Science.gov

Sample records for african rift ear

  1. East African Rift

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria.

    The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  2. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  3. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  4. At the tip of a propagating rift - The offshore East African Rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2016-04-01

    Numerous studies have addressed various aspects of the East African Rift system (EARS) but surprisingly few the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of sub-recent extensional deformation. The seismic reflection data reveals that recent normal faulting often utilizes preexisting, deeply buried half-graben structures which likely are related to the formation of the Somali Basin. The ~30 km wide and ~150 km long symmetric graben is in a stage where the linkage of scattered normal faults already did happen, resulting in increased displacement and accommodation of most of the extension across the basin. However, deep earthquakes below the rift indicate a strong and still preserved lithospheric mantle. Extension is becoming diffuse where an onshore suture, subdividing the northern from the southern metamorphic basement onshore Mozambique, is closest to the offshore rift. It appears likely that this suture is the origin for the variation in rifting style, indicating that mantle fabric resulting from a Cambrian collision has been preserved as mechanical anisotropy of the lithospheric mantle. Further south the rift focuses in an about 30 km wide half-graben. An important finding is that the entire offshore branch of the EARS lacks significant volcanism. Along the offshore EARS there are only negligible indications for recent volcanism in the reflection seismic data such as sills and dikes. Apparently the "Comoros mantle plume" (French and Romanowicz, 2015) has a very minor influence on the progressive extensional deformation along the northern Mozambique continental margin, leading eventually to breakup sometimes in the future. Combining structural with earthquake data reveals that the magma

  5. Present-day kinematics of the East African Rift

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Stamps, D. S.; Delvaux, D.; Hartnady, C. J. H.

    2014-04-01

    The East African Rift (EAR) is a type locale for investigating the processes that drive continental rifting and breakup. The current kinematics of this ~5000 km long divergent plate boundary between the Nubia and Somalia plates is starting to be unraveled thanks to a recent augmentation of space geodetic data in Africa. Here we use a new data set combining episodic GPS measurements with continuous measurements on the Nubian, Somalian, and Antarctic plates, together with earthquake slip vector directions and geologic indicators along the Southwest Indian Ridge to update the present-day kinematics of the EAR. We use geological and seismological data to determine the main rift faults and solve for rigid block rotations while accounting for elastic strain accumulation on locked active faults. We find that the data are best fit with a model that includes three microplates embedded within the EAR, between Nubia and Somalia (Victoria, Rovuma, and Lwandle), consistent with previous findings but with slower extension rates. We find that earthquake slip vectors provide information that is consistent with the GPS velocities and helps to significantly reduce uncertainties of plate angular velocity estimates. We also find that 3.16 Myr MORVEL average spreading rates along the Southwest Indian Ridge are systematically faster than prediction from GPS data alone. This likely indicates that outward displacement along the SWIR is larger than the default value used in the MORVEL plate motion model.

  6. The Offshore East African Rift System

    NASA Astrophysics Data System (ADS)

    Franke, D.; Klimke, J.; Jokat, W.; Stollhofen, H.; Mahanjane, S.

    2014-12-01

    Numerous studies have addressed various aspects of the East African Rift system but surprisingly few on the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. The most prominent article has been published almost 30 years ago by Mougenot et al. (1986) and is based on vintage seismic data. Several studies investigating earthquakes and plate motions from GPS measurements reveal recent deformation along the offshore branch of the East African Rift system. Slip vectors from earthquakes data in Mozambique's offshore basins show a consistent NE direction. Fault plane solutions reveal ~ E-W extensional failure with focal depth clustering around 19 km and 40 km, respectively. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The modern rift system obviously reactivates structures from the disintegration of eastern Gondwana. During the Jurassic/Cretaceous opening of the Somali and Mozambique Basins, Madagascar moved southwards along a major shear zone, to its present position. Since the Miocene, parts of the shear zone became reactivated and structurally overprinted by the East African rift system. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of recent extensional deformation. Bathymetry data shows that it deepens northwards, with approximately 700 m downthrown on the eastern shoulder. The graben can be subdivided into four subbasins by crosscutting structural lineaments with a NW-SE trend. Together with the N-S striking graben-bounding faults, this resembles a conjugate fault system. In seismic reflection data normal faulting is distinct not only at the earthquake epicenters. The faults cut through the sedimentary successions and typically reach the seafloor, indicating ongoing recent deformation. Reference: Mougenot, D., Recq, M., Virlogeux, P., and Lepvrier, C., 1986, Seaward extension of the East

  7. Geodynamic significance of the TRM segment in the East African Rift: active tectonics and paleostress in western Tanzania

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Macheyeki, A. S.; Temu, E. B.

    2012-04-01

    The Tanganyika-Rukwa-Malawi (TRM) rift segment in western Tanzania is a key sector for understanding the opening dynamics of the East African rift system (EARS). In an oblique opening model, it is considered as a dextral transfer fault zone that accommodates the general opening of the EARS in a NW-SE direction. In an orthogonal opening model, it accommodates pure dip-slip normal faulting with extension orthogonal to the rift segments and a general E-W extension for the entire EARS. We investigated the active tectonic architecture and paleostress evolution of the Ufipa plateau and adjacent Rukwa basin and in order to define their geodynamic role in the development of the EARS and highlight their pre-rift brittle tectonic history. The active fault architecture, fault-kinematic analysis and paleostress reconstruction show that the recent to active fault systems that control the rift structure develop in a pure extensional setting with extension direction orthogonal to the trend of the TRM segment. Two pre-rift brittle events are evidenced. An older brittle thrusting is related to the interaction between the Bangweulu block and the Tanzanian craton during the late Pan-African (early Paleozoic). It was followed by a transpressional inversion during the early Mesozoic. This inversion stage caused dextral strike-slip faulting along the fault systems that now control the major rift structures. It has been erroneously interpreted as related to the late Cenozoic EARS which instead is characterized by pure normal faulting.

  8. Ambient noise tomography of the East African Rift in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction

  9. Magmatic Versus Amagmatic Rifting in the East African Rift System from Pn and Sn Tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Nyblade, A.

    2014-12-01

    Geodynamic models of rifting currently rely on the mechanism of hot mantle upwelling and decompressional melting to weaken lithospheric rock to the degree that rifting can initiate. However, many rift segments worldwide are apparently amagmatic. The East African Rift System is a prime example, with large sections of the system subaerially amagmatic. We seek to address the question of whether these apparently amagmatic rift segments merely lack a surficial expression of magmatism which exists at depth, or whether rifting is genuinely amagmatic. Based on regional earthquakes recorded by the Tanzania Broadband Seismic Experiment, the Kenya Broadband Seismic Experiment, the AfricaArray East African Seismic Experiment and several permanent GSN stations, we probe for uppermost mantle melt signatures along the East African Rift System using P- and S-wave speed ratios derived from Pn and Sn tomography. Pn- and Sn-velocity models, and their ratio which can be diagnostic of the presence of fluids, will be presented.

  10. Current kinematics and dynamics of Africa and the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.; Ghosh, A.

    2014-06-01

    Although the East African Rift System (EARS) is an archetype continental rift, the forces driving its evolution remain debated. Some contend buoyancy forces arising from gravitational potential energy (GPE) gradients within the lithosphere drive rifting. Others argue for a major role of the diverging mantle flow associated with the African Superplume. Here we quantify the forces driving present-day continental rifting in East Africa by (1) solving the depth averaged 3-D force balance equations for 3-D deviatoric stress associated with GPE, (2) inverting for a stress field boundary condition that we interpret as originating from large-scale mantle tractions, (3) calculating dynamic velocities due to lithospheric buoyancy forces, lateral viscosity variations, and velocity boundary conditions, and (4) calculating dynamic velocities that result from the stress response of horizontal mantle tractions acting on a viscous lithosphere in Africa and surroundings. We find deviatoric stress associated with lithospheric GPE gradients are ˜8-20 MPa in EARS, and the minimum deviatoric stress resulting from basal shear is ˜1.6 MPa along the EARS. Our dynamic velocity calculations confirm that a force contribution from GPE gradients alone is sufficient to drive Nubia-Somalia divergence and that additional forcing from horizontal mantle tractions overestimates surface kinematics. Stresses from GPE gradients appear sufficient to sustain present-day rifting in East Africa; however, they are lower than the vertically integrated strength of the lithosphere along most of the EARS. This indicates additional processes are required to initiate rupture of continental lithosphere, but once it is initiated, lithospheric buoyancy forces are enough to maintain rifting.

  11. TDRS satellite over African Rift Valley, Kenya, Africa

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This post deploy view of a TDRS satellite shows a segment of the African Rift Valley near Lake Baringo, Kenya, Africa (3.0S, 36.0E). The African Rift Valley system is a geologic fault having its origins in southern Turkey, through the near east forming the bed of the Jordan River, Gulf of Aqaba, the Red Sea and down through east Africa. The line of lakes and valleys of east Africa are the result of the faulting activity.

  12. What the volcanism of the East African Rift tells us on its evolution and dynamics: a reappraisal

    NASA Astrophysics Data System (ADS)

    Michon, Laurent

    2015-04-01

    The East African Rift (EAR) is one of the most studied tectonic structures on Earth. Classically, it is described as extending from Afar in the North to the Malawi rift in the South, along the eastern and western branches, respectively. A widely accepted consensus also exists on two main points: 1- the rift initiated first with plume emplacement below the northern part of the eastern branch and 2- extension and volcanism subsequently migrated southward along the western branch (e.g., Ebinger, 1989). However, an increasing amount of new geochronological data on the volcanic activity in the southern part of the East African Rift tends to weaken these interpretations and imposes a reassessment of the rift dynamics. The volcanic activity being one of the main characteristics of this rift, I use it here to determine the lateral extension of the rift system and to assess the rift activity through times. First, the volcanism unambiguously indicates that the rift is not limited to the African continent but can be traced in the Mozambique Channel and in Madagascar where it is closely related to active tectonics (graben and transfer faults) initiated since at least the Miocene. Moreover, the synthesis of more than 800 published geochronological data of volcanic products distributed over the overal East African Rift allows the distinction of two parts. The first part, the Northern EAR, corresponds to the sole eastern branch, which is characterized by volcanic plateaus resulting from huge magma flux during three main periods (32-28, 18-12, 6-0 Ma). Provinces of the second part, the Southern EAR (the western branch, the Mozambique Channel and Madagascar), share rift-related scattered volcanic centres characterized by coeval periods of activity since the Oligocene (28-24, 20-16 and 12-0 Ma). This synthesis highlights the lack of southward migration of the volcanism during the evolution of the East African Rift and instead reveals the almost synchronous development of the

  13. Analysis of the Junction of the East African Rift and the Cretaceous-Paleogene Rifts in Northern Kenya and Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Mariita, N. O.; Tadesse, K.; Keller, G. R.

    2003-12-01

    The East African rift (EAR) is a Tertiary-Miocene system that extends from the Middle East, through East Africa, to Mozambique in southern Africa. Much of the present information is from the Ethiopian and Kenyan parts of the rift. Several characteristics of the EAR such as rift-related volcanism, faulting and topographic relief being exposed make it attractive for studying continental rift processes. Structural complexities reflected in the geometries of grabens and half-grabens, the existence of transverse fault zones and accommodation zones, and the influence of pre-existing geologic structures have been documented. In particular, the EAR traverses the Anza graben and related structures near the Kenya/Ethiopian border. The Anza graben is one in a series of Cretaceous-Paleogene failed rifts that trend across Central Africa from Nigeria through Chad to Sudan and Kenya with an overall northwest-southeast trend. In spite of a number of recent studies, we do not understand the interaction of these two rift systems. In both Ethiopia and Kenya, the rift segments share some broad similarities in timing and are related in a geographic sense. For example, volcanism appears to have generally preceded or in some cases have been contemporaneous with major rift faulting. Although, these segments are distinct entities, each with its own tectonic and magmatic evolution, and they do connect in the region crossed by the Anza graben and related structures. In our present study, we are using a combination of recently collected seismic, gravity and remote sensing data to increase our understanding of these two segments of the EAR. We hope that by analysing the satellite data, the variety and differences in the volume of magmatic products extruded along in southern Ethiopia and northern Kenya will be identified. The geometry of structures (in particular, those causing the gravity axial high) will be modelled to study the impact of the older Anza graben structural trends with the

  14. History of the development of the East African Rift System: A series of interpreted maps through time

    NASA Astrophysics Data System (ADS)

    Macgregor, Duncan

    2015-01-01

    This review paper presents a series of time reconstruction maps of the 'East African Rift System' ('EARS'), illustrating the progressive development of fault trends, subsidence, volcanism and topography. These maps build on previous basin specific interpretations and integrate released data from recent petroleum drilling. N-S trending EARS rifting commenced in the petroliferous South Lokichar Basin of northern Kenya in the Late Eocene to Oligocene, though there seem to be few further deep rifts of this age other than those immediately adjoining it. At various times during the Mid-Late Miocene, a series of small rifts and depressions formed between Ethiopia and Malawi, heralding the main regional rift subsidence phase and further rift propagation in the Plio-Pleistocene. A wide variation is thus seen in the ages of initiation of EARS basins, though the majority of fault activity, structural growth, subsidence, and associated uplift of East Africa seem to have occurred in the last 5-9 Ma, and particularly in the last 1-2 Ma. These perceptions are key to our understanding of the influence of the diverse tectonic histories on the petroleum prospectivity of undrilled basins.

  15. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  16. Martian canyons and African rifts - Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valles Marineris have been used to infer an earlier, less eroded reconstruction of the major troughs. The individual canyons are compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. This is consistent with the longstanding idea that rift width is related to crustal thickness: most evidence favors a crust on Mars at least 50% thicker than that of Africa. The overall patterns of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scraps are straighter for longer than on earth. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  17. Analogies Between the East African Rift Around the Tanzania Craton and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Montesi, L. G.

    2013-12-01

    Continental rifts and oceanic spreading centers both accommodate plate divergence but their morphologies are often quite different. Yet, ultraslow spreading centers, especially the Southwest Indian ridge at the 9 to 16°E area (SWIR), present good analogies for the East African Rift (EAR), including localized volcanism, avolcanic segments, and a continuous but not straight rift axis. The archetypal oceanic spreading center features transform offsets. Volcanism is continuous along the ridge axis and is most vigorous at the center of spreading segments. By contrast, continental rifts do not feature transform offsets. The orientation of the rift can change along strike. Several rift segments are purely tectonic, with relatively isolated volcanic centers. The EAR around the Tanzania Craton clearly shows this kind of morphology. Ultraslow spreading centers share many of these features. The SWIR, in particular, displays dramatic changes in orientation, with volcanism localized at the junction between segments of different obliquity. Melt production and transport are controlled by the effective spreading rate, a combination of plate divergence velocity and rift obliquity. Ultraslow spreading center all have an effective spreading rate less than 13 mm/yr. At that speed the thickness of the thermal boundary layer is similar to the depth from which magma can be effectively extracted, opening the possibility for long-distance transport of magma along axis without extraction. Volcanic centers correspond to the location where the magma transport system first encounters a tectonically damaged zone that enables extraction to the surface. The effective velocity of the EAR in the Kenya dome is less than 4mm/yr firmly on par with ultraslow ridges. In fact, to generate magma by mantle upwelling at such a slow opening rate requires a higher mantle temperature or fertility than in the oceanic domain. Both opening rate and effective velocity increase northward along the Eastern branch

  18. The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Anja; Prömmel, Kerstin; Cubasch, Ulrich

    2016-09-01

    Several proxy data indicate an aridification of the East African climate during the Neogene, which might be influenced by the orographic changes of the East African Rift System (EARS) induced by tectonic forcing during the last 20 million years. To investigate the impact of the orography and especially of the rifts, the regional climate model CCLM is used, covering the EARS with Lake Victoria in the centre of the model domain. CCLM is driven by the ERA-Interim reanalysis and applied with a double-nesting method resulting in a very high spatial resolution of 7 km. The resolution clearly shows the shoulders and rifts of the western and eastern branch of the EARS and the Rwenzoris within the western branch. To analyse the orographic influence on climate, a new technique of modifying the orography is used in this sensitivity study. The shoulders of the branches are lowered and the rifts are elevated, resulting in a smoothed orography structure with less altitude difference between the shoulders and rifts. The changes in 2 m-temperature are very local and associated with the changes in the orography. The vertically integrated moisture transport is characterised by less vortices, and its zonal component is increased over the branches. The resulting amount of precipitation is mainly decreased west of the western branch and increased in the rift of the western branch. In the eastern branch, however, the changes in the amount of precipitation are not significant. The changes in the precipitation and temperature patterns lead to a shift of biomes towards a vegetation coverage characterised by more humid conditions in the northern part of the model domain and more arid conditions in the South. Thus, the aridification found in the proxy data can be attributed to the orographic changes of the rifts only in the northern model domain.

  19. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  20. Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Macheyeki, A. S.; Temu, E. B.

    2012-04-01

    The Tanganyika-Rukwa-Malawi (TRM) rift segment in western Tanzania is a key sector for understanding the opening dynamics of the East African rift system (EARS). In an oblique opening model, it is considered as a dextral transfer fault zone that accommodates the general opening of the EARS in an NW-SE direction. In an orthogonal opening model, it accommodates pure dip-slip normal faulting with extension orthogonal to the rift segments and a general E-W extension for the entire EARS. The central part of the TRM rift segment is well exposed in the Ufipa plateau and Rukwa basin, within the Paleoproterozoic Ubende belt. It is also one of the most seismically active regions of the EARS. We investigated the active tectonic architecture and paleostress evolution of the Ufipa plateau and adjacent Rukwa basin and in order to define their geodynamic role in the development of the EARS and highlight their pre-rift brittle tectonic history. The active fault architecture, fault-kinematic analysis and paleostress reconstruction show that the recent to active fault systems that control the rift structure develop in a pure extensional setting with extension direction orthogonal to the trend of the TRM segment. Two pre-rift brittle events are evidenced. An older brittle thrusting is related to the interaction between the Bangweulu block and the Tanzanian craton during the late Pan-African (early Paleozoic). It was followed by a transpressional inversion during the early Mesozoic. This inversion stage is the best expressed in the field and caused dextral strike-slip faulting along the fault systems that now control the major rift structures. It has been erroneously interpreted as related to the late Cenozoic EARS which instead is characterized by pure normal faulting (our third and last stress stage).

  1. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where

  2. Multi Scale Imaging of Seismic Structure beneath the Western Branch of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Jakovlev, A.; Rumpker, G.; Koulakov, I.

    2010-12-01

    In this study, we investigate the crustal and upper mantle velocity structure beneath the East African Rift System (EARS) as a whole and beneath the Rwenzori Mountains in western Uganda in particular. The most interesting features here is the mountain range of approximately 50 km-wide, with a length of about 150 km, which is situated within the western branch of the East African rift zone and reaches the altitudes of more than 5000 m. The joint tomographic inversion was used to investigate the velocity structure beneath the Rwenzoris on a local scale down to the depth of about 75 - 80 km. Arrival times from 2053 local and 284 teleseismic earthquakes recorded by a temporary network equipped 35 short period and broad-band stations were used as an input for the joint tomographic inversion. The network is covering an area of 140×90 km2. To estimate resolution ability and stability of the obtained results we performed many different tests. The tests show that the best horizontal resolution is achieved in the northern part of the study area, where the density of the ray coverage is highest. In shallow depths where local earthquake rays dominate, the vertical and horizontal resolution is relatvely high, while in deeper sections covered with teleseismic rays, the anomalies seem to be strongly smeared and can be interpreted only on a qualitative level. Velocity structure in the upper crust agrees with the distribution of the main geological units, such as sedimentary basins, igneous outcrops, thermal fields etc. For the uppermost mantle, our results reveal an inclined boundary between the high-velocity Tanzania craton and low-velocity patterns beneath the rift. The same position of the contact between craton and rift zone was obtained in the regional tomographic study of the EARS as a whole. This regional study was based on the ISC data, which contains information about arrival times of signals from earthquakes at more than 7000 stations of the global seismological network

  3. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery of the African rift system has already proved of great value in structural geological studies. One of the interesting megastructures expressed on the imagery occurs some 40 km east of the eastern margin of the main Ethiopian rift, in Arussi province, and extending between latitude 71/2 and 81/4 deg N. The Badda-Encuolo ridge proves to have been a line of major Tertiary volcanism and probably supplied the thick Trap Series flood basalt sequence exposed farther east in the canyons of the Webi Shebeli drainage system. The ridge itself was built up by the waning activity of the Sagatu line of volcanism. Serendipitious has been the discovery on Mt. Badda of several deeply glaciated valleys, many of which show clearly on the ERTS-1 imagery. It seems that Mt. Badda was one of the most important glacial centers in eastern Africa during the Pleistocene. Three major late-Tertiary trachytic centers lie between the Badda-Encuolo ridge and the rift valley. The relationships of these three volcanoes to each other and to the rift faulting is revealed for the first time by the ERTS-1 imagery, as is the form of the cladera of Baltata and the crater of Chilalo.

  4. Seismicity of the Earth 1900-2013 East African Rift

    USGS Publications Warehouse

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.

  5. A common mantle plume source beneath the entire East African Rift System revealed by coupled helium-neon systematics

    NASA Astrophysics Data System (ADS)

    Halldórsson, Sæmundur A.; Hilton, David R.; Scarsi, Paolo; Abebe, Tsegaye; Hopp, Jens

    2014-04-01

    We report combined He-Ne-Ar isotope data of mantle-derived xenoliths and/or lavas from all segments of the East Africa Rift System (EARS). Plume-like helium isotope (3He/4He) ratios (i.e., greater than the depleted MORB mantle (DMM) range of 8 ± 1RA) are restricted to the Ethiopia Rift and Rungwe, the southernmost volcanic province of the Western Rift. In contrast, neon isotope trends reveal the presence of an ubiquitous solar (plume-like) Ne component throughout the EARS, with (21Ne/22Ne)EX values (where (21Ne/22Ne)EX is the air-corrected 21Ne/22Ne ratio extrapolated to Ne-B) as low as 0.034, close to that of solar Ne-B (0.031). Coupling (21Ne/22Ne)EX with 4He/3He ratios indicates that all samples can be explained by admixture between a single mantle plume source, common to the entire rift, and either a DMM or subcontinental lithospheric mantle source. Additionally, we show that the entire sample suite is characterized by low 3He/22NeS ratios (mostly < 0.2)—a feature characteristic of oceanic hot spots such as Iceland. We propose that the origin of these unique noble gas signatures is the deeply rooted African Superplume which influences magmatism throughout eastern Africa. We argue that the Ethiopia and Kenya domes represent two different heads of this common mantle plume source.

  6. Miocene Onset of Extension in the Turkana Depression, Kenya: Implications for the Geodynamic Evolution of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Boone, S.; Gleadow, A. J. W.; Kohn, B. P.; Seiler, C.

    2015-12-01

    The Paleogene-Recent East African Rift System (EARS) is the foremost modern example of continental rifting, providing much of our understanding of the early stages of continental breakup. The EARS traverses two regions of crustal uplift, the Ethiopian and East African Domes, separated by the Turkana Depression. This wide region of subdued topography coincides with the NW-SE trend of the Jurassic-Paleogene Anza Rift. Opinions on the fundamental geodynamic driver for EARS rifting are divided, however, principally between models involving migrating plume(s) and a single elongated 'superplume'. While competing models have similar topographic outcomes, they predict different morphotectonic evolutions for the Turkana Depression. Models inferring southward plume-migration imply that the plume must have passed below the Turkana Depression during the Paleogene, in order to have migrated to the East African Dome by the Miocene. The possible temporal denudational response to such plume activity is testable using low temperature thermochronology. We present apatite fission track (AFT) and (U-Th)/He (AHe), and zircon (U-Th)/He (ZHe) data from the Lapurr Range, an uplifted Precambrian basement block in northern Turkana. Low radiation damage ZHe results displaying an age range of ~70-210 Ma, and combined with stratigraphic evidence, suggest ~4-6 km of Jurassic-Early Cretaceous denudation, probably associated with early Anza Rift tectonism. AFT ages of ~9-15 Ma imply subsequent burial beneath no more than ~4 km of overburden, thus preserving the Jurassic-Cretaceous ZHe ages. Together with AFT results, AHe data (~3-19 Ma) support ~2-4 km of Miocene-Pliocene uplift of the Lapurr Range in the footwall of the E-dipping Lapurr normal fault. Miocene AFT and AHe ages are interpreted to reflect the initiation of the EARS in the Turkana Depression. If extension is associated with plume activity, then upwelling in the Turkana region is unlikely to have started prior to the Miocene, much

  7. Environmental health impacts of East African Rift volcanism.

    PubMed

    Davies, T C

    2008-08-01

    The East African Rift Valley (EARV) is a structure of a major order in the Earth's crust. Accompanying volcanic activity has influenced greatly the nature of the soils and the geochemistry of ground and surface waters, an influence that is reflected in water and food quality. Direct volcanic impacts result from the up-welling of volatile, potentially harmful elements (PHE), such as F, As, and Hg, that dissolve directly into groundwaters. Intense tropical weathering results in clear redistribution of all but the most refractory elements to form distinct zones of micronutrient deficiencies and PHE excesses. Of concern, too, is human exposure to volcanic materials such as dust and clay-enriched soil fractions. Further alteration of the landscape geochemistry is being brought about by pollution from human activities, with increasing health concerns in many ecosystems of the region. This review shows that the unique distribution pattern of trace elements, imprinted by the East African Rift volcanism and modified by weathering and anthropogenic factors, correlates with a number of geochemical diseases in man and animals. It is submitted that accurate diagnoses of these diseases and associated health conditions, and prescription of appropriate remedies, must be founded upon a fundamental understanding of how the elements were naturally distributed in the first place. This can only be realised through the construction of complete geochemical databases for the region.

  8. New constraints on the present-day kinematics of the East African Rift from GPS and earthquake slip vector data

    NASA Astrophysics Data System (ADS)

    Hartnady, C.; Calais, E.; Ebinger, C.; Nocquet, J.

    2004-12-01

    The East African Rift (EAR), a major 5,000 km long and up to 1,000 km wide tectonic structure that marks the extensional boundary between the Nubian and Somalian plate, is interpreted either as a wide zone of uniformly distributed, diffuse deformation, or as a mosaic of microplates. Testing these models and quantifying the present-day kinematics of the EAR has so far resited investigation because of a critical lack of geodetic data within the EAR as well as on the surrounding Nubian and Somalian plates. Here, we present an updated GPS velocity field covering the Nubian and Somalian plates and combine it with earthquake slip vectors along the EAR in a joint inversion. Our objectives are to better constrain the Somalia/Nubia plate motion and to try to resolve block motions within the plate boundary zone. We find a Somalia/Nubia angular velocity similar to the one proposed by Fernandes et al. (EPSL, 222, 2004). We show that Tanzanian craton, nested between the western and eastern branches of the EAR and underlained by an upper mantle plume, can be modeled as an independent block, rotating counterclockwise w.r.t. Nubia. We discuss the implications of this kinematic model on the tectonics of the EAR.

  9. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  10. Human Dispersals Along the African Rift Valley in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  11. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  12. Minimal Role of Basal Shear Tractions in Driving Nubia-Somalia Divergence Across the East African Rift System

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Calais, E.; Iaffaldano, G.; Flesch, L. M.

    2012-12-01

    The Nubian and Somalian plates actively diverge along the topographically high, ~5000 km long East African Rift System (EARS). As no major subduction zones bound Africa, one can assume that the forces driving the Nubia-Somalia plate system result primarily from mantle buoyancies and lateral variation in lithospheric gravitational potential energy. Images from seismic tomography and convection models suggest active mantle flow beneath Africa. However, the contribution from large-scale convection to the force balance driving plate divergence across the EARS remains in question. In this work we investigate the impact of mantle shear tractions on the dynamics of Nubia-Somalia divergence across the EARS. We compare surface motions inferred from GPS observations with strain rates and velocities predicted from dynamic models where basal shear stresses are (1) derived from forward mantle circulation models and (2) inferred from stress field boundary conditions that balance buoyancy forces in the African lithosphere. Upper mantle anisotropy derived from seismic observations beneath Africa provide independent constraints for the latter. Preliminary results suggest that basal shear tractions play a minor role in the dynamics of Nubia-Somalia divergence along the EARS. This result implies mantle-lithosphere decoupling, possibly promoted by a low viscosity asthenosphere. We corroborate the robustness of our results with estimates of upper mantle viscosity based on local upper mantle temperature estimates and rheological parameters obtained from laboratory experiments.

  13. Recent seismicity of the East African Rift system and its implications

    NASA Astrophysics Data System (ADS)

    Kebede, Fekadu; Kulhánek, Ota

    1991-09-01

    The seismicity of the East African Rift system and southern Red Sea is studied here. Location of earthquake epicenters in East Africa shows that there is a seismicity gap in space and time between the Main Ethiopian Rift system and the eastern rift. However, distribution of earthquake epicenters together with the energy mapping suggest a continuity of seismic activity or stress field from the Main Ethiopian Rift system to the western rift system via the southernmost rifts of Ethiopia. In general (except for some earthquakes which occurred at different complex tectonics regions) mechanisms of earthquakes studied here show dominantly normal faulting suggesting that the rift system is an extensional zone on the continent. The presence of greater focal depth earthquakes to the southern part of the rift system may indicate that softer materials at a shallower depth are present in Afar and neighboring regions than in the remaining part of the East African Rift system. This interpretation is supported by other geophysical studies (low electrical resistivity and gravity data) performed in Afar. It is also supported by low and high stress drops found for the northern part (Afar depression) and southern part of the East African Rift system, respectively.

  14. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Custódio, Susana; Chamussa, José; Silveira, Graça; Chang, Sung-Joon; Lebedev, Sergei; Ferreira, Ana; Fonseca, João

    2014-05-01

    Project MOZART - MOZAmbique Rift Tomography (funded by FCT, Lisbon) deployed a total of 30 temporary broadband seismic stations from the SEIS-UK Pool in central and south Mozambique and in NE South Africa. The purpose of this project is the study of the East African Rift System (EARS) in Mozambique. We estimated preliminary locations with the data recorded from April 2011 to July 2012. A total of 307 earthquakes were located, with ML magnitudes ranging from 0.9 to 3.9. We observe a linear northeast-southwest distribution of the seismicity that seems associated to the Inhaminga fault. The seismicity in the northeast sector correlates well with the topography, tracing the Urema rift valley. The seismicity extends to ~300km, reaching the M7 2006 Machaze earthquake area. In order to obtain an initial velocity model of the region, we applied the ambient noise method to the MOZART data and two additional stations from AfricaARRAY. Cross-correlations were computed between all pairs of stations, and we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. The geographical distribution of the group velocity anomalies is in good agreement with the geology map of Mozambique, having lower group velocities in sedimentary basins areas and higher velocities in cratonic regions. We also observe two main regions with different velocities that may indicate a structure not proposed in previous studies. We perform a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle, and in order to extend the investigation to longer periods we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry), while augmenting our dataset with Rayleigh wave phase velocities curves in broad period ranges. In this way we expect to be able to look into the lithosphere-asthenosphere depth range.

  15. Climate Change Affects the East African Rift Valley Lakes

    NASA Astrophysics Data System (ADS)

    O'Reilly, C. M.; Plisnier, P.; Cohen, A. S.

    2004-12-01

    Over the last 100 years, air temperatures in eastern African have been warming consistent with the global average temperature increase. This has led to warmer water temperatures in the East African Rift Valley lakes, increasing the stability of the water column. Subsequently, there has been a reduction in the upwelling of deep nutrient-rich waters that are the primary source of nutrients for most of these lakes. There were decreases in surface water N and P and increases in the Si:P ratio over the past 70 years for Lakes Malawi, Tanganyika, Edward, and Albert. The lower nutrient concentrations in the surface waters were associated with reduced algal biomass and increased water clarity. The consistent, regional-scale changes among these lakes provide strong evidence that climate warming may be having a large negative affect on these unique tropical lakes. A decrease in primary productivity of 20% has been indicated for Lake Tanganyika, which would be associated with a 30% decrease in fisheries yields. The human implications of such subtle, but progressive, environmental changes are potentially dire in this densely populated region of the world, where these large lakes are an important nutritional and economic resource.

  16. Initiation of the western branch of the East African Rift coeval with the eastern branch

    NASA Astrophysics Data System (ADS)

    Roberts, E. M.; Stevens, N. J.; O'Connor, P. M.; Dirks, P. H. G. M.; Gottfried, M. D.; Clyde, W. C.; Armstrong, R. A.; Kemp, A. I. S.; Hemming, S.

    2012-04-01

    The East African Rift System transects the anomalously high-elevation Ethiopian and East African plateaux that together form part of the 6,000-km-long African superswell structure. Rifting putatively developed as a result of mantle plume activity that initiated under eastern Africa. The mantle activity has caused topographic uplift that has been connected to African Cenozoic climate change and faunal evolution. The rift is traditionally interpreted to be composed of two distinct segments: an older, volcanically active eastern branch and a younger, less volcanic western branch. Here, we show that initiation of rifting in the western branch began more than 14 million years earlier than previously thought, contemporaneously with the eastern branch. We use a combination of detrital zircon geochronology, tephro- and magnetostratigraphy, along with analyses of past river flow recorded in sedimentary rocks from the Rukwa Rift Basin, Tanzania, to constrain the timing of rifting, magmatism and drainage development in this part of the western branch. We find that rift-related volcanism and lake development had begun by about 25million years ago. These events were preceded by pediment development and a fluvial drainage reversal that we suggest records the onset of topographic uplift caused by the African superswell. We conclude that uplift of eastern Africa was more widespread and synchronous than previously recognized.

  17. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    NASA Astrophysics Data System (ADS)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition

  18. Crustal rheology and depth distribution of earthquakes: Insights from the central and southern East African Rift System

    NASA Astrophysics Data System (ADS)

    Albaric, Julie; Déverchère, Jacques; Petit, Carole; Perrot, Julie; Le Gall, Bernard

    2009-04-01

    The seismicity depth distribution in the central and southern East African Rift System (EARS) is investigated using available catalogs from local, regional and global networks. We select well-determined events and make a re-assessment of these catalogs, including a relocation of 40 events and, where necessary, a declustering. About 560 events are finally used for determining foci depth distribution within 6 areas of the EARS. Assuming that short-term deformation expressed by seismicity reflects the long-term mechanical properties of the lithosphere, we build yield strength envelopes from seismicity depth distribution. Using brittle and ductile laws, we predict the strength percentage spaced every 5 km (or sometimes 2 km) in the crust, for a given composition and a specific geotherm, and constrain it with the relative abundance of seismicity. Results of this modeling indicate significant local and regional variations of the thermo-mechanical properties of the lithosphere which are broadly consistent with previous studies based on independent modelings. In order to explain relatively deep earthquakes, a highly resistant, mafic lower crust is generally required. We also find evidence for changes in the strength magnitude and in the depth of the brittle-ductile transitions which are clearly correlated to tectonic provinces, characterized by contrasted thermal gradients and basement types. A clear N-S increase and deepening of the peak strength level is evidenced along the eastern branch of the EARS, following a consistent southward migration of rifting since ~ 8 Ma. We also detect the presence of a decoupling layer in the Kenya rift, which suggests persisting influences of the deep crustal structures (Archaean and Proterozoic) on the behavior of the extending crust. More generally, our results suggest that seismicity peaks and cut-off depths may provide good proxies for bracketing the brittle-ductile transitions within the continental crust.

  19. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1993-08-01

    This overview of the petroleum geology of rift basins in Niger, Chad, and Central African Republic (CAR) is based on exploration work by Exxon and partners in the years 1969-1991. The work included 50,000 km of modern reflection seismic, 53 exploration wells, 1,000,000 km[sup 2] of aeromagnetic coverage, and about 10,500 km of gravity profiles. The results outline ten Cretaceous and Tertiary rift basins, which constitute a major part of the West and Central African rift system (WCARS). The rift basins derive from a multiphased geologic history dating from the Pan-African (approximately 750-550 Ma) to the Holocene. WCARS in the study area is divided into the West African rift subsystem (WAS) and the Central African rift subsystem (WAS) and the Central African rift subsystem (CAS). WAS basins in Niger and Chad are chiefly extensional, and are filled by up to 13,000 m of Lower Cretaceous to Holocene continental and marine clastics. The basins contain five oil (19-43[degrees]API) and two oil and gas accumulations in Upper Cretaceous and Eocene sandstone reservoirs. The hydrocarbons are sourced and sealed by Upper Cretaceous and Eocene marine and lacustrine shales. The most common structural styles and hydrocarbon traps usually are associated with normal fault blocks. CAS rift basins in Chad and CAR are extensional and transtensional, and are filled by up to 7500 m of chiefly Lower Cretaceous continental clastics. The basins contain eight oil (15-39[degrees]API) and one oil and gas discovery in Lower and Upper Cretaceous sandstone reservoirs. The hydrocarbons are sourced by Lower Cretaceous shales and sealed by interbedded lacustrine and flood-plain shales. Structural styles range from simple fault blocks through complex flower structures. The main hydrocarbon traps are in contractional anticlines. Geological conditions favor the discovery of potentially commercial volumes of oil in WCARS basins, of Niger, Chad and CAR. 108 refs., 24 figs., 4 tabs.

  20. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  1. Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Silveira, G. M.; Custodio, S.; Chamussa, J.; Lebedev, S.; Chang, S. J.; Ferreira, A. M. G.; Fonseca, J. F. B. D.

    2014-12-01

    Unlike the majority of the East African Rift, the Mozambique region has not been deeply studied, not only due to political instabilities but also because of the difficult access to its most interior regions. An earthquake with M7 occurred in Machaze in 2006, which triggered the investigation of this particular region. The MOZART project (funded by FCT, Lisbon) installed a temporary seismic network, with a total of 30 broadband stations from the SEIS-UK pool, from April 2011 to July 2013. Preliminary locations of the seismicity were estimated with the data recorded from April 2011 to July 2012. A total of 307 earthquakes were located, with ML magnitudes ranging from 0.9 to 3.9. We observe a linear northeast-southwest distribution of the seismicity that seems associated to the Inhaminga fault. The seismicity has an extension of ~300km reaching the Machaze earthquake area. The northeast sector of the seismicity shows a good correlation with the topography, tracing the Urema rift valley. In order to obtain an initial velocity model of the region, the ambient noise method is used. This method is applied to the entire data set available and two additional stations of the AfricaARRAY project. Ambient noise surface wave tomography is possible by computing cross-correlations between all pairs of stations and measuring the group velocities for all interstation paths. With this approach we obtain Rayleigh wave group velocity dispersion curves in the period range from 3 to 50 seconds. Group velocity maps are calculated for several periods and allowing a geological and tectonic interpretation. In order to extend the investigation to longer wave periods and thus probe both the crust and upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry - Meier el al 2004) to augment our dataset with Rayleigh wave phase velocities curves in a broad period range. Using this method we expect to be able to explore the lithosphere

  2. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  3. Tomographic study of the East African Rift in Mozambique - Initial results

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Chamussa, J. R.; Antunes, E.; Custodio, S.; Silveira, M. M.; Helffrich, G. R.; Ferreira, A. M.; Fonseca, J. F.

    2012-12-01

    Extensively investigated from the Red Sea to southern Tanzania, the East African Rift (EAR) structure is still unknown on its southern tip, Mozambique. The M7 Machaze earthquake of 2006, in central Mozambique, shed new light on the location of the rifting activity, motivating the current initiative. During 2011, project MOZART (funded by FCT, Lisbon, PI J. Fonseca) deployed a network of 30 broadband (120s) seismic stations from the SEIS-UK Pool in central Mozambique and NE South Africa, to investigate the structure of the southernmost section of the EAR through a number of techniques. We present preliminary results of data quality control based on full-waveform modeling, hypocentral locations, and regional structure based on the analysis of ambient noise. Data quality control based on full-waveform modeling relies on comparisons between MOZART waveform data and synthetic seismograms computed with a spectral element method (Komatitsch and Tromp, 2002). These comparisons allow an understanding of how well existing global 3D and 1D Earth models, which were built from independent data, explain MOZART data, and how suitable MOZART data are for waveform tomography. The 3D Earth model synthetics explain the surface wave phases well, but are more limited at matching amplitudes, showing that there is still scope for improvement of the Earth model. The 1D Earth PREM synthetics explain surface wave amplitudes broadly as well as the 3D Earth model, but lead to much poorer phase fits. We will also present preliminary results of the analysis of local seismicity. Local hypocenters are determined using the SEISAN software. The hypocenter inversion is a modified version of HYPOCENTER (Lienert et al., 1986, Lienert,1991, Lienert and Havskov, 1995). The current version uses different seismic phases for earthquake location. The hypocentral locations of small to moderate earthquakes help to identify the most seismically active regions. Finally, we present the first results of the

  4. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  5. Vector Competence of Selected African Mosquito (Diptera: Culicidae) Species for Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Rift Valley fever (RVF) in Egypt, Yemen, and Saudi Arabia have indicated the potential for this disease to spread from its enzootic areas in sub-Saharan Africa. Because little is known about the potential for most African mosquito species to transmit RVF virus (RVFV), we conducted stud...

  6. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Chamussa, J.; Silveira, G. M.; Custodio, S.; Lebedev, S.; Chang, S.; Ferreira, A. M.; Fonseca, J. F.

    2013-12-01

    A wide range of studies has shown that the cross-correlation of ambient noise can provide an estimate of the Greens functions between pairs of stations. Project MOZART (funded by FCT, Lisbon, PI J. Fonseca) deployed 30 broadband (120s) seismic stations from the SEIS-UK Pool in Central Mozambique and NE South Africa, with the purpose of studying the East African Rift System (EARS) in Mozambique. We applied the Ambient Noise Tomography (ANT) method to broadband seismic data recorded from March 2011 until July 2012. Cross-correlations were computed between all pairs of stations, and from these we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. We tested various approaches for pre-processing the ambient noise data regarding time-domain and spectral normalisation, as well as the use of phase cross-correlations. Moreover, we examined the robustness of our dispersion maps by splitting our dataset into various sub-sets of Green's functions with similar paths and by quantifying the differences between the dispersion maps obtained from the various sub-sets of data. We find that while the geographical distribution of the group velocity anomalies is well constrained, the amplitudes of the anomalies are slightly less robust. We performed a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle. In addition, our preliminary results show a good correlation between the Rayleigh wave group velocity and the geology of Mozambique. In order to extend the investigation to longer periods and, thus, to be able to look into the lithosphere-asthenosphere depth range in the upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry) and augment our dataset with Rayleigh wave phase velocities curves in broad period ranges.

  7. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems

    NASA Astrophysics Data System (ADS)

    Castaing, C.

    1991-05-01

    Structural studies conducted in the Lengwe and Mwabvi Karroo basins and in the basement in South Malawi, using regional maps and published data extended to cover Southeast Africa, serve to propose a series of geodynamic reconstructions which reveal the persistence of an extensional tectonic regime, the minimum stress σ3 of which has varied through time. The period of Karroo rifting and the tholeiitic and alkaline magmatism which terminated it, were controlled by NW-SE extension, which resulted in the creation of roughly NE-SW troughs articulated by the Tanganyika-Malawi and Zambesi pre-transform systems. These were NW-SE sinistral-slip systems with directions of movement dipping slightly to the Southeast, which enabled the Mwanza fault to play an important role in the evolution of the Karroo basins of the Shire Valley. The Cretaceous was a transition period between the Karroo rifting and the formation of the Recent East African Rift System. Extension was NE-SW, with some evidence for a local compressional episode in the Lengwe basin. Beginning in the Cenozoic, the extension once more became NW-SE and controlled the evolution in transtension of the Recent East African Rift System. This history highlights the major role of transverse faults systems dominated by strike-slip motion in the evolution and perpetuation of the continental rift systems. These faults are of a greater geological persistence than the normal faults bounding the grabens, especially when they are located on major basement anisotropies.

  8. Eradication of elephant ear mites (Loxoanoetus bassoni) in two African elephants (Loxodonta africana).

    PubMed

    Wyatt, Jeff; DiVincenti, Louis

    2012-03-01

    Elephant ear mites, not previously described in North America, were eradicated in two African elephants (Loxodonta africana) after six otic instillations of ivermectin at 2-wk intervals. The microscopic examination of a clear, mucoid discharge collected from the external ear canals of two wild-born African elephants housed in a New York State zoo for 25 yr revealed live mites (Loxoaneotus bassoni). The cytologic examination demonstrated no evidence of inflammation or infection. Both elephants were asymptomatic with normal hemograms and serum chemistry panels. A diagnosis of otoacariasis was made. Each elephant was treated six times with 5 ml of 1% ivermectin syrup instilled in each ear canal once every 2 wk. Microscopic examinations of clear mucus collected from each elephant's ear canals 9 days after the first instillation of ivermectin were negative for any life stages of ear mites. Microscopic examinations of mucus collected from both elephants' ear canals at 6, 11, and 16 wk, as well as annually post-treatment for 7 yr, confirmed eradication of the ear mites. The L. bassoni ear mite was first identified in the external ear canals of wild, asymptomatic, lesion-free, African elephants culled in Kruger National Park in South Africa. However, a new species in the same genus of mites (Loxoanoetus lenae) was identified at the necropsy of an 86-yr-old Asian elephant (Elephas maximus) living in a circus in Australia. The autopsy revealed a marked, ballooning distension of bone around the left external acoustic meatus, suggestive of mite-induced otitis externa, as seen in cattle infested with ear mites (Raillieta auris). Elephant health care providers should identify the prevalence of, and consider treatment of, elephants in their care infested with ear mites, given the possible risk for adverse health effects.

  9. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The new fault map of the main Ethiopian rift, based on aerial photo compilations, generally agrees well with the maps produced from ERTS-1 imagery. Characteristically, the ERTS-1 imagery shows some of the major faults to be more extensive than realized from ground studies, though due to the angle of sun illumination some east-facing fault scarps are not easily discernible on the imagery. The Corbetti caldera, shows up surprisingly poor on the imagery, and is shown to be an adjunct to an older, larger caldera now occupied by Lakes Awassa and Shallo. The lithological boundaries mapped by De Paola in the rift are difficult to discern on the ERTS-1 imagery. On the Somalian plateau, east of the rift, a denuded caldera has been identified as the source of much of the lavas of the Batu Mountains. Further south, ERTS-1 imagery amplifies the structural and lithological mapping of the Precambrian rocks of the Shakisso-Arero area, and of the Kenya-Ethiopia border region. For the first time with some certainty, it is now possible to say that on the evidence of the ERTS-1 imagery, the Western Rift does not continue northeast beyond the Sudan-Uganda border, and is thus not to be sought in western Ethiopia.

  10. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  11. 3-D Evolutionary model of the oblique rift basins-the study of Central African Rifts

    NASA Astrophysics Data System (ADS)

    Cheng, I. W.; Yang, K. M.; Wu, J. C.; Hsiuan, T. H.

