)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (< 35 km), most of the southern part of the rift is underlain by thick crust (~40‒44 km). Different from the Moho, the MLD is shallower beneath the axis of the Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  17. Middle Ear Infections and Ear Tube Surgery (For Parents)

    MedlinePlus

    ... Year-Old Middle Ear Infections and Ear Tube Surgery KidsHealth > For Parents > Middle Ear Infections and Ear ... medio y colocación de tubos de ventilación Why Surgery? Many kids get middle ear infections (known as ...

  18. On the geodynamics of the Aegean rift

    NASA Astrophysics Data System (ADS)

    Agostini, Samuele; Doglioni, Carlo; Innocenti, Fabrizio; Manetti, Piero; Tonarini, Sonia

    2010-06-01

    The Aegean rift is considered to be either a classic backarc basin, or the result of the westward escape of Anatolia, or the effect of a gravitational collapse of an over-thickened lithosphere. Here these models are questioned. We alternatively present a number of geodynamic and magmatic constraints suggesting a simple model for the genesis of the extension as being related to the differential advancement of the upper lithosphere over a heterogeneous lower African plate. The Greek microplate overrides the Ionian oceanic segment of the African plate faster than the Anatolian microplate over the thicker Levantine more continental segment. This setting is evidenced by GPS-velocity gradient in the hangingwall of the Hellenic-Cyprus subduction system and requires a zone of rifting splitting the hangingwall into two microplates. This mechanism is unrelated to the replacement of retreated slab by the asthenosphere as typically occurs in the backarc of west-directed subduction zones. The supposed greater dehydration of the Ionian segment of the slab is providing a larger amount of fluids into the low velocity channel at the top of the asthenosphere, allowing a faster decoupling between the Greek microplate and the underlying mantle with respect to the Anatolian microplate. Slab ruptures associated with the differential retreat controlled by the inherited lithospheric heterogeneities in the lower plate and the proposed upwelling of the mantle suggested by global circulation models would explain the occurrence and coexistence of slab-related and slab-unrelated magmatism.

  19. Pathology of the Ear

    PubMed Central

    Orengo, Ida; Robbins, Kerri; Marsch, Amanda

    2011-01-01

    The external ear is exposed to weathering and trauma; it also has sparse vascularity, making it prone to infection and disease. The external location of the cutaneous ear makes it easily visible for diagnosis and accessible for treatment. In this article, the authors focus on diseases of the ear that are most commonly encountered and may be subject to surgical and medical evaluation and/or treatment. Epidemiology, pathogenesis, clinical course, and treatment for each disease entity are discussed. PMID:23115534

  20. Seismological Investigations of Crustal and Mantle Structures Beneath the Incipient Okavango Rift

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Yu, Y.; Liu, K. H.; Reed, C. A.; Moidaki, M.; Mickus, K. L.; Atekwana, E. A.

    2015-12-01

    Rifting plays a significant role in the evolution of sedimentary basins. However, our current understandings on rifting mechanisms are mostly based on studies of mature rifts. Here we report results from the first teleseismic investigations of the incipient Okavango rift zone (ORZ), which is located at the southwestern terminal of the East African Rift System in northern Botswana. Data used in the study were recorded by the 17 broadband seismic stations deployed along a NW-SE profile traversing the ORZ with a recording duration of 2 years starting in the summer of 2012. Receiver function and shear wave splitting techniques have been employed to explore upper mantle thermal anomalies and anisotropy. The resulting dominantly absolute plate motion-parallel fast polarization orientations and normal mantle transition zone thickness ruled out the possible existence of one or more mantle plumes in the upper mantle or mantle transition zone beneath the ORZ. The Moho beneath the Okavango rift zone is uplifted by 4-5 km and is symmetric with regard to the rift axis, favoring a pure shear model of early-stage continental extension. The observations favor a passive model for rift initiation in which rifts develop inside ancient orogenic zones as the result of relative movements between Archean cratonic blocks.

  1. Middle Ear Infections and Ear Tube Surgery (For Parents)

    MedlinePlus

    ... 2-Year-Old Middle Ear Infections and Ear Tube Surgery KidsHealth > For Parents > Middle Ear Infections and ... to 18 months or longer. previous continue Tympanostomy Tube Surgery If your child is old enough to ...

  2. Continental rifts and mineral resources

    SciTech Connect

    Burke, K. . Geosciences Dept.)

    1992-01-01

    Continental rifts are widespread and range in age from the present to 3 b.y. Individual rifts may form parts of complex systems as in E. Africa and the Basin and Range. Rifts have originated in diverse environments such as arc-crests, sites of continental collision, collapsing mountain belts and on continents at rest over the mantle circulation pattern. Continental rift resources can be classified by depth of origin: For example, in the Great Dike, Norilsk and Mwadui magma from the mantle is the host. At shallower depths continental crust partly melted above mafic magma hosts ore (Climax, Henderson). Rift volcanics are linked to local hydrothermal systems and to extensive zeolite deposits (Basin and Range, East Africa). Copper (Zambia, Belt), zinc (Red Dog) and lead ores (Benue) are related to hydrothermal systems which involve hot rock and water flow through both pre-rift basement and sedimentary and volcanic rift fill. Economically significant sediments in rifts include coals (the Gondwana of Inida), marine evaporites (Lou Ann of the Gulf of Mexico) and non-marine evaporites (East Africa). Oil and gas in rifts relate to a variety of source, reservoir and trap relations (North Sea, Libya), but rift-lake sediment sources are important (Sung Liao, Bo Hai, Mina, Cabinda). Some ancient iron ores (Hammersley) may have formed in rift lakes but Algoman ores and greenstone belt mineral deposits in general are linked to oceanic and island arc environments. To the extent that continental environments are represented in such areas as the Archean of the Superior and Slave they are Andean Arc environments which today have locally rifted crests (Ecuador, N. Peru). The Pongola, on Kaapvaal craton may, on the other hand represent the world's oldest preserved, little deformed, continental rift.

  3. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal

    NASA Astrophysics Data System (ADS)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar

    2015-04-01

    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of

  4. African sedimentary basins - Tectonic controls on prospectivity

    SciTech Connect

    Bunter, M.A.G.; Crossley, R.; Hammill, M.; Jones, P.W.; Morgan, R.K.; Needham, D.T.; Spaargaren, F.A. )

    1991-03-01

    An important prerequisite for the evaluation of any sedimentary basin is the understanding of its regional tectonic setting. This is especially so in the underexplored regions of Africa. The majority of African sedimentary basins developed in an extensional setting although some have undergone subsequent compressional or transpressional deformation. The geometry and evolution of these basins is often influenced by basement structure. The extensional phase of basin development controls not only the distribution of syn-rift sediments but also the magnitude of post-rift regional subsidence and the preservation or removal of pre-rift sediments. This has important consequences for exploration models of syn-rift and pre-rift source rocks and reservoirs. Post-rift basin inversion and uplift provide crucial controls on the preservation of mature source rocks and quality of reservoirs. The distribution, nature, timing, and possible mechanisms of this uplift in Africa will be addressed. The hydrocarbon prospectivity of African basis appears to be highly variable although the limited exploration of some regions makes the exact extent of this variability unclear. Basins considered potentially prospective range from late Precambrian to Tertiary in age. The various tectonic controls outlined above, and criteria for the evaluation of underexplored areas, will be demonstrated by reference to basins studied by The Robertson Group. Examples described include basins from Bagon, Angola, Namibia, East Africa, Tertiary Rift and Karoo Rifts, and North Africa (Sudan, Egypt, Algeria, and Morocco).

  5. Caring for Pierced Ears

    MedlinePlus

    ... close. Regularly wash your ears with soap and water. Carefully do this at least once a day to avoid infection. Twist the earrings a few times daily. This will help keep the pierced holes open. Put rubbing alcohol on your ears. Using ...

  6. Avoiding Infection After Ear Piercing

    MedlinePlus

    ... Text Size Email Print Share Avoiding Infection After Ear Piercing Page Content Article Body What is the best way to avoid infection after ear piercing? Ears may be pierced for cosmetic reasons ...

  7. Ear - blocked at high altitudes

    MedlinePlus

    ... and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... The eustachian tube is a connection between the middle ear (the space deep to the eardrum) and the back of the ...

  8. [Rift valley fever].

    PubMed

    Markin, V A; Pantiukhov, V B; Markov, V I; Bondarev, V P

    2012-01-01

    In the last quarter of century virus of Rift valley fever (RVF) sharply extended its distribution by moving from Africa to Asia and evolving from low- to high pathogenic for humans causing severe hemorrhagic disease, practically equaling in this respect with some members ofa group of extremely dangerous pathogens. Morbidity and epidemics of RVF are analyzed. Evolution of epidemic development of the infection is examined. Necessity of development of means and methods for diagnostics, prophylaxis and therapy of RVF is underlined.

  9. Effectiveness of Ear Splint Therapy for Ear Deformities

    PubMed Central

    2017-01-01

    Objective To present our experience with ear splint therapy for babies with ear deformities, and thereby demonstrate that this therapy is an effective and safe intervention without significant complications. Methods This was a retrospective study of 54 babies (35 boys and 19 girls; 80 ears; age ≤3 months) with ear deformities who had received ear splint therapy at the Center for Torticollis, Department of Physical Medicine and Rehabilitation, Ajou University Hospital between December 2014 and February 2016. Before the initiation of ear splint therapy, ear deformities were classified with reference to the standard terminology. We compared the severity of ear deformity before and after ear splint therapy by using the physician's ratings. We also compared the physician's ratings and the caregiver's ratings on completion of ear splint therapy. Results Among these 54 babies, 41 children (58 ears, 72.5%) completed the ear splint therapy. The mean age at initiation of therapy was 52.91±18.26 days and the treatment duration was 44.27±32.06 days. Satyr ear, forward-facing ear lobe, Darwinian notch, overfolded ear, and cupped ear were the five most common ear deformities. At the completion of therapy, the final physician's ratings of ear deformities were significantly improved compared to the initial ratings (8.28±1.44 vs. 2.51±0.92; p<0.001). There was no significant difference between the physician's ratings and the caregiver's ratings at the completion of ear splint therapy (8.28±1.44 vs. 8.0±1.61; p=0.297). Conclusion We demonstrated that ear splint therapy significantly improved ear deformities in babies, as measured by quantitative rating scales. Ear splint therapy is an effective and safe intervention for babies with ear deformities. PMID:28289646

  10. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Smets, Benoît

    2015-04-01

    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  11. Ear problems in swimmers.

    PubMed

    Wang, Mao-Che; Liu, Chia-Yu; Shiao, An-Suey; Wang, Tyrone

    2005-08-01

    Acute diffuse otitis externa (swimmer's ear), otomycosis, exostoses, traumatic eardrum perforation, middle ear infection, and barotraumas of the inner ear are common problems in swimmers and people engaged in aqua activities. The most common ear problem in swimmers is acute diffuse otitis externa, with Pseudomonas aeruginosa being the most common pathogen. The symptoms are itching, otalgia, otorrhea, and conductive hearing loss. The treatment includes frequent cleansing of the ear canal, pain control, oral or topical medications, acidification of the ear canal, and control of predisposing factors. Swimming in polluted waters and ear-canal cleaning with cotton-tip applicators should be avoided. Exostoses are usually seen in people who swim in cold water and present with symptoms of accumulated debris, otorrhea and conductive hearing loss. The treatment for exostoses is transmeatal surgical removal of the tumors. Traumatic eardrum perforations may occur during water skiing or scuba diving and present with symptoms of hearing loss, otalgia, otorrhea, tinnitus and vertigo. Tympanoplasty might be needed if the perforations do not heal spontaneously. Patients with chronic otitis media with active drainage should avoid swimming, while patients who have undergone mastoidectomy and who have no cavity problems may swim. For children with ventilation tubes, surface swimming is safe in a clean, chlorinated swimming pool. Sudden sensorineural hearing loss and some degree of vertigo may occur after diving because of rupture of the round or oval window membrane.

  12. Anatomy of a river drainage reversal in the Neogene Kivu Nile Rift

    NASA Astrophysics Data System (ADS)

    Holzförster, F.; Schmidt, U.

    2007-07-01

    The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu-Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300-350 ka to complete this major event for the sediment supply system of the Kivu-Nile Rift segment.

  13. Ear Injuries (For Parents)

    MedlinePlus

    ... head, sports injuries, and even listening to loud music can cause ear damage, which can affect hearing ... But for kids and teens, listening to loud music (at concerts, in the car, through headphones) is ...

  14. Ear infection - chronic

    MedlinePlus

    ... Paralysis of the face Inflammation around the brain ( epidural abscess ) or in the brain Damage to the part ... pubmed/23818543 . Read More Cholesteatoma Ear infection - acute Epidural abscess Mastoiditis Otitis Review Date 4/21/2015 Updated ...

  15. Ear tube insertion

    MedlinePlus

    ... Ear tube surgery - what to ask your doctor Review Date 8/5/2015 Updated by: Sumana Jothi ... Otolaryngology, NCHCS VA, SFVA, San Francisco, CA. Internal review and update on 09/01/2016 by David ...

  16. Ear infection - acute

    MedlinePlus

    ... more than 6 children) Changes in altitude or climate Cold climate Exposure to smoke Family history of ear infections ... or fewer children. This can reduce your child's chances of getting a cold or other infection, and ...

  17. How to Use Ear Drops

    MedlinePlus

    ... the dropper tip down. Tilt the affected ear up or lie on your side. Pull the ear backward and upward (or if giving ... into the ear canal. Keep your ear tilted up for a few minutes or insert a soft ... from the Michigan Pharmacists Association's Patient Education Program.

  18. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  19. Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.; Swafford, L. C.

    2003-12-01

    Devana Chasma is a rift system on Venus that formed due to extensional stresses from the Beta Regio and Phoebe Regio mantle plumes. Devana has often been compared to the East African Rift system on Earth. Here, we focus on the portion of Devana in the lowland plains between Beta and Phoebe, 20 North - 4 South, a distance of 2500 km. Over this region, Devana is typically 150 to 250 km wide. Recent gravity modeling (Kiefer and Peterson, Geophys. Res. Lett., Jan. 2003) demonstrated that most of this segment of the rift is presently underlain by hot, low density mantle material. The rift has a 600 km lateral offset near 8 North latitude, where the gravity results show no evidence for hot mantle. This lead Kiefer and Peterson to propose that Devana is actually two propagating rifts, one propagating southward from Beta Regio and the other propagating northward from Phoebe Regio. As a test of this hypothesis, we have examined the detailed structural geology of this section of the rift using topographic profiles and radar imagery from the Magellan mission. We constructed a series of topographic transects spaced at approximately 50 km intervals along the rift and measured the average flank height and the maximum rift depth. We measured the total vertical offset along faulted surfaces and converted this to horizontal extension assuming a characteristic normal fault dip of 60 degrees. Plots of these quantities as a function of distance along the rift reveals several characteristic zones. Average flank height has maximum values near the edges of Beta Regio (3.5 km) and Phoebe Regio (2.75 km) and decreases rapidly as the rift crosses the intervening plains. This is consistent with the rift forming due to thermal anomalies centered at Beta and Phoebe. The virtual absence of elevated rift flanks in the offset region near 8 North is consistent with the absence of hot mantle in this region, as inferred from the gravity model. The horizontal extension decreases strongly with

  20. Inner ear disturbances related to middle ear inflammation

    PubMed Central

    Sone, Michihiko

    2017-01-01

    ABSTRACT The inner and middle ear are connected mainly through round and oval windows, and inflammation in the middle ear cavity can spread into the inner ear, which might induce a disturbance. In cases with intractable otitis media, attention should also be paid to symptoms related to the inner ear. In this paper, middle ear inflammation and related inner ear disturbances are reviewed with a focus on representative middle ear diseases (such as acute otitis media, chronic otitis media, otitis media with anti-neutrophil cytoplasmic antibody-associated vasculitis, eosinophilic otitis media, cholesteatoma with labyrinthine fistula, and reflux-related otitis media). Their clinical concerns are then discussed with reference to experimental studies. In these diseases, early diagnosis and adequate treatment are required to manage not only middle ear but also inner ear conditions. PMID:28303055

  1. Propagating rifts on midocean ridges

    NASA Astrophysics Data System (ADS)

    Hey, Richard; Duennebier, Frederick K.; Morgan, W. Jason

    1980-07-01

    Spreading center jumps identified west of the Galapagos Islands near 95°W occur in a pattern consistent with the propagating rift hypothesis. A new rift is gradually breaking through the Cocos plate. Each successive jump is slightly longer than the preceding jump. The new spreading center grows at a new azimuth toward the west as the old one dies. The jumps are a manifestation of rift propagation. We extend the analysis of propagating rifts to the case of continuous propagation and predict patterns of magnetic anomalies and bathymetry consistent with the observed patterns. In particular, we correctly predict the trends of fossil spreading centers and V patterns of magnetic anomaly offsets required by the propagating rift hypothesis. Similar V patterns have been observed on many other spreading centers and have been interpreted in various ways. The propagating rift hypothesis appears to offer a simple explanation, consistent with rigid plate tectonics, for each of these patterns. This hypothesis may also have important implications for continental rifting.

  2. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  3. Massive and prolonged deep carbon emissions associated with continental rifting

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  4. Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: Implications for Nubia-Somalia kinematics

    NASA Astrophysics Data System (ADS)

    Erbello, Asfaw; Corti, Giacomo; Agostini, Andrea; Sani, Federico; Kidane, Tesfaye; Buccianti, Antonella

    2016-12-01

    In this contribution, analogue modeling is used to provide new insights into the Nubia-Somalia kinematics responsible for development and evolution of the Main Ethiopian Rift (MER), at the northern termination of the East African Rift system. In particular, we performed new crustal-scale, brittle models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The models reproduced the overall geometry of the ∼600 km-long MER with its along-strike variation in orientation to test different hypothesis proposed to explain rift evolution. Analysis of model results in terms of statistics of fault length and orientation, as well as deformation architecture, and its comparison with the MER suggest that models of two-phase rifting (with a first phase of NW-SE extension followed by E-W rifting) or constant NW-SE extension, as well as models of constant ENE-WSW rifting are not able to reproduce the fault architecture observed in nature. Model results suggest instead that the rift has likely developed under a constant, post-11 Ma extension oriented roughly ESE-WNW (N97.5°E), consistent with recent plate kinematics models.

  5. Rift Valley fever.

    PubMed

    Paweska, J T

    2015-08-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease affecting domestic and wild ruminants, camels and humans. The causative agent of RVF, the RVF virus (RVFV), has the capacity to cause large and severe outbreaks in animal and human populations and to cross significant natural geographic barriers. Rift Valley fever is usually inapparent in non-pregnant adult animals, but pregnant animals and newborns can be severely affected; outbreaks are characterised by a sudden onset of abortions and high neonatal mortality. The majority of human infections are subclinical or associated with moderate to severe, non-fatal, febrile illness, but some patients may develop a haemorrhagic syndrome and/or ocular and neurological lesions. In both animals and humans, the primary site of RVFV replication and tissue pathology is the liver. Outbreaks of RVF are associated with persistent high rainfalls leading to massive flooding and the emergence of large numbers of competent mosquito vectors that transmit the virus to a wide range of susceptible vertebrate species. Outbreaks of RVF have devastating economic effects on countries for which animal trade constitutes the main source of national revenue. The propensity of the virus to spread into new territories and re-emerge in traditionally endemic regions, where it causes large outbreaks in human and animal populations, presents a formidable challenge for public and veterinary health authorities. The presence of competent mosquito vectors in RVF-free countries, the wide range of mammals susceptible to the virus, altering land use, the global changes in climate, and increased animal trade and travel are some of the factors which might contribute to international spread of RVF.

  6. [Inner Ear Hearing Loss].

    PubMed

    Hesse, G

    2016-06-01

    Hearing loss is one of the most dominant handicaps in modern societies, which additionally very often is not realized or not admitted. About one quarter of the general population suffers from inner ear hearing loss and is therefore restricted in communicational skills. Demographic factors like increasing age play an important role as well as environmental influences and an increasing sound and noise exposure especially in leisure activities. Thus borders between a "classical" presbyacusis - if it ever existed - and envirionmentally induced hearing loss disappear. Today restrictions in hearing ability develop earlier in age but at the same time they are detected and diagnosed earlier. This paper can eventually enlighten the wide field of inner ear hearing loss only fragmentarily; therefore mainly new research, findings and developments are reviewed. The first part discusses new aspects of diagnostics of inner ear hearing loss and different etiologies.

  7. Listening to the Ear

    NASA Astrophysics Data System (ADS)

    Shera, Christopher Alan

    Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics--termed "tapering symmetry" after its geometric interpretation in simple models--that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus -frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical

  8. Listening to the ear

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.

    Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics-termed "tapering symmetry" after its geometric interpretation in simple models-that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical

  9. Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data

    NASA Astrophysics Data System (ADS)

    Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.

    2014-12-01

    Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and

  10. No thermal anomalies in the mantle transition zone beneath an incipient continental rift: evidence from the first receiver function study across the Okavango Rift Zone, Botswana

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, K. H.; Moidaki, M.; Reed, C. A.; Gao, S. S.

    2015-08-01

    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broad-band seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic P- and S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are

  11. Fusion of the ear bones

    MedlinePlus

    ... Images Ear anatomy Medical findings based on ear anatomy References House JW, Cunningham CD. Otosclerosis. In: Flint PW, Haughey BH, Lund V, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  12. "Swimmer's Ear" (Otitis Externa) Prevention

    MedlinePlus

    ... Work: Healthy Swimming Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... painful. How is swimmer's ear spread at recreational water venues? Swimmer’s ear can occur when water stays ...

  13. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  14. Ear Injuries (For Parents)

    MedlinePlus

    ... or it can be bought separately). Wear ear protection at concerts, especially when sitting near the stage or speakers (they'll still be able to hear with earplugs — it just won't be as deafening), mowing the lawn or using machinery (like in metal or wood shop at school), or playing a loud instrument ( ...

  15. The red ear syndrome

    PubMed Central

    2013-01-01

    Red Ear Syndrome (RES) is a very rare disorder, with approximately 100 published cases in the medical literature. Red ear (RE) episodes are characterised by unilateral or bilateral attacks of paroxysmal burning sensations and reddening of the external ear. The duration of these episodes ranges from a few seconds to several hours. The attacks occur with a frequency ranging from several a day to a few per year. Episodes can occur spontaneously or be triggered, most frequently by rubbing or touching the ear, heat or cold, chewing, brushing of the hair, neck movements or exertion. Early-onset idiopathic RES seems to be associated with migraine, whereas late-onset idiopathic forms have been reported in association with trigeminal autonomic cephalalgias (TACs). Secondary forms of RES occur with upper cervical spine disorders or temporo-mandibular joint dysfunction. RES is regarded refractory to medical treatments, although some migraine preventative treatments have shown moderate benefit mainly in patients with migraine-related attacks. The pathophysiology of RES is still unclear but several hypotheses involving peripheral or central nervous system mechanisms have been proposed. PMID:24093332

  16. From Ear to Brain

    ERIC Educational Resources Information Center

    Kimura, Doreen

    2011-01-01

    In this paper Doreen Kimura gives a personal history of the "right-ear effect" in dichotic listening. The focus is on the early ground-breaking papers, describing how she did the first dichotic listening studies relating the effects to brain asymmetry. The paper also gives a description of the visual half-field technique for lateralized stimulus…

  17. Insights into rifting from shear wave splitting and receiver functions: an example from Ethiopia

    NASA Astrophysics Data System (ADS)

    Ayele, Atalay; Stuart, Graham; Kendall, J.-Michael

    2004-04-01

    Seismic anisotropy beneath broad-band stations in the vicinity of the East African rift are compared with those on stable cratonic parts of Africa and Arabia. Such measurements offer potential constraints on rift processes, absolute plate motions (APM) and tectonic structure. New SKS shear wave splitting parameters are analysed beneath the broad-band stations of FURI and AAE (Ethiopia), BGCA (Central African Republic) and RAYN (Saudi Arabia). The number of events considered at the four stations varies from 13 to 32 and provides good azimuthal coverage. Stations on or near the rift show the polarization of the fast shear wave (φ) aligned parallel to the rift axis. The magnitude of the splitting delay (δt) increases northward along the East African rift. Previously published measurements in Kenya show the smallest splitting value (1.0 s), whilst the Djibouti station, ATD, shows the largest splitting (1.6 s). The Ethiopian results (δt= 1.38 + 0.03 s, φ= 36°+ 1) show constancy in δt and φ with respect to backazimuth, thus, suggesting a single anisotropic layer beneath the stations. There is no observed correlation of φ with APM direction. Less splitting (δt) is observed beneath cratonic parts of Africa. BGCA in central Africa shows splitting parallel to the inferred direction of transpression, not the APM direction. Receiver-function analysis at FURI and AAE supports evidence from refraction experiments of thick crust (ca 40 km) in the region of continental rifting, however, the analysis shows a deeper interface at a depth of 90 km, also. This interface may mark the base of the lithosphere in this region. One interpretation of the splitting results is that the anisotropy at the Ethiopian stations is the result of aligned melt in this upper 90 km of lithosphere. A < 1 per cent volume fraction of melt aligned in thin (aspect-ratio <0.03) vertical ellipsoidal pockets generates sufficient splitting to explain the data. Higher splitting magnitudes in the north

  18. Taking Care of Your Ears

    MedlinePlus

    ... it to get better by itself. Tips for Swimmers Sometimes, swimming can lead to a case of swimmer's ear . That's when your outer ear gets infected, ... cause an infection. If you think you have swimmer's ear, your mom or dad needs to call ...

