Science.gov

Sample records for african rift zone

  1. East African Rift

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria.

    The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  2. Do melt-rich shear zones lubricate rift flanks? 3-D spatial gradients in anisotropy beneath the East African Rift in Ethiopia

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Gaherty, J. B.; Kendall, J.; Stuart, G.

    2006-12-01

    Melt-enhanced weakening of the mantle may be essential for a continent to break apart and rift. A primary means of understanding this aspect of the dynamics of rifting (and other geodynamic settings) is the interpretation of seismic anisotropy in terms of melt distribution and/or mantle flow direction. In recent rock- deformation experiments, the relationships between flow direction and seismic fast direction are complicated by the presence of water (e.g. Katayama et al., 2004) and segregated melt (Holtzman et al. 2003). In the latter, deviatoric stress drives melt to organize into networks of melt-rich shear zones. Scaling from laboratory to upper mantle conditions predicts characteristic network spacings of <1 km, less than wavelengths of measured seismic waves; thus they should cause significant seismic anisotropy. Measurable gradients in anisotropy may be diagnostic indicators of gradients in melt segregation. Because melt-rich shear zones will weaken the mantle on a large scale, the presence of such anisotropy gradients would map to gradients in viscosity. To map melt distribution beneath the rift and test for the presence or absence of this process, we combine measurements of seismic velocities beneath the East African Rift in Ethiopia with modeling of elastic properties of aligned, segregated melt and olivine fabric. Analysis of SKS phases has shown that fast directions parallel magmatic centers in the rift and splitting magnitudes are largest near the rift flanks, consistent with the hypothesis above (e.g. Kendall et al., 2006). Preliminary analysis of Love-Rayleigh differential times across the rift are consistent with a vertical fast axis, suggesting the presence of a vertically aligned, rift parallel melt phase down to the solidus (Pilidou et al., 2005). We expand on these results by applying a cross-correlation procedure to precisely estimate relative amplitude and phase of surface waves traversing the rift. Data are derived from the EAGLE and Ethiopia

  3. The East African rift system

    NASA Astrophysics Data System (ADS)

    Chorowicz, Jean

    2005-10-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  4. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  5. The Offshore East African Rift System

    NASA Astrophysics Data System (ADS)

    Franke, D.; Klimke, J.; Jokat, W.; Stollhofen, H.; Mahanjane, S.

    2014-12-01

    Numerous studies have addressed various aspects of the East African Rift system but surprisingly few on the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. The most prominent article has been published almost 30 years ago by Mougenot et al. (1986) and is based on vintage seismic data. Several studies investigating earthquakes and plate motions from GPS measurements reveal recent deformation along the offshore branch of the East African Rift system. Slip vectors from earthquakes data in Mozambique's offshore basins show a consistent NE direction. Fault plane solutions reveal ~ E-W extensional failure with focal depth clustering around 19 km and 40 km, respectively. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The modern rift system obviously reactivates structures from the disintegration of eastern Gondwana. During the Jurassic/Cretaceous opening of the Somali and Mozambique Basins, Madagascar moved southwards along a major shear zone, to its present position. Since the Miocene, parts of the shear zone became reactivated and structurally overprinted by the East African rift system. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of recent extensional deformation. Bathymetry data shows that it deepens northwards, with approximately 700 m downthrown on the eastern shoulder. The graben can be subdivided into four subbasins by crosscutting structural lineaments with a NW-SE trend. Together with the N-S striking graben-bounding faults, this resembles a conjugate fault system. In seismic reflection data normal faulting is distinct not only at the earthquake epicenters. The faults cut through the sedimentary successions and typically reach the seafloor, indicating ongoing recent deformation. Reference: Mougenot, D., Recq, M., Virlogeux, P., and Lepvrier, C., 1986, Seaward extension of the East

  6. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  7. Evolutionary model of the oblique rift basins- Central African Rifts

    NASA Astrophysics Data System (ADS)

    Yang, Kenn-Ming; Cheng, I.-Wen; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during basin evolution of Central African Rifts (CAS). In this study, we simulated the formation of oblique-rifting basin with Particle Flow Code 3-Dimensions-(PFC 3D) and compared the simulation results with the tectonic settings of a series of basin in CAS. CAS started to develop in Early Cretaceous (130Ma) and lasted until the Late Cretaceous (85Ma-80Ma). The following collision between the African and Eurasian plates imposed compressional stress on CAS and folded the strata in the rift basins. Although the characteristics of rift basin formation remain controversial, palinspastic sections constructed in this study show that, in the Early Cretaceous, the rift basins are mainly characterized by normal faults and half-grabens. In the Late Cretaceous, the morphology of the rift basins was altered by large-scaled tectonic compression with the active Borogop Fault of regional scale. Also, en echelon trend of normal faults in the basins were measured and the angles between the trend with that of the rift axes of each basin were demonstrated, indicating that the development of CAS was affected by the regional extensional stress with a dextral component during the rifting process and, therefore, the rift basins were formed by oblique-rifting. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, which α are 45°, 60°, 75° and 90° respectively, to simulate basin formation under oblique-rifting process. The study results of simulation

  8. The offshore East African Rift System: Structural framework at the toe of a juvenile rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Estevão. Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2015-10-01

    The Cenozoic East African Rift System (EARS) extends from the Red Sea to Mozambique. Here we use seismic reflection and bathymetric data to investigate the tectonic evolution of the offshore branch of the EARS. The data indicate multiple and time transgressive neotectonic deformations along ~800 km of the continental margin of northern Mozambique. We observe a transition from a mature rift basin in the north to a juvenile fault zone in the south. The respective timing of deformation is derived from detailed seismic stratigraphy. In the north, a ~30 km wide and more than 150 km long, N-S striking symmetric graben initiated as half-graben in the late Miocene. Extension accelerated in the Pliocene, causing a continuous conjugate border fault and symmetric rift graben. Coevally, the rift started to propagate southward, which resulted in a present-day ~30 km wide half-graben, approximately 200 km farther south. Since the Pleistocene, the rift has continued to propagate another ~300 km, where the incipient rift is reflected by subrecent small-scale normal faulting. Estimates of the overall brittle extension of the matured rift range between 5 and 12 km, with an along-strike southward decrease of the extension rate. The offshore portion of the EARS evolves magma poor, similar to the onshore western branch. The structural evolution of the offshore EARS is suggested to be related to and controlled by differing inherited lithospheric fabrics. Preexisting fabrics may not only guide and focus extension but also control rift architecture.

  9. Surface deformation in volcanic rift zones

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Delaney, Paul T.; Duffield, Wendell A.; Endo, Elliot T.; Okamura, Arnold T.

    1983-05-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation.

  10. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  11. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. ERTS-1 imagery of the African rift system resolves the major Cenozoic faults, zones of warping, and the associated volcanism. It also clearly depicts the crustal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, linearity, etc., are revealed by the ERTS-1 imagery. This applies to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the arcuate faults of the Elgeyo escarpment in the Gregory rift, and hemi-basins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of the Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cenozoic faulting of the degree of obliquity to Precambrian structural trend. Some ground-mapped lithological boundaries are obscure on ERTS-1 imagery. The present approaches to mapping of Precambrian terrain in Africa may require radical revision with the input of satellite imagery.

  12. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  13. Crustal extension in the Baikal rift zone

    USGS Publications Warehouse

    Zorin, Yu; Cordell, L.

    1991-01-01

    Analysis of the gravity field along four profiles crossing the Baikal rift zone permits an estimate of the amount of anomalous mass produced by 1. (1) graben-fill sediments, 2. (2) Moho uplift and intrusion of mantle sills and dikes, 3. (3) an asthenospheric bulge. Crustal extension is evaluated based on the idea of mass and volume balance of material introduced into and removed from the initial volume of the crust. Extension in the Baikal rift increases southwestward from 0.9 km in the Chara depression to 19.3 km in the South Baikal depression. These values generally agree with the position of the Euler pole determined from seismic data (fault plane solutions). Average rotation velocity for the lithospheric plates separated by the rift zone is estimated to be 5.93 ?? 10-4 rad/m.y. over about 30 m.y. ?? 1991.

  14. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  15. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; VéTel, W.; Morley, C. K.

    2005-04-01

    Remote sensing data and revised seismic reflection profiles provide new insights about the origin of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern branch of the East African rift system. Contractional structures are dominated by weakly inverted sets of fault blocks within <3.7 Myr old synrift series. Most of reverse extensional faults involve components of oblique-slip, whereas associated hanging wall folds are characterized by large wavelength upright folding. The area of basin inversion is restricted to a 40 × 100 km elongated zone overlying a first-order N140°E trending fault zone in the basement, referred to as the N'Doto transverse fault zone (NTFZ). In the proposed kinematic model, inversion tectonics is assigned to permutation of principal stress axes (σ1/σ2) in addition to the clockwise rotation of extension (from nearly N90°E to N130°E) during Pliocene. The transition from pure extension (Miocene) to a wrench faulting regime (Pliocene) first results in the development of T-type fault networks within a dextrally reactivated shear zone (NTFZ). Inversion tectonics occurred later (<3.7 Ma) in response to a still rotated (˜20°) shortening axis (σ1) oriented N40°E that caused the oblique compression of earlier (NS to N20°E) extensional structures within the NTFZ. The origin of basin inversion and strain concentration in the Turkana rift is thus directly linked to a crustal weakness zone, transverse to the rift axis, and involving steep prerift anisotropies.

  16. Varying styles of magmatic strain accommodation across the East African Rift

    NASA Astrophysics Data System (ADS)

    Muirhead, James D.; Kattenhorn, Simon A.; Le Corvec, Nicolas

    2015-09-01

    Observations of active dike intrusions provide present day snapshots of the magmatic contribution to continental rifting. However, unravelling the contributions of upper crustal dikes over the timescale of continental rift evolution is a significant challenge. To address this issue, we analyzed the morphologies and alignments of >1500 volcanic cones to infer the distribution and trends of upper crustal dikes in various rift basins across the East African Rift (EAR). Cone lineament data reveal along-axis variations in the distribution and geometries of dike intrusions as a result of changing tectonomagmatic conditions. In younger (<10 Ma) basins of the North Tanzanian Divergence, dikes are largely restricted to zones of rift-oblique faulting between major rift segments, referred to here as transfer zones. Cone lineament trends are highly variable, resulting from the interplay between (1) the regional stress field, (2) local magma-induced stress fields, and (3) stress rotations related to mechanical interactions between rift segments. We find similar cone lineament trends in transfer zones in the western branch of the EAR, such as the Virunga Province, Democratic Republic of the Congo. The distributions and orientations of upper crustal dikes in the eastern branch of the EAR vary during continental rift evolution. In early-stage rifts (<10 Ma), upper crustal dikes play a limited role in accommodating extension, as they are confined to areas in and around transfer zones. In evolved rift basins (>10 Ma) in Ethiopia and the Kenya Rift, rift-parallel dikes accommodate upper crustal extension along the full length of the basin.

  17. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  18. Kīlauea's Upper East Rift Zone: A Rift Zone in Name Only

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Fiske, R. S.

    2014-12-01

    Kīlauea's upper east rift zone (UERZ) extends ~3 km southeastward from the summit caldera to the Koáe fault system, where it starts to bend into the main part of the ENE-trending rift zone. The UERZ lacks a distinct positive gravity anomaly (though coverage is poor) and any evidence of deformation associated with magma intrusion. All ground ruptures—and the Puhimau thermal area—trend ENE, crossing the UERZ at a high angle. Lua Manu, Puhimau, and Kóokóolau craters are the only surface evidence of the UERZ. Yet the UERZ is seismically active, and all magma entering the rest of the rift zone must pass through it. Rather than a rift zone in the traditional sense, with abundant dikes and ground ruptures along its trend, the UERZ cuts across the ENE structural grain and serves only as a connector to the rest of the rift zone, not a locus of dike formation along its length. The UERZ probably developed as a consequence of gradual SSE migration of the active part of the main east rift zone at the trailing edge of the south flank. During migration, a connection to the summit reservoir complex must be maintained; otherwise, the middle and lower east rift zone would starve and magma from Kīlauea's summit reservoir complex would have to go elsewhere. Over time, the UERZ lengthened and rotated clockwise to maintain the connection. Near the caldera, the UERZ may be widening westward as the summit reservoir complex migrates southward from the center of the caldera to its present position. A layered stress regime results in the upper 2-3 km mimicking the pervasive ENE structural grain of most of Kīlauea, whereas the underlying magmatic part of the UERZ responds to stresses related to SE magma transport. Magma intruding upward from the connector forms a dike that follows the ENE structural grain, as during the 1974 eruption. The active east rift zone has been migrating since ~100 ka, estimated by applying a 700-y extension rate across the Koa'e fault system to the ~6.5 km

  19. Geochemistry of East African Rift basalts: An overview

    NASA Astrophysics Data System (ADS)

    Furman, Tanya

    2007-06-01

    Mafic lavas erupted along the East African Rift System from the Afar triangle in northern Ethiopia to the Rungwe province in southern Tanzania display a wide range of geochemical and isotopic compositions that reflect heterogeneity in both source and process. In areas with the lowest degree of crustal extension (the Western and Southern Kenya Rifts) primitive lavas record the greatest extent of lithospheric melting, manifest in elevated abundances of incompatible elements and highly radiogenic Sr-Nd-Pb isotopic compositions. Where prolonged extension has removed most or all of the mantle lithosphere (the Turkana and Northern Kenya Rifts), a larger role for sub-lithospheric processes is indicated. At intermediate degrees of extension (the Main Ethiopian Rift) both lithospheric and sub-lithospheric contributions are observed, and crustal assimilation occurs in some cases. Despite the wide compositional range of African Rift basalts, a restricted number of source domains contribute to magmatism throughout the area. These individual domains are: (1) the subcontinental mantle lithosphere; (2) a plume source with high-μ Sr-Nd-Pb-He isotopic affinities, present in all areas within and south of the Turkana Depression; and (3) a plume source with isotopic signatures analogous to those observed in some ocean islands, including high 3He/ 4He values, present throughout the Ethiopian Rift and the Afar region. The two plume sources may both be derived from the South African Superplume, which is likely to be a compositionally heterogeneous feature of the lower mantle.

  20. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  1. Strain distribution in the East African Rift from GPS measurements

    NASA Astrophysics Data System (ADS)

    Stamps, S. D.; Saria, E.; Calais, E.; Delvaux, D.; Ebinger, C.; Combrinck, L.

    2008-12-01

    Rifting of continental lithosphere is a fundamental process that controls the growth and evolution of continents and the birth of ocean basins. Most rifting models assume that stretching results from far-field lithospheric stresses from plate motions, but there is evidence that asthenospheric processes play an active role in rifting, possibly through viscous coupling and/or the added buoyancy and thermal weakening from melt intrusions. The distribution of strain during rifting is a key observable to constrain such models but is however poorly known. The East African Rift (EAR) offers a unique opportunity to quantify strain distribution along and across an active continental rift and to compare a volcanic (Eastern branch) and a non-volcanic (Western branch) segment. In 2006, we established and first surveyed a network of 35 points across Tanzania and installed one continuous station in Dar Es Salaam (TANZ), followed in 2008 by a second occupation campaign. We present a preliminary velocity field for the central part of the EAR, spanning both the Western and Eastern rift branches. We compare our results with a recent kinematic model of the EAR (Stamps et al., GRL, 2008) and discuss its significance for understanding rifting processes.

  2. No thermal anomalies in the mantle transition zone beneath an incipient continental rift: evidence from the first receiver function study across the Okavango Rift Zone, Botswana

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, K. H.; Moidaki, M.; Reed, C. A.; Gao, S. S.

    2015-08-01

    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broad-band seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic P- and S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are

  3. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  4. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  5. Magma-compensated crustal thinning in continental rift zones.

    PubMed

    Thybo, H; Nielsen, C A

    2009-02-12

    Continental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of sedimentary basins around failed rift structures. PMID:19212408

  6. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  7. Mantle support of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Lin, S.; van Keken, P. E.; Brandenburg, J. P.; Furman, T.; Bryce, J.

    2007-12-01

    The African Superplume is a region of slow seismic wave velocities in the lower mantle under southern Africa. The uplift, volcanism and rifting that defines the much of eastern and southern Africa suggest a dynamic link between lower mantle dynamics and near-surface processes affecting the African plate. The dynamic link between the lower mantle and the surface, and the structure and dynamics of the upper mantle below the East African Rift System (EARS) remain unclear. As part of a comprehensive geochemical and numerical investigation of basaltic magmatism in the EARS we have modeled the interaction between putative upper mantle plumes and the rifting continental lithosphere. The modeling provides dynamically tested scenarios that explain the observed episodes of Cenozoic volcanism. Results from recent models that provided an explanation for the present day distribution of volcanism (Lin et al., EPSL, 237, 2005) suggest two plumes below Afar and Tanzania whose uplift is influenced by lithospheric topography. In new 3D modeling we provide improved quantification of the mantle involvement in generating EARS volcanism as constrained by the timing of uplift and regional volcanism. The time scales of episodicity of the volcanism observed at Turkana (related to the Tanzania-Kenya plume) since 45 Ma can be explained by deep- seated time-dependent plume activity. We suggest that this time-dependence is due to thermochemical interactions of dense recycled oceanic crust in the thermally hot regions in the African superplume region (Lin and Van Keken, Nature, 436, 2005).

  8. Rapid spatio-temporal variations in rift zone deformation, Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey; McNeill, Lisa; Bull, Jonathan; Henstock, Timothy; Bell, Rebecca; Gawthorpe, Robert; Christodoulou, Dimitris; Kranis, Haris; Ferentinos, George; Papatheodorou, George; Taylor, Brian; Ford, Mary; Sakellariou, Dimitris; Leeder, Mike; Collier, Richard; Goodliffe, Andrew; Sachpazi, Maria

    2015-04-01

    The Gulf of Corinth is a young and highly active rift (<5 Ma) in its initial stages of development. An abundance of marine geophysical data and onshore exposures makes it an ideal case study for investigating early rift and fault development. Using a high resolution chronstratigraphic and rift fault model we investigate along strike variations in the basin development within the rift over the past 1-2 Myr and establishing a history of fault activity on major basin controlling faults, at temporal resolutions of ca. 100 kyr or less. We focus on variations in depocentre development and the distribution of displacement and faulting along and across the rift axis; focussing on the partitioning of deformation between N-dipping and S-dipping faults. The rift basin geometry has a complex history and varies spatially along strike of the rift. We highlight a major change in rift structure ca. 600 ka, changing from a complex rift zone to a uniform asymmetric graben. Syn-rift isochore maps identify two stages that accommodate this change: 1. a switch in rift polarity from a dominant N-thickening depocentre to a dominant S-thickening depocentre between ca. 620-420 ka (a rapid change in rift structure and strain distribution). This change is accommodated by transfer of activity between major faults but also by formation of numerous non-basement cutting small faults. 2. Progressive localization of deformation onto major N-dipping faults on the rift's southern margin. This is characterised by depocentre growth and linkage and increased activity on major N-dipping faults since ~340 ka, with faults becoming kinematically and geometrically linked with almost equal slip rates along strike by ca. 130 ka. Ultimately our results show that the early evolution of a rift fault network can be complex but that a dominant fault set eventually forms even in the earliest stages of rifting. Furthermore a switch in rift polarity is a progressive process with deformation becoming distributed before

  9. Anomalous deep earthquakes beneath the East African Rift: evidence for rift induced delamination of the lithosphere?

    NASA Astrophysics Data System (ADS)

    Lindenfeld, Michael; Rümpker, Georg; Schmeling, Harro; Wallner, Herbert

    2010-05-01

    The over 5000 m high Rwenzori Mountains are situated within the western branch of the East African Rift System, at the border between Uganda and the Democratic Republic of Congo. They represent a basement block within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During 2006/2007 a network of 27 seismological stations was operated in this area to investigate crustal and upper mantle structure in conjunction with local seismicity. The data analysis revealed unexpectedly high microseismic activity. On average more than 800 events per month could be located with magnitudes ranging from 0.5 to 5.1. Hypocentral depths go as deep as 30 km with a pronounced concentration of activity at a depth of about 15 km. This presentation focuses on a cluster of seven earthquakes that were located at anomalous depths between 53 and 60 km. According to our present knowledge these are the deepest events so far observed within the EARS and the African Plate. Their origin might be connected to magmatic intrusions. However, the existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material close to the surface, which is not capable of seismogenic deformation. We think that these events are closely related to the evolution of the Rwenzoris. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere that is captured between two approaching rift segments. By numerical modelling we show that the RID-process is also able to bring material that is cold and brittle enough to release seismic energy into greater depth. Therefore the RID-mechanism gives a consistent explanation for the detected deep events as well as for the uplift of a mountain block in a rift setting.