    2015-12-01

    Because of their tectonostratigraphically high potentials to yield oil and gas, oblique rift basins are a noteworthy type of global petroleum basins. The main purpose of this study is to investigate characteristics of the structural style and basin evolution of the Central Africa rift subsystem (CAS). Establishing the evolutionary model of CAS by the analyses of tectonostratigraphy, geometry, kinematics of structural features and Particle Flow Code 3-Dimensions (PFC 3D). The results can be references for petroleum basin exploration. The study areas are in the CAS, including the Doba, Doseo and Salamat Basins. Basins are separated by a large-scale strike-slip fault zone (Borogop fault zone) across the CAS. The results showed that the Borogop fault zone pass through the CAS until the Late Cretaceous compression and then became a big-scaled strike-slip fault. The structural geometry of oblique rift is changed with the α angle between the rift trend and trend of tensile stress. PFC-3D indicated that 1) The α of the Doba, Doseo and Salamat Basins are 60°, 60° and 75°, respectively; 2) When the α got close to 45°, the density of the echelon faults alone the basin center decreased gradually; 3) The Doba Basin is wide and shallow which should be affected by meso-scaled stresses. The Doseo and Salamat Basins are narrow and deeper which should be affected by mega-scaled stresses. According to the abovementioned results, we suggest that 1) The Borogop fault zone had less influence on basin architecture of CAS, therefore the basins of CAS are not the pull-apart basins but the extensional basins, and 2) Doba and Doseo-Salamat Basins should probably belong to different type of petroleum systems, which have different scales of stress.

  12. Surface-wave Tomography of East African Rift System using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kang, T.; Baag, C.; Nyblade, A. A.

    2008-12-01

    The surface-wave tomography technique for the ambient seismic noise is applied to the east African rift system to investigate shallow crustal structures of the region. Even if the technique has been widely used in many regions to investigate crustal structure in the world, there have been difficulties in application of the technique to the east African region because of unstable data conditions of PASSCAL experiments. A meticulous check of record by record enables us of applying the technique to understand the tectonic environment of the region. The long-period data of one month showing good quality in cross-correlation results are used in this study. They are from the 1994-95 Tanzania Passive-Source Seismic Experiment for the Tanzania craton and its surrounding rift zone, and from the 2000-02 Ethiopia/Kenya Broadband Seismic Experiment and the adjacent permanent stations of the African Array for the Ethiopia rift. The Rayleigh- and Love-wave group-speed maps were inverted using LSQR algorithm for several period bands (5 - 50 s). The preliminary group-speed distribution maps yield results roughly consistent with regional geology. The tomographic images of the Tanzania region show a strong high velocity anomaly at the location corresponding to the Tanzania craton and low velocity anomalies at the surrounding rift regions. For the Ethiopia regions, the features of low velocity anomalies roughly agree with the Tertiary volcanic regions. Combining the Tanzania and Ethiopia broadband arrays, the outline of the east African rift system can be identified as the low velocity anomalies in the surface-wave tomographic results. The structural variation with depth and the feature of the regional shear-wave anisotropy of crust will be explored by converting group- speed dispersion curves into shear-wave velocity structure.

  13. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    PubMed

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. PMID:22404967

  14. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    PubMed

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism.

  15. Benue trough and the mid-African rift system

    SciTech Connect

    Thomas, D.

    1996-01-29

    Large areas of the Anambra and Gongola basins have distinct petroleum exploration problems: a geologically persistent high geothermal gradient that promoted Cretaceous source rock maturation into the gas phase very early on; intrusive lead-zinc mineralization veins attributed to the Senonian igneous and folding event; and meteoric water-flushing along the periphery of the basins. From preliminary analysis, these basins have to be considered high risk for the discovery of commercial oil accumulations. On the other hand, the petroleum potential of the Bornu basins seems favorable. This Nigerian northernmost rift basin continues into the Kanem basin of western Chad, which has proven oil accumulations in Coniacian deltaic sands. Cretaceous paleofacies is considered to be relatively continuous throughout both basins. Paleo-geothermal history is also considered to be similar, although some igneous activity is recorded in the Bornu basin (Senonian?). There is a very real possibility of kerogen-rich non-marine basal Albo-Aptian basin fill lacustrine source rocks, as found in the Doba basin, could be present in the deepest sections of the Nigerian rift basins. Due to the depths involved, no well is expected to penetrate the incipient graben-fill stage sequences; however, possible oil migration from these tectono-stratigraphic units would certainly enhance the petroleum potential of cooler sections of the rift system. As opposed to interpreted thermogenic gas which seems to be prevalent in the Anambra basin.

  16. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  17. Petroleum geology of rift basins in Niger, Chad, and the Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-03-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad, and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed. This paper is based on proprietary exploration results derived from more than 1 million km{sup 2} of aeromagnetics, 10,520 line km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas, Inc., during the years 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks, and seals, with traps in normal fault blocks and anticlinal closures. There are six oil discoveries in the Termit basin. In Chad and the C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. Key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There are six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and the C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  18. Petroleum geology of rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-08-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed based on proprietary exploration results derived from more than one million km{sup 2} of aeromagnetics, 10,520 line-km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas During 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks and seals, with traps in normal fault blocks and anticlinal closures. There have been six oil discoveries in the Termit basin. In C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood-plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There have been six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  19. A new brachypterous scarab species, Orphnus longicornis (Coleoptera: Scarabaeidae: Orphninae), from the East African Rift.

    PubMed

    Frolov, Andrey; Akhmetova, Lilia

    2015-11-05

    The Afrotropical Region is the center of the diversity of the scarab beetle genus Orphnus MacLeay, 1819 (Coleoptera: Scarabaeidae: Orphninae), with 94 species occurring from Sahel in the north to Little Karoo in the south (Paulian, 1948; Petrovitz, 1971; Frolov, 2008). The East African Rift is one of the richest regions of the Afrotropics housing more than 20 species of Orphnus (Paulian, 1948; Frolov, 2013), most of which are endemic to this region. Yet the scarab beetle fauna of the East African Rift, and especially the Eastern Arc Mountains, is still inadequately studied. Examination of the material housed in the Museum of Natural History of Humboldt-Universität, Berlin, Germany (ZMHUB), revealed a series of brachypterous Orphnus beetles belonging to an undescribed species. The new species is described and illustrated below.

  20. Very early rift sedimentation in the Turkana depression (EARS, Kenya): example of the Topernawi Formation

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Ragon, T.; Schuster, M.; Ghienne, J. F.

    2015-12-01

    Sedimentation associated with very early phase of continental rifting remains poorly understood as related deposits lie at deepest part of basins and rarely outcrop at the surface. However, understanding of these sediments are essential first to better-constrain early extensional phase and second in term of potential resources. The Turkana depression is a rift system active since the Paleogene, which makes the connection between Kenyan and Ethiopian domes. The southern area consists of four asymmetrical and juxtaposed grabens: the Lokichar, Turkwell, Kerio and South Lake Basin, which have been intensively documented through oil exploration. The northern part is structured into a single asymmetrical graben, the North Lake basin, less-known even oil exploration started. In this contribution, a sedimentary system preserved on the rift shoulder of the North Lake Basin is presented. Referred to as the Topernawi Fm, it is interpreted as recording the earliest phase of Cenozoic rifting in the area. The Topernawi Fm delineates a relic sedimentary basin of limited extension (3 - 5 km). Boundaries of the basin are inherited from basement structures, more precisely from the reactivation during Late Oligocene to Early Miocene of a previous transfer zone producing N40-50° border faults. Basin fills is up to 80 m thick and includes first alluvial fan associated with the reactivation of these faults and then braided fluvial deposits from axial system. Above, several volcanic events recurrently emplaced pyroclastic deposits, repeatedly reworked by fluvial channels. Subsequently, N-S trend faulting cut the Topernawi system during the development of the North Lake Basin and led to its partial preservation over the present-day rift shoulder. Geological maps, structural sections across Topernawi basin and sedimentary facies are presented. An integrated model is proposed to illustrate the basin evolution. Implications for rifting in Northern Turkana depression are discussed.

  1. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  2. U-series Chronology of volcanoes in the Central Kenya Peralkaline Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Negron, L. M.; Ma, L.; Deino, A.; Anthony, E. Y.

    2012-12-01

    We are studying the East African Rift System (EARS) in the Central Kenya Peralkaline Province (CKPP), and specifically the young volcanoes Mt. Suswa, Longonot, and Menengai. Ar dates by Al Deino on K-feldspar phenocrysts show a strong correlation between older Ar ages and decreasing 230Th/232Th, which we interpret to reflect the age of eruption. This system has been the subject of recent research done by several UTEP alumni including Antony Wamalwa using potential field and magnetotelluric (MT) data to identify and characterize fractures and hydrothermal fluids. Also research on geochemical modeling done by John White, Vanessa Espejel and Peter Omenda led to the hypothesis of possible disequilibrium in these young, mainly obsidian samples in their post eruptive history. A pilot study of 8 samples, (also including W-2a USGS standard and a blank) establish the correlation that was seen between the ages found by Deino along with the 230/232Th ratios. All 8 samples from Mt. Suswa showed a 234U/238U ratio of (1) which indicates secular equilibrium or unity and that these are very fresh samples with no post-eruptive decay or leaching of U isotopes. The pilot set was comprised of four samples from the ring-trench group (RTG) with ages ranging from 7ka-present, two samples from the post-caldera stage ranging from 31-10ka, one sample from the syn-caldera stage dated at 41ka, and one sample from the pre-caldera stage dated at 112ka. The young RTG had a 230/232Th fractionation ratio of 0.8 ranging to the older pre-caldera stage with a 230/232Th ratio of 0.6. From this current data and research of 14C ages by Nick Rogers, the data from Longonot volcano was also similar to the 230/232Th ratio we found. Rogers' data places Longonot volcano ages to be no more than 20ka with the youngest samples also roughly around 0.8 disequilibrium. These strong correlations between the pilot study done for Mt. Suswa, 40Ar ages by Deino, along with 14C ages from Rogers have led to the

  3. Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system

    NASA Astrophysics Data System (ADS)

    Said, Aymen; Moder, Christoph; Clark, Stuart; Abdelmalak, Mohamed Mansour

    2015-11-01

    Data from 23 wells were used to quantify the sedimentary budgets in the Tanzania coastal basin in order to unravel the uplift chronology of the sourcing area located in the East African Rift System. We quantified the siliciclastic sedimentary volumes preserved in the Tanzania coastal basin corrected for compaction and in situ (e.g., carbonates) production. We found that the drainage areas, which supplied sediments to this basin, were eroded in four episodes: (1) during the middle Jurassic, (2) during the Campanian-Palaeocene, (3) during the middle Eocene and (4) during the Miocene. Three of these high erosion and sedimentation periods are more likely related to uplift events in the East African Rift System and earlier rift shoulders and plume uplifts. Indeed, rapid cooling in the rift system and high denudation rates in the sediment source area are coeval with these recorded pulses. However, the middle Eocene pulse was synchronous with a fall in the sea level, a climatic change and slow cooling of the rift flanks and thus seems more likely due to climatic and eustatic variations. We show that the rift shoulders of the East African rift system have inherited their present relief from at least three epeirogenic uplift pulses of middle Jurassic, Campanian-Palaeocene, and Miocene ages.

  4. Ear wound regeneration in the African spiny mouse Acomys cahirinus.

    PubMed

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah; Tiscornia, Gustavo

    2016-02-01

    While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four-millimeter-diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.

  5. Ear wound regeneration in the African spiny mouse Acomys cahirinus

    PubMed Central

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah

    2016-01-01

    Abstract While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four‐millimeter‐diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention. PMID:27499879

  6. Ear wound regeneration in the African spiny mouse Acomys cahirinus.

    PubMed

    Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah; Tiscornia, Gustavo

    2016-02-01

    While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four-millimeter-diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention. PMID:27499879

  7. Spatial variation of primordial 3-He in crustal fluids along the East-African Rift system (the Ethiopian and the Kenya Rift section)

    NASA Technical Reports Server (NTRS)

    Griesshaber, E.; Weise, S.; Darling, G.

    1994-01-01

    (3)He/(4)He compositions are presented for groundwater samples from the Ethiopian segment of the East-Afrikan Rift and from its northern extension, the adjacent Afar region (Djibuti). Helium isotope data are compared to those obtained previously from the Gregory Rift, south of Ethiopia. The distribution pattern of mantle-derived volatiles along the entire East-African-Rift (-from south Kenya to Djibuti-) is discussed and their sources are identified. Helium isotope ratios (R) for samples from the Ethiopian part of the Rift range from 6.3 to 16.0 times the atmospheric ratio (Ra=1.4 x 10(exp -6) and thus show together with a MOR component a considerable hotspot helium component. These mantle helium concentrations are comparable to those observed in groundwaters and volcanic rocks from the Afar plume region in Djibuti. Here R/Ra values range from 9 to 13 times the atmospheric composition, with mantle-derived helium concentrations being higher than at spreading ocean ridges. R/Ra values from Ethiopia and Djibuti are entirely different from those observed in groundwaters at the southerly extending Gregory Rift in Kenya, where R/Ra values scatter between 0.5 and 6. At the northernmost part of the Gregory Rift, close to Ethiopia mantle helium contents are slightly higher, with R/Ra-values varying between 6.5 and 8.0.

  8. Sismotectonics in the western branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kervyn, François; Mulumba, Jean-Luc; Kipata, Louis; Sebagenzi, Stanislas; Mavonga, Georges; Macheyeki, Athanas; Temu, Elly Bryan

    2013-04-01

    The western branch of the East African rift system is known of its particular seismic activity with larger magnitude (up to Ms 7.3) and more frequent destructive earthquakes than in the eastern branch. As a contribution to the IGCP 601 project Seismotectonic Map of Africa, we compiled the known active faults, thermal springs and historical seismicity in Central Africa. Using the rich archives of the Royal Museum for Central Africa, publications and own field observations, we present a compilation of available data relative to the current seismotectonic activity along the western branch of the East African rift system, in DRC, Rwanda, Burundi and Tanzania. Neotectonic activity related to the western rift branch is in general well expressed and relatively well studied in the eastern flank of this rift branch, in Uganda, Rwanda, Burundi and Tanzania. In contrast, the western flank of this rift branch, largely exposed in the DRC, has attracted less attention. However, data collected during the colonial times show significant sismotectonic activity in East DRC, not only in the western flank of the western rift branch, but extending far westwards up to the margin of the Congo basin. In particular, our predecessors paid a special attention to the mapping and description of thermal springs, noticing that they are often controlled by active faults. In addition, the operators of the relatively dense network of meteorological stations installed in the DRC, Rwanda and Burundi also recorded were with variable level of completeness and detail the earthquakes that they could felt. This provides a rich database that is used to complete the existing knowledge on historical seismicity. An important effort has still to be paid to identify and map potentially active fault due to poor field accessibility, tropical climate weathering and vegetation coverage. The main problem in the compilation of active fault data is that very few of them have been investigated by paleoseismic trenching

  9. He-Ne-Ar isotope studies of mafic volcanic rocks and mantle xenoliths from the East African Rift System - contrasting isotope signals in different rift branches

    NASA Astrophysics Data System (ADS)

    Halldorsson, S. A.; Hilton, D. R.; Scarsi, P.; Abebe, T.; Massi, K. M.; Barry, P. H.; Fischer, T. P.; de Moor, J.; Rudnick, R. L.

    2010-12-01

    Helium isotope studies of the East African Rift System (EARS) suggest the involvement of a deep mantle plume(s) beneath the northern (Ethiopian) segment [1-3]. The highest 3He/4He (RA) signatures found to date show a close association with the greatest magma volumes erupted since the Early Cenozoic in the region. While the helium isotope characteristics are well established in the Ethiopia-Afar region, Ne and Ar systematics remain poorly constrained. Using a combined He-Ne-Ar isotope approach, our aim is to determine the regional extent of the influence of the Afar plume and to distinguish between subcontinental lithospheric mantle (SCLM) and/or a possible second mantle plume sources located to the south of the Turkana Depression. Xenoliths and mafic lavas from N-Tanzania display a limited range in He isotopes (5-7 RA) with exceptions at Arusha (7.8RA) and Labait (8.7RA), through 7.1-8.7 RA in N-Kenya and S-Ethiopia, to 14.3 RA in the Main Ethiopian Rift and Afar, spanning nearly the entire range of previously reported values. The mean 3He/4He ratio from of lavas and xenoliths from N-Tanzania is remarkably close to the global average of 6.1±0.9 (RA) for continental xenoliths and basalts, thought to represent the SCLM [4]. Thus far, only MORB-like values of 7.3-8.3 RA have been found in volcanics of the Western rift. Initial Ne isotope data reveal the presence of a solar-like Ne component in xenoliths from the Ethiopia-Afar region, with extrapolated 21Ne/22Neex ratios of 0.0365 (assuming Ne-B = 12.5). This trend overlaps that of the Loihi-Kilauea line (L-K). Interestingly, a xenolith from N-Tanzania has a 21Ne/22Neex ratio of 0.0415, falling on a trajectory intermediate between MORB and L-K. The highest 40Ar/36Ar ratio obtained on phenocrysts/xenoliths to date is 1510. The generally low 3He/4He ratios of N-Tanzania likely result from different mixing proportions of asthenospheric sources with lithospheric material, the latter having developed lower 3He/4He ratios

  10. Do melt-rich shear zones lubricate rift flanks? 3-D spatial gradients in anisotropy beneath the East African Rift in Ethiopia

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Gaherty, J. B.; Kendall, J.; Stuart, G.

    2006-12-01

    Melt-enhanced weakening of the mantle may be essential for a continent to break apart and rift. A primary means of understanding this aspect of the dynamics of rifting (and other geodynamic settings) is the interpretation of seismic anisotropy in terms of melt distribution and/or mantle flow direction. In recent rock- deformation experiments, the relationships between flow direction and seismic fast direction are complicated by the presence of water (e.g. Katayama et al., 2004) and segregated melt (Holtzman et al. 2003). In the latter, deviatoric stress drives melt to organize into networks of melt-rich shear zones. Scaling from laboratory to upper mantle conditions predicts characteristic network spacings of <1 km, less than wavelengths of measured seismic waves; thus they should cause significant seismic anisotropy. Measurable gradients in anisotropy may be diagnostic indicators of gradients in melt segregation. Because melt-rich shear zones will weaken the mantle on a large scale, the presence of such anisotropy gradients would map to gradients in viscosity. To map melt distribution beneath the rift and test for the presence or absence of this process, we combine measurements of seismic velocities beneath the East African Rift in Ethiopia with modeling of elastic properties of aligned, segregated melt and olivine fabric. Analysis of SKS phases has shown that fast directions parallel magmatic centers in the rift and splitting magnitudes are largest near the rift flanks, consistent with the hypothesis above (e.g. Kendall et al., 2006). Preliminary analysis of Love-Rayleigh differential times across the rift are consistent with a vertical fast axis, suggesting the presence of a vertically aligned, rift parallel melt phase down to the solidus (Pilidou et al., 2005). We expand on these results by applying a cross-correlation procedure to precisely estimate relative amplitude and phase of surface waves traversing the rift. Data are derived from the EAGLE and Ethiopia

  11. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  12. InSAR Observations of Magmatic Processes in the East African Rift

    NASA Astrophysics Data System (ADS)

    Biggs, Juliet; Anthony, Elizabeth; Ebinger, Cynthia; Amelung, Falk; Gourmelen, Noel

    2010-05-01

    The role of magma in accommodating extension and it's relationship to fault-based extension in continental rifting is poorly understood. Here we present observations of the temporal and spatial evolution of surface displacements resulting from magmatic processes in the East African Rift. A systematic InSAR surveys have detected geodetic activity at six of the volcanoes in the East African Rift. In Kenya, subsidence of 2-5 cm occurred at Suswa and Menengai during 1997-2000, ~9cm of uplift at Longonot in 2004-2006 and ~21 cm of uplift at Paka during 2006-2007. The deformation is episodic, and no deformation was observed at these volcanoes during other time-periods. The best-fitting source models for each episode is inflation or deflation of a horizontal lensoid at a depth of 2-5 km. The episodic nature of the activity, its lack of correlation with seasons, and the preferred source geometry are all consistent with activity in the volatile-rich cap to a crystal-rich magma chamber beneath each of the 4 volcanoes. A seismic swarm occurred in Northern Tanzania from July 14 to August 4 2007. Using InSAR images from Envisat (IS2 and IS6) and ALOS, we show that the seismic swarm was accompanied by 1) subsidence that can be attributed to ~40 cm of normal motion on a NE striking fault, 2) the intrusion of ~2.4 m wide dyke, 3) deflation of a point source magma chamber and 4) collapse of a shallow graben. The large number of available SAR images allows us to examine the sequence and time-dependent behaviour of these processes and relationship between diking and faulting.

  13. Latitudinal Hydrologic Variability Along the East African Rift, Over the Past 200 Kyr

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.

    2014-12-01

    Within the deep sediments of the large lakes of Africa's Great Rift Valley are continuous environmental records of remarkable antiquity and fidelity. Not only do stratigraphic sections from these basins extend back millions of years, many of the intervals represented contain high-resolution material of decadal resolution or better. East African lake basins remain sparsely sampled however, with only a few long and continuous records available. Our ability to image the lakes using seismic reflection methods greatly exceeds our opportunities for coring and drilling however; assessing stratal relationships observed in the geophysical data permits powerful inferences about past hydrologic changes. With intensive hydrocarbon exploration work underway in East Africa, industry well data can also help constrain and ground truth basin histories. Substantial spatio-temporal hydrologic variability is observed in East African basins over the past 200 kyr. Paleohydrological changes in the late Pleistocene and early Holocene are now well constrained in the northern hemisphere East African topics, with widespread aridity and in some cases lake desiccation observed during Heinrich Event 1. A climate recovery followed in the northern hemisphere East African tropics, with the early Holocene African Humid Period a time of positive water balance across most of the rift valley. The paleohydrology of southern hemisphere tropical East Africa is more equivocal, for instance with negligible draw-down of Lake Malawi at HE1. Whereas these late Pleistocene events represent substantial climate reorganizations, severe droughts during the middle-late Pleistocene (150-65 kyr BP) were far more intense, and produced much more severe drawdowns of Lakes Malawi and Tanganyika. Scientific drill cores, kullenberg cores, and extensive seismic reflection data sets from Lakes Malawi and Tanganyika provide indisputable evidence for lowstands of -500m and -600 m respectively. Climate changes that lowered the

  14. The Rift Valley of African Plate in Elasto-Plastic Creeping over Magma Motion

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2016-04-01

    This is a brief note to a problem on the Rift Valley in the eastern Africa. It is said that this valley was formed in an age 20,000,000 years before present though the valley is yet continuing to move eastward at an annual rate of about 5 cm/year in a geographical trend. Adding to some of the scientists tell that the separation threat of the easternAfrica from the mother land of the Africa under the effect of African crust motion over the magma. However, it is now geological understanding that the land of the Africa has been kept its basic coastal configulation in geographic pattern since the time more than 20,000,000 years before present. Sothat, it is hard to consider the above noted African land separation by part could be in the next age in a time scale of 20,000,000 years. As far as, we concern the geographic data obtaoned by the ground based survey of the African typical mountain peaks, the highest mountain peak 5885m (in 1980) is for Kilimanjaro, Kibo Peak though one of the scientific almanacs tells us its peak height as 5890m (in 2009). As for the Mount Kenia, the peak height is as 5199m (in 1980) and 5200m(in 2009). At a glance, it looks to be a trend in altimetry of the African typical mountain. Now, what trends are noted for the peak heights could be taken to suggesting the geological activity on the earth surface to maintain in a spherical shape approximately on the orbit around the Sun. In these several ten years, the digitizing of the data has been promoted even for the topographic patterns on the earth though its time scaling is extremely short comparing to the geological time scaling. Now, it should be found what is effective to monitor any trends of the African crust in motion as well as variations of the mountain peaks.

  15. Estimating the age of formation of lakes: An example from Lake Tanganyika, East African Rift system

    SciTech Connect

    Cohen, A.; Soreghan, M.J.; Scholz, C.A.

    1993-06-01

    Age estimates for ancient lakes are important for determining their histories and their rates of biotic and tectonic evolution. In the absence of dated core material from the lake`s sedimentary basement, several techniques have been used to generate such age estimates. The most common of these, herein called the reflection seismic-radiocarbon method (RSRM), combines estimates of short-term sediment-accumulation rates derived from radiocarbon-dated cores and depth-to-basement estimates derived from reflection-seismic data at or near the same locality to estimate an age to basement. Age estimates form the RSRM suggest that the structural basins of central Lake Tanganyika began to form between 9 and 12 Ma. Estimates for the northern and southern basins are younger (7 to 8 Ma and 2 to 4 Ma, respectively). The diachroneity of estimates for different segments of the lake is equivocal, and may be due to erosional loss of record in the northern and southern structural basins or to progressive opening of the rift. The RSRM age estimates for Lake Tanganyika are considerably younger than most prior estimates and clarify the extensional history of the western branch of the East African Rift system. 31 refs., 3 figs., 1 tab.

  16. Rift Valley Fever Outbreak with East-Central African Virus Lineage in Mauritania, 2003

    PubMed Central

    Faye, Ousmane; Diallo, Mawlouth; Diop, Djibril; Bezeid, O. Elmamy; Bâ, Hampathé; Niang, Mbayame; Dia, Ibrahima; Mohamed, Sid Ahmed Ould; Ndiaye, Kader; Diallo, Diawo; Ly, Peinda Ogo; Diallo, Boubacar; Nabeth, Pierre; Simon, François; Lô, Baïdy

    2007-01-01

    In October 2003, 9 human cases of hemorrhagic fever were reported in 3 provinces of Mauritania, West Africa. Test results showed acute Rift Valley fever virus (RVFV) infection, and a field investigation found recent circulation of RVFV with a prevalence rate of 25.5% (25/98) and 4 deaths among the 25 laboratory-confirmed case-patients. Immunoglobulin M against RVFV was found in 46% (25/54) of domestic animals. RVFV was also isolated from the mosquito species Culex poicilipes. Genetic comparison of virion segments indicated little variation among the strains isolated. However, phylogenetic studies clearly demonstrated that these strains belonged to the East-Central African lineage for all segments. To our knowledge, this is the first time viruses of this lineage have been observed in an outbreak in West Africa. Whether these strains were introduced or are endemic in West Africa remains to be determined. PMID:18214173

  17. The 1990 to 1991 Sudan earthquake sequence and the extent of the East african rift system.

    PubMed

    Girdler, R W; McConnell, D A

    1994-04-01

    One of the largest earthquakes ever recorded in Africa (surface wave magnitude M(s) = 7.2) occurred about 50 kilometers east of the Upper River Nile on 20 May 1990. Four days later, two more large earthquakes (M(s) = 6.4 and 7.0) occurred about 50 kilometers to the northwest in the Nile Valley. In the following months, a further 60 events were recorded by seismic stations worldwide. The earthquakes are associated with two fault systems: one east of the Nile with azimuth southeast and one along the Nile Valley with azimuth north-northeast. The activity alternated between the two fault systems and indicates that the northern extremity of the western branch of the East African Rift System extends at least 350 kilometers north of Lake Albert.

  18. Rift Valley fever outbreak with East-Central African virus lineage in Mauritania, 2003.

    PubMed

    Faye, Ousmane; Diallo, Mawlouth; Diop, Djibril; Bezeid, O Elmamy; Bâ, Hampathé; Niang, Mbayame; Dia, Ibrahima; Mohamed, Sid Ahmed Ould; Ndiaye, Kader; Diallo, Diawo; Ly, Peinda Ogo; Diallo, Boubacar; Nabeth, Pierre; Simon, François; Lô, Baïdy; Diop, Ousmane Madiagne

    2007-07-01

    In October 2003, 9 human cases of hemorrhagic fever were reported in 3 provinces of Mauritania, West Africa. Test results showed acute Rift Valley fever virus (RVFV) infection, and a field investigation found recent circulation of RVFV with a prevalence rate of 25.5% (25/98) and 4 deaths among the 25 laboratory-confirmed case-patients. Immunoglobulin M against RVFV was found in 46% (25/54) of domestic animals. RVFV was also isolated from the mosquito species Culex poicilipes. Genetic comparison of virion segments indicated little variation among the strains isolated. However, phylogenetic studies clearly demonstrated that these strains belonged to the East-Central African lineage for all segments. To our knowledge, this is the first time viruses of this lineage have been observed in an outbreak in West Africa. Whether these strains were introduced or are endemic in West Africa remains to be determined.

  19. Carbonate-Silicate Association in the Kamafugite of the Toro-Ankole Province (East African Rift)

    NASA Astrophysics Data System (ADS)

    Muravyeva, Natalya; Senin, Valery

    2010-05-01

    Carbonatite melts play an important role in the magmatism of the East African Rift Zone. A tight spatial association of high-Mg ultrapotassic and carbonatite rocks in the Western branch of the East African Rift suggests the genetic relationship of their parental melts. New evidence of such connection of kamafugitic and carbonatite magmas were obtained during study of the volcanic rocks of kamafugitic affinity in Toro-Ankole province. Primary carbonates (calcite and dolomite) were found as inclusions in olivine from ugandite and mafurite of the Bunyaruguru volcanic field. In the ugandite carbonates contain in the crystallized melt inclusions in olivine phenocrysts consist also of kalsilite, clinopyroxene, mica, and titanomagnetite. Some inclusions reach up to 40x75µm, the host olivine is 150x300µm in size. In the mafurite carbonates form rare microlites, microphenocrysts, and lenses with cavities in central parts, and occur as inclusions in olivine phenocrysts and aggregates in the adjacent zones. These aggregates are multiphase and in mineral set resemble carbonatites: they contain kalsilite, clinopyroxene, magnetite, phillipsite, and mica. Also the two-phase carbonate-sulfate inclusions in olivine were found. The most part of carbonates in composition correspond to calcites with low magnesium, iron, sodium, strontium, and barium contents. The carbonates from two-phase inclusions in olivine from the mafurite are significantly higher magnesian, approaching pure dolomite. The different types of carbonate in mafurite vary in Sr, Ba, Na and K. The highest content of these elements is observed in groundmass carbonates, reaching 2.44 wt % SrO, 1.25% BaO, 0.64% Na2O, and 1.23% K2O. Such assemblage in kamafugites have not been described yet. Some olivines contain microinclusions of sulfate (barite), occurs as fine (10-20 µm) rounded inclusions. The presence of barite inclusions in the olivine of the studied mafurite indicates the high sulfur content in the primary melt

  20. Stable isotope-based Plio-Pleistocene ecosystem reconstruction of some of the earliest hominid fossil sites in the East African Rift System (Chiwondo Beds, N Malawi)

    NASA Astrophysics Data System (ADS)

    Lüdecke, Tina; Thiemeyer, Heinrich; Schrenk, Friedemann; Mulch, Andreas

    2014-05-01

    The isotope geochemistry of pedogenic carbonate and fossil herbivore enamel is a powerful tool to reconstruct paleoenvironmental conditions in particular when climate change plays a key role in the evolution of ecosystems. Here, we present the first Plio-Pleistocene long-term carbon (δ13C), oxygen (δ18O) and clumped isotope (Δ47) records from pedogenic carbonate and herbivore teeth in the Malawi Rift. These data represent an important southern hemisphere record in the East African Rift System (EARS), a key region for reconstructing vegetation patterns in today's Zambezian Savanna and correlation with data on the evolution and migration of early hominids across the Inter-Tropical Convergence Zone. As our study site is situated between the well-known hominid-bearing sites of eastern and southern Africa in the Somali-Masai Endemic Zone and Highveld Grassland it fills an important geographical gap for early hominid research. 5.0 to 0.6 Ma fluviatile and lacustrine deposits of the Chiwondo Beds (NE shore of Lake Malawi) comprise abundant pedogenic carbonate and remains of a diverse fauna dominated by large terrestrial mammals. These sediments are also home to two hominid fossil remains, a mandible of Homo rudolfensis and a maxillary fragment of Paranthropus boisei, both dated around 2.4 Ma. The Chiwondo Beds therefore document early co-existence of these two species. We evaluate δ13C data from fossil enamel of different suid, bovid, and equid species and contrast these with δ13C and δ18O values of pedogenic carbonate. We complement the latter with clumped isotope soil temperature data. Results of almost 800 pedogenic carbonate samples from over 20 sections consistently average δ13C = -8.5 ‰ over the past 5 Ma with no significant short-term δ13C excursions or long-term trends. The data from molar tooth enamel of nine individual suids of the genera Metridiochoerus, Notochoerus and Nyanzachoerus support these findings with average δ13C = -10.0 ‰. The absence

  1. Giant seismites and megablock uplift in the East African Rift: evidence for Late Pleistocene large magnitude earthquakes.

    PubMed

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions.

  2. Giant Seismites and Megablock Uplift in the East African Rift: Evidence for Late Pleistocene Large Magnitude Earthquakes

    PubMed Central

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M.

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic ‘megablock complex’ that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions. PMID:26042601

  3. Giant seismites and megablock uplift in the East African Rift: evidence for Late Pleistocene large magnitude earthquakes.

    PubMed

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions. PMID:26042601

  4. Ancient origin and recent divergence of a haplochromine cichlid lineage from isolated water bodies in the East African Rift system.

    PubMed

    Hermann, C M; Sefc, K M; Koblmüller, S

    2011-11-01

    Phylogenetic analysis identified haplochromine cichlids from isolated water bodies in the eastern branch of the East African Rift system as an ancient lineage separated from their western sister group in the course of the South Kenyan-North Tanzanian rift system formation. Within this lineage, the close phylogenetic relatedness among taxa indicates a recent common ancestry and historical connections between now separated water bodies. In connection with a total lack of local genetic diversity attributable to population bottlenecks, the data suggest cycles of extinction and colonization in the unstable habitat provided by the small lakes and rivers in this geologically highly active area.

  5. Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system

    NASA Astrophysics Data System (ADS)

    Fairhead, J. D.; Binks, R. M.

    1991-02-01

    Plate tectonic studies of the development of the Central and South Atlantic Oceans using Seasat and Geosat altimeter and magnetic anomaly isochron data now provide quantitative models of seafloor spreading through time. Such models enable an initial assessment of the differential opening between these two oceanic basins to be determined. The Equatorial Atlantic is an integral part of this oceanic rifting process, allowing stresses arising from the differential opening to be dissipated into both the Caribbean and Africa along its northern and southern boundaries respectively. The tectonic model for the West African rift system, based on geological and geophysical studies, shows a series of strike-slip fault zones diverging into Africa from the Gulf of Guinea and dissipating their shear movement into the development of extensional basins orientated perpendicular to these faults zones. The development of the West African rift system was contemporaneous with the early opening of the South Atlantic, continued to develop well after the final breakup of South America from Africa and did not cease until the late Cretaceous when there was a major phase of basin inversion and deformation. Santonian ( ~ 80 Ma) deformation across the Benue Trough (Nigeria) is broadly contemporaneous with dextral shear reactivation of the central African fracture system which, in turn resulted in renewed extension in the Sudan basins during the late Cretaceous and early Tertiary. This paper illustrates the close linkage in both time and space between the history of the African rift basins and the opening of the Atlantic. Both exhibit distinct phases of evolution with the rift basins developing in direct response to the differential opening between the Central and South Atlantic in order to dissipate stresses generated by this opening. The Mesozoic tectonic model proposed is therefore one of an intimate interaction between oceanic and continental tectonics.

  6. Shaded Relief with Height as Color, Virunga and Nyiragongo Volcanoes and the East African Rift

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.

    These two images show exactly the same area. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision. Elevation is color coded, progressing from green at the lower elevations through yellow to brown at the higher elevations. A false sun in the northwest (upper left) creates topographic shading.

    Lake Kivu is shown as black in the Shuttle Radar Topography Mission version (southwest corner). It lies within the East African Rift, an elongated tectonic pull-apart depression in Earth's crust. The rift extends to the northeast as a smooth lava- and sediment-filled trough. Two volcanic complexes are seen in the rift. The one closer to the lake is the Nyiragongo volcano, which erupted in January 2002, sending lava toward the lake shore and through the city of Goma. East of the rift, even more volcanoes are seen. These are the Virunga volcano chain, which is the home of the endangered mountain gorillas. Note that the terrain surrounding the volcanoes is much smoother than the eroding mountains that cover most of this view, such that topography alone is a good indicator of the extent of the lava flows. But this clear only at the higher spatial resolution of the shuttle mission's data set.

    For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments

  7. Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic

    PubMed Central

    Nakouné, Emmanuel; Kamgang, Basile; Berthet, Nicolas; Manirakiza, Alexandre; Kazanji, Mirdad

    2016-01-01

    Background Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated. Methodology/Principal Findings To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster. Conclusion and significance This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs. PMID:27760144

  8. Early-stage rifting in the southwest East African Rift: Insights from new reflection seismic data from Lakes Tanganyika and Malawi (Nyasa)

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Wood, D. A.; Shillington, D. J.; McCartney, T.; Accardo, N. J.

    2015-12-01

    The western branch of the East African Rift is characterized by modest amounts of mainly amagmatic extension; deeply-subsided, fault-controlled basins; and large-magnitude, deep seismicity. Lakes Tanganyika and Malawi are two of the world's largest lakes, with maximum water depths of 1450 and 700 m respectively. Newly acquired seismic reflection data, along with newly reprocessed legacy data reveal thick sedimentary sections, in excess of 5 km in some localities. The 1980's vintage legacy data from Project PROBE have been reprocessed through pre-stack depth migration in Lake Tanganyika, and similar reprocessing of legacy data from Lake Malawi is forthcoming. New high-fold and large-source commercial and academic data have recently been collected in southern Lake Tanganyika, and in the northern and central basins of Lake Malawi as part of the 2015 SEGMeNT project. In the case of Lake Tanganyika, new data indicate the presence of older sediment packages that underlie previously identified "pre-rift" basement (the "Nyanja Event"). These episodes of sedimentation and extension may substantially predate the modern lake. These deep stratal reflections are absent in many localites, possibly on account of attenuation of the acoustic signal. However in one area of southern Lake Tanganyika, the newly-observed deep strata extend axially for ~70 km, likely representing deposits from a discrete paleolake. The high-amplitude Nyanja Event is interpreted as the onset of late-Cenozoic rifting, and the changing character of the overlying depositional sequences reflects increasing relief in the rift valley, as well as the variability of fluvial inputs, and the intermittent connectivity of upstream lake catchments. Earlier Tanganyika sequences are dominated by shallow lake and fluvial-lacustrine facies, whereas later sequences are characterized by extensive gravity flow deposition in deep water, and pronounced erosion and incision in shallow water depths and on littoral platforms. The

  9. Multiple mantle upwellings beneath the Northern East-African Rift System from relative P- and S-wave traveltime tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2015-04-01

    Mantle plumes have been invoked as the likely cause of East African Rift volcanism and extension. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to one or more distinct lower-mantle sources along the rift. We present a new relative travel-time tomography model that images detailed P- and S- wave velocities from P,S and SKS phases below the northern East-African, Red Sea and Gulf of Aden rift. Data comes from stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time structures of ~100 km length scale down to depths of 900 km beneath this region. Our images provide evidence of at least two low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first extends to at least 900 km beneath Afar, and a second reaching at least 750 km depth just west of the Main Ethiopian Rift, a region with off-rift volcanism. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of 100±50 K. The scale of the upwellings is smaller than any of the previously proposed lower mantle plume sources. This suggests the ponding or flow of deep-plume material below the transition zone may be spawning smaller upper-mantle upwellings.

  10. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    SciTech Connect

    Tiercelin, J.J.; Mondeguer, A. ); Thouin, C. ); Kalala, T. )

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  11. Molecular genetic analyses of historical lake sediments from the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Epp, L. S.; Stoof, K.; Trauth, M. H.; Tiedemann, R.

    2009-04-01

    Ancient DNA research, especially that of environmental samples, has to date focussed mainly on samples obtained from colder regions, owing to better DNA preservation. We explored the potential of using ancient DNA from sediments and sediment cores of shallow lakes in Kenya. These lakes, located in the eastern branch of the East African Rift Valley, are in close proximity, yet display strikingly different hydrological and geological features. Present day lakes range in alkalinity from pH 11 (Lake Elmenteita) to pH 8 (Lake Naivasha), and in depth from less than one meter to 15 meters. Historically they have undergone a number of drastic changes in lake level and environmental conditions, both on geological timescales and during the last centuries. Within this setting we employed molecular genetic methods to study DNA from recent and historic lake sediments, focussing on rotifers and diatoms. We analyzed population and species succession in the alkaline-saline crater lake Sonachi since the beginning of the 19th century, as well as distributions in recent and historic sediments of other lakes of the East African Rift System. To specifically detect diatoms, we developed a protocol using taxon-specific polymerase chain reactions and separation of products by denaturing high performance liquid chromatography (DHPLC). Employing this protocol we retrieved "ancient" DNA from a number of taxonomically diverse organisms, but found diatoms only in sediments younger than approximately 90 years. Using higly specific reactions for rotifers of the genus Brachionus, we tracked species and population succession in Lake Sonachi during the last 200 years. Populations were dominated by a single mitochondrial haplotype for a period of 150 years, and two putatively intraspecific turnovers in dominance occurred. They were both correlated to major environmental changes documented by profound visible changes in sediment composition of the core: the deposition of a volcanic ash and a

  12. InSAR and GPS measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Kervyn, François

    2016-04-01

    Along the East African Rift System (EARS), magma intrusions represent a major component in continental rifting. When these intrusions reach the surface, they cause volcanic eruptions. This is the case of the last flank eruption of Nyamulagira, which occurred from November 6 2011 to April 2012. Nyamulagira is an active shield volcano with a central caldera, located in the eastern part of the Democratic Republic of Congo, along the Kivu segment of the East African Rift System. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e., 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e., several months) eruptions usually emitting larger volumes of lava that take place at larger distance (>8 km) from the central caldera. The 2011-2012 Nyamulagira eruption is of that second type. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) to measure pre-, co and post-eruptive ground displacement associated with the Nyamulagira 2011-2012 eruption. Results suggest that a magma intrusion preceded by two days the eruption. This intrusion corresponded to the migration of magma from a shallow reservoir (~3km) below the caldera to the two eruptive fissures located ~11 km ENE of the central edifice. Available seismic data are in agreement with InSAR results showing increased seismic activity since November 4 2011, with long- and short-period earthquakes swarms. Using analytical models we invert the measured ground displacements during the first co-eruptive month to evaluate the deformation source parameters and the mechanism of magma emplacement for this eruption. GPS data from permanent stations in the KivuGNet network are used to constrain the temporal evolution of the eruption and evaluate far-field deformation, while the InSAR data is more sensitive to the near-field deformation

  13. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly

  14. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    NASA Astrophysics Data System (ADS)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  15. Evolution of the western East African Rift System reflected in provenance changes of Miocene to Pleistocene synrift sediments (Albertine Rift, Uganda)

    NASA Astrophysics Data System (ADS)

    Schneider, Sandra; Hornung, Jens; Hinderer, Matthias

    2016-08-01

    Miocene to Pleistocene synrift sediments in the Albertine Graben reflect the complex geodynamic evolution in the Western branch of the East African Rift System. In this study we focus on the provenance of these siliciclastic deposits to identify sediment sources and supply paths with the ultimate goal to reconstruct the exhumation history of different tectonic blocks during prolonged rifting, with specific focus on the uplift of the Rwenzori Mountains in Uganda. We present framework and heavy mineral petrographic data combined with varietal studies of detrital garnet and rutile, based on logged sediment sections on the Ugandan side of Lake Albert (Kisegi-Nyabusosi area). The analyzed sedimentary units have a feldspatho-quartzose composition and distinct variations in heavy mineral assemblages and mineral chemical composition indicating two provenance changes. The Miocene part of the stratigraphy is dominated by garnet, zircon, tourmaline and rutile, whereas Pliocene to Pleistocene sediment yields high amounts of less stable amphibole and epidote. An abrupt switch in heavy mineral assemblages occurs during the early Pliocene ( 5.5-5.0 Ma) and clearly postdates the formation of Palaeolake Obweruka at 8 Ma. Provenance signatures point to major sediment supply from the northeast and subsequently from the southeast. We interpret this first shift as transition from the pre-rift to the syn-rift stage. In this scenario, formation of Palaeolake Obweruka is due to higher humidity in the upper Miocene, rather than forced rifting. A second change of sediment composition is documented by mineral geochemistry and coincides with fragmentation of Palaeolake Obweruka starting at 2.5 Ma. Detrital garnet in sediment of Miocene to Pliocene age is rich in pyrope and almandine and calculated Zr-in-rutile temperatures range between 550 and 950 °C. In contrast, garnet occurring in Pleistocene sediment (Nyabusosi Formation) has a higher spessartine component and rutile thermometry is

  16. Aerosolized rift valley fever virus causes fatal encephalitis in african green monkeys and common marmosets.

    PubMed

    Hartman, Amy L; Powell, Diana S; Bethel, Laura M; Caroline, Amy L; Schmid, Richard J; Oury, Tim; Reed, Douglas S

    2014-02-01

    Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV.

  17. The Lava sequence of the East African Rift escarpment in the Oldoinyo Lengai - Lake Natron sector, Tanzania

    NASA Astrophysics Data System (ADS)

    Neukirchen, Florian; Finkenbein, Thomas; Keller, Jörg

    2010-12-01

    A 500 m sequence of horizontal lava flows forms the Gregory rift escarpment of the western rift shoulder between Lake Natron and Oldoinyo Lengai. A detailed volcanic stratigraphy of this >1.2 Ma evolution of the EAR in Northern Tanzania is presented. The sequence is formed by several distinct rock suites, with increasing alkalinity from base to top. Alkali olivine basalts of the Waterfall Sequence at the base are followed by a basanite series, and by a range of evolved nephelinites forming the upper part of the escarpment. Numerous dykes and Strombolian scoria deposits indicate local fissure eruptions as opposed to or in addition to more distant sources. Primitive compositions within each of the series indicate variable candidates for primary magmas. The composition of the basanite suite ranges from primitive mantle melts (high Mg#, Cr, Ni) to more evolved rocks, in particular hawaiites, generated by fractionation of olivine, pyroxene and magnetite. Inter-bedded within the basanite suite, one single olivine melilitite flow with high Mg# and abundant olivine and pyroxene megacrysts is the only primitive candidate for the nephelinite suite. However, in view of the large compositional gap and marked differences in incompatible element ratios, a relation between this flow and the nephelinites remains hypothetical. The variation within the evolved nephelinite series can be partly explained by fractionation of pyroxene, apatite, perovskite (and some nepheline), while magma mixing is indicated by zonation patterns of pyroxene. The most evolved nephelinite, however, differs significantly from all other nephelinites in major and trace elements. Thus the entire sequence is petrologically not a coherent evolution, rather the result of different mantle melts fractionating under variable conditions. Carved into the rift scarp of the study area west of Engare Sero is a young explosion crater, the Sekenge Crater. Sekenge Tuffs are olivine melilitites, similar to other craters and

  18. The East African rift system in the light of KRISP 90

    USGS Publications Warehouse

    Keller, Gordon R.; Prodehl, C.; Mechie, J.; Fuchs, K.; Khan, M.A.; Maguire, Peter K.H.; Mooney, W.D.; Achauer, U.; Davis, P.M.; Meyer, R.P.; Braile, L.W.; Nyambok, I.O.; Thompson, G.A.