  19. Ear Infections and Language Development.

    ERIC Educational Resources Information Center

    Roberts, Joanne E.; Zeisel, Susan A.

    Ear infections in infants and preschoolers can cause mild or moderate temporary hearing loss, which may in turn affect a child's ability to understand and learn language. Noting that providing children with proper medical treatment for ear infections or middle ear fluid is important in preventing possible problems with language development, this…

  20. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  1. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  2. Crustal and sub-continental lithospheric mantle decoupling beneath the Malawi Rift

    NASA Astrophysics Data System (ADS)

    Njinju, Emmanuel Atem

    We analyzed satellite gravity and aeromagnetic data using the two-dimensional (2D) power-density spectrum technique to investigate the lithospheric and thermal structure beneath the magma-starved Malawi Rift, which forms the southern extension of the Western Branch of the East African Rift System. We observed: (1) lack of consistent pattern of crustal thinning and elevated heat flow along the surface expression of the rift. Beneath the Rungwe Volcanic Province (RVP) in the north, the crustal thickness ranges between 40 and 45 km and varies between 35 and 40 km along the entire length of the rift. (2) shallow lithosphere-asthenosphere boundary (LAB) elevated to ˜64 km beneath the entire length of the rift and deeper than 100 km beneath the surrounding Precambrian terranes reaching in places ˜124 km. (3) localized zones of high heat flow (70-75 mWm-2) beneath the RVP, and the central and southern parts of the rift. The central and southern thermal anomalies are due to the presence of uranium deposits in the Karoo sedimentary rocks. We interpret the crustal thickness heterogeneity to have been inherited from pre-existing lithospheric stretching, while strain during the extension of the Malawi Rift is preferentially localized in the sub-continental lithospheric mantle (SCLM). Our interpretation is supported by 2D forward modeling of the gravity data showing uniform stretching of the SCLM by a factor of 1.5 to 1.8 beneath the entire length of the rift. Our results indicate decoupling of the crust from the SCLM during the early stages of the development of the Malawi Rift.

  3. The contralateral ear in cholesteatoma.

    PubMed

    da Costa, Sady Selaimen; Teixeira, Adriane Ribeiro; Rosito, Letícia Petersen Schmidt

    2016-07-01

    Middle ear cholesteatoma has been extensively studied. Theories of cholesteatoma pathogenesis involving previous tympanic membrane retraction are the most widely accepted, but the contralateral ear in patients with cholesteatoma remains unstudied. This study aimed to investigate the contralateral ear in patients with cholesteatoma, and to determine whether the characteristics of it differ according to patient age and cholesteatoma growth patterns. This study was cross sectional. We evaluated 356 patients with middle ear cholesteatoma in at least one ear, and no history of surgery, between August 2000 and March 2013. Otoendoscopy was conducted on both the affected and the contralateral ear. They were classified as normal, tympanic membrane perforation, moderate to severe tympanic membrane retraction and cholesteatoma. The mean age of the patients was 32.77 years, and 53.1 % of the cohort were female. Only 34.8 % of the contralateral ears were normal. The most common abnormality was moderate to severe tympanic membrane retraction (41.6 %). Cholesteatoma was identified in 16 %. Children exhibited a greater frequency of tympanic membrane retractions, whereas adults exhibited a greater frequency of cholesteatoma. All of the contralateral ears in the anterior epitympanic group were normal, but otherwise there were no differences in the contralateral ear when we compared the cholesteatoma growth patterns. We conclude that patients diagnosed with acquired cholesteatoma of one ear are significantly more likely to exhibit abnormalities of the contralateral ear.

  4. Drug delivery to the ear.

    PubMed

    Hoskison, E; Daniel, M; Al-Zahid, S; Shakesheff, K M; Bayston, R; Birchall, J P

    2013-01-01

    Drug delivery to the ear is used to treat conditions of the middle and inner ear such as acute and chronic otitis media, Ménière's disease, sensorineural hearing loss and tinnitus. Drugs used include antibiotics, antifungals, steroids, local anesthetics and neuroprotective agents. A literature review was conducted searching Medline (1966-2012), Embase (1988-2012), the Cochrane Library and Ovid (1966-2012), using search terms 'drug delivery', 'middle ear', 'inner ear' and 'transtympanic'. There are numerous methods of drug delivery to the middle ear, which can be categorized as topical, systemic (intravenous), transtympanic and via the Eustachian tube. Localized treatments to the ear have the advantages of targeted drug delivery allowing higher therapeutic doses and minimizing systemic side effects. The ideal scenario would be a carrier system that could cross the intact tympanic membrane loaded with drugs or biochemical agents for the treatment of middle and inner ear conditions.

  5. The geometry of propagating rifts

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan

    1986-03-01

    The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.

  6. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ≈ N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  7. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  8. Geophysical studies of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.

    1991-12-01

    The West Antarctic rift system extends over a 3000 × 750 km, largely ice covered area from the Ross Sea to the base of the Antarctic Peninsula, comparable in area to the Basin and Range and the East African rift system. A spectacular rift shoulder scarp along which peaks reach 4-5 km maximum elevation marks one flank and extends from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. The rift shoulder has maximum present physiographic relief of 5 km in the Ross Embayment and 7 km in the Ellsworth Mountains-Byrd Subglacial Basin area. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been interpreted as rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. The rift system is characterized by bimodal alkaline volcanic rocks ranging from at least Oligocene to the present. These are exposed asymmetrically along the rift flanks and at the south end of the Antarctic Peninsula. The trend of the Jurassic tholeiites (Ferrar dolerites, Kirkpatric basalts) marking the Jurassic Transantarctic rift is coincident with exposures of the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed continuously (including the Dufek intrusion) along the lower- elevation (1-2 km) section of Transantarctic Mountains to the Weddell Sea. Widely spaced aeromagnetic profiles in West Antarctica indicate the absence of Cenozoic volcanic rocks in the ice covered part of the Whitmore-Ellsworth-Mountain block and suggest their widespread occurrence beneath the western part of the ice sheet overlying the Byrd Subglacial Basin. A German Federal Institute for Geosciences and Natural Resources (BGR)-U.S. Geological Survey (USGS) aeromagnetic

  9. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  10. Multiple episodes of rifting in Central and East Africa: A re-evaluation of gravity data

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Ibrahim, A.

    1994-12-01

    A compilation of new and existing gravity data, as well as geophysical and geological data, is used to assess the cumulative effects of multiple rifting episodes on crustal and upper mantle density structures beneath the Uganda-Kenya-Ethiopia-Sudan border region. This compilation includes new gravity and geological data collected in 1990 in south-western Ethiopia. Variations in the trends and amplitudes of Bouguer gravity anomalies reveal three overlapping rift systems: Mesozoic, Paleogene and Miocene-Recent. Each of these rift systems is a number of 40 100 km long sedimentary basins, and each system is approximately 1000 km long. The Bouguer anomaly patterns indicate that the Ethiopian and East African plateaux and corresponding gravity anomalies are discrete tectonic features. Models of structural and gravity profiles of two basins (Omo and Chew Bahir basins) suggest that pre-Oligocene (Cretaceous?) strata underlie 3 km or more of Neogene-Recent strata within the northern Kenya rift, and that more than 2 km of Neogene-Recent strata underlie parts of the southern Main Ethiopian rift. The superposition of perhaps three rifting episodes in the Lake Turkana (Omo) region has led to 90% crustal thinning (β ≈ 2).

  11. Recent seismic activity of the Kivu Province, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Zana, N.; Kamba, M.; Katsongo, S.; Janssen, Th.

    1989-11-01

    The Kivu Province is located at the junction between the well-defined Ruzizi Valley to the south and the Lake Amin Trough to the north. In this zone, the Rift Valley is characterized by the highest uplift and by complex dislocations of the crust, accompanied by the most intensive volcanism of the East African Rift System. In this paper, we show the recent state of the seismic activity of this zone in connection with the seismic activity generated by the volcanoes Nyiragongo and Nyamuragira. The pattern of cumulative energy release by these volcanoes shows a steplike increase that is believed to be a precursor of volcanic eruptions.

  12. Venus: Geology of Beta Regio rift system

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  13. Insights into rifting from SKS splitting and receiver functions: examples from Ethiopia.

    NASA Astrophysics Data System (ADS)

    Ayele, A.; Kendall, M.; Stuart, G.

    2001-12-01

    Rifting in northern Ethiopia represents a transition from continental- to incipient oceanic- rifting. In an effort to obtain a better understanding of the role of asthenospheric dynamics in this transition, we re-analyse and enhance SKS splitting at stations distributed along the E.African Rift. New observations of shear-wave splitting and receiver functions are investigated at two Ethiopian stations near Addis Ababa, one broad-band (FURI) and the other short-period (AAE) close to the rift. Stations on or near the E. African Rift show the polarisation of the fast shear-wave (φ ) aligned parallel to the rift axis. However, the magnitude of the splitting increases northward and may be explained by the higher melt production observed in the Ethiopian part of the rift. Stations in Kenya show smallest splitting values ( ~ 1s.), whilst the Djibouti station, ATD, shows the largest splitting (1.6s.). The Ethiopian results show a constancy in δ t and φ with respect to backazimuth, thus suggesting a single anisotropic layer beneath the stations. There is no observed correlation in φ with APM direction. Shear-wave splitting in local events recorded at FURI also reveal anisotropy in the crust with a similar orientation to the SKS results. Receiver function analysis at FURI and AAE supports evidence from refraction experiments of thick crust ( ~38km) in the region of continental rifting. There is also evidence for a deeper interface, ~60km below Moho, in the broadband FURI data, but not in the short-period AAE data, thus suggesting this may not be a sharp interface. This interface may mark the base of the lithosphere in this region. Azimuthal asymmetry in the receiver functions suggests the layer is dipping away from the rift and anisotropy may be affecting the results. One interpretation is that the anisotropy is due to aligned melt in upper c.90km of lithosphere. A <1% volume fraction of melt aligned in vertical ellipsoidal pockets generates sufficient splitting to

  14. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  15. Ear syringing: minimising the risks.

    PubMed

    Bird, Sara

    2008-05-01

    The patient, 61 years of age, saw the general practitioner for a repeat prescription for her blood pressure medication. During the consultation, the patient mentioned that she had some discomfort in her left ear. The GP examined the patient's ears and noted that both external auditory canals were blocked by wax. He recommended that the patient have her ears syringed and arranged for the practice nurse to perform the procedure. The GP did not see the patient again.

  16. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  17. Albertine Rift, Uganda: Deformation-Sedimentation-Erosion relationships

    NASA Astrophysics Data System (ADS)

    Simon, Brendan; Guillocheau, François; Robin, Cécile; Dauteuil, Olivier; Nalpas, Thierry; Bourges, Philippe; Bez, Martine; Lays, Philippe

    2014-05-01

    The Albertine Rift is the northern part of the western branch of the East African Rift that runs over a distance of around 2000 km from Lake Albert in the north to Lake Malawi in the south. Lake Albert Basin is assumed to be a classical half-graben initiated around 12 Ma and oriented NNW-SSW, with a major northwesterly bounding fault - the Bunia fault - located along the western Congolese shoreline (Ebinger, 1989; Pickford & al., 1993). The aim of this study is to understand the relationships between deformation, erosion, and sedimentation of the rift through time by restoring (1) the timing and amplitude of vertical movements (subsidence, uplift), (2) the geometry and paleo-environmental evolution (including climate) of the sedimentary infilling and (3) the geomorphological evolution of the surrounding area and associated erosion budget. Seismic data and outcrops studies suggest a much more complex history than previously described. (1) The age model, mainly based on mammal fossils (Pickford et al., 1993; Van Damme and Pickford, 2003), is debated, but the early stage of the rift is probably Middle Miocene. (2) No half-graben geometry has been characterized: the infilling consists of juxtaposed tabular compartments with sharp thicknesses variations along bounding faults, in response of either low rate extensional or combined strike-slip/extensional movements. The following onshore-offshore evolution is proposed: - Middle Miocene (~ 13 Ma) to Late Miocene (?): rifting 1 - differential subsidence along N60° faults - major deepening from fluvio-deltaic to deep lacustrine environments (maximum flooding at 8 Ma) - uplift, erosion and reworking of weathered profiles - first generation of pediments. - Late Miocene (?) to Late Pliocene (~ 3 Ma): quiescence phase - homogenous subsidence - lacustrine clays interbedded with sandy flood-lobes - uplift, erosion and reworking of ferruginous laterite (iron duricrusts) - second generation of pediments. - Late Pliocene (~ 3Ma) to

  18. Radial Anisotropy beneath the Main Ethiopian Rift and Afar Depression

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Jin, G.; Shillington, D. J.

    2014-12-01

    The Main Ethiopian Rift (MER) and Afar uniquely capture the final stages of transition from continental rifting in the broader East African Rift System to incipient seafloor spreading above a mantle hotspot. Studies of the region increasingly point to magmatism as a controlling factor on continental extension. However, the character and depth extent of these melt products remain contentious. Radial anisotropy derived from surface waves provides a unique diagnostic constraint on the presence of oriented melt pockets versus broader oriented anisotropic fabrics. This study investigates the thermal and radially anisotropic structure beneath the broader MER and Afar to resolve the magmatic character of the region and ultimately to understand the role of magmatism in present day rift development. We utilize 104 stations from 4 collocated arrays in the MER/Afar region to constrain radial anisotropy within the upper mantle via the inversion of Love- and Rayleigh-wave observations between 25 and 100 s period. We employ a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information. The multi-channel phase observations are inverted for dynamic phase velocity across the array, which are then corrected for focusing and multipathing using the amplitude observations via Helmholtz tomography. We jointly invert Love- and Rayleigh-wave structural phase velocity measurements employing crustal constraints from co-located active source experiments to obtain estimates of Vsv and Vsh between 50 - 170 km depth. Preliminary results readily reveal the distinct shear velocity structure beneath the MER and Afar. Within the MER, shear velocity structure suggests pronounced low velocities accompanied by strong anisotropy between 80 - 140 km depth beneath the western Ethiopian plateau and rift valley. Within Afar, shear velocity structure is more varied with the slowest velocities found at shallow depths (less than 70 km depth), accompanied by weak

  19. Interaction between an incipient rift and a cratonic lithosphere : The North Tanzania Rift seen from some seismic tools

    NASA Astrophysics Data System (ADS)

    Gautier, Stéphanie; Plasman, Matthieu; Tiberi, Christel; Lopez, Marie; Peyrat, Sophie; Perrot, Julie; Albaric, Julie; Déverchère, Jacques; Deschamps, Anne; Ebinger, Cindy; Roecker, Steven; Mulibo, Gabriel; Wambura, Richard Ferdinand; Muzuka, Alfred; Msabi, Michael; Gama, Remigius

    2016-04-01

    The North Tanzania part of the East African Rift is the place of an incipient break up of the lithosphere. This continental rifting happens on the edge of the Tanzanian craton, and their interaction leads to major changes in the surface deformation. The evolution of the rift and its morphology is strongly linked to the inherited structures, particularly the Proterozoic belts and the craton itself. It is thus of prime interest to image the structure of the craton edges to fully understand its impact on the localisation of the current deformation at the surface. Since 2007 different multidisciplinary projects have taken place in this area to address this question. We present here a work based on a collaborative work between French, American and Tanzanian institutes that started in 2013. About 35 seismological stations were installed for 2 years in the Natron lake region, and 10 short period instruments were added for 9 months in the Manyara area to record local and telesismic events. We have analysed more than a hundred teleseismic events to compute the receiver function, and we finally obtain a Moho map of the region as well as azimuthal distribution of converted phases. The stations located on the edge of the rift and near the craton present a continuous evolution of their crustal pattern in the RF signal. Especially, we identify a clear phase at about 7s for those stations that corresponds to an interface separating a normal upper mantle from a very slow mantle at about 70 km depth. We first model those receiver functions to perfectly fit the signal, and more precisely the transverse component, which shows a strong and coherent pattern. Second, the local seismic network we have installed for 9 months in Manyara region advantageously completed the 2007 SEISMOTANZ network. In this part of the rift the seismicity is deep (20-30 km) and clustered without any magmatism record at the surface, opposite to Natron area. We could then relocalize the deep seismicity observed

  20. The Thaumasia "rift", Mars - is it a rift?

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Kronberg, P.

    2003-04-01

    We describe the morphology of a large and complex graben structure in western Thaumasia which was often ascribed to rifting by previous authors (the Thaumasia "rift" or TR). We consider possible fault geometries, determine extension, and discuss shortly possible models for its origin. The TR is characterized by a strong (half)graben asymmetry. The master fault system changes from the western border in the northern part to the eastern border in the southern part (at ˜21^oS). Several profiles across the TR display features that might indicate a listric master fault, including an overall halfgraben geometry, tilted blocks, and a curvature of the hanging wall which is characteristic of a rollover. For a listric fault, the depth D to a detachment can be determined from the surficial fault dip (α), the tilt of the graben floor (θ), and the vertical offset (d). We measure a scarp height d of ˜2000 m and floor tilts θ between 0.9^o and 2.7^o. For α = 60^o, we obtain values of D between ˜33 km and ˜67 km (θ = 2.0^o and 1.0^o). Interestingly, these values correspond very well with recent estimations of the thickness of the elastic lithosphere T_e in S-Tharsis, as given by Zuber et al. (2000): Valles Marineris ˜60 km, Solis Planum ˜35 km. A listric W-dipping master fault in the middle and southern part of the TR might indicate gravitational gliding of an unstable part of the outward verging fold-and-thrust plateau margin towards W, i.e., toward the foreland of Thaumasia. However, slip along planar faults can also produce tilted graben floors and hanging wall flexure, so the observed morphology does not allow any firm statement about the fault geometry. Extension (assuming planar fault planes) was determined using the vertical displacement at faults. In the N, most of the extension occurred along a few major faults. In the S, it has been distributed among many smaller faults. Extension is 0.5 to 4.5 km (strain 1 to 3%). This is much less than 10 km, as previously

  1. Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory...

  2. Benign ear cyst or tumor

    MedlinePlus

    ... Bony tumor of the ear canal Images Ear anatomy References Nicolai P, Castelnuovo P. Benign tumors of the sinonasal tract. In: Flint PW, Haughey BH, Lund V, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. Philadelphia, PA: Elsevier Saunders; ...

  3. Otoscopic exam of the ear (image)

    MedlinePlus

    ... intrument which is used to look into the ear canal. The ear speculum (a cone-shaped viewing piece of the otoscope) is slowly inserted into the ear canal while looking into the otoscope. The speculum ...

  4. Wax blockage in the ear (image)

    MedlinePlus

    ... hair follicles and glands that produce a waxy oil called cerumen. Sometimes the glands produce more wax than can be easily excreted out the ear. This extra wax may harden within the ear canal and block the ear.

  5. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  6. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  7. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  8. Factors leading to chronic middle ear disease.

    PubMed

    Canty, A A; Prestwood, U; Dugdale, A E; Lewis, A N

    1975-05-10

    In an Australian Aboriginal community, 65% of all people examined had clinical evidence of pathology in the ear drum or middle ear, but active ear disease was found mainly in children. In most people, both ears showed similar clinical changes. Clinical nutritional status and hygienic factors did not correlate with the presence of ear disease. Some families had significantly more ear disease than did others, suggesting that there is some as yet unidentified familial factor.

  9. GPS constraints on broad scale extension in the Ethiopian Highlands and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Birhanu, Yelebe; Bendick, Rebecca; Fisseha, Shimeles; Lewi, Elias; Floyd, Michael; King, Robert; Reilinger, Robert

    2016-07-01

    Measurements from GPS sites spanning the Ethiopian Highlands, Main Ethiopian Rift, and Somali Platform in Ethiopia and Eritrea show that present-day finite strain rates throughout NE Africa can be approximated at the continent scale by opening on the MER. Most sites in the Ethiopian Highlands are consistent with the motion of the Nubian plate at the level of 1 mm/yr with 95% confidence. However, sites at least as far as 60 km west of the rift show higher velocities relative to the stable Nubian frame of 1-2 mm/yr, requiring a combination of localized and distributed deformation to accommodate the African extensional domain. Off-rift velocities are consistent with ongoing strain related to either high gravitational potential energy or intrusive magmatism away from midrift magmatic segments either on the western rift margin or within the Ethiopian Highlands, especially when combined with likely rheological differences between the Ethiopian Rift and Highlands. Velocities from the Somali Platform are less well determined with uncertainties and residuals from a Somali frame definition at the level of 2-3 mm/yr but without spatially correlated residuals.

  10. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  11. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  12. Rift processes and crustal structure of the Amundsen Sea Embayment, West Antarctica, from 3D potential field modelling

    NASA Astrophysics Data System (ADS)

    Kalberg, Thomas; Gohl, Karsten; Eagles, Graeme; Spiegel, Cornelia

    2015-12-01

    The Amundsen Sea Embayment of West Antarctica is of particular interest as it provides critical geological boundary conditions in better understanding the dynamic behavior of the West Antarctic Ice Sheet, which is undergoing rapid ice loss in the Amundsen Sea sector. One of the highly debated hypothesis is whether this region has been affected by the West Antarctic Rift System, which is one of the largest in the world and the dominating tectonic feature in West Antarctica. Previous geophysical studies suggested an eastward continuation of this rift system into the Amundsen Sea Embayment. This geophysical study of the Amundsen Sea Embayment presents a compilation of data collected during two RV Polarstern expeditions in the Amundsen Sea Embayment of West Antarctica in 2006 and 2010. Bathymetry and satellite-derived gravity data of the Amundsen Sea Embayment complete the dataset. Our 3-D gravity and magnetic models of the lithospheric architecture and development of this Pacific margin improve previous interpretations from 2-D models of the region. The crust-mantle boundary beneath the continental rise and shelf is between 14 and 29 km deep. The imaged basement structure can be related to rift basins within the Amundsen Sea Embayment, some of which can be interpreted as products of the Cretaceous rift and break-up phase and some as products of later propagation of the West Antarctic Rift System into the region. An estimate of the flexural rigidity of the lithosphere reveals a thin elastic thickness in the eastern embayment which increases towards the west. The results are comparable to estimates in other rift systems such as the Basin and Range province or the East African Rift. Based on these results, we infer an arm of the West Antarctic Rift System is superposed on a distributed Cretaceous rift province in the Amundsen Sea Embayment. Finally, the embayment was affected by magmatism from discrete sources along the Pacific margin of West Antarctica in the Cenozoic.

  13. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  14. Outcomes in Endoscopic Ear Surgery.

    PubMed

    Kiringoda, Ruwan; Kozin, Elliott D; Lee, Daniel J

    2016-10-01

    Endoscopic ear surgery (EES) provides several advantages compared with traditional binocular microscopy, including a wide-field view, improved resolution with high magnification, and visual access to hidden corridors of the middle ear. Although binocular microscopic-assisted surgical techniques remain the gold standard for most otologists, EES is slowly emerging as a viable alternative for performing otologic surgery at several centers in the United States and abroad. In this review, we evaluate the current body of literature regarding EES outcomes, summarize our EES outcomes at the Massachusetts Eye and Ear Infirmary, and compare these results with data for microscopic-assisted otologic surgery.

  15. Middle Ear Infections (For Parents)

    MedlinePlus

    ... up of invisible waves of energy, causes these vibrations. Every time you hear a sound, the various ... When the eardrum vibrates, the ossicles amplify these vibrations and carry them to the inner ear. The ...