  10. Sensitivity of the East African rift lakes to climate variability

    NASA Astrophysics Data System (ADS)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  11. Basement control in the development of the early cretaceous West and Central African rift system

    NASA Astrophysics Data System (ADS)

    Maurin, Jean-Christophe; Guiraud, René

    1993-12-01

    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic

  12. At the tip of a propagating rift - The offshore East African Rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2016-04-01

    Numerous studies have addressed various aspects of the East African Rift system (EARS) but surprisingly few the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of sub-recent extensional deformation. The seismic reflection data reveals that recent normal faulting often utilizes preexisting, deeply buried half-graben structures which likely are related to the formation of the Somali Basin. The ~30 km wide and ~150 km long symmetric graben is in a stage where the linkage of scattered normal faults already did happen, resulting in increased displacement and accommodation of most of the extension across the basin. However, deep earthquakes below the rift indicate a strong and still preserved lithospheric mantle. Extension is becoming diffuse where an onshore suture, subdividing the northern from the southern metamorphic basement onshore Mozambique, is closest to the offshore rift. It appears likely that this suture is the origin for the variation in rifting style, indicating that mantle fabric resulting from a Cambrian collision has been preserved as mechanical anisotropy of the lithospheric mantle. Further south the rift focuses in an about 30 km wide half-graben. An important finding is that the entire offshore branch of the EARS lacks significant volcanism. Along the offshore EARS there are only negligible indications for recent volcanism in the reflection seismic data such as sills and dikes. Apparently the "Comoros mantle plume" (French and Romanowicz, 2015) has a very minor influence on the progressive extensional deformation along the northern Mozambique continental margin, leading eventually to breakup sometimes in the future. Combining structural with earthquake data reveals that the magma

  13. Earthquakes along the East African Rift System: A multiscale, system-wide perspective

    NASA Astrophysics Data System (ADS)

    Yang, Zhaohui; Chen, Wang-Ping

    2010-12-01

    On the basis of a comprehensive data set of precisely determined depths of 121 large to moderate-sized earthquakes along and near the entire East African Rift System (EARS), there are three distinct patterns in focal depths which seem to correlate with progressive stages in the development of the largest active rift in the world. First, away from both ends of the western, younger branch of the EARS, very large (Mw ≥ 7) earthquakes occurred in the top 15 km of the crust where surficial expressions of rifting are yet to appear. Curiously, there are unusually deep aftershocks reaching down to 35 ± 3 km. Second, under well-developed but amagmatic rift segments, focal depths show a bimodal distribution, with peaks centered near depths of about 15 ± 5 km and 35 ± 5 km. This pattern is present both under the main axis of the EARS, where rift zone have lengths approaching 1000 km, and beneath rift units 10 times shorter in length. Underside reflections off the Moho indicate that at least part of the second peak in seismicity is due to mantle earthquakes down to 44 ± 4 km, attesting to high differential stress in the mantle lithosphere which is capable of accumulating seismogenic, elastic strain (the "jelly sandwich" rheology). Third, beneath magmatic segments of well-developed rifts, seismicity is largely confined to the upper 15 km of the crust as observed previously, akin to the pattern along mid-ocean ridges where plastic flow due to high temperature inhibits accumulation of shear stress deep in the lithosphere.

  14. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  15. Kilauea east rift zone magmatism: An episode 54 perspective

    USGS Publications Warehouse

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  16. Seismicity of the Earth 1900-2013 East African Rift

    USGS Publications Warehouse

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.

  17. Shear zone reactivation during South Atlantic rifting in NW Namibia

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Passchier, C. W.; Salomon, E.

    2013-12-01

    Reactivation of inherited structures during rifting as well as an influence of inherited structures on the orientation of a developing rift has long been discussed (e.g. Piqué & Laville, 1996; Younes & McClay, 2002). Here, we present a qualitative and quantitative study of shear zone reactivation during the South Atlantic opening in NW Namibia. The study area comprises the Neo-Proterozoic rocks of the Kaoko Belt which was formed during the amalgamation of Gondwana. The Kaoko Belt encompasses the prominent ~500 km long ductile Purros shear zone and the Three Palms shear zone, both running sub-parallel to the present continental margin. The Kaoko Belt is partly overlain by the basalts of the Paraná-Etendeka Large Igneous Province, which with an age of ~133 Ma were emplaced just before or during the onset of the Atlantic rifting at this latitude. Combining the analysis of satellite imagery and digital elevation models with extensive field work, we identified numerous faults tracing the old shear zones along which the Etendeka basalts were down-faulted. The faults are often listric, yet we also found evidence for a regional scale basin formation. Our analysis allowed for constructing the geometry of three of these faults and we could thus estimate the vertical offsets to ~150 m, ~500 m, and ~1100 m, respectively. Our results contribute to the view that the basement inheritance plays a significant role on rifting processes and that the reactivation of shear zones can accumulate significant amounts of displacement. References: Pique, A. and E. Laville (1996). The Central Atlantic rifting: Reactivation of Paleozoic structures?. J. Geodynamics, 21, 235-255. Younes, I.A. and K. McClay (2002). Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bulletin, 86, 1003-1026.

  18. Relationship of coronae, regional plains and rift zones on Venus

    NASA Astrophysics Data System (ADS)

    Krassilnikov, A. S.; Kostama, V.-P.; Aittola, M.; Guseva, E. N.; Cherkashina, O. S.

    2012-08-01

    Coronae and rifts are the most prominent volcano-tectonic features on the surface of Venus. Coronae are large radial-concentric structures with diameters of 100 to over 1000 km. They have varied topographical shapes, radial and concentric fracturing and compressional tectonic structures are common for their annuli. Massive volcanism is also connected with some of the structures. Coronae are interpreted to be the result of updoming and fracturing on the surface due to interaction of mantle diapirs with the lithosphere and its subsequent gravitational relaxation. According to Stofan et al. (2001), two types of coronae are observed: type 1 - coronae that have annuli of concentric ridges and/or fractures (407 structures), and type 2 that have similar characteristics to type 1 but lack a complete annulus of ridges and fractures (107 structures). We analyzed 20% of this coronae population (we chose each fifth structure from the Stofan et al. (2001) catalog; 82 coronae of type 1 and 22 coronae of type 2, in total 104 coronae) for the (1) spatial distribution of rift structures and time relationship of rift zones activity with time of regional volcanic plains emplacement, and (2) tectonics, volcanism, age relative to regional plains and relationship with rifts. Two different age groups of rifts on Venus were mapped at the scale 1:50 000 000: old rifts that predate and young rifts that postdate regional plains. Most of young rifts inherit strikes of old rifts and old rifts are reworked by them. This may be evidence of rift-produced uplift zones that were probably mostly stable during both types of rifts formation. Evolution of distribution of rift systems with time (decreasing of distribution and localization of rift zones) imply thickening of the lithosphere with time. Coronae-producing mantle diapirism and uplift of mantle material in rift zones are not well correlated at least in time in most cases, because majority of coronae (77%) of both types has no genetic

  19. Thermal budget of the lower east rift zone, Kilauea Volcano

    USGS Publications Warehouse

    Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.

    1993-01-01

    The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.

  20. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  1. Gravity study of the Central African Rift system: A model of continental disruption 1. The Ngaoundere and Abu Gabra Rifts

    NASA Astrophysics Data System (ADS)

    Browne, S. E.; Fairhead, J. D.

    1983-05-01

    A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.

  2. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  3. Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Bellido, Félix; Gasquet, Dominique; Pereira, M. Francisco; Quesada, Cecilio; Sánchez-García, Teresa

    2014-10-01

    In the northwestern border of the West African craton (North Gondwana), a transition from late Neoproterozoic subduction/collision to Cambrian rift processes was recorded in the Anti-Atlas (Morocco) and in the Ossa-Morena Zone (Iberia). Cambrian rifting affected both Pan-African and Cadomian basements in a stepwise and diachronous way. Subsequently, both areas evolved into a syn-rift margin episodically punctuated by uplift and tilting that precluded Furongian sedimentation. A comparison of sedimentary, volcanic and geodynamic evolution is made in the late Neoproterozoic (Pan-African and Cadomian) belts and Cambrian rifts trying to solve the apparent diachronous (SW-NE-trending) propagation of an early Palaeozoic rifting regime that finally led to the opening of the Rheic Ocean.

  4. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where

  5. Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Leseane, Khumo; Atekwana, Estella A.; Mickus, Kevin L.; Abdelsalam, Mohamed G.; Shemang, Elisha M.; Atekwana, Eliot A.

    2015-02-01

    We used aeromagnetic and gravity data to investigate the thermal structure beneath the incipient Okavango Rift Zone (ORZ) in northwestern Botswana in order to understand its role in strain localization during rift initiation. We used three-dimensional (3-D) inversion of aeromagnetic data to estimate the Curie Point Depth (CPD) and heat flow under the rift and surrounding basement. We also used two-dimensional (2-D) power-density spectrum analysis of gravity data to estimate the Moho depth. Our results reveal shallow CPD values (8-15 km) and high heat flow (60-90 mW m-2) beneath a ~60 km wide NE-trending zone coincident with major rift-related border faults and the boundary between Proterozoic orogenic belts. This is accompanied by thin crust (<30 km) in the northeastern and southwestern parts of the ORZ. Within the Precambrian basement areas, the CPD values are deeper (16-30 km) and the heat flow estimates are lower (30-50 mW m-2), corresponding to thicker crust (~40-50 km). We interpret the thermal structure under the ORZ as due to upward migration of hot mantle fluids through the lithospheric column that utilized the presence of Precambrian lithospheric shear zones as conduits. These fluids weaken the crust, enhancing rift nucleation. Our interpretation is supported by 2-D forward modeling of gravity data suggesting the presence of a wedge of altered lithospheric mantle centered beneath the ORZ. If our interpretation is correct, it may result in a potential paradigm shift in which strain localization at continental rift initiation could be achieved through fluid-assisted lithospheric weakening without asthenospheric involvement.

  6. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly

  7. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  8. Analogies Between the East African Rift Around the Tanzania Craton and the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Montesi, L. G.

    2013-12-01

    Continental rifts and oceanic spreading centers both accommodate plate divergence but their morphologies are often quite different. Yet, ultraslow spreading centers, especially the Southwest Indian ridge at the 9 to 16°E area (SWIR), present good analogies for the East African Rift (EAR), including localized volcanism, avolcanic segments, and a continuous but not straight rift axis. The archetypal oceanic spreading center features transform offsets. Volcanism is continuous along the ridge axis and is most vigorous at the center of spreading segments. By contrast, continental rifts do not feature transform offsets. The orientation of the rift can change along strike. Several rift segments are purely tectonic, with relatively isolated volcanic centers. The EAR around the Tanzania Craton clearly shows this kind of morphology. Ultraslow spreading centers share many of these features. The SWIR, in particular, displays dramatic changes in orientation, with volcanism localized at the junction between segments of different obliquity. Melt production and transport are controlled by the effective spreading rate, a combination of plate divergence velocity and rift obliquity. Ultraslow spreading center all have an effective spreading rate less than 13 mm/yr. At that speed the thickness of the thermal boundary layer is similar to the depth from which magma can be effectively extracted, opening the possibility for long-distance transport of magma along axis without extraction. Volcanic centers correspond to the location where the magma transport system first encounters a tectonically damaged zone that enables extraction to the surface. The effective velocity of the EAR in the Kenya dome is less than 4mm/yr firmly on par with ultraslow ridges. In fact, to generate magma by mantle upwelling at such a slow opening rate requires a higher mantle temperature or fertility than in the oceanic domain. Both opening rate and effective velocity increase northward along the Eastern branch

  9. Ambient noise tomography of the East African Rift in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction

  10. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  11. Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system

    NASA Astrophysics Data System (ADS)

    Fairhead, J. D.; Binks, R. M.

    1991-02-01

    Plate tectonic studies of the development of the Central and South Atlantic Oceans using Seasat and Geosat altimeter and magnetic anomaly isochron data now provide quantitative models of seafloor spreading through time. Such models enable an initial assessment of the differential opening between these two oceanic basins to be determined. The Equatorial Atlantic is an integral part of this oceanic rifting process, allowing stresses arising from the differential opening to be dissipated into both the Caribbean and Africa along its northern and southern boundaries respectively. The tectonic model for the West African rift system, based on geological and geophysical studies, shows a series of strike-slip fault zones diverging into Africa from the Gulf of Guinea and dissipating their shear movement into the development of extensional basins orientated perpendicular to these faults zones. The development of the West African rift system was contemporaneous with the early opening of the South Atlantic, continued to develop well after the final breakup of South America from Africa and did not cease until the late Cretaceous when there was a major phase of basin inversion and deformation. Santonian ( ~ 80 Ma) deformation across the Benue Trough (Nigeria) is broadly contemporaneous with dextral shear reactivation of the central African fracture system which, in turn resulted in renewed extension in the Sudan basins during the late Cretaceous and early Tertiary. This paper illustrates the close linkage in both time and space between the history of the African rift basins and the opening of the Atlantic. Both exhibit distinct phases of evolution with the rift basins developing in direct response to the differential opening between the Central and South Atlantic in order to dissipate stresses generated by this opening. The Mesozoic tectonic model proposed is therefore one of an intimate interaction between oceanic and continental tectonics.

  12. Multiple mantle upwellings beneath the Northern East-African Rift System from relative P- and S-wave traveltime tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2015-04-01

    Mantle plumes have been invoked as the likely cause of East African Rift volcanism and extension. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to one or more distinct lower-mantle sources along the rift. We present a new relative travel-time tomography model that images detailed P- and S- wave velocities from P,S and SKS phases below the northern East-African, Red Sea and Gulf of Aden rift. Data comes from stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time structures of ~100 km length scale down to depths of 900 km beneath this region. Our images provide evidence of at least two low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first extends to at least 900 km beneath Afar, and a second reaching at least 750 km depth just west of the Main Ethiopian Rift, a region with off-rift volcanism. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of 100±50 K. The scale of the upwellings is smaller than any of the previously proposed lower mantle plume sources. This suggests the ponding or flow of deep-plume material below the transition zone may be spawning smaller upper-mantle upwellings.

  13. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  14. Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African Rift

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Thouin, Catherine; Kalala, Tchibangu; Mondeguer, André

    1989-11-01

    Massive sulfides and carbonate mineral deposits associated with sublacustrine thermal springs were recently discovered along the Zaire side of the north Tanganyika trough, western branch of the East African Rift. This hydrothermal activity, investigated by scuba diving at a maximum depth of 20 m, is located at the intersection of major north-south normal faults and northwest-southeast faults belonging to the Tanganyika-Rukwa-Malawi (TRM) strike-slip fault zone. The preliminary results presented here come from analyses of sulfide deposits, hydrothermal fluids, and associated hydrocarbons that result from geothermal activity in this part of the East African Rift filled by a thick pile of sediment, the north Tanganyika trough.

  15. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about

  16. Rupture Zones of Strong Earthquakes In The Corinth Rift

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.; Kouskouna, V.; Plessa, A.

    Ruptures zones of the strong (M 8805; 6) earthquakes that occurred in the Corinth rift in the last three hundred years have been determined on the basis of aftershock epi- central distributions , intensity distributions and observations regarding seismogenic ground failures and tsunamis. The space U time distribution of the rupture zones indi- cates that (1) for time intervals of about 50yrs the rupture zones do not overlap; over- alpping appear, however, in longer time intervals , (2) there is a trend of the seismic activity to decrease westwards , and (3) particular regions constitute potential seis- mic gaps , like the Kiato UXylocastro region in the south coast of the Corinth Gulf, where the large 1402 earthquake occurred, and the Livadia U Desfina region where the A.D.361 and 551 large earthquakes possibly took place.

  17. Contribution of Transverse Structures, Magma, and Crustal Fluids to Continental Rift Evolution: The East African Rift in Southern Kenya

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Muirhead, J.; Dindi, E.; Fischer, T. P.; Lee, H.; Ebinger, C. J.

    2013-12-01

    The Magadi rift in southern Kenya formed at ~7 Ma within Proterozoic rocks of the Mozambique orogenic belt, parallel to its contact with the Archean Tanzania craton. The rift is bounded to the west by the ~1600-m-high Nguruman border fault. The rift center is intensely dissected by normal faults, most of which offset ~1.4-0.8 Ma lavas. Current E-W extensional velocities are ~2-4 mm/yr. Published crustal tomography models from the rift center show narrow high velocity zones in the upper crust, interpreted as cooled magma intrusions. Local, surface-wave, and SKS-splitting measurements show a rift-parallel anisotropy interpreted to be the result of aligned melt zones in the lithosphere. Our field observations suggest that recent fault activity is concentrated at the rift center, consistent with the location of the 1998 seismic swarm that was associated with an inferred diking event. Fault zones are pervasively mineralized by calcite, likely from CO2-rich fluids. A system of fault-fed springs provides the sole fluid input for Lake Magadi in the deepest part of the basin. Many of these springs emanate from the Kordjya fault, a 50-km-long, NW-SE striking, transverse structure connecting a portion of the border fault system (the NW-oriented Lengitoto fault) to the current locus of strain and magmatism at the rift center. Sampled springs are warm (44.4°C) and alkaline (pH=10). Dissolved gas data (mainly N2-Ar-He) suggests two-component mixing (mantle and air), possibly indicating that fluids are delivered into the fault zone from deep sources, consistent with a dominant role of magmatism to the focusing of strain at the rift center. The Kordjya fault has developed prominent fault scarps (~150 m high) despite being oblique to the dominant ~N-S fault fabric, and has utilized an en echelon alignment of N-S faults to accommodate its motion. These N-S faults show evidence of sinistral-oblique motion and imply a bookshelf style of faulting to accommodate dextral-oblique motion

  18. Transition from a localized to wide deformation along Eastern branch of Central East African Rift: Insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Leroy, S. D.; Koptev, A.; Burov, E. B.; Calais, E.; Gerya, T.