    1994-01-01

    On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of 100-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. Major scientific goals of this phase of KRISP were to reveal the detailed crustal and upper mantle structure under the Kenya rift, to study the relationship between mantle updoming and the development of sedimentary basins and other shallow structures within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system and within a global perspective and to elucidate fundamental questions such as the mode and mechanism of continental rifting. The KRISP results clearly demonstrate that the Kenya rift is associated with sharply defined lithospheric thinning and very low upper mantle velocities down to depths of over 150 km. In the south-central portion of the rift, the lithospheric mantle has been thinned much more than the crust. To the north, high-velocity layers detected in the upper mantle appear to require the presence of anistropy in the form of the alignment of olivine crystals. Major axial variations in structure were also discovered, which correlate very well with variations in the amount of extension, the physiographic width of the rift valley, the regional topography and the regional gravity anomalies. Similar relationships are particularly well documented in the Rio Grande rift. To the extent that truly comparable data sets are available, the Kenya rift shares many features with other rift zones. For example, crustal structure under the Kenya, Rio Grande and Baikal rifts and the Rhine Graben is generally symmetrically centered on the rift valleys. However, the Kenya rift is distinctive, but not unique, in terms of

  19. Transition from a localized to wide deformation along Eastern branch of Central East African Rift: Insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Leroy, S. D.; Koptev, A.; Burov, E. B.; Calais, E.; Gerya, T.

    2015-12-01

    The Central East African Rift (CEAR) bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding strong Tanzanian craton. Intensive magmatism and continental flood basalts are largely present in many of the eastern rift segments, but other segments, first of all the western branch, exhibit very small volcanic activity. The Eastern rift is characterized by southward progression of the onset of volcanism, the extensional features and topographic expression of the rift vary significantly north-southward: in northern Kenya the deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south the deformation widens again in the so-called Tanzania divergence zone. Widening of the Eastern branch within its southern part is associated with the impingement of the southward-propagating rift on the strong Masai block situated to east of the Tanzanian craton. To understand the mechanisms behind this complex deformation distribution, we implemented a 3Dl ultra-high resolution visco-plastic thermo-mechanical numerical model accounting for thermo-rheological structure of the lithosphere and hence captures essential features of the CEAR. The preferred model has a plume seeded slightly to the northeast of the craton center, consistent with seismic tomography, and produces surface strain distribution that is in good agreement with observed variation of deformation zone width along eastern side of Tanzanian craton: localized above bulk of mantle material deflected by cratonic keel narrow high strain zone (Kenia Rift) is replaced by wide distributed deformations within areas situated to north (northern Kenya, Turkana Rift) and to south (Tanzania divergence, Masai block) of it. These results demonstrate significant differences in the impact of the rheological profile on rifting style in case of dominant active rifting compared to dominant passive rifting. Narrow rifting, conventionally attributed to

  20. Kinematics and Dynamics of the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Jay, C.; Flesch, L. M.; Bendick, R. O.

    2015-12-01

    Although the East African Rift System (EARS) is often cited as a type example for "narrow" rifting (where strain is localized along the rift axis), the true extent of rift-related deformation remains largely unknown due to sparse geophysical observations outside of the main rift valley. Our study, which takes this large scale approach, investigates the distribution of deformation in the Main Ethiopian Rift (MER) and surrounding regions, including the Ethiopian Highlands to the west of the rift valley, Somali Platform to the east, and Afar Triple Junction. We first construct kinematic, self-consistent strain rate and velocity fields on a 1° by 1° grid using continuous spline interpolations of strain rate observations (earthquake and fault data, plate rotations, and GPS velocities). Next, we calculate the deviatoric stress field associated with gravitational potential energy (GPE) by integrating density as a function of depth using published crustal density structures (CRUST1.0) and newly obtained receiver functions. We then directly solve for the deviatoric stress field associated with the lateral density variations by assuming a minimum energy stress field (e.g. Flesch et al. [2001]). Finally, we look for symmetries and asymmetries in both the strain rate and GPE deviatoric stress fields to assess the source of observed, off-rift deformation. We compare our results to published global and regional models that include the East African Rift and Iceland. Results suggest that the MER is not an end-member, "narrow" type rift, and that heterogeneities in lithospheric strength likely play an important role in governing the kinematics of rifting in Ethiopia.

  1. The Lithosphere of The East African Rift System: Insights From Three-Dimensional Density Modelling

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H. J.

    2004-12-01

    We use the gravity data that cover the large part of the Afro-Arabian rift system, the eastern branch (Ethiopia-Afar and northern Kenya), in order to produce a regional density model. In an earlier work the new and old gravity data were compiled, evaluated and homogenised using a consistent data reduction procedures. Three basic constraints widely spaced over a 1500 km rift length have been generated between 1969 and 2003 by an international consortium with information from isostatic models, global tomography, geological, geochemical evidences, and petrological and experimental results. These are integrated and applied to the model to constrain upper and lower crustal structures underneath the Rift and Plateau areas. New crustal thickness estimations (Dugda et al., 2004 in press) and inferences from recent velocity models along the axis of the Main Ethiopian Rift (Keller et al., 2004) are added to the density model. Thirty parallel planes cutting across the entire plateau region and Rift system (Afar-Ethiopia-Kenya) are interactively modelled using a starting geometry that invoke asthenospheric upwelling. Densities for the upper crust are calculated using Nafe Drake method, averaged from earlier interpretation and measured ones from the Geological Survey of Ethiopia database (e.g. Geothermal project, GSE petrophysical laboratory, pers. communication). Densities for lower crust are estimated using the approach by Sobolov and Babyko (1994). We used also lower crustal densities calculated by (Simyu and Keller, 1997) for the northern part of Kenya rift. The preliminary model offers a possibility to quantify depth, thickness and volumes of different geological interfaces and bodies. As for example, the estimation of the volume of volcanic constructs on the western plateau of Ethiopia is relatively larger than the eastern plateau. The load map derived from the model indicated maximum crustal loads at the crust/mantle interface (ca. 40km) on the eastern and western flanks

  2. Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: Structural framework and possible role of glaciations

    NASA Astrophysics Data System (ADS)

    Ring, Uwe

    2008-08-01

    The >5-km-high Rwenzori Mountains in the East African Rift form a promontory on the rift shoulder and are an extreme expression of rift-mountain uplift. This study reports the pattern and the kinematics of major faults in the Rwenzori region. The fault pattern is characterized by a first set of N/NNE-striking normal faults that are offset by mainly NE- to E-striking faults. Fault-slip data indicate a change in the extension direction from ENE/E to SE. The latter direction is in accord with earthquake focal data and borehole breakouts. Major faults with displacements >6 km occur at the boundaries of the Rwenzori Mountains; within the range minor faults with offsets ≤2 km have been mapped. Flexural isostatic rebound of the footwall of large-displacement back-to-back normal faults bounding the Rwenzori horst and additional footwall uplift of a young crosscutting normal fault probably caused cumulative (surface) uplift of ˜3-4 km. I propose that the change in the kinematics of the rift faults and the largely contemporaneous onset of glaciation in the Rwenzori Mountains in the Middle Pleistocene were important for enhanced rock uplift. Glacial erosion rates were 1.5-4 mm/a and eroded 1-2 km of material off the top of the Rwenzoris. Glacial erosion and the retreat of the glaciers during interglacial periods caused removal of loads leading to isostatic rebound, which reduced horizontal stresses promoting normal faulting and enhanced rock uplift, thereby elevating the remaining terrain, transforming it into one with high peaks and deeply incised valleys.

  3. Gravity study of the Central African Rift system: a model of continental disruption 2. The Darfur domal uplift and associated Cainozoic volcanism

    NASA Astrophysics Data System (ADS)

    Bermingham, P. M.; Fairhead, J. D.; Stuart, G. W.

    1983-05-01

    Gravity studies of the Darfur uplift, Western Sudan, show it to be associated with a circular negative Bouguer anomaly, 50 mGal in amplitude and 700 km across. A three-dimensional model interpretation of the Darfur anomaly, using constraints deduced from geophysical studies of similar but more evolved Kenya and Ethiopia domes, suggests either a low-density laccolithic body at mid-lithospheric depth (~ 60 km) or a thinned lithosphere with emplacement at high level of low-density asthenospheric material. The regional setting of the Darfur uplift is described in terms of it being an integral part of the Central African Rift System which is shown to be broadly equivalent to the early to middle Miocene stage in the development of the Afro-Arabian Rift System. Comparisons between these rift systems suggest that extensional tectonics and passive rifting, resulting in the subsiding sedimentary rift basins associated with the Ngaoundere, Abu Gabra, Red Sea and Gulf of Aden rifts, are more typical of the early stage development of passive continental margins than the active domal uplift and development of rifted features associated with the Darfur, Kenya and Ethiopia domes.

  4. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  5. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  6. The seismotectonics of Southeastern Tanzania: Implications for the propagation of the eastern branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2016-04-01

    Seismicity patterns and focal mechanisms in southeastern Tanzania, determined from data recorded on temporary and permanent AfricaArray seismic stations, have been used to investigate the propagation direction of the Eastern branch of the East African Rift System southward from the Northern Tanzania Divergence Zone (NTDZ). Within the NTDZ, the rift zone is defined by three segments, the Eyasi segment to the west, the Manyara segment in the middle, and the Pangani segment to the east. Results show that most of the seismicity (~ 75%) extends to the south of the Manyara segment along the eastern margin of the Tanzania Craton, and at ~ 6-7° S latitude trends to the SE along the northern boundary of the Ruvuma microplate, connecting with a N-S zone of seismicity offshore southern Tanzania and Mozambique. A lesser amount of seismicity (~ 25%) is found extending from the SE corner of the Tanzania Craton at ~ 6-7° S latitude southwards towards Lake Nyasa. This finding supports a model of rift propagation via the Manyara segment to the southeast of the Tanzania Craton along the northern boundary of the Ruvuma microplate. However, given the limited duration of the seismic recordings used in this study, the possibility of another zone of extension developing to the south towards Lake Nyasa (Malawi) cannot be ruled out. Focal mechanisms along the boundary between the Victoria and the Ruvuma microplates and offshore southeastern Tanzania show a combination of normal and strike slip faulting indicating mainly extension with some sinistral motion, consistent with the mapped geologic faults and a clockwise rotation of the Ruvuma microplate.

  7. Rift Valley fever virus infection in African Buffalo (Syncerus caffer) herds in rural South Africa: Evidence of interepidemic transmission

    USGS Publications Warehouse

    LaBeaud, A.D.; Cross, P.C.; Getz, W.M.; Glinka, A.; King, C.H.

    2011-01-01

    Rift Valley fever virus (RVFV) is an emerging biodefense pathogen that poses significant threats to human and livestock health. To date, the interepidemic reservoirs of RVFV are not well defined. In a longitudinal survey of infectious diseases among African buffalo during 2000-2006, 550 buffalo were tested for antibodies against RVFV in 820 capture events in 302 georeferenced locations in Kruger National Park, South Africa. Overall, 115 buffalo (21%) were seropositive. Seroprevalence of RVFV was highest (32%) in the first study year, and decreased progressively in subsequent years, but had no detectable impact on survival. Nine (7%) of 126 resampled, initially seronegative animals seroconverted during periods outside any reported regional RVFV outbreaks. Seroconversions for RVFV were detected in significant temporal clusters during 2001-2003 and in 2004. These findings highlight the potential importance of wildlife as reservoirs for RVFV and interepidemic RVFV transmission in perpetuating regional RVFV transmission risk. Copyright ?? 2011 by The American Society of Tropical Medicine and Hygiene.

  8. Multiproxy Evidence for a Positive Hydrological Budget during the Little Ice Age in the East African Rift, Kenya

    NASA Astrophysics Data System (ADS)

    Goman, M.; Ashley, G. M.; Hover, V. C.; Owen, R.

    2011-12-01

    Hominin evolution took place in Africa during the Plio-Pleistocene and climate change is thought to be a factor, with Africa experiencing a general cooling and increasing aridification over the last several million years. Today, the climate of the East African Rift Valley of Kenya is characterized as semi-arid with evapotranspiration four times precipitation. Water resources are a valuable commodity for the many millions of inhabitants of the Valley. The short instrumental record shows precipitation fluctuates at sub-decadal timeframes as a result of the ENSO cycle; while during prehistory variations in monsoonal precipitation occurred on Milankovitch timescales (i.e. African Humid Period). Both timescales exhibit significant impacts on the distribution of surface water. However, little is known regarding precipitation variability over sub-millennial timescales. Emerging paleoclimate data indicates that the near surface presence of water has also varied over century length timescales. We present paleoclimate data from multiple sites along a north-south 600 km transect of the Gregory Rift Valley (Kenya) that indicate the region experienced wetter conditions during the Little Ice Age (A.D. 1400-1850). Our reconstructions of landscape and climate during this time frame rely upon a multiproxy and interdisciplinary approach. We discuss data from a variety of environmental settings (e.g. lakes, wetlands, and springs) that indicate an overall increase in hydrologic balance. Evidence is derived from biologic microfossils such as pollen, diatom and testate amoebae assemblages as well as inorganic components of the sedimentary record and geomorphic changes. The data differs significantly from studies undertaken to the west in Uganda and the Congo, where negative hydrologic balances occurred during the Little Ice Age. While the atmospheric dynamics causing this disparity are not yet recognized, interactions between the Intertropical Convergence Zone and the Congo Air Boundary

  9. Thick lithosphere, deep crustal earthquakes and no melt: a triple challenge to understanding extension in the western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Selway, K.; Nyblade, A. A.; Brazier, R. A.; Tahir, N. El; Durrheim, R. J.

    2016-02-01

    Geodynamic models predict that rifting of thick, ancient continental lithosphere should not occur unless it is weakened by heating and magmatic intrusion. Therefore, the processes occurring along sections of the western branch of the East African Rift, where ˜150 km thick, Palaeoproterozoic lithosphere is rifting with no surface expression of magmatism, are a significant challenge to understand. In an attempt to understand the apparently amagmatic extension we probed the regional uppermost mantle for signatures of thermal alteration using compressional (Vp) and shear (Vs) wave speeds derived from Pn and Sn tomography. Pervasive thermal alteration of the uppermost mantle and possibly the presence of melt can be inferred beneath the Rungwe volcanic centre, but no signatures on a similar scale were discerned beneath amagmatic portions of the western rift branch encompassing the southern half of the Lake Tanganyika rift and much of the Rukwa rift. In this region, Vp and Vs wave speeds indicate little, if any, heating of the uppermost mantle and no studies have reported dyking. Vp/Vs ratios are consistent with typical, melt-free, olivine-dominated upper mantle. Although our resolution limit precludes us from imaging potential localised magmatic intrusions with dimensions of tens of kilometres, the absence of surface volcanism, the amagmatic upper crustal rupture known to have occurred at disparate locations on the western branch, the presence of lower crustal seismicity and the low temperatures implied by the fast seismic wave speeds in the lower crust and uppermost mantle in this region suggests possible amagmatic extension. Most dynamic models predict that this should not happen. Indeed even with magmatic intrusion, rifting of continental lithosphere >100 km thick is considered improbable under conditions found on Earth. Yield strength envelopes confirm that currently modelled stresses are insufficient to produce the observed deformation along these portions of the

  10. Marburg, Ebola and Rift Valley Fever virus antibodies in East African primates.

    PubMed

    Johnson, B K; Gitau, L G; Gichogo, A; Tukei, P M; Else, J G; Suleman, M A; Kimani, R; Sayer, P D

    1982-01-01

    Sera from 464 primates held at four institutes in Kenya were tested by indirect immunofluorescence for the presence of antibodies against Marburg, Ebola, Congo haemorrhagic fever, Rift Valley fever and Lassa viruses. Four of 136 vervet monkeys were positive for Marburg virus antibodies and three of 184 baboons had antibodies against Ebola virus. One baboon was positive for Marburg virus antibodies. Two vervet monkeys, three baboons and one grivet monkey (of 56 tested) had antibodies against Rift Valley fever virus. No Congo or Lassa virus antibodies were detected. A sample of 88 sera of more arboreal primates (Sykes, blue and colobus monkeys) were negative against all five antigens, as were sera from 58 staff members of the institutes who worked with or near the animals.

  11. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  12. Hydrocarbon accumulation on rifted Continental Margin - examples of oil migration pathways, west African salt basins

    SciTech Connect

    Blackwelder, B.W.

    1989-03-01

    Examination of the oil fields in the Gabon, Lower Congo, and Cuanza basins allows modeling of oil migration and a more accurate ranking of prospects using geologic risk factors. Oil accumulations in these basins are in strata deposited during Cretaceous rift and drift phases, thus providing a diversity of geologic settings to examine. Oil accumulations in rift deposits are located on large faulted anticlines or in truncated units atop horst features. Many of these oil fields were sourced from adjacent organic shales along short direct migration paths. In Areas where source rock is more remote to fields or to prospective structures, faulting and continuity of reservoir rock are important to the migration of hydrocarbons. Because Aptian salts separate rift-related deposits from those of the drift stage, salt evacuation and faulting of the salt residuum are necessary for oil migration from the pre-salt sequences into the post-salt section. Oil migration within post-salt strata is complicated by the presence of salt walls and faulted carbonate platforms. Hydrocarbon shows in wells drilled throughout this area provide critical data for evaluating hydrocarbon migration pathways. Such evaluation in combination with modeling and mapping of the organic-rich units, maturation, reservoir facies, structural configurations, and seals in existing fields allows assessment of different plays. Based on this information, new play types and prospective structures can be ranked with respect to geologic risk.

  13. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  14. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  15. Regional 3D Numerical Modeling of the Lithosphere-Mantle System: Implications for Continental Rift-Parallel Surface Velocities

    NASA Astrophysics Data System (ADS)

    Stamps, S.; Bangerth, W.; Hager, B. H.

    2014-12-01

    The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.

  16. East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Melnick, Daniel; Strecker, Manfred R.; Olago, Daniel; Tiercelin, Jean-Jacques

    2012-05-01

    The 'wet' early to mid-Holocene of tropical Africa, with its enhanced monsoon, ended with an abrupt shift toward drier conditions and was ultimately replaced by a drier climate that has persisted until the present day. The forcing mechanisms, the timing, and the spatial extent of this major climatic transition are not well understood and remain the subject of ongoing research. We have used a detailed palaeo-shoreline record from Lake Turkana (Kenya) to decipher and characterise this marked climatic transition in East Africa. We present a high-precision survey of well-preserved palaeo-shorelines, new radiocarbon ages from shoreline deposits, and oxygen-isotope measurements on freshwater mollusk shells to elucidate the Holocene moisture history from former lake water-levels in this climatically sensitive region. In combination with previously published data our study shows that during the early Holocene the water-level in Lake Turkana was high and the lake overflowed temporarily into the White Nile drainage system. During the mid-Holocene (~ 5270 ± 300 cal. yr BP), however, the lake water-level fell by ~ 50 m, coeval with major episodes of aridity on the African continent. A comparison between palaeo-hydrological and archaeological data from the Turkana Basin suggests that the mid-Holocene climatic transition was associated with fundamental changes in prehistoric cultures, highlighting the significance of natural climate variability and associated periods of protracted drought as major environmental stress factors affecting human occupation in the East African Rift System.

  17. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift.

    PubMed

    Simoneit, B R; Aboul-Kassim, T A; Tiercelin, J J

    2000-03-01

    Cape Kalamba oil seeps occur at the south end of the Ubwari Peninsula, at the intersection of faults controlling the morphology of the northern basin of the Tanganyika Rift, East Africa. Oil samples collected at the surface of the lake 3-4 km offshore from Cape Kalamba have been studied. The aliphatic hydrocarbon and biomarker compositions, with the absence of the typical suite of polynuclear aromatic hydrocarbons, indicate an origin from hydrothermal alteration of immature microbial biomass in the sediments. These data show a similarity between a tar sample from the beach and the petroleum from the oil seeps, and confirm that the source of these oils is from organic matter consisting mainly of bacterial and degraded algal biomass, altered by hydrothermal activity. The compositions also demonstrate a < 200 degrees C temperature for formation/generation of this hydrothermal petroleum, similar to the fluid temperature identified for the Pemba hydrothermal site located 150 km north of Cape Kalamba. The 14C age of 25.6 ka B.P. obtained for the tar ball suggests that Pleistocene lake sediments could be the source rock. Hydrothermal generation may have occurred slightly before 25 ka B.P., during a dry climatic environment, when the lake level was lower than today. These results also suggest that the Cape Kalamba hydrothermal activity did not occur in connection with an increased flux of meteoric water, higher water tables and lake levels as demonstrated in the Kenya Rift and for the Pemba site. Hydrothermal petroleum formation is a facile process also in continental rift systems and should be considered in exploration for energy resources in such locales. PMID:17654787

  18. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift.

    PubMed

    Simoneit, B R; Aboul-Kassim, T A; Tiercelin, J J

    2000-03-01

    Cape Kalamba oil seeps occur at the south end of the Ubwari Peninsula, at the intersection of faults controlling the morphology of the northern basin of the Tanganyika Rift, East Africa. Oil samples collected at the surface of the lake 3-4 km offshore from Cape Kalamba have been studied. The aliphatic hydrocarbon and biomarker compositions, with the absence of the typical suite of polynuclear aromatic hydrocarbons, indicate an origin from hydrothermal alteration of immature microbial biomass in the sediments. These data show a similarity between a tar sample from the beach and the petroleum from the oil seeps, and confirm that the source of these oils is from organic matter consisting mainly of bacterial and degraded algal biomass, altered by hydrothermal activity. The compositions also demonstrate a < 200 degrees C temperature for formation/generation of this hydrothermal petroleum, similar to the fluid temperature identified for the Pemba hydrothermal site located 150 km north of Cape Kalamba. The 14C age of 25.6 ka B.P. obtained for the tar ball suggests that Pleistocene lake sediments could be the source rock. Hydrothermal generation may have occurred slightly before 25 ka B.P., during a dry climatic environment, when the lake level was lower than today. These results also suggest that the Cape Kalamba hydrothermal activity did not occur in connection with an increased flux of meteoric water, higher water tables and lake levels as demonstrated in the Kenya Rift and for the Pemba site. Hydrothermal petroleum formation is a facile process also in continental rift systems and should be considered in exploration for energy resources in such locales.

  19. Neotectonic faults and stress field in the East African Rift System around the Tanzanian Craton - A contribution to the seismotectonic map of Africa

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Macheyeki, Athanas Simon; Fernandes, Rui-Manuel; Ayele, Atalay; Meghraoui, Mustapha

    2015-04-01

    As a contribution to the UNESCO-IUGS IGCP 601 project "Seismotectonics and seismic hazards in Africa" and in preparation of the Seismotectonic Map of Africa, we compiled the neotectonic faults related to the East African Rift System around the Tanzanian craton. The initial aim was to identify and map the potentially active faults. Faults are usually defined as active when they show seismogenic displacement during the last 10,000 to 100,000 years, generally on the basis of paleoseismic investigation. In East Africa, however, very few faults have been studied by paleoseismic techniques and even fewer have known historical seismic activation. To address this issue, we mapped faults that show morphological indications of displacement. We used the SRTM DTM (90 and 30 m when available to us), with artificial shading as basis for identify neotectonic faults, in combination with existing data from geological maps, publications and reports, complemented by our own field observations. Thermal springs often occur along tectonically active faults. We use them to distinguish present-day faulting from other mapped faults as they are in most cases structurally controlled. In parallel, we used also the available focal mechanisms and geological fault-slip data to constrain the stress second-order stress field (at the scale of rift segments) and locally also the third-order stress field (at the local scale). All these elements are combined and compared with existing kinematic models for the East African Rift based on earthquake slip vectors, GPS measurements and geologic indicators. The comparison evidences some local discrepancies between the stress field and the direction of opening, probably due to the interactions between different rift segments, as in the Rukwa rift, Mbeya southern junction between the eastern and western rift branches, and in the Manyara-Natron area.

  20. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  1. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.)

    NASA Astrophysics Data System (ADS)

    Genik, G. J.

    1992-10-01

    This paper overviews the regional framework, tectonic, structural and petroleum aspects of rifts in Niger, Chad and the C.A.R. The data base is from mainly proprietary exploration work consisting of some 50,000 kilometres of seismic profiles, 50 exploration wells, one million square kilometres of aeromagnetics coverage and extensive gravity surveys. There have been 13 oil and two oil and gas discoveries. A five phased tectonic history dating from the Pan African orogeny (750-550 MY B.P.) to the present suggests that the Western Central African Rift System (WCAS) with its component West African Rift Subsystem (WAS) and Central African Subsystem (CAS) formed mainly by the mechanical separation of African crustal blocks during the Early Cretaceous. Among the resulting rift basins in Niger, Chad and the C.A.R., seven are in the WAS—Grein, Kafra, Tenere. Tefidet, Termit, Bongor, and N'Dgel Edgi and three, Doba, Doseo, and Salamat are in the CAS. The WAS basins in Niger and Chad are all extensional and contain more than 14,000 m of continental to marine Early Cretaceous to Recent clastic sediments and minor amounts of volcanics. Medium to light oil (20° API-46° API) and gas have been discovered in the Termit basin in reservoir, source and seal beds of Late Cretaceous and Palaeogene age. The most common structural styles are extensional normal fault blocks and transtensional synthetic and antithetic normal fault blocks. The CAS Doba, Doseo and Salamat are extensional to transtensional rift basins containing up to 7500 m of terrestrial mainly Early Cretaceous clastics. Heavy to light oil (15°-39° API) and gas have been discovered in Doba and Doseo basins. Source rocks are Early Cretaceous lacustrine shales, whereas reservoirs and seals are both Early and Late Cretaceous. Dominant structural styles are extensional and transtensional fault blocks, transpressional anticlines and flower structures. The existence of a total rift basin sediment volume of more than one

  2. Fault-related Soil Efflux of Mantle-derived CO2 in the Magadi and Natron Basins, East African Rift

    NASA Astrophysics Data System (ADS)

    Lee, H.; Muirhead, J.; Fischer, T. P.; Kattenhorn, S. A.; Ebinger, C. J.; Thomas, N.; Kianji, G.; Onguso, B.; Maqway, M. D.

    2014-12-01

    The Magadi (Kenya) and Natron (Tanzania) basins of the East African Rift are in an early stage (< 7 Ma) of continental rifting. The many normal faults observed in these areas create sediment-filled basins and a large number of alkaline springs feed water into two major lakes (Lake Magadi and Natron). Earthquake swarms reported in 1998 (Magadi) and 2007 (Natron) were accompanied by surface ruptures. Although CO2 is a major component of magmatic volatiles and fault-related fluids that may facilitate earthquakes and fault weakening, the soil CO2 efflux of continental rifts is poorly known. Here, we report soil CO2 flux rates measured in the Magadi and Natron basins, and carbon isotope values (δ13C, ‰ vs. PDB) to constrain CO2sources. Soil CO2 fluxes were measured at fault zones, horsts, grabens, and surface ruptures by EGM-4 (PP systems) with a gas accumulation chamber. A t-shaped connector with a needle was used for gas sampling into evacuated glass vials with a rubber septum. δ13C values were measured by isotope ratio mass spectrometer with a gas bench at the stable isotope laboratory, University of New Mexico. The fault zones in the Magadi basin have higher maximum CO2 flux rates (< 533.52 g m-2 d-1) and heavier δ13C values (< -3.8 ‰) than the Natron basin (< 147.12 g m-2 d-1 and < -6.2 ‰, respectively). In both areas, soil CO2 efflux is insignificant (< 10 g m-2 d-1) in both horsts and the middle of grabens with lighter δ 13C values (~ -10 ‰) likely resulting from significant air contribution. The highest CO2 flux rates (< 919.44 g m-2 d-1) were measured at recent surface ruptures, but they have lighter δ13C values (-10 to -15 ‰), implying significant air and biogenic C contributions. Our results indicate that (1) normal faults are pathways that deliver mantle-derived CO2 to the surface, (2) the Magadi basin exhibits greater mantle-derived CO2 than the Natron basin, and (3) recent ruptures are zones of shallow CO2 degassing.

  3. A methodology to track temporal dynamics and rainfall thresholds of landslide processes in the East African Rift

    NASA Astrophysics Data System (ADS)

    Monsieurs, Elise; Jacobs, Liesbet; Kervyn, François; Kirschbaum, Dalia; d'Oreye, Nicolas; Derauw, Dominique; Kervyn, Matthieu; Nobile, Adriano; Trefois, Philippe; Dewitte, Olivier

    2015-04-01

    The East African rift valley is a major tectonic feature that shapes Central Africa and defines linear-shaped lowlands between highland ranges due to the action of geologic faults associated to earthquakes and volcanism. The region of interest, covering the Virunga Volcanic Province in eastern DRC, western Rwanda and Burundi, and southwest Uganda, is threatened by a rare combination of several types of geohazards, while it is also one of the most densely populated region of Africa. These geohazards can globally be classified as seismic, volcanic and landslide hazards. Landslides, include a wide range of ground movements, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in terms of recurring impact on the populations, causing fatalities every year and resulting in structural and functional damage to infrastructure and private properties, as well as serious disruptions of the organization of societies. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithologic and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. The source mechanisms underlying landslide triggering and dynamics in the region of interest are still poorly understood, even though in recent years, some progress has been made towards appropriate data collection. Taking into account difficulties of field accessibility, we present a methodology to study landslide processes by multi-scale and multi-sensor remote sensing data from very high to low resolution (Pléiades, TRMM, CosmoSkyMed, Sentinel). The research will address the evolution over time of such data combined with other earth observations (seismic ground based networks, catalogues, rain gauge networks, GPS surveying, field observations) to detect and study landslide occurrence, dynamics and evolution. This research aims to get insights into the rainfall

  4. The palaeo-lake Suguta and its importance for understanding lake level fluctuations in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Junginger, A.; Olago, D. O.; Trauth, M. H.

    2010-12-01

    We studied the most recent dry-wet-dry cycle in the presently arid Suguta Valley in the Northern Kenya Rift where a 300-m-deep lake has formed during the so-called African Humid Period (AHP, 14.8-5.5 ka BP). Hydromodeling suggests that a relatively moderate 25% increase in precipitation was responsible for this dramatic lake level rise, which demonstrates the character of the Suguta Valley as an amplifier lake system. To detect the response of this lake system to climate fluctuations and their possible driving mechanisms with a focus on abrupt vs. gradual changes, we reconstructed a palaeo-lake level record for the time between 14 and 5 ka BP from up to 40 m thick lake-sediment sequences at three locations in the ~2,500 km2 palaeo-lake Suguta area. The sediments have been investigated for sediment characteristics such as grain size distributions, detrital and authigenic mineral phases, geochemical properties and microfossil assemblages. The stratigraphy for the sequences is based on 38 AMS 14C ages of biogenic carbonate and charcoal samples. Parallel dating of charcoal and snail-shell samples show age differences between 1,570-2,240 years suggesting a remarkably high, but well-defined reservoir age for palaeo-Lake Suguta most likely due to aged groundwater or 14C depleted CO2 degassing from active volcanoes. The observed reservoir effect highlights the potential problems while correlating East African lake level records with chronologies based on 14C datings of aquatic materials. The new chronology of water level fluctuations in the amplifier-lake Suguta indicates a general dry-wet-dry cycle synchronous with other lake chronologies during the AHP and multiple short-term fluctuations with abrupt lake level drops between 100 to 300 m within 100 to 200 years at 12.8-11.6 (during Younger Dryas time), 11.1-10.9; 10.4-10.2; 9.5-9.1; 9.0-8.8; 8.5-8.1 (during the 8.2 ka event) cal ka BP that seem to be linked with changes in the coupling between atmosphere and ocean

  5. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift

    NASA Astrophysics Data System (ADS)

    Bedini, R. M.; Bodinier, J.-L.; Dautria, J.-M.; Morten, L.

    1997-12-01

    Spinel-peridotite xenoliths from Mega (East African Rift, Sidamo region, SE Ethiopia) show variable degrees of recrystallization coupled with trace-element variations. The less recrystallized samples (deformed xenoliths) consist of apatite-bearing porphyroclastic peridotites. They are strongly enriched in LILE (Ba, Th, U, Sr and LREE), with negative anomalies of the HFSE (Nb, Ta, Zr, Hf and Ti). The most recrystallized samples (granular xenoliths) consist of apatite-free peridotites with coarse-grained, granular textures. These samples are depleted or only slightly enriched in LILE and display no significant HFSE anomaly. We suggest that the inverse relationship between recrystallization and trace-element enrichment results from km-scale variation in volume and composition of melts pervasively infiltrated in the lithosphere. The deformed xenoliths record interaction with LILE-enriched small melt fractions, at low melt/rock ratio, while the granular xenoliths were extensively re-equilibrated with a higher fraction of basaltic melt, at higher melt/rock ratio. With a numerical simulation of reactive porous flow at the transition between adiabatic and conductive geotherms in the mantle, it is shown that these two processes were possibly coeval and associated with thermo-mechanical erosion of the lower lithosphere above a mantle plume.

  6. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.

    2016-02-01

    The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.

  7. Mapping of the major structures of the African rift system using ERTS-1

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The structural margin of western Afar with the Ethiopian plateau is marked by a rather wide zone of crustal deformation. ERTS-1 imagery has now permitted a more precise mapping of the structures of this marginal zone, and in particular of the discontinuous marginal graben. The tectonic style of the graben is different in the north from the south, and in the latter region the graben is discordant with the regional tectonic trend. The structural margin of the southern Afar with the Somalian plateau is formed, in the western sector, by a remarkable series of fault-zone splays. Afar-plateau boundary fault-zones successively curve northeast and then NNE to become Afar floor fault-zones, with a distance of about 25 km separating successive turnoffs. The transition from Ethiopian rift to Gulf of Aden tread faulting along this margin is fascinatingly complex. A simplistic crustal thinning model is not adequate to explain all observed structural features of the Afar margins.

  8. Paleomagnetism of Miocene East African Rift sediments and the calibration of the geomagnetic reversal time scale

    NASA Astrophysics Data System (ADS)

    Tauxe, L.; Monaghan, M.; Drake, R.; Curtis, G.; Staudigel, H.

    1985-05-01

    Paleomagnetic stratigraphy and K-Ar age determinations are reported for the type section of the middle Miocene Ngorora Formation, found in the Kenya rift valley. The magnetostratigraphy is well correlated to the geomagnetic reversal time scale (GRTS) and spans from the lower part of Chron C5 (9) to Chron C5AB-r (14). K-Ar dates were determined for euhedral sanidines, handpicked from seven tuff horizons within the Ngorora Formation and the underlying Turn phonolite flow. These dates can therefore be tied directly to the GRTS. The eight dates fall into three discrete groups averaging 12.5±0.22 Ma (mean and standard deviation of results from four tuffs), 11.6±0.06 Ma (mean and standard deviation from three tuffs), and 10.16±0.38 (average of three analyses from one tuff). We interpret the age groups as resulting from three successive eruptive episodes, the stratigraphic positions of which are well constrained. In spite of episodic supply at the eruptive source, sediment accumulation is continuous at the resolution of the GRTS. This suggests that accumulation is controlled by basin subsidence rather than sediment supply. Sanidine dates support an age for the older boundary of marine magnetic anomaly 5 of about 10 Ma, as opposed to 11.12 Ma, suggested by the most recent results from Icelandic basaltic lava flows.

  9. The MOZART Project - MOZAmbique Rift Tomography

    NASA Astrophysics Data System (ADS)

    Fonseca, J. F.; Chamussa, J. R.; Domingues, A.; Helffrich, G. R.; Fishwick, S.; Ferreira, A. M.; Custodio, S.; Brisbourne, A. M.; Grobbelaar, M.

    2012-12-01

    Project MOZART (MOZAmbique Rift Tomography) is an ongoing joint effort of Portuguese, Mozambican and British research groups to investigate the geological structure and current tectonic activity of the southernmost tip of the East African Rift System (EARS) through the deployment of a network of 30 broad band seismic stations in Central and Southern Mozambique. In contrast with other stretches of the EARS to the North and with the Kapvaal craton to the West and South, the lithosphere of Mozambique was not previously studied with a dense seismographic deployment on account of past political instability, and many questions remain unanswered with respect to the location and characteristics of the EARS to the south of Tanzania. In recent years, space geodesy revealed the existence of three microplates in and off Mozambique - Victoria, Rovuma, Lwandle - whose borders provide a connection of the EARS to the South West Indian Ridge as required by plate tectonics. However, the picture is still coarse concerning the location of the rift structures. The 2006 M7 Machaze earthquake in Central Mozambique highlighted the current tectonic activity of the region and added a further clue to the location of the continental rift, prompting the MOZART deployment. Besides helping unravel the current tectonics, the project is expected to shed light on the poorly known Mesoproterozoic structure described by Arthur Holmes in 1951 as the Mozambique Belt, and on the mechanisms of transition from stable craton to rifted continental crust, through the development of a tomographic model for the lithosphere. The MOZART network is distributed South of the Zambezi river at average inter-station spaces of the order of 100 km and includes four stations across the border in South Africa. Data exchange was agreed with AfricaArray. The deployment proceeded in two phases in March 2011, and November and December 2011. Decommissioning is foreseen for August 2013. We report preliminary results for this

  10. Chemistry and chronology of magmatic processes, Central Kenya Peralkaline province, East African Rift

    NASA Astrophysics Data System (ADS)

    Anthony, E.; Deino, A. L.; White, J. C.; Omenda, P. A.

    2014-12-01

    We report here a synthesis of the geochemistry of magma evolution correlated with 40Ar/39Ar, 14 C, and U-series chronology for volcanoes in the Central Kenya Peralkaline Province (CKPP). The volcanic centers - Menengai, Eburru, Olkaria, Longonot, and Suswa - are at the apex of the Kenya Dome, and consist of trachyte, phonolite, comendite, and pantellerite. These volcanic centers are within the graben of the EARS and are characterized by a shield-building phase followed by caldera collapse and subsequent post-caldera eruptions. Geochemical modeling demonstrates that the magmas are the result of fractional crystallization of alkali basaltic magmas and magma mixing. Longonot and Suswa have the most chronologic data -14 C, Ar/Ar and U-series - and they show that the youngest eruptions have 230 Th/232Th of 0.8, which was inherited from the magma system prior to eruption. Subsequent changes in 230 Th/232 Th are due to post-eruptive decay of 230 Th and correlate well with 14 C and Ar/Ar.

  11. Volatile Chemistry of the 2007 to Present Explosive Eruption of Oldoinyo Lengai Volcano, East African Rift

    NASA Astrophysics Data System (ADS)

    de Moor, J.; Fischer, T. P.; King, P. L.; Sharp, Z.; Shaw, A. M.; Mangasini, F.

    2008-12-01

    We characterize the volatile chemistry of the ongoing explosive eruption at Oldoinyo Lengai (OL) in the Gregory Rift Valley of N Tanzania. Fieldwork was conducted from 4-8 April 2008, during which time OL exhibited Strombolian to ash plume-producing activity. Eight distinct ash lapilli layers were sampled 900m from the crater. Mini-DOAS SO2 flux measurements were conducted on 6, 7, and 8 April. Despite moderate eruptive activity, SO2 concentrations were very low, from ~ 20ppm.m to below detection. A low concentration plume was detected on 7 April, allowing a SO2 flux estimate of 0.2-0.4 tons/day. SIMS analyses of carbonatite lavas erupted in 2005 show very high S concentrations (0.62wt %), suggesting that the low SO2 flux is due to partitioning of S into the melt. Ash leachates were analyzed as a proxy for plume chemistry and to assess health risks associated with mobile elements in the ashes. The solutions had high pH of 10.6 to 11.1. This has implications for pH fluctuations of Lake Natron (pH ~10; located 20km N of the crater), which may correlate with lacustrine ash deposition during passed explosive activity at OL. In the uppermost ash layer (deposited on 4/5/2008; not influenced by rain) dominant mobile ions are Cl (18120mg/kg), SO4 (26616mg/kg), PO4 (2393mg/kg), and F (534mg/kg), Na (101679mg/kg), K (22544mg/kg), Ca (721mg/kg), and Si (189mg/kg). Leachate S/Cl from this pristine ash is 0.49, compared to 0.29 measured by SIMS in lavas from 2005. Using the SO2 flux and the S/Cl in the leachates, the Cl flux was 0.5-0.8 tons/day. High concentrations of leachable ions, particularly F, on ash presents health hazards (F poisoning; water source contamination) to local communities. Concentrations in the underlying ashes are lower (40-129 mg/kg Cl, 965-3223 mg/kg SO4 , 66-104 mg/kg F, 40-335 mg/kg PO4 ) than those in the upper deposit due to leaching by rain prior to deposition of the uppermost ash layer. FTIR spectroscopy of ashes shows at least two carbonate

  12. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de M

  13. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture.

    PubMed

    Roberts, Eric M; Todd, Christopher N; Aanen, Duur K; Nobre, Tânia; Hilbert-Wolf, Hannah L; O'Connor, Patrick M; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66-24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7-10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  14. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture

    PubMed Central

    Roberts, Eric M.; Todd, Christopher N.; Aanen, Duur K.; Nobre, Tânia; Hilbert-Wolf, Hannah L.; O’Connor, Patrick M.; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J.

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66–24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7–10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  15. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, Benjamin; Löbl, Ulrike; Batte, Arthur; Link, Klemens; Kasereka, Celestine; Rümpker, Georg

    2014-05-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by a bimodal pattern of fast polarizations and an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  16. Extension and Basin Evolution of the East Kivu Graben, Rwanda, East African Rift: Results of New Multichannel Seismic Reflection Imaging

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Zhang, X.; Wood, D.; Mburu, D.

    2012-12-01

    The East Kivu Graben resides within the eastern part of Lake Kivu, the highest Great Lake in the western branch of the East African Rift. The lake is more than 440 m deep in the East Kivu Basin, with a catchment comprised of Precambrian metasedimentary rocks and late-Cenozoic volcanics. Lake Kivu is renowned for its uniquely stratified water column, which is charged with considerable quantities of dissolved CO2 and methane, the former due to magmatic degassing. In February and March 2012 514 km of single- and multi-channel seismic reflection data were acquired in the Rwandan waters of Lake Kivu. The 24-fold multichannel seismic data were acquired aboard a modular research vessel, using a 600 m-long hydrophone streamer and single 40 cubic inch airgun. Extension in the East Kivu basin is largely accommodated along a major N-S striking, east-dipping boundary fault observed along the eastern edge of Iwawa Island, and extending for ~40 km along the length of the basin. Numerous intrabasinal normal faults occur to the east of the boundary fault, commonly displacing the lake floor and controlling the location of modern sublacustrine channels. The deepest sedimentary reflections observed on the new MCS data are 1.2-1.5 km below lake floor, near the center of the basin and boundary fault. Crystalline basement is not observed in these deepest areas however, suggesting the presence of a substantial sedimentary section below the imaged strata. Stratal surfaces dip steeply to the west over large areas of the half-graben basin. An acoustically transparent seismic sequence up to ~25 m thick is observed at the lake floor, which overlies a pronounced erosional unconformity over much of the basin. Some intrabasinal normal faults are draped by and do not penetrate the upper sequences, indicating several generations of fault activity in the basin. The late-Pleistocene exposure surface likely correlates to the previous lake level low stage that persisted prior to volcanic damming by

  17. Lake-groundwater relationships and fluid-rock interaction in the East African Rift Valley: isotopic evidence

    NASA Astrophysics Data System (ADS)

    Darling, W. George; Gizaw, Berhanu; Arusei, Musa K.

    1996-05-01

    The assessment of water resources in the Rift Valley environment is important for population, agriculture and energy-related issues and depends on a good understanding of the relationship between freshwater lakes and regional groundwater. This can be hampered by the amount of fluid-rock interaction which occurs throughout the rift, obscuring original hydrochemical signatures. However, O and H stable isotope ratios can be used as tracers of infiltration over sometimes considerable distances, while showing that the volcanic edifices of the rift floor have varying effects on groundwater flow patterns. Specific cases from Kenya and Ethiopia are considered, including Lakes Naivasha, Baringo, Awasa and Zwai. In addition to their physical tracing role, stable isotopes can reveal information about processes of fluid-rock interaction. The general lack of O isotope shifting in rift hydrothermal systems suggests a high water:rock ratio, with the implication that these systems are mature. Carbon isotope studies on the predominantly bicarbonate waters of the rift show how they evolve from dilute meteoric recharge to highly alkaline waters, via the widespread silicate hydrolysis promoted by the flux of mantle carbon dioxide which occurs in most parts of the rift. There appears to be only minor differences in the C cycle between Kenya and Ethiopia.

  18. Spatial and Temporal Evolution of Eruptive Activity in a Youthful Extensional Setting: the Case of the Nyamulagira Volcanic Field, Western Branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, B.; Kervyn, M.; d'Oreye, N.; Kervyn, F.

    2014-12-01

    Nyamulagira is the westernmost volcano of the Virunga volcanic province, in the western branch of the East African Rift. This shield volcano is one of the most active African volcanoes with one eruption every 1-4 year(s). Nyamulagira's eruptions usually occur along the flanks of the main edifice and in the lava plain, producing pyroclastic cone(s) and 10-20 km-long lava flows. Between 1913 and 1938, the activity was however restricted to the summit caldera, where lava fountains progressively gave birth to a lava lake, which disappeared in 1938 during the partial collapse of the summit caldera and the onset of a 2.5 years-long flank eruption. The location of flank eruptions and the orientation of the eruptive fissures are strongly influenced by the edifice loading, and by the NNW-SSE fracture network that crosses the main edifice and link it to the neighboring Nyiragongo volcano. But rift fault can also influence fissure orientations and cone alignments, especially for distal events. The flank eruptions typically have similar characteristics, lasting few days to few weeks, with an average of 20-30 days. Less frequently, flank eruptions can be larger and more complex, lasting several months and/or emitting much larger volumes of lava. By combining historical and recent observations, we suggest that magma overpressure at shallow depth is the main cause of flank events. Major eruptions seem to be related to a deeper source able to trigger large magma injections through deep structures, such as rift faults. Since April 2012, the activity of Nyamulagira is restricted to the summit caldera, with continuous and intense gas emissions and, since mid-2014, by lava fountains. This change in eruptive behavior, if it persists, may leads to the emergence of a new lava lake and may significantly decreases the frequency of flank events

  19. Tag team tectonics: mantle upwelling and lithospheric heterogeneity ally to rift continents (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.