  16. Deformity of Ears and Kidneys

    PubMed Central

    Taylor, W. C.

    1965-01-01

    Ten children with gross deformity of the external ear were observed. In six the facial bones were underdeveloped on the same side as the deformed ear. In all six there was a congenital abnormality of the kidney or upper urinary tract, usually on the same side as the deformed ear. In addition there were usually other associated congenital defects in each case. In the remaining four children the facial bones appeared normal, and pyelography showed no abnormality of the urinary tract. In these four children there were no other associated defects. These observations emphasize the importance of investigating the urinary tract in children with gross deformity of the external ear, especially where there is an associated underdevelopment of the facial bones. PMID:14317453

  17. Ototoxicity (Ear Poisoning) (For Parents)

    MedlinePlus

    ... part of the ear responsible for receiving/sending sounds and controlling balance. The degree of damage depends ... have trouble hearing certain things, from high-pitched sounds to talking if there's background noise. Or they ...

  18. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    MedlinePlus

    ... previously covered by swimsuit > Pus-filled blisters around hair follicles Swimmer’s Ear (Otitis externa) > Pain when infected ear ... ear. You can find this product at your drug store. > Avoid putting objects in the ear (for ... levels drop, so testing your pool or hot tub’s disinfectant and pH ...

  19. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  20. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  1. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  2. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  3. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  4. Approaches to Inflight Ear Oximetry.

    DTIC Science & Technology

    1980-10-01

    of arterial oxygen saturation. For centri- fuge experiments the floe,! ett-Packard ear oximeter, Model 47201A, has been successfully used both at...These difficulties are perhaps even more significant with respect to inflight experimental use. The difficulties are: 1. The bloodless ear is not truly...available (9), and a number of papers on both the clini- cal use (10-17) and the experimental use (1, 2, 18) of this equipment have been published since its

  5. The origin of along-rift variations in faulting and magmatism in the Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Keir, Derek; Bastow, Ian D.; Corti, Giacomo; Mazzarini, Francesco; Rooney, Tyrone O.

    2015-03-01

    The geological record at rifts and margins worldwide often reveals considerable along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Main Ethiopian Rift (MER) in East Africa provides an excellent opportunity to address this dichotomy: it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of volcanic cone density and rift obliquity along strike in the MER. By synthesizing these new data in light of existing geophysical, geochemical, and petrological constraints on magma generation and emplacement, we are able to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rifted margin. The timing of rift sector development, the three-dimensional focusing of melt, and the ponding of plume material where the rift dramatically narrows each influence igneous intrusion and volcanism along the MER. However, rifting obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  6. Rift Valley Fever in Namibia, 2010

    PubMed Central

    Monaco, Federica; Pinoni, Chiara; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-01-01

    During May–July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009–2010. PMID:24274469

  7. Rio Grande rift: problems and perspectives

    SciTech Connect

    Baldridge, W.S.; Olsen, K.H.; Callender, J.F.

    1984-01-01

    Topics and ideas addressed include: (1) the regional extent of the Rio Grande rift; (2) the structure of the crust and upper mantle; (3) whether the evidence for an axile dike in the lower crust is compelling; (4) the nature of faulting and extension in the crust; and (5) the structural and magmatic development of the rift. 88 references, 5 figures.

  8. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  9. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  10. Detection and Response for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  11. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: a review

    USGS Publications Warehouse

    Behrendt, John C.

    1999-01-01

    The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post

  12. Oil exploration in nonmarine rift basins of interior Sudan

    SciTech Connect

    Schull, T.J.

    1984-04-01

    In early 1975 Chevron Overseas Petroleum Inc. commenced a major petroleum exploration effort in previously unexplored interior Sudan. With the complete cooperation of the Sudanese Government, Chevron has acquired a vast amount of geologic and geophysical data during the past 9 years. These data include extensive aeromagnetic and gravity surveys, 25,000 mi (40,200 km) of seismic data, and the results of 66 wells. This information has defined several large rift basins which are now recognized as a major part of the Central African rift system. The sedimentary basins of interior Sudan are characterized by thick Cretaceous and Tertiary nonmarine clastic sequences. Over 35,000 ft (10,600 m) of sediment have been deposited in the deepest trough, and extensive basinal areas are underlain by more than 20,000 ft (6100 m) of sediment. The depositional sequence includes thick lacustrine shales and claystones, flood plain claystones, and lacustrine, fluvial, and alluvial sandstones and conglomerates. Those lacustrine claystones which were deposited in an anoxic environment provide oil-prone source rocks. Reservoir sandstones have been found in a wide variety of nonmarine sandstone facies. The extensional tectonism which formed these basins began in the Early Cretaceous. Movement along major fault trends continued intermittently into the Miocene. This deformation resulted in a complex structural history which led to the formation of several deep fault-bounded troughs, major interbasin high trends, and complex basin flanks. This tectonism has created a wide variety of structures, many of which have become effective hydrocarbon traps.

  13. Using Lake Superior Parks to Present the Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Blavascunas, E.

    2014-12-01

    Some of the Midwest's most spectacular scenery occurs near Lake Superior, in places like Pictured Rocks and Apostle Islands National Lakeshores, Isle Royale National Park, Interstate Park, and Porcupine Mountains State Park. These landscapes provide an enormous, but underutilized opportunity for park interpreters and educators to explain some of the most exciting concepts of modern geology. A crucial aspect of doing this is recognizing that many of the rocks and landforms in individual parks are pieces of a huge regional structure. This structure, called the Midcontinent Rift System (MCRS), is a 1.1 billion year old 3000 km (2000 mile) long scar along which the North American continent started to tear apart, just as Africa is splitting today along the East African Rift, but for some reason failed to form a new ocean. Drawing on our experience as researchers and teachers studying the MCRS (Steins) and as an interpreter at Isle Royale National Park (Blavascunas), we seek to give interpreters a brief introduction to MCRS to help them present information about what geologists know already and what they are learning from continuing research. Our goal is to help interpreters visualize how what they see at a specific site fits into an exciting regional picture spanning much of the Midwest.

  14. Along-rift Variations in Deformation and Magmatism in the Ethiopian and Afar Rift Systems

    NASA Astrophysics Data System (ADS)

    Keir, D.; Bastow, I. D.; Corti, G.; Mazzarini, F.; Rooney, T. O.

    2015-12-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Ethiopian and Afar Rift systems provide an excellent opportunity to address this since it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of distribution and style of volcanism and faulting along strike in the MER and Afar. We also incorporate synthesis of geophysical, geochemical, and petrological constraints on magma generation and emplacement in order to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rift. Along-rift changes in extension by magma intrusion and plate stretching, and the three-dimensional focusing of melt where the rift dramatically narrows each influence igneous intrusion, volcanism and subsidence history. In addition, rift obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  15. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  16. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  17. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.

  18. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  19. Oblique rifting at Tempe Fossae, Mars

    NASA Astrophysics Data System (ADS)

    Fernández, Carlos; Anguita, Francisco

    2007-09-01

    This work shows the results of a structural study of the faults observed at the Tempe Rift (northeastern Tharsis region), Mars. A new, detailed map of faults and fault systems was used to geometrically characterize the fracture architecture of the Tempe Rift and to measure fault length, displacement, and spacing data, to analyze the spatial distribution of fault centroids, and to investigate the fractal nature of fault trace maps. A comparison with analog models and the use of conventional techniques of fault population analysis show that the Tempe Rift was most probably generated under sinistral oblique-rifting processes, which highlights the importance of the presence of inherited fractures in the tectonic evolution of the Noachian crust. The angle between the extension direction and the rift axis varies along the Tempe Rift, ranging from 50°-60° at its central southern part to 66°-88° to the southwest. Fault scaling relationships are similar to those found at mid-ocean ridges on Earth with exponential fault length-frequency distributions. Localized, inhomogeneous deformation generated weakly interacting faults, spanning the entire thickness of the mechanical layer. This thickness decreased from southwest to northeast along the rift, along with distance from the central part of the Tharsis dome.

  20. Development of the inner ear.

    PubMed

    Whitfield, Tanya T

    2015-06-01

    The vertebrate inner ear is a sensory organ of exquisite design and sensitivity. It responds to sound, gravity and movement, serving both auditory (hearing) and vestibular (balance) functions. Almost all cell types of the inner ear, including sensory hair cells, sensory neurons, secretory cells and supporting cells, derive from the otic placode, one of the several ectodermal thickenings that arise around the edge of the anterior neural plate in the early embryo. The developmental patterning mechanisms that underlie formation of the inner ear from the otic placode are varied and complex, involving the reiterative use of familiar signalling pathways, together with roles for transcription factors, transmembrane proteins, and extracellular matrix components. In this review, I have selected highlights that illustrate just a few of the many recent discoveries relating to the development of this fascinating organ system.

  1. Tuning in the bullfrog ear.

    PubMed Central

    Lewis, E R

    1988-01-01

    When electrical resonances were observed in acoustic sensory cells of lower vertebrates, the hearing research community was presented with the exciting possibility that tuning in the ears of those animals might be explained directly in terms of familiar molecular devices. It is reported here that in the frog sacculus, where electrical resonances have been observed in isolated hair cells, the effects of those resonances are completely obscured in the tuning properties of the sacculus in the intact ear. This observation has important implications not only for students of the ear, but for reductionist biologists in general. All of the dynamic properties of a system of connected, bidirectional processes are consequences of all of those processes at once; in such a system, the properties of an experimentally isolated subsystem may be totally obscured in the operation of the system as a whole. PMID:3258166

  2. Investigation of rifting processes in the Rio Grande Rift using data from unusually large earthquake swarms

    SciTech Connect

    Sanford, A.; Balch, R.; House, L.; Hartse, H.

    1995-12-01

    San Acacia Swarm in the Rio Grande Rift. Because the Rio Grande rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to explore the active tectonic processes within continental rifts. We have been studying earthquake swarms recorded near Socorro in an effort to link seismicity directly to the rifting process. For FY94, our research has focused on the San Acacia swarm, which occurred 25 km north of Socorro, New Mexico, along the accommodation zone between the Albuquerque-Belen and Socorro basins of the central Rio Grande rift. The swarm commenced on 25 February 1983, had a magnitude 4.2 main shock on 2 March and ended on 17 March, 1983.

  3. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    SciTech Connect

    Taha, M.A. )

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recent well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.

  4. Diffuse degassing at Longonot volcano, Kenya: Implications for CO2 flux in continental rifts

    NASA Astrophysics Data System (ADS)

    Robertson, Elspeth; Biggs, Juliet; Edmonds, Marie; Clor, Laura; Fischer, Tobias P.; Vye-Brown, Charlotte; Kianji, Gladys; Koros, Wesley; Kandie, Risper

    2016-11-01

    Magma movement, fault structures and hydrothermal systems influence volatile emissions at rift volcanoes. Longonot is a Quaternary caldera volcano located in the southern Kenyan Rift, where regional extension controls recent shallow magma ascent. Here we report the results of a soil carbon dioxide (CO2) survey in the vicinity of Longonot volcano, as well as fumarolic gas compositions and carbon isotope data. The total non-biogenic CO2 degassing is estimated at < 300 kg d- 1, and is largely controlled by crater faults and fractures close to the summit. Thus, recent volcanic structures, rather than regional tectonics, control fluid pathways and degassing. Fumarolic gases are characterised by a narrow range in carbon isotope ratios (δ13C), from - 4.7‰ to - 6.4‰ (vs. PDB) suggesting a magmatic origin with minor contributions from biogenic CO2. Comparison with other degassing measurements in the East African Rift shows that records of historical eruptions or unrest do not correspond directly to the magnitude of CO2 flux from volcanic centres, which may instead reflect the current size and characteristics of the subsurface magma reservoir. Interestingly, the integrated CO2 flux from faulted rift basins is reported to be an order of magnitude higher than that from any of the volcanic centres for which CO2 surveys have so far been reported.

  5. Lithological Influences on Occurrence of High-Fluoride Waters in The Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Olaka, L. A.; Musolff, A.; Mulch, A.; Olago, D.; Odada, E. O.

    2013-12-01

    Within the East African rift, groundwater recharge results from the complex interplay of geology, land cover, geomorphology, climate and on going volcano-tectonic processes across a broad range of spatial and temporal scales. The interrelationships between these factors create complex patterns of water availability, reliability and quality. The hydrochemical evolution of the waters is further complex due to the different climatic regimes and geothermal processes going on in this area. High fluoridic waters within the rift have been reported by few studies, while dental fluorosis is high among the inhabitants of the rift. The natural sources of fluoride in waters can be from weathering of fluorine bearing minerals in rocks, volcanic or fumarolic activities. Fluoride concentration in water depends on a number of factors including pH, temperature, time of water-rock formation contact and geochemical processes. Knowledge of the sources and dispersion of fluoride in both surface and groundwaters within the central Kenya rift and seasonal variations between wet and dry seasons is still poor. The Central Kenya rift is marked by active tectonics, volcanic activity and fumarolic activity, the rocks are majorly volcanics: rhyolites, tuffs, basalts, phonolites, ashes and agglomerates some are highly fractured. Major NW-SE faults bound the rift escarpment while the rift floor is marked by N-S striking faults We combine petrographic, hydrochemistry and structural information to determine the sources and enrichment pathways of high fluoridic waters within the Naivasha catchment. A total of 120 water samples for both the dry season (January-February2012) and after wet season (June-July 2013) from springs, rivers, lakes, hand dug wells, fumaroles and boreholes within the Naivasha catchment are collected and analysed for fluoride, physicochemical parameters and stable isotopes (δ2 H, δ18 O) in order to determine the origin and evolution of the waters. Additionally, 30 soil and

  6. Low-set ears and pinna abnormalities

    MedlinePlus

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... most cases, a health care provider finds pinna abnormalities during the first well-baby exam. This exam ...

  7. Physiological functioning of the ear and masking

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physiological functions of the ear and the role masking plays in speech communication are examined. Topics under investigation include sound analysis of the ear, the aural reflex, and various types of noise masking.

  8. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  9. The synrift subsidence deficit at rifted margins

    NASA Astrophysics Data System (ADS)

    Reston, T.

    2009-04-01

    Across rifted margins, the prerift continental crust thins from ~ 30 km, reaching zero at the continent-ocean transition (COT) beyond which either oceanic crust or unroofed mantle forms top basement. As a result of the crustal thinning, considerable subsidence is both expected and observed. However at several margins, subsidence appears to have occurred largely after rather than during rifting. Examples of such behaviour described in the literature include the West Iberia margin, the salt basins of the South Atlantic, and the Exmouth Plateau margin. This synrift subsidence deficit can be explained by crustal depth-dependent stretching, in which much of the crust is withdrawn after the end of rifting, but considerable problems arise with this model. They can however also be explained at magma-rich margins by thermal uplift during rifting, the addition of igneous intrusions to the lithosphere during rifting, and the partial depletion of the mantle. At magma-poor margins, mantle serpentinization has a similar effect, although as serpentinization can only occur once the entire curst has become brittle, this is likely to be important only at high degrees of stretching. An alternative explanation may be the influx of asthenosphere warmer than the relatively cool sublithospheric mantle observed beneath several continents and which is one explanation for the lack of melt at many rifted margins. These different models would thus imply some modification to the McKenzie model for lithospheric stretching, arising because of the geodynamic processes accompanying continental breakup. But it is also possible that synrift subsidence has been systematically underestimated if local water level was substantially below global sealevel. The presence of thick evaporites at many rifted margins indicates that this was true at the end of rifting. As rifting leading to continental breakup by definition occurs within a continent, it may be expected that the rift initially develops isolated

  10. Mapping Mantle Mixing and the Extent of Superplume Influence Using He-Ne-Ar-CO2-N2 Isotopes: The Case of the East Africa Rift System

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Halldorsson, S. A.; Scarsi, P.; Castillo, P.; Abebe, T.; Kulongoski, J. T.

    2014-12-01

    Earth's mantle possesses distinct and variable volatile characteristics as sampled by magmatic activity in different tectonic environments. In general, trace element depleted mid-ocean ridge basalts, with low Sr and Pb isotope values (but high ɛNd and ɛHf), release mantle-derived noble gases characterised by 3He/4He ~8 ± 1RA, (21Ne/22Ne)ex ~0.06 and 40Ar/36Ar ≥ 10,000 with CO2 and N2 having δ13C~-5‰ and δ15N ~-5‰, respectively. In contrast, enriched intraplate lavas possess higher 3He/4He (up to 50RA), lower (21Ne/22Ne)ex ~0.035 and 40Ar/36Ar ≤ 10,000 with generally higher but variable δ13C and δ15N. These isotopic attributes of mantle-derived volatiles can be exploited to map the extent, and mixing characteristics, of enriched (plume) mantle with depleted asthenospheric mantle ± the effects of over-riding lithosphere and/or crust. The East African Rift System (EARS) is superimposed upon two massive plateaux - the Ethiopia and Kenya domes - regarded as geophysical manifestations of a superplume source, a huge thermochemical anomaly originated at the core-mantle boundary and providing dynamic support for the plateaux. We present new volatile isotopic and relative abundance data (on the same samples) for geothermal fluids (He-CO2-N2), lavas (He-Ne-Ar) and xenoliths (He-Ne-Ar-CO2-N2) which provide an unprecedented overview of the distribution of mantle volatiles of the Ethiopia Dome, from the Red Sea via the Afar region and Main Ethiopian Rift (MER) to the Turkana Depression. Notably, peaks in geothermal fluid 3He/4He (16RA) and δ15N (+6.5‰) are coincident within the MER but the maximum δ13C (-0.78‰) lies ~100 km to the south. Highs in 3He/4He (14RA), δ13C (~-1‰) and δ15N (+3.4‰) for mafic crystals occur in the Afar region ~ 500km to the north. We assess the significance of the off-set in these volatile isotope signals, for sampling volatile heterogeneity in the plume source and/or the relative sensitivity of different volatiles to

  11. Petrography and geochemistry of modern river sediments in an equatorial environment (Rwenzori Mountains and Albertine rift, Uganda) - Implications for weathering and provenance

    NASA Astrophysics Data System (ADS)

    Schneider, Sandra; Hornung, Jens; Hinderer, Matthias; Garzanti, Eduardo

    2016-05-01

    In hot-humid equatorial climate chemical weathering may be so strong that provenance signatures may be largely lost and even detritus derived from crystalline basement rocks reduced to quartzose sand. We tested this hypothesis in western Uganda, where stable plateau areas contrast with the active tectonic setting of the Albertine Rift (western branch of the East African Rift System, EARS), culminating in the strongly exhumed fault block of the > 5000 m high Rwenzori Mountains. In this setting, sediments derived from similar types of basement rocks including gneiss, schist, amphibolite, metasediments and granites can be traced from rapidly eroding high-altitude areas to low-altitude areas undergoing prolonged weathering. Sand and mud carried by 51 rivers overall in these two contrasting landscapes were sampled to study how and to what extent detrital modes are modified by the selective loss of unstable detrital minerals. Sediments generated in the high-relief Rwenzori Mountains show abundant feldspar (up to 32%) and rock fragments (up to 52%), which together with low SiO2/Al2O3 ratio and composition close to the Upper Continental Crust (UCC standard) reflect erosion in weathering-limited conditions. In the central Rwenzoris, low Th/Sc and Zr/Sc ratios, weak negative Eu anomaly, lower LaN/YbN values, and heavy-mineral assemblages with hornblende and epidote reflect the lithology of source rocks in the Buganda-Toro-Greenstone Belt. In contrast, sediments produced on the low-relief plateau have quartz content up to 98% and higher SiO2/Al2O3 ratio. Systematic loss of mobile elements is indicated by high chemical weathering indices CIA, PIA and WIP. However, provenance from metamorphic basement rocks is still indicated by heavy-mineral assemblages dominated by epidote and amphibole, whereas provenance from granitic rocks is revealed by high Th/Sc and Zr/Sc ratio, negative Eu anomaly and higher LaN/YbN values. We conclude that first-cycle sediments generated in high

  12. Ear dominance and telephone sales.

    PubMed

    Furnham, A; Richardson, S; Miller, T

    1997-10-01

    In a field study, three equally sized sales teams used on of three head-sets--left, right, both ears--for a day's selling of insurance by telephone. This had no effect on sales. In a retrospective study of records, daily sales performance including the percentage conversion rate for sales divided by the number of calls and the number and duration of calls was related to preference for type of head-set. Sales were markedly influenced by the choice of head-set. People who chose to wear the left earpiece significantly out sold the others wearing right and stereohead-sets. Neither the number of incoming calls nor the time spent on the telephone were influenced by the choice of head-set. When sales are analysed in terms of individual differences in personal preference for type of head-set, those who chose the left ear had an advantage. Forced use of the left, versus right ear or both ears for one day had no effect.

  13. Reconstruction of middle ear malformations

    PubMed Central

    Schwager, Konrad

    2008-01-01

    Malformations of the middle ear are classified as minor and major malformations. Minor malformations appear with regular external auditory canal, tympanic membrane and aerated middle ear space. The conducting hearing loss is due to fixation or interruption of the ossicular chain. The treatment is surgical, following the rules of ossiculoplasty and stapes surgery. In major malformations (congenital aural atresia) there is no external auditory canal and a deformed or missing pinna. The mastoid and the middle ear space may be underdevelopped, the ossicular chain is dysplastic. Surgical therapy is possible in patients with good aeration of the temporal bone, existing windows, a near normal positioned facial nerve and a mobile ossicular chain. Plastic and reconstructive surgery of the pinna should proceed the reconstruction of the external auditory canal and middle ear. In cases of good prognosis unilateral aural atresia can be approached already in childhood. In patients with high risk of surgical failure, bone anchored hearing aids are the treatment of choice. Recent reports of implantable hearing devices may be discussed as an alternative treatment for selected patients. PMID:22073077

  14. Middle Ear Infections (For Parents)

    MedlinePlus

    ... en español Infecciones del oído medio After the common cold , ear infections are the most frequently diagnosed childhood ... winter season, when lots of people get upper respiratory tract infections or colds. Signs and Symptoms The signs and ...

  15. Mechanics of the frog ear

    PubMed Central

    van Dijk, Pim; Mason, Matthew J.; Schoffelen, Richard L. M.; Narins, Peter M.; Meenderink, Sebastiaan W. F.

    2010-01-01

    The frog inner ear contains three regions that are sensitive to airborne sound and which are functionally distinct. (1) The responses of nerve fibres innervating the low-frequency, rostral part of the amphibian papilla (AP) are complex. Electrical tuning of hair cells presumably contributes to the frequency selectivity of these responses. (2) The caudal part of the AP covers the mid-frequency portion of the frog's auditory range. It shares the ability to generate both evoked and spontaneous otoacoustic emissions with the mammalian cochlea and other vertebrate ears. (3) The basilar papilla functions mainly as a single auditory filter. Its simple anatomy and function provide a model system for testing hypotheses concerning emission generation. Group delays of stimulus frequency otoacoustic emissions (SFOAEs) from the basilar papilla are accounted for by assuming that they result from forward and reverse transmission through the middle ear, a mechanical delay due to tectorial membrane filtering and a rapid forward and reverse propagation through the inner ear fluids, with negligible delay. PMID:20149854

  16. Adenomatous tumors of the middle ear.

    PubMed

    Pelosi, Stanley; Koss, Shira

    2015-04-01

    Adenomatous tumors are an uncommon cause of a middle ear mass. Clinical findings may be nonspecific, leading to difficulties in differentiation from other middle ear tumors. Controversy also exists whether to classify middle ear adenoma and carcinoid as separate neoplasms, or alternatively within a spectrum of the same pathologic entity. Most adenomatous middle ear tumors are indolent in behavior, with a benign histologic appearance and slowly progressive growth. The mainstay of treatment is complete surgical resection, which affords the greatest likelihood of cure.

  17. Ear recognition based on Gabor features and KFDA.

    PubMed

    Yuan, Li; Mu, Zhichun

    2014-01-01

    We propose an ear recognition system based on 2D ear images which includes three stages: ear enrollment, feature extraction, and ear recognition. Ear enrollment includes ear detection and ear normalization. The ear detection approach based on improved Adaboost algorithm detects the ear part under complex background using two steps: offline cascaded classifier training and online ear detection. Then Active Shape Model is applied to segment the ear part and normalize all the ear images to the same size. For its eminent characteristics in spatial local feature extraction and orientation selection, Gabor filter based ear feature extraction is presented in this paper. Kernel Fisher Discriminant Analysis (KFDA) is then applied for dimension reduction of the high-dimensional Gabor features. Finally distance based classifier is applied for ear recognition. Experimental results of ear recognition on two datasets (USTB and UND datasets) and the performance of the ear authentication system show the feasibility and effectiveness of the proposed approach.