    2015-12-01

    The Central East African Rift (CEAR) bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding strong Tanzanian craton. Intensive magmatism and continental flood basalts are largely present in many of the eastern rift segments, but other segments, first of all the western branch, exhibit very small volcanic activity. The Eastern rift is characterized by southward progression of the onset of volcanism, the extensional features and topographic expression of the rift vary significantly north-southward: in northern Kenya the deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south the deformation widens again in the so-called Tanzania divergence zone. Widening of the Eastern branch within its southern part is associated with the impingement of the southward-propagating rift on the strong Masai block situated to east of the Tanzanian craton. To understand the mechanisms behind this complex deformation distribution, we implemented a 3Dl ultra-high resolution visco-plastic thermo-mechanical numerical model accounting for thermo-rheological structure of the lithosphere and hence captures essential features of the CEAR. The preferred model has a plume seeded slightly to the northeast of the craton center, consistent with seismic tomography, and produces surface strain distribution that is in good agreement with observed variation of deformation zone width along eastern side of Tanzanian craton: localized above bulk of mantle material deflected by cratonic keel narrow high strain zone (Kenia Rift) is replaced by wide distributed deformations within areas situated to north (northern Kenya, Turkana Rift) and to south (Tanzania divergence, Masai block) of it. These results demonstrate significant differences in the impact of the rheological profile on rifting style in case of dominant active rifting compared to dominant passive rifting. Narrow rifting, conventionally attributed to

  19. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P.

    2005-04-01

    The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6-4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.

  20. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  1. Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Furman, T.; Hanan, B.

    2005-12-01

    isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.

  2. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Tara lies within a previously recognized asymmetric graben situated on the Ethiopian plateau and about 250 km west of the plateau-Afar margin. ERTS-1 imagery confirms the stronger deformation of the western side of the Tara graben, with intense faulting and some associated monoclinal mapping extending between latitudes 12 deg and 14 deg N, and lying close to meridian 37 deg E. The zone of deformation is gently arcuate in plan, trending NNE in the south NNW in the north. In the north, the Quaternary faulting dies out in the alluvial plains of the Takazze Valley; in the south the faulting appears to die out in coincidence with a large erosional escapement trending S30W from Lake Tara to precisely latitude 11 deg N. This escapement aligns with the massive NE-SW escapement of western Simien, northeast of Lake Tara, and may represent erosional recession from major faulting and tilting much older than that of the superimposed, obliquely trending Tara graben. A 30 km diameter circular feature has been identified from the ERTS-1 imagery of the Tara graben, centered on 13 deg 05 min N, 37 deg 20 min E. ERTS-1 imagery further shows that the Tara graben and its associated young volcanics have no direct connection with the Red Sea or Ethiopian rift valley.

  3. Two Plumes Beneath the East African Rift System: a Geochemical Investigation into Possible Interactions in Ethiopia

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.; van Keken, P. E.; Lin, S.

    2007-12-01

    East African Rift System magmatism began over 40 my ago and has continued through the present. Numerical models have determined two plumes are necessary to create the spatial and temporal distribution of volcanism. Geochemical data support the presence of two chemically distinct plumes initially located beneath the Afar Depression (NE Ethiopia) and the Turkana Depression (SW Ethiopia/N Kenya). The timing and eruptive of the Afar and Kenya plumes are also distinct. While there is growing evidence to support the existence of two dynamically and chemically distinct plumes beneath the East African Rift System, the interactions between them remain unclear. Our study focuses on the geochemistry of mafic shield lavas from three locations on the eastern flank of the Ethiopian plateau. These lavas are spatially located between the surface manifestation of the Afar and Kenya plumes. The majority of the lava is alkaline and has experienced varying degrees of olivine and pyroxene fractionation. The northernmost lavas (9°10'N) are transitional and display the most fractionation. Primitive mantle melts were generated at depths near the fertile mantle garnet-spinel transition zone and deeper (80-100km) and are free of metasomatic influence. Minor HREE depletions also support derivation of melts from a garnet-bearing source. Lavas with lithospheric influence are generated from shallower depths and show minor amphibole influence. Overall, geochemical data show the lavas in this study closely resemble those from various episodes of Kenya plume magmatism with modifications attributed to lithospheric contamination. This interpretation is consistent with current numerical models suggesting episodic northward movement of Kenya plume magmas along the lithosphere-asthenosphere boundary. The data imply that the Kenya plume has a much larger spatial influence and therefore a larger geodynamic influence in the EARS than previously recognized.

  4. The life cycle of continental rifting as a focus for U.S.-African scientific collaboration

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.

    2004-11-01

    The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.

  5. Mapping landslide processes in the North Tanganyika - Lake Kivu rift zones: towards a regional hazard assessment

    NASA Astrophysics Data System (ADS)

    Dewitte, Olivier; Monsieurs, Elise; Jacobs, Liesbet; Basimike, Joseph; Delvaux, Damien; Draida, Salah; Hamenyimana, Jean-Baptiste; Havenith, Hans-Balder; Kubwimana, Désiré; Maki Mateso, Jean-Claude; Michellier, Caroline; Nahimana, Louis; Ndayisenga, Aloys; Ngenzebuhoro, Pierre-Claver; Nkurunziza, Pascal; Nshokano, Jean-Robert; Sindayihebura, Bernard; Philippe, Trefois; Turimumahoro, Denis; Kervyn, François

    2015-04-01

    The mountainous environments of the North Tanganyika - Lake Kivu rift zones are part of the West branch of the East African Rift. In this area, natural triggering and environmental factors such as heavy rainfalls, earthquake occurrences and steep topographies favour the concentration of mass movement processes. In addition anthropogenic factors such as rapid land use changes and urban expansion increase the sensibility to slope instability. Until very recently few landslide data was available for the area. Now, through the initiation of several research projects and the setting-up of a methodology for data collection adapted to this data-poor environment, it becomes possible to draw a first regional picture of the landslide hazard. Landslides include a wide range of ground movements such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in the region in terms of recurring impact on the populations, causing fatalities every year. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithological and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. Here we present the current knowledge of the various slope processes present in these equatorial environments. A particular attention is given to urban areas such as Bukavu and Bujumbura where landslide threat is particularly acute. Results and research perspectives on landslide inventorying, monitoring, and susceptibility and hazard assessment are presented.

  6. Vector Competence of Selected African Mosquito (Diptera: Culicidae) Species for Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Rift Valley fever (RVF) in Egypt, Yemen, and Saudi Arabia have indicated the potential for this disease to spread from its enzootic areas in sub-Saharan Africa. Because little is known about the potential for most African mosquito species to transmit RVF virus (RVFV), we conducted stud...

  7. Structural style of the Turkana Rift, Kenya

    SciTech Connect

    Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

    1988-03-01

    Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

  8. Rates of volcanic activity along the southwest rift zone of Mauna Loa volcano, Hawaii.

    USGS Publications Warehouse

    Lipman, P.W.

    1981-01-01

    Flow-by-flow mapping of the 65 km long subaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new 14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10 000 years. The sequence of historic eruptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1000 years. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (unpubl. Kilauea data by R. T. Holcomb). Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa's southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone. -Author

  9. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  10. The seismotectonics of Southeastern Tanzania: Implications for the propagation of the eastern branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2016-04-01

    Seismicity patterns and focal mechanisms in southeastern Tanzania, determined from data recorded on temporary and permanent AfricaArray seismic stations, have been used to investigate the propagation direction of the Eastern branch of the East African Rift System southward from the Northern Tanzania Divergence Zone (NTDZ). Within the NTDZ, the rift zone is defined by three segments, the Eyasi segment to the west, the Manyara segment in the middle, and the Pangani segment to the east. Results show that most of the seismicity (~ 75%) extends to the south of the Manyara segment along the eastern margin of the Tanzania Craton, and at ~ 6-7° S latitude trends to the SE along the northern boundary of the Ruvuma microplate, connecting with a N-S zone of seismicity offshore southern Tanzania and Mozambique. A lesser amount of seismicity (~ 25%) is found extending from the SE corner of the Tanzania Craton at ~ 6-7° S latitude southwards towards Lake Nyasa. This finding supports a model of rift propagation via the Manyara segment to the southeast of the Tanzania Craton along the northern boundary of the Ruvuma microplate. However, given the limited duration of the seismic recordings used in this study, the possibility of another zone of extension developing to the south towards Lake Nyasa (Malawi) cannot be ruled out. Focal mechanisms along the boundary between the Victoria and the Ruvuma microplates and offshore southeastern Tanzania show a combination of normal and strike slip faulting indicating mainly extension with some sinistral motion, consistent with the mapped geologic faults and a clockwise rotation of the Ruvuma microplate.

  11. Arshan palaeoseismic feature of the Tunka fault (Baikal rift zone, Russia)

    NASA Astrophysics Data System (ADS)

    Smekalin, Oleg P.; Shchetnikov, Alexander A.; White, Dustin

    2013-01-01

    The traditional concept of the rift development of flank depressions in the Baikal rift zone is now doubted in view of some indicators for compression deformations identified by the seismogeological and geodetic methods. Besides, the paleoseismological investigations revealed seismogenic strike-slips and reverse faults in the Tunka fault zone that is a major structure-controlling element of the Tunka rift depression. However, a detailed study of the upslope-facing scarp in the Arshan paleoseismogenic structure zone has shown that its formation might be due to rift mechanism of basin formation. Age estimation has been made for the previously unknown pre-historic earthquake whose epicentral area coincides with the western flank of the Arshan paleoseismogenic structure. Judging from previously determined ages of paleoearthquakes, the mean recurrence period for faulting events on the central Tunka fault is 2780-3440 years.

  12. Benue trough and the mid-African rift system

    SciTech Connect

    Thomas, D.

    1996-01-29

    Large areas of the Anambra and Gongola basins have distinct petroleum exploration problems: a geologically persistent high geothermal gradient that promoted Cretaceous source rock maturation into the gas phase very early on; intrusive lead-zinc mineralization veins attributed to the Senonian igneous and folding event; and meteoric water-flushing along the periphery of the basins. From preliminary analysis, these basins have to be considered high risk for the discovery of commercial oil accumulations. On the other hand, the petroleum potential of the Bornu basins seems favorable. This Nigerian northernmost rift basin continues into the Kanem basin of western Chad, which has proven oil accumulations in Coniacian deltaic sands. Cretaceous paleofacies is considered to be relatively continuous throughout both basins. Paleo-geothermal history is also considered to be similar, although some igneous activity is recorded in the Bornu basin (Senonian?). There is a very real possibility of kerogen-rich non-marine basal Albo-Aptian basin fill lacustrine source rocks, as found in the Doba basin, could be present in the deepest sections of the Nigerian rift basins. Due to the depths involved, no well is expected to penetrate the incipient graben-fill stage sequences; however, possible oil migration from these tectono-stratigraphic units would certainly enhance the petroleum potential of cooler sections of the rift system. As opposed to interpreted thermogenic gas which seems to be prevalent in the Anambra basin.

  13. Magma paths at Piton de la Fournaise volcano: a synthesis of Hawaiian and Etnean rift zones

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Chaput, Marie; Famin, Vincent

    2014-05-01

    On ocean basaltic volcanoes, magma transfer to the surface occurs along sub-vertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, eventually followed by lateral propagation along rift zones. We use a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the pyroclastic cones to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The lower plumbing system has a southeastward (N120) orientation and permits magma transfer from the lithospheric mantle to the base of the La Réunion edifice (5 km bsl). The related rift zone is wide, linear, spotted by small to large pyroclastic cones and related lava flows and involving magma resulting from high-pressure fractionation of ol ± cpx and presents an eruption periodicity of around 200 years over the last 30 kyrs. Seismic data suggest that the long-lasting activity of this rift zone result from a regional NNE-SSW extension reactivating inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The upper plumbing system originates at the base of the edifice in the vertical continuity of the lower plumbing system. It feeds frequent (1 eruption every 9 months on average), short-lived summit and distal (flank) eruptions along summit and outer rift zones, respectively. Summit rift zones are short and present an orthogonal pattern restricted to the central active cone of Piton de la Fournaise whereas outer rift zones extend from inside the Enclos Fouqué caldera to the NE and SE volcano flanks. We show that the outer rift zones are genetically linked to the east flank seaward displacements, whose most recent events where detected in 2004 and 2007. The lateral movements are themselves

  14. Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling

    NASA Astrophysics Data System (ADS)

    Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.

    2007-08-01

    Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration

  15. Structural evolution of the southern transfer zone of the Gulf of Suez rift, Egypt

    NASA Astrophysics Data System (ADS)

    Abd-Allah, Ali M. A.; Abdel Aal, Mohamed H.; El-Said, Mohamed M.; Abd El-Naby, Ahmed

    2014-08-01

    We present a detailed study about the initiation and reactivations of Zeit-El Tor transfer zone, south Gulf of Suez rift, and its structural setting and tectonic evolution with respect to the Cretaceous-Cenozoic tectonic movements in North Egyptian margin. NE trending zone of opposed-dipping faults (22 km wide) has transferred the NE and SW rotations of the sub-basins in central and south Gulf of Suez rift, respectively. The evolution of this zone started by reactivation of the NE oriented late Neoproterozoic fractures that controlled the occurrence of Dokhan Volcanics in the rift shoulders. Later, the Syrian Arc contraction reactivated these fractures by a sinistral transpression during the Late Cretaceous-Eocene time. N64°E extension of the Oligo-Miocene rift reactivated the NE fractures by a sinistral transtension. During this rifting, the NE trending faults forming the transfer zone were more active than the rift-bounding faults; the Upper Cretaceous reverse faults in the blocks lying between these NE trending faults were rotated; and drape-related reverse faults and the positive flower structures were formed. Tectonic inversion from contraction to extension controlled the distribution and thickness of the Upper Cretaceous-Miocene rocks.

  16. Petroleum geology of rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-08-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed based on proprietary exploration results derived from more than one million km{sup 2} of aeromagnetics, 10,520 line-km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas During 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks and seals, with traps in normal fault blocks and anticlinal closures. There have been six oil discoveries in the Termit basin. In C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood-plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There have been six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  17. Petroleum geology of rift basins in Niger, Chad, and the Central African Republic

    SciTech Connect

    Genik, G.J. )

    1991-03-01

    Ten Cretaceous-Tertiary rift basins in Niger, Chad, and the Central African Republic (C.A.R.) are defined and the petroleum geology is overviewed. This paper is based on proprietary exploration results derived from more than 1 million km{sup 2} of aeromagnetics, 10,520 line km of gravity profiles, 49,721 km of reflection seismic, and 50 exploration wells. The data were acquired by Exxon with partners Shell, Chevron, Elf, Conoco, Texaco, and Amax Oil Gas, Inc., during the years 1969-1989. In Niger and Chad, the West African rift subsystem includes the extensional basins of Termit, Tefidet, Tenere, Grein/Kafra, N'Djel Edji, and Bongor. These rift basins contain up to 15,000 m of Cretaceous to Cenozoic continental and marine clastics. Key exploration elements are Tertiary and Cretaceous fluvial to tidal sandstone reservoirs, Tertiary and Cretaceous marine to lacustrine shale source rocks, and seals, with traps in normal fault blocks and anticlinal closures. There are six oil discoveries in the Termit basin. In Chad and the C.A.R., the Central African rift subsystem incorporates the extensional Doba and transtensional Doseo and Salamat basins flanking the Borogop dextral wrench fault. These basins contain up to 7,500 m of chiefly Cretaceous continental clastics. Key exploration elements are Lower and Upper Cretaceous fluvial to lacustrine sandstone reservoirs, Lower Cretaceous lacustrine shale source rocks, lacustrine to flood plain shale and mudstone seals, with traps in mainly faulted anticlinal closures. There are six oil discoveries in the Doba basin and three in the Doseo basin. The studied petroleum geology in the rifts of Niger, Chad, and the C.A.R. indicates that potentially commercial volumes of oil remain to be discovered.

  18. Evolution of bimodal volcanism in Gona, Ethiopia: geochemical associations and geodynamic implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Gregory, R. T.; Richards, I.; Quade, J.; Ebinger, C. J.

    2013-12-01

    The East African rift system in Ethiopia formed in the Earth's youngest flood basalt province, and provides a natural laboratory to study the geochemistry of bimodal volcanism and its implications for plume-derived magmatism, mantle-lithosphere interactions and evolution of continental rifts from plate extension to rupture. Our geochemical studies of the ~6 Ma to recent eruptive products from Gona within the Afar Rift Zone are understood in context of crustal and upper mantle seismic imaging studies that provide constraints on spatial variations. Geochemical (major element, trace element and isotope) analyses of basalts and rhyolitic tuff from Gona indicate a common magma source for these bimodal volcanics. Light rare earth elements (LREEs) are enriched with a strong negative Eu anomaly and a positive Ce anomaly in some of the silicic volcanic rocks. We observe strong depletions in Sr and higher concentrations of Zr, Hf, Th, Nb and Ta. We hypothesize that the silicic rocks may be residues from a plume-derived enriched magma source, following partial melting with fractional crystallization of plagioclase at shallow magma chambers. The absence of Nb-Ta anomaly shows no crustal assimilation by magmas. Sr isotopes, in conjunction with Nd and Pb isotopes and a strong Ce anomaly could reflect interaction of the parent magma with a deep saline aquifer or brine. Nd isotopic ratios (ɛNd = 1.9 to 4.6) show similarity of the silicic tuffs and basalts in their isotopic compositions except for some ~6 Ma lavas showing MORB-like values (ɛNd = 5 to 8.7) that suggest involvement of the asthenosphere with the plume source. Except for one basaltic tuff, the whole rock oxygen isotopic ratios of the Gona basalts range from +5.8‰ to +7.9‰, higher than the δ values for typical MORB, +5.7. The oxygen isotopes in whole rocks from the rhyolite tuffs vary from 14.6‰ to 20.9‰ while their Sr isotope ratios <0.706, indicative of post-depositional low T alteration of these silicic

  19. Banderas Rift Zone: A plausible NW limit of the Jalisco Block

    NASA Astrophysics Data System (ADS)

    Alvarez, Román

    2002-10-01

    Echo soundings recently made in Bahía de Banderas show that this region is a graben with steeply dipping walls and several basins; it is the offshore continuation of the Valle de Banderas graben, and of a branching rift (Río Ameca rift) originating in the Tepic-Zacoalco rift zone. The general trend of the three structures is ENE with some NE trending offsets, and they have a total length of 150 km; this Banderas Rift Zone is proposed as the NW limit of the Jalisco block. The existence of this limit suggests that there is another platelet, or block, between the Jalisco block and a portion of the Rivera plate, probably bounded by the Tres Marías escarpment, the Jalisco block and the North America plate.