    2013-12-01

    The configuration of continents we know today is the result of several billion years of active Wilson Cycle tectonics. The rifting of continents and subsequent development of ocean basins is an integral part of long-term planetary-scale recycling processes. The products of this process can be seen globally, and the East African Rift System (EARS) provides a unique view of extensional processes that actively divide a continent. Taken together with the adjoining Red Sea and Gulf of Aden, the EARS has experienced over 40 Ma of volcanism and ~30 Ma of extension. While early (pre-rift) volcanism in the region is attributed to mantle plume activity, much of the subsequent volcanism occurs synchronously with continental rifting. Numerous studies indicate that extension and magmatism are correlated: extension leads to decompression melting while magmatism accommodates further extension (e.g. Stein et al., 1997; Buck 2004; Corti 2012). Evaluation of the entire EARS reveals significant geochemical patterns - both spatial and temporal - in the volcanic products. Compositional variations are tied directly to the melt source(s), which changes over time. These variations can be characterized broadly by region: the Ethiopian plateau and Turkana Depression, the Kenya Rift, and the Western Rift. In the Ethiopian plateau, early flood basalt volcanism is dominated by mantle plume contributions with variable input from lherzolitic mantle lithosphere. Subsequent alkaline shield volcanism flanking the juvenile Main Ethiopian Rift records the same plume component as well as contributions from a hydrous peridotitic lithosphere. The hydrous lithosphere does not contribute indefinitely. Instead, young (< 2 Ma) volcanism taps a combination of the mantle plume and anhydrous depleted lithospheric mantle. In contrast, volcanism in the Kenya Rift and the Western Rift are derived dominantly from metasomatized lithospheric mantle rather than mantle plume material. These rifts lie in the mobile

  20. Geochemistry of 24 Ma Basalts from Northeast Egypt: Implications for Small-Scale Convection Beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Endress, C. A.; Furman, T.; Ali Abu El-Rus, M.

    2009-12-01

    Basalts ~24 Ma in the Cairo-Suez and Fayyum districts of NE Egypt represent the youngest and northernmost lavas potentially associated with the initiation of rifting of the Red Sea. The age of these basalts corresponds to a time period of significant regional magmatism that occurred subsequent to emplacement of 30 Ma flood basalts attributed to the Afar Plume in Ethiopia and Yemen. Beginning ~28 Ma, widespread magmatism occurred across supra-equatorial Africa in Hoggar (Algeria), Tibesti (Chad), Darfur (Sudan), Turkana (Kenya) and Samalat, Bahariya, Quesir and the Sinai Peninsula (Egypt) (e.g. Allegre et al., 1981; Meneisy, 1990; Baldridge et al., 1991; Wilson and Guiraud, 1992; Furman et al., 2006; Lucassen et al., 2008). Available geochemical and isotopic data indicate that Hoggar and Darfur basalts are similar to Turkana lavas, although no direct link between the N African lavas and the Kenya Plume has been made. New geochemical data on the NE Egyptian basalts provide insight into the thermochemical, isotopic, and mineralogical characteristics of the mantle beneath the region in which they were emplaced. The basalts are subalkaline with OIB-like incompatible trace element abundances and homogeneous major element, trace element and isotopic geochemistry. They display relatively flat ITE patterns, with notable positive Pb and negative P anomalies. Isotopic (143Nd/144Nd = 0.51274-0.51285, 87Sr/86Sr = 0.7049-0.7050) and trace element signatures (Ce/Pb = 16-22, Ba/Nb = 9-14, and La/Nb = 0.9-1.0) are consistent with melting of a sub-lithospheric source that has been slightly contaminated by continental crust during ascent and emplacement. The Pb isotopic ratios (206Pb/204Pb = 18.53-18.62, 207Pb/204Pb = 15.59-15.64, and 208Pb/204Pb = 38.80-39.00) in the Egyptian basalts are close to the range of those found in the 30 Ma Ethiopian flood basalts, which are distinct from the more highly radiogenic, high-μ type signature seen in basalts from Turkana, Darfur, and Hoggar

  1. Seismic Anisotropy of the Lithosphere/Asthenosphere System Beneath the Rwenzori Region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A.; Link, K.; Kasereka, C.; Rumpker, G.

    2014-12-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  2. Pierced Ears

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Pierced Ears KidsHealth > For Kids > Pierced Ears Print A A ... cool, but infected ears do not! Getting Your Ears Pierced It's important to get your ears pierced ...

  3. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  4. Mapping Extensional Structures in the Makgadikgadi Pans, Botswana with remote sensing and aeromagnetic data: Implication for the continuation of the East African Rift System in southern Africa

    NASA Astrophysics Data System (ADS)

    Fetkovich, E. J.; Atekwana, E. A.; Abdelsalam, M. G.; Atekwana, E. A.; Katumwehe, A. B.

    2015-12-01

    We used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and aeromagnetic data to map extensional structures in the Makgadikgadi Pans in northeastern Botswana. These pans are a major morphological feature in Southern Africa characterized by the presence of low lying and flat topography with the highest elevation of 945 m. This topography was a result of multiple filling and desiccation of paleo-lakes that accompanied alternation of wetter and dryer climate during the Late Quaternary period. The objective of our study was to map the extent and distribution of normal faults using their morphological expression and magnetic signature, and examine their relationship with paleo-shorelines of the pans. We: (1) Created a hill shade relief map from the SRTM DEM; (2) Extracted regional NW-SE trending topographic profiles across the pans; (3) Constructed displacement profiles for major normal faults; and (4) Created tilt derivative images from the aeromagnetic data. We found that: (1) The northeastern part of the pan is dissected by three morphologically-defined NE-trending normal faults. The along strike continuity of these faults is in the range of 75 and 170 km and they are spaced at ~30 km apart from each other. (2) The topographic profiles suggest that the exposed minimum vertical displacement (EMVD), defined by poorly developed escarpments, is in the range of 0 m and 49 m. (3) The displacement profiles of the faults is characterized by maximum EMVD in the middle of the faults and that it decays towards the fault tips. These faults are also apparent in the aeromagnetic maps where they seem to displace E-W trending Karoo-age dikes. (4) At least the outer paleo-shoreline of the pans is modified by the NE-trending faults. This suggests that the faults are younger than the paleo-shorelines, which is suggested to have been developed between 500 and 100 ka. Traditionally, the southwestern extension of the East African Rift System has been assigned to the

  5. Structural style of the Turkana Rift, Kenya

    SciTech Connect

    Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

    1988-03-01

    Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

  6. Clinopyroxene-host disequilibrium (Sr-Nd-Pb isotope systematics) in ultra-potassic magmas from East-African Rift: Implications for magma mixing and source heterogeneity

    NASA Astrophysics Data System (ADS)

    Muravyeva, Natalya; Belyatsky, Boris; Senin, Valeriy

    2014-05-01

    Nd, Pb and Sr isotope ratios have been determined for kamafugite lava and clinopyroxene and phlogopite phenocrysts from Toro-Ankole and Virunga volcanic fields of the East African Rift. The whole rock Sr - Nd isotopic signatures of kamafugites (87Sr/86Sr: 0.70463 - 0.70536; 143Nd/144Nd: 0.51249 - 0.51255) suggest derivation from an EM1-type mantle source. In contrast, Pb isotopic compositions of the same samples (206Pb/204Pb: 19.00 - 19.57; 207Pb/204Pb: 15.69 - 15.74; 208Pb/204Pb: 39.30 - 40.26) reveal a similarity to EM2-type mantle. New Nd, Pb and Sr isotopic data for clinopyroxene (87Sr/86Sr: 0.70473 - 0.70503; 143Nd/144Nd: 0.51250 - 0.51254; 206Pb/204Pb: 18.04 - 18.17; 207Pb/204Pb: 15.58 - 15.60; 208Pb/204Pb: 38.09 - 38.23) suggest derivation from an EM1-like source, and indicate Sr and Pb isotope disequilibrium between clinopyroxene and corresponding host rock. Moreover, clinopyroxenes demonstrating a greater degree of isotopic disequilibrium with their host rock are more sodic in composition. The isotopic disequilibrium is corroborated by the presence of chemical zoning within clinopyroxene, which suggests rapid magma ascent rates preventing melt homogenization. The Pb isotopic ratios for both mineral and corresponding whole rock, together with published data on East African rift-related alkaline centers, define a trend interpreted to represent a mixing line for melts derived from sources such as EM1 and as HIMU. The similar isotopic compositions for clinopyroxene from the different volcanic rocks within the East African Rift suggest the existence of a common, older mantle source for their parental melts. The origin of these melts can be attributed to an enrichment event ~ 400-500 Ma, i.e., significantly prior the younger (Quaternary) ultrapotassic magmatism. Our preferred interpretation for the results reported here involves the mixing of the melts derived from EM1- and HIMU-like sources, which were rapidly transported to the Earth's surface. The primary

  7. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  8. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  9. Bentho-Pelagic Divergence of Cichlid Feeding Architecture Was Prodigious and Consistent during Multiple Adaptive Radiations within African Rift-Lakes

    PubMed Central

    Cooper, W. James; Parsons, Kevin; McIntyre, Alyssa; Kern, Brittany; McGee-Moore, Alana; Albertson, R. Craig

    2010-01-01

    Background How particular changes in functional morphology can repeatedly promote ecological diversification is an active area of evolutionary investigation. The African rift-lake cichlids offer a calibrated time series of the most dramatic adaptive radiations of vertebrate trophic morphology yet described, and the replicate nature of these events provides a unique opportunity to test whether common changes in functional morphology have repeatedly facilitated their ecological success. Methodology/Principal Findings Specimens from 87 genera of cichlid fishes endemic to Lakes Tanganyka, Malawi and Victoria were dissected in order to examine the functional morphology of cichlid feeding. We quantified shape using geometric morphometrics and compared patterns of morphological diversity using a series of analytical tests. The primary axes of divergence were conserved among all three radiations, and the most prevalent changes involved the size of the preorbital region of the skull. Even the fishes from the youngest of these lakes (Victoria), which exhibit the lowest amount of skull shape disparity, have undergone extensive preorbital evolution relative to other craniofacial traits. Such changes have large effects on feeding biomechanics, and can promote expansion into a wide array of niches along a bentho-pelagic ecomorphological axis. Conclusions/Significance Here we show that specific changes in trophic anatomy have evolved repeatedly in the African rift lakes, and our results suggest that simple morphological alterations that have large ecological consequences are likely to constitute critical components of adaptive radiations in functional morphology. Such shifts may precede more complex shape changes as lineages diversify into unoccupied niches. The data presented here, combined with observations of other fish lineages, suggest that the preorbital region represents an evolutionary module that can respond quickly to natural selection when fishes colonize new lakes

  10. Swimmer's Ear

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Swimmer's Ear KidsHealth > For Kids > Swimmer's Ear Print A A ... How Do I Know if I Have Swimmer's Ear? Swimmer's ear may start with some itching, but ...

  11. Ear Tubes

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  12. Post pan-african denudation history of southwestern Madagascar during the complex rift-drift evolution of the island: new aspects from titanite and apatite fission track analyses

    NASA Astrophysics Data System (ADS)

    Emmel, B.; Jacobs, J.

    2003-04-01

    Titanite and apatite fission track (FT) thermochronology from 53 basement outcrops in southwest Madagascar reveal a protracted post Pan-African history of extensional tectonism, denudation and sedimentation. The titanite FT ages range between 276 ± 14 Ma and 379 ± 38 Ma. Apatite FT ages vary between 117 ± 26 Ma and 379 ± 19 Ma with mean track length scattering between 11.7 ± 0.59 μm and 13.74 ± 0.21 μm. Combined titanite and apatite FT data were used to calculate denudation rates. Samples from the paleo western margin of Madagascar along the N-S striking Pan-African Ejeda shear zone give above-average denudation rates (100-205 mMa-1) during Carboniferous times. The shear zone was probably reactivated during this times. In contrast the calculated denudation rates for samples from the interior of the island are moderate (25-120 mMa-1). Vitrinite reflectance data from the Sakoa coal area as well as titanite and apatite FT data imply that during the Permo-Triassic rifting, the areas along the paleo western margin that previously underwent fast denudation were buried by a sedimentary cover of up to ˜4.5 km. At this time, a graben developed further inland along the NW-SE striking transcontinental Bongolava-Ranotsara shear zone (BRSZ). Modelled time-temperature paths indicate that the area within the BRSZ remained cool and unaffected since Carboniferous times whereas the samples northeast and southwest of the BRSZ suggest phases of differential cooling during Permian-Triassic times. Seismic data from the Morondava basin indicate that during the Middle Jurassic drift between Madagascar and East-Africa a rift jump towards the west occurred. Modelled time-temperature histories of basement units from the paleo western margin, buried during Permo Triassic times, were exhumed during Jurassic times. This is most probably related with the modified rift kinematics and the associated southwest migration of the margin. Modelled time-temperature paths of all samples from

  13. Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer)

    PubMed Central

    Beechler, B. R.; Manore, C. A.; Reininghaus, B.; O'Neal, D.; Gorsich, E. E.; Ezenwa, V. O.; Jolles, A. E.

    2015-01-01

    The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB− buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations. PMID:25788592

  14. Complex seismicity patterns in the Rwenzori region: insights to rifting processes at the Albertine Rift.

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rümpker, G.; Wölbern, I.; Batte, A. G.; Schumann, A.

    2012-04-01

    Numerous seismological studies in East Africa have focused on the northern and eastern branches of the East African Rift System (EARS). However, the seismic activity along the western branch is much more pronounced. Here, the Rwenzori Mountains are located within the Albertine rift valley, at the border between Uganda and D.R. Congo. During a seismic monitoring campaign between February 2006 and September 2007 we have recorded more than 800 earthquakes per month in the Rwenzori area. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, were the mountains are in contact with the rift shoulders. The hypocentral depth distribution peaks at 16 km depth and extends down to the Moho which was found at 20 - 32 km depths by teleseismic receiver functions. Local magnitudes range from -0.5 to 5.1 with a b-value of 1.1. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70% of the source mechanisms exhibit normal faulting. T-axis trends are highly uniform and oriented WNW-ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. The area of highest seismic activity NE of the Rwenzoris is characterized by the occurrence of several earthquake clusters in 5 -20 km depth. They have stable positions throughout time and form elongated pipes with 1-2 km diameter and vertical extensions of 3-5 km. From petrological considerations we presume that these earthquake swarms are triggered by fluids and gasses which originate from a magmatic source below the crust. The existence of a magmatic source within the lithosphere is supported by the detection of a shear-wave velocity reduction in 55-80 km depth from receiver-function analysis and the location of mantle earthquakes at about 60 km. We interpret these observations as indication for an

  15. Genetic evidence for Rift Valley fever outbreaks in Madagascar resulting from virus introductions from the East African mainland rather than enzootic maintenance.

    PubMed

    Carroll, Serena A; Reynes, Jean-Marc; Khristova, Marina L; Andriamandimby, Soa Fy; Rollin, Pierre E; Nichol, Stuart T

    2011-07-01

    Rift Valley fever virus (RVFV), a mosquito-borne phlebovirus, has been detected in Madagascar since 1979, with occasional outbreaks. In 2008 to 2009, a large RVFV outbreak was detected in Malagasy livestock and humans during two successive rainy seasons. To determine whether cases were due to enzootic maintenance of the virus within Madagascar or to importation from the East African mainland, nine RVFV whole genomic sequences were generated for viruses from the 1991 and 2008 Malagasy outbreaks. Bayesian coalescent analyses of available whole S, M, and L segment sequences were used to estimate the time to the most recent common ancestor for the RVFVs. The 1979 Madagascar isolate shared a common ancestor with strains on the mainland around 1972. The 1991 Madagascar isolates were in a clade distinct from that of the 1979 isolate and shared a common ancestor around 1987. Finally, the 2008 Madagascar viruses were embedded within a large clade of RVFVs from the 2006-2007 outbreak in East Africa and shared a common ancestor around 2003 to 2004. These results suggest that the most recent Madagascar outbreak was caused by a virus likely arriving in the country some time between 2003 and 2008 and that this outbreak may be an extension of the 2006-2007 East African outbreak. Clustering of the Malagasy sequences into subclades indicates that the viruses have continued to evolve during their short-term circulation within the country. These data are consistent with the notion that RVFV outbreaks in Madagascar result not from emergence from enzootic cycles within the country but from recurrent virus introductions from the East African mainland.

  16. Hydrocarbon potential of intracratonic rift basins

    SciTech Connect

    Baker, D.G.; Derksen, S.J.

    1984-09-01

    Significant world oil reserves have been added in recent years from rift system. Examples of petroliferous rift basins may be found on nearly every major continent. As our understanding of the mechanisms of sedimentation and structure in rift basins grows, more rift systems will be found. With a few notable exceptions, rifts that have been explored in the past are those that formed along continental margins. These contain marine sediments, and the conditions of source rock, sediment type, depositional environment, and structural style are well-known exploration concepts. Intracratonic rift systems containing continental sediments, and also because of the problems perceived to accompany continental sedimentation. A good modern analog is the East African rift system. Several companies have made significant oil discoveries in different components of the Central African rift system. Average daily production for 1982 from the basins associated with the Benue trough was 107.928 BOPD. In the Abu Gabra rift component, where Marathon is currently exploring, Chevron has drilled approximately 60 wells. Nineteen of these were discoveries and tested an average rate per well of 3,500 BOPD. The Abu Gabra rift may contain up to 10 billion bbl of oil. Research indicates that this type of rift system is present in other areas of the world. Ongoing worldwide exploration has shown that intracratonic rift basins have the potential to make a significant contribution to world oil reserves.

  17. Understanding Chad Basin Evolution Since Miocene: Climate and Vegetation Simulations, Roles of Orbital Parameters and East African Rift.

    NASA Astrophysics Data System (ADS)

    Sepulchre, P.; Ramstein, G.; Krinner, G.; Schuster, M.; Fluteau, F.; Kageyama, M.; Tiercelin, J.; Vignaud, P.; Brunet, M.

    2004-12-01

    Since the discovery of the earliest hominid known, Chad basin is a major place to study paleoclimates and hominid evolution. This discovery implies to re-evaluate the "East Side Story" paradigm for early hominids. To achieve this goal, we have performed numerical simulations to quantify the climatic and vegetation response of the Rift Uplift. We used a zoomed (144 X 108) AGCM (LMDz from IPSL). On the one hand, offline continental biosphere model (ORCHIDEE) has been used to simulate the vegetation response over western and eastern parts of the rift. On the other hand, since geomorphologic evidences have shown that from Upper Miocene to mid-Holocene Lake Chad had known several level oscillations leading to a huge lake known as Mega Lake Chad (MLC), we also ran atmospheric simulations to demonstrate, with boundary conditions at 6 000 BP, that orbital forcing allowed the existence of a MLC. Volume and surface of the lake have been calculated using an adapted lake model. These simulations have shown that the ITCZ shift induced by the mid-Holocene orbital parameters drives the existence of a MegaChad. Our model result having been tested successfully for the last occurrence of the MLC, we will apply it to Upper Miocene accounting for topographic changes, in order to reconstruct as accurately as possible the first hominids environments.

  18. Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (Syncerus caffer) in the Kruger National Park and Hluhluwe-iMfolozi Park, South Africa.

    PubMed

    Fagbo, Shamsudeen; Coetzer, Jacobus A W; Venter, Estelle H

    2014-01-01

    Rift Valley fever and lumpy skin disease are transboundary viral diseases endemic in Africa and some parts of the Middle East, but with increasing potential for global emergence. Wild ruminants, such as the African buffalo (Syncerus caffer), are thought to play a role in the epidemiology of these diseases. This study sought to expand the understanding of the role of buffalo in the maintenance of Rift Valley fever virus (RVFV) and lumpy skin disease virus (LSDV) by determining seroprevalence to these viruses during an inter-epidemic period. Buffaloes from the Kruger National Park (n = 138) and Hluhluwe-iMfolozi Park (n = 110) in South Africa were sampled and tested for immunoglobulin G (IgG) and neutralising antibodies against LSDV and RVFV using an indirect enzyme-linked immunosorbent assay (I-ELISA) and the serum neutralisation test (SNT). The I-ELISA for LSDV and RVFV detected IgG antibodies in 70 of 248 (28.2%) and 15 of 248 (6.1%) buffaloes, respectively. Using the SNT, LSDV and RVFV neutralising antibodies were found in 5 of 66 (7.6%) and 12 of 57 (21.1%), respectively, of samples tested. The RVFV I-ELISA and SNT results correlated well with previously reported results. Of the 12 SNT RVFV-positive sera, three (25.0%) had very high SNT titres of 1:640. Neutralising antibody titres of more than 1:80 were found in 80.0% of the positive sera tested. The LSDV SNT results did not correlate with results obtained by the I-ELISA and neutralising antibody titres detected were low, with the highest (1:20) recorded in only two buffaloes, whilst 11 buffaloes (4.4%) had evidence of co-infection with both viruses. Results obtained in this study complement other reports suggesting a role for buffaloes in the epidemiology of these diseases during inter-epidemic periods. PMID:25686252

  19. Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (Syncerus caffer) in the Kruger National Park and Hluhluwe-iMfolozi Park, South Africa.

    PubMed

    Fagbo, Shamsudeen; Coetzer, Jacobus A W; Venter, Estelle H

    2014-10-16

    Rift Valley fever and lumpy skin disease are transboundary viral diseases endemic in Africa and some parts of the Middle East, but with increasing potential for global emergence. Wild ruminants, such as the African buffalo (Syncerus caffer), are thought to play a role in the epidemiology of these diseases. This study sought to expand the understanding of the role of buffalo in the maintenance of Rift Valley fever virus (RVFV) and lumpy skin disease virus (LSDV) by determining seroprevalence to these viruses during an inter-epidemic period. Buffaloes from the Kruger National Park (n = 138) and Hluhluwe-iMfolozi Park (n = 110) in South Africa were sampled and tested for immunoglobulin G (IgG) and neutralising antibodies against LSDV and RVFV using an indirect enzyme-linked immunosorbent assay (I-ELISA) and the serum neutralisation test (SNT). The I-ELISA for LSDV and RVFV detected IgG antibodies in 70 of 248 (28.2%) and 15 of 248 (6.1%) buffaloes, respectively. Using the SNT, LSDV and RVFV neutralising antibodies were found in 5 of 66 (7.6%) and 12 of 57 (21.1%), respectively, of samples tested. The RVFV I-ELISA and SNT results correlated well with previously reported results. Of the 12 SNT RVFV-positive sera, three (25.0%) had very high SNT titres of 1:640. Neutralising antibody titres of more than 1:80 were found in 80.0% of the positive sera tested. The LSDV SNT results did not correlate with results obtained by the I-ELISA and neutralising antibody titres detected were low, with the highest (1:20) recorded in only two buffaloes, whilst 11 buffaloes (4.4%) had evidence of co-infection with both viruses. Results obtained in this study complement other reports suggesting a role for buffaloes in the epidemiology of these diseases during inter-epidemic periods.

  20. Tectonic stress evolution in the Pan-African Lufilian Arc and its foreland (Katanga, DRC): orogenic bending, late orogenic extensional collapse and transition to rifting

    NASA Astrophysics Data System (ADS)

    Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.

    2012-04-01

    Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).

  1. Drinking water quality in the Ethiopian section of the East African Rift Valley I--data and health aspects.

    PubMed

    Reimann, Clemens; Bjorvatn, Kjell; Frengstad, Bjørn; Melaku, Zenebe; Tekle-Haimanot, Redda; Siewers, Ulrich

    2003-07-20

    Drinking water samples were collected throughout the Ethiopian part of the Rift Valley, separated into water drawn from deep wells (deeper than 60 m), shallow wells (<60 m deep), hot springs (T>36 degrees C), springs (T<32 degrees C) and rivers. A total of 138 samples were analysed for 70 parameters (Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, NO(2), NO(3), Pb, Pr, Rb, Sb, Se, Si, Sm, Sn, SO(4), Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, temperature, pH, conductivity and alkalinity) with ion chromatography (anions), spectrometry (ICP-OES and ICP-MS, cations) and parameter-specific (e.g. titration) techniques. In terms of European water directives and WHO guidelines, 86% of all wells yield water that fails to pass the quality standards set for drinking water. The most problematic element is fluoride (F), for which 33% of all samples returned values above 1.5 mg/l and up to 11.6 mg/l. The incidence of dental and skeletal fluorosis is well documented in the Rift Valley. Another problematic element may be uranium (U)-47% of all wells yield water with concentrations above the newly suggested WHO maximum acceptable concentration (MAC) of 2 microg/l. Fortunately, only 7% of the collected samples are above the 10 microg/l EU-MAC for As in drinking water.

  2. Swimmer's ear

    MedlinePlus

    ... such as acetaminophen (Tylenol) or ibuprofen (Advil, Motrin) Vinegar (acetic acid) ear drops People with chronic swimmer's ear may ... drop of alcohol with 1 drop of white vinegar and placing the mixture into the ears after ...

  3. Ear Disorders

    MedlinePlus

    ... ear, where they make your eardrum vibrate. The vibrations are transmitted through three tiny bones, called ossicles, in your middle ear. The vibrations travel to your inner ear, a snail-shaped ...

  4. Ear Infections

    MedlinePlus

    MENU Return to Web version Ear Infections Overview How does the ear work? A tube called the eustachian (say: "you-stay-shee-an") tube connects the middle ear with the back of the nose. Normally this ...

  5. Cauliflower Ear

    MedlinePlus

    ... Here's Help White House Lunch Recipes What's Cauliflower Ear? KidsHealth > For Kids > What's Cauliflower Ear? Print A A A Text Size Have you ever seen someone whose ear looks bumpy and lumpy? The person might have ...

  6. Ear barotrauma

    MedlinePlus

    ... Ear popping - barotrauma; Pressure-related ear pain; Eustachian tube dysfunction - barotrauma ... air pressure outside of the body. The Eustachian tube is a connection between the middle ear and ...

  7. 13C/Palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African Rift Lakes and peat bogs

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; Aucour, Anne-Marie; Bonnefille, Raymonde; Riollet, Guy; Vincens, Annie; Williamson, David

    Most terrestrial plants producing large amounts of organic matter in the East African Rift follow the Calvin (C3) photosynthetic pathway. Their end products have δ13C values of ca. -27 ± 2‰ (vs. PDB). On the contrary, most Cyperaceae (notably Cyperus papyrus and C. latifolius) are characterized by higher 13C contents ° 13C = -10.5 ± 1‰ ) in relation to their Hatch and Slack (C4) photosynthetic cycle. In consequence, δ13C values in total organic matter (TOM) from peat bog or lake cores essentially responded to the proportion of detritus from C4-Cyperaceae. Immediate evidence of the development or disappearance of Cyperaceae around lake margins or in peat bogs can be found in pollen assemblages. Lag times between pollen signals and correlative ° 13C shifts in TOM from cores are therefore indicative of the residence time of organic matter prior to its sedimentation. Delayed sedimentation of TOM will result in 14C anomalies which depend on several parameters, most of them being site specific as shown by examples from a peat bog in Burundi and from southern Lake Tanganyika. An independent assessment of the chronology by high resolution paleomagnetic correlations indicates a ca. 1.5 ka apparent 14C age of TOM in Lake Tanganyika at the Pleistocene-Holocene transition.

  8. Ear Pieces

    ERIC Educational Resources Information Center

    DiJulio, Betsy

    2011-01-01

    In this article, the author describes an art project wherein students make fanciful connections between art and medicine. This project challenges students to interpret "ear idioms" (e.g. "blow it out your ear," "in one ear and out the other") by relying almost entirely on realistic ear drawings, the placement of them, marks, and values. In that…

  9. Statistical Modeling of the Abundance of Vectors of West African Rift Valley Fever in Barkédji, Senegal

    PubMed Central

    Talla, Cheikh; Diallo, Diawo; Dia, Ibrahima; Ba, Yamar; Ndione, Jacques-André; Sall, Amadou Alpha; Morse, Andy; Diop, Aliou; Diallo, Mawlouth

    2014-01-01

    Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005–2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision-making to improve

  10. Statistical modeling of the abundance of vectors of West African Rift Valley fever in Barkédji, Senegal.

    PubMed

    Talla, Cheikh; Diallo, Diawo; Dia, Ibrahima; Ba, Yamar; Ndione, Jacques-André; Sall, Amadou Alpha; Morse, Andy; Diop, Aliou; Diallo, Mawlouth

    2014-01-01

    Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005-2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision-making to improve RVF

  11. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010–2011)

    PubMed Central

    Jori, Ferran; Alexander, Kathleen A.; Mokopasetso, Mokganedi; Munstermann, Suzanne; Moagabo, Keabetswe; Paweska, Janusz T.

    2015-01-01

    Rift Valley fever (RVF) is endemic in many countries in Sub-Saharan Africa and is responsible for severe outbreaks in livestock characterized by a sudden onset of abortions and high neonatal mortality. During the last decade, several outbreaks have occurred in Southern Africa, with a very limited number of cases reported in Botswana. To date, published information on the occurrence of RVF in wild and domestic animals from Botswana is very scarce and outdated, despite being critical to national and regional disease control. To address this gap, 863 cattle and 150 buffalo sampled at the interface between livestock areas and the Chobe National Park (CNP) and the Okavango Delta (OD) were screened for the presence of RVF virus (RVFV) neutralizing antibodies. Antibodies were detected in 5.7% (n = 863), 95% confidence intervals (CI) (4.3–7.5%) of cattle and 12.7% (n = 150), 95% CI (7.8–19.5%) of buffalo samples. The overall prevalence was significantly higher (p = 0.0016) for buffalo [12.7%] than for cattle [5.7%]. Equally, when comparing RVF seroprevalence in both wildlife areas for all pooled bovid species, it was significantly higher in CNP than in OD (9.5 vs. 4%, respectively; p = 0.0004). Our data provide the first evidence of wide circulation of RVFV in both buffalo and cattle populations in Northern Botswana and highlight the need for further epidemiological and ecological investigations on RVF at the wildlife–livestock–human interface in this region. PMID:26664990

  12. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010-2011).

    PubMed

    Jori, Ferran; Alexander, Kathleen A; Mokopasetso, Mokganedi; Munstermann, Suzanne; Moagabo, Keabetswe; Paweska, Janusz T

    2015-01-01

    Rift Valley fever (RVF) is endemic in many countries in Sub-Saharan Africa and is responsible for severe outbreaks in livestock characterized by a sudden onset of abortions and high neonatal mortality. During the last decade, several outbreaks have occurred in Southern Africa, with a very limited number of cases reported in Botswana. To date, published information on the occurrence of RVF in wild and domestic animals from Botswana is very scarce and outdated, despite being critical to national and regional disease control. To address this gap, 863 cattle and 150 buffalo sampled at the interface between livestock areas and the Chobe National Park (CNP) and the Okavango Delta (OD) were screened for the presence of RVF virus (RVFV) neutralizing antibodies. Antibodies were detected in 5.7% (n = 863), 95% confidence intervals (CI) (4.3-7.5%) of cattle and 12.7% (n = 150), 95% CI (7.8-19.5%) of buffalo samples. The overall prevalence was significantly higher (p = 0.0016) for buffalo [12.7%] than for cattle [5.7%]. Equally, when comparing RVF seroprevalence in both wildlife areas for all pooled bovid species, it was significantly higher in CNP than in OD (9.5 vs. 4%, respectively; p = 0.0004). Our data provide the first evidence of wide circulation of RVFV in both buffalo and cattle populations in Northern Botswana and highlight the need for further epidemiological and ecological investigations on RVF at the wildlife-livestock-human interface in this region. PMID:26664990

  13. Ear trauma.

    PubMed

    Eagles, Kylee; Fralich, Laura; Stevenson, J Herbert

    2013-04-01

    Understanding basic ear anatomy and function allows an examiner to quickly and accurately identify at-risk structures in patients with head and ear trauma. External ear trauma (ie, hematoma or laceration) should be promptly treated with appropriate injury-specific techniques. Tympanic membrane injuries have multiple mechanisms and can often be conservatively treated. Temporal bone fractures are a common cause of ear trauma and can be life threatening. Facial nerve injuries and hearing loss can occur in ear trauma.

  14. Post-rift uplift, paleorelief and sedimentary fluxes: the case example of the African margin of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.; Dauteuil, O.

    2012-04-01

    Several attempts have been made to identify different paleosurfaces since the classical works of Lester King (1942, 1949) at the scale of Africa. Thermochronologists and river geomorphologists criticized this approach. This criticism mainly concerned the age of the surfaces, that were (1) poorly constraints and (2) a king of catechism on which all studies must refer. Nevertheless, those planation surfaces exist and are key features of the present-day morphology of Africa. In details, real planation surfaces are (1) no more than two or three and (2) can be deformed and then merged together. Those surfaces are incised by large smooth valleys, called pediments or glacis (with some semantic differences between English and French-speaking geomorphologists). Those pediments formed a pre-network of rivers, later re-incised by the present-day incised narrow valleys. Those different morphological structures can be dated using (1) their merge with sedimentary basins, (2) their relationship with the different types of dated weathering periods and (3) their relationships with volcanism. They also can be used as a proxy of the deformation based on the differences of elevation of the planations surfaces or on the shape of the pediments. From the Orange River to the Cameroon Volcanic Line, including the Congo Cuvette, two planations surfaces were identified (the Bauxitic or African surface, the intermediate surface), at least two generations of pediment valleys and the present-day incised valley network. The African surface is of Late Paleocene to Middle Eocene age with a climax during this last period and two major periods of uplift can be identified and mapped (1) Late Eocene-Early Oligocene and (2) Lower Miocene. Most of the relief is fossil since that period, excepted in the Angola Mountains were deformations are active during Plio-Pleistocene times. Those uplifts of smoother, most of the time weathered, relief than today, had important consequences on the petrology and the

  15. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  16. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore

  17. Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African subduction

    NASA Astrophysics Data System (ADS)

    Bauernhofer, A. H.; Hauzenberger, C. A.; Wallbrecher, E.; Muhongo, S.; Hoinkes, G.; Mogessie, A.; Opiyo-Akech, N.; Tenczer, V.

    2009-12-01

    Amphibolites and orthogneisses from the Taita Hills-Galana River area (SE Kenya) indicate their broad geological-tectonic setting. There are groups of subduction-related rocks which show characteristic REE (rare earth element) patterns and enrichment or varying concentrations of HFS (high field strength) elements. The groups can be assigned to tectonostratigraphic domains marked by different structural styles (e.g., thrust- or strike slip dominated). Tholeiitic gneisses, often emerging as folded and isolated (ridge-shaped) leucocratic bodies, belong to a group of rocks located between the thrust- and strike-slip domain. Compared to calc-alkaline gneisses of the area they contain more mafic inclusions and have lower LIL (large ionic lithophile), HFS and light REE values. These gneisses have chemical characteristics of M-type granitoids of oceanic island arc signature. Intrusion ages of ~955-845 Ma determined for these rocks suggest early Pan-African subduction. Mafic to ultramafic rocks from the Pare mountains of NE Tanzania show evidence of ophiolitic cumulates, subduction settings were also observed for the granulite areas in central and southern Tanzania. Together with the widespread arc settings documented in the Arabian-Nubian Shield, the presented data supports the continuation of an island-continental arc range across Kenya-Tanzania to Mozambique.

  18. Hawaii Rifts

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  19. Your Ears

    MedlinePlus

    ... Protect your hearing by wearing earplugs at loud music concerts and around noisy machinery, like in wood ... For Parents MORE ON THIS TOPIC Can Loud Music Hurt My Ears? What Is an Ear Infection? ...

  20. Ear wax

    MedlinePlus

    The ear canal is lined with hair follicles and glands that produce a waxy oil called cerumen. The wax will most ... Wax can build up and block the ear canal. Wax blockage is one of the most common ...

  1. Rheological variations across an active rift system -- results from lithosphere-scale 3D gravity and thermal models of the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Meeßen, Christian; Sippel, Judith; Cacace, Mauro; Scheck-Wenderoth, Magdalena; Fishwick, Stewart; Heine, Christian; Strecker, Manfred R.

    2015-04-01

    Due to its tectono-volcanic activity and economic (geothermal and petroleum) potential, the eastern branch of the East African Rift System (EARS) is one of the best studied extensional systems worldwide and an important natural laboratory for the development of geodynamic concepts on rifting and nascent continental break-up. The Kenya Rift, an integral part of the eastern branch of the EARS, has formed in the area of weak Proterozoic crust of the Mozambique mobile belt adjacent to the rheologically stronger Archean Tanzania craton. To assess the variations in lithospheric strength between different tectonic domains and their influence on the tectonic evolution of the region, we developed a set of structural, density, thermal and rheological 3D models. For these models we integrated multi-disciplinary information, such as published geological field data, sediment thicknesses, well information, existing structural models, seismic refraction and reflection data, seismic tomography, gravity and heat-flow data. Our main approach focused on combined 3D isostatic and gravity modelling. The resulting lithosphere-scale 3D density model provides new insights into the depth distribution of the crust-mantle boundary and thickness variations of different crustal density domains. The latter further facilitate interpretations of variations of lithologies and related physical rock properties. By considering lithology-dependent heat production and thermal conductivity, we calculate the conductive thermal field across the region of the greater Kenya Rift. Finally, the assessed variations in lithology and temperature allow deriving differences in the integrated strength of the lithosphere across the different tectonic domains.

  2. Ear Infections

    MedlinePlus

    ... affects the middle ear and is called otitis media. The tubes inside the ears become clogged with fluid and mucus. This can affect hearing, because sound cannot get through all that fluid. If your child isn't old enough to say "My ear ...

  3. Super Ears.

    ERIC Educational Resources Information Center

    Thompson, Stan

    1995-01-01

    Presents an activity in which students design, construct, and test "super ears" to investigate sound and hearing. Students work in groups of three and explore how the outer ear funnels sound waves to the inner ear and how human hearing compares to that of other animals. (NB)

  4. Crustal Structure beneath the Rwenzori Region of the Albertine Rift using Ambient-Noise Tomography

    NASA Astrophysics Data System (ADS)

    Kaviani, A.; Paul, A.; Rumpker, G.

    2015-12-01

    In this study we investigate the crustal structure beneath the Rwenzori region by analyzing a 1-year ambient-noise data set recorded by a network of 33 broadband seismic stations that have operated between September 2009 and August 2011. The Rwenzori region, located between the Democratic Republic of Congo and Uganda, is part of the western (Albertine) branch of the East African Rift System (EARS). The region of study is situated between the Albert Rift and the Edward Rift segments and covers an area of approximately 120 km by 50 km. The main objective of the seismological experiment was to address the questions of the uplift of the Rwenzori Mountains in an extensional regime and the absence of a crustal root beneath the mountain range. Any model proposed to address these questions requires the knowledge of the structure of the Rwenzori horst and surrounding rift shoulders. Previous results from local travel-time tomography revealed the presence of low-velocity anomalies in the upper crust beneath the mountain range relative to higher velocities in the surrounding shoulders. However, since the stations used in the previous study only covered the northern part of the region, the resolution of the models proposed by the body-wave tomography was very low beneath the Rwenzori Mountains. Hence, the limits of the Rwenzori horst at depth relative to the rift shoulders are still poorly known. The main objective of our ambient-noise tomography (ANT) is to provide an explanation for the building of Rwenzori Mountains. Due to the small aperture of the seismological network, we are mainly interested in the shallow crustal structure including the boundaries between the central Rwenzori horst and the surrounding rift shoulders as well as the variations in the thickness of the sedimentary basins. We expect that the ANT images will be able to delineate the boundaries between the main tectonic features including the limits of the Rwenzori horst at depth.

  5. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  6. Three-Dimensional (3D) Structure of the Malawi Rift from Remote Sensing and Geophysics Data

    NASA Astrophysics Data System (ADS)

    Salmi, Haifa S. Al; Abdelsalam, Mohamed G.

    2014-05-01

    The Malawi rift is a Cenozoic aged rift representing the southernmost segment of the Western Branch of the East African Rift System (EARS). This rift extends over 900 km from the Rungwe volcanic province (Tanzania) in the north to the Urema graben (Mozambique) to the south, with an average width of 50km. It traverses a complex array of Proterozoic orogenic belts of different ages and Permo-Triassic (Karoo) and cretaceous graben systems. The rift's depth is between 3 to 5km partitioned between the topographic escarpment and the sediments fill. The basin's subsidence reflects accumulation of sediments and rift flank uplift. Regardless of its importance in understanding rift tectonics, especially in Africa, the three-dimensional (3D) geometry of the rift is not fully understood. This research presents results from detailed analysis of Digital Elevation Model (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data to map surface morphological expressions of the entire basin. These results are compared with available seismic data to provide along-strike and at depth variation of the geometry of the border fault systems, nature of rift segmentation and alternation of the polarity of half-grabens, and the partitioning of displacement between exposed and sub-surface border faults. Our results show the following: (1) Surface expression of border faults show that, unlike the typical half-graben en-echelon rift model, where half-graben segments with opposite polarity are linked together through accommodation zones indicative of soft linkage, the Malawi rift shows along-strike segmentation by changing geometry from half-graben to full graben geometry. A half-graben with specific polarity passes through a full-graben geometry before giving place to a half-graben with the opposite polarity. The length of half-gaben and graben segments becomes shorter as the rift progresses from north to south, and this is accompanied by a decrease in displacement within border

  7. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  8. Hydrological constraints of paleo-Lake Suguta in the Northern Kenya Rift during the African Humid Period (15-5 ka BP)

    NASA Astrophysics Data System (ADS)

    Junginger, Annett; Trauth, Martin H.

    2013-12-01

    During the African Humid Period (AHP, 15-5 ka BP) an almost 300 m deep paleo-lake covering 2200 km2 developed in the Suguta Valley, in the Northern Kenya Rift. Data from lacustrine sediments and paleo-shorelines indicate that a large paleo-lake already existed by 13.9 ka BP, and record rapid water level fluctuations of up to 100 m within periods of 100 years or less, and a final lowstand at the end of the AHP (5 ka BP). We used a hydro-balance model to assess the abruptness of these water level fluctuations and identify their causes. We observed that fluctuations within the AHP were caused by abrupt changes in precipitation of 26-40%. Despite the absence of continuous lacustrine data documenting the onset of the AHP in the Suguta Valley, we conclude from the hydro-balance model that only an abrupt onset to the AHP, prior to 14.8 ka BP, could have led to high water levels recorded. The modeling results suggest that the sudden increase in rainfall was the direct consequence of an eastward migration of the Congo Air Boundary (CAB), caused by an enhanced atmospheric pressure gradient between East Africa and southern Asia during a northern hemisphere (NH) summer insolation maximum. In contrast, the end of the AHP must have been gradual despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the study area. This abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during September-October. This change would have meant that the only rain source was the Intertropical Convergence Zone (ITCZ), which would have carried a greater amount of moisture during the short rainy season thus slowing the fall in water level over a period of about 1000 years in association with the reduction in insolation. The results of this study provide an indication of the amount of time available for humans in north-eastern Africa to adapt

  9. Geomorphometric reconstruction of post-eruptive surfaces of the Virunga Volcanic Province (East African Rift), constraint of erosion ratio and relative chronology

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu

    2016-04-01

    Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes

  10. Seismological investigation of the Okavango Rift, Botswana

    NASA Astrophysics Data System (ADS)

    Yu, Youqiang

    The mechanisms of rifting have been intensively investigated using geological and geophysical techniques beneath mature rift zones. However, current understanding on the earliest stages of rifting is seriously limited. Here we employ recently archived data from 17 broadband seismic stations traversing northern Botswana to conduct the first shear wave splitting and mantle transition zone (MTZ) studies within the Okavango Rift Zone (ORZ). The ORZ is an incipient continental rift situated at the terminal of the southwestern branch of the East African Rift System. The resulting normal MTZ thickness and consistently rift-parallel fast polarizations imply an absence of significant thermal anomalies in the upper mantle, ruling out the role of mantle plumes in the initiation of the ORZ. The observed anisotropy beneath the ORZ and adjacent areas is mainly attributed to the relative movement between the lithosphere and asthenosphere with regional contributions from fabrics in the lithosphere and flow deflection by the bottom of the lithosphere. Our observations imply that the initiation and development of the ORZ can be initiated following a passive mode from the consequences of relative movements between the South African block and the rest of the African plate along a zone of lithospheric weakness between the Congo and Kalahari cratons. In addition, an approach was developed to effectively remove the near surface reverberations in the resulting receiver functions, decipher the P-to-S converted phases associated with the Moho discontinuity, and thus resolve sub-sediment crustal structure beneath stations sitting on a low-velocity sedimentary layer.

  11. Distribution of fault activity in the early stages of continental breakup: an analysis of faults and volcanic products of the Natron Basin, East African Rift, Tanzania

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2012-12-01

    Recent magmatic-tectonic crises in Ethiopia (e.g. 2005 Dabbahu rifting episode, Afar) have informed our understanding of the spatial and temporal distribution of strain in magmatic rifts transitioning to sea-floor spreading. However, the evolving contributions of magmatic and tectonic processes during the initial stages of rifting, is a subject of ongoing debate. The <5 Ma northern Tanzania and southern Kenya sectors of the East Africa Rift provide ideal locations to address this problem. We present preliminary findings from an investigation of fault structures utilizing aerial photography and satellite imagery of the ~35 km wide Natron rift-basin in northern Tanzania. Broad-scale structural mapping will be supplemented by field observations and 40Ar-39Ar dating of lava flows cut by faults to address three major aspects of magma-assisted rifting: (1) the relative timing of activity between the border fault and smaller faults distributed across the width of the rift; (2) time-averaged slip rates along rift-zone faults; and (3) the spatial distribution of faults and volcanic products, and their relative contributions to strain accommodation. Preliminary field observations suggest that the ~500 m high border fault system along the western edge of the Natron basin is either inactive or has experienced a reduced slip rate and higher recurrence interval between surface-breaking events, as evidence by a lack of recent surface-rupture along the main fault escarpments. An exception is an isolated, ~2 km-long segment of the Natron border fault, which is located in close proximity (< 5km) to the active Oldoinyo Lengai volcano. Here, ~10 m of seemingly recent throw is observed in volcaniclastic deposits. The proximity of the fault segment to Oldoinyo Lengai volcano and the localized distribution of fault-slip are consistent with magma-assisted faulting. Faults observed within the Natron basin and on the flanks of Gelai volcano, located on the eastern side of the rift, have

  12. Implications of new gravity data for Baikal Rift zone structure

    NASA Technical Reports Server (NTRS)

    Ruppel, C.; Kogan, M. G.; Mcnutt, M. K.

    1993-01-01

    Newly available, 2D Bouguer gravity anomaly data from the Baikal Rift zone, Siberia, indicate that this discrete, intracontinental rift system is regionally compensated by an elastic plate about 50 km thick. However, spectral and spatial domain analyses and isostatic anomaly calculations show that simple elastic plate theory does not offer an adequate explanation for compensation in the rift zone, probably because of significant lateral variations in plate strength and the presence of subsurface loads. Our results and other geophysical observations support the interpretation that the Baikal Rift zone is colder than either the East African or Rio Grande rift.

  13. Mid-Continent rift system: a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1984-04-01

    The Mid-Continent rift system can be traced by the Mid-Continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

  14. Mid-continent rift system: a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1984-04-01

    The Mid-continent rift system can be traced by the Mid-continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

  15. Sr-Nd-Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift: Implications for magma mixing and source heterogeneity

    NASA Astrophysics Data System (ADS)

    Muravyeva, N. S.; Belyatsky, B. V.; Senin, V. G.; Ivanov, A. V.