  18. Observations on rift valley fever virus and vaccines in Egypt

    PubMed Central

    2011-01-01

    Rift Valley Fever virus (RVFV, genus: Phlebovirus, family: Bunyaviridae), is an arbovirus which causes significant morbidity and mortality in animals and humans. RVFV was introduced for the first time in Egypt in 1977. In endemic areas, the insect vector control and vaccination is considering appropriate measures if applied properly and the used vaccine is completely safe and the vaccination programs cover all the susceptible animals. Egypt is importing livestock and camels from the African Horn & the Sudan for human consumption. The imported livestock and camels were usually not vaccinated against RVFV. But in rare occasions, the imported livestock were vaccinated but with unknown date of vaccination and the unvaccinated control contacts were unavailable for laboratory investigations. Also, large number of the imported livestock and camels are often escaped slaughtering for breeding which led to the spread of new strains of FMD and the introduction of RVFV from the enzootic African countries. This article provide general picture about the present situation of RVFV in Egypt to help in controlling this important disease. PMID:22152149

  19. The 1974 Ethiopian rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P.

    1977-01-01

    The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.

  20. Deepening, and repairing, the metabolic rift.

    PubMed

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary.

  1. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  2. Handedness and Preferred Ear for Telephoning.

    ERIC Educational Resources Information Center

    Williams, Stephen M.

    1987-01-01

    Examined relationship between handedness and preferred ear for telephoning in 140 college students. Increased degree of sinistrality was associated with increased tendency to use left ear for telephoning. Found tendency to pick up telephone receiver with preferred hand and hold earpiece to ipsilateral ear. Results may relate to reports of reduced…

  3. Can Loud Music Hurt My Ears?

    MedlinePlus

    ... What Happens in the Operating Room? Can Loud Music Hurt My Ears? KidsHealth > For Kids > Can Loud Music Hurt My Ears? A A A en español ... up? Oh! You want to know if loud music can hurt your ears . Are you asking because ...

  4. Immunologic Disorders of the Inner Ear.

    ERIC Educational Resources Information Center

    Kinney, William C.; Hughes, Gordon B.

    1997-01-01

    Immune inner ear disease represents a series of immune system mediated problems that can present with hearing loss, dizziness, or both. The etiology, presentation, testing, and treatment of primary immune inner ear disease is discussed. A review of secondary immune inner ear disease is presented for comparison. (Contains references.) (Author/CR)

  5. Can Loud Music Hurt My Ears?

    MedlinePlus

    ... dientes Video: Getting an X-ray Can Loud Music Hurt My Ears? KidsHealth > For Kids > Can Loud Music Hurt My Ears? Print A A A en ... up? Oh! You want to know if loud music can hurt your ears . Are you asking because ...

  6. Rift Valley Fever and a New Paradigm of Research and Development for Zoonotic Disease Control

    PubMed Central

    McIntyre, Sabrina; Hogarth, Sue; Heymann, David

    2013-01-01

    Although Rift Valley fever is a disease that, through its wider societal effects, disproportionately affects vulnerable communities with poor resilience to economic and environmental challenge, Rift Valley fever virus has since its discovery in 1931 been neglected by major global donors and disease control programs. We describe recent outbreaks affecting humans and animals and discuss the serious socioeconomic effects on the communities affected and the slow pace of development of new vaccines. We also discuss the mixed global response, which has largely been fueled by the classification of the virus as a potential bioterrorism agent and its potential to migrate beyond its traditional eastern African boundaries. We argue for a refocus of strategy with increased global collaboration and a greater sense of urgency and investment that focuses on an equity-based approach in which funding and research are prioritized by need, inspired by principles of equity and social justice. PMID:23347653

  7. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe.

    PubMed

    Mansfield, Karen L; Banyard, Ashley C; McElhinney, Lorraine; Johnson, Nicholas; Horton, Daniel L; Hernández-Triana, Luis M; Fooks, Anthony R

    2015-10-13

    Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.

  8. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    PubMed Central

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C.; Rucina, Stephen M.; King, Geoffrey C. P.

    2015-01-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging. PMID:26369499

  9. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins.

    PubMed

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C; Rucina, Stephen M; King, Geoffrey C P

    2015-09-15

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging.

  10. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C.; Rucina, Stephen M.; King, Geoffrey C. P.

    2015-09-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging.

  11. Thermochronological investigation of the timing of rifting and rift segmentation in the Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Bosworth, W.; Stockli, D. F.

    2006-12-01

    The Tertiary Gulf of Suez rift system is one of the best-studied continental rift systems and has inspired many fundamental geodynamic models for continental rifting. However, our limited knowledge of how extensional strain is spatially and temporally distributed has made it difficult to adequately evaluate models for the dynamic evolution of this rift. A critical aspect of constraining the evolution of rifting and rift segmentation in the Gulf of Suez involves acquiring reliable geochronological constraints on extensional faulting. This study has commenced a systematic investigation of the timing and spatial distribution of rifting, lateral rift segmentation, and rift localization within the Gulf of Suez, Egypt, employing apatite and zircon (U-Th)/He thermochronometry. (U-Th)/He thermochronometric analysis of sample transects from exhumed fault blocks within the rift integrated with structural data will allow us to directly determine the timing, distribution, and magnitude of extension. The onset of major rifting (~24-19 Ma) in the Gulf of Suez was marked by the development of crustal domino-style tilt blocks and syn-rift deposition of the late Oligocene non-marine Abu Zenima Fm and non-marine to restricted marine Nukhul Fm. Development of the Gulf of Aqaba-Dead Sea transform cut off the rift from the Red Sea rift at an early extensional stage. Apatite (AHe) and zircon (ZHe) (U- Th)/He data were collected from basement and pre-rift sedimentary sample transects from the central and southern Sinai Peninsula portion and the Gebel El Zeit area in the southern Gulf of Suez as well as from basement samples from selected drill cores off Gebel El Zeit. Preliminary data exhibit partially reset ages trending as old as ~70 Ma (AHe) and ~450 Ma (ZHe) from shallower structural levels (Proterozoic basement and Phanerozoic cover sequence). Structurally deeper samples yield abundant AHe ages of ~22-24 Ma, indicative of rapid cooling and exhumation during the early Miocene. More

  12. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  13. Geodetic results in Afar: The rifting episode of November 1978 in the Asal-Ghoubbet rift

    NASA Astrophysics Data System (ADS)

    Kasser, M.; Lepine, J. C.; Ruegg, J. C.; Tarantula, A.

    1981-01-01

    A seismo-tectonic and volcanic crisis occurred in November 1978 in the Asal-Ghoubbet rift, first subaerial section of the accreting plate boundary between the African and Arabian plates (Allard et al., 1979; Abdallah et al., 1979; Le Dain et al., 1980). The activity was located in the center of a geodetic network set up in the winter 1972-1973 by the Institut Géographique National in collaboration with the Institut de Physique du Globe de Paris. Simultaneously, a precise levelling line of about 100 km was established across the area (I.G.N., 1973). The resurveying of both the geodetic network and the levelling line was carried out after the crisis, between November 1978 and March 1979. Extensions up to 2.4 m and vertical displacements up to 0.7 m were measured. Operating techniques and results of the resurveying are described in Kasser et al. (1979) and Ruegg et al. (1979). Figure 1 shows the horizontal displacements (relating to point B and to the direction BT) and figure 2 shows the vertical displacements relating to the two external points. Tarantola et al. (1979, 1980) have shown that these results can be geodynamically interpreted by a mechanism of sudden breaking and elastic rebound after an elastic stretching of the crust due to the relative drift of the plates. The breaking is triggered by magmatic fracturing of the crust, with dykes injection from a magmatic chamber which has fed the basaltic fissurai eruption. The horizontal and vertical displacements outside the broken zone of the Inner Floor are predicted by a numerical model based on this interpretation which fit very well the experimental data.

  14. Early Pleistocene lake formation and hominin origins in the Turkana-Omo rift

    NASA Astrophysics Data System (ADS)

    Lepre, Christopher J.

    2014-10-01

    Prior research has correlated the formation of Plio-Pleistocene lakes in East Africa to global/regional climate changes and interpreted the lacustrine basins as significant settings of hominin evolution. Paleo-Lake Lorenyang from the Turkana-Omo rift is important to these issues, as its marginal deposits contain some of, if not the earliest currently known specimens of Acheulian stone tools and African Homo erectus. Magnetostratigraphic and sedimentological evidence indicates that the oldest preserved paleo-Lake Lorenyang deposits are dated at 2.148-2.128 Ma and derive from the NW Turkana basin, predating those from the Omo basin by ˜100 kyr and the NE Turkana basin by ˜190 kyr. Apparently, the lake expanded asynchronously in the rift, potentially due to a volcano-tectonic influence on the location of drainage networks, depositional slopes, or topographic elevation differences within and between the basins at the time of flooding. The onset of the lake temporally coincides with the eruption of basalt lava flows dated to 2.2-2.0 Ma that blocked the southeast outlet of the Turkana basin. This provides a plausible mechanism for hydrologic closure and lacustrine basin formation through volcano-tectonic impounding. It also points to a non-climatic cause for the initial formation of paleo-Lake Lorenyang at ˜2.14 Ma. First appearances for African H. erectus (˜1.87 Ma) and Acheulian tools (˜1.76 Ma) in the Turkana-Omo rift postdate the lake's initial formation by about 270 kyr and 380 kyr, respectively. Such timing differences contrast with studies that correlate all three to the 400-kyr-eccentricity maximum at 1.8 Ma. Although the Turkana-Omo rift is just one example, it does provide alternative insights to views that link climate, hominin evolution, and lake formation in East Africa.

  15. Thermo-rheological aspects of crustal evolution during continental breakup and melt intrusion: The Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Beekman, Fred; Clark, Stuart R.; Cloetingh, Sierd A. P. L.

    2016-08-01

    The Cenozoic-Quaternary Main Ethiopian Rift (MER) is characterized by extended magmatic activity. Although magmatism has been recognized as a key element in the process of continental breakup, the interaction between melts and intruded lithosphere is still poorly understood. We have performed a 2D thermo-rheological modeling study of continental crust incorporating rheological variations due to melt intrusion-related thermal perturbation. The model is calibrated based on the characteristics of lithologies occurring in the MER and its extensional history, and includes the effect of metamorphism and anatexis on crustal strength and rheological features. During Miocene early rift phases strain in the MER was mainly accommodated through rift border faults, whereas Pliocene-to-recent extension history is characterized by magma assisted rifting with most strain accommodated across magmatic segments in the rift axis. Consequently, very little strain is distributed in the old Pan-African to Paleogene crust during Pliocene to Holocene times. The magmatic activity along the rift axis created ≈ 20 km thick magmatic segments, with growth rate estimated to range from ≈ 3.5 mm yr- 1 to ≈ 6 mm yr- 1. Our model suggests that the strain transfer from Miocene rift border faults to magmatic segments was favored by a moderate increase in crustal strength, due to prograde metamorphism subsequent to the melt-induced thermal perturbation. Under such conditions, crustal stretching may not constitute an effective extension mechanism, thus strain may be preferentially accommodated by melt injection along hot, partially molten magmatic segments. Anatexis has been detected in our simulations, with melt fractions sufficient to break-up the crust solid framework and migrate. This determines local variations of rheological behavior and may induce seismicity. However, resulting melt percentages are not sufficient to induce widespread, crust-derived volcanic activity. Subsequently, volcanism

  16. LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow

    NASA Astrophysics Data System (ADS)

    Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.

    2016-06-01

    The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.

  17. Off-axis volcanism in the Gregory rift, east Africa: implications for models of continental rifting

    SciTech Connect

    Bosworth, W.

    1987-05-01

    The largest volcanic centers of the Gregory rift occur in two belts located 100 to 150 km east and west of the axis of the rift valley. These off-axis volcanic belts include the highest peaks on the continent of Africa and are interpreted to lie above the intersection of low-angle detachment systems with the base of a regionally thinned lithosphere. These detachment systems are manifested at the surface as a series of breakaway zones and regional bounding faults that produce subbasins with half-graben form. The asymmetry of subbasins alternates along the rift axis, indicating that the polarity of the underlying active detachment systems also reverses. The detachments are separated laterally by regional oblique-slip accommodation zones typified by wrench-style tectonism. Off-axis from the rift, the detachments are inferred to merge along strike as they cut to the base of the lithosphere. This results in irregular but persistent paired zones of volcanism and lithospheric thinning off-axis from the rift proper. The development of major volcanic cones such as Mount Kilimanjaro may be controlled by the interaction of leaky accommodation zones with the regions of structurally thinned lithosphere. The central Kenya hot spot has produced the anomalous quantities of volcanic material that fills the Gregory rift and probably enhances the off-axis volcanism but does not directly control its location. The model proposed here for tectonic controls of volcanism in the Gregory rift may be applicable to Phanerozoic continental rifts in general.

  18. Rift induced delamination of mantle lithosphere and crustal uplift: a new mechanism for explaining Rwenzori Mountains' extreme elevation?

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2010-10-01

    With heights of 4-5 km, the topography of Rwenzori Mountains, a large horst of old crustal rocks located inside a young passive rift system, poses the question “Why are the Rwenzori Mountains so high?”. The Cenozoic Western Rift branch of the East African Rift System is situated within the Late Proterozoic mobile belts between the Archean Tanzania Craton and Congo Craton. The special geological setting of the massif at a rift node encircled by the ends of the northern Western Rift segments of Lake Albert and Lake Edward suggests that the mechanism responsible for the high elevation of the Rwenzoris is related to the rifting process. Our hypothesis is based on the propagation of the rift tips, surrounding the stiff old lithosphere at Rwenzori region, thereby triggering the delamination of the cold and dense mantle lithosphere (ML) root by reducing viscosity and strength of the undermost lower crust. As a result, this unloading induces fast isostatic pop-up of the less dense crustal Rwenzori block. We term this RID—“ rift induced delamination of Mantle Lithosphere”. The physical consistency of the RID hypothesis is tested numerically. Viscous flow of 2D models is approximated by a Finite Difference Method with markers in an Eulerian formulation. The equations of conservation of mass, momentum and energy are solved for a multi-component system. Based on laboratory data of appropriate rock samples, a temperature-, pressure- and stress-dependent rheology is assumed. Assuming a simple starting model with a locally heated ML, the ML block between the weakened zones becomes unstable and sinks into the asthenosphere, while the overlying continental crust rises up. Thus, RID seems to be a viable mechanism to explain geodynamically the extreme uplift. Important conditions are a thermal anomaly within the ML, a ductile lower crust with visco-plastic rheology allowing significant strength reduction and lateral density variations. The special situation of a two

  19. Morphotectonics of the Tunka rift and its bordering mountains in the Baikal rift system, Russia

    NASA Astrophysics Data System (ADS)

    Shchetnikov, Alexander

    2016-11-01

    The Tunka section of the Baikal rift system presents a uniform alternation of the following neostructural forms: tilted horsts and asymmetrical block uplifts on the northern flank; the central system of the rift valleys; and the arched uplift of the southern flank. This is a standard set of morphostructural elements for the Baikal rift system. The main morphological feature of the Tunka rift is the strong inclination of its floor, ranging from 900 m to 200 km in general elevation above Lake Baikal. Such traits of recent geodynamics as volcanism, thermal activity, and seismicity are also different from other parts of the rift zone. All of these features of the Tunka rift are related to the deep structure of the rift zone. The peculiarities of the neotectonic structure of the Tunka rift, which are clearly expressed morphologically as is typical of the Baikal rift system, as well as its unique features are in accordance with deep geodynamic processes of the region. On the other hand, the development of the rift basin structures of the southwestern area near Baikal is complicated by inversion deformations. Local uplifts followed by deformations of the basin sedimentary cover and inverted morphostructures expressed in relief are fixed against the background of the general subsidence of blocks of the pre-Cenozoic basement grabens. The Tunka rift has repeatedly experienced inversion deformations throughout its history. The last wave of such deformations involved the southwestern region near Baikal in the second half of the late Pleistocene. During the Quaternary, the positive component prevailed in the whole range of vertical movements of the inter-rift and interbasin blocks; since the late Neogene, these structures have experienced a slow but steady uplift, accompanied by their extension at the expense of the bordering basins. The remote influence of the India-Asia collision on the formation of the southwestern section of the Baikal rift system is very significant and

  20. Mantle Flow, Dynamic Topography and Rift-Flank Uplift of Arabia

    NASA Astrophysics Data System (ADS)

    Daradich, A. L.; Mitrovica, J. X.; Pysklywec, R. N.; Willett, S. D.

    2002-12-01

    The Red Sea is flanked by highlands. To the east, the Arabian platform is broadly tilted along an axis that runs parallel to the sea, and the long tail of high topography has been described as a classic example of `rift-flank uplift' [Wernicke, 1985]. A suite of thermal and mechanical effects have been invoked to derive generic mechanisms for flank uplift and these have been applied, with varying levels of success, to the Arabian case. We propose that dynamic topography supported by large scale mantle flow beneath the Africa-Arabia system contributes significantly to the observed pattern of Arabian rift-flank uplift. Seismic tomographic images indicate the existence of large scale (anomalously slow) heterogeneity originating from the deep mantle under southern Africa and, apparently, connecting to more shallow structure beneath the East African Rift system and the Arabian plate. We predict Arabian topography driven by viscous stresses associated with this buoyant megastructure. We first convert velocity anomalies given by the seismic S-wave model S20RTS [Ritsema et al., 1999] to density anomalies using standard scaling profiles, and then input these into a 2-D mantle convection model. Normal stresses derived from the flow models are then used to compute associated profiles of surface (`dynamic') topography. These profiles reconcile the observed topography of the Arabian platform and they provide an explanation for the distinct geometry of rift-flank uplift across the two sides of the Red Sea. Our calculations do not preclude a contribution to topography from previously described thermal and/or mechanical effects; however, they indicate that future analyses of rift-flank uplift should consider the potential contribution from large scale mantle flow.

  1. Surface Wave Analysis of Regional Earthquakes in the Eastern Rift System (Africa)

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Guidarelli, M.; Ebinger, C. J.; Roecker, S. W.; Tiberi, C.

    2015-12-01

    The Northern Tanzania Divergence (NTD), the youngest part of the East African Rift System, presents the opportunity to obtain insights about the birth and early stages of rifting before it progresses to mature rifting and seafloor spreading. This region is particularly interesting because the Eastern rift splits into three arms in this area and develops in a region of thick and cold lithosphere, amid the Archaean Tanzanian craton and the Proterozoic orogenic belt (the Masai block). We analyzed about two thousand seismic events recorded by the 39 broadband stations of the CRAFTI network during its two-year deployment in the NTD area in 2013 to 2014. We present the results of surface wave tomographic inversion obtained from fundamental-mode Rayleigh waves for short periods (between 4 to 14 seconds). Group velocity dispersion curves obtained via multiple filter analysis are path-averaged and inverted to produce 0.1º x 0.1º nodal grid tomographic maps for discrete periods using a 2D generalization of the Backus and Gilbert method. To quantify our results in terms of S-wave velocity structure the average group velocity dispersion curves are then inverted, using a linearized least-squares inversion scheme, in order to obtain the shear wave velocity structure for the upper 20 km of the crust. Low velocity anomalies are observed in the region 50 km south of Lake Natron, as well as in the area of the Ngorongoro crater. The implications of our results for the local tectonics and the development of the rifting system will be discussed in light of the growing geophysical database from this region.

  2. Subsidence history, crustal structure and evolution of the Nogal Rift, Northern Somalia

    NASA Astrophysics Data System (ADS)

    Ali, M. Y.; Watts, A. B.

    2013-12-01

    Seismic reflection profile, gravity anomaly, and biostratigraphic data from deep exploration wells have been used to determine the tectonic subsidence, structure and evolution of the Nogal basin, Northern Somalia, one of a number of ENE-WSW trending early Mesozoic rifts that formed prior to opening of the Gulf of Aden. Backstripping of biostratigraphic data at the Nogal-1 and Kali-1 wells provides new constraints on the age of rifting, and the amount of crustal and mantle extension. The tectonic subsidence and uplift history at the wells can be generally explained as a consequence of two, possibly three, major rifting events. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr. We interpret the rift as a late stage event associated with the break-up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi-rift extensional model with a stretching factor, β, in the range 1.17-1.38. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift only developed at the centre of the basin close to Nogal-1 well, and is related to the opening of the Gulf of Aden. The amount of crustal thinning inferred at the Kali-1 well is consistent with the results of Process-Oriented Gravity and Flexure (POGM) modelling, assuming an elastic thickness of ~30 km. The thinning at the Nogal-1 well, however, is greater by ~ 7 km than predicted suggesting that the basin may be locally underplated by magmatic material. Irrespective, POGM suggests the transition between thick crust beneath Northern Somalia to thin crust beneath the Indian Ocean forms a ~500 km wide

  3. Paleohydrological change in the Turkana Basin at the termination of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; van der Lubbe, Jeroen; Joordens, Josephine; Feibel, Craig; Junginger, Annett; Garcin, Yannick; Krause-Nehring, Jacqueline; Beck, Catherine; Johnson, Thomas

    2016-04-01

    One of the most significant features of Holocene climate change in East Africa is the termination of the African Humid Period (AHP), which occurred at ~ 5 ka. Many lakes in the East African Rift System (EARS) were strongly affected by these climatic changes, generally exhibiting much higher lake levels before the termination of the AHP than after. One of the larger lakes in the EARS, is Lake Turkana which was filled to overflow level for much of the early Holocene and experienced a dramatic ~70 meter lake level drop at ~5 ka, turning it into the terminal lake system as it still is today. The precise hydrological response of Lake Turkana to climate change at the termination of the AHP is potentially complex, because it is situated at the cross roads of two large atmospheric convection systems; the Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary (CAB). Shifting of these atmospheric systems at the end of the AHP dramatically re-organised spatial rainfall patterns over the Turkana Basin catchment, causing a shift in runoff contributions from the different sub-catchments of the Turkana Basin. Here, we present a Holocene Turkana lake water Sr isotope reconstruction based on the analysis of well-dated lacustrine ostracods and shells, which reveals consistently high Sr isotope values for the early Holocene, followed by a significant, but gradual drop in Sr isotope ratios across the AHP termination. Since lacustrine Sr isotope ratios are a runoff provenance indicator in this setting, such dramatic lacustrine Sr isotope change points towards a significant (climate-driven) reorganisation of runoff contributions from different sub-catchments to Lake Turkana. In more detail, the Sr isotope reconstruction strongly suggests that changes in runoff patterns at the termination of the AHP in the Turkana Basin were gradual. The higher Sr isotope ratios during the Early Holocene indicate significant runoff contribution from a more radiogenic sub-catchment at that time

  4. Tectono-Sedimentary Analysis of Rift Basins: Insights from the Corinth Rift, Greece

    NASA Astrophysics Data System (ADS)

    Gawthorpe, Robert; Ford, Mary

    2015-04-01

    Existing models for the tectono-sedimentary evolution of rift basins are strongly linked the growth and linkage of normal fault segments and localization of fault activity. Early stages of faulting (rift initiation phase) are characterized by distributed, short, low displacement fault segments, subdued fault-related topography and small depocentres within which sedimentation keeps pace with subsidence. Following linkage and displacement localization (rift climax phase), deformation if focused onto major, crustal-scale fault zones with kilometre-scale displacement. These major faults generate pronounced tilted fault-block topography, with subsidence rates that outpace sedimentation causing a pronounced change to deep-water deposition. Such models have been successful in helping to understand the gross structural and sedimentary evolution of rift basins, but recent work has suggested that pre-existing structures, normal fault interaction with pre-rift salt and antecedent drainage systems significantly alter this initiation-to-climax perspective of rift basin development. The E-W-striking, Pliocene-Pleistocene Corinth rift, central Greece, is an excellent natural laboratory for studying the tectono-sedimentary evolution of rift basins due to its young age, excellent onshore exposure of syn-rift structure and stratigraphy and extensive offshore seismic data. The rift cuts across the NW-SE-striking Hellenide mountain belt and has migrated northward and westward during its evolution. The Hellenide mountain belt significantly influences topography and drainage in the west of the rift. High topography and large antecedent drainage systems, focused along palaeovalleys, provided high sediment flux to NE-flowing alluvial systems that overfilled early-rift depocentres. Further east, away from the main antecedent drainage networks, contemporaneous deposits comprise deep-lacustrine turbidite channel and lobe complexes and basinal marls. Thus the stratigraphic expression within

  5. The War of Jenkins’ Ear

    PubMed Central

    Graboyes, Evan M.; Hullar, Timothy E.