  20. Curie Point Depth Estimates Beneath the Incipient Okavango Rift Zone, Northwest Botswana

    NASA Astrophysics Data System (ADS)

    Leseane, K.; Atekwana, E. A.; Mickus, K. L.; Mohamed, A.; Atekwana, E. A.

    2013-12-01

    We investigated the regional thermal structure of the crust beneath the Okavango Rift Zone (ORZ), surrounding cratons and orogenic mobile belts using the Curie Point Depth (CPD) estimates. Estimating the depth to the base of magnetic sources is important in understanding and constraining the thermal structure of the crust in zones of incipient continental rifting where no other data are available to image the crustal thermal structure. Our objective was to determine if there are any thermal perturbations within the lithosphere during rift initiation. The top and bottom of the magnetized crust were calculated using the two dimensional (2D) power-density spectra analysis and three dimensional (3D) inversions of the total field magnetic data of Botswana in overlapping square windows of 1degree x 1 degree. The calculated CPD estimates varied between ~8 km and ~24 km. The deepest CPD values (16-24 km) occur under the surrounding cratons and orogenic mobile belts whereas the shallowest CPD values were found within the ORZ. CPD values of 8 to 10 km occur in the northeastern part of ORZ; a site of more developed rift structures and where hot springs are known to occur. CPD values of 12 to 16 km were obtained in the southwestern part of the ORZ where rift structures are progressively less developed and where the rift terminates. The results suggests possible thermal anomaly beneath the incipient ORZ. Further geophysical studies as part of the PRIDE (Project for Rift Initiation Development and Evolution) project are needed to confirm this proposition.

  1. A new brachypterous scarab species, Orphnus longicornis (Coleoptera: Scarabaeidae: Orphninae), from the East African Rift.

    PubMed

    Frolov, Andrey; Akhmetova, Lilia

    2015-01-01

    The Afrotropical Region is the center of the diversity of the scarab beetle genus Orphnus MacLeay, 1819 (Coleoptera: Scarabaeidae: Orphninae), with 94 species occurring from Sahel in the north to Little Karoo in the south (Paulian, 1948; Petrovitz, 1971; Frolov, 2008). The East African Rift is one of the richest regions of the Afrotropics housing more than 20 species of Orphnus (Paulian, 1948; Frolov, 2013), most of which are endemic to this region. Yet the scarab beetle fauna of the East African Rift, and especially the Eastern Arc Mountains, is still inadequately studied. Examination of the material housed in the Museum of Natural History of Humboldt-Universität, Berlin, Germany (ZMHUB), revealed a series of brachypterous Orphnus beetles belonging to an undescribed species. The new species is described and illustrated below. PMID:26624632

  2. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  3. A Numerical and Analogue Study of Dike Ascent in Asymmetric Continental Rift Zones

    NASA Astrophysics Data System (ADS)

    Schierjott, J.; Maccaferri, F.; Acocella, V.; Rivalta, E.

    2015-12-01

    In continental rift zones, tectonic extension generates deep topographic depressions, typically graben or half-graben structures, confined by large border faults. Volcanism may be distributed within, at the border and outside of the depressions, and the mechanisms controlling this distribution are debated. Recently, Maccaferri et al. (2014) proposed that the reorientation of the principal stresses linked to crustal thinning and overall crustal mass redistribution in rift zones modifies the expected trajectory of ascending magma pockets and plays a fundamental role in the distribution of volcanism at the surface. However, the model does not explain why volcanism is asymmetric in most continental rift zones. The goal of this study is to investigate the relation between the characteristic distribution of volcanism at the surface, the distribution and geometry of magma storage at depth, and the observed geometric asymmetry of the grabens at most rift zones. By using a boundary element model for dike propagation and analogue laboratory experiments we evaluate the ascent path of magmatic dikes in asymmetric continental rifts.We find that the position of the magma source along the cross section of the rift and its spatial extent and the asymmetry of the graben cross section are the most important factors controlling one-sided volcanic activity at surface. For dikes starting beneath the rift's center, the more asymmetric the rift structure the more likely is asymmetric volcanic activity. Dikes are deflected to the shallow rift side and no volcanism develops on the deep side or only focused in one spot. However, if the position of the magma ponding region is offset towards the deep side of the graben, the dikes tend to emerge on the rift shoulder adjacent to such deep side. To a minor extent, also the starting depth of the dikes, any topographic loading on the graben flanks due to flank uplift and the background tectonic stress impact the surface distribution of volcanism

  4. Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Delaney, P.T.; Fiske, R.S.; Miklius, Asta; Okamura, A.T.; Sako, M.K.

    1990-01-01

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  5. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

    NASA Astrophysics Data System (ADS)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.

    2012-07-01

    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  6. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with

  7. Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system

    NASA Astrophysics Data System (ADS)

    Said, Aymen; Moder, Christoph; Clark, Stuart; Abdelmalak, Mohamed Mansour

    2015-11-01

    Data from 23 wells were used to quantify the sedimentary budgets in the Tanzania coastal basin in order to unravel the uplift chronology of the sourcing area located in the East African Rift System. We quantified the siliciclastic sedimentary volumes preserved in the Tanzania coastal basin corrected for compaction and in situ (e.g., carbonates) production. We found that the drainage areas, which supplied sediments to this basin, were eroded in four episodes: (1) during the middle Jurassic, (2) during the Campanian-Palaeocene, (3) during the middle Eocene and (4) during the Miocene. Three of these high erosion and sedimentation periods are more likely related to uplift events in the East African Rift System and earlier rift shoulders and plume uplifts. Indeed, rapid cooling in the rift system and high denudation rates in the sediment source area are coeval with these recorded pulses. However, the middle Eocene pulse was synchronous with a fall in the sea level, a climatic change and slow cooling of the rift flanks and thus seems more likely due to climatic and eustatic variations. We show that the rift shoulders of the East African rift system have inherited their present relief from at least three epeirogenic uplift pulses of middle Jurassic, Campanian-Palaeocene, and Miocene ages.

  8. Volcanic Centers in the East African Rift: Imaging Volcanic Processes with Long-Period Event Identification and Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A. M.; Hardy, S.; Kaip, G.; Velasco, A. A.

    2014-12-01

    Kenya actively seeks to produce geothermal energy, and the country lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes through its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the Geothermal Development Company (GDC) began collaborating to monitor several volcanic centers, which have included passive seismic sensor deployments experiment. A number of seismological techniques will be applied to the data being collected at the four volcanic centers: Menengai, Silali, and Paka, and Korosi. In particular, we will identify long-period signals and tremor local using a time-reversal approach. Low-frequency earthquakes are interpreted as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. The time-reversal locations will help identify the margin of the volcano and caldera, and faults that could form conduits for fluids. We will also perform ambient noise tomography to image the magma chamber and the conduit feeding the volcanoes. The combination of the velocity snapshots of the magma chamber, low-frequency events, and long period events will help us interpret the activity of the calderas and volcanoes. Overall, all these techniques will help us understand magma movement and volcanic processes in the region.

  9. High Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.; Wohnlich, S.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  10. Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  11. The hydrothermal system associated with the Kilauea East Rift Zone, Hawaii

    SciTech Connect

    Thomas, D.M.; Conrad, M.E.

    1997-12-31

    During the last twenty years drilling and fluid production on the Kilauea East Rift Zone (KERZ) has shown that an active hydrothermal system is associated with much of the rift. Well logging and fluid geochemistry indicate that reservoir temperatures exceed 360 C but are highly variable. Although neither well testing nor pressure decline data have clearly demonstrated the lateral limits of the reservoir, divergent fluid compositions over short distances suggest that the larger hydrothermal system is strongly compartmentalized across the rift zone. The chemical compositions of production fluids indicate that recharge is derived from ocean water and meteoric recharge and isotopic data suggest that the latter may be derived from subsurface inflow from the flanks of Mauna Loa.

  12. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C., Jr.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  13. The development of the East African Rift system in north-central Kenya

    NASA Astrophysics Data System (ADS)

    Hackman, B. D.; Charsley, T. J.; Key, R. M.; Wilkinson, A. F.

    1990-11-01

    Between 1980 and 1986 geological surveying to produce maps on a scale of 1:250,000 was completed over an area of over 100,000 km 2 in north-central Kenya, bounded by the Equator, the Ethiopian border and longitudes 36° and 38 °E. The Gregory Rift, much of which has the structure of an asymmetric half-graben, is the most prominent component of the Cenozoic multiple rift system which extends up to 200 km to the east and for about 100 km to the west, forming the Kenya dome. On the eastern shoulder and fringes two en echelon arrays of late Tertiary to Quaternary multicentre shields can be recognized: to the south is the Aberdares-Mount Kenya-Nyambeni Range chain and, to the north the clusters of Mount Kulal, Asie, Huri Hills and Marsabit, with plateau lavas and fissure vents south of Marsabit in the Laisamis area. The Gregory Rift terminates at the southern end of Lake Turkana. Further north the rift system splays: the arcuate Kinu Sogo fault zone forms an offset link with the central Ethiopian Rift system. In the rifts of north-central Kenya volcanism, sedimentation and extensional tectonics commenced and have been continuous since the late Oligocene. Throughout this period the Elgeyo Fault acted as a major bounding fault. A comparative study of the northern and eastern fringes of the Kenya dome with the axial graben reinforces the impression of regional E-W asymmetry. Deviations from the essential N-trend of the Gregory Rift reflect structural weaknesses in the underlying Proterozoic basement, the Mozambique Orogenic Belt: thus south of Lake Baringo the swing to the southeast parallels the axes of the ca. 620 Ma phase folds. Secondary faults associated with this flexure have created a "shark tooth" array, an expression of en echelon offsets of the eastern margin of the Gregory Rift in a transtensional stress regime: hinge zones where major faults intersect on the eastern shoulder feature intense box faulting and ramp structures which have counterparts in the rift

  14. What the volcanism of the East African Rift tells us on its evolution and dynamics: a reappraisal

    NASA Astrophysics Data System (ADS)

    Michon, Laurent

    2015-04-01

    The East African Rift (EAR) is one of the most studied tectonic structures on Earth. Classically, it is described as extending from Afar in the North to the Malawi rift in the South, along the eastern and western branches, respectively. A widely accepted consensus also exists on two main points: 1- the rift initiated first with plume emplacement below the northern part of the eastern branch and 2- extension and volcanism subsequently migrated southward along the western branch (e.g., Ebinger, 1989). However, an increasing amount of new geochronological data on the volcanic activity in the southern part of the East African Rift tends to weaken these interpretations and imposes a reassessment of the rift dynamics. The volcanic activity being one of the main characteristics of this rift, I use it here to determine the lateral extension of the rift system and to assess the rift activity through times. First, the volcanism unambiguously indicates that the rift is not limited to the African continent but can be traced in the Mozambique Channel and in Madagascar where it is closely related to active tectonics (graben and transfer faults) initiated since at least the Miocene. Moreover, the synthesis of more than 800 published geochronological data of volcanic products distributed over the overal East African Rift allows the distinction of two parts. The first part, the Northern EAR, corresponds to the sole eastern branch, which is characterized by volcanic plateaus resulting from huge magma flux during three main periods (32-28, 18-12, 6-0 Ma). Provinces of the second part, the Southern EAR (the western branch, the Mozambique Channel and Madagascar), share rift-related scattered volcanic centres characterized by coeval periods of activity since the Oligocene (28-24, 20-16 and 12-0 Ma). This synthesis highlights the lack of southward migration of the volcanism during the evolution of the East African Rift and instead reveals the almost synchronous development of the

  15. Sismotectonics in the western branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kervyn, François; Mulumba, Jean-Luc; Kipata, Louis; Sebagenzi, Stanislas; Mavonga, Georges; Macheyeki, Athanas; Temu, Elly Bryan

    2013-04-01

    The western branch of the East African rift system is known of its particular seismic activity with larger magnitude (up to Ms 7.3) and more frequent destructive earthquakes than in the eastern branch. As a contribution to the IGCP 601 project Seismotectonic Map of Africa, we compiled the known active faults, thermal springs and historical seismicity in Central Africa. Using the rich archives of the Royal Museum for Central Africa, publications and own field observations, we present a compilation of available data relative to the current seismotectonic activity along the western branch of the East African rift system, in DRC, Rwanda, Burundi and Tanzania. Neotectonic activity related to the western rift branch is in general well expressed and relatively well studied in the eastern flank of this rift branch, in Uganda, Rwanda, Burundi and Tanzania. In contrast, the western flank of this rift branch, largely exposed in the DRC, has attracted less attention. However, data collected during the colonial times show significant sismotectonic activity in East DRC, not only in the western flank of the western rift branch, but extending far westwards up to the margin of the Congo basin. In particular, our predecessors paid a special attention to the mapping and description of thermal springs, noticing that they are often controlled by active faults. In addition, the operators of the relatively dense network of meteorological stations installed in the DRC, Rwanda and Burundi also recorded were with variable level of completeness and detail the earthquakes that they could felt. This provides a rich database that is used to complete the existing knowledge on historical seismicity. An important effort has still to be paid to identify and map potentially active fault due to poor field accessibility, tropical climate weathering and vegetation coverage. The main problem in the compilation of active fault data is that very few of them have been investigated by paleoseismic trenching

  16. Multiproxy Evidence for a Positive Hydrological Budget during the Little Ice Age in the East African Rift, Kenya

    NASA Astrophysics Data System (ADS)

    Goman, M.; Ashley, G. M.; Hover, V. C.; Owen, R.

    2011-12-01

    Hominin evolution took place in Africa during the Plio-Pleistocene and climate change is thought to be a factor, with Africa experiencing a general cooling and increasing aridification over the last several million years. Today, the climate of the East African Rift Valley of Kenya is characterized as semi-arid with evapotranspiration four times precipitation. Water resources are a valuable commodity for the many millions of inhabitants of the Valley. The short instrumental record shows precipitation fluctuates at sub-decadal timeframes as a result of the ENSO cycle; while during prehistory variations in monsoonal precipitation occurred on Milankovitch timescales (i.e. African Humid Period). Both timescales exhibit significant impacts on the distribution of surface water. However, little is known regarding precipitation variability over sub-millennial timescales. Emerging paleoclimate data indicates that the near surface presence of water has also varied over century length timescales. We present paleoclimate data from multiple sites along a north-south 600 km transect of the Gregory Rift Valley (Kenya) that indicate the region experienced wetter conditions during the Little Ice Age (A.D. 1400-1850). Our reconstructions of landscape and climate during this time frame rely upon a multiproxy and interdisciplinary approach. We discuss data from a variety of environmental settings (e.g. lakes, wetlands, and springs) that indicate an overall increase in hydrologic balance. Evidence is derived from biologic microfossils such as pollen, diatom and testate amoebae assemblages as well as inorganic components of the sedimentary record and geomorphic changes. The data differs significantly from studies undertaken to the west in Uganda and the Congo, where negative hydrologic balances occurred during the Little Ice Age. While the atmospheric dynamics causing this disparity are not yet recognized, interactions between the Intertropical Convergence Zone and the Congo Air Boundary

  17. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    NASA Astrophysics Data System (ADS)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  18. Seismicity Patterns and Magmatic Processes in the Rwenzori Region, East-African Rift

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rumpker, G.; Schmeling, H.; Wallner, H.

    2010-12-01

    The 5000m high Rwenzori Mountains are situated within the western branch of the East African Rift System (EARS), at the border between Uganda and the Democratic Republic of Congo. They represent a basement block located within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During a recent seismological campaign we located more than 800 earthquakes per month with magnitudes ranging from 0.5 to 5.1. Vertical sections across the northern parts of the Rwenzoris show, that west of the mountains (towards the rift valley) the focal depths range from 10 to 20 km, whereas the hypocentres go as deep as 30 km on the eastern side. This is in good agreement with Moho-depths derived from receiver functions and implies that all of these events are located within the crust. However, about 30 km east of the northern mountain ridge we located a cluster of 7 events that exhibit an anomalous depth of about 60 km. We can confidently locate these earthquakes within the mantle lithosphere beneath the rift. The existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material relatively close to the surface. We think that these events are possibly related to the evolution of the Rwenzori Mountains. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere. Here we show that the RID-process is indeed capable of explaining the seismic energy release in the mantle. However, in view of the specific hypocentral location of the event cluster, magmatic impregnation processes associated with dyke propagation into the mantle lithosphere may be a more realistic cause for seismic radiation at the observed depth. Crustal earthquakes northeast of the Rwenzori area are relocated with a double-difference algorithm to improve the spatial resolution of seismicity pattern. Several event clusters in the vicinity of the Fort

  19. Fault-related Soil Efflux of Mantle-derived CO2 in the Magadi and Natron Basins, East African Rift

    NASA Astrophysics Data System (ADS)

    Lee, H.; Muirhead, J.; Fischer, T. P.; Kattenhorn, S. A.; Ebinger, C. J.; Thomas, N.; Kianji, G.; Onguso, B.; Maqway, M. D.

    2014-12-01

    The Magadi (Kenya) and Natron (Tanzania) basins of the East African Rift are in an early stage (< 7 Ma) of continental rifting. The many normal faults observed in these areas create sediment-filled basins and a large number of alkaline springs feed water into two major lakes (Lake Magadi and Natron). Earthquake swarms reported in 1998 (Magadi) and 2007 (Natron) were accompanied by surface ruptures. Although CO2 is a major component of magmatic volatiles and fault-related fluids that may facilitate earthquakes and fault weakening, the soil CO2 efflux of continental rifts is poorly known. Here, we report soil CO2 flux rates measured in the Magadi and Natron basins, and carbon isotope values (δ13C, ‰ vs. PDB) to constrain CO2sources. Soil CO2 fluxes were measured at fault zones, horsts, grabens, and surface ruptures by EGM-4 (PP systems) with a gas accumulation chamber. A t-shaped connector with a needle was used for gas sampling into evacuated glass vials with a rubber septum. δ13C values were measured by isotope ratio mass spectrometer with a gas bench at the stable isotope laboratory, University of New Mexico. The fault zones in the Magadi basin have higher maximum CO2 flux rates (< 533.52 g m-2 d-1) and heavier δ13C values (< -3.8 ‰) than the Natron basin (< 147.12 g m-2 d-1 and < -6.2 ‰, respectively). In both areas, soil CO2 efflux is insignificant (< 10 g m-2 d-1) in both horsts and the middle of grabens with lighter δ 13C values (~ -10 ‰) likely resulting from significant air contribution. The highest CO2 flux rates (< 919.44 g m-2 d-1) were measured at recent surface ruptures, but they have lighter δ13C values (-10 to -15 ‰), implying significant air and biogenic C contributions. Our results indicate that (1) normal faults are pathways that deliver mantle-derived CO2 to the surface, (2) the Magadi basin exhibits greater mantle-derived CO2 than the Natron basin, and (3) recent ruptures are zones of shallow CO2 degassing.