    2014-12-01

    Nd, Pb and Sr isotope ratios have been determined for kamafugite lava and clinopyroxene phenocrysts from Bunyaruguru (Toro-Ankole) and Virunga volcanic fields of the East African Rift. The whole rock Sr-Nd isotopic signatures of kamafugites (87Sr/86Sr: 0.70463-0.70536; 143Nd/144Nd: 0.51249-0.51255) suggest derivation from an EM1-type mantle source. In contrast, Pb isotopic compositions of the same samples (206Pb/204Pb: 19.00-19.57; 207Pb/204Pb: 15.69-15.74; 208Pb/204Pb: 39.30-40.26) reveal a similarity to EM2-type mantle. New Nd, Pb and Sr isotopic data for clinopyroxene (87Sr/86Sr: 0.70473-0.70503; 143Nd/144Nd: 0.51250-0.51254; 206Pb/204Pb: 18.04-18.17; 207Pb/204Pb: 15.58-15.60; 208Pb/204Pb: 38.09-38.23) suggest derivation from an EM1-like source, and indicate Sr and Pb isotope disequilibrium between clinopyroxene and corresponding host rock. Moreover, clinopyroxenes exhibiting a greater degree of isotopic disequilibrium with their host rock are more sodic in composition. The isotopic disequilibrium is corroborated by the presence of chemical zoning within clinopyroxene, which suggests rapid magma ascent rates preventing melt homogenization. The Pb isotopic ratios for both mineral and corresponding whole rock, together with published data on East African rift-related alkaline centers, define a trend interpreted to represent a mixing line for melts derived from sources such as EM1 and as HIMU. The similar isotopic compositions for clinopyroxene from the different volcanic rocks within the East African Rift suggest the existence of a common, older mantle source for their parental melts. The origin of these melts can be attributed to an enrichment event ~ 400-500 Ma, i.e., significantly prior the younger ultrapotassic magmatism. Our preferred interpretation for the results reported here involves the mixing of melts derived from EM1- and HIMU-like sources, which were rapidly transported to the Earth's surface. The primary magmas formed as the result of melting of a

  16. Prominent ears: Anthropometric study of the external ear of primary school children of Harare, Zimbabwe

    PubMed Central

    Muteweye, Wilfred; Muguti, Godfrey I.

    2015-01-01

    Background Prominent ear is the most common congenital ear deformity affecting 5% of children in the Western world and has profound psychosocial effects on the bearer. It is important to know the prevalence in the local population to have a better appreciation of the local burden of the abnormality as well as to know the parameters of ear morphology locally. These parameters can be useful in the diagnosis and evaluation of ear anomalies and may help reconstructive surgeons in reproducing an anatomically correct ear of an African/Zimbabwean child. Objectives To evaluate the frequency of prominent ears in black school going children in Zimbabwe and to establish morphometric properties of the ear. Design Prospective observational, cross sectional study. Setting Three Primary schools in Harare. Two in a high density area and one in a low density area. Materials and methods Three Primary schools in Harare were selected at random. The following measurements were taken: ear lengths, ear projection and face height using a sliding caliper. Three hundred and five healthy pupils of the age range 9–13 years of both sexes were included in the study, whilst children with congenital anomalies, ear tumours and history of ear trauma were excluded. Results The mean ear height across the cohort was 56.95 ± 5.00 (right ear) and 56.86 ± 4.92 (left ear). Ear projection was 19.52 ± 2.14 (right ear) and 19.59 ± 2.09 (left ear). Gender related differences were noted. Mean ear height was significantly higher in males (p-value = 0.000). Ear projection was higher in males compared to females. A total of 6.89% had prominent ears. Among males, 7.69% had prominent ears whilst 6.17% of females had prominent ears. Conclusion The prevalence of prominent ear among black African children in the studied population is comparable to that of Caucasians. The study provides a set of biometric data of auricular dimensions for normal black African children aged 9–13 years. PMID:26468372

  17. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the "west" relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  18. Ear emergencies

    MedlinePlus

    ... and ruptured eardrums can be caused by: Inserting cotton swabs, toothpicks, pins, pens, or other objects into ... The person will have severe pain. Place sterile cotton gently in the outer ear canal to keep ...

  19. Elephant ear

    MedlinePlus

    The harmful substances in elephant ear plants are: Oxalic acid Asparagine, a protein found in this plant Note: ... days to a week if treated correctly. Rarely, oxalic acid may cause swelling severe enough to block the ...

  20. The Timing of Early Magmatism and Extension in the Southern East African Rift: Tracking Geochemical Source Variability with 40Ar/39Ar Geochronology at the Rungwe Volcanic Province, SW Tanzania

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Class, C.; Maqway, M. D.; Boniface, N.; Manya, S.; Hemming, S. R.

    2014-12-01

    The Rungwe Volcanic Province is the southernmost expression of volcanism in the East African Rift System. Rungwe magmatism is focused in a transfer zone between two weakly extended rift segments, unlike more developed rifts where magmatism occurs along segment axes (e.g. mid-ocean ridges). Rungwe was selected as the site of the multinational SEGMeNT project, an integrated geophysical, geochronological and geochemical study to determine the role of magmatism during early stage continental rifting. Argon geochronology is underway for an extensive collection of Rungwe volcanic rocks to date the eruptive sequence with emphasis on the oldest events. The age and location of the earliest events remains contested, but is critical to evaluating the relationship between magmatism and extension. Dated samples are further analyzed to model the geochemistry and isotopic signature of each melt's source and define it as lithospheric, asthenospheric, or plume. Given the goals, the geochronology focuses on mafic lavas most likely to preserve the geochemical signature of the mantle source. Groundmass was prepared and analyzed at the LDEO AGES lab. Twelve preliminary dates yield ages from 8.5 to 5.7Ma, consistent with prior results, supporting an eruptive episode concurrent with tectonic activity on the Malawi and Rukwa border faults (Ebinger et al., JGR 1989; 1993). Three additional samples yield ages from 18.51 to 17.6 Ma, consistent with the 18.6 ±1.0 Ma age obtained by Rasskazov et al. (Russ. Geology & Geophys. 2003). This eruptive episode is spatially limited to phonolite domes in the Usangu Basin and a mafic lava flow on the uplifted Mbeya Block. These eruptions predate the current tectonic extensional structure, suggesting magmatism predates extension, or that the two are not highly interdependent. No Rungwe samples dated yet can be the source of the of 26Ma carbonatitic tuffs in the nearby Songwe River Basin sequence (Roberts et al., Nature Geoscience 2012). Isochron ages

  1. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  2. Faulting processes during early-stage rifting: seismicity analysis of the 2009-2010 Northern Malawi earthquake sequence

    NASA Astrophysics Data System (ADS)

    Gaherty, J. B.; Shillington, D. J.; Shuler, A. E.; Kapanje, W.; Chindandali, P.; Nooner, S. L.; Ebinger, C. J.; Nyblade, A.; Kalindekafe, L.; Pritchard, M. E.; Scholz, C. A.

    2010-12-01

    One of the most poorly understood aspects of the rifting process is early-stage rift initiation. Core questions concern how deformation nucleates and evolves throughout the lithosphere, both along strike and through time, and how magma participates in extension. In December 2009, a rare sequence of earthquakes initiated within the nascent, southern portion of the East African Rift (EAR) system in northern Malawi’s Karonga district; eleven earthquakes with Mw > 4.5 occurred over a 12-day period. The largest events range from Mw 5.8-6.0, and appear to occur on one or more shallow normal faults located in the hanging wall well above the primary rift border fault. They thus differ from nearly all other moderate-size earthquakes within the Western Rift of the EAR, which appear to be on major border faults, and they imply a critical role for hanging-wall faults in accommodating early-stage rifting. Using teleseismic and regional recordings of the largest events, and recordings of aftershocks from a temporary (4-month) local network comprising six stations, we evaluate the nature of faulting during early-stage rifting. The zeroth-order (automated) detection and location of over ~1000 aftershocks recorded on our temporary network between Jan-May 2010 is consistent with faulting in the hanging wall, with the bulk of the seismicity suggesting a west-dipping normal fault shallower than about 10 km. Surface breaks in the Karonga region have vertical offsets up to ~0.65 m, and are continuous along strike for up to 17 km. However, there is a broad distribution of epicenters extending both north and south of Karonga, as well as events significantly deeper than 10 km. The spatial distribution of events is strongly suggestive of multiple faults interacting to produce the observed deformation. More speculatively, the presence of events at depths > 25 km, and the abundant distribution of events up into the Rungwe volcanic province in southern Tanzania hint at either a potential

  3. Rigidity of Nubia and Kinematics of the Ear from Combined GPS and DORIS Solutions: Implication to Afref

    NASA Astrophysics Data System (ADS)

    Saria, E. E.; Calais, E.; Altamimi, Z.; Willis, P.; Stamps, D. S.; Fernandes, R. M.; Farah, H.

    2012-12-01

    The African continent, in spite of its large extent and its on-land plate boundaries in northern and eastern Africa, still misses a continent-wide and well-defined reference frame for both surveying and geophysical applications. As a result, our understanding of the kinematics of its major plate boundaries remains limited. Here we analyzed 16 years of GPS and 17 years of DORIS data at continuously operating geodetic sites distributed in Africa to describe the present-day kinematics of the Nubian plate and constrain relative motions across the East African Rift (EAR). The resulting velocity field describes horizontal and vertical motions at more than 120 GPS and 9 DORIS sites. Velocities at sites located on stable Nubia fit a single rigid plate motion model with a weighted root mean squares residual of 0.6 mm/yr. We find no detectable residual motion within Nubia at a 95% confidence level, including in the seismically active southern Africa and Cameroon volcanic line. We confirm significant motion (~1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We updated the present-day kinematics of the Somalian plate and propose, for the first time, a plate motion model for the East African Rift (Victoria and Rovuma microplates) that is based on space geodetic data alone. Vertical velocities range from -2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in ITRF2008, a contribution to the upcoming African Reference Frame (AFREF).

  4. [Rift Valley fever].

    PubMed

    Pépin, M

    2011-06-01

    Rift Valley Fever (RVF) is a zoonotic arbovirosis. Among animals, it mainly affects ruminants, causing abortions in gravid females and mortality among young animals. In humans, RVF virus infection is usually asymptomatic or characterized by a moderate fever. However, in 1 to 3% of cases, more severe forms of the disease (hepatitis, encephalitis, retinitis, hemorrhagic fever) can lead to the death of infected individuals or to major sequels. The RVF virus (Bunyaviridae, genus Phlebovirus) was identified for the first time in the 1930s in Kenya. It then spread over almost all African countries, sometimes causing major epizootics/epidemics. In 2000, the virus was carried out of Africa, in the Middle East Arabian Peninsula. In 2007-2008, Eastern-African countries, including Madagascar, reported significant episodes of RVF virus, this was also the case for the Comoros archipelago and the French island of Mayotte. This ability to spread associated with many vectors, including in Europe, and high viral loads in infected animals led the health authorities worldwide to warn about the potential emergence of RVF virus in areas with a temperate climate. The awareness has increased in recent years with climate changes, which may possibly modify the vector distribution and competence, and prompted many RVF virus-free countries to better prepare for a potential implantation of RVF.

  5. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi).

    PubMed

    Lüdecke, Tina; Schrenk, Friedemann; Thiemeyer, Heinrich; Kullmer, Ottmar; Bromage, Timothy G; Sandrock, Oliver; Fiebig, Jens; Mulch, Andreas

    2016-01-01

    The development of East African savannas is crucial for the origin and evolution of early hominins. These ecosystems, however, vary widely in their fraction of woody cover and today range from closed woodland to open grassland savanna. Here, we present the first Plio-Pleistocene long-term carbon isotope (δ(13)C) record from pedogenic carbonate and Suidae teeth in the southern East African Rift (EAR). These δ(13)C data from the Chiwondo and Chitimwe Beds (Karonga Basin, Northern Malawi) represent a southern hemisphere record in the EAR, a key region for reconstructing vegetation patterns in today's Zambezian Savanna, and permit correlation with data on the evolution and migration of early hominins in today's Somali-Masai Endemic Zone. The sediments along the northwestern shore of Lake Malawi contain fossils attributed to Homo rudolfensis and Paranthropus boisei. The associated hominin localities (Uraha, Malema) are situated between the well-known hominin bearing sites of the Somali-Masai Endemic Zone in the Eastern Rift and the Highveld Grassland in southern Africa, and fill an important geographical gap for hominin research. Persistent δ(13)C values around -9‰ from pedogenic carbonate and suid enamel covering the last ∼4.3 Ma indicate a C3-dominated closed environment with regional patches of C4-grasslands in the Karonga Basin. The overall fraction of woody cover of 60-70% reflects significantly higher canopy density in the Malawi Rift than the Eastern Rift through time. The discrepancy between the two savanna types originated in the Late Pliocene, when the Somali-Masai ecosystem started to show increasing evidence for open, C4-dominated landscapes. Based on the Malawi δ(13)C data, the evolution of savanna ecosystems in Eastern Africa followed different patterns along the north-south extent of the EAR. The appearance of C4-grasses is considered a driver of evolutionary faunal shifts, but despite the difference of ecosystem evolution in the north, similar

  6. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi).

    PubMed

    Lüdecke, Tina; Schrenk, Friedemann; Thiemeyer, Heinrich; Kullmer, Ottmar; Bromage, Timothy G; Sandrock, Oliver; Fiebig, Jens; Mulch, Andreas

    2016-01-01

    The development of East African savannas is crucial for the origin and evolution of early hominins. These ecosystems, however, vary widely in their fraction of woody cover and today range from closed woodland to open grassland savanna. Here, we present the first Plio-Pleistocene long-term carbon isotope (δ(13)C) record from pedogenic carbonate and Suidae teeth in the southern East African Rift (EAR). These δ(13)C data from the Chiwondo and Chitimwe Beds (Karonga Basin, Northern Malawi) represent a southern hemisphere record in the EAR, a key region for reconstructing vegetation patterns in today's Zambezian Savanna, and permit correlation with data on the evolution and migration of early hominins in today's Somali-Masai Endemic Zone. The sediments along the northwestern shore of Lake Malawi contain fossils attributed to Homo rudolfensis and Paranthropus boisei. The associated hominin localities (Uraha, Malema) are situated between the well-known hominin bearing sites of the Somali-Masai Endemic Zone in the Eastern Rift and the Highveld Grassland in southern Africa, and fill an important geographical gap for hominin research. Persistent δ(13)C values around -9‰ from pedogenic carbonate and suid enamel covering the last ∼4.3 Ma indicate a C3-dominated closed environment with regional patches of C4-grasslands in the Karonga Basin. The overall fraction of woody cover of 60-70% reflects significantly higher canopy density in the Malawi Rift than the Eastern Rift through time. The discrepancy between the two savanna types originated in the Late Pliocene, when the Somali-Masai ecosystem started to show increasing evidence for open, C4-dominated landscapes. Based on the Malawi δ(13)C data, the evolution of savanna ecosystems in Eastern Africa followed different patterns along the north-south extent of the EAR. The appearance of C4-grasses is considered a driver of evolutionary faunal shifts, but despite the difference of ecosystem evolution in the north, similar

  7. Ear examination

    MedlinePlus

    The ear canal differs in size, shape, and color from person to person. Normally, the canal is skin-colored and has small hairs. Yellowish-brown earwax may be present. The eardrum is a light-gray color or a shiny pearly-white. Light should reflect off ...

  8. Cosmetic ear surgery

    MedlinePlus

    Otoplasty; Ear pinning; Ear surgery - cosmetic; Ear reshaping; Pinnaplasty ... Cosmetic ear surgery may be done in the surgeon's office, an outpatient clinic, or a hospital. It can be performed under ...

  9. Ear Plastic Surgery

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  10. Autoimmune Inner Ear Disease

    MedlinePlus

    ... Find an ENT Doctor Near You Autoimmune Inner Ear Disease Autoimmune Inner Ear Disease Patient Health Information ... with a hearing loss. How Does the Healthy Ear Work? The ear has three main parts: the ...

  11. Better Ear Health

    MedlinePlus

    ... Calendar Find an ENT Doctor Near You Better Ear Health Better Ear Health Patient Health Information News ... often helpful to those with this condition. Swimmer’s Ear An infection of the outer ear structures caused ...

  12. How the Ear Works

    MedlinePlus

    ... Find an ENT Doctor Near You How the Ear Works How the Ear Works Patient Health Information News media interested in ... public relations staff at newsroom@entnet.org . The ear has three main parts: the outer ear (including ...

  13. Tectonic Evolution of the Northern Malawi rift, East Africa: Structural Controls on Sediment Dispersal in a Large Lake Basin.

    NASA Astrophysics Data System (ADS)

    Mortimer, E.; Paton, D.; Scholz, C.; Strecker, M.

    2005-12-01

    The Malawi Rift is an integral part of the East African Rift system (EARs), the type example of a rift system in its youthful stages of development. Understanding the spatio-temporal evolution of this rift system provides insights into the past histories and controls on more ancient rift basins. Fundamental questions remain regarding the structural styles, partitioning, and sediment dispersal patterns within large lacustrine basins that are common to young rifts. Such basins are particularly useful recorders of climatic fluctuations. In areas with pronounced climatic variability and high evaporation/precipitation ratios this may lead to, often transient, basin isolation that may dramatically affect sediment and facies distribution. We investigate the structural evolution and sedimentation patterns of the North basin, Malawi Rift. We utilise two seismic reflection data sets: the first, collected by project PROBE, records the entire basin-fill (Sequences 1-3) at medium resolution; the second provides a closely-spaced high-resolution survey of the past ~1 Ma (Sequence 3). These data document the development of the basin-bounding and intra-basin faults. Throughout its history, the basin-bounding fault has accommodated the greatest strain and therefore exerted the fundamental control on the distribution of sediment within the rift. Present-day sediments enter the basin axially, although there is evidence that transverse supply was also important in the past. We identify 11 intra-basin structures that strike parallel or sub-parallel to this border fault. These intra-basin faults, active from the earliest stages, have initial segment lengths of ~30 km, but rapidly reach lengths in excess of 80 km in the north of the basin, and 60 km in the south. Much of the sedimentation along the faults occurred during Sequence 2 (~2.7-1.6 Ma), a period of relative over-filling of the basin. While the basin-bounding fault controls the overall sediment architecture, all 11 intra

  14. Causes of unrest at silicic calderas in the East African Rift: New constraints from InSAR and soil-gas chemistry at Aluto volcano, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin A.; Pyle, David M.; Lewi, Elias; Yirgu, Gezahegn; Caliro, Stefano; Chiodini, Giovanni; Clor, Laura E.; Fischer, Tobias P.

    2016-08-01

    Restless silicic calderas present major geological hazards, and yet many also host significant untapped geothermal resources. In East Africa, this poses a major challenge, although the calderas are largely unmonitored their geothermal resources could provide substantial economic benefits to the region. Understanding what causes unrest at these volcanoes is vital for weighing up the opportunities against the potential risks. Here we bring together new field and remote sensing observations to evaluate causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER). Interferometric Synthetic Aperture Radar (InSAR) data reveal the temporal and spatial characteristics of a ground deformation episode that took place between 2008 and 2010. Deformation time series reveal pulses of accelerating uplift that transition to gradual long-term subsidence, and analytical models support inflation source depths of ˜5 km. Gases escaping along the major fault zone of Aluto show high CO2 flux, and a clear magmatic carbon signature (CO2-δ13C of -4.2‰ to -4.5‰). This provides compelling evidence that the magmatic and hydrothermal reservoirs of the complex are physically connected. We suggest that a coupled magmatic-hydrothermal system can explain the uplift-subsidence signals. We hypothesize that magmatic fluid injection and/or intrusion in the cap of the magmatic reservoir drives edifice-wide inflation while subsequent deflation is related to magmatic degassing and depressurization of the hydrothermal system. These new constraints on the plumbing of Aluto yield important insights into the behavior of rift volcanic systems and will be crucial for interpreting future patterns of unrest.

  15. Influence of lower crustal rheology on onset and distribution of melting and serpentinisation during rifting: comparison with the Brazilian/African conjugate margins

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Araujo, M. N.; Romeiro, M. T.; Martinez, M. A.; Morgan, J. P.; Ros, E.

    2014-12-01

    The onset and distribution of melting and serpentinisation during rifting determine the continent-ocean transition width and composition and have been shown to depend on extension velocity. Conductive cooling during slow rifting favors serpentinisation and inhibits melting (Perez-Gussinye et al., 2006). Here we use numerical modeling to show that, additionally, lower crustal rheology, which also controls margin symmetry and width (Brune et al. 2014), strongly influences the onset and distribution of melting and serpentinisation. We find that strong lower crust rheologies effectively couple deformation in upper crust and mantle and lead to rapid crustal break-up through crust-cutting faults (see Brune et al., 2014), allowing serpentinisation to start relatively early and producing narrow, symmetric margins. Coupling of lithospheric layers leads to rapid asthenospheric uplift and the onset of melting at a relatively early stage during extension. For slow velocities, serpentinisation starts before melting, and the little magma produced probably ponds under the serpentinite layer exhumed after crustal break-up, generating a wide continent-ocean transition. For the same extension velocities, relatively weak lower crust shows a long initial phase of distributed faulting, with moderate lithospheric thinning, followed by a long phase of sequential, oceanward younging faults, producing wider, asymmetric margins. Serpentinisation is insignificant because lower crustal flow towards the tip of the active fault inhibits the formation of crust cutting faults. Asthenospheric upwelling is less pronounced, and the onset and amount of melting is delayed with respect to the stronger lower crust case. When crustal break-up occurs magma rises to form oceanic crust and hence a narrow continent-ocean transition. Along Brazil and Africa the margin's symmetry, width and continent-ocean transition type change as the onshore terranes in which they developed go from cratons to mobile belts

  16. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo

    2009-09-01

    The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres. The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north-northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated. The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE-SW) and the Late

  17. Rift initiation with volatiles and magma

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia; Muirhead, James; Roecker, Steve; Tiberi, Christel; Muzuka, Alfred; Ferdinand, Rrichard; Mulibo, Gabrile; Kianji, Gladys

    2015-04-01

    Rift initiation in cratonic lithosphere remains an outstanding problem in continental tectonics, but strain and magmatism patterns in youthful sectors of the East African rift provide new insights. Few teleseisms occur in the Eastern rift arm of the East African rift system, except the southernmost sector in northern Tanzania where extension occurs in Archaean lithosphere. The change in seismic energy release occurs over a narrow along-axis zone, and between sectors with and without volcanoes in the central rift valley. Are these differences in strain behavior indicative of along-strike variations in a) rheology; b) strain transfer from border faults to magma intrusion zones; c) dike vs fault slip; and/or d) shallow vs deep magma chambers? We present time-space relations of seismicity recorded on a 38-station array spanning the Kenya-Tanzania border, focal mechanisms for the largest events during those time periods, and compare these to longer-term strain patterns. Lower crustal seismicity occurs along the rift length, including sectors on and off craton, and those with and without central rift valley volcanoes, and we see no clear along-strike variation in seismogenic layer thickness. One explanation for widespread lower crustal seismicity is high gas pressures and volatile migration from active metasomatism of upper mantle and magma degassing, consistent with very high volatile flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Seismicity patterns indicate strain (and fluid?) transfer from the Manyara border fault to Gelai shield volcano (faulting, diking) via Oldoinyo Lengai volcano. Our focal mechanisms and Global CMTs from an intense fault-dike episode (2007) show a local, temporally stable, rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with longer term patterns recorded in vent and eruptive

  18. Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: implications for Nubia-Somalia kinematics

    NASA Astrophysics Data System (ADS)

    Erbello, Asfaw; Corti, Giacomo; Sani, Federico; Kidane, Tesfaye

    2016-04-01

    The Main Ethiopian Rift (MER), at the northern termination of the East African Rift, is an ideal locale where to get insights into the long-term motion between Nubia and Somalia. The rift is indeed one of the few places along the plate boundary where the deformation is narrow: its evolution is thus strictly related to the kinematics of the two major plates, whereas south of the Turkana depression a two-plate model for the EARS is too simplistic as extension occurs both along the Western and Eastern branches and different microplates are present between the two major plates. Despite its importance, the kinematics responsible for development and evolution of the MER is still a matter of debate: indeed, whereas the Quaternary-present kinematics of rifting is rather well constrained, the plate kinematics driving the initial, Mio-Pliocene stages of extension is still not clear, and different hypothesis have been put forward, including: polyphase rifting, with a change in direction of extension from NW-SE extension to E-W extension; constant Miocene-recent NW-SE extension; constant Miocene-recent NE-SW extension; constant, post-11 Ma extension consistent with the GPS-derived kinematics (i.e., roughly E-W to ESE-WNW). To shed additional light on this controversy and to test these different hypothesis, in this contribution we use new crustal-scale analogue models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The extension direction is indeed one of the most important parameters controlling the architecture of continental rifts and the relative abundance and orientation of different fault sets that develop during oblique rifting is typically a function of the angle between the extension direction and the orthogonal to the rift trend (i.e., the obliquity angle). Since the trend of the MER varies along strike, and consequently it is

  19. Mesozoic and early Tertiary rift tectonics in East Africa

    NASA Astrophysics Data System (ADS)

    Bosworth, William

    1992-08-01

    A complex history of crustal extension occurred in east and central Africa during the Mesozoic and early Tertiary. Beginning in the Late Jurassic, this resulted in a large system of rifts, the Central African rift system, that spanned from central Sudan to southern Kenya. Late Jurassic rifting is best documented in the White and Blue Nile rifts of the Sudan, and records east-west extension in half-graben that were connected by large-scale shear zones and pull-apart basins. Early Cretaceous rifting re-activated Jurassic basins and spread to the large South Sudan rifts and Anza rift in Kenya. By the Late Cretaceous, the extension direction shifted to the NE-SW, and the presently observed large-scale rift geometry was established. In the early Tertiary, some Mesozoic basins were again reactivated, while other regions underwent wrench faulting and basin inversion. The large number of basins preserved in the Central African rift system can be used to construct an evolutionary model of continental rift tectonics. Early phases of extension at low strains produced alternating half-graben/accommodation zone geometries similar to those observed in most young and active continental rifts. At higher strains, some border faults were abandoned so that through-going, simpler active fault systems could evolve. This is interpreted as representing a switch from complex, oppositely dipping detachment structures, with strike dimensions of 50-150 km, to regional detachment structures that continue for hundreds of kilometers parallel to the rift. This change in the type of detachment was accompanied by a shift in the position of the subsidence away from the breakaway to a position focused further within the regional upper plate. Non-rotational, high angle, normal faulting dominates in the development of these late basin geometries. Deciphering similar rift basin histories from passive continental margins may, in many cases, exceed the limits of available reflection seismic data. East

  20. Benign ear cyst or tumor

    MedlinePlus

    Osteomas; Exostoses; Tumor - ear; Cysts - ear; Ear cysts; Ear tumors; Bony tumor of the ear canal ... bony tumors of the ear canal (exostoses and osteomas) are caused by excess growth of bone. Repeated ...

  1. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect

    Keller, G.R.

    1996-12-31

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  2. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect

    Keller, G.R. )

    1996-01-01

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  3. The Role of Rift Obliquity During Pangea Fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  4. Structure and stratigraphy of the Rukwa rift

    NASA Astrophysics Data System (ADS)

    Kilembe, Elias A.; Rosendahl, Bruce R.

    1992-08-01

    Combining recently acquired multifold seismic data with well and gravity information and field mapping, a comprehensive picture of the structure and stratigraphy of the Rukwa rift has emerged. The Rukwa rift lies between the Tanganyika and Nyasa (Malawi) rifts in the western branch of the East African rift system in southwest Tanzania. The Rukwa rift is a NW-trending half-graben basin that is 350 km long and 40 km wide. Unlike the neighboring Tanganyika and Nyasa rifts, there is no evidence of half-graben polarity reversals in the Rukwa rift. The NW-trending boundary fault system lies on the northeastern side of the basin and comprises a series of listric faults. Most internal faults also show listric forms and trend N-S, oblique to the boundary fault. The basal sedimentary section is the Permo-Triassic (Karroo) Sequence. This is overlain by the Red Bed Sandstone Sequence, in which both Mesozoic and Tertiary fauna have been found. The Cenozoic Lake Bed Sequence is the highest unit and covers nearly all of the present basin. Sediment thicknesses commonly reach 7 km and attain a maximum of 12 km at the southeastern end of the basin. The Lake Bed Sequence is the thickest unit in the main depocentre, but the Karroo Sequence is often the thickest unit on the shoaling side of the half-graben. The Rukwa rift is here interpreted to have evolved as a strike- to oblique-slip pull-apart basin, based on numerous indications of NW-trending strike-slip faulting.

  5. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    PubMed

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  6. Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses

    PubMed Central

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration. PMID:24146922

  7. Listening to Nature's orchestra with peculiar ears

    NASA Astrophysics Data System (ADS)

    Yager, David D.

    2003-04-01

    Insects use hearing for the crucial tasks of communicating with conspecifics and avoiding predators. Although all are based on the same acoustic principles, the diversity of insect ears is staggering and instructive. For instance, a South African grasshopper demonstrates that hearing conspecific calls is possible over distances 1 km with ears that do not have tympana. Actually, these creatures have six pairs of ears that play different roles in behavior. In numerical contrast, praying mantises have just a single ear in the ventral midline. The ear is very effective at detecting ultrasonic bat cries. However, the bioacoustics of sound transduction by two tympana facing each other in a deep, narrow slit is a puzzle. Tachinid flies demonstrate that directional hearing at 5 kHz is possible with a pair of ears fused together to give a total size of 1 mm. The ears are under the fly's chin. Hawk moths have their ears built into their mouthparts and the tympanum is more like a hollow ball than the usual membrane. As an apt last example, cicada ears are actually part of the orchestra: their tympana function both in sound reception and sound production.

  8. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    The past 5 Ma were marked by systematic shifts towards colder climates and concomitant reorganizations in ocean circulation and marine heat transports. Some of the changes involved plate-tectonic shifts such as the closure of the Panamanian Isthmus and restructuring of the Indonesian archipelago that affected inter-ocean communications and altered the world ocean circulation. These changes induced ocean-atmosphere feedbacks with consequences for climates globally and locally. Two new ICDP and IODP drilling initiatives target these developments from the perspectives of marine and terrestrial palaeoclimatology and the human evolution. The ICDP drilling initiative HSPDP ("Hominid Sites and Paleolakes Drilling Project"; ICDP ref. no. 10/07) targets lacustrine depocentres in Ethiopia (Hadar) and Kenya (West Turkana, Olorgesailie, Magadi) to retrieve sedimentary sequences close to the places and times where various species of hominins lived over currently available outcrop records. The records will provide a spatially resolved record of the East African environmental history in conjunction with climate variability at orbital (Milankovitch) and sub-orbital (ENSO decadal) time scales. HSPDP specifically aims at (1) compiling master chronologies for outcrops around each of the depocentres; (2) assessing which aspects of the paleoenvironmental records are a function of local origin (hydrology, hydrogeology) and which are linked with regional or larger-scale signals; (3) correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability and (4) correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change. Ultimately the aim is to test hypotheses that link physical and cultural adaptations in the course of the hominin evolution to local environmental change and variability. The IODP initiative SAFARI ("Southern African Climates, Agulhas Warm Water Transports and Retroflection

  9. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data

    USGS Publications Warehouse

    Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, Kim D.

    1992-01-01

    Recent multichannel seismic reflection data from Lake Baikal, located in a large, active, continental rift in central Asia, image three major stratigraphic units totalling 3.5 to 7.5 km thick in four subbasins. A major change in rift deposition and faulting between the oldest and middle-rift units probably corresponds to the change from slow to fast rifting. A brief comparison of the basins of Lake Baikal with those of the East African rift system highlights differences in structural style that can be explained by differences in age and evolution of the surrounding basement rocks. -from Authors

  10. Evolution of the Lake Victoria basin in the context of coeval rift initiation in East Africa: a 3D numerical model approach

    NASA Astrophysics Data System (ADS)

    Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.

    2015-04-01

    Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic

  11. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower

  12. Ear tube insertion

    MedlinePlus

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  13. Ears and Altitude

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ears and Altitude Ears and Altitude Patient Health Information ... uncomfortable feeling of fullness or pressure. Why do ears pop? Normally, swallowing causes a little click or ...

  14. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Update Date 8/ ...

  15. Travel Inside the Ear

    MedlinePlus

    ... Menu Home Health Info Hearing, Ear Infections, and Deafness Balance Taste and Smell Voice, Speech, and Language ... here Home » Health Info » Hearing, Ear Infections, and Deafness Travel Inside the Ear Video When sound waves ...

  16. A model for the three-dimensional evolution of continental rift basins, north-east Africa

    NASA Astrophysics Data System (ADS)

    Bosworth, William

    1994-12-01

    Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system. This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.

  17. Evolution of a magma-driven earthquake swarm and triggering of the nearby Oldoinyo Lengai eruption, as resolved by InSAR, ground observations and elastic modeling, East African Rift, 2007

    NASA Astrophysics Data System (ADS)

    Baer, G.; Hamiel, Y.; Shamir, G.; Nof, R.

    2008-07-01

    An earthquake swarm struck the North Tanzania Divergence, East African Rift over a 2 month period between July and September 2007. It produced approximately 70 M > 4 earthquakes (peak magnitude Mw 5.9), and extensive surface deformation, concurrent with eruptions at the nearby Oldoinyo Lengai volcano. The spatial and temporal evolution of the entire deformation event was resolved by Interferometric Synthetic Aperture Radar (InSAR) observations, owing to a particularly favorable acquisition programming of the Envisat and ALOS satellites, and was verified by detailed ground observations. Elastic modeling based on the InSAR measurements clearly distinguishes between normal faulting, which dominated during the first week of the event, and intermittent episodes of dike propagation, oblique dike opening and dike-induced faulting during the following month. A gradual decline in the intensity of deformation occurred over the final weeks. Our observations and modeling suggest that the sequence of events was initiated by pressurization of a deep-seated magma chamber below Oldoinyo Lengai which opened the way to lateral dike injection, and dike-induced faulting and seismicity. As dike intrusion terminated, silicate magma ascended the volcano conduit, reacted with the carbonatitic magma, and set off a major episode of explosive ash eruptions producing mixed silicate-carbonatitic ejecta. The rise of the silicate magma within the volcano conduit is attributed to bubble growth and buoyancy increase in the magma chamber either due to a temporary pressure drop after the termination of the diking event, or due to the dynamic effects of seismic wave passage from the earthquake swarm. Similar temporal associations between earthquake swarms and major explosive ash eruptions were observed at Oldoinyo Lengai over the past half century.

  18. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hudgins, T. R.; Mukasa, S. B.; Simon, A. C.; Moore, G.; Barifaijo, E.

    2015-05-01

    We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the western branch of the East African Rift System and use these data to investigate the generation of H2O- and CO2-rich melts at up to ~150 km depth. Measured H2O and CO2 concentrations reach ~2.5 and ~1 wt%, respectively, representing some of the highest CO2 concentrations measured in a melt inclusion to date. These measurements represent direct evidence of the high CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has been previously inferred to be necessary for the low mantle potential temperatures in the area. Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 5-12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by molecular dynamics calculations and high-pressure experiments for melt generation at 3-6 GPa; the depth of melting suggested by previous studies in the area. These melt inclusions measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep upper mantle that have been proposed based on experimental and seismic evidence. Primitive-mantle normalized trace element patterns more closely resemble those found in subduction settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be indicate that the measured volatile abundances may be related to Neoproterozoic subduction during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-related metasomatism.

  19. Uplift, rifting and related geomorphological evolution of the Ethiopian volcanic province: what do we really know ? (Invited)

    NASA Astrophysics Data System (ADS)

    Pik, R.; Ayalew, D.; Yirgu, G.

    2010-12-01

    The East African Rift System (EARS) is particularly famous because sediments trapped in some of the rift depressions have recorded a major piece of the late Cenozoic mammalian and hominin evolution, as well as associated proxies of climate and environmental changes. The present day landscape along the EARS is spectacular and characterized by axial rift valleys surrounded by variously extended volcanic highlands often culminating at altitude > 3000 m. The morphological development of this unique tectonic and magmatic environment has been increasingly debated these last years and attributed either to (1) the direct and indirect consequences of mantle plume impingement, or to (2) the tectonic and flexural consequences of extensional motion. More than a simple difference in the processes implicated in the genesis of the geomorpholigical characteristics, these two models are opposed by the timing of the topography creation: i.e. early - during the Oligo-Miocene - or late - concomitant with Mio-Pliocene transition and climatic evolution ? In the EARS, the Northern Ethiopian plateau and the associated Afar margin represent an ideal case study to investigate the interplay between uplift and rifting. This margin developed in the heart of the Afar mantle plume related volcanic province and is presently separating the Afar depression from the Ethiopian Highlands with an impressive altitudinal gradient (more than 3000 m in less than 50 km). We review published and present new structural and quantitative data in order to constrain the morpho-tectonic evolution of this system. Based on the following observations we argue that this topographical passive margin started to develop during Miocene times from the top of an already uplifted dome : (1) uplift of the main plateau is broadly distributed with a convex shape, and its maximum does not correspond to the margins location, (2) this "off-rift" maximum is to the contrary located on top of a mantle anomaly revealed by tomography

  20. Rayleigh-wave imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary results from the SEGMeNT experiment

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Shillington, D. J.; Nyblade, A.; Ebinger, C. J.; Mbogoni, G. J.; Chindandali, P. R. N.; Mulibo, G. D.; Ferdinand-Wambura, R.; Kamihanda, G.

    2015-12-01

    The Malawi Rift (MR) is an immature rift located at the southern tip of the Western branch of the East African Rift System (EARS). Pronounced border faults and tectonic segmentation are seen within the upper crust. Surface volcanism in the region is limited to the Rungwe volcanic province located north of Lake Malawi (Nyasa). However, the distribution of extension and magma at depth in the crust and mantle lithosphere is unknown. As the Western Rift of the EARS is largely magma-poor except for discrete volcanic provinces, the MR presents the ideal location to elucidate the role of magmatism in early-stage rifting and the manifestation of segmentation at depth. This study investigates the shear velocity of the crust and mantle lithosphere beneath the MR to constrain the thermal structure, the amount of total crustal and lithospheric thinning, and the presence and distribution of magmatism beneath the rift. Utilizing 55 stations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) passive-source seismic experiment operating in Malawi and Tanzania, we employed a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information from Rayleigh wave observations between 20 and 80 s period. We retrieve estimates of phase velocity between 9-20 s period from ambient noise cross-correlograms in the frequency domain via Aki's formula. We invert phase velocity measurements to obtain estimates of shear velocity (Vs) between 50-200 km depth. Preliminary results reveal a striking low-velocity zone (LVZ) beneath the Rungwe volcanic province with Vs ~4.2-4.3 km/s in the uppermost mantle. Low velocities extend along the entire strike of Lake Malawi and to the west where a faster velocity lid (~4.5 km/s) is imaged. These preliminary results will be extended by incorporating broadband data from seven "lake"-bottom seismometers (LBS) to be retrieved from Lake Malawi in October of this year. The crust and mantle modeling will be

  1. Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley.

    PubMed

    Duckworth, A W; Grant, W D; Jones, B E; Meijer, D; Márquez, M C; Ventosa, A

    2000-02-01

    A number of novel alkaliphilic organotrophic bacteria have been isolated from several saline and alkaline East African soda lakes. The new isolates grow at pH values between 7.0 and 11.0, with pH optima for growth between 9.0 and 10.0. Growth occurs at total salts concentration between 0% and 20% (w/v) with optimum at 0%-7% (w/v). Phylogenetic analyses based on 16S rDNA sequence comparison indicate that these isolates are related (>96% similarity) to members of the Halomonadaceae within the gamma-3 subdivision of the Proteobacteria. These analyses indicate that existing species within the Halomonadaceae fell within three main groups, one group comprising the type species of Halomonas, Halomonas elongata, and a number of other known species including one soda lake isolate. A second group constituting most of the remaining known species of Halomonas and related Chromohalobacter spp. includes 3 soda lake isolates with high DNA-DNA homologies. The third group included Halomonas halodenitrificans, Halomonas desiderata, Halomonas cupida, and 13 soda lake isolates. Phenotypic comparisons indicated that the majority of soda lake strains shared similar morphological, phenotypic, and chemotaxonomic properties to known strains of Halomonas but grew under alkaline conditions. The 3 soda lake isolates with high DNA-DNA homologies were, however, significantly different in antibiotic sensitivity pattern and in the utilization of several substrates, were unable to reduce nitrite, and showed low DNA-DNA homologies with known halomonads in the same group. We propose that these isolates comprise a new species of the genus Halomonas that we name Halomonas magadii sp. nov. The type strain is strain 21 MI (NCIMB 13595).

  2. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect

    Winn, R.D. Jr.; Steinmetz, J.C. ); Kerekgyarto, W.L. )

    1993-11-01

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  3. Oldest Homo and Pliocene biogeography of the Malawi Rift.

    PubMed

    Schrenk, F; Bromage, T G; Betzler, C G; Ring, U; Juwayeyi, Y M

    1993-10-28

    The Malawi Rift and Pliocene palaeofaunas, which include a hominid mandible attributed to Homo rudolfensis, provide a biogeographical link between the better known Plio-Pleistocene faunal records of East and Southern Africa. The Malawi Rift is in a latitudinal position suitable for recording any hominid and faunal dispersion towards the Equator that was brought on by increased aridity of the Late Pliocene African landscape. The evidence suggests that Pliocene hominids originated in the eastern African tropical domain and dispersed to southern Africa only during more favourable ecological circumstances.

  4. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  5. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  6. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  7. How Mountains Become Rifts

    NASA Astrophysics Data System (ADS)

    Buiter, S. J.; Tetreault, J. L.

    2015-12-01

    Rifting often initiates on former continental collision zones. For example, the present-day passive margins of the Atlantic and Indian Oceans formed after continental break-up occurred on relatively young and very old sutures, such as Morocco-Nova Scotia and East Antarctica-Australia, respectively. Rifts may localize on former collision zones for several reasons: orogens are thermally weak because of the increase in heat producing elements in their thicker crustal root, the inherited thrust faults form large-scale heterogeneities, and in the case of young sutures, extensional collapse of the orogen may help initiate rifting. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture using numerical experiments. We first explicitly prescribe collisional structures in the initial setup, such as increased crustal thickness and inherited thrust faults. Varying the prescribed structures results in different rift to break-up durations and margin widths. Our second series of experiments creates a collision zone through subduction and closure of an ocean. We confirm that post-collisional collapse is not a sufficient trigger for continental rifting and that a change in regional plate motions is required. When extension occurs, the weak former subduction interface and the elevated temperatures in the crustal nappe stack work in tandem as the main deformation localizers for continental rifting. Our experiments show that different approaches of initiating a continental rift result in different dynamics of the crust and mantle, thereby impacting rift geometry, rift to break-up duration, and exhumation of subduction-related sediments and oceanic crust.

  8. Thinning of Refertilized Sub-Continental Lithospheric Mantle (SLCM) beneath the Main Ethiopian Rift During Tertiary Rifting: Petrologic and Thermal Constraints from (Garnet)-Spinel Peridotite Xenoliths (Mega, Ethiopia).

    NASA Astrophysics Data System (ADS)

    Casagli, A.; Frezzotti, M. L.; Peccerillo, A.; Tiepolo, M.; De Astis, G.

    2014-12-01

    The East African Rift System (EARS) represents a key locality for the knowledge of the nature and evolution of SCLM during continental rifting processes, traditionally ascribed to ascending mantle plumes. We report petrological and geothermobarometric data from mantle xenoliths in Quaternary alkali-basalt lava flows and scoria cones at Mega (Sidamo Region; EARS) in the southern Main Ethiopian Rift (MER), that give evidence for refertilization of SCLM and for thinning during Tertiary rifting. Studied samples consist of seven lherzolites, five harzburgites and one olivine-websterite that contain spinel-pyroxene symplectites, interpreted as products of garnet breakdown reactions. These rocks were analyzed for major (whole rock and minerals) and trace elements (pyroxenes). Major element data have been used to reconstruct original garnet composition (pyrope). Equilibration temperatures range from 985 ± 40°C in the garnet facies (2.9-2.2 GPa) to 960 ± 55°C in the spinel facies (1.3 GPa). Xenoliths consist of depleted and fertile peridotites. Five lherzolites have up to 4 wt% of CaO, high CaO/Al2O3 (1.42-4.46), and the most fertile are more enriched than primitive mantle. Variations of major oxides in bulk rocks and minerals are consistent with variable degrees of melt extraction. Evidence for modal and cryptic metasomatism is given by addition of clinopyroxene ± phlogopite, and by LILE and LREE enrichment in clinopyroxene. Refertilization process appears to have been induced by sub-lithospheric volatile-rich melts at high melt/rock ratio, and were followed by cooling. To account for the geodynamic evolution of SCLM beneath the southern MER, which implies a temperature gradient from 50-60 to ˜ 90 mW/m2, we propose that thinning of the base of fertile SCLM from 90-95 to ˜45km depth and associated magmatism occurred along a normal-mantle adiabat above an upwelling asthenosphere (i.e., decompression melting) without the need for significant heat sources.

  9. Mid-Continent rift system - a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1983-08-01

    Geophysical evidence in the Mid-Continent has led to delineation of a rift system active during the Proterozoic Y Era. The Mid-Continent rift system can be traced by the Mid-Continent gravity high and corresponding aeromagnetic anomaly signature from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. The aeromagnetic anomaly signature of the rift trend discloses where these sediments have been preserved. Thick accumulations of upper Proterozoic sediments are indicated by both upward continuation of the aeromagnetic profiles across the rift trend and gravity models which incorporate: 1) a deep mafic body to create the narrow gravity high, 2) anomalously thick crust to account for the more regional gravity low, and 3) sedimentary accumulations on the Precambrian surface to explain the small-scale notches which occur within the narrow gravity high. Reflection seismic data are virtually unknown in the rift area; however, data recently acquired by COCORP across the southern end of the feature in Kansas provide evidence of thick stratified sequences in the rift valley. Studies of the East African rift have revealed that the tropical rift valley is an exceptionally fertile environment for deposition and preservation of kerogenous material. The Sirte, Suez, Viking, Dnieper-Donetz, and Tsaidam basins are just a few of the rift basins currently classed as giant producers. The existence of a rift basin trend with thick accumulations of preserved sediments, demonstrably organic rich, introduces the northern Mid-Continent US as a new frontier for hydrocarbon exploration.

  10. Volcanism at rifts

    SciTech Connect

    White, R.S.; McKenzie, D.P.

    1989-07-01

    The earth's outer shell rifts continuously, stretching and splitting both on the ocean's floor and on continents. Every 30 million years or so the rifting becomes cataclysmic, releasing continent-size floods of magma. This paper explains that the same mechanism is at work in both cases, the difference being in the slightly hotter temperature of the parent mantle for spectacular volcanic outbursts. Two kinds of evidence are described: quantitative descriptions of rock melting and a wide range of observations made on the rifted edges of continents and in the oceans that have opened between them.