    2012-01-01

    Objective In 1731, Spanish sailors boarded the British brig Rebecca off the coast of Cuba and sliced off the left ear of its captain, Robert Jenkins. This traumatic auriculectomy was used as a pretext by the British to declare war on Spain in 1739, a conflict that is now known as the War of Jenkins’ Ear. Here, we examine the techniques available for auricular repair at the time of Jenkins’ injury and relate them to the historical events surrounding the incident. Methods Review of relevant original published manuscripts and monographs. Results Surgeons in the mid-18th century did not have experience with repair of traumatic total auriculectomies. Some contemporary surgeons favored auricular prostheses over surgical treatment. Methods for the reconstruction of partial defects were available, and most authors advocated a local post-auricular flap instead of a free tissue transfer. Techniques for repair of defects of the auricle lagged behind those for repair of the nose. Conclusion Limitations in care of traumatic auricular defects may have intensified the significance of Jenkins’ injury and helped lead to the War of Jenkins’ Ear, but conflict between Britain and Spain was probably unavoidable due to their conflicting commercial interests in the Caribbean. PMID:23444484

  6. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  7. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  8. Transstadial and Horizontal Transmission of Rift Valley Fever Virus in Hyalomma truncatum

    DTIC Science & Technology

    1989-01-01

    pendiculatus were established from the progeny Central African Republic. Attempts to isolate of females collected from cattle in Rift Valley RVF virus from...in this study.18 on a guinea pig. On day 15 post-inoculation, 20 For virus assays, ticks were triturated in 1 ml female and 15 male ticks were allowed...ticks (5 female , 5 male for Exp. 1 and 2) were of RVF virus 24 hr prior to estimated tick drop- sampled at predetermined intervals post-inocu- off. After

  9. Ear canal dynamic motion as a source of power for in-ear devices

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2013-02-01

    Ear canal deformation caused by temporomandibular joint (jaw joint) activity, also known as "ear canal dynamic motion," is introduced in this paper as a candidate source of power to possibly recharge hearing aid batteries. The geometrical deformation of the ear canal is quantified in 3D by laser scanning of different custom ear moulds. An experimental setup is proposed to measure the amount of power potentially available from this source. The results show that 9 mW of power is available from a 15 mm3 dynamic change in the ear canal volume. Finally, the dynamic motion and power capability of the ear canal are investigated in a group of 12 subjects.

  10. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  11. Continental Rifting and Transform Faulting Along the Jurassic Transantarctic Rift, Antarctica

    NASA Astrophysics Data System (ADS)

    Schmidt, Dwight L.; Rowley, Peter D.

    1986-04-01

    The Transantarctic rift, an extensional continental rift valley, formed between East and West Antarctica during latest Early and Middle Jurassic time and is represented today by the high Transantarctic Mountains, which contain large volumes of continental flood basalt, diabase, and gabbro. Transantarctic rifting marked the beginning of the breakup of Gondwanaland; it was contiguous and synchronous with continental rifting between East Antarctica-India and Africa as represented by the continental basalt and diabase of Queen Maud Land and the Karroo of southern Africa. During Late Jurassic time, about 150 Ma or slightly earlier, East and West Gondwanaland separated and new oceanic crust of the earliest Indian Ocean formed between East Antarctica-India and Africa. If, as assumed, West Antarctica and South America remained fixed through a tip-to-tip join between the Antarctic Peninsula and Tierra del Fuego, then this seafloor spreading required major right-lateral transform faulting of 500 to 1000 km on the Transantarctic rift system between East and West Antarctica. The Transantarctic Mountains were elevated at about the same time in Late Jurassic; such uplifts are characteristic of active rift margins worldwide. During Cenozoic time, extensional block faulting, independent of the Jurassic rifting, further disrupted large areas of West Antarctica. During the same time, the Transantarctic Mountains were further uplifted.

  12. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    SciTech Connect

    Bartok, P. )

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. A second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.

  13. Rifting Attractor Structures in the Baikal Rift System: Location and Effects

    NASA Astrophysics Data System (ADS)

    Klyuchevskii, Anatoly V.

    2014-07-01

    The current geodynamics and tectonophysics of the Baikal rift system (BRS) as recorded in lithospheric stress and strain are discussed in the context of self organization of nonlinear dissipative dynamic systems and nonlinear media. The regional strain field inferred from instrumental seismic moment and fault radius data for almost 70,000 MLH ⩾ 2.0 events of 1968 through 1994 shows a complex pattern with zones of high strain anisotropy in the central part and both flanks of the rift system (the South Baikal, Hovsgöl, and Muya rift basins, respectively). The three zones of local strain anisotropy highs coincide with domains of predominantly vertical stress where earthquakes of different magnitudes are mostly of normal slip geometry. Pulse-like reversals of principal stresses in the high-strain domains appear to be nonlinear responses of the system to subcrustal processes. In this respect, the BRS lithosphere is interpreted in terms of the self organization theory as a geological dissipative system. Correspondingly, the domains of high strain anisotropy and stress change, called rifting attractor structures (RAS), are the driving forces of its evolution. The location and nonlinear dynamics of the rifting attractors have controlled lithospheric stress and strain of the rift system over the period of observations, and the same scenario may have been valid also in the Mesozoic-Cenozoic rifting history. The suggested model of a positive-feedback (fire-like) evolution of nonlinear dynamical systems with rifting attractors opens a new perspective on the current geodynamics and tectonophysics of the Baikal rift system.

  14. Submarine thermal springs on the Galapagos Rift

    USGS Publications Warehouse

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  15. Early structural development of the Okavango rift zone, NW Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, B. D.; Atekwana, E. A.; Hogan, J. P.; Modisi, M. P.; Wheaton, D. D.; Kampunzu, A. B.

    2007-06-01

    Aeromagnetic and gravity data collected across the Okavango rift zone, northwest Botswana are used to map the distribution of faults, provide insights into the two-dimensional shallow subsurface geometry of the rift, and evaluate models for basin formation as well as the role of pre-existing basement fabric on the development of this nascent continental rift. The structural fabric (fold axes and foliation) of the Proterozoic basement terrane is clearly imaged on both gravity and magnetic maps. The strike of rift-related faults (030-050° in the north and 060-070° in the south) parallels fold axes and the prominent foliation directions of the basement rocks. These pre-existing fabrics and structures represent a significant strength anisotropy that controlled the orientation of younger brittle faults within the stress regime present during initiation of this rift. Northwest dipping faults consistently exhibit greater displacements than southeast dipping faults, suggesting a developing half-graben geometry for this rift zone. However, the absence of fully developed half-grabens along this rift zone suggests that the border fault system is not fully developed consistent with the infancy of rifting. Three en-echelon northeast trending depocenters coincide with structural grabens that define the Okavango rift zone. Along the southeastern boundary of the rift, developing border faults define a 50 km wide zone of subsidence within a larger 150 km wide zone of extension forming a rift-in-rift structure. We infer from this observation that the localization of strain resulting from extension is occurring mostly along the southeastern boundary where the border fault system is being initiated, underscoring the important role of border faults in accommodating strain even during this early stage of rift development. We conclude that incipient rift zones may provide critical insights into the development of rift basins during the earliest stages of continental rifting.

  16. Variation in styles of rifting in the Gulf of California.

    PubMed

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism.

  17. Thermomechanical models of the Rio Grande rift

    SciTech Connect

    Bridwell, R.J.; Anderson, C.A.

    1980-01-01

    Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

  18. GPS Velocity Field at the Western Tip of the Aden Ridge ; Implications for Rifting and the Arabia-Somalia-Nubia Triple Junction Dynamics

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Socquet, A.; Masson, F.; Cressot, C.; Mohamed, K.; Vigny, C.; Ruegg, J.

    2010-12-01

    Due to the presence of magma and a complex thermal structure, the dynamics of divergent plate boundaries are complicated, with microseismicity (ML<4) contributing very little to the total moment release. For the last 35 years several geodetic campaigns have been conducted at the western tip of the Aden Ridge propagating on land into Afar (Republic of Djibouti). The first segment above water, the Asal Rift, experienced a seismo-volcanic event in 1978, which was the first rifting episode, along with the 1978-1985 Icelandic Krafla event, to be monitored by terrestrial geodetic measurements. These measurements revealed the opening of two 1-2 m-wide dykes in the rift inner floor. Since then, terrestrial and spatial geodetic monitoring shows that the rift kept opening, during the post-rifting period, at a rate largely exceeding the plates’ motions. This significant opening rate is decreasing with time to tend, three decades after the rifting event, to the far-field opening rate. We present here the results of the GPS measurements of a 45 site network covering the Tadjoura-Asal Rift System, previously made every two years from 1995 to 2003, and repeated in 2010. The calculated 1999-2010 horizontal velocity field is very homogeneous with a quasi-constant N045° direction with respect to Somalia and a regular increase from the southern to the northern margin of the Asal Rift clearly controlled by a few normal faults, and reaching a maximum of 12.5 mm/yr. A non-negligible part of the Arabia-Somalia divergent movement (1 to 2 mm/yr) is observed south of this rift, which sheds light on the role of the active normal faults bounding the asymmetrical Gaggadé Basin and therefore brings important constraints on the location of the Red Sea Ridge-Aden Ridge-East African Rift triple junction. Since the last 2003 campaign, the lack of micro-seismicity within the Asal Rift seems to be associated with a ˜2 mm/yr decrease of the opening rate deduced from the GPS time series analysis

  19. Molecular epidemiology of Rift Valley fever virus.

    PubMed

    Grobbelaar, Antoinette A; Weyer, Jacqueline; Leman, Patricia A; Kemp, Alan; Paweska, Janusz T; Swanepoel, Robert

    2011-12-01

    Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944-2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed.

  20. Neotectonics along the Turkana Rift (North Kenya) from river network analysis, remote sensing and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Vetel, W.; Le Gall, B.; Tiercelin, J.-J.

    2003-04-01

    The NS-trending Turkana Rift (North Kenya) cuts through a N140^oE transverse depressed zone between the Kenyan and Ethiopian domes. It forms a 200 km-long rift segment of the East African Rift System, centered on the Turkana Lake. In this region, widespread rifting occurred during the Oligocene to Mio-Pliocene and opened large NS-trending hemigrabens imaged by seismics to the West of the Turkana Lake. Because the Turkana rifted zone is a low and poorly contrasted topographic area, it is difficult to draw the trace of the active rift, in contrast with 1) the narrow (20 km-wide) N10^o-trending axial trough forming the Suguta valley to the South, and 2) the Chew Bahir faulted basin to the North. Despite a semi-arid climate, the Turkana area shows a dense and widely-distributed river drainage network dominated by the Turkwell, Kerio and Omo first-order rivers. The entire stream pattern has been extracted from Landsat satellite images and then analyzed in terms of drainage anomalies. Major anomalies have been recognized at various scales and assigned to active tectonics. The direct correlation between surface data and the deep structures imaged on seismics allows to precise the inherited (Oligo-Miocene) or newly-formed origin of the active deformation. Evidence for neotectonics are observed along 1) a large-scale transverse (EW) fault rooting at depth along a steep basement discontinuity (Turkwell), 2) a rift-parallel (NS) fault zone probably emplaced during Plio-Pleistocene and actually bounding the Napedet volcanic plateau to the West, and 3) over a round-shaped uplifted zone caused by inversion tectonics (Kalabata). Structural interpretation of offshore high-resolution seismics from Lake Turkana illustrates the existence of recent deformation and also helps complete the overall neotectonic framework of the Turkana rift zone. Finally, this study leads us to regard the Turkana area as a broad (ca. 100 km wide) zone of diffuse extension where active deformation is

  1. Rift kinematics during the incipient stages of continental extension: Evidence from the nascent Okavango rift basin, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Modisi, M. P.; Atekwana, E. A.; Kampunzu, A. B.; Ngwisanyi, T. H.

    2000-10-01

    High-resolution aeromagnetic data from the nascent Okavango rift in northwest Botswana provide an unprecedented view of rift kinematics during the incipient stages of continental extension. Crosscutting relationships between west-northwest trending 180 Ma Karoo dikes and reactivated northeast-trending Proterozoic basement faults are used to document the kinematics of Cenozoic faulting during the initial stages of rifting. Depth estimates to the top of the dikes using three-dimensional Euler deconvolution solutions have produced the following interpretations. (1) The Okavango rift is a half graben with a downthrow of ˜200 300 m. (2) The width of the Okavango rift (100 ± 20 km) is similar to that of more mature continental rifts such as the Tanganyika and Baikal rifts. This suggests that the width of continental rifts is acquired early in their evolution and reflects neither the age and maturity of the rift basin, nor the amount of extension. It is suggested that the cumulative downthrow (sediment infill included) and subsidence may be a better indicator of the relative maturity of rift basins. (3) Preexisting basement faults exert a major control during rifting, and reactivation processes do not occur synchronously along the entire length of preexisting faults. (4) The Okavango rift is defined by normal faults; there is no evidence of major strike-slip faults, thus excluding a pull-apart tectonic model for this nascent continental rift stage. (5) The preexisting Sekaka shear zone terminates the Okavango rift to the south, suggesting that such shear zones represent major barriers during longitudinal propagation of rifts. This probably explains why such shear zones commonly evolve into accommodation or transfer zones during further evolution of continental rifts.

  2. CT appearances of external ear canal cholesteatoma.

    PubMed

    Malcolm, P N; Francis, I S; Wareing, M J; Cox, T C

    1997-09-01

    External ear canal cholesteatoma (EECC) is rare in ear, nose and throat (ENT) practice. Two cases, one bilateral, are described. Computed tomography demonstrates the extent of bony involvement. Erosion of the external canal should not be overlooked when reviewing CT of the petrous bone in cases of discharge from the ear. EECC may necessitate surgery and delay in the diagnosis of EECC can result in progressive bony destruction.

  3. Thermochronometric evidence for diffuse extension and two-phase rifting within the Central Arabian Margin of the Red Sea Rift

    NASA Astrophysics Data System (ADS)

    Szymanski, E.; Stockli, D. F.; Johnson, P. R.; Hager, C.

    2016-12-01

    Numerical time-temperature models derived from a 2-D network of apatite and zircon (U-Th)/He ages reveal a three-stage thermotectonic history for the central Arabian rift flank (CARF) of the Red Sea Rift (RSR) system. The pre-rift Arabian-Nubian Shield existed as part of a passive Paleo-Tethyan margin until a widespread tectonic event at 350 Ma exhumed the proto-CARF to mid-to-upper crustal structural levels. After remaining thermally stable through the Mesozoic, the first phase of RSR extension began with a distinct rift pulse at 23 Ma when fault blocks across a 150 km wide area were exhumed along a diffuse set of rift-parallel faults from an average pre-rift flank depth of 1.7 ± 0.8 km. This rift onset age is mirrored in thermochronometric and sequence stratigraphic analyses elsewhere along the Red Sea Nubian and Arabian margins, confirming that rifting occurred concomitantly along the full Red Sea-Gulf of Suez rift system. Diffuse lithospheric extension lasted for 8 Myr before a second rift pulse at 15 Ma, coincident with regional stress realignment, transferred active faulting basinward toward the modern RSR axial trough. CARF time-temperature models indicate that the prevalent rift style during both RSR extensional phases was one of localized, structurally controlled block faulting and contemporaneous dike injection, not wholesale rift flank uplift.

  4. Molecular Mechanisms of Inner Ear Development

    PubMed Central

    Wu, Doris K.; Kelley, Matthew W.

    2012-01-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms. PMID:22855724

  5. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  6. Development and Integration of the Ear.

    PubMed

    Fuchs, Jennifer C; Tucker, Abigail S

    2015-01-01

    The perception of our environment via sensory organs plays a crucial role in survival and evolution. Hearing, one of our most developed senses, depends on the proper function of the auditory system and plays a key role in social communication, integration, and learning ability. The ear is a composite structure, comprised of the external, middle, and inner ear. During development, the ear is formed from the integration of a number of tissues of different embryonic origin, which initiate in distinct areas of the embryo at different time points. Functional connections between the components of the hearing apparatus have to be established and maintained during development and adulthood to allow proper sound submission from the outer to the middle and inner ear. This highly organized and intimate connectivity depends on intricate spatiotemporal signaling between the various tissues that give rise to the structures of the ear. Any alterations in this chain of events can lead to the loss of integration, which can subsequently lead to conductive hearing loss, in case of outer and middle ear defects or sensorineural hearing loss, if inner ear structures are defective. This chapter aims to review the current knowledge concerning the development of the three ear compartments as well as mechanisms and signaling pathways that have been implicated in the coordination and integration process of the ear.

  7. Milestones in the History of Ear Reconstruction.

    PubMed

    Berghaus, Alexander; Nicoló, Marion San

    2015-12-01

    The reconstruction of ear deformities has been challenging plastic surgeons since centuries. However, it is only in the 19th century that reports on partial and total ear reconstruction start increasing. In the quest for an aesthetically pleasing and natural-looking result, surgeons worked on the perfect framework and skin coverage. Different materials and flap techniques have evolved. Some were abandoned out of frustration, while others kept evolving over the years. In this article, we discuss the milestones in ear reconstruction-from ancient times to early attempts in Western civilization to the key chapters of ear reconstruction in the 20th century leading to the current techniques.

  8. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  9. Geometry and faults tectonic activity of the Okavango Rift Zone, Botswana: Evidence from magnetotelluric and electrical resistivity tomography imaging

    NASA Astrophysics Data System (ADS)

    Bufford, Kelsey Mosley; Atekwana, Estella A.; Abdelsalam, Mohamed G.; Shemang, Elijah; Atekwana, Eliot A.; Mickus, Kevin; Moidaki, Moikwathai; Modisi, Motsoptse P.; Molwalefhe, Loago

    2012-04-01

    We used Magnetotelluric (MT) and Electrical Resistivity Tomography (ERT) to investigate the geometry and nature of faults activity of the Okavango Rift Zone (ORZ) in Botswana, an incipient rift at the southern tip of the Southwestern Branch of the East African Rift System. The ORZ forms a subtle topographic depression filled with Quaternary lacustrine and fluvio-deltaic sediments and is bounded by NE-trending normal faults that are more prominent in the southeastern portion of the rift basin. An MT model from a regional (˜140 km) NW-SE trending MT transect shows that much of the rift basin is underlain by a broad asymmetrical low resistivity anomaly that slopes gently (˜1°) from NW to SE reaching a depth of ˜300 m. This anomaly suggests that faults in the southeastern part of the rift form a NW-dipping border fault zone and that the lacustrine and fluvio-deltaic sediments contain brackish to saline water filling the broad half-graben structure. Furthermore, MT and ERT models from detailed (4-13 km long) MT transects and resistivity profiles show that one border fault (Thamalakane) and two within-basin faults (Lecha and Tsau) in the southeastern part of the ORZ are characterized by a localized high conductivity anomaly while another border fault (Kunyere) lacks such an anomaly. These localized anomalies are attributed to channelized fresh surface water and saline groundwater percolating through these faults forming "fault zone conductors" and suggest actively displacing faults. The lack of a "fault zone conductor" in the Kunyere fault is interpreted as indicating diminishing displacement on this fault, and that strain was transferred to the Thamalakane fault further to the east. The fluids provide lubricant for the ORZ faults, hence preventing infrequent large magnitude earthquakes, but favoring frequent micro-seismicity.

  10. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  11. Post Rift Evolution of the Indian Margin of Southern Africa

    NASA Astrophysics Data System (ADS)

    Baby, Guillaume; Guillocheau, François; Robin, Cécile; Dall'asta, Massimo

    2016-04-01

    The objective of this study is to discuss the evolution of the South African Plateau along the Indian margin of Southern Africa. Since the classical works of A. du Toit and L.C. King and the improvement of thermochronological methods and numerical models, the question of the uplift of South African Plateau was highly debated with numerous scenarios: early Cretaceous at time of rifting (Van der Beek et al., J.Geophys.Res., 2002), late Cretaceous (Braun et al., Solid Earth, 2014), late Cenozoic (Burke & Gunnell, Geol.Soc.of America, 2008). Limited attention has been paid on the constraints provided by the offshore stratigraphic record of the surrounding margins. The objective of our study is to integrate onshore and offshore data (seismic profiles and industrial wells) to (1) analyse the infill of the whole margin (21°S to 31°S) from its hinterland to the distal deep water basin, (2) to constrain and quantify the vertical movements. We discuss the impact on accommodation and sediments partitioning, and their significance on South African Plateau uplift history. 1. Sedimentary basins of the Indian margin of Southern Africa are related to the break-up of Gondwana during late Jurassic, resulting in rifts and flexural basins. First marine incursions started during early Cretaceous times (oldest marine outcropping sediments are of Barremian age ~128 Ma). The region developed as a normal continental shelf at the Aptian-Albian transition (~113 Ma). 2. The Cretaceous geological history of the basins is characterized by differential uplift and subsidence of the basement, controlled by structures inherited from break up. As example, major early Cretaceous depocenters of the margin are located on the north of Save-Limpopo uplift (Forster, Paleogography, Paleoclimatology, Paleoecology, 1975) showing an eastward drainage pattern, maybe related to a proto Limpopo drainage. Those observations suggest that the escarpment bordering the Bushveld depression is an old relief inherited

  12. The 1973 Ethiopian-Rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    Remeasurement of the Adama, Lake Langana, and Arba Minch (Lake Margherita) geodimeter networks in 1973 has enabled Mohr's interpretation concerning possible surface ground deformation in the Ethiopian rift to be considerably developed. Extension appears to have occurred across the Mojjo-Adama horst at a rate of about 1 cm yr/1. The opposing rims of the Adama graben have not moved significantly relative to one another (between 1969 and 1973), but stations on the sliced graben floor show possible movement with a large rift-trend component. In the Wolenchiti quadrilateral, significant movement of station RABBIT is confirmed, but the radical change of vector (that of 1970-1971 to that of 1971-1973) casts doubt on a tectonic cause and seems to indicate that stations on steep hillslopes are liable to be unstable. South of the quadrilateral and east of the Adama graben, alternating rift-trend zones of extension and shortening appear to coexist. In the Lake Langana network, significant movements of the order of 0.5 cm yr/1 are directed perpendicular to the rift floor faulting.

  13. Molecular Rift: Virtual Reality for Drug Designers.

    PubMed

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  14. Rift Valley fever: A neglected zoonotic disease?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930, subsequent outbreaks have had a significant impact on animal and human health, as well as national economies. ...

  15. Reemergence of Rift Valley fever, Mauritania, 2010.

    PubMed

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C M; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O; Zanotto, Paolo M A; Diallo, Mawlouth; Sall, Amadou A

    2014-02-01

    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.

  16. Prediction of a Rift Valley fever Outbreak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using satellite measurements to detect elevated sea surface temperatures (SSTs) and subsequent elevated normalized difference vegetation index (NDVI) data in Africa, we predicted an outbreak of Rift Valley fever (RVF) in humans and animals in the Horn of Africa during September 2006-May 2007. We det...

  17. Diagnostic approaches for Rift Valley Fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  18. The Midcontinent Rift and Grenville connection

    SciTech Connect

    Cambray, F.W.; Fujita, K. . Dept. of Geological Sciences)

    1994-04-01

    The Mid-Proterozoic, Midcontinent Rift System (MRS) is delineated by an inverted U shaped gravity and magnetic anomaly. It terminates in southeast Michigan but a less continuous series of anomalies and sediments, the Eastcontinent Rift occur on a north-south line through Ohio and Kentucky. The geometry allows for a north-south opening, the Lake Superior section being orthogonal to opening, the western arm transtensional and the north-south trending eastern arm a transform boundary offset by pull-apart basins. The opening and closing of the rift overlaps in time with the Grenville Orogeny. Grenville age rocks can also be found in the Llano uplift of Texas. The authors propose a model to explain the temporal and geographic association of the opening and closing of the MRS with the Grenville Orogeny that involves irregular suturing between two continental masses. Initiation of Grenville suturing, associated with south dipping subduction, in the northeast and in the Llano area of Texas would leave portion of unclosed ocean in between. Tensional stresses in the continental crust adjacent to the oceanic remnant could lead to its fragmentation and the formation of the MRS. The remaining oceanic lithosphere would eventually subduct, limiting the opening of the MRS. Continued convergence of the plates would induce compressional stresses thus accounting for the deformation of the MRS. An analogy is made with more recent opening of the Red Sea, Gulf of Aden Rift System in association with irregular collision along the Zagros-Bitlis Sutures.