  20. Identifying rift zones on volcanoes: an example from La Réunion island, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bonali, Fabio Luca; Corazzato, Claudia; Tibaldi, Alessandro

    2011-04-01

    We describe a methodology for identifying complex rift zones on recent or active volcanoes, where structures hidden by recent deposits and logistical conditions might prevent carrying out detailed fieldwork. La Réunion island was chosen as a test-site. We used georeferenced topographic maps, aerial photos and digital terrain models to perform a statistical analysis of several morphometric parameters of pyroclastic cones. This provides a great deal of geometric information that can help in distinguishing the localisation and orientation of buried magma-feeding fractures, which constitute the surface expression of rift zones. It also allowed the construction of a complete GIS database of the pyroclastic cones. La Réunion is a perfect example where past and active volcanic rift zones are mostly expressed by clusters of monogenic centres. The data has been validated in the field and compared and integrated with the distribution and geometry of dyke swarms. Results show the presence of several main and secondary rift segments of different ages, locations and orientations, whose origin is discussed considering regional tectonics, local geomorphology, and volcano deformation.

  1. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  2. Flank creeping, a mechanism of stabilisation and destabilisation: example of the Tenerife NE-Rift Zone, Spain

    NASA Astrophysics Data System (ADS)

    Delcamp, A.; van Wyk de Vries, B.; Troll, V.; Petronis, M. S.; Carracedo, J. C.

    2009-12-01

    The volcanic evolution of Tenerife has been largely studied, and the eruptive story of the NE and NW rift zones is now well-constrained. A systematic and detailed mapping of dykes of the North East Rift Zone (NERZ) allows to go further and brings new highlights in the intrusive story related to the three successive collapses (1-Micheque, 2-Guïmar and 3-La Orotava) that are located on each side of the rift. Flank creeping seems to be the major mechanism that accommodates the emplacement of the intrusive complex and its associated dykes. Flank spreading allows the stabilisation of the rift until a critical point where further intrusion will generate collapse. The main features deduced from field observation are reproduced and confirmed using analogue models consisting in plaster-sand ridges intruded by golden syrup. The rift at its first stages of growth may be controlled by the regional stress field but its future development depends on the local stress field created by the rift zone evolution. Volcanic rift zones represent clearly a dynamic and changing geological and geographical environment. Keywords: rift zone, flank creeping, strike-slip, dyke intrusion, basal intrusive complex, collapse.

  3. A numerical and analogue study of dike ascent in asymmetric continental rift zones

    NASA Astrophysics Data System (ADS)

    Schierjott, Jana; Maccaferri, Francesco; Keir, Derek; Kemna, Andreas; Rivalta, Eleonora

    2015-04-01

    In continental rift zones, tectonic extension is responsible for the creation of deep topographic depressions bordered by large border faults. Volcanism may be distributed within, at the border and outside of the depressions, and the mechanisms controlling this distribution are debated. Recently, Maccaferri et al. (2014) proposed that the reorientation of the principal stresses linked to crustal thinning and overall crustal mass redistribution in rift zones modifies the expected trajectory of ascending magma pockets and plays a fundamental role in the distribution of volcanism at the surface. However, the model does not explain why volcanism is asymmetric in most continental rift zones. The goal of this study is to investigate the relation between the characteristic distribution of volcanism at the surface, the distribution and geometry of magma storage at depth, and the observed geometric asymmetry of the grabens at most rift zones. By using a boundary element model for dike propagation and analogue laboratory experiments we evaluate the ascent path of magmatic dikes in asymmetric continental rifts. We find that introducing asymmetry of various degrees into the models has a huge impact on the modeled location of the surface volcanic activity. In particular, varying model parameters such as the half-graben width and depth and the degree of asymmetry leads to numerous different scenarios, including one-sided volcanic activity when the degree of asymmetry is very high and the half-graben is not too deep. For wider or deeper half-grabens and moderate asymmetry a larger proportion of the magma tends to become arrested as horizontal intrusions at depth.

  4. Volcanic and Structural History of the NE Rift Zone of Tenerife, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Carracedo, J.; Guillou, H.; Badiola, E. R.; Torrado, F. P.; Troll, V.; Delcamp, A.; Paris, R.; Gonzalez, A. R.

    2008-12-01

    The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence on the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka), separated by longer periods of quiescence or reduced activity: A Miocene stage (7203+/-155ka), apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710+/-58ka) and the latest stage, with the main eruptive phase, in the Pleistocene. Detailed geological (GIS) mapping, geomagnetic reversal mapping and stratigraphic correlation, and radioisotopic (K/Ar) dating of volcanic formations allowed the reconstruction of the latest period of rift activity. In the early phases of this stage the majority of the eruptions grouped tightly along the axis of the rift and show reverse polarity (corresponding to the Matuyama). Dykes are of normal and reverse polarities. In the final phase of activity, eruptions are more disperse and lavas and dykes are consistently of normal polarity (Brunhes). Volcanic units of normal polarity crossed by dykes of normal and reverse polarities yield ages apparently compatible with normal events (M-B Precursor and Jaramillo) in the Upper Matuyama epoch. Three lateral collapses successively mass-wasted the rift: The Micheque collapse, completely concealed by subsequent nested volcanism, and the Güímar and La Orotava collapses, that are only partially filled. Pre- collapse and nested volcanism is predominantly basaltic, except in the Micheque collapse, where magmas evolved towards intermediate and felsic (trachytic) compositions. Rifts in the Canary Islands are long-lasting, recurrent features, probably related to primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their

  5. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  6. Shear-wave velocity structure of the crust and uppermost mantle in the Shanxi rift zone

    NASA Astrophysics Data System (ADS)

    Song, Meiqing; Zheng, Yong; Liu, Chun; Li, Li; Wang, Xia

    2015-04-01

    The Shanxi rift zone is one of the largest and active Cenozoic grabens in the world, studying the velocity structure of the crust and upper mantle in this region may help us to understand the mechanisms of rift processes and the seismogenic environment of active seismicity in continental rifts. In this work, using the broadband seismic data of Shanxi, Hebei, Henan, Shaanxi provinces, and the Inner Mongolia Autonomous Region from February 2009 to November 2011, we have picked out 350 high-quality phase velocity dispersion curves of fundamental mode Rayleigh waves at periods from 8 to 75 s, and Rayleigh wave phase velocity maps have been constructed from 8 to 75 s period with horizontal resolution ranging from 40 to 50 km by two-station surface-wave tomography. Then, using a genetic algorithm, a 3D shear-wave speed model of the crust and uppermost mantle have been derived from these maps with a spatial resolution of 0.4° × 0.4°. Four characteristics can be outlined from the results: (1) Except in the Datong volcanic zone, in the depth range of 11-30 km, the location of a transition zone between the high- and low-velocity regions is in agreement with the seismicity pattern in the study region, and the earthquakes are mostly concentrated near this transition zone; (2) In the depth range of 31-40 km, shear-wave velocities are higher to the south of the Taiyuan Basin and lower to the north, which is similar to the distribution pattern of Moho depth variations in the Shanxi region; (3) The shear-wave velocity pattern of higher velocities to the south of 38°N and lower velocities to the north is found to be consistent with that from the upper crustal levels to depth of 70 km. At the deeper depths, the spatial scale of the low-velocity anomalies zone in the north is gradually shrinking with depth increasing, the low-velocity anomalies are gradually disappearing beneath the Datong volcanic zone at the depth of 151-200 km. We proposed that the root of the Datong volcano

  7. Drilling to Resolve the Evolution of the Corinth Rift

    NASA Astrophysics Data System (ADS)

    McNeill, Lisa; Sakellariou, Dimitris; Nixon, Casey

    2014-05-01

    The initiation and evolution of continental rifting, ultimately leading to rifted margin and ocean basin formation, are major unanswered questions in solid Earth-plate tectonics. Many previous insights have come from mature rifted margins where activity has ceased or from computer models. The Gulf of Corinth Rift in central Greece presents an ideal laboratory for the study of young, highly active rifting that complements other rift zones (e.g., the East African and Gulf of California rifts). Exposure and preservation of syn-rift stratigraphy, high rates of extension, and an existing network of offshore seismic data offer a unique opportunity to constrain the rift history and basin development at exceptionally high resolution in the Gulf of Corinth.

  8. Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Rowland, Julie V.; Wilson, Colin J. N.; Gravley, Darren M.

    2010-02-01

    Taupo Volcanic Zone (TVZ), New Zealand, is a NNE-trending rifting arc, active for ~ 2 Myr, with a 125-km-long central segment characterized by exceptionally voluminous rhyolite volcanism. The volcanic segmentation reflects along-axis variations in magmatism with implications for the thermal state of the crust and consequent rifting dynamics. Along the zone to the north and south of Central TVZ, the limbs of broad monoclines, disrupted to various degrees by normal faults, dip SE against major NW-facing fault zones. In these northern and southern segments, the loci of magmatism (shown by the position of volcanoes) and rifting (manifested by the distribution of seismicity and modern (< 61 ka) faulting in the Taupo Fault Belt (TFB)) coincide. Mantle-derived magmas are localized within the crust in a plexus of small bodies, dikes and sills, and dike-assisted rifting operates at times (but not always) as shown by the historic record. In contrast, throughout most of Central TVZ the loci of magmatism and tectonism (shown by the distribution of high-temperature geothermal systems and inferred from geophysical models and surface fault studies) are offset laterally and extensional strain appears to be partitioned accordingly. Geological, geophysical and geodetic studies indicate the following magma-assisted mechanisms of extension in Central TVZ: 1) mafic dike intrusion of length scale > 20 km and width > 1 m oriented perpendicular to the extension direction; 2) fault slips of < 2 m on structures along-strike from and coeval with silicic eruptions, some of which were triggered by mafic dike intrusion; 3) rifting episodes associated with regional-scale uplift, multi-fault rupture (slips < 2 m) and transient subsidence, arguably driven by changes in state at shallow depths. Volcanic studies of < 340 ka deposits demonstrate that an additional, but less frequent, mechanism involves temporally higher rates of fault slip with regional-scale collapse of rift basins in association

  9. Evidence for small-scale mantle convection in the upper mantle beneath the Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Gao, Stephen S.; Liu, Kelly H.; Davis, Paul M.; Slack, Phillip D.; Zorin, Yuliy A.; Mordvinova, Valentina V.; Kozhevnikov, Vladimir M.

    2003-04-01

    Inversion of teleseismic P wave travel time residuals collected along a 1280-km-long profile traversing the Baikal rift zone (BRZ) reveals the existence of an upwarped lithosphere/asthenosphere interface, which causes a travel time delay of about 1 s at the rift axis ("central high"). An area with early arrivals relative to the stable Siberian platform of up to 0.5 s is observed on each side of the rift, about 200 km from the rift axis ("flank lows"). While the location of the central high is approximately fixed in the vicinity of the rift axis, those of the flank lows vary as much as 200 km with the azimuth of the arriving rays. We use three techniques to invert the travel time residuals for velocity anomalies beneath the profile. Two of the techniques assume an isotropic velocity structure, and one of them considers a transversely isotropic velocity model with a vertical axis of symmetry. We use independent geophysical observations such as gravity, active source seismic exploration, and crustal thickness measurements to compare the applicability of the models. Other types of geophysical measurements suggest that the model involving transverse isotropy is a plausible one, which suggests that the central high and flank lows are caused by the combined effects of an upwarped asthenosphere with a 2.5% lateral velocity reduction, and a velocity increase due to transverse isotropy with a vertical axis of symmetry. We consider the anisotropy to be the result of the vertical component of a lithosphere/asthenosphere small-scale mantle convection system that is associated with the rifting.

  10. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  11. Latitudinal Hydrologic Variability Along the East African Rift, Over the Past 200 Kyr

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.

    2014-12-01

    Within the deep sediments of the large lakes of Africa's Great Rift Valley are continuous environmental records of remarkable antiquity and fidelity. Not only do stratigraphic sections from these basins extend back millions of years, many of the intervals represented contain high-resolution material of decadal resolution or better. East African lake basins remain sparsely sampled however, with only a few long and continuous records available. Our ability to image the lakes using seismic reflection methods greatly exceeds our opportunities for coring and drilling however; assessing stratal relationships observed in the geophysical data permits powerful inferences about past hydrologic changes. With intensive hydrocarbon exploration work underway in East Africa, industry well data can also help constrain and ground truth basin histories. Substantial spatio-temporal hydrologic variability is observed in East African basins over the past 200 kyr. Paleohydrological changes in the late Pleistocene and early Holocene are now well constrained in the northern hemisphere East African topics, with widespread aridity and in some cases lake desiccation observed during Heinrich Event 1. A climate recovery followed in the northern hemisphere East African tropics, with the early Holocene African Humid Period a time of positive water balance across most of the rift valley. The paleohydrology of southern hemisphere tropical East Africa is more equivocal, for instance with negligible draw-down of Lake Malawi at HE1. Whereas these late Pleistocene events represent substantial climate reorganizations, severe droughts during the middle-late Pleistocene (150-65 kyr BP) were far more intense, and produced much more severe drawdowns of Lakes Malawi and Tanganyika. Scientific drill cores, kullenberg cores, and extensive seismic reflection data sets from Lakes Malawi and Tanganyika provide indisputable evidence for lowstands of -500m and -600 m respectively. Climate changes that lowered the

  12. The Rift Valley of African Plate in Elasto-Plastic Creeping over Magma Motion

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigehisa

    2016-04-01

    This is a brief note to a problem on the Rift Valley in the eastern Africa. It is said that this valley was formed in an age 20,000,000 years before present though the valley is yet continuing to move eastward at an annual rate of about 5 cm/year in a geographical trend. Adding to some of the scientists tell that the separation threat of the easternAfrica from the mother land of the Africa under the effect of African crust motion over the magma. However, it is now geological understanding that the land of the Africa has been kept its basic coastal configulation in geographic pattern since the time more than 20,000,000 years before present. Sothat, it is hard to consider the above noted African land separation by part could be in the next age in a time scale of 20,000,000 years. As far as, we concern the geographic data obtaoned by the ground based survey of the African typical mountain peaks, the highest mountain peak 5885m (in 1980) is for Kilimanjaro, Kibo Peak though one of the scientific almanacs tells us its peak height as 5890m (in 2009). As for the Mount Kenia, the peak height is as 5199m (in 1980) and 5200m(in 2009). At a glance, it looks to be a trend in altimetry of the African typical mountain. Now, what trends are noted for the peak heights could be taken to suggesting the geological activity on the earth surface to maintain in a spherical shape approximately on the orbit around the Sun. In these several ten years, the digitizing of the data has been promoted even for the topographic patterns on the earth though its time scaling is extremely short comparing to the geological time scaling. Now, it should be found what is effective to monitor any trends of the African crust in motion as well as variations of the mountain peaks.

  13. Structural evolution of the Abiquiu embayment, Rio Grande Rift: Implications for the development of transfer zones.

    NASA Astrophysics Data System (ADS)

    Hicks, R. T.; Murphy, M. A.

    2006-12-01

    The Abiquiu embayment is located along the boundary between the Colorado Plateau and the Rio Grande rift in north central New Mexico. It is an early rift basin bordered by the Canones fault system on its west side that is oblique to the regional trend of the Rio Grande rift and lies within a region where the polarity of the rift changes. Knowledge of the geometry, kinematics, and slip history of the basin-bounding faults is important in understanding segmentation of the Rio Grande rift and may shed light on the development of transform zones in general. We present geologic mapping, stratigraphic analysis and structural analyses of geologic features in the Abiquiu area to assess the role of Abiquiu embayment in the development of the Rio Grande rift. Our mapping shows that the Canones fault system is an east-dipping, oblique normal fault system that strikes northeast for approximately 20 km. It juxtaposes Permian and Triassic age formations in its footwall against upper Jurassic rocks and 300 m of Tertiary basin fill in its hanging wall. Attitudes of pre-rift strata in the hanging wall define a basin-scale rollover structure, which implies the fault system is listric at depth. Fault slip data collected from the Canones fault system shows the mean slip direction is ENE, which yields nearly equal components of left- slip and normal dip-slip. Mode 1 fractures adjacent to the fault system strike between N20E and N47E, an orientation similar to the strike of basaltic dikes several kilometers east of the surface trace of the Canones fault system. Restoration of the contact between Permian and Triassic-age rocks in a direction parallel to the mean slip direction yields slip estimates that show along strike changes. In the southern part of the study area we estimate 300 m of net slip. In the north, we estimate approximately 425 m. The majority of the total slip occurred before deposition of the 8-10 Ma Lobato basalt. Offset of this basalt unit is less than 50 m, implying

  14. The origin of Mauna Loa's Nīnole Hills: Evidence of rift zone reorganization

    NASA Astrophysics Data System (ADS)

    Zurek, Jeffrey; Williams-Jones, Glyn; Trusdell, Frank; Martin, Simon

    2015-10-01

    In order to identify the origin of Mauna Loa volcano's Nīnole Hills, Bouguer gravity was used to delineate density contrasts within the edifice. Our survey identified two residual anomalies beneath the Southwest Rift Zone (SWRZ) and the Nīnole Hills. The Nīnole Hills anomaly is elongated, striking northeast, and in inversions both anomalies merge at approximately -7 km above sea level. The positive anomaly, modeled as a rock volume of ~1200 km3 beneath the Nīnole Hills, is associated with old eruptive vents. Based on the geologic and geophysical data, we propose that the gravity anomaly under the Nīnole Hills records an early SWRZ orientation, now abandoned due to geologically rapid rift-zone reorganization. Catastrophic submarine landslides from Mauna Loa's western flank are the most likely cause for the concurrent abandonment of the Nīnole Hills section of the SWRZ. Rift zone reorganization induced by mass wasting is likely more common than currently recognized.

  15. Human Dispersals Along the African Rift Valley in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  16. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    NASA Astrophysics Data System (ADS)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    As volcanoes grow, they deform due to their own weight and ongoing magmatic intrusions. For example, Kilauea's south flank is moving seaward ~10 cm/yr, apparently pushed by dike injection along rift zones and/or gravitational spreading. Offshore, Kilauea's south flank has developed a broad bench, attributed to overthrusting at the toe of the mobile flank. Mauna Loa's southeastern flank is much less mobile today, and exhibits no offshore bench. The great variability in present-day surface motions and deformation of these two volcanoes is not well explained by the distribution of surface structures, which might influence the driving and resisting forces acting on the flanks. Using first-arrival seismic tomography of a unique onshore-offshore airgun dataset, we have developed a 3-D P-wave velocity model of the southeastern part of the Island of Hawaii. This model provides an unprecedented view into both the submarine and subaerial portions of Kilauea, Mauna Loa, and Loihi volcanoes, helping to resolve some outstanding puzzles. The preferred velocity model shows that the known summits and rift zones of Kilauea, Mauna Loa and Loihi volcanoes are underlain by high velocity anomalies (6.5-7.0 km/s), indicating the presence of intrusive magma cumulates and dike complexes. In addition, we observe an anomalously high velocity feature (7.0-7.5 km/s) within the southeastern flank of Mauna Loa that extends ~40 km south of the volcano's summit. Our model also shows anomalously high velocity materials (6.3-6.8 km/s) in the oceanic crust beneath Kilauea's outer bench. Based on the geometry of their high velocities, we propose that these features represent previously unrecognized intrusive complexes that have influenced the evolution of the two volcanoes. The high velocity feature within Mauna Loa's southeastern flank appears to represent a buried rift zone, either of ancient Mauna Loa, or an older volcano perhaps related to the Ninole Hills. Curiously, at shallow depths (5-9 km

  17. Giant seismites and megablock uplift in the East African Rift: evidence for Late Pleistocene large magnitude earthquakes.