  11. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  12. Evolution, distribution, and characteristics of rifting in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; Corti, Giacomo; Sani, Federico; Bonini, Marco; Balestrieri, Maria-Laura; Molin, Paola; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2014-04-01

    Southern Ethiopia is a key region to understand the evolution of the East African rift system, since it is the area of interaction between the main Ethiopian rift (MER) and the Kenyan rift. However, geological data constraining rift evolution in this remote area are still relatively sparse. In this study the timing, distribution, and style of rifting in southern Ethiopia are constrained by new structural, geochronological, and geomorphological data. The border faults in the area are roughly parallel to preexisting basement fabrics and are progressively more oblique with respect to the regional Nubia-Somalia motion proceeding southward. Kinematic indicators along these faults are mainly dip slip, pointing to a progressive rotation of the computed direction of extension toward the south. Radiocarbon data indicate post 30 ka faulting at both western and eastern margins of the MER with limited axial deformation. Similarly, geomorphological data suggest recent fault activity along the western margins of the basins composing the Gofa Province and in the Chew Bahir basin. This supports that interaction between the MER and the Kenyan rift in southern Ethiopia occurs in a 200 km wide zone of ongoing deformation. Fault-related exhumation at ~10-12 Ma in the Gofa Province, as constrained by new apatite fission track data, occurred later than the ~20 Ma basement exhumation of the Chew Bahir basin, thus pointing to a northward propagation of the Kenyan rift-related extension in the area.

  13. Middle ear infection (image)

    MedlinePlus

    A middle ear infection is also known as otitis media. It is one of the most common of childhood infections. With this illness, the middle ear becomes red, swollen, and inflamed because of bacteria ...

  14. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  15. Ear Infection and Vaccines

    MedlinePlus

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  16. Ear Infections in Children

    MedlinePlus

    ... shaped organ that converts sound vibrations from the middle ear into electrical signals. The auditory nerve carries these signals from the cochlea to the brain. Other nearby parts of the ear also can be involved in ...

  17. Ear surgery - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100016.htm Ear surgery - series—Normal anatomy To use the sharing ... Overview This image demonstrates normal appearance of the ears in relation to the face. Update Date 10/ ...

  18. Ear infection - chronic

    MedlinePlus

    Middle ear infection - chronic; Otitis media - chronic; Chronic otitis media; Chronic ear infection ... Chole RA. Chronic otitis media, mastoiditis, and petrositis. In: Flint PW, Haughey BH, Lund V, et al, eds. Cummings Otolaryngology: Head & Neck Surgery . 6th ed. ...

  19. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  20. Rift Valley Fever (RVF)

    MedlinePlus

    ... Outbreak resources, VHF information for specific groups, virus ecology, references... RVF Distribution Map Rift Valley Fever Transmission ... Outbreaks Outbreak Summaries RVF Distribution Map Resources Virus Ecology File Formats Help: How do I view different ...

  1. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  2. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  3. Fault Orientations at Obliquely Rifted Margins: Where? When? Why?

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    Present-day knowledge of rifted margin formation is largely based on 2D seismic lines, 2D conceptual models, and corroborated by 2D numerical experiments. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, worldwide more than 75% of all rifted margin segments have been formed under significant obliquity exceeding 20° (angle measured between extension direction and rift trend normal): During formation of the Atlantic Ocean, oblique rifting dominated at the sheared margins of South Africa and Patagonia, the Equatorial Atlantic margins, separation of Greenland and North America, and it played a major role in the protracted rift history of the North East Atlantic. Outside the Atlantic Ocean, oblique rifting occurred during the split between East and West Gondwana, the separation of India and Australia, India and Madagascar, Australia and Antarctica, as well as Arabia and Africa. It is presently observed in the Gulf of California, the Aegean and in the East African Rift. Despite its significance, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Results are thoroughly compared to previous analogue experiments, which yields many similarities but also distinct differences for late rift stages and for high obliquity. Even though the model

  4. Kantis: A new Australopithecus site on the shoulders of the Rift Valley near Nairobi, Kenya.

    PubMed

    Mbua, Emma; Kusaka, Soichiro; Kunimatsu, Yutaka; Geraads, Denis; Sawada, Yoshihiro; Brown, Francis H; Sakai, Tetsuya; Boisserie, Jean-Renaud; Saneyoshi, Mototaka; Omuombo, Christine; Muteti, Samuel; Hirata, Takafumi; Hayashida, Akira; Iwano, Hideki; Danhara, Tohru; Bobe, René; Jicha, Brian; Nakatsukasa, Masato

    2016-05-01

    Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution. PMID:27178456

  5. Kantis: A new Australopithecus site on the shoulders of the Rift Valley near Nairobi, Kenya.

    PubMed

    Mbua, Emma; Kusaka, Soichiro; Kunimatsu, Yutaka; Geraads, Denis; Sawada, Yoshihiro; Brown, Francis H; Sakai, Tetsuya; Boisserie, Jean-Renaud; Saneyoshi, Mototaka; Omuombo, Christine; Muteti, Samuel; Hirata, Takafumi; Hayashida, Akira; Iwano, Hideki; Danhara, Tohru; Bobe, René; Jicha, Brian; Nakatsukasa, Masato

    2016-05-01

    Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.

  6. An integrated geophysical study of the northern Kenya rift

    NASA Astrophysics Data System (ADS)

    Mariita, Nicolas O.; Keller, G. Randy

    2007-06-01

    The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the contact between the Archean Tanzania craton and the Proterozoic Mozambique orogenic belt. Recent geophysical investigations focused on the tectonic evolution of the East African rift and on exploration for geothermal energy in the southern portion of the Kenyan rift provide considerable information and insight on the structure and evolution of the lithosphere. In the north, a variety of other data exist. However, the lack of an integrated regional analysis of these data was the motivation for this study. Our study began with the collection and compilation of gravity data, and then we used the seismic refraction results from the Kenya Rift International Seismic Project (KRISP), published seismic reflection data, aeromagnetic data, and geologic and drilling data as constraints in the construction of integrated gravity models. These models and gravity anomaly maps provide insight on spatial variations in crustal thickness and upper mantle structure. In addition, they show the distribution of basins and help characterize the distribution of magmatism along the axis of the northern sector of the rift. Our main observations are the following: (1) the region of thinning and anomalous mantle widens northward in agreement with previous studies showing that the crust thins from about 35 km in the south to 20 km in the north; (2) as observed in the south, gravity highs observed along the axis are due to mafic

  7. Continental rifting: a planetary perspective

    SciTech Connect

    Muehlberger, W.R.

    1985-01-01

    The only inner planet that has abundant evidence of regional extension, and the consequent generation of rifts in the earth. The absence of plate motion on the other inner planets limits their rifts to localized bulges or subsidence areas. The rifting of oceanic lithosphere is seldom preserved in the geological record. Thus, such rifting must be inferred via plate tectonic interpretation: if there is rifting, then there must be subduction whose results are commonly well preserved. Modern continental rifts are found in many tectonic settings: continental breakup, extension transverse to collisional stresses, or wide regions of nearly uniform extension. Recognition of these settings in older rocks becomes more difficult the farther back in geologic time you travel. Rift basin fillings typically show rapid lateral and vertical facies and thickness changes, bimodal volcanism, and distinctive rift-drift sequences. Proterozoic rifts and aulacogens are well-documented in North America; ex. Keweenawan, western margin of Labrador fold belt, Belt-Uinta and the Wopmay-Athapuscow regions. Documented Archean rifts are rare. In Quebec, the truncated margin of the Minto craton bounded on the south by a 2.8 Ga greenstone belt implies an earlier rift event. The oldest proposed rift dated at 3.0 Ga contains the Pongola Supergroup in southeastern Africa. The presence of Archean dikes demonstrates a rigid crust and andesites as old as 3.5 Ga imply plate tectonics and thus, at least, oceanic rifting.

  8. Constraining the African pole of rotation

    NASA Astrophysics Data System (ADS)

    Asfaw, Laike M.

    1992-08-01

    In the absence of well defined transform faults in the East African rift system for constraining the plate kinematic reconstruction, the pole of relative motion for the African (Nubian) and Somalian plates has been determined from residual motion. If Africa and Somalia are to continue to drift apart along the East African rift system (which would then evolve into a series of ridges offset by transform faults) then incipient transform faults that may reflect the direction of relative motion should already be in place along the East African rift system. The incipient transforms along the East African rift system are characterized by shear zones, such as the Zambezi shear zone in the south and the Aswa and Hamer shear zones in the north. Some of these shear zones have been associated with recent strike-slip faulting in the NW-SE direction during periods of earthquakes. Provided that these, consistently NW-SE oriented, strike-slip movements in the shear zones give the direction of relative motion of the adjacent plates, then they can be used to constrain the position of the Africa-Somalia Euler pole. Due to the fact that identifying transform faults in the East African rift system is difficult and because the genesis of transform faults characterizing a plate boundary at an inception stage is not well known, the discussion here is limited to the northern segment of the East African rift system where shear zones are better characterized by the existing geophysical data. The characterizing features vary with latitude, indicating the complexity of the problem of the genesis of transform faults. I believe, however, that the relatively well defined intra-continental transform fault in the northern East African rift system, which is characterized by strike-slip faulting and earthquakes, constrains the pole of relative motion for the African and Somalian plates to a position near 1.5°S and 29.0°E.

  9. [The Great Rift Valley. Parasitological results].

    PubMed

    Nozais, J P

    1985-01-01

    East Africa is separated from the continent by the Great Rift Valley which was created at the end of the secondary era limiting then the East Africa under-continent with peculiar fauna and flora features. A several million years long isolation, during the tertiary era, seems to explain that a certain number of protozoan and helminthic diseases present peculiar clinical, epidemiological, therapeutical and parasitological features. The occurrence of those peculiar strains tends to indicate that in this region, for example, the resistance of P. falciparum to amino-4-quinolines is a regional feature which should not largely expand to the rest of the African continent.

  10. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  11. Exploring the contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.; de Monserrat, Albert; White, Lloyd; Hall, Robert

    2016-04-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia. This includes in northern and central Sulawesi as well as in eastern- and westernmost New Guinea. The periods of extension are associated with sedimentary basin growth as well as phases of crustal melting and rapid uplift. This is recorded through seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provide some control on the rates of processes, indicating that rates of extension are typically at least twice as fast and potentially an order of magnitude faster than the fastest rates applied for more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). Here we explore a suite of experiments more appropriate for rifting episodes in Eastern Indonesia, and compare the evolution of these 'fast' (20-100 mm/year full rate) rifting models to experiments with the same crustal geometries rifting at ~5-20 mm/year. In particular, we explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and whether we can produce the p-T-t paths implied by recent onshore geological studies.

  12. Middle Ear Infections and Ear Tube Surgery (For Parents)

    MedlinePlus

    ... Zika & Pregnancy Middle Ear Infections and Ear Tube Surgery KidsHealth > For Parents > Middle Ear Infections and Ear ... medio y colocación de tubos de ventilación Why Surgery? Many kids get middle ear infections (known as ...

  13. Continental rifting and the origin of Beta Regio, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.

    1981-01-01

    Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.

  14. Pathology of the Ear

    PubMed Central

    Orengo, Ida; Robbins, Kerri; Marsch, Amanda

    2011-01-01

    The external ear is exposed to weathering and trauma; it also has sparse vascularity, making it prone to infection and disease. The external location of the cutaneous ear makes it easily visible for diagnosis and accessible for treatment. In this article, the authors focus on diseases of the ear that are most commonly encountered and may be subject to surgical and medical evaluation and/or treatment. Epidemiology, pathogenesis, clinical course, and treatment for each disease entity are discussed. PMID:23115534

  15. [Evolution of the ear].

    PubMed

    Qvist, Morten Rosenkilde

    2009-12-14

    The evolution of the ear may be traced through transitional fossils, comparative anatomy and embryology. The organ of hearing evolved from receptors of the vestibulary organ of fish. The tympanic ear developed in amphibians at the transition to terrestrial life, and the hyomandibula was isolated as the first middle ear bone, the columella stapes. Reptile jaw bones, quadratum and articulare, transformed to malleus and incus in mammals. With selective advantages during the evolution, an increasing structural complexity of the ear accompanied improved sound transmission and reception.

  16. Westward drift, rift asymmetry and continental uplift

    NASA Astrophysics Data System (ADS)

    Doglioni, C.; Carminati, E.; Bonatti, E.

    2003-04-01

    Although not predicted by classic plate tectonics theory, the topography of ocean ridges and rifts show a distinct asymmetry, when depth is plotted both vs. distance from the ridge and square root of the age of the oceanic crust. The eastern sides of the East Pacific Rise, of the mid Atlantic ridge, of the NW Indian ridge are in average more elevated than the conjugate flank to the west and eastern sides show slower subsidence rates. A similar asymmetry can be observed across the Red Sea and Baikal rifts. We suggest that depleted and lighter asthenosphere generated by partial melting below the ocean ridges shifts 'eastward' relative to the lithosphere, determining a density deficit below the eastern flank. The 'eastward' migration of the lighter Atlantic asthenosphere under the African continent, could eventually have contributed to the anomalous post-rift uplift of Africa and explain the anomalously higher topography of Africa with respect to other continents. This model suggests that the 'westward' drift of the lithosphere relative to the underlying mantle might be a global phenomenon and not just a mean delay.

  17. Rift Valley Fever Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develo...

  18. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  19. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    NASA Astrophysics Data System (ADS)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (< 35 km), most of the southern part of the rift is underlain by thick crust (~40‒44 km). Different from the Moho, the MLD is shallower beneath the axis of the Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  20. Ear - blocked at high altitudes

    MedlinePlus

    ... ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... the middle ear and the back of the nose and upper throat. ... down from high altitudes. Chewing gum the entire time you are ...

  1. Intracontinental rift comparisons: Baikal and Rio Grande Rift Systems

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.; Logatchev, N. A.; Zorin, Y. A.; Chapman, C. E.; Kovalenko, V.; Morgan, P.

    Both the Baikal rift in Siberia and the Rio Grande rift in New Mexico, Colorado and Texas are major intracontinental extensional structures of Cenozoic age that affect regions about 1500 km long and several hundred km wide (Figures 1, 2). In the summer of 1988 these rifts were visited by study groups of U.S. and Soviet geoscientists during cooperative field workshops sponsored by the Soviet Academy of Sciences, U.S. National Academy of Sciences, and U.S. Geological Survey.In the Rio Grande region, we spent 2 weeks examining rift features between El Paso, Tex., and Denver, Colo. Particular emphasis was on the sedimentary record of rift evolution, widespread volcanic activity from inception of rifting to the present, geophysical expression of rift features, and relations between rifting and the larger-scale evolution of the North American Cordillera. In the Baikal region, which presents formidable logistic problems for a workshop, we travelled by bus, truck, helicopter, and ship to examine young seismotectonic features, rift-related basalt, and bounding structures of the Siberian craton that influenced rift development (Figure 3).

  2. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  3. Ear canal cholesteatoma.

    PubMed

    Holt, J J

    1992-06-01

    Although cholesteatomas are more commonly found in the middle ear and the mastoid, the disease can occur in the external ear canal. All cases of ear canal cholesteatoma treated by the author were reviewed. There were nine ears in seven patients, who had an average age of 62 years. The lesions ranged in size from a few millimeters to extensive mastoid destruction. Smaller lesions can be managed by frequent cleaning as an office procedure. Larger lesions require surgery, either canaloplasty or mastoidectomy. The otolaryngologist should suspect this disease in the elderly. Microscopic examination of the ear with meticulous cleaning of all wax, especially in elderly patients, is most useful in detecting early disease. Frequent applications of mineral oil to the canal should be used in the management of the disease and to prevent recurrence.

  4. Seismological Investigations of Crustal and Mantle Structures Beneath the Incipient Okavango Rift

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Yu, Y.; Liu, K. H.; Reed, C. A.; Moidaki, M.; Mickus, K. L.; Atekwana, E. A.

    2015-12-01

    Rifting plays a significant role in the evolution of sedimentary basins. However, our current understandings on rifting mechanisms are mostly based on studies of mature rifts. Here we report results from the first teleseismic investigations of the incipient Okavango rift zone (ORZ), which is located at the southwestern terminal of the East African Rift System in northern Botswana. Data used in the study were recorded by the 17 broadband seismic stations deployed along a NW-SE profile traversing the ORZ with a recording duration of 2 years starting in the summer of 2012. Receiver function and shear wave splitting techniques have been employed to explore upper mantle thermal anomalies and anisotropy. The resulting dominantly absolute plate motion-parallel fast polarization orientations and normal mantle transition zone thickness ruled out the possible existence of one or more mantle plumes in the upper mantle or mantle transition zone beneath the ORZ. The Moho beneath the Okavango rift zone is uplifted by 4-5 km and is symmetric with regard to the rift axis, favoring a pure shear model of early-stage continental extension. The observations favor a passive model for rift initiation in which rifts develop inside ancient orogenic zones as the result of relative movements between Archean cratonic blocks.

  5. US-Africa collaborative research on incipient continental rift zones

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2007-12-01

    Since 1999, we have been conducting research in Botswana in collaboration with colleagues at the University of Botswana (UB). Recently, we have expanded our research activities to include the University of Zambia (UNZA). The goal of the collaborative efforts center on investigating geologic processes operating during the initial stages of continental extension. During student training, US students partner with peers from UB and UNZA to conduct field-based research within a multi-disciplinary framework focused on investigating the interplay between neotectonics and surficial processes due to rifting. The student projects are designed to: 1) assess the role of pre-existing structures on rift basin development; 2) determine fault kinematics and direction of rift extension; 3) characterize the geometry of the basins; 4) assess current models for fault growth and propagation and linkage to form border faults; 5) investigate environmental change information preserved in rift basin sediments; 6) determine how magma below the rift basin affects surface water chemical properties; and 7) develop tectonic and geologic models for the evolution of rift basins during the incipient stages of continental extension. Our goal is to provide is to improve research and education in developing countries while providing talented and motivated US students with hands-on field research experience in near surface geophysical surveying, field geologic mapping, GPS mapping, and geochemical and hydrogeologic techniques necessary for addressing basic research questions in the geosciences, as well as resources exploration (e.g., hydrocarbon, water resources, mineral, geothermal, etc.). Our US students acquire an enriching cultural experience, make personal contacts, and build relationships that will form the core of future international research collaborations. At the same time, project activities introduce the African students to state-of the art geophysical equipment and research methodologies

  6. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal

    NASA Astrophysics Data System (ADS)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar

    2015-04-01

    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of

  7. Ear problems in swimmers.

    PubMed

    Wang, Mao-Che; Liu, Chia-Yu; Shiao, An-Suey; Wang, Tyrone

    2005-08-01

    Acute diffuse otitis externa (swimmer's ear), otomycosis, exostoses, traumatic eardrum perforation, middle ear infection, and barotraumas of the inner ear are common problems in swimmers and people engaged in aqua activities. The most common ear problem in swimmers is acute diffuse otitis externa, with Pseudomonas aeruginosa being the most common pathogen. The symptoms are itching, otalgia, otorrhea, and conductive hearing loss. The treatment includes frequent cleansing of the ear canal, pain control, oral or topical medications, acidification of the ear canal, and control of predisposing factors. Swimming in polluted waters and ear-canal cleaning with cotton-tip applicators should be avoided. Exostoses are usually seen in people who swim in cold water and present with symptoms of accumulated debris, otorrhea and conductive hearing loss. The treatment for exostoses is transmeatal surgical removal of the tumors. Traumatic eardrum perforations may occur during water skiing or scuba diving and present with symptoms of hearing loss, otalgia, otorrhea, tinnitus and vertigo. Tympanoplasty might be needed if the perforations do not heal spontaneously. Patients with chronic otitis media with active drainage should avoid swimming, while patients who have undergone mastoidectomy and who have no cavity problems may swim. For children with ventilation tubes, surface swimming is safe in a clean, chlorinated swimming pool. Sudden sensorineural hearing loss and some degree of vertigo may occur after diving because of rupture of the round or oval window membrane.

  8. African sedimentary basins - Tectonic controls on prospectivity

    SciTech Connect

    Bunter, M.A.G.; Crossley, R.; Hammill, M.; Jones, P.W.; Morgan, R.K.; Needham, D.T.; Spaargaren, F.A. )

    1991-03-01

    An important prerequisite for the evaluation of any sedimentary basin is the understanding of its regional tectonic setting. This is especially so in the underexplored regions of Africa. The majority of African sedimentary basins developed in an extensional setting although some have undergone subsequent compressional or transpressional deformation. The geometry and evolution of these basins is often influenced by basement structure. The extensional phase of basin development controls not only the distribution of syn-rift sediments but also the magnitude of post-rift regional subsidence and the preservation or removal of pre-rift sediments. This has important consequences for exploration models of syn-rift and pre-rift source rocks and reservoirs. Post-rift basin inversion and uplift provide crucial controls on the preservation of mature source rocks and quality of reservoirs. The distribution, nature, timing, and possible mechanisms of this uplift in Africa will be addressed. The hydrocarbon prospectivity of African basis appears to be highly variable although the limited exploration of some regions makes the exact extent of this variability unclear. Basins considered potentially prospective range from late Precambrian to Tertiary in age. The various tectonic controls outlined above, and criteria for the evaluation of underexplored areas, will be demonstrated by reference to basins studied by The Robertson Group. Examples described include basins from Bagon, Angola, Namibia, East Africa, Tertiary Rift and Karoo Rifts, and North Africa (Sudan, Egypt, Algeria, and Morocco).

  9. Ear infection - acute

    MedlinePlus

    ... Risk factors for acute ear infections include: Attending day care (especially centers with more than 6 children) Changes ... hands and toys often. If possible, choose a day care that has 6 or fewer children. This can ...

  10. Ear Injuries (For Parents)

    MedlinePlus

    ... the eardrum, ear canal, ossicles, cochlea, or the vestibular nerve. Here's a look at the most common ... may cause permanent hearing loss or balance problems. Vestibular therapy may help kids with balance problems. And ...

  11. Middle Ear Infections

    MedlinePlus

    ... Health Issues Conditions Abdominal ADHD Allergies & Asthma Autism Cancer Chest & Lungs Chronic Conditions Cleft & Craniofacial Developmental Disabilities Ear Nose & Throat Emotional Problems Eyes Fever From Insects or Animals Genitals and Urinary Tract Glands & Growth ...

  12. Sports injuries of the ear.

    PubMed

    Wagner, G A

    1972-07-01

    The author describes common sports injuries involving the ear. Such injuries include hematoma, lacerations, foreign bodies (tattoo), and thermal injuries. Ear canal injuries include swimmer's ear and penetrating injuries. Tympanum injuries include tympanic membrane perforations, ossicular discontinuity, eustachian tube dysfunction, temporal bone fractures and traumatic facial nerve palsy. Inner ear injuries include traumatic sensorineural deafness. The author emphasizes the management of these injuries.

  13. Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Bellido, Félix; Gasquet, Dominique; Pereira, M. Francisco; Quesada, Cecilio; Sánchez-García, Teresa

    2014-10-01

    In the northwestern border of the West African craton (North Gondwana), a transition from late Neoproterozoic subduction/collision to Cambrian rift processes was recorded in the Anti-Atlas (Morocco) and in the Ossa-Morena Zone (Iberia). Cambrian rifting affected both Pan-African and Cadomian basements in a stepwise and diachronous way. Subsequently, both areas evolved into a syn-rift margin episodically punctuated by uplift and tilting that precluded Furongian sedimentation. A comparison of sedimentary, volcanic and geodynamic evolution is made in the late Neoproterozoic (Pan-African and Cadomian) belts and Cambrian rifts trying to solve the apparent diachronous (SW-NE-trending) propagation of an early Palaeozoic rifting regime that finally led to the opening of the Rheic Ocean.

  14. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Smets, Benoît

    2015-04-01

    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  15. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.

    2005-08-01

    The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic

  16. Applications of surface geology models to subsurface interpretations in continental rifted basins

    SciTech Connect

    Charpentier, P.; Jarrige, J.; Richert, J. )

    1990-05-01

    Field geology surveys done from 1980 to 1987 along the Gulf of Suez, Red Sea, and in the East African rift led us to (1) compare the two in-extension domains in terms of geometry, mechanism and timing of deformation to point out the structural and sedimentary elements useful to interpret seismic and well data and (2) propose geodynamic models to perform a more efficient exploration in other rifted basins. Field observations show that the fault pattern is controlled by the inherited fabric of the basement, which is reactivated during the rifting process. This fabric defines the location of the oblique-to-the-rift transfer zones which cut the deformed area in losangic blocks limited by antithetic normal faults parallel to the rift. Transfer zones exhibit either strike-slip faults or local compressive structures, or horst-and-graben pattern. The interference between the normal faults and the transfer zones induces the typical zigzag pattern in which petroleum traps will have specific setting. These synsedimentary deformations have a direct influence on the reservoir facies changes. The mechanical evolution is characterized by multistage tectonic deformations in which the doming generally approved as a first rifting initiation is not necessary to explain the observed extension. Sinking of the central trough and uplift of the rift shoulders represents the last stage of the rifting process due only to thermal subsidence. This process is important in hydrocarbon generation and migration.

  17. Morphostructural evidence for Recent/active extension in Central Tanzania beyond the southern termination of the Kenya Rift.

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.

    2003-04-01

    The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore

  18. Magnetotelluric and geomagnetic deep-sounding studies in rifts and adjacent areas: constraints on physical processes in the crust and upper mantle

    SciTech Connect

    Hermance, J.F.

    1982-01-01

    Deep electrical studies are reviewed along with other supportive geophysical/geological investigations of five of the major rift zones of the world: the Baikal rift, and Rhine graben, the East African rift, Iceland and the Rio Grande rift. All of these regions exhibit anomalously low values of electrical resistivity, density and seismic velocity, either within the crust itselt or at high levels in the mantle. Deep electrical studies support a model where ascending masses of material from the mantle are intimately coupled to the fractionation of a basalt melt and its accumulation at higher levels within the earth. In Iceland, an interplate rift, the accumulation and chilling of melt at the base of the crust apparently leads to a significant component of crustal underplating whereas in intraplate rifts such as the Rio Grande rift, the emplacement of basaltic magma at high levels may lead to extensive remelting of the crust, triggering eruptive episodes of silicic magmas.

  19. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; VéTel, W.; Morley, C. K.

    2005-04-01

    Remote sensing data and revised seismic reflection profiles provide new insights about the origin of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern branch of the East African rift system. Contractional structures are dominated by weakly inverted sets of fault blocks within <3.7 Myr old synrift series. Most of reverse extensional faults involve components of oblique-slip, whereas associated hanging wall folds are characterized by large wavelength upright folding. The area of basin inversion is restricted to a 40 × 100 km elongated zone overlying a first-order N140°E trending fault zone in the basement, referred to as the N'Doto transverse fault zone (NTFZ). In the proposed kinematic model, inversion tectonics is assigned to permutation of principal stress axes (σ1/σ2) in addition to the clockwise rotation of extension (from nearly N90°E to N130°E) during Pliocene. The transition from pure extension (Miocene) to a wrench faulting regime (Pliocene) first results in the development of T-type fault networks within a dextrally reactivated shear zone (NTFZ). Inversion tectonics occurred later (<3.7 Ma) in response to a still rotated (˜20°) shortening axis (σ1) oriented N40°E that caused the oblique compression of earlier (NS to N20°E) extensional structures within the NTFZ. The origin of basin inversion and strain concentration in the Turkana rift is thus directly linked to a crustal weakness zone, transverse to the rift axis, and involving steep prerift anisotropies.

  20. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    NASA Astrophysics Data System (ADS)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  1. Tectonostratigraphic development of the Interior Sudan rifts, Central Africa

    NASA Astrophysics Data System (ADS)

    McHargue, Tim R.; Heidrick, Tom L.; Livingston, Jack E.

    1992-10-01

    In the Muglad, Melut and Blue Nile rift basins of Interior Sudan three major episodes of rifting, concomitant subsidence and nonmarine/nonvolcanic sedimentation are recognized. These three rifting cycles, which spanned 140 to 95 Ma (Fl), 95 to 65 Ma (F2), and 65 to 30 Ma (F3), resulted in the accumulation of up to 5400, 4200 and 5400 m of sediments, respectively. In the Muglad Basin, the best known and largest of the Sudan rift basins, each rifting cycle consists of (1) a basal sandstone unit (at least near rift margins), that is followed by (2) an upward coarsening section of lacustrine shale grading through marginal lacustrine mudstone and sandstone into fluvial mudstone and sandstone, and (3) a capping blanket of fluvial and alluvial sandstone. The shale-dominated portions of these cycles were deposited in a closed-drainage basin during active faulting. The fluvial and alluvial blanket sands were deposited in an open-drainage basin during the thermal sag phase following each tectonic cycle. The Early Cretaceous F1 intracontinental rifts of Interior Sudan were linked to major rifts/spreading centres in the Proto-South Atlantic by the dextral WSW-trending Central African Shear Zone and to the Indian Ocean via the NW-trending Anza rift in Kenya. In the Muglad Basin, F1 deformation involved high strain rates, rapid syn-rift crustal stretching and subsidence, and the formation of deep, fault-bounded tensional and transtensional pull-apart basins. During the F2 and F3 deformations, the rates of subsidence and stretching were much lower and were focused within smaller geographic areas. Structural elements include asymmetric half-grabens and less common full-grabens with central highs. The three superimposed tectonic episodes resulted in the subsidence of NNW- to NW-trending rift sub-basins; this gave rise to a wide variety of normal fault geometries, displacements, and growth histories. Planar domino-style and listric normal F1 fault arrays are modeled. The rotated F1

  2. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  3. Volcanic architecture of the Afar Rift

    NASA Astrophysics Data System (ADS)

    Vye, C.; Smith, K.; Bateson, L.; Jordan, C.

    2010-12-01

    A new approach for rapidly mapping large volcanic areas has enabled identification of the spatial relationship between lava flows at the scale of single eruptive units, and the temporal development of faults associated with continental rifting. This integrated geological mapping approach involving remote sensing and three-dimensional image analysis has been applied to the Afar Region of the African Rift. We analyse topography and surface rock chemistry based false colour Landsat, ASTER and Lidar imagery within an immersive three-dimensional visualisation suite using SocetSet and Geovisionary software. This remote data is ground-proofed by the targeted field studies. This method is proving to be particularly successful in producing a subdivision of basaltic lava flows based on surface features and morphology of flow lobes where chemostratigraphic applications fail to identify individual eruption units. The high-resolution record has facilitated investigations of the style and size of fissure eruptions, their source, the processes affecting synchronous basaltic and felsic volcanic activity, and the style and duration of basaltic lava flow emplacement. The success of this technique is particularly significant when working in areas which are difficult to access, and may be applied in the future within environmentally or logistically challenging regions.

  4. [Inner Ear Hearing Loss].

    PubMed

    Hesse, G

    2016-06-01

    Hearing loss is one of the most dominant handicaps in modern societies, which additionally very often is not realized or not admitted. About one quarter of the general population suffers from inner ear hearing loss and is therefore restricted in communicational skills. Demographic factors like increasing age play an important role as well as environmental influences and an increasing sound and noise exposure especially in leisure activities. Thus borders between a "classical" presbyacusis - if it ever existed - and envirionmentally induced hearing loss disappear. Today restrictions in hearing ability develop earlier in age but at the same time they are detected and diagnosed earlier. This paper can eventually enlighten the wide field of inner ear hearing loss only fragmentarily; therefore mainly new research, findings and developments are reviewed. The first part discusses new aspects of diagnostics of inner ear hearing loss and different etiologies. PMID:27259171

  5. Listening to the Ear

    NASA Astrophysics Data System (ADS)

    Shera, Christopher Alan

    Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics--termed "tapering symmetry" after its geometric interpretation in simple models--that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus -frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical

  6. Listening to the ear

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.

    Otoacoustic emissions demonstrate that the ear creates sound while listening to sound, offering a promising acoustic window on the mechanics of hearing in awake, listening human beings. That window is clouded, however, by an incomplete knowledge of wave reflection and transmission, both forth and back within the cochlea and through the middle ear. This thesis "does windows," addressing wave propagation and scattering on both sides of the middle ear. A summary of highlights follows. Measurements of the cochlear input impedance in cat are used to identify a new symmetry in cochlear mechanics-termed "tapering symmetry" after its geometric interpretation in simple models-that guarantees that the wavelength of the traveling wave changes slowly with position near the stapes. Waves therefore propagate without reflection through the basal turns of the cochlea. Analytic methods for solving the cochlear wave equations using a perturbative scattering series are given and used to demonstrate that, contrary to common belief, conventional cochlear models exhibit negligible internal reflection whether or not they accurately represent the tapering symmetries of the inner ear. Frameworks for the systematic "deconstruction" of eardrum and middle-ear transduction characteristics are developed and applied to the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A simple phenomenological model of inner-ear compressibility that correctly predicts hearing thresholds in patients with missing or disarticulated middle-ear ossicles is developed and used to establish an upper bound on cochlear compressibility several orders of magnitude smaller than that provided by direct measurements. Accurate measurements of stimulus frequency evoked otoacoustic emissions are performed and used to determine the form and frequency variation of the cochlear traveling-wave ratio noninvasively. Those measurements are inverted to obtain the spatial distribution of mechanical

  7. Outer and middle ear status and distortion product otoacoustic emissions in children with sickle cell disease.

    PubMed

    Walker, Letitia J; Stuart, Andrew; Green, Walter B

    2004-12-01

    The purpose of this study was to investigate distortion product otoacoustic emissions (DPOAEs) and outer/middle ear status in 12 African American children with normal hearing and homozygous sickle cell disease (SCD) and age-, gender-, and ear-matched African American controls. C. R. Downs, A. Stuart, & D. Holbert (2000) reported that DPOAE amplitudes were significantly larger for children with SCD. Because the integrity of the middle ear system directly influences OAE characteristics, it was felt that concurrent investigation of DPOAE amplitudes and outer/middle ear function in children with SCD was warranted. DPOAEs were evoked by 13 primary-tone pairs with f2 frequencies ranging from 1000 to 4500 Hz. Outer/middle ear status was assessed with tympanometry through indices of peak compensated static acoustic admittance, tympanometric width, tympanometric peak pressure, ear canal volume, and middle ear resonance frequency. Tympanograms were recorded with probe-tone frequencies of 226 and 678 Hz. DPOAE amplitudes were significantly larger for children with SCD (p < .05). There were no group differences in any of the middle ear indices (p > .05). These findings suggest that increased DPOAE amplitudes for children with SCD cannot be attributed to differences in outer/middle ear function as assessed with tympanometry. PMID:15903142

  8. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  9. Massive and prolonged deep carbon emissions associated with continental rifting

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  10. Continental breakup in Africa: From superplume to rifting

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ebinger, C. J.

    2010-12-01

    The low seismic velocities that underlie the East African continent are a ubiquitous feature of global tomographic images, and can readily explain both observed plateau uplift and the volcanic Cenozoic geological record in the region. However, knowledge of the morphology of the African Superplume, and the nature of the mantle flow-field remain incomplete. Over the last decade East Africa has seen many deployments of seismic stations, with the aim of understanding continental breakup in the region. We have combined data from 5 of these experiments, to enable us to resolve high resolution models of upper mantle P- and S- wave velocities, and seismic anisotropy extending from the Red Sea to Kenya. The tomographic inversions highlight a sheet like upwelling beneath this whole region. It is oriented SW-NE and extends from at least the transition zone to the crust. This is most likely associated with upwelling material associated with the African superplume. In the uppermost 100 km, strong P- and S- wave low velocity anomalies underlie the most recent rift related volcanism and are likely associated with high temperatures and partial melt. High quality SKS splitting results, from a variety of back azimuths, reveal depth variations in anisotropy beneath large parts of Ethiopia. The lower layer parallels the SW-NE trend of the low velocity anomaly, suggesting an LPO fabric due to mantle flow. The upper layer parallels structural features at the surface, including aligned melt in the crust/lithosphere at the rift axis, and Pan-African fabrics in regions not characterised by Quaternary volcanism. These results suggest that thermal instabilities arising from upwelling material provides heat for melting and uplift, but rifting may follow pre-existing weaknesses in the lithosphere.

  11. The red ear syndrome

    PubMed Central

    2013-01-01

    Red Ear Syndrome (RES) is a very rare disorder, with approximately 100 published cases in the medical literature. Red ear (RE) episodes are characterised by unilateral or bilateral attacks of paroxysmal burning sensations and reddening of the external ear. The duration of these episodes ranges from a few seconds to several hours. The attacks occur with a frequency ranging from several a day to a few per year. Episodes can occur spontaneously or be triggered, most frequently by rubbing or touching the ear, heat or cold, chewing, brushing of the hair, neck movements or exertion. Early-onset idiopathic RES seems to be associated with migraine, whereas late-onset idiopathic forms have been reported in association with trigeminal autonomic cephalalgias (TACs). Secondary forms of RES occur with upper cervical spine disorders or temporo-mandibular joint dysfunction. RES is regarded refractory to medical treatments, although some migraine preventative treatments have shown moderate benefit mainly in patients with migraine-related attacks. The pathophysiology of RES is still unclear but several hypotheses involving peripheral or central nervous system mechanisms have been proposed. PMID:24093332

  12. From Ear to Brain

    ERIC Educational Resources Information Center

    Kimura, Doreen

    2011-01-01

    In this paper Doreen Kimura gives a personal history of the "right-ear effect" in dichotic listening. The focus is on the early ground-breaking papers, describing how she did the first dichotic listening studies relating the effects to brain asymmetry. The paper also gives a description of the visual half-field technique for lateralized stimulus…

  13. External Otitis (Swimmer's Ear)

    MedlinePlus

    ... drops, keeping water out of the ear, and pain relievers are the most common forms of treatment. External otitis may involve the entire canal, as ... does not allow fungus to grow as well. Treatment of boils depends on ... relievers, such as oxycodone with acetaminophen , can be given ...

  14. Ear, Nose & Throat Issues & Down Syndrome

    MedlinePlus

    ... Throat Issues & Down Syndrome Ear, Nose & Throat Issues & Down Syndrome Ear, nose, and throat (ENT) problems are common ... What ENT Problems Are Common in Children With Down Syndrome? External Ear Canal Stenosis Stenotic ear canals (narrow ...

  15. Low-set ears and pinna abnormalities

    MedlinePlus

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... The outer ear or "pinna" forms when the baby is growing in the mother's womb. The growth of this ear part ...

  16. P-wave tomography reveals a westward dipping low velocity zone beneath the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Park, Yongcheol; Nyblade, Andrew A.

    2006-04-01

    Three teleseismic P-wave travel time data sets (KRISP 1985, 1989-1990 Kenya Broadband Seismic Experiment) have been inverted to obtain a new tomographic model of the upper mantle beneath the Kenya Rift. The model shows a 0.5-1.5% low velocity anomaly below the rift extending to about 150 km depth. Below ~150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. Tomographic images to the south in Tanzania and to the north in Ethiopia also show westward dipping low velocity anomalies below depths of ~150-200 km. The presence of westward dipping low velocity structures along much of the East African rift (Ethiopia, Kenya and Tanzania) is difficult to explain with a plume model and is consistent with some models of the African Superplume showing anomalous lower and upper mantle structure connecting at mid-mantle depths under the western side of East Africa.

  17. [Blast injuries of the ear].

    PubMed

    Haralampiev, K; Ristić, B

    1991-01-01

    Blast injury of the ear is the actual military medical problem. The ear, due to its anatomo-physiologic characteristics, is more sensitive to effects of blast waves than other organs and systems. The anatomic and functional ear damages, their symptoms, etiology and clinical course are described. The diagnosis and treatment have been pointed out. PMID:1807053

  18. Ear Infections and Language Development.

    ERIC Educational Resources Information Center

    Roberts, Joanne E.; Zeisel, Susan A.

    Ear infections in infants and preschoolers can cause mild or moderate temporary hearing loss, which may in turn affect a child's ability to understand and learn language. Noting that providing children with proper medical treatment for ear infections or middle ear fluid is important in preventing possible problems with language development, this…

  19. Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data

    NASA Astrophysics Data System (ADS)

    Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.

    2014-12-01

    Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and

  20. Choice Issue Opens Rift in Missouri: Tax-Credit Scholarships Divide Black Caucus

    ERIC Educational Resources Information Center

    Viadero, Debra

    2006-01-01

    The debate over a school choice bill in the Missouri legislature has opened a bitter rift among some of the state's top Black elected officials and reflects a larger divide among African-Americans over school choice nationwide. The bill, which is similar to programs that are growing in popularity in other states, would provide tax credits for…

  1. The Importance of Magmatic Fluids in Continental Rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Ebinger, C. J.; Lee, H.; Fischer, T. P.; Roecker, S. W.; Kianji, G.

    2015-12-01

    The breakup of strong continental lithosphere requires more than far-field tectonic forces. Growing evidence for early-stage cratonic rift zones points to the importance of heat, magma and volatile transfer in driving lithospheric strength reduction. The relative contributions of these processes are fundamental to our understanding of continental rifting. We present a synthesis of results from geological, geochemical and geophysical studies in one of the most seismically and volcanically active sectors of the East African Rift (Kenya-Tanzania border) to investigate the role of fluids during early-stage rifting (<10 Ma). Xenolith data indicate that rifting initiated in initially thick lithosphere. Diffuse soil CO2 flux maxima occur in the vicinity of faults, with carbon isotope values exhibiting a mantle-derived signature. These faults feed aligned sets of hydrothermal springs, which have N2-He-Ar relative abundances also indicating a mantle-derived source. Geochemical and surface faulting information are integrated with subsurface imaging and fault kinematic data derived from the 38-station CRAFTI broadband seismic array. Teleseismic and abundant local earthquakes enable assessment of the state-of-stress and b-values as a function of depth. High Vp/Vs ratios and tomographic imaging suggest the presence of fluids in the crust, with high pore fluid pressures driving failure at lower tectonic stress. Together, these cross-disciplinary data provide compelling evidence that early-stage rifting in East Africa is assisted by fluids exsolved from deep magma bodies, some of which are imaged in the lower crust. We assert that the flux of deep magmatic fluids during rift initiation plays a key role in weakening lithosphere and localizing strain. High surface gas fluxes, fault-fed hydrothermal springs and persistent seismicity highlight the East African Rift as the ideal natural laboratory for investigating fluid-driven faulting processes in extensional tectonic environments.

  2. Diking-induced moderate-magnitude earthquakes on a youthful rift border fault: The 2002 Nyiragongo-Kalehe sequence, D.R. Congo

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Smets, B.; Keir, D.

    2015-12-01

    On 24 October 2002, Mw 6.2 earthquake occurred in the central part of the Lake Kivu basin, Western Branch of the East African Rift. This is the largest event recorded in the Lake Kivu area since 1900. An integrated analysis of radar interferometry (InSAR), seismic and geological data, demonstrates that the earthquake occurred due to normal-slip motion on a major preexisting east-dipping rift border fault. A Coulomb stress analysis suggests that diking events, such as the January 2002 dike intrusion, could promote faulting on the western border faults of the rift in the central part of Lake Kivu. We thus interpret that dike-induced stress changes can cause moderate to large-magnitude earthquakes on major border faults during continental rifting. Continental extension processes appear complex in the Lake Kivu basin, requiring the use of a hybrid model of strain accommodation and partitioning in the East African Rift.

  3. No thermal anomalies in the mantle transition zone beneath an incipient continental rift: evidence from the first receiver function study across the Okavango Rift Zone, Botswana

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, K. H.; Moidaki, M.; Reed, C. A.; Gao, S. S.

    2015-08-01

    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broad-band seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic P- and S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are

  4. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  5. Drug delivery to the ear.

    PubMed

    Hoskison, E; Daniel, M; Al-Zahid, S; Shakesheff, K M; Bayston, R; Birchall, J P

    2013-01-01

    Drug delivery to the ear is used to treat conditions of the middle and inner ear such as acute and chronic otitis media, Ménière's disease, sensorineural hearing loss and tinnitus. Drugs used include antibiotics, antifungals, steroids, local anesthetics and neuroprotective agents. A literature review was conducted searching Medline (1966-2012), Embase (1988-2012), the Cochrane Library and Ovid (1966-2012), using search terms 'drug delivery', 'middle ear', 'inner ear' and 'transtympanic'. There are numerous methods of drug delivery to the middle ear, which can be categorized as topical, systemic (intravenous), transtympanic and via the Eustachian tube. Localized treatments to the ear have the advantages of targeted drug delivery allowing higher therapeutic doses and minimizing systemic side effects. The ideal scenario would be a carrier system that could cross the intact tympanic membrane loaded with drugs or biochemical agents for the treatment of middle and inner ear conditions.

  6. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  7. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  8. Failure was not an option- the Mid-Continent Rift system succeeded

    NASA Astrophysics Data System (ADS)

    Merino, M.; Stein, C. A.; Stein, S. A.; Keller, G. R.; Flesch, L. M.; Jurdy, D. M.

    2013-12-01

    The 1.1 Ga Mid-Continent Rift (MCR) in North America is often viewed as a failed rift formed by isolated midplate volcanism and extension within the ~1.3-~0.98 Ga Grenville orogeny. An alternative view is suggested by analogy with younger and morphologically similar rift systems, whose plate tectonic settings are more easily understood because their surroundings - including seafloor with magnetic anomalies - have not been deformed or destroyed by subsequent collisions and rifting events. In this view, the MCR was part of a larger plate boundary rifting event that resulted in a successful episode of seafloor spreading. This view is motivated by various pieces of evidence. The MCR rifting looks much like rigid plate block motion, such as associated with the West Central African Rift systems formed during the Mesozoic breakup of Africa and South America and the ongoing rifting in the East African Rift region with seafloor spreading in the Gulf of Aden and the Red Sea. This view explains the affinities of the Grenville-age rocks in the central and southern Appalachians to Amazonia rather than Canadian Grenville-age Appalachian rocks. The MCR extends farther to the south than traditionally assumed along the East Continental Gravity High (a buried feature from Ohio to Alabama). This failed portion of the rift system connected to the rift successfully separating Laurentia and Amazonia. The seafloor spreading separating Amazonia from Laurentia may explain the former's relative motion toward Greenland and Baltica. This model is consistent with some of the ~1.1 Ga geological events in Amazonia. A change in the apparent polar wander path for Laurentia during the period of volcanism of the MCR could be attributed to this plate reconfiguration. The extensional phase on the MCR may have ended because motion was taken up by seafloor spreading between Laurentia and Amazonia rather ending due to another continental collision. Later reverse faulting on the MCR normal faults due to

  9. Factors controlling depth of continental rift zones

    NASA Astrophysics Data System (ADS)

    Elesin, Y.; Artemieva, I.; Thybo, H.

    2012-04-01

    Subsidence of continental rift basins is caused by thinning of the crust and lithospheric mantle together with isostatic compensation for the extra load of sediments and thermal relaxation. It is generally believed that the final depth of rift basins is primarily controlled by the amount of stretching and that other processes, such as rheology and sedimentation, only have secondary influence. However, we show that the relative rheological strength of faults inside and outside rift zones exerts substantial control on the volume of the final rift basin (by more than a factor of 3) even for the same amount of extension (total or inside the rift zone). This surprising result is mainly caused by irreversible deepening of the rift graben during stretching due to lower crustal flow when the faults in the rift zone are weak, whereas the effect is negligible for strong faults. Relatively strong faults inside the rift zone lead to substantial stretching of adjacent crust, and we find that long term stretching outside the main rift zone may explain the formation of wide continental margins, which are now below sea level. We also demonstrate that fast syn-rift erosion/sedimentation rates can increase the final volume of rift basins by up to a factor of 1.7 for weak crustal faults, whereas this effect is insignificant for strong faults inside the rift zone. These findings have significant implications for estimation of stretching factors, tectonic forces, and geodynamic evolution of sedimentary basins around failed rift zones.