  19. Contrasting conditions of rift and off-rift silicic magma origin on Iceland

    NASA Astrophysics Data System (ADS)

    Schattel, Nadine; Portnyagin, Maxim; Golowin, Roman; Hoernle, Kaj; Bindeman, Ilya

    2014-08-01

    Factors controlling the origin of silicic magmas on Iceland are poorly constrained. Here we present new data on H2O content, pressure, temperature, oxygen fugacity, and oxygen isotope composition of rhyolites from Askja, Öræfajökull, and Hekla volcanoes. All these parameters correlate with tectonic (rift and off-rift) setting of the volcanoes. Askja rift rhyolites originate through extensive assimilation of high-temperature hydrothermally altered crust (δ18O < 2‰) at shallow depths (≥1.8 km). These rhyolites are hot (935-1008°C), relatively dry (H2O < 2.7 wt%), and oxidized (QFM = +1.4). Cooler (874-902°C), wet (H2O = 4-6.3 wt%), and non-oxidized (~QFM to QFM-1) off-rift rhyolites (Öræfajökull, Hekla) originate through differentiation deeper in the crust (≥4 km) with almost no or little assimilation of high-T, altered crust, as reflected by slightly lower to normal δ18O values (5.2-6‰). Although off-rift rhyolites predominate during the Holocene, older silicic rocks on Iceland primarily formed in a rift setting possibly analogous to the oldest continental crust on Earth.

  20. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    SciTech Connect

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  1. Rifting and Faulting on icy Satellites

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2003-12-01

    Two kinds of rifting have been identified on the icy Galilean satellites [1,2]. Europa possesses ˜10~km wide extensional bands, characterized by very high degrees of local extension, internal deformation on a lengthscale of ˜~100~m, and a general resemblance to mid-ocean ridges on Earth [3]. Ganymede has ˜100~km wide areas of grooved terrain, characterized by km-scale tilted fault blocks [4,5], lower degrees of local extension (stretching factor <1.6 [5]) and a general resemblance to continental rifts on Earth [1]. The characteristic spacing of faults on Europa and Ganymede has been used to infer the depth to the brittle-ductile transition (BDT), which depends on the strain rate and the shell thickness [4,6]. Here I present another constraint on these quantities, obtained by considering the circumstances under which narrow (Europa-style) or wide (Ganymede-style) rifts may form. The model is based on an analysis of terrestrial continent rifting [7]. When an ice shell is extended, the thermal gradient increases and it becomes weaker, favouring further extension. The extension also gives rise to lateral shell thickness variations, which oppose further extension. However, these lateral thickness variations may be removed if the base of the ice shell can flow rapidly. If lateral flow is rapid, narrow zones of extension and high stretching factors are generated. If lateral flow is slow, wider rifts and lower stretching factors are favoured. Thick ice shells or high strain rates favour narrow rifts; thin ice shells or low strain rates favour wide rifts. The existence of wide rifts on Ganymede is consistent with a conductive shell thickness of 4-8~km at the time of rifting, and agrees with previous estimates of strain rates [8]. To produce narrow rifting and the inferred BDT depth on Europa requires a larger shell thickness (8-20~km) and a strain rate >= 10-15~s-1. Based on the likely shell thicknesses, the inferred strain rates for Europa and Ganymede can be explained

  2. Introduction to Special Section on the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Keller, G. R.

    1986-05-01

    With the aid of a Penrose Conference in 1974 and an international rift conference held in 1978 in Santa Fe, New Mexico, the Rio Grande rift has become widely recognized as a major Cenozoic continental rift zone. As a result of the 1978 Santa Fe meeting, the American Geophysical Union published a special volume of papers concerned with the Rio Grande rift [Riecker, 1979], and the New Mexico Geological Society recently published another volume focused on this rift [Baldridge et al., 1984]. These volumes are a manifestation of the research activity which lead to the formation of the Rio Grande rift consortium whose purpose is to foster rift-related research and communication. This organization has sponsored several special sessions at geological and geophysical meetings and has generally increased the awareness of this important feature.

  3. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  4. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    NASA Astrophysics Data System (ADS)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  5. The lifecycle of caldera-forming volcanoes in the Main Ethiopian Rift: insights from Aluto volcano

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Hutchison, W.; Yirgu, G.; Biggs, J.; Cohen, B. E.; Barfod, D. N.; Lewi, E.; Pyle, D. M.

    2015-12-01

    The silicic peralkaline volcanoes of the East African Rift are some of the least studied and yet potentially most dangerous volcanoes in the world. We present the first detailed account of the eruptive history of Aluto, a restless silicic volcano located in the Main Ethiopian Rift, using new constraints from fieldwork, remote sensing, 40Ar/39Ar geochronology and geochemistry. Prior to the growth of the Aluto volcanic complex (before 500 ka) the region was characterized by a significant period of fault development and mafic fissure eruptions. The earliest volcanism at Aluto built up a trachytic complex over 8 km in diameter. Aluto then underwent large-volume ignimbrite eruptions at ca. 300 ka developing a ~42 km2 collapse structure. After a hiatus of ~250 kyr, a phase of post-caldera volcanism began. Since ca. 60 ka, highly-evolved peralkaline rhyolite lavas, ignimbrites and pumice fall deposits have erupted from vents across the complex. The age of the youngest volcanism is not well known. Geochemical modelling is consistent with rhyolite genesis from protracted fractionation (>80 %) of typical 'rift basalt'. Based on the field stratigraphy and the number, style and volume of recent eruptions we suggest that silicic eruptions occur at an average rate of 1 per 1000 years, and that future eruptions of Aluto will involve explosive emplacement of localised pumice cones and effusive obsidian coulees of volumes between 1-100 × 106 m3. Comparisons with other caldera volcanoes in this section of the rift suggest that there may be parallels between Aluto's behaviour and that of other volcanic centres, both in terms of the volcanic 'lifecycle', and broad timings of caldera collapse events.

  6. Efficacy of three candidate Rift Valley fever vaccines in sheep.

    PubMed

    Kortekaas, J; Antonis, A F G; Kant, J; Vloet, R P M; Vogel, A; Oreshkova, N; de Boer, S M; Bosch, B J; Moormann, R J M

    2012-05-14

    Rift Valley fever virus (RVFV) is a mosquito-transmitted Bunyavirus that causes high morbidity and mortality among ruminants and humans. The virus is endemic to the African continent and the Arabian Peninsula and continues to spread into new areas. The explosive nature of RVF outbreaks requires that vaccines provide swift protection after a single vaccination. We recently developed several candidate vaccines and here report their efficacy in lambs within three weeks after a single vaccination. The first vaccine comprises the purified ectodomain of the Gn structural glycoprotein formulated in a water-in-oil adjuvant. The second vaccine is based on a Newcastle disease virus-based vector that produces both RVFV structural glycoproteins Gn and Gc. The third vaccine comprises a recently developed nonspreading RVFV. The latter two vaccines were administered without adjuvant. The inactivated whole virus-based vaccine produced by Onderstepoort Biological Products was used as a positive control. Five out of six mock-vaccinated lambs developed high viremia and fever and one lamb succumbed to the challenge infection. A single vaccination with each vaccine resulted in a neutralizing antibody response within three weeks after vaccination and protected lambs from viremia, pyrexia and mortality.

  7. Persistence of Rift Valley fever virus in East Africa

    NASA Astrophysics Data System (ADS)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.

    2012-04-01

    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  8. Middle Stone Age starch acquisition in the Niassa Rift, Mozambique

    NASA Astrophysics Data System (ADS)

    Mercader, Julio; Bennett, Tim; Raja, Mussa

    2008-09-01

    The quest for direct lines of evidence for Paleolithic plant consumption during the African Middle Stone Age has led scientists to study residues and use-wear on flaked stone tools. Past work has established lithic function through multiple lines of evidence and the spatial breakdown of use-wear and microscopic traces on tool surfaces. This paper focuses on the quantitative analysis of starch assemblages and the botanical identification of grains from flake and core tools to learn about human ecology of carbohydrate use around the Niassa woodlands, in the Mozambican Rift. The processing of starchy plant parts is deduced from the occurrence of starch assemblages that presumably got attached to stone tool surfaces by actions associated with extractive or culinary activities. Specifically, we investigate starch grains from stone tools recently excavated in northern Mozambique at the site of Mikuyu; which presumably spans the middle to late Pleistocene and represents similar sites found along the Malawi/Niassa corridor that links East, Southern, and Central Africa. Starch was extracted and processed with a diverse tool kit consisting of scrapers, cores, points, flakes, and other kinds of tools. The microbotanical data suggests consumption of seeds, legumes, caryopses, piths, underground storage organs, nuts, and mesocarps from more than a dozen families. Our data suggest a great antiquity for starch use in Africa as well as an expanded diet and intensification.

  9. Morphology and function of Neandertal and modern human ear ossicles

    PubMed Central

    David, Romain; Gunz, Philipp; Schmidt, Tobias; Spoor, Fred; Hublin, Jean-Jacques

    2016-01-01

    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor. PMID:27671643

  10. Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?

    PubMed

    Christensen-Dalsgaard, Jakob; Brandt, Christian; Wilson, Maria; Wahlberg, Magnus; Madsen, Peter T

    2011-02-23

    Lungfishes are the closest living relatives of the tetrapods, and the ear of recent lungfishes resembles the tetrapod ear more than the ear of ray-finned fishes and is therefore of interest for understanding the evolution of hearing in the early tetrapods. The water-to-land transition resulted in major changes in the tetrapod ear associated with the detection of air-borne sound pressure, as evidenced by the late and independent origins of tympanic ears in all of the major tetrapod groups. To investigate lungfish pressure and vibration detection, we measured the sensitivity and frequency responses of five West African lungfish (Protopterus annectens) using brainstem potentials evoked by calibrated sound and vibration stimuli in air and water. We find that the lungfish ear has good low-frequency vibration sensitivity, like recent amphibians, but poor sensitivity to air-borne sound. The skull shows measurable vibrations above 100 Hz when stimulated by air-borne sound, but the ear is apparently insensitive at these frequencies, suggesting that the lungfish ear is neither adapted nor pre-adapted for aerial hearing. Thus, if the lungfish ear is a model of the ear of early tetrapods, their auditory sensitivity was limited to very low frequencies on land, mostly mediated by substrate-borne vibrations.

  11. Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?

    PubMed Central

    Christensen-Dalsgaard, Jakob; Brandt, Christian; Wilson, Maria; Wahlberg, Magnus; Madsen, Peter T.

    2011-01-01

    Lungfishes are the closest living relatives of the tetrapods, and the ear of recent lungfishes resembles the tetrapod ear more than the ear of ray-finned fishes and is therefore of interest for understanding the evolution of hearing in the early tetrapods. The water-to-land transition resulted in major changes in the tetrapod ear associated with the detection of air-borne sound pressure, as evidenced by the late and independent origins of tympanic ears in all of the major tetrapod groups. To investigate lungfish pressure and vibration detection, we measured the sensitivity and frequency responses of five West African lungfish (Protopterus annectens) using brainstem potentials evoked by calibrated sound and vibration stimuli in air and water. We find that the lungfish ear has good low-frequency vibration sensitivity, like recent amphibians, but poor sensitivity to air-borne sound. The skull shows measurable vibrations above 100 Hz when stimulated by air-borne sound, but the ear is apparently insensitive at these frequencies, suggesting that the lungfish ear is neither adapted nor pre-adapted for aerial hearing. Thus, if the lungfish ear is a model of the ear of early tetrapods, their auditory sensitivity was limited to very low frequencies on land, mostly mediated by substrate-borne vibrations. PMID:20826468

  12. The ability to listen with independent ears.

    PubMed

    Gallun, Frederick J; Mason, Christine R; Kidd, Gerald

    2007-11-01

    In three experiments, listeners identified speech processed into narrow bands and presented to the right ("target") ear. The ability of listeners to ignore (or even use) conflicting contralateral stimulation was examined by presenting various maskers to the target ear ("ipsilateral") and nontarget ear ("contralateral"). Theoretically, an absence of contralateral interference would imply selectively attending to only the target ear; the presence of interference from the contralateral stimulus would imply that listeners were unable to treat the stimuli at the two ears independently; and improved performance in the presence of informative contralateral stimulation would imply that listeners can process the signals at both ears and keep them separate rather than combining them. Experiments showed evidence of the ability to selectively process (or respond to) only the target ear in some, but not all, conditions. No evidence was found for improved performance due to contralateral stimulation. The pattern of interference found across experiments supports an interaction of stimulus-based factors (auditory grouping) and task-based factors (demand for processing resources) and suggests that listeners may not always be able to listen to the "better" ear even when it would be beneficial to do so.

  13. Playing by Ear: Foundation or Frill?

    ERIC Educational Resources Information Center

    Woody, Robert H.

    2012-01-01

    Many people divide musicians into two types: those who can read music and those who play by ear. Formal music education tends to place great emphasis on producing musically literate performers but devotes much less attention to teaching students to make music without notation. Some would suggest that playing by ear is a specialized skill that is…

  14. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification....

  15. INNER EAR EMBRYOGENESIS: GENETIC AND ENVIRONMENTAL DETERMINANTS

    EPA Science Inventory

    The anatomy and developmental molecular genetics of the inner ear from establishment of the otic placode to formation of the definitive cochlea and vestibular apparatus will be reviewed and the complex 3-D structural changes that shape the developing inner ear will be illustrated...

  16. Stem Cell Therapy for the Inner Ear

    PubMed Central

    Okano, Takayuki

    2012-01-01

    In vertebrates, perception of sound, motion, and balance is mediated through mechanosensory hair cells located within the inner ear. In mammals, hair cells are only generated during a short period of embryonic development. As a result, loss of hair cells as a consequence of injury, disease, or genetic mutation, leads to permanent sensory deficits. At present, cochlear implantation is the only option for profound hearing loss. However, outcomes are still variable and even the best implant cannot provide the acuity of a biological ear. The recent emergence of stem cell technology has the potential to open new approaches for hair cell regeneration. The goal of this review is to summarize the current state of inner ear stem cell research from a viewpoint of its clinical application for inner ear disorders to illustrate how complementary studies have the potential to promote and refine stem cell therapies for inner ear diseases. The review initially discusses our current understanding of the genetic pathways that regulate hair cell formation from inner ear progenitors during normal development. Subsequent sections discuss the possible use of endogenous inner ear stem cells to induce repair as well as the initial studies aimed at transplanting stem cells into the ear. PMID:22514095

  17. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification....

  18. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification....

  19. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification....

  20. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification....

  1. Cutaneous lesions of the external ear

    PubMed Central

    Sand, Michael; Sand, Daniel; Brors, Dominik; Altmeyer, Peter; Mann, Benno; Bechara, Falk G

    2008-01-01

    Skin diseases on the external aspect of the ear are seen in a variety of medical disciplines. Dermatologists, othorhinolaryngologists, general practitioners, general and plastic surgeons are regularly consulted regarding cutaneous lesions on the ear. This article will focus on those diseases wherefore surgery or laser therapy is considered as a possible treatment option or which are potentially subject to surgical evaluation. PMID:18261212

  2. Structural inheritance, segmentation, and rift localization in the Gulf of Aden oblique rift

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Leroy, Sylvie; Autin, Julia; d'Acremont, Elia; Razin, Philippe; Husson, Laurent; Pik, Raphael; Watremez, Louise; Baurion, Celine; Beslier, Marie-Odile; Khanbari, Khaled; Ahmed, Abdulhakim

    2013-04-01

    The structural evolution of the Gulf of Aden passive margins was controlled by its oblique divergence kinematics, inherited structures, and the Afar hot spot. The rifting between Arabia and Somalia started at 35 Ma just before the hot spot paroxysm (at 30Ma) and lasted until 18Ma, when oceanic spreading started. Fieldwork suggests that rift parallel normal faults initiated in the (future) distal margins, after a first stage of distributed rifting, and witness the rift localization, as confirmed by 4-layer analogue models. These faults arise either from crust or lithosphere scale buoyancy forces that are strongly controlled by the mantle temperature under the influence of the Afar hot spot. This implies a transition from a distributed mode to a localized one, sharper, both in space and time, in the West (close to the hot spot) than in the East (far away from the hot spot). In this framework, first order transform F.Z. are here (re-) defined by the fact that they deform continental crust. In the Gulf of Aden, as well as in other continental margins, it appears that these F.Z. are often, if not always, located at continental transfer or "transform" fault zones. Our detailed field-study of an offshore transfer fault zone in the southeastern Gulf of Aden (Socotra Island) shows that these structures are long-lived since early rifting until post rift times. During the early rifting, they are inherited structures reactivated as oblique normal faults before accommodating strike-slip motion. During the Ocean-Continent Transition (OCT) formation ("post syn-rift" times), a significant uplift occurred in the transfer fault zone footwall as shown by stratigraphic and LT thermochronology data. Second order transform F.Z. are defined as deforming only the OCT, thus initiated at the moment of its formation. In the western Gulf of Aden, the hot spot provoked a rift localization strongly oblique to the divergence and, as a consequence, several second order transform F.Z. formed (as

  3. Relative Motion of Africa Plate with Respect to South African Kalahari Craton

    NASA Astrophysics Data System (ADS)

    Njoroge, Mary; Malservisi, Rocco; Hugentobler, Urs; Voytenko, Denis

    2014-05-01

    The presence of the Rift Valley within the African continent and its eventual propagation southward in the Okavango rift zone (ORZ) strongly affects the regional seismic hazard evaluation. Here we use a comparison of the motion inferred from the South African GPS network TrigNet with the motion of instruments with the rest of the African continent to evaluate the propagation of the Rift Valley to Botswana. We use data from all the available GPS stations located in the Nubian plate to develop two reference frames north and south of the ORZ. The data was processed using two major codes (Bernese and Gipsy-oasis) to evaluate effects on the references due to processing assumptions. Given the importance of uncertainties in understanding the significance of small signals, a full analysis of the Allan Variance of the velocity has been performed. Preliminary results suggest that although still within the limits of the uncertainties, the data are compatible with relative motion between the TrigNet network and the rest of Nubia, and does not exclude a possible counter clockwise rotation of the South African Kalahari craton with respect to the Nubian plate, and thus a southward propagation of the Rift Valley.

  4. Forensic investigation of rift-to-drift transitions and volcanic rifted margins birth

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Hertogen, J.

    2008-12-01

    Volcanic rifted margins (VRM) reflect excess magmatism generated during the rift-to-drift transition of a continental rift system evolving into a Mid-Ocean Ridge (MOR). As a result many VRM (e.g. NAIP and CAMP) are recognized as Large Igneous Provinces (LIP). The prominent structural characteristics of VRM are Continental Flood Basalts, High-Velocity Lower Crustal bodies (HVLC) and Seaward Dipping Reflector Sequences (SDRS). However, the causes of these anomalously high eruption rates and magma volumes are presently poorly understood. Controversial issue opinions are based on two competing hypotheses: 1) Mantle plume related mechanisms where the excess magmatism results from elevated mantle temperatures; and 2) Rift induced small scale convection processes causing temperature anomalies and enhancing the mantle rock flux through the melt window. Largely because of difficulties to sample oceanic basement at VRM -due to thick sediment covers- the composition of rift-to-drift transition magmas is generally poorly constrained. We reviewed the geodynamic histories and magma compositions from well known VRM (e.g. NE Australia, E USA, Madagascar) and compared these data with own geochemical data from different NE Atlantic tectono-magmatic VRM zones. These comparisons point to a consistent, general VRM formation model. This model has to explain the primary observation, that geological long periods of extension have been reported -in all investigated VRM areas- prior to the breakup. Extensional far field stress looks to be the main geodynamic cause for continental breakup. Small scale convection during the late phase of a continental rift system is probably the key process generating excess magmatism in LIP related to rift-to-drift transitions.

  5. Numerical analysis of ossicular chain lesion of human ear

    NASA Astrophysics Data System (ADS)

    Liu, Yingxi; Li, Sheng; Sun, Xiuzhen

    2009-04-01

    Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.

  6. Tectonics of the South Georgia Rift

    NASA Astrophysics Data System (ADS)

    Heffner, David M.

    Triassic rifting of the supercontinent Pangea left behind numerous basins on what is now the eastern North American margin. The South Georgia Rift (SGR) was thought to be the best preserved of these basins having been capped by thick basalt flows of the Central Atlantic Magmatic Province (CAMP) and later buried beneath the Cretaceous and younger Coastal Plain. Because it is buried beneath the Coastal Plain, the SGR is only known through sparse drilling and geophysical methods. Despite this limited dataset, the SGR is the only one of the eastern North American Triassic basins known to overlie the ancient Alleghanian suture between Laurentia and Gondwana, although it isn't clear what influence this lithospheric weakness played in formation of the rift. The SGR has been variably interpreted as a singular large basin or as isolated sub-basins separated by transfer zones. Transfer zones are rift-transverse structural features that link major faults of rift sub-basins and accommodate differences in extensional strain. Transfer zones have been previously hypothesized to be present in the SGR based on onshore projections of Central Atlantic fracture zones, but observations confirming their existence, such as reversal in sub-basin polarity, have been lacking. Three separate hypotheses are tested related to the SGR: 1) the J-Horizon corresponds everywhere with basalt; 2) transfer zones are an important structural component of the SGR; 3) structural features of the Central Atlantic Ocean are related to transfer zones of the SGR. Reanalysis of existing well and seismic data shows that the extent of the flood basalt in the SGR is restricted and that the J-Horizon coincides with the base of the Coastal Plain. Subsurface mapping reveals reversals in sub-basin polarity, confirming the existence of previously hypothesized transfer zones. Small circle projections of the transfer zones correlate with oceanic features, and Central Atlantic fracture zones project onshore into inferred

  7. The position of continental flood basalts in rift zones and its bearing on models of rifting

    NASA Astrophysics Data System (ADS)

    Kazmin, V. G.

    1991-12-01

    Two models of rifting—"pure shear" and "simple shear"—are at present being widely discussed. In this paper attention is drawn to the fact that continental flood basalts (CFB), associated with rifts, usually display a strong asymmetry relative to the rift axis. The Karroo, the Parana, and the Deccan basalts, as well as the Ethiopian flood basalts and the basalts of the Arabian Shield are concentrated mainly on one side of the respective rifts. Structural data indicate that the eruptions occurred on the "upper plates", if the low-angle, simple-shear model of Wernicke (1985) is accepted. It is suggested that the asymmetry of eruptions is caused by the asymmetric position of the asthenopheic rise predicted by this model. The low-angle detachment may serve as a conduit for magmatic fluid. This fits well with data on the existence of large magmatic reservoirs of CFB at subcrustal or crustal levels and explains why eruptions are concentrated in the rift and on one of its shoulders, while being restricted on the other. This asymmetry of volcanism supports models of continental rifting associated with low-angle simple-shear detachment.