    PubMed

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions. PMID:26042601

  18. Giant Seismites and Megablock Uplift in the East African Rift: Evidence for Late Pleistocene Large Magnitude Earthquakes

    PubMed Central

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M.

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic ‘megablock complex’ that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions. PMID:26042601

  19. History of the development of the East African Rift System: A series of interpreted maps through time

    NASA Astrophysics Data System (ADS)

    Macgregor, Duncan

    2015-01-01

    This review paper presents a series of time reconstruction maps of the 'East African Rift System' ('EARS'), illustrating the progressive development of fault trends, subsidence, volcanism and topography. These maps build on previous basin specific interpretations and integrate released data from recent petroleum drilling. N-S trending EARS rifting commenced in the petroliferous South Lokichar Basin of northern Kenya in the Late Eocene to Oligocene, though there seem to be few further deep rifts of this age other than those immediately adjoining it. At various times during the Mid-Late Miocene, a series of small rifts and depressions formed between Ethiopia and Malawi, heralding the main regional rift subsidence phase and further rift propagation in the Plio-Pleistocene. A wide variation is thus seen in the ages of initiation of EARS basins, though the majority of fault activity, structural growth, subsidence, and associated uplift of East Africa seem to have occurred in the last 5-9 Ma, and particularly in the last 1-2 Ma. These perceptions are key to our understanding of the influence of the diverse tectonic histories on the petroleum prospectivity of undrilled basins.

  20. The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Cervelli, Peter; Segall, P.; Amelung, F.; Garbeil, H.; Meertens, C.; Owen, S.; Miklius, Asta; Lisowski, M.

    2002-01-01

    Deformation associated with an earthquake swarm on 12 September 1999 in the Upper East Rift Zone of Kilauea Volcano was recorded by continuous GPS receivers and by borehole tiltmeters. Analyses of campaign GPS, leveling data, and interferometric synthetic aperture radar (InSAR) data from the ERS-2 satellite also reveal significant deformation from the swarm. We interpret the swarm as resulting from a dike intrusion and model the deformation field using a constant pressure dike source. Nonlinear inversion was used to find the model that best fits the data. The optimal dike is located beneath and slightly to the west of Mauna Ulu, dips steeply toward the south, and strikes nearly east-west. It is approximately 3 by 2 km across and was driven by a pressure of ??? 15 MPa. The total volume of the dike was 3.3 x 106 m3. Tilt data indicate a west to east propagation direction. Lack of premonitory inflation of Kilauea's summit suggests a passive intrusion; that is, the immediate cause of the intrusion was probably tensile failure in the shallow crust of the Upper East Rift Zone brought about by persistent deep rifting and by continued seaward sliding of Kilauea's south flank.

  1. Evidences of a Lithospheric Fault Zone in the Sicily Channel Continental Rift (Southern Italy) from Instrumental Seismicity Data

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Calo, M.

    2013-12-01

    The Sicily Channel continental rift is located in the African Plate and is submerged by a shallow sea extending from the northern coast of Africa to the southern coast of Sicily (southern Italy). The area is affected by an extensional regime since early Pliocene, which thins the continental crust and produces NW-SE oriented Pantelleria, Linosa and Malta grabens. The rift-related volcanic activity is represented by Pantelleria and Linosa Islands and a series of magmatic manifestations roughly NNE-SSW aligned, from Linosa Island to the Nameless Bank, in proximity of the Sicilian coast. Recent rapid magmatic ascents occurred along the strip near to the Sicilian coast in a region named Graham Bank. The NNE-SSW strip has already been recognised as a separation belt between the western sector of the rift (Pantelleria graben) and the eastern one (Linosa and Malta grabens). Seismic profiles suggest the presence of near vertical structures associated with strike slip fault zones. Bathymetric data show a 15-20 km wide zone characterised by several shallow basins irregularly alternated by topographic highs. However, evidences of a N-S or NNE-SSW orientated faults have not been found. In this work we re-localised the instrumental seismicity recorded between 1981 and 2012 in the Sicily Channel and western Sicily using the Double Difference method (Waldhauser, 2001, 2012) and 3D Vp and Vs models (Calò et al., 2013). The statistical analysis of the relocated seismicity together with the study of seismic energy release distribution allows us to describe the main patterns associated with the active faults in the western Sicily Straits. Here we find that most of the events in the Sicily Channel are highly clustered between 12.5°- 13.5°E and 35.5°-37°N with hypocentral depth between 5-40 km, reaching in some cases 70 km of depth. Seismic events seem to be aligned along a sub-vertical shear zone that is long at least 250 km and oriented approximately NNE-SSW. The spatial

  2. Shaded Relief with Height as Color, Virunga and Nyiragongo Volcanoes and the East African Rift

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Volcanic, tectonic, erosional and sedimentary landforms are all evident in this comparison of two elevation models of a region along the East African Rift at Lake Kivu. The area shown covers parts of Congo, Rwanda and Uganda.

    These two images show exactly the same area. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision. Elevation is color coded, progressing from green at the lower elevations through yellow to brown at the higher elevations. A false sun in the northwest (upper left) creates topographic shading.

    Lake Kivu is shown as black in the Shuttle Radar Topography Mission version (southwest corner). It lies within the East African Rift, an elongated tectonic pull-apart depression in Earth's crust. The rift extends to the northeast as a smooth lava- and sediment-filled trough. Two volcanic complexes are seen in the rift. The one closer to the lake is the Nyiragongo volcano, which erupted in January 2002, sending lava toward the lake shore and through the city of Goma. East of the rift, even more volcanoes are seen. These are the Virunga volcano chain, which is the home of the endangered mountain gorillas. Note that the terrain surrounding the volcanoes is much smoother than the eroding mountains that cover most of this view, such that topography alone is a good indicator of the extent of the lava flows. But this clear only at the higher spatial resolution of the shuttle mission's data set.

    For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments

  3. Mapping of the major structures of the African rift system using ERTS-1

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The structural margin of western Afar with the Ethiopian plateau is marked by a rather wide zone of crustal deformation. ERTS-1 imagery has now permitted a more precise mapping of the structures of this marginal zone, and in particular of the discontinuous marginal graben. The tectonic style of the graben is different in the north from the south, and in the latter region the graben is discordant with the regional tectonic trend. The structural margin of the southern Afar with the Somalian plateau is formed, in the western sector, by a remarkable series of fault-zone splays. Afar-plateau boundary fault-zones successively curve northeast and then NNE to become Afar floor fault-zones, with a distance of about 25 km separating successive turnoffs. The transition from Ethiopian rift to Gulf of Aden tread faulting along this margin is fascinatingly complex. A simplistic crustal thinning model is not adequate to explain all observed structural features of the Afar margins.

  4. Assessing Microseismicity of the Northern Mid-Continent Rift Zone and Surrounding Regions

    NASA Astrophysics Data System (ADS)

    Bartz, D.; Wysession, M. E.; Wiens, D. A.; Aleqabi, G. I.; Shore, P.; van der Lee, S.; Jurdy, D. M.; Stein, S. A.; Revenaugh, J.; Wolin, E.; Bollmann, T. A.; Frederiksen, A. W.; Darbyshire, F. A.

    2014-12-01

    SPREE is a flexible array (FA) deployment associated with the EarthScope project with the aim of better understanding the Mid-Continent Rift Zone (MCRZ). We have used data from SPREE FA and TA stations to detect and locate small earthquakes in the vicinity of the northwestern arm of the Mid-Continent Rift Zone, covering Minnesota, Wisconsin, and parts of Iowa, Michigan, and Ontario. This region, now stable craton, is a failed Precambrian rift marked by low levels of recorded seismicity, perhaps resulting in part from a historic dearth of stations deployed in the region. We assessed this possibility by taking advantage of the densest array that has been deployed in the region. Processing has allowed for regional stress constraints and a means of distinguishing earthquakes from mine blasts, and a quantitative method to differentiate natural earthquakes from mine blasting events, frequent here. After automated event identification, a manual review confirmed 14 earthquakes and several hundred blasting events with magnitudes ranging from M1 - M3. Observed seismicity is in reasonable agreement with available historical data. We use these earthquakes in conjunction with historical catalogs to estimate regional recurrence intervals for events of greater magnitudes. While initial earthquake/blast discrimination was done manually, the ratio of Rayleigh to P-wave amplitude appears to be a reliable discriminant for distinguishing between earthquakes and mine blasting in this region in a systematic way, with earthquakes displaying a systematically depressed ratio. Additionally, P-wave first-motion data and S/P amplitude ratios from natural events constrain focal mechanisms and regional stresses. These methods indicate roughly WSW-ENE compression, consistent with other determinations and absolute plate motion. The majority of events detected lie some distance from the actual rift; we thus conclude current seismicity bears no preferred association with the MCR.

  5. Ancient rifting zones in eastern North America revealed by the ambient noise surface wave tomography

    NASA Astrophysics Data System (ADS)

    Liang, C.; Langston, C. A.

    2006-12-01

    We use the surface waves extracted from the cross-correlation of ambient noise data to invert for the group velocity structure in eastern North America. Stations of two regional seismic networks (networks deployed to monitor the New Madrid Seismic Zone and the eastern Tennessee seismic zone, respectively), together with the stations of national seismic network, greatly improve the ray coverage compared to earthquake waves. The short period (T=5 sec) group velocity map shows strong correlations with the depth to the Precambrian basement and appears to be positively correlated with the gravity. The long period (T=15 sec) group velocity map shows strong correlations with the regional geology. The most spectacular features are the prominent low velocity anomalies associated with the three arms of the triple junction located at the border of Oklahoma and Texas. The western arm of the triple junction (i.e. the Oklahoma Aulacogen) perpendicularly intersects a linear low velocity belt (LVB) possibly associated with the south portion of the Mid-continent rift. The eastern arm extends along the collision belt of the Ouachita orogeny to meet the south tip of the Appalachian Mountains. The nearly north-south striking LVB in the western Mississippi embayment is associated with the Reel Foot rift. However, the LVB extends further northward to the Great Lakes region and this feature is not present on the gravity anomaly map. One LVB extending from the Great lakes region southeastward to Michigan basin is possibly associated with the east portion of the Mid-continent rift. Those LVBs appear to be correlated with the high gravity anomalies that are associated with the rift belts.

  6. Mapping Extensional Structures in the Makgadikgadi Pans, Botswana with remote sensing and aeromagnetic data: Implication for the continuation of the East African Rift System in southern Africa

    NASA Astrophysics Data System (ADS)

    Fetkovich, E. J.; Atekwana, E. A.; Abdelsalam, M. G.; Atekwana, E. A.; Katumwehe, A. B.

    2015-12-01

    Okavango Rift Zone to the northwest of the Makgadikgadi Pans. Our results suggest that the southwestern continuation of this rift system might be a 400 km wide and diffused zone of extension that encompasses both the Okavango Rift Zone and the Makgadikgadi Pans. Our study has implication for understanding within-plate kinematics and seismicity of the African continent.

  7. Early-stage rifting in the southwest East African Rift: Insights from new reflection seismic data from Lakes Tanganyika and Malawi (Nyasa)

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Wood, D. A.; Shillington, D. J.; McCartney, T.; Accardo, N. J.

    2015-12-01

    The western branch of the East African Rift is characterized by modest amounts of mainly amagmatic extension; deeply-subsided, fault-controlled basins; and large-magnitude, deep seismicity. Lakes Tanganyika and Malawi are two of the world's largest lakes, with maximum water depths of 1450 and 700 m respectively. Newly acquired seismic reflection data, along with newly reprocessed legacy data reveal thick sedimentary sections, in excess of 5 km in some localities. The 1980's vintage legacy data from Project PROBE have been reprocessed through pre-stack depth migration in Lake Tanganyika, and similar reprocessing of legacy data from Lake Malawi is forthcoming. New high-fold and large-source commercial and academic data have recently been collected in southern Lake Tanganyika, and in the northern and central basins of Lake Malawi as part of the 2015 SEGMeNT project. In the case of Lake Tanganyika, new data indicate the presence of older sediment packages that underlie previously identified "pre-rift" basement (the "Nyanja Event"). These episodes of sedimentation and extension may substantially predate the modern lake. These deep stratal reflections are absent in many localites, possibly on account of attenuation of the acoustic signal. However in one area of southern Lake Tanganyika, the newly-observed deep strata extend axially for ~70 km, likely representing deposits from a discrete paleolake. The high-amplitude Nyanja Event is interpreted as the onset of late-Cenozoic rifting, and the changing character of the overlying depositional sequences reflects increasing relief in the rift valley, as well as the variability of fluvial inputs, and the intermittent connectivity of upstream lake catchments. Earlier Tanganyika sequences are dominated by shallow lake and fluvial-lacustrine facies, whereas later sequences are characterized by extensive gravity flow deposition in deep water, and pronounced erosion and incision in shallow water depths and on littoral platforms. The

  8. Geochemical anomalies in the bottom waters of the Tadjoura rift zone, Gulf of Aden

    SciTech Connect

    Demina, L.L.; Tambiev, S.B.

    1987-04-01

    The study of geochemical fields and geochemical anomalies is a necessary part of exploration for ore deposits on the ocean floor. Geochemical processes related to hydrothermal activity occurring at the boundary between different media are of special interest. About 10 years ago, concentrations of suspended iron 20 times greater than those in the overlying waters were found in the bottom waters of the Mid-Atlantic Rift near 26/sup 0/N. A number of reports then appeared, showing that in other rift zones as well, the bottom/water interface is characterized by elevated concentrations of iron, manganese, zinc, copper, nickel, and other elements. Thus the present writers were persuaded that the minor elements in bottom waters can serve as indicators of hydrothermal flux to the ocean floor. In carrying out investigations of this kind, one must study the distribution of the metals not only in the bottom waters, but through the entire depth of the sea, so that anomalies can be detected and localized against the level of the background concentrations. In addition, to obtain information on the sources of the metals, one must determine not just the total contents, but also distinguish the metals in solution and in suspension. Results are discussed. The observations clarify the relations between dissolved and suspended forms of metals in weakly mineralized waters above oceanic rifts. 13 references, 5 figures, 5 tables.

  9. Estimation of Earthquake Source Properties Along the East African Rift Using Full Waveforms

    NASA Astrophysics Data System (ADS)

    Baker, B.; Roecker, S. W.

    2015-12-01

    Recently, the Continental Rifting in Africa: Fluids-Tectonic Interaction (CRAFTI) experiment was conducted in northern Tanzania and southern Kenya as a means to better evaluate the effect of tectonic and magmatic strain along the east African rift. Towards this goal S. Roecker has computed a 3D structural model by joint inversion of gravity, local seismic body wave, and surface wave data. The joint inversion in turn produces a quality estimate of the compressional, shear, and density structure in the region. In the process of tomography of local body wave data it was observed that there exist some anomalously deep seismic events. To better quantify these events we look towards waveform modeling in this new and laterally heterogeneous structural model. It is thought that better quantification of later arriving direct and scattered phases will provide better resolved estimates of the event locations and lower the trade-off between source time and depth uncertainty inherent in travel time inversions. Since our main objective is testing the validity of seismic depths in the travel time inversion we will favor a grid search based approach around the current hypocenters using a method similar Zhao, 2006. To expedite processing, we make use of seismic reciprocity and save the strain wave fields produced by impulsive sources at receiver locations in the vicinity of the initial hypocenters. We then perform a moment tensor inversion at each location around the hypocenter, estimate the corresponding source time function, compute the resulting synthetics, and finally calculate a cumulative waveform misfit objective function for all stations. It is thought this procedure should well sample the objective function in the neighborhood of the initial hypocenters and thereby provide an avenue for resolution analysis of the event depths.

  10. Gas-oil fluids in the formation of travertines in the Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Tatarinov, A. A.; Yalovik, L. I.; Shumilova, T. G.; Kanakin, S. V.

    2016-07-01

    Active participation of gas-oil fluids in the processes of mineral formation and petrogenesis in travertines of the Arshan and Garga hot springs is substantiated. The parageneses of the products of pyrolytic decomposition and oxidation of the gas-oil components of hydrothermal fluids (amorphous bitumen, graphite-like CM, and graphite) with different genetic groups of minerals crystallized in a wide range of P-T conditions were established. Travertines of the Baikal rift zone were formed from multicomponent hydrous-gas-oil fluids by the following basic mechanisms of mineral formation: chemogenic, biogenic, cavitation, fluid pyrometamorphism, and pyrolysis.

  11. Application of P- and S-receiver functions to investigate crustal and upper mantle structures beneath the Albertine branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Gummert, Michael; Lindenfeld, Michael; Wölbern, Ingo; Rümpker, Georg; Kasereka, Celestin; Batte, Arthur

    2014-05-01

    The Rwenzori region at the border between Uganda and the Democratic Republic of Congo is part of the western (Albertine) branch of the East African Rift System (EARS). The region is characterized by a horst structure, the Rwenzori Mountains, reaching elevations of more than 5 km and covering an area of about 120 km by 50 km. The unusual location of the mountain range, between two segments of the Albertine rift, suggests complex structures of the crust and the upper mantle below. In our study, we employ P- and S-receiver functions in order to investigate the corresponding discontinuities of the lithosphere-asthenosphere system. The analyses are based on recordings from a dense network of 33 seismic broadband stations operating in the region for a period of nearly two years, from September 2009 until August 2011. The crustal thickness is analysed by using P-receiver functions and the grid search method of Zhu & Kanamori (2000) which involves the stacking of amplitudes of direct converted (Ps) and multiple phases (PpPs and PpSs) originating from the Moho. The method of S-receiver functions is more effective in analysing deeper discontinuities of the upper mantle, such as the lithosphere-asthenosphere boundary (LAB). The latter method also has the advantage that the interfering influence of multiple phases from shallower discontinuities is avoided. To simplify the analysis of the S-receiver functions, we use an automatic procedure to determine incidence angles used in the rotation from the ZNE system to the ray-centered LQT system. We apply this approach to confirm and significantly extend results from the study of Wölbern et al. (2012), which provided evidence for an intra-lithospheric discontinuity at depths between 54 km and 104 km and the LAB between 135 km and 210 km. Our results provide evidence for significant variations of crustal thickness beneath the region. The Moho depth varies between 20 km beneath the rift valley and 39 km beneath the adjacent rift

  12. New Paleomagnetic Constraints on the Evolution of the NE Rift-zone and Associated Landslides, Tenerife, Spain

    NASA Astrophysics Data System (ADS)

    Delcamp, A.; Petronis, M.; Troll, V.; Carracedo, J.; van Wyk de Vries, B.; Perez Torrado, F. J.; Wiesmaier, S.