  10. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  11. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ≈ N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  12. Rifting on Venus: Implications for lithospheric structure

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1985-01-01

    Lithospheric strength envelopes on Venus are reviewed and their implications for large scale rifting are discussed. Their relationship to crustal thicnesses and thermal gradients are explored. Also considered are the implications of a theory for rift formation.

  13. Colorado Basin Structure and Rifting, Argentine passive margin

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  14. Investigating the Influence of Pre-Existing Basement Structures on the Propagation of the Malawi Rift using SRTM, RADARSAT, and Aeromagnetic Data

    NASA Astrophysics Data System (ADS)

    Robertson, K.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2015-12-01

    The Malawi rift is a Neogene, amagmatic rift located where the Western Branch of the East Africa Rift System (EARS) terminates. In more mature rifts, magmatism is frequently recognized as a driving factor in rift propagation; however, the amagmatic nature of the Malawi rift permits investigation into the relationship between pre-existing structures and current rift propagation, without the influence of magmatism. To map surface structures, we used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and RADARSAT imagery over southern Malawi. To process the SRTM data, we applied edge enhancing filters and derivatives, and extracted topographic profiles to examine scarp height and minimum vertical exposed displacement. We mapped morphologically-defined structures by filtering the RADARSAT imagery using an enhanced lee filter to reduce noise and a Laplacian filter for edge enhancement. To examine Precambrian basement structures, we filtered aeromagnetic data using vertical and horizontal derivatives, tilt derivative, and analytic signal to create magnetic anomaly maps. Surface mapping indicated three primary trends in the southern Malawi rift: NW-SE (dominant), NE-SW, both of which are most likely the remnants of Mesozoic Karoo rifting, and a NNE-SSW trend seen in Neogene rifting. The Precambrian basement structural mapping also reveals three primary trends: WNW-ESE, NE-SW, and NW-SE. Ductile deformation causes the dominant basement fabric to change, switching polarity as the rift propagated southward from NE-SW orientation to NW-SE and WNW-ESE orientations, and back to a NE-SW orientation. In general, the surficial structures follow this trend. In some areas, however, the more recent rifting cut across pre-existing basement structures, possibly due to rheological heterogeneities or selective strain partitioning. Nonetheless, pre-existing basement structures played a critical role in strain localization and fault propagation in Malawi. However

  15. 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin

    NASA Astrophysics Data System (ADS)

    Jegen, Marion; Avdeeva, Anna; Berndt, Christian; Franz, Gesa; Heincke, Björn; Hölz, Sebastian; Neska, Anne; Marti, Anna; Planert, Lars; Chen, J.; Kopp, Heidrun; Baba, Kiyoshi; Ritter, Oliver; Weckmann, Ute; Meqbel, Naser; Behrmann, Jan

    2016-06-01

    The Namibian continental margin marks the starting point of the Tristan da Cunha hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African margin is therefore ideal to study the interaction of hotspot volcanism and rifting, which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data image electromagnetically the landfall of Walvis Ridge. Two large-scale high resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions related to hot-spot volcanism and rifting. The large-scale resistivity anomalies correlate with seismically identified lower crustal high velocity anomalies attributed to magmatic underplating along 2-D offshore seismic profiles. One of the high resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width and 300 km to 400 km length at 120° angles in the lower crust. One of the arms stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting. A second, smaller anomaly of 50 km width underneath the continent ocean boundary may be attributed to magma ascent during rifting. We attribute a low resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to the presence of a rift basin that formed prior to the rifting.

  16. The ear: Diagnostic imaging

    SciTech Connect

    Vignaud, J.; Jardin, C.; Rosen, L.

    1986-01-01

    This is an English translation of volume 17-1 of Traite de radiodiagnostic and represents a reasonably complete documentation of the diseases of the temporal bone that have imaging manifestations. The book begins with chapters on embryology, anatomy and radiography anatomy; it continues with blood supply and an overview of temporal bone pathology. Subsequent chapters cover malformations, trauma, infections, tumors, postoperative changes, glomus tumors, vertebasilar insufficiency, and facial nerve canal lesions. A final chapter demonstrates and discusses magnetic resonance images of the ear and cerebellopontine angle.

  17. Inner ear decompression sickness.

    PubMed

    Farmer, J C; Thomas, W G; Youngblood, D G; Bennett, P B

    1976-09-01

    With recent increases in commercial, military, and sport diving to deeper depths, inner ear injuries during such exposures have been encountered more frequently and noted during several phases of diving: during compression, at stable deep depths, with excessive noise exposure in diving, and during decompression. The pathophysiology of these injuries differs, depending upon the phase of diving in which the injuries occur. In this report, 23 cases of hearing loss, tinnitus, and/or vertigo occurring during or shortly after decompression are presented. Thirteen of these cases occurred in helium-oxygen dives involving a change to air during the latter stages of decompression. A significant correlation is present between prompt recompression treatment, relief of symptoms, and lack of residual deficits. Current knowledge indicates that the management of otologic decompression sickness should include: 1. prompt recompression to at least 99 feet deeper than the symptom onset depth; 2. recompression using the previous helium-oxygen mixture when the injuries occur during or shortly after a switch from helium-oxygen to air during the latter stages of decompression; 3. the use of parenteral diazepam for symptom relief and cyclic inhalations of oxygen enriched treatment gases; and 4. the avoidance of further diving by divers who exhibit permanent inner ear injuries after the acute symptoms have subsided.

  18. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  19. Wax blockage in the ear (image)

    MedlinePlus

    The ear canal is lined with hair follicles and glands that produce a waxy oil called cerumen. Sometimes the ... wax than can be easily excreted out the ear. This extra wax may harden within the ear ...

  20. Otoscopic exam of the ear (image)

    MedlinePlus

    ... intrument which is used to look into the ear canal. The ear speculum (a cone-shaped viewing piece of the otoscope) is slowly inserted into the ear canal while looking into the otoscope. The speculum ...

  1. Middle ear infection (otitis media) (image)

    MedlinePlus

    ... is an inflammation and/or infection of the middle ear. Acute otitis media (acute ear infection) occurs ... or viral infection of the fluid of the middle ear, which causes production of fluid or pus. ...

  2. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  3. Successful Bilateral Composite Ear Reattachment

    PubMed Central

    2014-01-01

    Summary: A successful bilateral ear composite graft nonmicrosurgical reattachment is presented. In cases where suitable vessels are unavailable for microsurgical revascularization, the reconstructive challenge can be formidable for salvaging the unique anatomic and aesthetic structure of the ear. The case is presented of an 18-year-old woman who was a victim of an assault wherein both of her ears were intentionally amputated by her attacker. She underwent successful surgical reattachment followed by a postoperative regimen of hyperbaric oxygen, cooling, and meticulous wound care. The patient achieved 100% survival of her left ear graft and 95% survival of her right ear graft. Clinical photographs at 18 months are presented, along with a discussion of the possible implications for other reconstructive applications. PMID:25289367

  4. Ear Reconstruction in Young Children.

    PubMed

    Reinisch, John

    2015-12-01

    The use of a porous high-density polyethylene ear implant, rather than a costal cartilage framework, allows ear reconstruction in young children before they enter school. The fact that the growth of the normal ear matures early allows for good symmetry. If the implant is covered completely with a large, well-vascularized superficial parietal fascia flap and appropriately color-matched skin, an ear with excellent projection and definition can be obtained with minimal complications and long-term viability. Ear reconstruction in young children is preferred by the author because the necessary fascial flap coverage is thinner, easier to harvest than in older patients, and can be done in a single outpatient procedure with minimal discomfort or psychological trauma. PMID:26667634

  5. Albertine Rift, Uganda: Deformation-Sedimentation-Erosion relationships

    NASA Astrophysics Data System (ADS)

    Simon, Brendan; Guillocheau, François; Robin, Cécile; Dauteuil, Olivier; Nalpas, Thierry; Bourges, Philippe; Bez, Martine; Lays, Philippe

    2014-05-01

    The Albertine Rift is the northern part of the western branch of the East African Rift that runs over a distance of around 2000 km from Lake Albert in the north to Lake Malawi in the south. Lake Albert Basin is assumed to be a classical half-graben initiated around 12 Ma and oriented NNW-SSW, with a major northwesterly bounding fault - the Bunia fault - located along the western Congolese shoreline (Ebinger, 1989; Pickford & al., 1993). The aim of this study is to understand the relationships between deformation, erosion, and sedimentation of the rift through time by restoring (1) the timing and amplitude of vertical movements (subsidence, uplift), (2) the geometry and paleo-environmental evolution (including climate) of the sedimentary infilling and (3) the geomorphological evolution of the surrounding area and associated erosion budget. Seismic data and outcrops studies suggest a much more complex history than previously described. (1) The age model, mainly based on mammal fossils (Pickford et al., 1993; Van Damme and Pickford, 2003), is debated, but the early stage of the rift is probably Middle Miocene. (2) No half-graben geometry has been characterized: the infilling consists of juxtaposed tabular compartments with sharp thicknesses variations along bounding faults, in response of either low rate extensional or combined strike-slip/extensional movements. The following onshore-offshore evolution is proposed: - Middle Miocene (~ 13 Ma) to Late Miocene (?): rifting 1 - differential subsidence along N60° faults - major deepening from fluvio-deltaic to deep lacustrine environments (maximum flooding at 8 Ma) - uplift, erosion and reworking of weathered profiles - first generation of pediments. - Late Miocene (?) to Late Pliocene (~ 3 Ma): quiescence phase - homogenous subsidence - lacustrine clays interbedded with sandy flood-lobes - uplift, erosion and reworking of ferruginous laterite (iron duricrusts) - second generation of pediments. - Late Pliocene (~ 3Ma) to

  6. Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey W.; McNeill, Lisa C.; Bull, Jonathan M.; Bell, Rebecca E.; Gawthorpe, Robert L.; Henstock, Timothy J.; Christodoulou, Dimitris; Ford, Mary; Taylor, Brian; Sakellariou, Dimitris; Ferentinos, George; Papatheodorou, George; Leeder, Mike R.; Collier, Richard E. LI.; Goodliffe, Andrew M.; Sachpazi, Maria; Kranis, Haralambos

    2016-05-01

    The Corinth Rift, central Greece, enables analysis of early rift development as it is young (<5 Ma) and highly active and its full history is recorded at high resolution by sedimentary systems. A complete compilation of marine geophysical data, complemented by onshore data, is used to develop a high-resolution chronostratigraphy and detailed fault history for the offshore Corinth Rift, integrating interpretations and reconciling previous discrepancies. Rift migration and localization of deformation have been significant within the rift since inception. Over the last circa 2 Myr the rift transitioned from a spatially complex rift to a uniform asymmetric rift, but this transition did not occur synchronously along strike. Isochore maps at circa 100 kyr intervals illustrate a change in fault polarity within the short interval circa 620-340 ka, characterized by progressive transfer of activity from major south dipping faults to north dipping faults and southward migration of discrete depocenters at ~30 m/kyr. Since circa 340 ka there has been localization and linkage of the dominant north dipping border fault system along the southern rift margin, demonstrated by lateral growth of discrete depocenters at ~40 m/kyr. A single central depocenter formed by circa 130 ka, indicating full fault linkage. These results indicate that rift localization is progressive (not instantaneous) and can be synchronous once a rift border fault system is established. This study illustrates that development processes within young rifts occur at 100 kyr timescales, including rapid changes in rift symmetry and growth and linkage of major rift faults.

  7. Factors controlling depth of continental rifts

    NASA Astrophysics Data System (ADS)

    Elesin, Y.; Artemieva, I. M.; Thybo, H.

    2011-12-01

    Rifting is a fundamental plate tectonic process, which forms elongated, narrow tectonic depressions in the Earth's surface and, eventually, may break continental plates to form new oceanic lithosphere. Subsidence of rift basins is caused by thinning of the crust and lithospheric mantle together with isostatic compensation for the extra load of sediments and thermal relaxation. It is generally believed that the final depth of rift basins is primarily controlled by the amount of stretching and that other processes only have secondary influence. However, we show that the relative rheological strength of faults inside and outside rift zones exerts substantial control on the volume of the final rift basin (by more than a factor of 3) even for the same amount of extension (total or inside the rift zone). This surprising result is mainly caused by irreversible deepening of the rift graben during stretching due to lower crustal flow when the faults in the rift zone are weak, whereas the effect is negligible for strong faults. Relatively strong faults inside the rift zone lead to substantial stretching of adjacent crust, and we find that long term stretching outside the main rift zone may explain the formation of wide continental margins, which are now below sea level. We also demonstrate that fast syn-rift erosion/sedimentation rates can increase the final volume of rift basins by up to a factor of 1.7 for weak crustal faults, whereas this effect is insignificant for strong faults inside the rift zone. These findings have significant implications for estimation of stretching factors, tectonic forces, and geodynamic evolution of sedimentary basins around failed rift zones.

  8. Surgical correction of constricted ear combined with Stahl's ear.

    PubMed

    Bi, Ye; Lin, Lin; Yang, Qinhua; Pan, Bo; Zhao, Yanyong; He, Leren; Jiang, Haiyue

    2015-07-01

    Constricted ear combined with Stahl's ear is a rare ear deformity, which is a kind of complex congenital auricular deformity. From 1 January 2007 to 1 January 2014, 19 patients with constricted ear combined with Stahl's ear (Spock ear) were enrolled in this study, most of which were unilaterally deformed. To correct the deformity, a double Z-shaped skin incision was made on the posterior side of the auricle, with the entire layer of cartilage cut parallel to the helix traversing the third crus to form a fan-shaped cartilage flap. The superior crura of the antihelix were shaped by the folding cartilage rim. The cartilage of the abnormal third crus was made part of the new superior crura of antihelix, and the third crus was eliminated. The postoperative aesthetic assessment of the reshaped auricle was graded by both doctors and patients (or their parents). Out of the 19 patients, the number of satisfying cases of the symmetry, helix stretch, elimination of the third crus, the cranioauricular angle, and the substructure of the reshaped ears was 14 (nine excellent and five good), 16 (six excellent and 10 good), 17 (eight excellent and nine good), 15 (five excellent and 10 good), and 13 (two excellent and 11 good), respectively. With a maximum of a 90-month follow-up, no complication was observed. The results of the study suggested that this rare deformity could be corrected by appropriate surgical treatment, with a satisfied postoperative appearance.

  9. Interaction between an incipient rift and a cratonic lithosphere : The North Tanzania Rift seen from some seismic tools

    NASA Astrophysics Data System (ADS)

    Gautier, Stéphanie; Plasman, Matthieu; Tiberi, Christel; Lopez, Marie; Peyrat, Sophie; Perrot, Julie; Albaric, Julie; Déverchère, Jacques; Deschamps, Anne; Ebinger, Cindy; Roecker, Steven; Mulibo, Gabriel; Wambura, Richard Ferdinand; Muzuka, Alfred; Msabi, Michael; Gama, Remigius

    2016-04-01

    The North Tanzania part of the East African Rift is the place of an incipient break up of the lithosphere. This continental rifting happens on the edge of the Tanzanian craton, and their interaction leads to major changes in the surface deformation. The evolution of the rift and its morphology is strongly linked to the inherited structures, particularly the Proterozoic belts and the craton itself. It is thus of prime interest to image the structure of the craton edges to fully understand its impact on the localisation of the current deformation at the surface. Since 2007 different multidisciplinary projects have taken place in this area to address this question. We present here a work based on a collaborative work between French, American and Tanzanian institutes that started in 2013. About 35 seismological stations were installed for 2 years in the Natron lake region, and 10 short period instruments were added for 9 months in the Manyara area to record local and telesismic events. We have analysed more than a hundred teleseismic events to compute the receiver function, and we finally obtain a Moho map of the region as well as azimuthal distribution of converted phases. The stations located on the edge of the rift and near the craton present a continuous evolution of their crustal pattern in the RF signal. Especially, we identify a clear phase at about 7s for those stations that corresponds to an interface separating a normal upper mantle from a very slow mantle at about 70 km depth. We first model those receiver functions to perfectly fit the signal, and more precisely the transverse component, which shows a strong and coherent pattern. Second, the local seismic network we have installed for 9 months in Manyara region advantageously completed the 2007 SEISMOTANZ network. In this part of the rift the seismicity is deep (20-30 km) and clustered without any magmatism record at the surface, opposite to Natron area. We could then relocalize the deep seismicity observed

  10. Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV), a mosquito-borne virus in the Bunyaviridae family and Phlebovirus genus, causes RVF, a disease of ruminants and man, endemic in Sub-Saharan African countries. However, outbreaks in Yemen and Saudi Arabia demonstrate the ability for RVFV to spread into virgin territory...

  11. The role of pre-existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda

    NASA Astrophysics Data System (ADS)

    Katumwehe, Andrew B.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-04-01

    We integrated Shuttle Radar Topography Mission (SRTM) Digital Elevation Models (DEM), airborne magnetic, radiometric and three-dimensional Full Tensor Gravity Gradiometry (3D-FTG) data to investigate the role of Precambrian structures in the evolution of the largely amagmatic Miocene-Recent aged Albertine and Rhino grabens in Uganda. These grabens represent the northern segment of the Western Branch of the East African Rift System (EARS). The two NE-trending grabens are connected by a right-stepping transfer zone and they extend within the Archean-Paleoproterozoic Northeast Congo block which represents the northeastern extension of the Congo craton. Our results show the following and highlight the importance of pre-existing structures in the evolution of continental rift systems: (1) The NE-extent of the Albertine full-graben is controlled by NE-trending Precambrian fabric and the graben terminates at its northeastern end when it encounters a multiply folded Precambrian basement terrain with poorly-developed NW-trending structural grain. Additionally, the northeastern termination of the Albertine graben coincides with the presence of NW-trending right-stepping high-density bodies within the Precambrian terrain. (2) The transfer zone between the Albertine and Rhino grabens is controlled by NE-trending Precambrian structures which might have facilitated the development of relay ramp faults. (3) Strain localization within the better-developed southeastern border fault of the Rhino half-graben is facilitated by the presence of Precambrian structures better aligned in a NE-direction in the southeastern part of the basin compared to its northwestern part. (4) Further to the northeast, the Rhino graben is segmented and transitions into a narrower ENE-trending half-graben with a better-developed border fault on its northwestern side. This segmentation coincides with the presence of N-trending Precambrian structures. (5) The Rhino graben terminates farther northeast against

  12. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  13. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  14. Magmatism in rifting and basin formation

    NASA Astrophysics Data System (ADS)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  15. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  16. Neotectonic Stress Analysis Of The Red Sea Rift By Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Dwivedi, S. K.; Hayashi, D.

    2006-12-01

    The Red Sea is a tectonic rift that was formed in the late Oligocene-early Miocene when the originally connected African and Arabian land masses broke apart. At first it was a continental rift, then, as Arabia drifted away, developed into an intercontinental system that today separates the independent Arabian plate from the African plate. The Red Sea rift is part of an extensive global system of faults running approximately north to south. In the present study, numerical modeling on the Saudi Arabian seismic reflection profile is carried out to examine the neotectonic stress field in the south western Red Sea-Arabian plate margin to reveal kinetics of active fault system using two-dimensional elastic finite element method under plane strain condition. The Mohr-Coulomb failure criterion has been adopted to analyze the relationship between stress distribution and fault formation. A Saudi Arabian reflection profile is adopted for the modeling and extensional displacement boundary condition is imposed along NE-SW direction. Our result shows the extensional displacement and physical properties of rock layer control the distribution, orientation, magnitude and intensity of the stress and fault development. According to the calculated stress patterns of failure elements, normal faults develop in the Red Sea and Arabian Plate margin. The results from our simulation are in good agreement with those of the seismicity, focal mechanism solution of earthquakes and active faulting in the Red Sea. Key words: Red Sea rift, numerical modeling, extension, neotectonics

  17. GPS constraints on broad scale extension in the Ethiopian Highlands and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Birhanu, Yelebe; Bendick, Rebecca; Fisseha, Shimeles; Lewi, Elias; Floyd, Michael; King, Robert; Reilinger, Robert

    2016-07-01

    Measurements from GPS sites spanning the Ethiopian Highlands, Main Ethiopian Rift, and Somali Platform in Ethiopia and Eritrea show that present-day finite strain rates throughout NE Africa can be approximated at the continent scale by opening on the MER. Most sites in the Ethiopian Highlands are consistent with the motion of the Nubian plate at the level of 1 mm/yr with 95% confidence. However, sites at least as far as 60 km west of the rift show higher velocities relative to the stable Nubian frame of 1-2 mm/yr, requiring a combination of localized and distributed deformation to accommodate the African extensional domain. Off-rift velocities are consistent with ongoing strain related to either high gravitational potential energy or intrusive magmatism away from midrift magmatic segments either on the western rift margin or within the Ethiopian Highlands, especially when combined with likely rheological differences between the Ethiopian Rift and Highlands. Velocities from the Somali Platform are less well determined with uncertainties and residuals from a Somali frame definition at the level of 2-3 mm/yr but without spatially correlated residuals.

  18. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2016-09-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  19. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  20. Multiple Osteomas in Middle Ear

    PubMed Central

    Li, Yongxin; Li, Qiuhuan; Gong, Shusheng; Liu, Honggang; Yu, Zilong; Zhang, Luo

    2012-01-01

    Since the first description of middle ear osteomas by Thomas in 1964, only few reports were published within the English literatures (Greinwalid et al., 1998; Shimizu et al., 2003; Cho et al., 2005; and Jang et al., 2009), and only one case of the multiple osteomas in middle ear was described by Kim et al., 2006, which arose from the promontory, lateral semicircular canal, and epitympanum. Here we describe a patient with multiple middle ear osteomas arising from the promontory, incus, Eustachian tube, and bony semicanal of tensor tympani muscle. This patient also contracted the chronic otitis media in the ipsilateral ear. The osteomas were successfully removed by performing type III tympanoplasty in one stage. PMID:22928138

  1. Keloid above the ear (image)

    MedlinePlus

    Keloids are overgrowths of scar tissue that follow skin injuries. Keloids may appear after such minor trauma as ear piercing. Dark skinned individuals tend to form keloids more readily than lighter skinned individuals.

  2. What Is an Ear Infection?

    MedlinePlus

    ... Quizzes Kids' Dictionary of Medical Words En Español What Other Kids Are Reading Back-to-School Butterflies? ... Got Homework? Here's Help White House Lunch Recipes What Is an Ear Infection? KidsHealth > For Kids > What ...

  3. Avoiding Infection After Ear Piercing

    MedlinePlus

    ... Health Issues Conditions Abdominal ADHD Allergies & Asthma Autism Cancer Chest & Lungs Chronic Conditions Cleft & Craniofacial Developmental Disabilities Ear Nose & Throat Emotional Problems Eyes Fever From Insects or Animals Genitals and Urinary Tract Glands & Growth ...

  4. Middle Ear Infections (For Parents)

    MedlinePlus

    ... in the first 2 to 4 years of life for several reasons: Their eustachian tubes are shorter and more horizontal than those of adults, which lets bacteria and viruses find their way into the middle ear more ...

  5. Ear identification: a pilot study.

    PubMed

    Cameriere, Roberto; DeAngelis, Danilo; Ferrante, Luigi

    2011-07-01

    Although several papers have recently been devoted to establishing the validity of identification using the ear, this part of the human body still remains underexploited in forensic science. The perfect overlap of two images of the same ear is not really possible, but photographs of the ears as a reliable means of inferring the identity of an individual are poorly treated in the literature. In this study, we illustrate a simple, reproducible method, which divides the photograph of an ear into four parts-helix, antihelix, concha, and lobe-by means of a suitable grid of four straight lines. Although the division does not follow exact anatomical features, their edges do join anatomical points which are more easily identifiable. Measurement of certain areas of these parts can be combined to produce a code allowing personal identification. This method produces false-positive identifications of <0.2%. Last, the repeatability and reproducibility aspects of the method are tested.

  6. "Swimmer's Ear" (Otitis Externa) Prevention

    MedlinePlus

    ... Work: Healthy Swimming Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... you requested has moved to Ear Infections. Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ...

  7. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  8. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  9. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  10. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and... CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An ear... ear. The amount of reflected or scattered light as indicated by this device is used to measure...

  11. Abrupt plate accelerations shape rifted continental margins

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength–velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  12. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  13. Buried troughs, grabens and rifts in Sudan

    NASA Astrophysics Data System (ADS)

    Salama, R. B.

    The deep lineaments and shear patterns of Sudan follow two main directions :NNW (Red Sea trend) and ENE (Gulf of Aden trend). Precambrian mobile belts trend NE and NW. Palaezoic(?) sediments occupy NE-SW aligned grabens. Mesozoic continental sediments with NW paleotrends were deposited in two major depressions also aligned NW. Cainozoic uplift and volcanism was associated with domal uplifts along NE and SE axes. Fracturing and faulting in NW and NE directions resulted in the formation of NW-SE fault bounded grabens ranging in depth from 1 to 11 km. Extending from the western boundaries of Sudan to the eastern borders with Ethiopia, the Sudanese Cainozoic rift systemforms the largest rift system in Africa and includes: (a) Bahr E1 Arab Rift, (b) White Nile Rift, (c) Blue Nile Rift, (d) River Atbara Rift and (e) Wadi El Kuu Rift. The grabens and trouhs within the rift system form the main groundwater basins of Sudan. The discovery of oil in three of these rifts will encourage the exploration for oil in the others and a search for similar structures in the northern areas of Sudan.

  14. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time. PMID:27437571

  15. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  16. Rift processes and crustal structure of the Amundsen Sea Embayment, West Antarctica, from 3D potential field modelling

    NASA Astrophysics Data System (ADS)

    Kalberg, Thomas; Gohl, Karsten; Eagles, Graeme; Spiegel, Cornelia

    2015-12-01

    The Amundsen Sea Embayment of West Antarctica is of particular interest as it provides critical geological boundary conditions in better understanding the dynamic behavior of the West Antarctic Ice Sheet, which is undergoing rapid ice loss in the Amundsen Sea sector. One of the highly debated hypothesis is whether this region has been affected by the West Antarctic Rift System, which is one of the largest in the world and the dominating tectonic feature in West Antarctica. Previous geophysical studies suggested an eastward continuation of this rift system into the Amundsen Sea Embayment. This geophysical study of the Amundsen Sea Embayment presents a compilation of data collected during two RV Polarstern expeditions in the Amundsen Sea Embayment of West Antarctica in 2006 and 2010. Bathymetry and satellite-derived gravity data of the Amundsen Sea Embayment complete the dataset. Our 3-D gravity and magnetic models of the lithospheric architecture and development of this Pacific margin improve previous interpretations from 2-D models of the region. The crust-mantle boundary beneath the continental rise and shelf is between 14 and 29 km deep. The imaged basement structure can be related to rift basins within the Amundsen Sea Embayment, some of which can be interpreted as products of the Cretaceous rift and break-up phase and some as products of later propagation of the West Antarctic Rift System into the region. An estimate of the flexural rigidity of the lithosphere reveals a thin elastic thickness in the eastern embayment which increases towards the west. The results are comparable to estimates in other rift systems such as the Basin and Range province or the East African Rift. Based on these results, we infer an arm of the West Antarctic Rift System is superposed on a distributed Cretaceous rift province in the Amundsen Sea Embayment. Finally, the embayment was affected by magmatism from discrete sources along the Pacific margin of West Antarctica in the Cenozoic.

  17. Seismic investigation of the southern Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Thompson, Lennox E.

    Competing models exist to explain what caused the Earth's crust to spread apart 29 million years ago to create a region known today as the Rio Grande Rift (RGR). The RGR extends from central Colorado through New Mexico to northern Mexico, near El Paso. The RGR has different geologic features that distinguish it from most other valleys (e.g., the RGR was not cut by a river nor does a river branch upstream). A growing body of evidence shows that geologic activity still occurs in the RGR, with a continuation of faulting, seismicity and widening at a small rate of about 0.3 mm/yr (Woodward , 1977). We map of the seismic velocity structure and crustal thickness using data from the Rio Grande Rift Seismic TRAnsect (RISTRA) experiment and the EarthScope Transportable Array (USArray) dataset. In addition to the data we collected from the RISTRA experiment and USArray dataset, we also acquired receiver functions from the EarthScope Automatic Receiver Survey (EARS) website (http://www.earthscope.org/data) and waveform data from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC). We requested seismograms from the IRIS DMC database where we acquired teleseismic events from Jan 2000 to Dec 2009. This includes 7,259 seismic events with a minimum magnitude of 5.5 and 106,389 continuous waveforms. This data was preprocessed (merged, rotated) using a program called Standing Order of Data (SOD). The RISTRA experiment and the USArray were designed to image crust and mantle structures by computing receiver functions for all data in the Southern Rio Grande Rift (SRGR). We map the crustal thickness, seismic velocity, and mantle structure for the sole purpose to better determine the nature of tectonic activity that is presently taking place and further investigate the regional extension of the Southern Rio Grande Rift (SRGR). Here we present preliminary results of the crustal and velocity structure using the kriging interpolation scheme seem stable

  18. Stratigraphic Modelling of Continental Rifting

    NASA Astrophysics Data System (ADS)

    Mondy, Luke; Duclaux, Guillaume; Salles, Tristan; Thomas, Charmaine; Rey, Patrice

    2013-04-01

    Interlinks between deformation and sedimentation have long been recognised as an important factor in the evolution of continental rifts and basins development. However, determining the relative impact of tectonic and climatic forcing on the dynamics of these systems remains a major challenge. This problem in part derives from a lack of modelling tools capable of simulated high detailed surface processes within a large scale (spatially and temporally) tectonic setting. To overcome this issue an innovative framework has been designed using two existing numerical forward modelling codes: Underworld, capable of simulating 3D self-consistent tectonic and thermal lithospheric processes, and Tellus, a forward stratigraphic and geomorphic modelling framework dedicated to simulating highly detailed surface dynamics. The coupling framework enables Tellus to use Underworld outputs as internal and boundary conditions, thereby simulating the stratigraphic and geomorphic evolution of a realistic, active tectonic setting. The resulting models can provide high-resolution data on the stratigraphic record, grain-size variations, sediment provenance, fluvial hydrometric, and landscape evolution. Here we illustrate a one-way coupling method between active tectonics and surface processes in an example of 3D oblique rifting. Our coupled model enables us to visualise the distribution of sediment sources and sinks, and their evolution through time. From this we can extract and analyse at each simulation timestep the stratigraphic record anywhere within the model domain. We find that even from a generic oblique rift model, complex fluvial-deltaic and basin filling dynamics emerge. By isolating the tectonic activity from landscape dynamics with this one-way coupling, we are able to investigate the influence of changes in climate or geomorphic parameters on the sedimentary and landscape record. These impacts can be quantified in part via model post-processing to derive both instantaneous and

  19. Ear problems and injuries in athletes.

    PubMed

    Cassaday, Kacie; Vazquez, Gerardo; Wright, Justin M

    2014-01-01

    The ear is an unique organ--the principal structure involved in both hearing and balance. Although not common, problems with the ear may be encountered in specific sporting populations. Common conditions affecting the ear in the athlete include otitis externa, an infection of the external ear; external auditory canal exostoses, or abnormal bony growths in the canal; and otitis media, an infection of the middle ear. Given its position on the head, the ear is subject to trauma, often resulting in an auricular hematoma. Divers, due to pressure changes on descent and ascent, are subject to both ear barotrauma and ear decompression sickness. This article will discuss recognition, treatment, and prevention of these conditions affecting the ear in the athlete.

  20. Rio Grande rift: problems and perspectives

    SciTech Connect

    Baldridge, W.S.; Olsen, K.H.; Callender, J.F.

    1984-01-01

    Topics and ideas addressed include: (1) the regional extent of the Rio Grande rift; (2) the structure of the crust and upper mantle; (3) whether the evidence for an axile dike in the lower crust is compelling; (4) the nature of faulting and extension in the crust; and (5) the structural and magmatic development of the rift. 88 references, 5 figures.

  1. Evidence of Ancient Rifts Beneath Texas

    NASA Astrophysics Data System (ADS)

    Irie, K.; Velasco, A. A.

    2011-12-01

    Continental rifts are defined as geological features where Earth's lithosphere is pulled away by surface expansion of the Earth. Their physiographic features include linear rift valleys associated with active volcanism. Many rifts fail to split a continent and ancient rifts that failed to split can be found by using seismic waves to image these ancient structures. Using seismic data collected by EarthScope USArray stations in Texas, we calculate teleseismic receiver functions and utilized surface wave dispersion curves to simultaneously invert for the velocity structure beneath each seismic station. With the calculated receiver functions, we generate maps to show preliminary 3-D crust/upper mantle boundary structure, the velocity ratio of P and S waves, and the S-wave velocity structure. We expect to characterize the ancient rift zones that exist in Texas and compare these results with the Rio Grande Rift in New Mexico. The goal for this comparison is to determine whether Rio Grande rift is still active or doomed to be another failed rift.

  2. Detection and Response for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  3. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  4. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  5. Ear disorders in scuba divers.

    PubMed

    Azizi, M H

    2011-01-01

    History of underwater diving dates back to antiquity. Breath-hold technique in diving was known to the ancient nations. However, deep diving progressed only in the early decades of the 19th century as the result of advancements in efficient underwater technologies which subsequently led to invention of sophisticated sets of scuba diving in the 20th century. Currently, diving is performed for various purposes including commercial, recreational, military, underwater construction, oil industry, underwater archeology and scientific assessment of marine life. By increasing popularity of underwater diving, dive-related medical conditions gradually became more evident and created a new challenge for the health care professionals, so that eventually, a specialty the so-called "diving medicine" was established. Most of the diving-associated disorders appear in the head and neck. The most common of all occupational disorders associated with diving are otologic diseases. External otitis has been reported as the most common otolaryngologic problem in underwater divers. Exostosis of the external ear canal may be formed in divers as the result of prolonged diving in cold waters. Other disorders of the ear and paranasal sinuses in underwater divers are caused by barometric pressure change (i.e., barotraumas), and to a lesser extent by decompression sickness. Barotrauma of the middle ear is the most prevalent barotrauma in divers. The inner ear barotraumas, though important, is less common. The present paper is a brief overview of diving-related ear disorders particularly in scuba divers.

  6. Two-stage rifting in the Kenya rift: implications for half-graben models

    NASA Astrophysics Data System (ADS)

    Mugisha, F.; Ebinger, C. J.; Strecker, M.; Pope, D.

    1997-09-01

    The Kerio sub-basin in the northern Kenya rift is a transitional area between the southern Kenya rift, where crustal thickness is 30 km, and the northern Kenya rift, where crustal thickness is 20 km. The lack of data on the shallow crustal structure, geometry of rift-bounding faults, and rift evolution makes it difficult to determine if the crustal thickness variations are due to pre-rift structure, or along-axis variations in crustal stretching. We reprocessed reflection seismic data acquired for the National Oil Corporation of Kenya, and integrated results with field and gravity observations to (1) delineate the sub-surface geometry of the Kerio sub-basin, (2) correlate seismic stratigraphic sequences with dated strata exposed along the basin margins, and (3) use new and existing results to propose a two-stage rifting model for the central Kenya rift. Although a classic half-graben form previously had been inferred from the attitude of uppermost strata, new seismic data show a more complex form in the deeper basin: a narrow full-graben bounded by steep faults. We suggest that the complex basin form and the northwards increase in crustal thinning are caused by the superposition of two or more rifting events. The first rifting stage may have occurred during Palaeogene time contemporaneous with sedimentation and rifting in northwestern Kenya and southern Sudan. The distribution of seismic sequences suggests that a phase of regional thermal subsidence occurred prior to renewed faulting and subsidence at about 12 Ma after the eruption of flood phonolites throughout the central Kenya rift. A new border fault developed during the second rifting stage, effectively widening the basin. Gravity and seismic data indicate sedimentary and volcanic strata filling the basin are 6 km thick, with up to 4 km deposited during the first rifting stage.

  7. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.

  8. 3D finite element model of the chinchilla ear for characterizing middle ear functions.

    PubMed

    Wang, Xuelin; Gan, Rong Z

    2016-10-01

    Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis. PMID:26785845

  9. The Role of Rheological Weakening in the Formation of Narrow Rifts on Venus

    NASA Astrophysics Data System (ADS)

    Martone, Alexis; Montesi, Laurent

    2015-11-01

    The rift zones on Venus are remarkably similar to those seen on Earth, despite Venus’ current lack of plate tectonics. The Devana Chasma rift on Beta Regio accommodates extension in a narrow zone and is associated with volcanism. As a result, it has often been compared to the East African Rift (Burov and Gerya, 2014; Foster and Nimmo, 1996). It has been suggested that plate boundaries develop on Earth because an interconnected network of localized shear zones (areas of concentrated weakening) can form through the lithosphere (Regenauer-Lieb and Yuen, 2001). If Venusian rifts, such as Devana Chasma, are similar to terrestrial plate boundaries, then it is possible that shear zones should form in those locations.Montesi (2013) showed that water-bearing minerals, such as micas, which are probably not present on Venus, largely dominate weakening in the Earth’s crust. On Venus, melts are likely to play the role of the weak phase that allows for localization, due to its low viscosity relative to host rocks. Weakening due to grain size reduction is also possible if a dislocation-accommodated grain boundary sliding mechanism is active on Venus (Montesi, 2013).Rift stability for Venus-like conditions has been analyzed using the model of Buck (1991). This model links the evolution of lithospheric strength with the style of rifting (wide, narrow, or metamorphic core complex). The crust and mantle are assumed to be dry diabase and dry olivine, respectively (diabase rheological parameters are from Mackwell et. al. (1998), olivine rheological parameters are from Hirth and Kohlstedt (2003)). The crustal thickness and surface heat flux are varied based on estimated values from the literature (Nimmo and McKenzie, 1998; Buck, 2002). Without the inclusion of a weakening mechanism the large majority of model runs predict wide rifts developing. Adding a simplistic exponential decay to the lithospheric yield strength allows for more narrow rift formation to occur. Including explicit

  10. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: a review

    USGS Publications Warehouse

    Behrendt, John C.

    1999-01-01

    The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post

  11. Using Lake Superior Parks to Present the Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Blavascunas, E.

    2014-12-01

    Some of the Midwest's most spectacular scenery occurs near Lake Superior, in places like Pictured Rocks and Apostle Islands National Lakeshores, Isle Royale National Park, Interstate Park, and Porcupine Mountains State Park. These landscapes provide an enormous, but underutilized opportunity for park interpreters and educators to explain some of the most exciting concepts of modern geology. A crucial aspect of doing this is recognizing that many of the rocks and landforms in individual parks are pieces of a huge regional structure. This structure, called the Midcontinent Rift System (MCRS), is a 1.1 billion year old 3000 km (2000 mile) long scar along which the North American continent started to tear apart, just as Africa is splitting today along the East African Rift, but for some reason failed to form a new ocean. Drawing on our experience as researchers and teachers studying the MCRS (Steins) and as an interpreter at Isle Royale National Park (Blavascunas), we seek to give interpreters a brief introduction to MCRS to help them present information about what geologists know already and what they are learning from continuing research. Our goal is to help interpreters visualize how what they see at a specific site fits into an exciting regional picture spanning much of the Midwest.

  12. Structure and kinematics of the Livingstone Mountains border fault zone, Nyasa (Malawi) Rift, southwestern Tanzania

    NASA Astrophysics Data System (ADS)

    Wheeler, Walter H.; Karson, Jeffrey A.

    Reconnaissance mapping of the Livingstone Mountains border fault zone (LMBFZ) at the northern end of the Nyasa (Malawi) Rift in SW Tanzania constrains the geometry and movement history of this typical rift border fault. The fault is a narrow zone of complex brittle deformation, striking 320°, that overprints and reactivates an older ductile shear zone. Long, straight, NW-trending border fault segments are offset by minor NE-trending faults. These two orthogonal fault sets integrate along strike to produce an overall curved fault trace that is concave towards a major depositional basin in the rift. A typical section through the fault zone shows an E to W progression from gneissic country rock through ductilely deformed country rock, into a zone overprinted by closely spaced fractures and grading into an intensely fractured, massive, flinty, aphanitic mylonite band at the lakeshore. Pseudotachylite veins, probably generated during seismic movement on the border fault, are common within and near the aphanitic mylonite. Slickensides indicate dextral oblique-slip, whereas shear belts and rolled porphyroclasts with complex tails in the older ductile shear zone indicate sub-horizontal sinistral motion. The adjacent rift basin is typical of other East African Rift Basins, and contains at least 4 km of Recent to perhaps Mesozoic sediment. Whereas the minimum net slip on the LMBFZ, in the dominant slickenside direction, is on the order of 10 km, regional geologic considerations suggest that dominantly strike-slip motion preceded the oblique-slip phase that produced the LMBFZ and the adjacent rift basin.

  13. Pre-existing discontinuities and oblique rifting in the Kenya Rift: Comparisons with analogue models.

    NASA Astrophysics Data System (ADS)

    Rolet, J.; Gloaguen, R.; Gloaguen, R.; Dooley, T.; McClay, K.

    2001-12-01

    Oblique rift structures such as the SSE-trending Aswa Transverse Zone in the Kenya rift are poorly understood and are rarely taken into account in geometric and kinematic models for the origin of this rift zone. However, remote sensing demonstrates that transverse structures are quite numerous and have a significant influence on the geometry and segmentation of the rift and the development of faults within or at the boundaries of the oblique zones. The importance of these transverse zones varies depending on their orientation and position with respect to the main rift. The origin of these oblique zones can be directly related to pre-existing fabrics and shear zones in the Precambrian basement and thus act as mechanically distinct structural domains during later extensional events. In order to assess the importance and role of these oblique structures we used optical (SPOT, LANDSAT) and microwave (RADARSAT, ERS) data combined with field observations and measurements. Collected structural data were then compared with scaled physical models of orthogonal and oblique rifting in order to refine the rift model. The data and comparison with physical models suggest that these transverse zones are best described as oblique rift zones where the rift border faults are parallel to the basement grain whereas intra-rift fault systems form orthogonal to the extension direction. This model also implies that the present day extension direction in Kenya is oriented E-W.

  14. Physiological functioning of the ear and masking

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physiological functions of the ear and the role masking plays in speech communication are examined. Topics under investigation include sound analysis of the ear, the aural reflex, and various types of noise masking.

  15. How to Prevent Painful Swimmer's Ear

    MedlinePlus

    ... fullstory_159452.html How to Prevent Painful Swimmer's Ear Simple steps after a day in the water ... 2016 SATURDAY, June 18, 2016 (HealthDay News) -- Swimmer's ear -- a common summertime problem among children -- is easy ...

  16. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  17. Flexural modeling of the midcontinent rift

    SciTech Connect

    Nyquist, J.E.; Wang, H.F.

    1988-08-10

    A basement profile obtained from seismic reflection data has been used to constrain a two-dimensional flexural model of basin formation for the Midcontinent Rift at a latitude of 45/sup 0/25'N. Model parameters included the thickness of the elastic plate, the basin width, and the maximum basin thickness. Modeling suggests that flexure produced a deep narrow basin along the rift axis and that the crust was thinned at the time of basin formation to an elastic thickness of 9.6 km for a plate ruptured by rifting, or 5.7 km for an unbroken plate, with corresponding maximum basin thicknesses of 14 km and 16 km respectively. The plate thickness depends most strongly on the basin width and is well constrained by the seismic data, although erosion may have narrowed the basin. The maximum basin thickness is poorly constrained because of the lack of seismic data for depths greater than about 10 km and because the strata at the center of the rift have been disturbed by a postrift compressional event which produced the St. Croix horst. Despite uncertainty about the basin thickness, the load required to flex the crust to produce the Midcontinent Rift basin is too large to be attributed to the weight of the central flood basalts unless the basin subsided into a fluid less dense than the solidified basalts. On the basis of seismic refraction data and by analogy with other rifts, we hypothesize that a magnetic ''rift pillow'' intruded in the lower crust. The basaltic pillow subsequently solidified to produce a large, high-velocity region in the lower crust, centered under the rift axis, as determined from deep seismic refraction. This crystallization and cooling may be responsible for the ''sag'' phase of rift evolution, as evidenced by laterally widespread occurrence of postvolcanic sediments. copyright American Geophysical Union 1988

  18. The caecilian ear: further observations.

    PubMed

    Wever, E G; Gans, C

    1976-10-01

    The structure of the ear is examined in two species of caecilians, Ichthyophis glutinosus and I. orthoplicatus, and the sensitivity to aerial sounds is assessed in terms of the electrical potentials of the cochlea. The results are in general agreement with previous reports on other caecilian species. PMID:1068485

  19. Adenomatous tumors of the middle ear.

    PubMed

    Pelosi, Stanley; Koss, Shira

    2015-04-01

    Adenomatous tumors are an uncommon cause of a middle ear mass. Clinical findings may be nonspecific, leading to difficulties in differentiation from other middle ear tumors. Controversy also exists whether to classify middle ear adenoma and carcinoid as separate neoplasms, or alternatively within a spectrum of the same pathologic entity. Most adenomatous middle ear tumors are indolent in behavior, with a benign histologic appearance and slowly progressive growth. The mainstay of treatment is complete surgical resection, which affords the greatest likelihood of cure.

  20. Ear recognition based on Gabor features and KFDA.

    PubMed

    Yuan, Li; Mu, Zhichun

    2014-01-01

    We propose an ear recognition system based on 2D ear images which includes three stages: ear enrollment, feature extraction, and ear recognition. Ear enrollment includes ear detection and ear normalization. The ear detection approach based on improved Adaboost algorithm detects the ear part under complex background using two steps: offline cascaded classifier training and online ear detection. Then Active Shape Model is applied to segment the ear part and normalize all the ear images to the same size. For its eminent characteristics in spatial local feature extraction and orientation selection, Gabor filter based ear feature extraction is presented in this paper. Kernel Fisher Discriminant Analysis (KFDA) is then applied for dimension reduction of the high-dimensional Gabor features. Finally distance based classifier is applied for ear recognition. Experimental results of ear recognition on two datasets (USTB and UND datasets) and the performance of the ear authentication system show the feasibility and effectiveness of the proposed approach.

  1. Pediatric Obesity and Ear, Nose, and Throat Disorders

    MedlinePlus

    ... an ENT Doctor Near You Pediatric Obesity and Ear, Nose, and Throat Disorders Pediatric Obesity and Ear, ... all children be regularly screened for snoring. Middle ear infections Acute otitis media (AOM) and chronic ear ...

  2. Investigation of rifting processes in the Rio Grande Rift using data from unusually large earthquake swarms

    SciTech Connect

    Sanford, A.; Balch, R.; House, L.; Hartse, H.