  8. Mesoclimatic imprints on palaeoclimate records from rift graben sediments: Implications from stable and radiogenic isotope data from mammalian tooth enamel

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas; Brügmann, Gerhard; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Ssemmanda, Immaculate; Taubald, Herbert

    2010-05-01

    The Neogene of East Africa is regarded as a period of long-term increasing aridity. It has been proposed that this is the result of a cooling of Indian Ocean surface waters or is caused by tectonic processes leading to the updoming of East Africa. However, mesoclimatic effects induced by the dynamics of the formation of rifts involving uplift of the rift shoulder and subsidence of the rift valley have been largely neglected so far. We have studied mesoclimatic variability by monitoring the evolution of the Albertine Rift (western branch of the East African Rift System) for the last 7 Ma using the tooth enamel of hippopotamids (Mammalia) as environmental archive. These non-migratory, water-dependant terrestrial mammals are particularly useful for palaeoclimate reconstructions because they have no dietary preferences with respect to C3 - C4 vegetation. By inhabiting lakes and rivers, Hippopotamids document mesoclimates of topographic depressions such as rift valleys and, therefore, changes of relative valley depth rather than entirely global climate changes. Average stable isotope compositions of oxygen and carbon were obtained from transects along drill cores through enamel. The Sr isotopic composition was determined by laser ablation multi-collector ICP-MS (Nu Plasma). 13C/12C isotope values in enamel imply the presence of pure C3 browsers (delta 13C < -9 per mil VPDB) from 7.0 to 3.0 Ma and pure C4 grazers (delta 13C > -1 per mil VPDB) from 2.3 to 1.0 Ma. This suggests a spread of grasslands during a maximum in aridity from 2.3 to 1.0 Ma. 18O/16O shows a systematic increase from values of -4.5 at 7.0 Ma to +1.4 per mil (delta 18O VPDB) 2.0 Ma ago. The Sr isotopic composition also increases systematically from 0.713 to 0.717 during this time period. This parallel evolution of 18O/16O and 87Sr/86Sr being climate and water provenance proxies, respectively, is interpreted in terms of rift shoulder uplift/subsidence of the rift valley floor. The oxygen isotopic

  9. Ear cleaning: the UK and US perspective.

    PubMed

    Nuttall, Tim; Cole, Lynette K

    2004-04-01

    Ear cleaning helps maintain the normal otic environment and is important in the treatment of otitis. Over cleaning, however, may trigger otitis through maceration of the epidermal lining. Simple manual cleaning is useful for routine cleansing but doesn't remove tightly adherent debris. Bulb syringes are more vigorous but may damage the ear in inexperienced hands. Devices using mains water pressure or dental machines are also available. Thorough cleaning of the ear canals and middle ear cavity can only be achieved by retrograde flushing using specially adapted catheters, feeding tubes or video otoscopes under anaesthesia. Myringotomy, inspection and cleaning of the middle should be performed if the tympanic membrane appears abnormal. There are a wide variety of cleaning fluids available. Ceruminolytics soften and dissolve cerumen to facilitate cleaning. Surfactants emulsify debris, breaking it up and keeping it in solution. Astringents dry the ear canal surface, preventing maceration. Maintaining a low pH and incorporating antimicrobial agents can inhibit microbial proliferation and glucocorticoids can be used to reduce inflammation. Adverse effects and contraindications following ear cleaning can include maceration, contact reactions, otitis media, ear canal avulsion, vestibular syndrome, Horner's syndrome, facial nerve paralysis and deafness. Care should be exercised in selecting cleaning fluids if the tympanic membranes are ruptured.

  10. Rift architecture and evolution: The Sirt Basin, Libya: The influence of basement fabrics and oblique tectonics

    NASA Astrophysics Data System (ADS)

    Abdunaser, K. M.; McCaffrey, K. J. W.

    2014-12-01

    The Cretaceous-Tertiary northwest-trending Sirt Basin system, Libya, is a rift/sag basin formed on Pan-African to Paleozoic-aged basement of North Africa. In this study, we investigate the rift-basin architecture and tectonic framework of the western Sirt Basin. Using remote sensed data, supported by borehole data from about 300 deep wells and surface geologic maps, we constructed geological cross sections and surface geology maps. Indication of the relative timing of structures and movement along faults has been determined where possible. Direction statistics for all the interpreted linear features acquired in the study area were calculated and given as a total distribution and then the totals are broken down by the major basin elements of the area. Hundreds of lineaments were recognized. Their lengths, range between a hundred meters up to hundreds of kilometers and the longest of the dominant trends are between N35W-N55W and between N55E-N65E which coincides with Sirt Basin structures. The produced rose diagrams reveal that the majority of the surface linear features in the region have four preferred orientations: N40-50W in the Zallah Trough, N45-55W in the Dur al Abd Trough, N35-55W in the Az Zahrah-Al Hufrah Platform, and in contrast in the Waddan Uplift a N55-65E trend. We recognize six lithostratigraphic sequences (phases) in the area's stratigraphic framework. A Pre-graben (Pre-rift) initiation stage involved the Pre-Cretaceous sediments formed before the main Sirt Basin subsidence. Then followed a Cretaceous to Eocene graben-fill stage that can divided into four structurally-active and structurally-inactive periods, and finally a terminal continental siliciclastics-rich package representing the post-rift stage of the development in post-Eocene time. In general five major fault systems dissect and divide the study area into geomorphological elevated blocks and depressions. Most of the oil fields present in the study area are associated with structural hinge

  11. Seismotectonics of Reelfoot rift basement structures

    SciTech Connect

    Dart, R.L.; Swolfs, H.S. )

    1993-03-01

    Contour maps of the Precambrian basement surface show major northwest-trending structural features within the boundaries of the northeast-oriented Reelfoot rift. These northwest-trending features, southeast of New Madrid, Missouri, consist of a trough flanked on the northeast by a 2-km-high ridge. These features correlate with similar features on an updated depth-to-magnetic basement map. The boundary between the trough and the ridge slopes gently to the southwest. The upward projection of this boundary into the overlying Paleozoic strata may be expressed on a structure-contour map of the Cambrian rocks. The vertical relief of this boundary on the younger datum is inferred to be about 1 km. This Precambrian trough-ridge structure may correlate with a southwest dipping, west-northwest-striking normal fault inferred by Schwalb (1982) to offset rocks of the Cambrian-Ordovician Knox Megagroup that subcrop at the Paleozoic surface. Schwalb (1982) inferred 1.22 km of vertical relief on this fault near the bootheel of Missouri. The nature and significance of this tectonic-structural boundary is unclear, but at the top of the Precambrian basement rocks, it coincides with the southwestern terminus of the New Madrid seismic zone (NMSZ) near the end of the Blytheville arch in northeastern Arkansas. Since the mid-1970's, when instrumental recording began, some of the earthquakes in the NMSZ having the largest magnitudes occurred in this area. The authors working hypothesis is that this trough-ridge structural boundary may concentrate stress and/or may be a barrier that defines the southwestern limit of the seismically active axial fault zone in the rift. Future study will concentrate on improving the understanding of the influence of rift-bounding faults on the lateral extent of this structure, as well as constructing a tectonic stress model of seismically active rift faults and this trough-ridge structure.

  12. The Midcontinent rift system in Kansas

    SciTech Connect

    Berendsen, P. . Kansas Geological Survey)

    1993-03-01

    A sequence of rift-related mafic volcanic rocks, volcanoclastic-, and clastic sedimentary rocks are recognized in cuttings and cores from about seventy wells in Kansas. The age (1,097.5 Ma) for gabbro in the Poersch [number sign]1 well in northern Kansas, as well as the general petrographic characteristics of the sedimentary rocks throughout the area favors a correlation with established Keweenawan stratigraphy in the Lake Superior region. Rift-related northeast-trending faults and older northwest-trending faults divide the area up into a number of orthogonal fault blocks or basins. Depending upon the tectonic history of the individual basin all or part of the Keweenawan section may be preserved. It is believed that large amounts of Keweenawan clastic sedimentary rock were eroded from the nemaha uplift east of the central graben of the rift and transported in an easterly direction. Prior to deposition of Paleozoic rocks the area was peneplaned. Correlation of various stratigraphic units over any distance is complicated by tectonic activity occurring at several times during the Precambrian and Paleozoic. Stratabound or stratiform deposits can occur both in the Precambrian as well as the overlying Paleozoic rocks. The possibility of massive sulfides to occur in the mafic intrusive rocks must not be excluded. In the core from the Poersch [number sign]1 well sulfides are recognized in gabbroic sills or dikes. Dark, fissile shale, similar to the Nonesuch Shale in the [number sign]1--4 Finn well averages 0.75% organic carbon. Thermal maturation within the rift probably ranges from within the oil window to over maturity.

  13. Early Paleozoic sedimentation in Reelfoot rift

    SciTech Connect

    Houseknecht, D.W.; Weaverling, P.H.

    1983-09-01

    Analysis of subsurface data from deep tests drilled in the northern Mississippi embayment and southern Mid-Continent suggests that earliest Paleozoic sedimentation was dominated by the tectonic evolution of the Reelfoot rift. Throughout most of the Mid-Continent, the Upper Cambrian Lamotte (Mt. Simon) sandstone rests nonconformably on Precambrian basement and is overlain by the Bonneterre (Eau Claire) Formation. However, in the area of the Reelfoot rift, both the Lamotte and Bonneterre grade into thick, basinal shales that locally display evidence of episodic deposition of coarse clastics, perhaps on submarine fans. Moreover, two major sedimentary units are present beneath the Lamotte-Bonneterre basinal facies within the Reelfoot rift. Immediately underlying the Lamotte-Bonneterre shale is a carbonate stratum (probably dolomite) that thickens to more than 1,000 ft (300 m) along the axis of the basin in eastern Arkansas. Underlying this carbonate is a detrital unit that grades from arkosic sandstone near the northern terminus of the basin to a basinal shale southward. This basinal shale is at least several hundred feet thick near the axis of the basin. These two strata occupy the stratigraphic position of the Conasauga (Middle Cambrian) and Rome (Lower Cambrian) Formations of the southern Appalachians. The axial and transverse distribution of these strata suggests that the Reelfoot evolved as paired grabens or half grabens during the Early and Middle Cambrian. Subsequently, the Reelfoot remained the axis for more widespread subsidence and sedimentation throughout much of the Paleozoic.

  14. [Ear keloid and clinical research progress].

    PubMed

    Du, Guangyuan; Zhu, Jiang

    2014-04-01

    Keloid refers to the damaged skin due to excessive fibroblast proliferation. Ear is one predilection site. The pathogenesis of ear keloid is not very clear, and the treatment is also varied. Surgery, postoperative radiotherapy and laser treatment, steroid hormones, pressure therapy are the basic treatment methods. Integrated application of a variety of treatments, classification research and new materials using revealed the prospect for the treatment of the disease. This thesis reviews literature about ear keloid in recent 10 years, and introduces this disease and clinical research progress.

  15. Surgical Management of Ear Diseases in Rabbits.

    PubMed

    Csomos, Rebecca; Bosscher, Georgia; Mans, Christoph; Hardie, Robert

    2016-01-01

    Otitis externa and media are frequently diagnosed disorders in rabbits and are particularly common in lop-eared breeds because of the specific anatomy of the ear canal. Medical management for otitis externa and media often provides only a temporary improvement in clinical signs. Surgery by means of partial or total ear canal ablation (PECA or TECA) combined with lateral bulla osteotomy (LBO) represents a feasible approach that is well tolerated and provides a good clinical outcome. Short-term complications associated with PECA/TECA-LBO include facial nerve paralysis and vestibular disease.

  16. The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling

    NASA Astrophysics Data System (ADS)

    Sippel, Judith; Meeßen, Christian; Cacace, Mauro; Mechie, James; Fishwick, Stewart; Heine, Christian; Scheck-Wenderoth, Magdalena; Strecker, Manfred R.

    2017-01-01

    We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting.

  17. African Aesthetics

    ERIC Educational Resources Information Center

    Abiodun, Rowland

    2001-01-01

    No single traditional discipline can adequately supply answers to the many unresolved questions in African art history. Because of the aesthetic, cultural, historical, and, not infrequently, political biases, already built into the conception and development of Western art history, the discipline of art history as defined and practiced in the West…

  18. African Pentecostalism

    ERIC Educational Resources Information Center

    Garrard, David J.

    2009-01-01

    The diversity of African Pentecostalism, its early colonial and missionary history and its current characteristics are described and analysed. Reference is made to methods of training and forms of leadership, and suggestions are made about the reasons for its growth and persistence. (Contains 19 notes.)

  19. The role of tephra studies in African paleoanthropology as exemplified by the Sidi Hakoma Tuff

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Endale, Tamrat; White, Tim D.; Thouveny, Nicolas; Hart, William K.; Renne, Paul R.; Asfaw, Berhane

    2013-01-01

    Beginning in the 1960s, geological and paleoanthropological exploration of the Ethiopian rift system's basins have led to the discovery and assembly of the most comprehensive record of human biological and technological change during the last 6 million years. The hominid fossils, including partial skeletons, were primarily discovered in the Afar Rift, the Main Ethiopian Rift, and in the Omo Basin of the broadly rifted zone of SW Ethiopia. The paleoanthropological research areas within the SW Afar Rift that have yielded many diverse hominid species and the oldest stone tools are, from north to south, Woranso-Mille (aff. Ardipithecus and Au. afarensis), Hadar (Au. afarensis, Homo sp.), Dikika (Au. afarensis), Gona (Ar. kadabba, Ar. ramidus, H. erectus, and oldest stone tools), Middle Awash (Ar. kadabba, Ar. ramidus, Au. anamensis, Au. afarensis, Au. garhi, H. erectus, H. rhodesiensis, H. sapiens idaltu, and the oldest paleo-butchery locality), and Galili (Au. afarensis). Additional hominid remains were discovered at Melka Kunture on the banks of the Awash River near its source along the western margin of the central part of the Main Ethiopian Rift (H. erectus), at Konso (H. erectus and A. boisei), and at the southern end of the MER, and in the Omo Basin (Au. anamensis, Au. afarensis, Au. aethiopicus, Au. boisei, H. habilis, and H. erectus). Distal and sometimes proximal tephra units interbedded within fossilifeous sedimentary deposits have become key elements in this work by providing chronological and correlative control and depositional contexts. Several regional tephra markers have been identified within the northern half of the eastern African rift valley in Ethiopia and Kenya, and in marine sediments of the Gulf of Aden Rift and the NW Indian Ocean. Out of the many regional tephra stratigraphic markers that range in age from the early Pliocene (3.97 Ma) to the late Pleistocene (0.16 Ma), the Sidi Hakoma Tuff (SHT) has been more widely identified and thoroughly

  20. Wetlands as a Record of Climate Change and Hydrological Response in Arid Rift Settings

    NASA Astrophysics Data System (ADS)

    Ashley, G. M.

    2004-12-01

    Of all the terrestrial depositional settings, rift basins typically provide the greatest accommodation space, and consequently have some of the longest records of continental sedimentation. Lake deposits were the only rift component studied for records of long-term climatic change and for testing hypotheses of orbital forcing. Recently, the continuing quest for the paleontological and cultural records of human origins entombed in the sedimentary rocks of the East African Rift System raised questions concerning hydrologic and biologic response to climatic change. Additional issues are the impact of climate on paleolandscapes and the environmental stresses that might have affected human evolution. Other important indicators of rift hydrology, such as springs and wetlands are now emerging as viable records of climate change. Rift valley basins are shallow, hydrologically closed systems that are responsive to shifts in climate, and specifically sensitive to changes in the hydrologic budget (P-ET). Long term wet-dry cycles in the low latitudes are thought to be astronomically controlled, i.e. Milankovitch precession cycles (19-23 ka). In the tropics, precipitation (P) varies with changes in solar insolation which fluctuates <8-10 % over a cycle. Stronger insolation drives stronger summer monsoon maxima increasing P. Mean annual temperatures are high, but evapo-transpiration, ET (~ 2500 mm/yr) varies little. Consequently, during wetter periods regional groundwater reservoirs enlarge, the water table rises and springs and wetlands increase in number and in size compared to drier periods. Lake levels are known to fluctuate in response to change in hydrologic budget and wetlands appear to respond similarly. Springs and groundwater-fed wetlands are common, however the sources and sustainability of water or what geologic factors lead to the formation and longevity of wetlands is not well established. It appears that rainfall is trapped on topographic highs (rift fault blocks

  1. Molecular epidemiology of rabies in bat-eared foxes (Otocyon megalotis) in South Africa.

    PubMed

    Sabeta, C T; Mansfield, K L; McElhinney, L M; Fooks, A R; Nel, L H

    2007-10-01

    A panel of 124 rabies viruses from wildlife host species (principally the bat-eared fox, Otocyon megalotis) and domestic carnivore species were collected between 1980 and 2005 from a region of South Africa associated with endemic bat-eared fox rabies. We have studied the molecular epidemiology of bat-eared fox rabies by virtue of nucleotide sequence analyses of PCR amplicons specific to the variable G-L intergenic region as well as the conserved nucleoprotein gene of each of the rabies viruses in this South African panel. Although it was demonstrated that all of these viruses were very closely related, they could be segregated into two major phylogenetic groups. The data presented in this paper complement antigenic and surveillance data on rabies in this host species in South Africa. Most importantly our data support a hypothesis that the bat-eared fox independently maintains rabies cycles in specific geographical loci. This is the first molecular epidemiological investigation describing rabies transmission dynamics in this wildlife carnivore host species in South Africa.

  2. Evolution: Fossil Ears and Underwater Sonar.

    PubMed

    Lambert, Olivier

    2016-08-22

    A key innovation in the history of whales was the evolution of a sonar system together with high-frequency hearing. Fossils of an archaic toothed whale's inner ear bones provide clues for a stepwise emergence of underwater echolocation ability.

  3. Ear Infection Treatment: Do Alternative Therapies Work?

    MedlinePlus

    ... recommended for use in children — some have dangerous side effects or may interfere with conventional treatments. By Mayo Clinic Staff Alternative ear infection treatments abound on the internet and in books and magazines. They include chiropractic adjustments, homeopathy, herbal ...

  4. Diode Laser Ear Piercing: A Novel Technique.

    PubMed

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  5. Inner ear malformations: a practical diagnostic approach.

    PubMed

    Mazón, M; Pont, E; Montoya-Filardi, A; Carreres-Polo, J; Más-Estellés, F

    2016-12-29

    Pediatric sensorineural hearing loss is a major cause of disability; although inner ear malformations account for only 20-40% of all cases, recognition and characterization will be vital for the proper management of these patients. In this article relevant anatomy and development of inner ear are surveyed. The role of neuroimaging in pediatric sensorineural hearing loss and cochlear preimplantation study are assessed. The need for a universal system of classification of inner ear malformations with therapeutic and prognostic implications is highlighted. And finally, the radiological findings of each type of malformation are concisely described and depicted. Computed tomography and magnetic resonance imaging play a crucial role in the characterization of inner ear malformations and allow the assessment of the anatomical structures that enable the selection of appropriate treatment and surgical approach.

  6. Design Factors and Use of Ear Protection*

    PubMed Central

    Rice, C. G.; Coles, R. R. A.

    1966-01-01

    The problems of protecting the ear against hazardous noise are the subject of a general review, supported where relevant by data from the authors' own researches. Ear protectors are classified into two main types−plugs and muffs—and the general principles of their function and limitations are stated. Examples of representative ear protectors are given in more detail, with particular respect to their relative merits and pure-tone attenuation characteristics. The effects of earplugs on speech communication are considered and the relationships between pure-tone attenuation and protection against continuous noise are discussed in some detail. The results of temporary threshold shift (T.T.S.) reduction studies of the efficiency of V.51R and Selectone-K earplugs in protecting against reverberant and non-reverberant impulsive noises are presented. The design requirements of ear protectors and some of the problems created by them are also outlined. Images PMID:5946129

  7. Diode Laser Ear Piercing: A Novel Technique

    PubMed Central

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser. PMID:28163460

  8. 21 CFR 874.4140 - Ear, nose, and throat bur.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4140 Ear, nose, and throat bur. (a) Identification. An ear, nose, and throat bur is a device consisting of an interchangeable drill bit that is... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat bur. 874.4140 Section...

  9. 21 CFR 874.4140 - Ear, nose, and throat bur.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4140 Ear, nose, and throat bur. (a) Identification. An ear, nose, and throat bur is a device consisting of an interchangeable drill bit that is... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear, nose, and throat bur. 874.4140 Section...

  10. 38 CFR 4.87 - Schedule of ratings-ear.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Schedule of ratings-ear...—ear. Diseases of the Ear Rating 6200Chronic suppurative otitis media, mastoiditis, or cholesteatoma... of the substance 10 6208Malignant neoplasm of the ear (other than skin only) 100 Note: A rating...

  11. 21 CFR 874.4140 - Ear, nose, and throat bur.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear, nose, and throat bur. 874.4140 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4140 Ear, nose, and throat bur. (a) Identification. An ear, nose, and throat bur is a device consisting of an interchangeable drill bit that...

  12. 21 CFR 874.4140 - Ear, nose, and throat bur.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear, nose, and throat bur. 874.4140 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4140 Ear, nose, and throat bur. (a) Identification. An ear, nose, and throat bur is a device consisting of an interchangeable drill bit that...

  13. 21 CFR 874.4140 - Ear, nose, and throat bur.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear, nose, and throat bur. 874.4140 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4140 Ear, nose, and throat bur. (a) Identification. An ear, nose, and throat bur is a device consisting of an interchangeable drill bit that...

  14. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  15. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  16. 21 CFR 874.3430 - Middle ear mold.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Middle ear mold. 874.3430 Section 874.3430 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3430 Middle ear mold. (a) Identification. A middle ear mold is a preformed device that is intended to be implanted to reconstruct the middle...

  17. The Rwenzori Mountains, a Palaeoproterozoic crustal shear belt crossing the Albertine rift system

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Link, K.; Sachau, T.; Passchier, C. W.; Aanyu, K.; Spikings, A.; Harbinson, R.

    2016-09-01

    This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development

  18. Middle Ear Surgery in Only Hearing Ears and Postoperative Hearing Rehabilitation

    PubMed Central

    Yoo, Myung Hoon; Kang, Byung Chul; Park, Hong Ju

    2014-01-01

    Background and Objectives The aim of this study was to evaluate surgical interventions and hearing rehabilitation in patients with chronic middle ear disease of only hearing ears. Subjects and Methods Thirty-one patients with chronic middle ear disease of only hearing ears were enrolled in this retrospective study. Patients were classified into three groups according to the hearing level: groups A [pure tone audiometry (PTA)<40], B (40≤PTA<70), and C (PTA≥70). We evaluated hearing results and patterns of auditory rehabilitation. Results The main consideration for a surgical procedure was the presence of recurrent otorrhea and structural destruction. The reasons for surgical intervention in only hearing ears were otorrhea caused by chronic otitis media (68%), cholesteatoma (29%), and cholesterol granuloma (3%). The causes of contralateral deaf ears were chronic otitis media (81%) and sensorineural hearing loss (19%). Although there was hearing deterioration in some patients with severe hearing loss (PTA≥70), all patients achieved dry ears after surgery and functional hearing using auditory rehabilitation. Hearing aids were used in most patients with moderate to moderately severe hearing loss and cochlear implants were used for auditory rehabilitation in patients with severe to profound hearing loss. Conclusions Proper evaluation and indications for surgery in only hearing ears are important for successful eradication of inflammation and hearing preservation. Surgical interventions can achieve dry ear and enable further auditory rehabilitations using hearing aids and cochlear implantation. PMID:25279226

  19. Inheritance of ear wax types, ear lobe attachment and tongue rolling ability.

    PubMed

    Cruz-Gonzalez, L; Lisker, R

    1982-01-01

    The mode of inheritance of ear wax type, ear lobe attachment and tongue rolling ability were studied in 77 families with a total of 293 children. The results clearly showed that the dry ear wax type and the attached ear lobe type represent the homozygous state for two pairs of autosomal recessive genes. The evidence for the same being true regarding the lack of ability to roll the tongue was less conclusive in our material, but this could be due to difficulties in communication between the examined individuals and the examiners.

  20. Binaural versus better-ear listening

    NASA Astrophysics Data System (ADS)

    Scarpaci, Jacob W.; Durlach, N. I.; Colburn, H. Steven

    2003-04-01

    Advantages of binaural over monaural hearing in noisy environments are reduced when the monaural stimulation is derived from the monaural signal with the better signal-to-noise ratio (better-ear listening). In the reported experiments, conducted in a soundproof room with two speakers and a custom-designed, noise-cancellation headset, speech intelligibility in the presence of interference was measured for both binaural and better-ear configurations. The headset, which incorporated two microphones (located at the two ears) and two insert earphones, was used to present binaural stimulation or better-ear (better-microphone) monaural stimulation. Although the results varied significantly with the locations of the target and interference sources, the advantage of binaural listening over better-ear listening was no more than a few dB. In addition to reporting the data obtained in these experiments, relations to previous work on better-ear listening and CROS hearing aids, as well as to current work on cochlear implants, are discussed. [Work supported by NIDCD (00100).

  1. African-American Biography.

    ERIC Educational Resources Information Center

    Martin, Ron

    1995-01-01

    Suggests sources of information for African American History Month for library media specialists who work with students in grades four through eight. Gale Research's "African-American Reference Library," which includes "African-America Biography,""African-American Chronology," and "African-American Almanac,"…

  2. The topology of evolving rift fault networks: Single-phase vs multi-phase rifts

    NASA Astrophysics Data System (ADS)

    Duffy, Oliver B.; Nixon, Casey W.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Rob L.; Sanderson, David J.; Whipp, Paul S.