    2008-12-01

    Tenerife Island is composed by the Teide Pico-Viejo complex and by three rift-zones organized in a triple armed pattern (NE, NW and NS). Each rift zone delimits major landslide embayments. Consequently, a link between rift zone and collapse formation has been strongly suggested by several authors. Here, we focus on the NE rift-zone (NERZ) to constrain its dynamic and evolution. The dikes constituting the rift zone are thought to be emplaced during Miocene/Pliocene/Pleistocene. Two major collapses are displayed on each side of the NERZ: La Orotava in the North and Guïmar at the South. Paleomagnetic sampling sites were established from 111 dikes along the rift. Presently 80 sites are fully demagnetized of which 10 have high site dispersion and do not yield interpretable results. Of the 70 interpretable sites 16 are of normal polarity and 54 of reversed polarity. After inverting the reverse polarity sites through the origin, the in situ group mean (calculated from 52 sites) yields a D=23.8, I=39.8, alpha95=3.7. These values are discordant to an expected Miocene to Pliocene field, with an inferred Rotation R=25.8 +/- 6.6 and Flattening F=0.9 +/- 5.4. The discordance can be explained by either a clockwise vertical axis rotation or a tilt. The results show that the rift is a dynamic feature, with a continuous activity punctuated by several linked collapse-intrusion events (cf. J.C. Carracedo et al. presentation). The discordant paleomagnetic data is interpreted to reflect tilting of the rift related to the several destabilization events. The rift, initially thought to be middle Pliocene/Pleistocene, is likely older with at least two previous stages, one Miocene and one Middle Pliocene. Our study reveals a long-lived, multi-faceted nature of the events that shaped the NERZ. Consequently, volcanic rift-zones are clearly not a "permanent" feature, but represent a dynamic and changing geological and geographical environment.

  13. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, Benjamin; Löbl, Ulrike; Batte, Arthur; Link, Klemens; Kasereka, Celestine; Rümpker, Georg

    2014-05-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by a bimodal pattern of fast polarizations and an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  14. Molecular genetic analyses of historical lake sediments from the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Epp, L. S.; Stoof, K.; Trauth, M. H.; Tiedemann, R.

    2009-04-01

    Ancient DNA research, especially that of environmental samples, has to date focussed mainly on samples obtained from colder regions, owing to better DNA preservation. We explored the potential of using ancient DNA from sediments and sediment cores of shallow lakes in Kenya. These lakes, located in the eastern branch of the East African Rift Valley, are in close proximity, yet display strikingly different hydrological and geological features. Present day lakes range in alkalinity from pH 11 (Lake Elmenteita) to pH 8 (Lake Naivasha), and in depth from less than one meter to 15 meters. Historically they have undergone a number of drastic changes in lake level and environmental conditions, both on geological timescales and during the last centuries. Within this setting we employed molecular genetic methods to study DNA from recent and historic lake sediments, focussing on rotifers and diatoms. We analyzed population and species succession in the alkaline-saline crater lake Sonachi since the beginning of the 19th century, as well as distributions in recent and historic sediments of other lakes of the East African Rift System. To specifically detect diatoms, we developed a protocol using taxon-specific polymerase chain reactions and separation of products by denaturing high performance liquid chromatography (DHPLC). Employing this protocol we retrieved "ancient" DNA from a number of taxonomically diverse organisms, but found diatoms only in sediments younger than approximately 90 years. Using higly specific reactions for rotifers of the genus Brachionus, we tracked species and population succession in Lake Sonachi during the last 200 years. Populations were dominated by a single mitochondrial haplotype for a period of 150 years, and two putatively intraspecific turnovers in dominance occurred. They were both correlated to major environmental changes documented by profound visible changes in sediment composition of the core: the deposition of a volcanic ash and a

  15. Kinematics of Rift-Parallel Deformation Along the Rukwa Rift, Western Branch, and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Stamps, D.; Koehn, D.; Burke, K. C.; d'Oreye, N.; Saria, E.; Xu, R.

    2013-12-01

    The East African Rift System spans N-S ~5000 km and currently experiences E-W extension. Previous kinematic studies of the EARS delineated 3 relatively rigid sub-plates (Victoria, Rovuma, and Lwandle) between the Nubian and Somalian plates. GPS observations of these block interiors confirm the rigid plate model, but we also detect a systematic along-rift deformation pattern at GPS stations located within rift zones bounding the western Victoria block and continuing north between the Nubian and Somalian plates. Here we present a kinematic model of present-day rift-parallel deformation along the Western branch, Rukwa Rift, and Main Ethiopian Rift constrained by a new GPS solution, earthquake slip vectors, and mapped active fault structures. We test the roles of block rotation, elastic deformation, and anelastic deformation by varying block geometry, fault slip distribution parameters, estimating permanent strain rate, and scoring each model with GPS observations. We also explore how the present-day deformation patterns relate to longer-term paleostress indicators. Observations of slickensides and offsets in seismic reflection profiles in the northern Western branch (Albertine rift) indicate a change from ~NNE trending normal faulting to include strike-slip motion within the past 7 My that may be related to previously studied stress changes in the Turkana rift. Preliminary results from the kinematic modeling demonstrate simple elastic strain accumulation on major border faults cannot explain an observed systematic northward component in GPS velocities relative to the Victoria block and the Nubian plate.

  16. Porosity and Connectivity Anisotropy of The Pyrgaki Fault Zone, South Part of The Corinth Rift.

    NASA Astrophysics Data System (ADS)

    Géraud, Y.; Diraison, M.

    Quantitatively assessing the impact of fault zone on fluid flow in seismically active area requires an accurate conceptual model of fractures, matrix porosity, chemical and physical properties. Three main volumes compose a fault zone: the gouge, the damage zone and the protolith. As a fault zone evolves, its structure and properties, especially hydraulic, thermal and mechanical vary on time and space in value and anisotropy. This behavior depends as well as on the fracture network than the matrix transforma- tion. Indeed, multi-scalar approach becomes necessary to develop a coherent numeri- cal model. In the aim to contribute to the model development, characterization of the porous network is performed using mercury porosimetry and SEM observations. The Pyrgaki fault zone is twenty kilometers in the South of Aigion (Greece) in the south part of the corinth rift, fault zones have limestone in the both hanging wall and foot- wall. A cross section through the fault zone samples 5 meters in the footwall and 4 meters in the hanging wall. Two material types compose the gouge, the first has low grain size and low macroporosity value, and the second material has large grain size and high macroporosity value. Mercury injection gives data about different porosity volumes; the connectivity anisotropy defined using a new is procedure of mercury test. The porous network is mainly formed by tubes in the gouge zone and by cracks in the damage zone. In the gouge zone the crack content is higher in the second types of material than in the first one. Porosity volumes, connectivity anisotropy and void shapes are used to build a porous network usable to modeling hydraulic, mechanical and chemical properties.

  17. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Moore, R.B.

    1992-01-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200-400 years old: 50%, 15, 14.3: (III) 400-750 years old: 20%, 54, 6.6; (IV) 750-1500 years old: 5%, 37, 20.8; (V) 1500-3000 years old: <1%, 1, unknown. At least 4.5-6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ. ?? 1992 Springer-Verlag.

  18. Reef growth and volcanism on the submarine southwest rift zone of Mauna Loa, Hawaii

    USGS Publications Warehouse

    Moore, J.G.; Normark, W.R.; Szabo, B. J.

    1990-01-01

    A marine sampling program, utilizing the PISCES-5 submersible operated by the Hawaii Undersea Research Laboratory (NOAA), has confirmed the presence of a major submerged coral reef offshore from Ka Lae (South Point), Hawaii. The top of the reef is now 150-160 m below sea level. Radiocarbon and Useries dating indicates that it drowned about 13.9 ka by the combined effects of island subsidence (2.5 mm/year) and the rapid rise of sea level at the end of the last glaciation so that the relative submergence rate of more than 10 mm/year exceeded the upward growth rate of the reef. The submerged reef caps the offshore part of the southwest rift-zone ridge of Mauna Loa, which has apparently undergone little volcanic activity offshore since 170 ka, and possibly since 270 ka. This fact suggests that rift zone activity is becoming increasingly restricted toward the upper part of the volcano, a condition possibly heralding the end of the shield-building stage. ?? 1990 Springer-Verlag.

  19. The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence

    NASA Astrophysics Data System (ADS)

    Dickin, A. P.; McNutt, R. H.

    2007-07-01

    Nd isotope data are presented for granitoid orthogneisses from the Central Metasedimentary Belt (CMB) of the Grenville Province in order to map the extent of juvenile Grenvillian-age crust within this orogenic belt that is composed mostly of older crustal terranes. The data reveal a 150 km-wide belt of juvenile crust in Ontario, but this belt contains a block of pre-Grenvillian crust (containing the Elzevir pluton) which yields an estimated crustal formation age of 1.5 Ga. The recognition of an older block within the CMB has profound implications for its structure and tectonic evolution, because it implies that juvenile Grenvillian crust, apparently forming a wide NE-SW belt, is in fact distributed in two narrower segments with approximately N-S strike. We suggest that the CMB comprises an en echelon series of ensimatic rift segments, created by back-arc spreading behind a continental margin arc. These rift segments extend southwards (in the subsurface) into the northeastern Unites States. The rift segments contain abundant marble outcrops, consistent with marine incursion into the rift zone, and these deposits also continue northwards into a 'Marble domain' of the CMB in Quebec. However, crustal formation ages in the latter domain are largely pre-Grenvillian, implying that the Quebec rift segment was ensialic. Hence, we interpret the CMB in Ontario and Quebec as the northern termination of a failed back-arc rift zone.

  20. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    NASA Astrophysics Data System (ADS)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  1. Post pan-african denudation history of southwestern Madagascar during the complex rift-drift evolution of the island: new aspects from titanite and apatite fission track analyses

    NASA Astrophysics Data System (ADS)

    Emmel, B.; Jacobs, J.

    2003-04-01

    Titanite and apatite fission track (FT) thermochronology from 53 basement outcrops in southwest Madagascar reveal a protracted post Pan-African history of extensional tectonism, denudation and sedimentation. The titanite FT ages range between 276 ± 14 Ma and 379 ± 38 Ma. Apatite FT ages vary between 117 ± 26 Ma and 379 ± 19 Ma with mean track length scattering between 11.7 ± 0.59 μm and 13.74 ± 0.21 μm. Combined titanite and apatite FT data were used to calculate denudation rates. Samples from the paleo western margin of Madagascar along the N-S striking Pan-African Ejeda shear zone give above-average denudation rates (100-205 mMa-1) during Carboniferous times. The shear zone was probably reactivated during this times. In contrast the calculated denudation rates for samples from the interior of the island are moderate (25-120 mMa-1). Vitrinite reflectance data from the Sakoa coal area as well as titanite and apatite FT data imply that during the Permo-Triassic rifting, the areas along the paleo western margin that previously underwent fast denudation were buried by a sedimentary cover of up to ˜4.5 km. At this time, a graben developed further inland along the NW-SE striking transcontinental Bongolava-Ranotsara shear zone (BRSZ). Modelled time-temperature paths indicate that the area within the BRSZ remained cool and unaffected since Carboniferous times whereas the samples northeast and southwest of the BRSZ suggest phases of differential cooling during Permian-Triassic times. Seismic data from the Morondava basin indicate that during the Middle Jurassic drift between Madagascar and East-Africa a rift jump towards the west occurred. Modelled time-temperature histories of basement units from the paleo western margin, buried during Permo Triassic times, were exhumed during Jurassic times. This is most probably related with the modified rift kinematics and the associated southwest migration of the margin. Modelled time-temperature paths of all samples from

  2. Rift zones and magma plumbing system of Piton de la Fournaise volcano: How do they differ from Hawaii and Etna?

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Villeneuve, Nicolas; Famin, Vincent

    2015-09-01

    On ocean basaltic volcanoes, magma transfer to the surface proceeds by subvertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, possibly followed by lateral propagation along rift zones. We use a 19-year-long database of volcano-tectonic seismic events together with detailed mapping of the cinder cones and eruptive fissures to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The deep plumbing system is rooted between Piton des Neiges and Piton de la Fournaise volcanoes and has a N30-40 orientation. Above 20 km below sea level (bsl), the main axis switches to a N120 orientation, which permits magma transfer from the lithospheric mantle to the base of the oceanic crust, below the summit of Piton de la Fournaise. The related NW-SE rift zone is 15 km wide, linear, spotted by small to large pyroclastic cones and related lava flows and emits slightly alkaline magmas resulting from high-pressure fractionation of clinopyroxene ± olivine. This rift zone has low magma production rate of ~ 0.5-3.6 × 10- 3 m3s- 1 and an eruption periodicity of around 200 years over the last 30 ka. Seismic data suggest that the long-lasting activity of this rift zone result from regional NNE-SSW extension, which reactivates inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The shallow plumbing system (< 11 km bsl) connects the base of the crust with the Central Cone. It is separated from the deep plumbing system by a relatively large aseismic zone between 8 and 11 km bsl, which may represent a deep storage level of magma. The shallow plumbing system feeds frequent, short-lived summit and flank (NE and SE flanks) eruptions along summit and outer rift zones, respectively

  3. Seismic Anisotropy of the Lithosphere/Asthenosphere System Beneath the Rwenzori Region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A.; Link, K.; Kasereka, C.; Rumpker, G.

    2014-12-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  4. Implications of historical eruptive-vent migration on the northeast rift zone of Mauna Loa Volcano, Hawaii

    SciTech Connect

    Lockwood, J.P. )

    1990-07-01

    Five times within the past 138 yr (1852, 1855-1856, 1880-1881, 1942, and 1984), lava flows from vents on the northeast rift zone of Mauna Loa Volcano have reached within a few kilometres of Hilo (the largest city on the Island of Hawaii). Most lavas erupted on this right zone in historical time have traveled northeastward (toward Hilo), because their eruptive vents have been concentrated north of the rift zone's broad topographic axis. However, with few exceptions each successive historical eruption on the northeast rift zone has occurred farther southeast than the preceding one. Had the 1984 eruptive vents (the most southeasterly yet) opened less than 200 m farther southeast, the bulk of the 1984 lavas would have flowed away from Hilo. If this historical vent-migration pattern continues, the next eruption on the northeast rift zone could send lavas to the southeast, toward less populated areas. The historical Mauna Loa vent-migration patterns mimic southeastern younging of the Hawaiian-Emperor volcanic chain and may be cryptically related to northwestward movement of the Pacific plate. Systematic temporal-spatial vent-migration patterns may characterize eruptive activity at other volcanoes with flank activity and should be considered as an aid to long-term prediction of eruption sites.

  5. Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Petit, Carole; Koulakov, Ivan; Deverchère, Jacques

    1998-10-01

    We present new results on the velocity structure of the Baikal rift zone, Asia, deduced from a comparative teleseismic and local tomography analysis. The aim of this paper is to better identify the role of deep mantle processes versus that of far-field tectonic effects on the occurrence of extensional tectonics within a continental plate. We use 36000 traveltimes of P-refracted waves from the ISC catalogues and Pg and Pn traveltimes of 578 earthquakes recorded by the Russian regional network to determine a velocity model by the use of local and teleseismic inversion procedures. The models show that some velocity patterns are continuous from the surface down to at least 400 km. Among them, a narrow negative anomaly goes through Mongolia and follows the southern and eastern margins of the Siberian craton: this structure is interpreted as a thin mantle plume rising beneath the rift axis. However, our results do not evidence any wide asthenospheric upwarp at this place. Other velocity anomalies observed near the surface are not deeply rooted. In particular, a negative anomaly is observed at shallow levels (48 km) beneath the northern third of Lake Baikal, which is disconnected from deeper structures. It may be explained by the existence of underplated magmatic material at the bottom of the crust. By comparing the geometry of deep-rooted anomalies to the present-day stress field patterns, we conclude that the sub-lithospheric mantle dynamics is not the main factor controlling extensional processes in the Baikal rift. However, it does contribute to a thermal weakening of the lithosphere along a mechanical discontinuity bounding the Siberian shield. We finally conclude that three favourable conditions are gathered in the Baikal area to generate extension: far-field extensional stress field, mechanical inherited lithospheric weakness and heat supply. Further studies should help to precise the genetic link between these three factors.

  6. A common mantle plume source beneath the entire East African Rift System revealed by coupled helium-neon systematics

    NASA Astrophysics Data System (ADS)

    Halldórsson, Sæmundur A.; Hilton, David R.; Scarsi, Paolo; Abebe, Tsegaye; Hopp, Jens

    2014-04-01

    We report combined He-Ne-Ar isotope data of mantle-derived xenoliths and/or lavas from all segments of the East Africa Rift System (EARS). Plume-like helium isotope (3He/4He) ratios (i.e., greater than the depleted MORB mantle (DMM) range of 8 ± 1RA) are restricted to the Ethiopia Rift and Rungwe, the southernmost volcanic province of the Western Rift. In contrast, neon isotope trends reveal the presence of an ubiquitous solar (plume-like) Ne component throughout the EARS, with (21Ne/22Ne)EX values (where (21Ne/22Ne)EX is the air-corrected 21Ne/22Ne ratio extrapolated to Ne-B) as low as 0.034, close to that of solar Ne-B (0.031). Coupling (21Ne/22Ne)EX with 4He/3He ratios indicates that all samples can be explained by admixture between a single mantle plume source, common to the entire rift, and either a DMM or subcontinental lithospheric mantle source. Additionally, we show that the entire sample suite is characterized by low 3He/22NeS ratios (mostly < 0.2)—a feature characteristic of oceanic hot spots such as Iceland. We propose that the origin of these unique noble gas signatures is the deeply rooted African Superplume which influences magmatism throughout eastern Africa. We argue that the Ethiopia and Kenya domes represent two different heads of this common mantle plume source.