    1995-12-01

    San Acacia Swarm in the Rio Grande Rift. Because the Rio Grande rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to explore the active tectonic processes within continental rifts. We have been studying earthquake swarms recorded near Socorro in an effort to link seismicity directly to the rifting process. For FY94, our research has focused on the San Acacia swarm, which occurred 25 km north of Socorro, New Mexico, along the accommodation zone between the Albuquerque-Belen and Socorro basins of the central Rio Grande rift. The swarm commenced on 25 February 1983, had a magnitude 4.2 main shock on 2 March and ended on 17 March, 1983.

  3. Immunologic Disorders of the Inner Ear.

    ERIC Educational Resources Information Center

    Kinney, William C.; Hughes, Gordon B.

    1997-01-01

    Immune inner ear disease represents a series of immune system mediated problems that can present with hearing loss, dizziness, or both. The etiology, presentation, testing, and treatment of primary immune inner ear disease is discussed. A review of secondary immune inner ear disease is presented for comparison. (Contains references.) (Author/CR)

  4. Can Loud Music Hurt My Ears?

    MedlinePlus

    ... Here's Help White House Lunch Recipes Can Loud Music Hurt My Ears? KidsHealth > For Kids > Can Loud Music Hurt My Ears? Print A A A Text ... up? Oh! You want to know if loud music can hurt your ears . Are you asking because ...

  5. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification. An ear prosthesis is a silicone rubber solid device intended to be implanted to reconstruct the...

  6. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification. An ear prosthesis is a silicone rubber solid device intended to be implanted to reconstruct the...

  7. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification. An ear prosthesis is a silicone rubber solid device intended to be implanted to reconstruct the...

  8. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification. An ear prosthesis is a silicone rubber solid device intended to be implanted to reconstruct the...

  9. 21 CFR 878.3590 - Ear prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear prosthesis. 878.3590 Section 878.3590 Food and... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3590 Ear prosthesis. (a) Identification. An ear prosthesis is a silicone rubber solid device intended to be implanted to reconstruct the...

  10. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    SciTech Connect

    Taha, M.A. )

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recent well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.

  11. 3D Dynamics of Oblique Rift Systems: Fault Evolution from Rift to Break-up

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2014-12-01

    Rift evolution and passive margin formation has been thoroughly investigated using conceptual and numerical models in two dimensions. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, the majority of rift systems that lead to continental break-up during the last 150 My involved moderate to high rift obliquity. Yet, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Even though the model setup is very simple (horizontally layered, no inherited faults), its evolution exhibits a variety of fault orientations that are solely caused by the interaction of far-field stresses with rift-intrinsic buoyancy and strength. Depending on rift obliquity, these orientations involve rift-parallel, extension-orthogonal, and intermediate normal fault directions as well as strike-slip faults. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Model results are in very good agreement with inferences from the well-studied Gulf of Aden and provide testable predictions for other rifts and passive margins worldwide.

  12. LDV measurement of bird ear vibrations to determine inner ear impedance and middle ear power flow

    NASA Astrophysics Data System (ADS)

    Muyshondt, Pieter G. G.; Pires, Felipe; Dirckx, Joris J. J.

    2016-06-01

    The mechanical behavior of the middle ear structures in birds and mammals is affected by the fluids in the inner ear (IE) that are present behind the oval window. In this study, the aim was to gather knowledge of the acoustic impedance of the IE in the ostrich, to be able to determine the effect on vibrations and power flow in the single-ossicle bird middle ear for future studies. To determine the IE impedance, vibrations of the ossicle were measured for both the quasi-static and acoustic stimulus frequencies. In the acoustic regime, vibrations were measured with a laser Doppler vibrometer and electromagnetic stimulation of the ossicle. The impedance of the inner ear could be determined by means of a simple RLC model in series, which resulted in a stiffness reactance of KIE = 0.20.1012 Pa/m3, an inertial impedance of MIE = 0.652.106 Pa s2/m3, and a resistance of RIE = 1.57.109 Pa s/m. The measured impedance is found to be considerably smaller than what is found for the human IE.

  13. Transition From Rift to Drift at Obliquely Divergent Continental Rifts: the Paired Rio Muni (W Africa) and NE Brazilian Margins

    NASA Astrophysics Data System (ADS)

    Turner, J. P.; Green, P. F.; Wilson, P. G.; Westbrook, G. K.; Lawrence, S.

    2005-12-01

    We develop a synoptic model for the breakup and drift of a major sheared continental margin system: the Rio Muni basin and its NE Brazilian counterpart. It relates the evolution of crustal structure determined from seismic interpretation (including gravity-modelling of the deep-imaging PROBE dataset) to the cooling history of this margin system yielded from thermal history data (mainly apatite fission track analysis - AFTAr - and vitrinite reflectance data). Shear margins initiate as a leaky transform fracture system accommodating the oblique (i.e. non-orthogonal) divergence of opposing rifted continental margins. As such, the transition from continental breakup (i.e. rupture) to continental drift (i.e. ocean opening) at shear margins exhibits significant differences from that of the much better understood normally divergent rifts, where the spreading vector is normal to the strike of the opposing rift margins. For example, unlike at normally divergent rifts, continental breakup and drift are separate episodes in the early evolution of shear margins. In Rio Muni-NE Brazil, they are recorded by separate breakup and drift unconformities spanning a 15-20Ma. interval, the time taken for the ocean ridge to traverse the length of the margin before a continuous arm of oceanic crust separated Rio Muni from its Brazilian counterpart. In the Rio Muni basin, the c.70km-wide Ascension Fracture Zone (AFZ) exhibits oblique-slip faulting and synrift half-graben formation that accommodated oblique extension during the period leading up to and immediately following whole-lithosphere failure and continental breakup 117Ma. Gravity-modelling of PROBE seismic profiles reveals a land-locked precursor oceanic basin that preceded full ocean opening and which subsequently was stranded on the African margin. Its existence supports the idea of multiple rift suture lines accommodating episodic breakup and it emphasizes the significance of separate breakup and drift episodes at shear margins

  14. Lithological Influences on Occurrence of High-Fluoride Waters in The Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Olaka, L. A.; Musolff, A.; Mulch, A.; Olago, D.; Odada, E. O.

    2013-12-01

    Within the East African rift, groundwater recharge results from the complex interplay of geology, land cover, geomorphology, climate and on going volcano-tectonic processes across a broad range of spatial and temporal scales. The interrelationships between these factors create complex patterns of water availability, reliability and quality. The hydrochemical evolution of the waters is further complex due to the different climatic regimes and geothermal processes going on in this area. High fluoridic waters within the rift have been reported by few studies, while dental fluorosis is high among the inhabitants of the rift. The natural sources of fluoride in waters can be from weathering of fluorine bearing minerals in rocks, volcanic or fumarolic activities. Fluoride concentration in water depends on a number of factors including pH, temperature, time of water-rock formation contact and geochemical processes. Knowledge of the sources and dispersion of fluoride in both surface and groundwaters within the central Kenya rift and seasonal variations between wet and dry seasons is still poor. The Central Kenya rift is marked by active tectonics, volcanic activity and fumarolic activity, the rocks are majorly volcanics: rhyolites, tuffs, basalts, phonolites, ashes and agglomerates some are highly fractured. Major NW-SE faults bound the rift escarpment while the rift floor is marked by N-S striking faults We combine petrographic, hydrochemistry and structural information to determine the sources and enrichment pathways of high fluoridic waters within the Naivasha catchment. A total of 120 water samples for both the dry season (January-February2012) and after wet season (June-July 2013) from springs, rivers, lakes, hand dug wells, fumaroles and boreholes within the Naivasha catchment are collected and analysed for fluoride, physicochemical parameters and stable isotopes (δ2 H, δ18 O) in order to determine the origin and evolution of the waters. Additionally, 30 soil and

  15. Petrography and geochemistry of modern river sediments in an equatorial environment (Rwenzori Mountains and Albertine rift, Uganda) - Implications for weathering and provenance

    NASA Astrophysics Data System (ADS)

    Schneider, Sandra; Hornung, Jens; Hinderer, Matthias; Garzanti, Eduardo

    2016-05-01

    In hot-humid equatorial climate chemical weathering may be so strong that provenance signatures may be largely lost and even detritus derived from crystalline basement rocks reduced to quartzose sand. We tested this hypothesis in western Uganda, where stable plateau areas contrast with the active tectonic setting of the Albertine Rift (western branch of the East African Rift System, EARS), culminating in the strongly exhumed fault block of the > 5000 m high Rwenzori Mountains. In this setting, sediments derived from similar types of basement rocks including gneiss, schist, amphibolite, metasediments and granites can be traced from rapidly eroding high-altitude areas to low-altitude areas undergoing prolonged weathering. Sand and mud carried by 51 rivers overall in these two contrasting landscapes were sampled to study how and to what extent detrital modes are modified by the selective loss of unstable detrital minerals. Sediments generated in the high-relief Rwenzori Mountains show abundant feldspar (up to 32%) and rock fragments (up to 52%), which together with low SiO2/Al2O3 ratio and composition close to the Upper Continental Crust (UCC standard) reflect erosion in weathering-limited conditions. In the central Rwenzoris, low Th/Sc and Zr/Sc ratios, weak negative Eu anomaly, lower LaN/YbN values, and heavy-mineral assemblages with hornblende and epidote reflect the lithology of source rocks in the Buganda-Toro-Greenstone Belt. In contrast, sediments produced on the low-relief plateau have quartz content up to 98% and higher SiO2/Al2O3 ratio. Systematic loss of mobile elements is indicated by high chemical weathering indices CIA, PIA and WIP. However, provenance from metamorphic basement rocks is still indicated by heavy-mineral assemblages dominated by epidote and amphibole, whereas provenance from granitic rocks is revealed by high Th/Sc and Zr/Sc ratio, negative Eu anomaly and higher LaN/YbN values. We conclude that first-cycle sediments generated in high

  16. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  17. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  18. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  19. Impact of rheological layering on rift asymmetry

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  20. The 1974 Ethiopian rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P.

    1977-01-01

    The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.

  1. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  2. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C.; Rucina, Stephen M.; King, Geoffrey C. P.

    2015-09-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging.

  3. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins

    PubMed Central

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C.; Rucina, Stephen M.; King, Geoffrey C. P.

    2015-01-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging. PMID:26369499

  4. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins.

    PubMed

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C; Rucina, Stephen M; King, Geoffrey C P

    2015-01-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging. PMID:26369499

  5. Rift Valley fever and a new paradigm of research and development for zoonotic disease control.

    PubMed

    Dar, Osman; McIntyre, Sabrina; Hogarth, Sue; Heymann, David

    2013-02-01

    Although Rift Valley fever is a disease that, through its wider societal effects, disproportionately affects vulnerable communities with poor resilience to economic and environmental challenge, Rift Valley fever virus has since its discovery in 1931 been neglected by major global donors and disease control programs. We describe recent outbreaks affecting humans and animals and discuss the serious socioeconomic effects on the communities affected and the slow pace of development of new vaccines. We also discuss the mixed global response, which has largely been fueled by the classification of the virus as a potential bioterrorism agent and its potential to migrate beyond its traditional eastern African boundaries. We argue for a refocus of strategy with increased global collaboration and a greater sense of urgency and investment that focuses on an equity-based approach in which funding and research are prioritized by need, inspired by principles of equity and social justice.

  6. Animal movements in the Kenya Rift and evidence for the earliest ambush hunting by hominins.

    PubMed

    Kübler, Simon; Owenga, Peter; Reynolds, Sally C; Rucina, Stephen M; King, Geoffrey C P

    2015-01-01

    Animal movements in the Kenya Rift Valley today are influenced by a combination of topography and trace nutrient distribution. These patterns would have been the same in the past when hominins inhabited the area. We use this approach to create a landscape reconstruction of Olorgesailie, a key site in the East African Rift with abundant evidence of large-mammal butchery between ~1.2 and ~0.5 Ma BP. The site location in relation to limited animal routes through the area show that hominins were aware of animal movements and used the location for ambush hunting during the Lower to Middle Pleistocene. These features explain the importance of Olorgesailie as a preferred location of repeated hominin activity through multiple changes in climate and local environmental conditions, and provide insights into the cognitive and hunting abilities of Homo erectus while indicating that their activities at the site were aimed at hunting, rather than scavenging.

  7. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe.

    PubMed

    Mansfield, Karen L; Banyard, Ashley C; McElhinney, Lorraine; Johnson, Nicholas; Horton, Daniel L; Hernández-Triana, Luis M; Fooks, Anthony R

    2015-10-13

    Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.

  8. Rift Valley Fever and a New Paradigm of Research and Development for Zoonotic Disease Control

    PubMed Central

    McIntyre, Sabrina; Hogarth, Sue; Heymann, David

    2013-01-01

    Although Rift Valley fever is a disease that, through its wider societal effects, disproportionately affects vulnerable communities with poor resilience to economic and environmental challenge, Rift Valley fever virus has since its discovery in 1931 been neglected by major global donors and disease control programs. We describe recent outbreaks affecting humans and animals and discuss the serious socioeconomic effects on the communities affected and the slow pace of development of new vaccines. We also discuss the mixed global response, which has largely been fueled by the classification of the virus as a potential bioterrorism agent and its potential to migrate beyond its traditional eastern African boundaries. We argue for a refocus of strategy with increased global collaboration and a greater sense of urgency and investment that focuses on an equity-based approach in which funding and research are prioritized by need, inspired by principles of equity and social justice. PMID:23347653

  9. Rift Valley fever and a new paradigm of research and development for zoonotic disease control.

    PubMed

    Dar, Osman; McIntyre, Sabrina; Hogarth, Sue; Heymann, David

    2013-02-01

    Although Rift Valley fever is a disease that, through its wider societal effects, disproportionately affects vulnerable communities with poor resilience to economic and environmental challenge, Rift Valley fever virus has since its discovery in 1931 been neglected by major global donors and disease control programs. We describe recent outbreaks affecting humans and animals and discuss the serious socioeconomic effects on the communities affected and the slow pace of development of new vaccines. We also discuss the mixed global response, which has largely been fueled by the classification of the virus as a potential bioterrorism agent and its potential to migrate beyond its traditional eastern African boundaries. We argue for a refocus of strategy with increased global collaboration and a greater sense of urgency and investment that focuses on an equity-based approach in which funding and research are prioritized by need, inspired by principles of equity and social justice. PMID:23347653

  10. East African coast overlooked. [Oil and gas potential of the east African coast

    SciTech Connect

    Not Available

    1994-09-01

    This paper reviews the petroleum and gas potential of the Tanzania-Mozambique basinal areas. It discusses the locations of the various sedimentary basins in the onshore and near offshore areas, including the central African rift zone. The paper describes the structure, stratigraphy, and petroleum geology of these basins. Finally the paper reviews the exploration history and the outlook for the future of these basins.

  11. The War of Jenkins’ Ear

    PubMed Central

    Graboyes, Evan M.; Hullar, Timothy E.

    2012-01-01

    Objective In 1731, Spanish sailors boarded the British brig Rebecca off the coast of Cuba and sliced off the left ear of its captain, Robert Jenkins. This traumatic auriculectomy was used as a pretext by the British to declare war on Spain in 1739, a conflict that is now known as the War of Jenkins’ Ear. Here, we examine the techniques available for auricular repair at the time of Jenkins’ injury and relate them to the historical events surrounding the incident. Methods Review of relevant original published manuscripts and monographs. Results Surgeons in the mid-18th century did not have experience with repair of traumatic total auriculectomies. Some contemporary surgeons favored auricular prostheses over surgical treatment. Methods for the reconstruction of partial defects were available, and most authors advocated a local post-auricular flap instead of a free tissue transfer. Techniques for repair of defects of the auricle lagged behind those for repair of the nose. Conclusion Limitations in care of traumatic auricular defects may have intensified the significance of Jenkins’ injury and helped lead to the War of Jenkins’ Ear, but conflict between Britain and Spain was probably unavoidable due to their conflicting commercial interests in the Caribbean. PMID:23444484

  12. Early Pleistocene lake formation and hominin origins in the Turkana-Omo rift

    NASA Astrophysics Data System (ADS)

    Lepre, Christopher J.

    2014-10-01

    Prior research has correlated the formation of Plio-Pleistocene lakes in East Africa to global/regional climate changes and interpreted the lacustrine basins as significant settings of hominin evolution. Paleo-Lake Lorenyang from the Turkana-Omo rift is important to these issues, as its marginal deposits contain some of, if not the earliest currently known specimens of Acheulian stone tools and African Homo erectus. Magnetostratigraphic and sedimentological evidence indicates that the oldest preserved paleo-Lake Lorenyang deposits are dated at 2.148-2.128 Ma and derive from the NW Turkana basin, predating those from the Omo basin by ˜100 kyr and the NE Turkana basin by ˜190 kyr. Apparently, the lake expanded asynchronously in the rift, potentially due to a volcano-tectonic influence on the location of drainage networks, depositional slopes, or topographic elevation differences within and between the basins at the time of flooding. The onset of the lake temporally coincides with the eruption of basalt lava flows dated to 2.2-2.0 Ma that blocked the southeast outlet of the Turkana basin. This provides a plausible mechanism for hydrologic closure and lacustrine basin formation through volcano-tectonic impounding. It also points to a non-climatic cause for the initial formation of paleo-Lake Lorenyang at ˜2.14 Ma. First appearances for African H. erectus (˜1.87 Ma) and Acheulian tools (˜1.76 Ma) in the Turkana-Omo rift postdate the lake's initial formation by about 270 kyr and 380 kyr, respectively. Such timing differences contrast with studies that correlate all three to the 400-kyr-eccentricity maximum at 1.8 Ma. Although the Turkana-Omo rift is just one example, it does provide alternative insights to views that link climate, hominin evolution, and lake formation in East Africa.

  13. Thermo-rheological aspects of crustal evolution during continental breakup and melt intrusion: The Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Beekman, Fred; Clark, Stuart R.; Cloetingh, Sierd A. P. L.

    2016-08-01

    The Cenozoic-Quaternary Main Ethiopian Rift (MER) is characterized by extended magmatic activity. Although magmatism has been recognized as a key element in the process of continental breakup, the interaction between melts and intruded lithosphere is still poorly understood. We have performed a 2D thermo-rheological modeling study of continental crust incorporating rheological variations due to melt intrusion-related thermal perturbation. The model is calibrated based on the characteristics of lithologies occurring in the MER and its extensional history, and includes the effect of metamorphism and anatexis on crustal strength and rheological features. During Miocene early rift phases strain in the MER was mainly accommodated through rift border faults, whereas Pliocene-to-recent extension history is characterized by magma assisted rifting with most strain accommodated across magmatic segments in the rift axis. Consequently, very little strain is distributed in the old Pan-African to Paleogene crust during Pliocene to Holocene times. The magmatic activity along the rift axis created ≈ 20 km thick magmatic segments, with growth rate estimated to range from ≈ 3.5 mm yr- 1 to ≈ 6 mm yr- 1. Our model suggests that the strain transfer from Miocene rift border faults to magmatic segments was favored by a moderate increase in crustal strength, due to prograde metamorphism subsequent to the melt-induced thermal perturbation. Under such conditions, crustal stretching may not constitute an effective extension mechanism, thus strain may be preferentially accommodated by melt injection along hot, partially molten magmatic segments. Anatexis has been detected in our simulations, with melt fractions sufficient to break-up the crust solid framework and migrate. This determines local variations of rheological behavior and may induce seismicity. However, resulting melt percentages are not sufficient to induce widespread, crust-derived volcanic activity. Subsequently, volcanism

  14. Off-axis volcanism in the Gregory rift, east Africa: implications for models of continental rifting

    SciTech Connect

    Bosworth, W.

    1987-05-01

    The largest volcanic centers of the Gregory rift occur in two belts located 100 to 150 km east and west of the axis of the rift valley. These off-axis volcanic belts include the highest peaks on the continent of Africa and are interpreted to lie above the intersection of low-angle detachment systems with the base of a regionally thinned lithosphere. These detachment systems are manifested at the surface as a series of breakaway zones and regional bounding faults that produce subbasins with half-graben form. The asymmetry of subbasins alternates along the rift axis, indicating that the polarity of the underlying active detachment systems also reverses. The detachments are separated laterally by regional oblique-slip accommodation zones typified by wrench-style tectonism. Off-axis from the rift, the detachments are inferred to merge along strike as they cut to the base of the lithosphere. This results in irregular but persistent paired zones of volcanism and lithospheric thinning off-axis from the rift proper. The development of major volcanic cones such as Mount Kilimanjaro may be controlled by the interaction of leaky accommodation zones with the regions of structurally thinned lithosphere. The central Kenya hot spot has produced the anomalous quantities of volcanic material that fills the Gregory rift and probably enhances the off-axis volcanism but does not directly control its location. The model proposed here for tectonic controls of volcanism in the Gregory rift may be applicable to Phanerozoic continental rifts in general.

  15. Morphotectonics of the Tunka rift and its bordering mountains in the Baikal rift system, Russia

    NASA Astrophysics Data System (ADS)

    Shchetnikov, Alexander

    2016-11-01

    The Tunka section of the Baikal rift system presents a uniform alternation of the following neostructural forms: tilted horsts and asymmetrical block uplifts on the northern flank; the central system of the rift valleys; and the arched uplift of the southern flank. This is a standard set of morphostructural elements for the Baikal rift system. The main morphological feature of the Tunka rift is the strong inclination of its floor, ranging from 900 m to 200 km in general elevation above Lake Baikal. Such traits of recent geodynamics as volcanism, thermal activity, and seismicity are also different from other parts of the rift zone. All of these features of the Tunka rift are related to the deep structure of the rift zone. The peculiarities of the neotectonic structure of the Tunka rift, which are clearly expressed morphologically as is typical of the Baikal rift system, as well as its unique features are in accordance with deep geodynamic processes of the region. On the other hand, the development of the rift basin structures of the southwestern area near Baikal is complicated by inversion deformations. Local uplifts followed by deformations of the basin sedimentary cover and inverted morphostructures expressed in relief are fixed against the background of the general subsidence of blocks of the pre-Cenozoic basement grabens. The Tunka rift has repeatedly experienced inversion deformations throughout its history. The last wave of such deformations involved the southwestern region near Baikal in the second half of the late Pleistocene. During the Quaternary, the positive component prevailed in the whole range of vertical movements of the inter-rift and interbasin blocks; since the late Neogene, these structures have experienced a slow but steady uplift, accompanied by their extension at the expense of the bordering basins. The remote influence of the India-Asia collision on the formation of the southwestern section of the Baikal rift system is very significant and

  16. Surface Wave Analysis of Regional Earthquakes in the Eastern Rift System (Africa)

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Guidarelli, M.; Ebinger, C. J.; Roecker, S. W.; Tiberi, C.

    2015-12-01

    The Northern Tanzania Divergence (NTD), the youngest part of the East African Rift System, presents the opportunity to obtain insights about the birth and early stages of rifting before it progresses to mature rifting and seafloor spreading. This region is particularly interesting because the Eastern rift splits into three arms in this area and develops in a region of thick and cold lithosphere, amid the Archaean Tanzanian craton and the Proterozoic orogenic belt (the Masai block). We analyzed about two thousand seismic events recorded by the 39 broadband stations of the CRAFTI network during its two-year deployment in the NTD area in 2013 to 2014. We present the results of surface wave tomographic inversion obtained from fundamental-mode Rayleigh waves for short periods (between 4 to 14 seconds). Group velocity dispersion curves obtained via multiple filter analysis are path-averaged and inverted to produce 0.1º x 0.1º nodal grid tomographic maps for discrete periods using a 2D generalization of the Backus and Gilbert method. To quantify our results in terms of S-wave velocity structure the average group velocity dispersion curves are then inverted, using a linearized least-squares inversion scheme, in order to obtain the shear wave velocity structure for the upper 20 km of the crust. Low velocity anomalies are observed in the region 50 km south of Lake Natron, as well as in the area of the Ngorongoro crater. The implications of our results for the local tectonics and the development of the rifting system will be discussed in light of the growing geophysical database from this region.

  17. Subsidence history, crustal structure and evolution of the Nogal Rift, Northern Somalia

    NASA Astrophysics Data System (ADS)

    Ali, M. Y.; Watts, A. B.

    2013-12-01

    Seismic reflection profile, gravity anomaly, and biostratigraphic data from deep exploration wells have been used to determine the tectonic subsidence, structure and evolution of the Nogal basin, Northern Somalia, one of a number of ENE-WSW trending early Mesozoic rifts that formed prior to opening of the Gulf of Aden. Backstripping of biostratigraphic data at the Nogal-1 and Kali-1 wells provides new constraints on the age of rifting, and the amount of crustal and mantle extension. The tectonic subsidence and uplift history at the wells can be generally explained as a consequence of two, possibly three, major rifting events. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr. We interpret the rift as a late stage event associated with the break-up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi-rift extensional model with a stretching factor, β, in the range 1.17-1.38. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift only developed at the centre of the basin close to Nogal-1 well, and is related to the opening of the Gulf of Aden. The amount of crustal thinning inferred at the Kali-1 well is consistent with the results of Process-Oriented Gravity and Flexure (POGM) modelling, assuming an elastic thickness of ~30 km. The thinning at the Nogal-1 well, however, is greater by ~ 7 km than predicted suggesting that the basin may be locally underplated by magmatic material. Irrespective, POGM suggests the transition between thick crust beneath Northern Somalia to thin crust beneath the Indian Ocean forms a ~500 km wide

  18. Ear canal dynamic motion as a source of power for in-ear devices

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2013-02-01

    Ear canal deformation caused by temporomandibular joint (jaw joint) activity, also known as "ear canal dynamic motion," is introduced in this paper as a candidate source of power to possibly recharge hearing aid batteries. The geometrical deformation of the ear canal is quantified in 3D by laser scanning of different custom ear moulds. An experimental setup is proposed to measure the amount of power potentially available from this source. The results show that 9 mW of power is available from a 15 mm3 dynamic change in the ear canal volume. Finally, the dynamic motion and power capability of the ear canal are investigated in a group of 12 subjects.

  19. Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation

    NASA Astrophysics Data System (ADS)

    Bonini, Marco; Corti, Giacomo; Innocenti, Fabrizio; Manetti, Piero; Mazzarini, Francesco; Abebe, Tsegaye; Pecskay, Zoltan

    2005-02-01

    The Main Ethiopian Rift (MER) has a complex structural pattern composed of southern, central, and northern segments. Ages of onset of faulting and volcanism apparently indicate a heterogeneous time-space evolution of the segments, generally referred to as a northward progression of the rifting process. New structural, petrological, and geochronological data have been used to attempt reconciling the evolution of the distinct MER segments into a volcanotectonic scenario accounting for the propagation of the Afar and the Kenya Rifts. In this evolutionary model, extension affected the Southern MER in the early Miocene (20-21 Ma) due to the northward propagation of the Kenya Rift-related deformation. This event lasted until 11 Ma, then deformation decreased radically and was resumed in Quaternary times. In the late Miocene (11 Ma), deformation focused in the Northern MER forming a proto-rift that we consider as the southernmost propagation of Afar. No major extensional deformation affected the Central MER in this period, as testified by the emplacement at 12-8 Ma of extensive plateau basalts currently outcropping on both rift margins. Significant rift opening occurred in the Central MER during the Pliocene (˜5-3 Ma) with the eruption of voluminous ignimbritic covers (Nazret sequence) exposed both on the rift shoulders and on the rift floor. The apparent discrepancy between the heterogeneous propagation of the three MER segments could be reconciled by considering the opening of Central MER and the later reactivation of the Southern MER as due to a southward propagation of rifting triggered by counterclockwise rotation of the Somalian plate starting around 10 Ma.

  20. InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.; Wright, Tim J.; Calais, Eric; Lewi, Elias; Fukahata, Yukitoshi

    2014-04-01

    Increased displacement rates have been observed following manylarge earthquakes and magmatic events. Although an order of magnitude smaller than the displacements associated with the main event, the post-seismic or post-rifting deformation may continue for years to decades after the initial earthquake or dyke intrusion. Due to the rare occurrence of subaerial rifting events, there are very few observations to constrain models of post-rifting deformation. In 2005 September, a 60-km-long dyke was intruded along the Dabbahu segment of the Nubia-Arabia Plate boundary (Afar, Ethiopia), marking the beginning of an ongoing rifting episode. Continued activity has been monitored using satellite radar interferometry and data from global positioning system instruments deployed around the rift in response to the initial intrusion. Using multiple satellite passes, we are able to separate the rift perpendicular and vertical displacement fields around the Dabbahu segment. Rift perpendicular and vertical rates of up to 180 and 240 mm yr-1, respectively. Here, we show that models of viscoelastic relaxation alone are insufficient to reproduce the observed deformation field and that a large portion of the observed signal is related to the movement of magma within the rift segment. Our models suggest upper mantle viscosities of 1018-19 Pa s overlain by an elastic crust of between 15 and 30 km. To fit the observations, inflation and deflation of magma chambers in the centre of the rift and to the south east of the rift axis is required at rates of ˜0.13 and -0.08 km3 yr-1.

  1. Paleohydrological change in the Turkana Basin at the termination of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Vonhof, Hubert; van der Lubbe, Jeroen; Joordens, Josephine; Feibel, Craig; Junginger, Annett; Garcin, Yannick; Krause-Nehring, Jacqueline; Beck, Catherine; Johnson, Thomas

    2016-04-01

    One of the most significant features of Holocene climate change in East Africa is the termination of the African Humid Period (AHP), which occurred at ~ 5 ka. Many lakes in the East African Rift System (EARS) were strongly affected by these climatic changes, generally exhibiting much higher lake levels before the termination of the AHP than after. One of the larger lakes in the EARS, is Lake Turkana which was filled to overflow level for much of the early Holocene and experienced a dramatic ~70 meter lake level drop at ~5 ka, turning it into the terminal lake system as it still is today. The precise hydrological response of Lake Turkana to climate change at the termination of the AHP is potentially complex, because it is situated at the cross roads of two large atmospheric convection systems; the Intertropical Convergence Zone (ITCZ) and the Congo Air Boundary (CAB). Shifting of these atmospheric systems at the end of the AHP dramatically re-organised spatial rainfall patterns over the Turkana Basin catchment, causing a shift in runoff contributions from the different sub-catchments of the Turkana Basin. Here, we present a Holocene Turkana lake water Sr isotope reconstruction based on the analysis of well-dated lacustrine ostracods and shells, which reveals consistently high Sr isotope values for the early Holocene, followed by a significant, but gradual drop in Sr isotope ratios across the AHP termination. Since lacustrine Sr isotope ratios are a runoff provenance indicator in this setting, such dramatic lacustrine Sr isotope change points towards a significant (climate-driven) reorganisation of runoff contributions from different sub-catchments to Lake Turkana. In more detail, the Sr isotope reconstruction strongly suggests that changes in runoff patterns at the termination of the AHP in the Turkana Basin were gradual. The higher Sr isotope ratios during the Early Holocene indicate significant runoff contribution from a more radiogenic sub-catchment at that time

  2. Numerical simulation of the human ear and the dynamic analysis of the middle ear sound transmission

    NASA Astrophysics Data System (ADS)

    Yao, W.; Ma, J.; Huang, X.

    2013-06-01

    Based on the clinical CT of normal right ear, a 3-D ?nite element (FE) model of the human ear consisting of the external ear canal, middle ear(tympanic membrane, ossicular chain, ligaments, tendons), and inner ear (including semicircular canals, vestibular, spiral cochlear)was constructed in this paper. The complicated structures and inner boundary conditions of middle ear were described in this model. Model analysis and acoustic-structure-?uid coupled dynamic frequency response analysis were conducted on the model. The validity of this model was confirmed by comparing the results with published experimental data. The amplitudes and velocities of tympanic membrane and stapes footplate, sound pressure gain across the middle ear, and the cochlear input impedance were derived. Besides, it was concluded that the ear canal can amplify the sound signal in low frequencies.The modes of vibration of middle ear auditory ossicles, oval window and round window have been analysed. This model can well simulate the acoustic behavior with the interaction of external ear, middle ear and inner ear, which can supply more valuable theoretical support for development and improvement of hearing-aid and artificial inner ear.

  3. Tectono-Sedimentary Analysis of Rift Basins: Insights from the Corinth Rift, Greece

    NASA Astrophysics Data System (ADS)

    Gawthorpe, Robert; Ford, Mary

    2015-04-01

    Existing models for the tectono-sedimentary evolution of rift basins are strongly linked the growth and linkage of normal fault segments and localization of fault activity. Early stages of faulting (rift initiation phase) are characterized by distributed, short, low displacement fault segments, subdued fault-related topography and small depocentres within which sedimentation keeps pace with subsidence. Following linkage and displacement localization (rift climax phase), deformation if focused onto major, crustal-scale fault zones with kilometre-scale displacement. These major faults generate pronounced tilted fault-block topography, with subsidence rates that outpace sedimentation causing a pronounced change to deep-water deposition. Such models have been successful in helping to understand the gross structural and sedimentary evolution of rift basins, but recent work has suggested that pre-existing structures, normal fault interaction with pre-rift salt and antecedent drainage systems significantly alter this initiation-to-climax perspective of rift basin development. The E-W-striking, Pliocene-Pleistocene Corinth rift, central Greece, is an excellent natural laboratory for studying the tectono-sedimentary evolution of rift basins due to its young age, excellent onshore exposure of syn-rift structure and stratigraphy and extensive offshore seismic data. The rift cuts across the NW-SE-striking Hellenide mountain belt and has migrated northward and westward during its evolution. The Hellenide mountain belt significantly influences topography and drainage in the west of the rift. High topography and large antecedent drainage systems, focused along palaeovalleys, provided high sediment flux to NE-flowing alluvial systems that overfilled early-rift depocentres. Further east, away from the main antecedent drainage networks, contemporaneous deposits comprise deep-lacustrine turbidite channel and lobe complexes and basinal marls. Thus the stratigraphic expression within

  4. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  5. Ear infections in autistic and normal children.

    PubMed

    Konstantareas, M M; Homatidis, S

    1987-12-01

    The frequency of ear infections, ear tube drainage, and deafness was examined through parental reports in autistic and yoke-matched, normal children. For the autistic group these difficulties were additionally examined as a function of the children's cognitive and communication abilities, verbal versus nonverbal status, sex, and degree of autistic symptomatology. Autistic children had a greater incidence of ear infections than matched normal peers. Lower-functioning children had an earlier onset of ear infections than their higher-functioning autistic peers. Ear infections coexisted with low-set ears, and with a higher autistic symptomatology score. The findings are discussed in terms of greater CNS vulnerability in the autistic children, which is likely present since embryogenesis. The possible adverse consequences of intermittent hearing loss on language, cognitive, and socioaffective development are considered.

  6. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  7. [Hypopharyngeal carcinoma and red ear drum].

    PubMed

    Bender, B; Widmann, G; Riechelmann, H; Schmutzhard, J

    2011-04-01

    A 46-year-old male patient with an unresectable hypopharyngeal carcinoma was treated with primary radio-chemotherapy. At follow-up, the patient presented with a red ear drum and combined hearing loss. Because of radiotherapy-induced tubal dysfunction, paracentesis was performed. Biopsy of the polypoid middle ear mucosa revealed petrous bone infiltration of hypopharyngeal carcinoma. MRI studies revealed paracarotideal tumor infiltration to the petrous bone and the middle ear arising from a cervical retropharyngeal lymph node metastasis. PMID:20963385

  8. Fault-controlled lithospheric detachment of the volcanic southern South Atlantic rift

    NASA Astrophysics Data System (ADS)

    Becker, Katharina; Tanner, David C.; Franke, Dieter; Krawczyk, Charlotte M.

    2016-03-01

    We present structural models of two exemplary conjugate seismic lines of the southernmost South Atlantic margins to examine their initial evolution, especially the seaward-dipping reflectors (SDRs). Modeling illustrates the different structure and inclination angles of the SDRs, which therefore require different subsidence histories. Since typical symmetrical subsidence models are not applicable, we suggest a model with a westward-dipping detachment fault that offsets the SDRs on the South American margin and we speculate on passively subsided SDRs on the South African margin. We propose a simple-shear rifting mechanism to explain the initial break-up of the South Atlantic.

  9. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  10. Development and Integration of the Ear.

    PubMed

    Fuchs, Jennifer C; Tucker, Abigail S

    2015-01-01

    The perception of our environment via sensory organs plays a crucial role in survival and evolution. Hearing, one of our most developed senses, depends on the proper function of the auditory system and plays a key role in social communication, integration, and learning ability. The ear is a composite structure, comprised of the external, middle, and inner ear. During development, the ear is formed from the integration of a number of tissues of different embryonic origin, which initiate in distinct areas of the embryo at different time points. Functional connections between the components of the hearing apparatus have to be established and maintained during development and adulthood to allow proper sound submission from the outer to the middle and inner ear. This highly organized and intimate connectivity depends on intricate spatiotemporal signaling between the various tissues that give rise to the structures of the ear. Any alterations in this chain of events can lead to the loss of integration, which can subsequently lead to conductive hearing loss, in case of outer and middle ear defects or sensorineural hearing loss, if inner ear structures are defective. This chapter aims to review the current knowledge concerning the development of the three ear compartments as well as mechanisms and signaling pathways that have been implicated in the coordination and integration process of the ear.

  11. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  12. Molecular Mechanisms of Inner Ear Development

    PubMed Central

    Wu, Doris K.; Kelley, Matthew W.

    2012-01-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms. PMID:22855724

  13. Development and Integration of the Ear.

    PubMed

    Fuchs, Jennifer C; Tucker, Abigail S

    2015-01-01

    The perception of our environment via sensory organs plays a crucial role in survival and evolution. Hearing, one of our most developed senses, depends on the proper function of the auditory system and plays a key role in social communication, integration, and learning ability. The ear is a composite structure, comprised of the external, middle, and inner ear. During development, the ear is formed from the integration of a number of tissues of different embryonic origin, which initiate in distinct areas of the embryo at different time points. Functional connections between the components of the hearing apparatus have to be established and maintained during development and adulthood to allow proper sound submission from the outer to the middle and inner ear. This highly organized and intimate connectivity depends on intricate spatiotemporal signaling between the various tissues that give rise to the structures of the ear. Any alterations in this chain of events can lead to the loss of integration, which can subsequently lead to conductive hearing loss, in case of outer and middle ear defects or sensorineural hearing loss, if inner ear structures are defective. This chapter aims to review the current knowledge concerning the development of the three ear compartments as well as mechanisms and signaling pathways that have been implicated in the coordination and integration process of the ear. PMID:26589927

  14. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  15. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  16. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  17. Crustal extension in the Baikal rift zone

    USGS Publications Warehouse

    Zorin, Yu; Cordell, L.

    1991-01-01

    Analysis of the gravity field along four profiles crossing the Baikal rift zone permits an estimate of the amount of anomalous mass produced by 1. (1) graben-fill sediments, 2. (2) Moho uplift and intrusion of mantle sills and dikes, 3. (3) an asthenospheric bulge. Crustal extension is evaluated based on the idea of mass and volume balance of material introduced into and removed from the initial volume of the crust. Extension in the Baikal rift increases southwestward from 0.9 km in the Chara depression to 19.3 km in the South Baikal depression. These values generally agree with the position of the Euler pole determined from seismic data (fault plane solutions). Average rotation velocity for the lithospheric plates separated by the rift zone is estimated to be 5.93 ?? 10-4 rad/m.y. over about 30 m.y. ?? 1991.

  18. Submarine thermal springs on the Galapagos Rift

    USGS Publications Warehouse

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  19. Submarine thermal sprirngs on the galapagos rift.

    PubMed

    Corliss, J B; Dymond, J; Gordon, L I; Edmond, J M; von Herzen, R P; Ballard, R D; Green, K; Williams, D; Bainbridge, A; Crane, K; van Andel, T H

    1979-03-16

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis. PMID:17776033

  20. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    SciTech Connect

    Bartok, P. )

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. A second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.

  1. New Geophysical Results About the Relationship Between the Reelfoot Rift and the Rifted Margin of Laurentia

    NASA Astrophysics Data System (ADS)

    Guo, L.; Keller, G. R.

    2010-12-01

    The Reelfoot rift beneath the northern Mississippi embayment is an intracratonic graben system, which formed Early Cambrian time as a result of continental breakup, and has been subsequently reactivated by compressional or tensional stresses related to plate tectonic interactions. It strikes northeastward into the continent, and is approximately perpendicular to the rifted margin of the Laurentia that is shaped by the southeast-striking Alabama-Oklahoma transform fault. The northern section of the rift near the town of New Madrid, Missouri, was the site of three great 1811-1812 earthquakes, and it remains the most seismically active area east of the Rocky Mountains. However, the southern end of the rift is obscure, and the relationship between the Reelfoot rift and the rifted margin of Laurentia remains disputed. We analyzed the gravity and magnetic database for the region using new data enhancement techniques to shed some light on this relationship. We analyzed a large area to assess the regional geological structure. Complete Bouguer gravity data and and total magnetic intensity (TMI) data were assembled and gridded on a regular grid with spacing of 2km, the TMI data were then reduced to the magnetic pole. Then the data were processed with standard techniques to attenuate the high-frequency noise, and we analyzed the regional and residual anomalies. Specially, we calculated the tilt-angle derivatives of the data. We then calculated the directional horizontal derivatives of the tilt-angle derivatives both along and perpendicular to the strike of the rift. The maps of these derivatives clearly delineate the boundaries of the edges of the Reelfoot rift, the leading edge of the Ouachita thrust belt and the margin of Laurentia. The results of the preliminary processing indicate that the southern end of the rift is near the leading edge of the Ouachita thrust belt, which produces a more curvilinear shape for the Laurentian margin than the very linear Alabama

  2. Geothermal resources of rifts: A comparison of the rio grande rift and the salton trough

    NASA Astrophysics Data System (ADS)

    Swanberg, Chandler A.

    1983-05-01

    The Rio Grande Rift and the Salton Trough are the best developed rift systems in the United States and both share many features common to rifts in general, including geothermal resources. These two rifts have different tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful rift. It is the landward extension of the Gulf of California spreading center, which has separated Baja, California, from the remainder of Mexico. Quaternary silicic magmatization has occurred and several of the geothermal resources are associated with recent rhyolitic intrusions. Such resources tend to be high temperature (> 200°C). Greenschist facies metamorphism has been observed in several of the geothermal wells. Localized upper crustal melting is a distinct possibility and there is increasing speculation that very high temperature (> 300°C) geothermal fluids may underlie a large portion of the central trough at depths in excess of 4 km. Low temperature geothermal resources associated with shallow hydrothermal convection are less common and tend to be located on the flanks of the trough or in the Coachella Valley to the north of the zone of active rifting. In contrast, the Rio Grande Rift is less well developed. Recent volcanism consists primarily of mantle-derived basalts, which have not had sufficient residence time within the crust to generate significant crustal melting. The geothermal resources within the Rio Grande Rift do not correlate well with these young basalts. Rather, the quantity of geothermal resources are low temperature (< 100°C) and result from forced hydrothermal convection which discharges at constrictions within or at the end of the major sedimentary basins. High temperature resources are less common and the only discovered example is the Valles Caldera of northern New Mexico ( T = 250-300°C). The deep interiors of the sedimentary basins of the Rio

  3. Variation in styles of rifting in the Gulf of California.

    PubMed

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism.

  4. Variation in styles of rifting in the Gulf of California.

    PubMed

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism. PMID:17653189

  5. Thermomechanical models of the Rio Grande rift

    SciTech Connect

    Bridwell, R.J.; Anderson, C.A.

    1980-01-01

    Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

  6. Ear canal hyperostosis--surfer's ear. An improved surgical technique.

    PubMed

    Seftel, D M

    1977-01-01

    The increased populatiry of surfing has produced a marked augmentation in the incidence of ear canal exostosis. However, when it becomes moderately severe, I prefer to call it "hyperostosis." Exposure to cold ocean water for many years can be an important etiologic factor in hyperostosis. There is a serious risk, and a high incidence of tympanic membrane perforations during the removal of large external canal hyperostosis. This injury can be prevented by placing a sheet of Silastic against the tympanic membrane beforehand. I describe the method. Serious degrees of hyperostosis, causing transient hearing loss and otitis externa, are increasingly common in coastal towns, where cold-water surfing is a popular year-around sport. PMID:831701

  7. New studies of post-Pleistocene human skeletal remains from the Rift Valley, Kenya.

    PubMed

    Rightmire, G P

    1975-05-01

    Prehistoric human crania from Bromhead's Site, Willey's Kopje, Makalia Burial Site, Nakuru, and other localities in the Eastern Rift Valley of Kenya are reassessed using measurements and a multivariate statistical approach. Materials available for comparison include series of Bushman and Hottentot crania. South and East African Negroes, and Egyptians. Up to 34 cranial measurements taken on these series are utilized to construct three multiple discriminant frameworks, each of which can assign modern individuals to a correct group with considerable accuracy. When the prehistoric crania are classified with the help of these discriminants, results indicate that several of the skulls are best grouped with modern Negroes. This is especially clear in the case of individuals from Bromhead's Site, Willey's Kopje, and Nakuru, and the evidence hardly suggests post-Pleistocene domination of the Rift and surrounding territory by "Mediterranean" Caucasoids, as has been claimed. Recent linguistic and archaeological findings are also reviewed, and these seem to support application of the term Nilotic Negro to the early Rift populations.

  8. [Noise level evaluation in acute ear trauma].

    PubMed

    Bobodzhanov, U B

    2003-01-01

    Subjective noise in the ears can be defined as a pathological acoustic sensation arising in the ear in different pathology of the acoustic analyzer. To make the treatment of the injury more effective, topical diagnosis of the acoustic analyzer affection is desirable.

  9. Playing by Ear: Foundation or Frill?

    ERIC Educational Resources Information Center

    Woody, Robert H.

    2012-01-01

    Many people divide musicians into two types: those who can read music and those who play by ear. Formal music education tends to place great emphasis on producing musically literate performers but devotes much less attention to teaching students to make music without notation. Some would suggest that playing by ear is a specialized skill that is…

  10. INNER EAR EMBRYOGENESIS: GENETIC AND ENVIRONMENTAL DETERMINANTS

    EPA Science Inventory

    The anatomy and developmental molecular genetics of the inner ear from establishment of the otic placode to formation of the definitive cochlea and vestibular apparatus will be reviewed and the complex 3-D structural changes that shape the developing inner ear will be illustrated...

  11. 21 CFR 870.2710 - Ear oximeter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear oximeter. 870.2710 Section 870.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2710 Ear oximeter. (a) Identification. An...

  12. Cutaneous lesions of the external ear

    PubMed Central

    Sand, Michael; Sand, Daniel; Brors, Dominik; Altmeyer, Peter; Mann, Benno; Bechara, Falk G

    2008-01-01

    Skin diseases on the external aspect of the ear are seen in a variety of medical disciplines. Dermatologists, othorhinolaryngologists, general practitioners, general and plastic surgeons are regularly consulted regarding cutaneous lesions on the ear. This article will focus on those diseases wherefore surgery or laser therapy is considered as a possible treatment option or which are potentially subject to surgical evaluation. PMID:18261212

  13. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  14. Morphology and function of Neandertal and modern human ear ossicles

    PubMed Central

    David, Romain; Gunz, Philipp; Schmidt, Tobias; Spoor, Fred; Hublin, Jean-Jacques

    2016-01-01

    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the