    2017-03-01

    Rift fault networks can be complex, particularly those developed by multiple periods of non-coaxial extension, comprising non-colinear faults with many interactions. Thus, topology, rather than simple geometry, is required to characterise such networks, as it provides a way to describe the arrangement of individual faults in the network. Topology is analysed here in terms of nodes (isolated I nodes or connected Y or X nodes) and branches (I-I, I-C, C-C branches). In map view, the relative proportions of these parameters vary in natural single- and multi-phase rift fault networks and in scaled physical models at different stages of development and strain. Interactions in single-phase rifting are limited to fault splays and along-strike fault linkage (I node and I-I or I-C branch dominated networks), whereas in multi-phase rifting the topology evolves towards Y node and C-C branch dominated networks, with the degree of connectivity increasing with greater strain. The changes in topology and network connectivity have significant implications for fluid flow and reservoir compartmentalisation studies. Furthermore, topology helps to distinguish single and multiple phase extension (i.e. tectonic histories), and thus provide constraints on the geodynamic context of sedimentary basins.

  3. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  4. Geophysical glimpses into the Ferrigno Rift at the northwestern tip of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Bingham, Robert; Ferraccioli, Fausto

    2014-05-01

    The West Antarctic Rift System (WARS) forms one of the largest continental rift systems on Earth. The WARS is of major significance as it forms the lithospheric cradle for the marine-based and potentially unstable West Antarctic Ice Sheet (WAIS). Seismic refraction, reflection, aeromagnetic, gravity and drilling in the Ross Sea have revealed most of what we know about its structure, tectonic and magmatic patterns and sedimentary basins. Aerogeophysical research and passive seismic networks have considerably extended our knowledge of the WARS and its influence on the overlying WAIS in the Siple Coast and Amundsen Sea Embayment (ASE) regions. The Bellingshausen Sea Embayment region has however remained largely unexplored, and hence the possible extent of the WARS in this sector has remained poorly constrained. Here we use a combination of reconnaissance ground-based and airborne radar observations, airborne gravity, satellite gravity and aeromagnetic data to investigate the WARS in the Bellingshausen Sea Embayment, in the area of the Ferrigno Ice Stream (Bingham et al., 2012, Nature). This region is of high significance, as it one of the main sectors of the WAIS that is currently exhibiting rapid ice loss, thought to be driven primarily by oceanic warming. Assessing geological controls on subice topography and ice dynamics is therefore of prime importance in this part of the WAIS. Ground-based and airborne radar image a subglacial basin beneath the Ferrigno Ice Stream that is up to 1.5 kilometres deep and that connects the ice-sheet interior to the Bellingshausen Sea margin. We interpret this basin as a narrow, glacially overdeepened rift basin that formed at the northwestern tip of the WARS. Satellite gravity data cannot resolve such a narrow rift basin but indicate that the crust beneath the region is likely thinned, lending support to the hypothesis that this area is indeed part of the WARS. Widely-spaced aeromagnetic data image a linear low along the inferred

  5. South Polar Cycloidal Rift on Enceladus

    NASA Astrophysics Data System (ADS)

    Hurford, Terry A.; Greenberg, R.; Hoppa, G. V.

    2006-09-01

    Large rifts near the south pole of Enceladus have been observed to be significantly warmer than the surrounding surface (Spencer et al. 2006 Science 311) and are most likely the source of jets of icy particles observed by Cassini (Porco et al. 2006 Science 311). The observed tectonics within the region have been proposed to have formed in response to stress from a diapir-induced reorientation of Encleadus (Nimmo and Pappalardo 2006 Nature 441) which should have dominated the formation of tectonics in the region. One prominent rift on Enceladus’ south pole resembles the shape of cycloids on Europa. We explore the possibility that tidal tectonic processes may have formed this rift at its current latitude in a similar manner to cycloids on Europa (i.e. that its formation reflects a crack's response to a diurnally varying stress field). The ability of Saturn to raise a significant tide on Enceladus is enhanced, since Enceladus’ surface gravity is small. Moreover, Enceladus’ eccentricity causes the tide to oscillate in magnitude by 1% as it completes an orbit. Not only does the size of the tide on Enceladus change daily, but it oscillates 0.5o eastward and westward. The daily change in position and magnitude of the tidal bulge produces stress on the surface of Enceladus that may play a significant role in the formation of observed surface tectonics. On Europa cycloidal cracks form as a result of tensile cracking in response to this type of diurnally varying stress (Hoppa et al. 1999 Science 285). As the cracks form and propagate across the surface, their paths are affected as the stresses rotate in the region. Modeling observed features allows for their formation locations (relative to Jupiter) to be determined (Hoppa et al. 2001 Icarus 153, Hurford 2005 Thesis).

  6. African Trypanosomiasis

    DTIC Science & Technology

    2011-06-01

    infection by protozoan hemo- flagellates of the Trypanosoma brucei complex, 2 subspe- cies of which cause disease in humans: Trypanosoma bru- cei gambiense...public release; distribution unlimited 13. SUPPLEMENTARY NOTES See also ADA545141. Chapter 3 from e-book, Topics on the Pathology of Protozoan and...the brief ferry crossing. 2 3 • Topics on The paThology of proTozoan and invasive arThropod diseases Three severe epidemics of African trypanosomiasis

  7. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014

    PubMed Central

    Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J.A.W.; Venter, Estelle H.

    2016-01-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa. PMID:27869589

  8. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014.

    PubMed

    Fafetine, José M; Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J A W; Venter, Estelle H

    2016-12-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa.

  9. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  10. Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals.

    PubMed

    Mason, Matthew J

    2016-02-01

    Many species of small desert mammals are known to have expanded auditory bullae. The ears of gerbils and heteromyids have been well described, but much less is known about the middle ear anatomy of other desert mammals. In this study, the middle ears of three gerbils (Meriones, Desmodillus and Gerbillurus), two jerboas (Jaculus) and two sengis (elephant-shrews: Macroscelides and Elephantulus) were examined and compared, using micro-computed tomography and light microscopy. Middle ear cavity expansion has occurred in members of all three groups, apparently in association with an essentially 'freely mobile' ossicular morphology and the development of bony tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small desert mammals have been proposed. However, while Macroscelides was found here to have middle ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are considerably smaller. Why middle ear cavities are enlarged in some desert species but not others remains unclear, but it may relate to microhabitat.

  11. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates.

    PubMed

    Terasaki, Kaori; Tercero, Breanna R; Makino, Shinji

    2016-05-02

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines.

  12. The Eastern Sardinian Margin (Tyrrhenian Sea, Western Mediterranean) : a key area to study the rifting and post-breakup evolution of a back-arc passive continental margin

    NASA Astrophysics Data System (ADS)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise

    2016-04-01

    post-breakup deformation also occurred during the Pliocene. Some Pliocene vertical movements have been evidenced by discovering localized gravity gliding of the salt and its Late Messinian (UU) and Early Pliocene overburden. To the South, crustal-scale southward tilting triggered along-strike gravity gliding of salt and cover recorded by upslope extension and downslope shortening. To the North, East of the Baronie Ridge, there was some post-salt crustal activity along a narrow N-S basement trough, bounded by crustal faults. The salt geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed by analogue modelling) show that basement fault slip was accommodated by lateral salt flow, which thinned upslope and thickened downslope, while the overlying sediments remained sub-horizontal. Along the inner domain of Eastern Sardinian margin, the post-rift deformation style greatly varies. Compressional structures (reverse faults and folds) are observed both onshore and offshore while post-rift extensional structures are mainly identified offshore. Such late deformation could be attributed to mechanisms acting alone or combined, such as : i. the reactivation of the margin, as already described for the Ligurian, Algerian or South-Balearic margins due to the Eurasian-African convergence ; 2. the Zanclean reflooding and the resulting water overload on the elastic lithosphere ; 3. an episodic mantle upwelling.

  13. Prolonged Radiant Exposure of the Middle Ear during Transcanal Endoscopic Ear Surgery.

    PubMed

    Shah, Parth V; Kozin, Elliott D; Remenschneider, Aaron K; Dedmon, Matthew M; Nakajima, Hideko Heidi; Cohen, Michael S; Lee, Daniel J

    2015-07-01

    Transcanal endoscopic ear surgery (EES) provides a high-resolution, wide-field view of the middle ear compared with the conventional operating microscope, reducing the need for a postauricular incision or mastoidectomy. Our group has shown in cadaveric human temporal bone studies that radiant energy from the endoscope tip can quickly elevate temperatures of the tympanic cavity. Elevated temperatures of the middle ear are associated with acute auditory brainstem response shifts in animal models. In EES, proposed methods to decrease middle ear temperature include frequent removal of the endoscope and the use of suction to rapidly dissipate heat; however, the routine application of such cooling techniques remains unknown. Herein, we aim to quantify the duration that the tympanic cavity is typically exposed to the endoscope during routine endoscopic middle ear surgery. We find that the tympanic cavity is exposed to the endoscope without a cooling mechanism for a prolonged period of time.

  14. Petrological Constraints on Melt Generation Beneath the Asal Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Humler, E.; Manighetti, I.; Gaudemer, Y.; Bézos, A.

    2010-12-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 95 lava flows sampled along 10 km of the rift axis and 8 km off-axis (that is for the last 650 ky). The major element composition and the trace element ratios of aphyric basalts across the Asal Rift show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. FeO, Fe8.0, Sm/YbN and Zr/Y increase, whereas SiO2 and Lu/HfN decrease from the rift axis to the rift shoulders. These variations are qualitatively consistent with a shallower melting beneath the rift axis than off-axis and the data show that the melting regime is inconsistent with a passive upwelling model. In order to quantify the depth range and extent of melting, we invert Na8.0 and Fe8.0 contents of basalts based on a pure active upwelling model. Beneath the rift axis, melting paths are shallow, from 60 to 30 km. These melting paths are consistent with adiabatic melting in normal-temperature asthenosphere, beneath an extensively thinned mantle lithosphere. In contrast, melting on the rift shoulders occurred beneath a thick mantle lithosphere and required mantle solidus temperature 180°C hotter than normal (melting paths from 110 to 75 km). The calculated rate of lithospheric thinning is high (6.0 cm yr-1) and could explain the survival of a metastable garnet within the mantle at depth shallower than 90 km beneath the modern Asal Rift.

  15. Deltas of the Lake Malawi rift, east Africa: Seismic expression and exploration implications

    SciTech Connect

    Scholz, C.A.

    1995-11-01

    High-resolution, air-gun-sourced seismic reflection surveys over the offshore regions of five river deltas in Lake Malawi in the East African rift system reveal considerable variability in acoustic facies and stratigraphic architecture. This variability can largely be attributed to the influences of different structural settings, and to a lesser degree to high-amplitude (100-400 m) and high-frequency (1000 to 100,000 yr) fluctuations in lake level. Deltas on flexural and axial margins in the rift lake show well-developed progradational geometries. In contrast, a delta on a steep, accommodation zone margin distributes coarse sediments over a broad depositional apron, rather than concentrating sediment in discrete progradational lobes as on the other deltas. A large border fault margin river delta displays the most complex tectonic and stratigraphic architecture of all the deltas studied. It contains several delta-associated facies, including prograding clinoform packages, fan deltas stacked against a boundary fault, and extensive subaqueous fans. Flexural margin lowstand deltas may be the most prospective for hydrocarbon exploration due to their large, internally well-organized, progradational lobes and their close proximity to deep-water, high total organic carbon lacustrine source facies.

  16. Limnocythere (Ostracoda) distribution pattern in the Southern Ethiopian Rift during the Late Pleistocene and Holocene

    NASA Astrophysics Data System (ADS)

    Viehberg, Finn; Gebru, Tsige; Foerster, Verena; Schaebitz, Frank; Wagner, Bernd

    2014-05-01

    Sediment records from two lakes in the biodiversity hotspot of the Southern Ethiopian Rift were retrieved, Lake Chamo (c. 9 ka) and Chew Bahir (c. 45 ka). Sedimentological and palaeoecological proxies infer rapidly changing environmental conditions (wet-dry cycle) such as the African Humid Period. The fossil record in both archives is fairly rich in ostracode taxa throughout the cores and especially diverse in the genus Limnocythere. Here, we discuss the temporal and spatial distribution pattern of Limnocythere species in the Omo-Turkana basin in the context of palaeolimnological changes. In addition, we mapped extensively valve characteristics of the L. species to document morphological intraspecific variation also as a supplementary measure of environmental change. Our preliminary results show that regional biogeographical boundaries might have changed as a consequence, too. For instance, members of the Limnocythere thomasi -group (sensu Martens 1990) occur in our fossil record. In modern studies this species cluster is regarded as endemic fauna of Lakes Zway, Langano and Shala, which are associated with the freshwater ecoregion of the Northern Eastern Rift.

  17. Mapping landslide processes in the North Tanganyika - Lake Kivu rift zones: towards a regional hazard assessment

    NASA Astrophysics Data System (ADS)

    Dewitte, Olivier; Monsieurs, Elise; Jacobs, Liesbet; Basimike, Joseph; Delvaux, Damien; Draida, Salah; Hamenyimana, Jean-Baptiste; Havenith, Hans-Balder; Kubwimana, Désiré; Maki Mateso, Jean-Claude; Michellier, Caroline; Nahimana, Louis; Ndayisenga, Aloys; Ngenzebuhoro, Pierre-Claver; Nkurunziza, Pascal; Nshokano, Jean-Robert; Sindayihebura, Bernard; Philippe, Trefois; Turimumahoro, Denis; Kervyn, François

    2015-04-01

    The mountainous environments of the North Tanganyika - Lake Kivu rift zones are part of the West branch of the East African Rift. In this area, natural triggering and environmental factors such as heavy rainfalls, earthquake occurrences and steep topographies favour the concentration of mass movement processes. In addition anthropogenic factors such as rapid land use changes and urban expansion increase the sensibility to slope instability. Until very recently few landslide data was available for the area. Now, through the initiation of several research projects and the setting-up of a methodology for data collection adapted to this data-poor environment, it becomes possible to draw a first regional picture of the landslide hazard. Landslides include a wide range of ground movements such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in the region in terms of recurring impact on the populations, causing fatalities every year. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithological and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. Here we present the current knowledge of the various slope processes present in these equatorial environments. A particular attention is given to urban areas such as Bukavu and Bujumbura where landslide threat is particularly acute. Results and research perspectives on landslide inventorying, monitoring, and susceptibility and hazard assessment are presented.

  18. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula

    PubMed Central

    Peterson, A. Townsend; Hall, Matthew

    2017-01-01

    Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Results revealed broad circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from three major waves of virus introduction: the first from Zimbabwe, and the second and third from Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between Kenya and Sudan, and CAR and Zimbabwe, was in both directions. Viral populations in West Africa appear to have resulted from a single introduction from Central African Republic. The overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, emphasizing its invasive potential, potentially more broadly than its current distributional limits. PMID:28068340

  19. Passive and active middle ear implants

    PubMed Central

    Beutner, Dirk; Hüttenbrink, Karl-Bernd

    2011-01-01

    Besides eradication of chronic middle ear disease, the reconstruction of the sound conduction apparatus is a major goal of modern ear microsurgery. The material of choice in cases of partial ossicular replacement prosthesis is the autogenous ossicle. In the event of more extensive destruction of the ossicular chain diverse alloplastic materials, e.g. metals, ceramics, plastics or composits are used for total reconstruction. Their specialised role in conducting sound energy within a half-open implant bed sets high demands on the biocompatibility as well as the acoustic-mechanic properties of the prosthesis. Recently, sophisticated titanium middle ear implants allowing individual adaptation to anatomical variations are widely used for this procedure. However, despite modern developments, hearing restoration with passive implants often faces its limitations due to tubal-middle-ear dysfunction. Here, implantable hearing aids, successfully used in cases of sensorineural hearing loss, offer a promising alternative. This article reviews the actual state of affairs of passive and active middle ear implants. PMID:22073102

  20. Evolution and development of the vertebrate ear

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.

    2001-01-01

    This review outlines major aspects of development and evolution of the ear, specifically addressing issues of cell fate commitment and the emerging molecular governance of these decisions. Available data support the notion of homology of subsets of mechanosensors across phyla (proprioreceptive mechanosensory neurons in insects, hair cells in vertebrates). It is argued that this conservation is primarily related to the specific transducing environment needed to achieve mechanosensation. Achieving this requires highly conserved transcription factors that regulate the expression of the relevant structural genes for mechanosensory transduction. While conserved at the level of some cell fate assignment genes (atonal and its mammalian homologue), the ear has also radically reorganized its development by implementing genes used for cell fate assignment in other parts of the developing nervous systems (e.g., neurogenin 1) and by evolving novel sets of genes specifically associated with the novel formation of sensory neurons that contact hair cells (neurotrophins and their receptors). Numerous genes have been identified that regulate morphogenesis, but there is only one common feature that emerges at the moment: the ear appears to have co-opted genes from a large variety of other parts of the developing body (forebrain, limbs, kidneys) and establishes, in combination with existing transcription factors, an environment in which those genes govern novel, ear-related morphogenetic aspects. The ear thus represents a unique mix of highly conserved developmental elements combined with co-opted and newly evolved developmental elements.

  1. Humility and opportunity in Rio Grande rift

    SciTech Connect

    Black, B.A. )

    1989-09-01

    One of the hardest things to do is to admit a mistake. But we can often learn valuable lessons when we analyze why we made our mistakes and when we admit our vulnerability to the unknown. In 1984, the authors published an article that described what they referred to privately as a geologic Moebius loop where a seismic grid appeared to grossly mistie. They though they stayed in the same Paleozoic carbonate formation all the way around the loop. Drilling subsequent to that article has deepened the mystery of the correlations by proving that the target formations were indeed limestones and showing they may not be the Paleozoic limestones they though they started in but are perhaps a new, previously undescribed sequence of thick Tertiary lacustrine limestone. The Yates La Mesa 2 well in Sec. 24, T17N, R8E, has spawned more questions than it has answered, but it has paradoxically also pointed out the potential for new and exciting plays in the Rio Grande rift basins and has given them an opportunity to show how previous misinterpreted work can teach new lessons. Seismic lines in the rift and in the Yates well illustrate how they can both deceive and inspire themselves in the search for hydrocarbons.

  2. Extension in the Rio Grande rift.

    USGS Publications Warehouse

    Cordell, L.

    1982-01-01

    A positive gravity anomaly along the axis of the Rio Grande rift reflects a volume of anomalous mass added at the base of the crust and intruded into the crust. Part of this volume can be associated with vertical uplift of the crust. The remainder of this anomalous volume, plus the volume of surficial graben fill, can be associated with horizontal crustal extension. The volume of crustal uplift in the Rio Grande rift is unknown, but this term can be eliminated by means of an independent equation provided by assumption of generalized isostatic equilibrium. The volume and mass equations combined provide a solution for extension of the crust in terms of the following parameters: total anomalous mass deficiency in the mantle lithosphere, total anomalous mass excess in the crust and its density contrast, total anomalous mass deficiency of surficial graben fill and its density contrast, and the volume of material eroded from the uplift. Using standard density estimates and masses determined by equivalent-source modeling of gravity profiles, I obtained 1-km extension at 37oN (Colorado-New Mexico border), 13- km extension at 35oN (Albuquerque, New Mexico), and 24-km extension at 33oN in S New Mexico.-Author

  3. Pore water chemistry of an alkaline rift valley lake: Lake Turkana, Kenya

    SciTech Connect

    Cerling, T.E.; Johnson, T.C.; Halfman, J.D.; Lister, G.

    1985-01-01

    Lake Turkana is the largest closed basin lake in the African rift system. It has evolved through the past 5000 years to become a moderately alkaline lake. Previous mass balance argument suggest that sulfate is removed from the lake by sulfate reduction in the sediments, and that the lake is accumulating in chloride, sodium, and alkalinity. Studies of pore water from 12 meter cores collected in November 1984 show that sulfate is reduced in the sediment column with a net production of alkalinity. Some sodium is lost from the lake and diffuses into the sediment to maintain charge balance. At several meters depth, organic matter is destroyed by methanogenic bacteria, as shown by the high delta /sup 13/C values for dissolved inorganic carbon. Magnesium and calcium molar ratios change with depth; chloride, sodium, and alkalinity also change with depth.

  4. Trace Element Contamination in Tissues of Four Bird Species from the Rift Valley Region, Ethiopia.

    PubMed

    Yohannes, Yared Beyene; Ikenaka, Yoshinori; Nakayama, Shouta M M; Mizukawa, Hazuki; Ishizuka, Mayumi

    2017-02-01

    Concentrations of ten trace elements (Hg, As, Cd, Pb, Co, Cr, Cu, Ni, Se and Zn) were determined in different tissues (liver, kidney, muscle, heart and brain) of African sacred ibis (Threskiornis aethiopicus), Hamerkop (Scopus umbretta), marabou stork (Leptoptilos crumeniferus) and great white pelican (Pelecanus onocrotalus) inhabiting the Ethiopian Rift Valley region. There were differences in trace element patterns among the bird species. Significantly (p < 0.05) higher concentrations of Cd (5.53 µg/g dw ± 2.94) in kidney and Hg (0.75 µg/g ww ± 0.30) in liver were observed in the great white pelican compared to the other species, and liver concentrations of these two elements showed positive correlations with trophic level. Concentrations of toxic elements (As, Cd, Pb and Hg) in liver were below their respective toxicological thresholds, indicating that the data may provide baseline information for future studies.

  5. Crustal thinning between the Ethiopian and East African Plateaus from modeling Rayleigh wave dispersion

    SciTech Connect

    Benoit, M H; Nyblade, A A; Pasyanos, M E

    2006-01-17

    The East African and Ethiopian Plateaus have long been recognized to be part of a much larger topographic anomaly on the African Plate called the African Superswell. One of the few places within the African Superswell that exhibit elevations of less than 1 km is southeastern Sudan and northern Kenya, an area containing both Mesozoic and Cenozoic rift basins. Crustal structure and uppermost mantle velocities are investigated in this area by modeling Rayleigh wave dispersion. Modeling results indicate an average crustal thickness of 25 {+-} 5 km, some 10-15 km thinner than the crust beneath the adjacent East African and Ethiopian Plateaus. The low elevations can therefore be readily attributed to an isostatic response from crustal thinning. Low Sn velocities of 4.1-4.3 km/s also characterize this region.

  6. New insights into continental rifting from a damage rheology modeling

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, Vladimir; Segev, Amit; Weinberger, Ram; Schattner, Uri

    2010-05-01

    Previous studies have discussed how tectonic processes could produce relative tension to initiate and propagate rift zones and estimated the magnitude of the rift-driving forces. Both analytic and semi-analytic models as well as numerical simulations assume that the tectonic force required to initiate rifting is available. However, Buck (2004, 2006) estimated the minimum tectonic force to allow passive rifting and concluded that the available forces are probably not large enough for rifting of thick and strong lithosphere in the absence of basaltic magmatism (the "Tectonic Force" Paradox). The integral of the yielding stress needed for rifting over the thickness of the normal or thicker continental lithosphere are well above the available tectonic forces and tectonic rifting cannot happen (Buck, 2006). This conclusion is based on the assumption that the tectonic stress has to overcome simultaneously the yielding stress over the whole lithosphere thickness and ignore gradual weakening of the brittle rocks under long-term loading. In this study we demonstrate that the rifting process under moderate tectonic stretching is feasible due to gradual weakening and "long-term memory" of the heavily fractured brittle rocks, which makes it significantly weaker than the surrounding intact rock. This process provides a possible solution for the tectonic force paradox. We address these questions utilizing 3-D lithosphere-scale numerical simulations of the plate motion and faulting process base on the damage mechanics. The 3-D modeled volume consists of three main lithospheric layers: an upper layer of weak sediments, middle layer of crystalline crust and lower layer of the lithosphere mantle. Results of the modeling demonstrate gradual formation of the rift zone in the continental lithosphere with the flat layered structure. Successive formation of the rift system and associated seismicity pattern strongly depend not only on the applied tectonic force, but also on the healing

  7. The role of pre-existing Precambrian structures and thermal anomaly in rift initiation and evolution-the Albertine and Rhino Grabens in Uganda

    NASA Astrophysics Data System (ADS)

    Katumwehe, Andrew Bushekwire

    We integrated Shuttle Radar Topography Mission Digital Elevation Models, airborne magnetic, radiometric, three-dimensional Full Tensor Gravity Gradiometry and Satellite gravity data to investigate the role of Precambrian structures in the evolution of the amagmatic Alb