  7. Giant seismites and megablock uplift in the East African Rift: Evidence for large magnitude Late Pleistocene earthquakes

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric

    2015-04-01

    Due to rapid population growth and urbanization of many parts of East Africa, it is increasingly important to quantify the risk and possible destruction from large-magnitude earthquakes along the tectonically active East African Rift System. However, because comprehensive instrumental seismic monitoring, historical records, and fault trench investigations are limited for this region, the sedimentary record provides important archives of seismicity in the form of preserved soft-sediment deformation features (seismites). Extensive, previously undescribed seismites of centimeter- to dekameter-scale were identified by our team in alluvial and lacustrine facies of the Late Quaternary-Recent Lake Beds Succession in the Rukwa Rift Basin, of the Western Branch of the East African Rift System. We document the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania, primarily exposed at two, correlative outcrop localities ~35 km apart. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced breccia megablocks, some in excess of 20 m-wide. The megablock complex is comprised of (1) a 5m-tall by 20m-wide injected body of volcanic ash and silt that hydraulically displaced (2) an equally sized, semi-consolidated, volcaniclastic megablock; both of which are intruded by (3) a clastic injection dyke. Evidence for breaching at the surface and for the fluidization of cobbles demonstrates the susceptibility of the substrate in this region to significant deformation via seismicity. Thirty-five km to the north, dekameter-scale asymmetrical/recumbent folds occur in a 3 m-thick, flat lying lake floor unit of the Lake Beds Succession. In between and surrounding these two unique sites, smaller-scale seismites are expressed, including flame structures; cm- to m-scale folded beds; ball-and-pillow structures; syn-sedimentary faults; sand injection features; and m

  8. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ̀i

    NASA Astrophysics Data System (ADS)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these

  9. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    NASA Astrophysics Data System (ADS)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition

  10. A Pan African age for the HP-HT granulite gneisses of Zabargad island: implications for the early stages of the Red Sea rifting

    NASA Astrophysics Data System (ADS)

    Lancelot, Joël R.; Bosch, Delphine

    1991-12-01

    Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, Sm sbnd Nd and Rb sbnd Sr internal isochrons yield Pan African dates for felsic and basic granulites collected 500-600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined Rb sbnd Sr and Sm sbnd Nd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the Sm sbnd Nd and Rb sbnd Sr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the Rb sbnd Sr isotopic system of the mafic granulite. The initial 143Nd/ 144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite

  11. Clinopyroxene-host disequilibrium (Sr-Nd-Pb isotope systematics) in ultra-potassic magmas from East-African Rift: Implications for magma mixing and source heterogeneity

    NASA Astrophysics Data System (ADS)

    Muravyeva, Natalya; Belyatsky, Boris; Senin, Valeriy

    2014-05-01

    Nd, Pb and Sr isotope ratios have been determined for kamafugite lava and clinopyroxene and phlogopite phenocrysts from Toro-Ankole and Virunga volcanic fields of the East African Rift. The whole rock Sr - Nd isotopic signatures of kamafugites (87Sr/86Sr: 0.70463 - 0.70536; 143Nd/144Nd: 0.51249 - 0.51255) suggest derivation from an EM1-type mantle source. In contrast, Pb isotopic compositions of the same samples (206Pb/204Pb: 19.00 - 19.57; 207Pb/204Pb: 15.69 - 15.74; 208Pb/204Pb: 39.30 - 40.26) reveal a similarity to EM2-type mantle. New Nd, Pb and Sr isotopic data for clinopyroxene (87Sr/86Sr: 0.70473 - 0.70503; 143Nd/144Nd: 0.51250 - 0.51254; 206Pb/204Pb: 18.04 - 18.17; 207Pb/204Pb: 15.58 - 15.60; 208Pb/204Pb: 38.09 - 38.23) suggest derivation from an EM1-like source, and indicate Sr and Pb isotope disequilibrium between clinopyroxene and corresponding host rock. Moreover, clinopyroxenes demonstrating a greater degree of isotopic disequilibrium with their host rock are more sodic in composition. The isotopic disequilibrium is corroborated by the presence of chemical zoning within clinopyroxene, which suggests rapid magma ascent rates preventing melt homogenization. The Pb isotopic ratios for both mineral and corresponding whole rock, together with published data on East African rift-related alkaline centers, define a trend interpreted to represent a mixing line for melts derived from sources such as EM1 and as HIMU. The similar isotopic compositions for clinopyroxene from the different volcanic rocks within the East African Rift suggest the existence of a common, older mantle source for their parental melts. The origin of these melts can be attributed to an enrichment event ~ 400-500 Ma, i.e., significantly prior the younger (Quaternary) ultrapotassic magmatism. Our preferred interpretation for the results reported here involves the mixing of the melts derived from EM1- and HIMU-like sources, which were rapidly transported to the Earth's surface. The primary

  12. Petrologic constraints on rift-zone processes - Results from episode 1 of the Puu Oo eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Garcia, M.O.; Ho, R.A.; Rhodes, J.M.; Wolfe, E.W.

    1989-01-01

    The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas. ?? 1989 Springer-Verlag.

  13. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Chamussa, J.; Silveira, G. M.; Custodio, S.; Lebedev, S.; Chang, S.; Ferreira, A. M.; Fonseca, J. F.

    2013-12-01

    A wide range of studies has shown that the cross-correlation of ambient noise can provide an estimate of the Greens functions between pairs of stations. Project MOZART (funded by FCT, Lisbon, PI J. Fonseca) deployed 30 broadband (120s) seismic stations from the SEIS-UK Pool in Central Mozambique and NE South Africa, with the purpose of studying the East African Rift System (EARS) in Mozambique. We applied the Ambient Noise Tomography (ANT) method to broadband seismic data recorded from March 2011 until July 2012. Cross-correlations were computed between all pairs of stations, and from these we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. We tested various approaches for pre-processing the ambient noise data regarding time-domain and spectral normalisation, as well as the use of phase cross-correlations. Moreover, we examined the robustness of our dispersion maps by splitting our dataset into various sub-sets of Green's functions with similar paths and by quantifying the differences between the dispersion maps obtained from the various sub-sets of data. We find that while the geographical distribution of the group velocity anomalies is well constrained, the amplitudes of the anomalies are slightly less robust. We performed a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle. In addition, our preliminary results show a good correlation between the Rayleigh wave group velocity and the geology of Mozambique. In order to extend the investigation to longer periods and, thus, to be able to look into the lithosphere-asthenosphere depth range in the upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry) and augment our dataset with Rayleigh wave phase velocities curves in broad period ranges.

  14. New insights into the northern Dead Sea Fault Zone (Karasu Rift and Hatay Graben), Southern Turkey.

    NASA Astrophysics Data System (ADS)

    Boulton, S. J.

    2004-12-01

    The Karasu Rift forms the northernmost segment of the Dead Sea Fault Zone (DSFZ), trending northwards from the Amik Plain. To the south of the Amik Plain, the Gharb Rift forms the southwards continuation of the DSFZ, while to the east the Hatay Graben trends NE-SW from the Amik Plain to the present Mediterranean coast. Recent fieldwork in the area shows a markedly different style of deformation across the Amik Plain. The northern Gharb fault is a narrow (<10 km wide) structure that is flanked by numerous fault strands, large strike-slip faults have negligible vertical offset. Small-scale faulting accompanying the large faults is uncommon, although the Late Miocene and Pliocene sediments are pervasively fractured, with two sets of joints orientated between 010°-060° and 090°-130°. This may imply that motion along the DSFZ is accommodated along the main faults and internally fault blocks do not undergo any faulting. By contrast, the southern Karasu Rift is 15-20km wide and the bounding faults have a significant vertical component of motion. Palaeozoic to Upper Miocene sediments have been exhumed in the footwall and are faulted as well as jointed, two main populations of faults have been identified, those trending NE-SW (010°- 060°) and those trending ~ N-S (320°-005°), although in some areas there is also a third subset of faults that trend E- W. These differences suggest that the structural controls on the two areas differ, implying that there is no continuity of structure across the Amik Plain. The Hatay Graben is also 15-20km wide; the flanks of the graben are dominated by normal faults mainly striking parallel to the graben (0-180°). In contrast, the graben axis exhibits numerous strike-slip faults, trending from 100° - 200°, and normal faults striking 040°- 060° and 150°-190° (with a subset striking 110°-130°). Normal faults of similar orientation occur in Upper Cretaceous to Quaternary sediments, whereas strike-slip faults are mostly identified

  15. New insights into the northern Dead Sea Fault Zone (Karasu Rift and Hatay Graben), Southern Turkey.

    NASA Astrophysics Data System (ADS)

    Boulton, S. J.

    2007-12-01

    The Karasu Rift forms the northernmost segment of the Dead Sea Fault Zone (DSFZ), trending northwards from the Amik Plain. To the south of the Amik Plain, the Gharb Rift forms the southwards continuation of the DSFZ, while to the east the Hatay Graben trends NE-SW from the Amik Plain to the present Mediterranean coast. Recent fieldwork in the area shows a markedly different style of deformation across the Amik Plain. The northern Gharb fault is a narrow (<10 km wide) structure that is flanked by numerous fault strands, large strike-slip faults have negligible vertical offset. Small-scale faulting accompanying the large faults is uncommon, although the Late Miocene and Pliocene sediments are pervasively fractured, with two sets of joints orientated between 010°-060° and 090°-130°. This may imply that motion along the DSFZ is accommodated along the main faults and internally fault blocks do not undergo any faulting. By contrast, the southern Karasu Rift is 15-20km wide and the bounding faults have a significant vertical component of motion. Palaeozoic to Upper Miocene sediments have been exhumed in the footwall and are faulted as well as jointed, two main populations of faults have been identified, those trending NE-SW (010°- 060°) and those trending ~ N-S (320°-005°), although in some areas there is also a third subset of faults that trend E- W. These differences suggest that the structural controls on the two areas differ, implying that there is no continuity of structure across the Amik Plain. The Hatay Graben is also 15-20km wide; the flanks of the graben are dominated by normal faults mainly striking parallel to the graben (0-180°). In contrast, the graben axis exhibits numerous strike-slip faults, trending from 100° - 200°, and normal faults striking 040°- 060° and 150°-190° (with a subset striking 110°-130°). Normal faults of similar orientation occur in Upper Cretaceous to Quaternary sediments, whereas strike-slip faults are mostly identified

  16. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de M

  17. Miocene Onset of Extension in the Turkana Depression, Kenya: Implications for the Geodynamic Evolution of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Boone, S.; Gleadow, A. J. W.; Kohn, B. P.; Seiler, C.

    2015-12-01

    The Paleogene-Recent East African Rift System (EARS) is the foremost modern example of continental rifting, providing much of our understanding of the early stages of continental breakup. The EARS traverses two regions of crustal uplift, the Ethiopian and East African Domes, separated by the Turkana Depression. This wide region of subdued topography coincides with the NW-SE trend of the Jurassic-Paleogene Anza Rift. Opinions on the fundamental geodynamic driver for EARS rifting are divided, however, principally between models involving migrating plume(s) and a single elongated 'superplume'. While competing models have similar topographic outcomes, they predict different morphotectonic evolutions for the Turkana Depression. Models inferring southward plume-migration imply that the plume must have passed below the Turkana Depression during the Paleogene, in order to have migrated to the East African Dome by the Miocene. The possible temporal denudational response to such plume activity is testable using low temperature thermochronology. We present apatite fission track (AFT) and (U-Th)/He (AHe), and zircon (U-Th)/He (ZHe) data from the Lapurr Range, an uplifted Precambrian basement block in northern Turkana. Low radiation damage ZHe results displaying an age range of ~70-210 Ma, and combined with stratigraphic evidence, suggest ~4-6 km of Jurassic-Early Cretaceous denudation, probably associated with early Anza Rift tectonism. AFT ages of ~9-15 Ma imply subsequent burial beneath no more than ~4 km of overburden, thus preserving the Jurassic-Cretaceous ZHe ages. Together with AFT results, AHe data (~3-19 Ma) support ~2-4 km of Miocene-Pliocene uplift of the Lapurr Range in the footwall of the E-dipping Lapurr normal fault. Miocene AFT and AHe ages are interpreted to reflect the initiation of the EARS in the Turkana Depression. If extension is associated with plume activity, then upwelling in the Turkana region is unlikely to have started prior to the Miocene, much

  18. Reactivation of a segmented hyper-extended rift system: the example of the Pamplona transfer zone in the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Lescoutre, Rodolphe; Schaeffer, Frédéric; Masini, Emmanuel; Manatschal, Gianreto

    2016-04-01

    Numerous studies have revealed the importance of rift-inheritance on the formation of orogens but little consideration was given to rift segmentation and the role of transfer zones on the architecture of mountain chains. Indeed, structural mapping of passive margins pointed out the occurrence of a strong variability in the rift architecture along the margin when crossing through peculiar features that represent transfer zones. These transfer zones are generally oriented in the extension direction and relay the deformation between rift segments. The aim of this study is twofold: 1) characterize and define the Pamplona fault system as well as the structures and architecture of the basins bounding this major paleo-transfer fault located in the Western Pyrenees, and 2) understand its role during the subsequent Pyrenean convergence. The influence of the Pamplona fault system on the structuration of the Mauléon basin to the northeast and the Basque-Cantabrian basin to the southwest is substantial as expressed by their large offset and the occurrence of exhumed deep crustal and mantle rocks flooring the two basins. On the one hand, field work in the Labourd Massif and the western termination of the Mauléon basin enabled to describe faults and their relations to sedimentary sequences. This work also allowed describing the formation and reactivation of faults according to their orientation and their activity with respect to key markers (pre-Trias and post-Cenomanian). A strong relationship between rift architecture (proximal to distal domains) and structural inheritance is suggested. On the other hand, preliminary results from fieldwork, literature compilation and new tomographic imaging enable to determine the role and the history of the Pamplona fault system during Late Cretaceous compression. A significant work of this starting PhD project will be to determine the rift structures that have been reactivated and to assess their influence on the final architecture of the

  19. Compositional Comparison of Iceland Rift Zones and Adjacent Portions of the Mid-Atlantic Ridge.

    NASA Astrophysics Data System (ADS)

    Kelley, D.; Barton, M.

    2007-12-01

    Iceland is a portion of the Mid-Atlantic Ridge (MAR) that has been built by anomalous crustal production throughout the 55ma spreading history of the opening of the Atlantic Ocean. The anomalously thick crust of Iceland contains the subaerial traces of the MAR which are the volcanically active rift zones. From the south, the Reykjanes Ridge (RR) continues on land as the Western Volcanic Zone (WVZ). In the north, the Northern Volcanic Zone (NVZ) traces into the sea where it offset from the Kolbeinsey Ridge (KR) by the Tjornnes Fracture Zone (TVZ). We report the results of petrologic comparison of the WVZ, the EVZ, and the NVZ of Iceland and the adjacent portions of the MAR - the RR and the KR. The EVZ, WVZ, and NVZ have been shown to have similar crustal structures with ~20 km thick crust thickening toward the hotspot in central Iceland with magma chambers located at the base of the crust and at some depth in the upper crust. Likewise, the KR and RR have melt chambers at the base of and within the crust. Melt compositions have been compared using a filtered database of 588 glass analyses from 29 localities throughout the rift zones, 57 glass analyses from the KR, and 521 glass analyses from the RR. This is the first such study carried out with such an extensive data set. Compositions are similar between the NVZ and WVZ with SiO2 wt.% of 49.0, and 48.6, MgO wt.% of 7.9, and 7.5, and FeOT wt.% of 10.9, and 11.7 respectively. The EVZ which is considered to be a propagating rift is a bit different with SiO2 wt.% of 49.4, MgO wt.% of 5.9, and FeOT wt.% of 13.8. The NVZ and WVZ have also been compared with their respectively adjacent ridge segments, the KR (SiO2 50.3 wt.%, MgO 6.9 wt.%, and FeOT 12.0 wt.%), and the RR (SiO2 50.8 wt.%, MgO 6.9 wt.%, and FeOT 12.3 wt.%). Mg#s for the NVZ and the WVZ are 0.56, and .053 respectively while the Mg# for both the KR and RR is 0.50. For further comparison, a database of 9035 glass analyses from mid-ocean ridge basalts worldwide

  20. Mesozoic and early Tertiary rift tectonics in East Africa

    NASA Astrophysics Data System (ADS)

    Bosworth, William

    1992-08-01

    A complex history of crustal extension occurred in east and central Africa during the Mesozoic and early Tertiary. Beginning in the Late Jurassic, this resulted in a large system of rifts, the Central African rift system, that spanned from central Sudan to southern Kenya. Late Jurassic rifting is best documented in the White and Blue Nile rifts of the Sudan, and records east-west extension in half-graben that were connected by large-scale shear zones and pull-apart basins. Early Cretaceous rifting re-activated Jurassic basins and spread to the large South Sudan rifts and Anza rift in Kenya. By the Late Cretaceous, the extension direction shifted to the NE-SW, and the presently observed large-scale rift geometry was established. In the early Tertiary, some Mesozoic basins were again reactivated, while other regions underwent wrench faulting and basin inversion. The large number of basins preserved in the Central African rift system can be used to construct an evolutionary model of continental rift tectonics. Early phases of extension at low strains produced alternating half-graben/accommodation zone geometries similar to those observed in most young and active continental rifts. At higher strains, some border faults were abandoned so that through-going, simpler active fault systems could evolve. This is interpreted as representing a switch from complex, oppositely dipping detachment structures, with strike dimensions of 50-150 km, to regional detachment structures that continue for hundreds of kilometers parallel to the rift. This change in the type of detachment was accompanied by a shift in the position of the subsidence away from the breakaway to a position focused further within the regional upper plate. Non-rotational, high angle, normal faulting dominates in the development of these late basin geometries. Deciphering similar rift basin histories from passive continental margins may, in many cases, exceed the limits of available reflection seismic data. East

  1. The Lithosphere of The East African Rift System: Insights From Three-Dimensional Density Modelling

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H. J.

    2004-12-01

    We use the gravity data that cover the large part of the Afro-Arabian rift system, the eastern branch (Ethiopia-Afar and northern Kenya), in order to produce a regional density model. In an earlier work the new and old gravity data were compiled, evaluated and homogenised using a consistent data reduction procedures. Three basic constraints widely spaced over a 1500 km rift length have been generated between 1969 and 2003 by an international consortium with information from isostatic models, global tomography, geological, geochemical evidences, and petrological and experimental results. These are integrated and applied to the model to constrain upper and lower crustal structures underneath the Rift and Plateau areas. New crustal thickness estimations (Dugda et al., 2004 in press) and inferences from recent velocity models along the axis of the Main Ethiopian Rift (Keller et al., 2004) are added to the density model. Thirty parallel planes cutting across the entire plateau region and Rift system (Afar-Ethiopia-Kenya) are interactively modelled using a starting geometry that invoke asthenospheric upwelling. Densities for the upper crust are calculated using Nafe Drake method, averaged from earlier interpretation and measured ones from the Geological Survey of Ethiopia database (e.g. Geothermal project, GSE petrophysical laboratory, pers. communication). Densities for lower crust are estimated using the approach by Sobolov and Babyko (1994). We used also lower crustal densities calculated by (Simyu and Keller, 1997) for the northern part of Kenya rift. The preliminary model offers a possibility to quantify depth, thickness and volumes of different geological interfaces and bodies. As for example, the estimation of the volume of volcanic constructs on the western plateau of Ethiopia is relatively larger than the eastern plateau. The load map derived from the model indicated maximum crustal loads at the crust/mantle interface (ca. 40km) on the eastern and western flanks

  2. Lava Flow Morphologies and Structural Features Along the Axis of the South Rift Zone of Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Deemer, J. L.; Kurz, M. D.; Fornari, D. J.

    2009-12-01

    In an effort to document the morphology of the deep South Rift Zone of the Loihi Seamount, we report new observations collected in 2008 using ROV Jason2 on the R/V Thomas G. Thompson (C. Moyer and K. Edwards, chief scientists). The South Rift Zone extends more than 20 kilometers from 4950 meters depth at its base to Loihi’s summit at 980 meters. To date, there are few studies of the deep Loihi South Rift Zone and this work provides important geologic context for ongoing microbiological studies of Loihi (Fe-Oxidizing Microbial Observatory Project). Existing EM300 multibeam bathymetry provides the broader context necessary for interpreting smaller-scale Loihi South Rift features mapped using Jason2. Three Jason2 dives included continuous low-altitude (<~4 m) video recording of seafloor features in conjunction with high-resolution digital still photography, near-bottom multibeam sonar data over small areas, and geologic sampling. Video and image data were used to create a nearly-continuous geologic profile along the axis of the South Rift. The transect area likely consists of young flows, as indicated by the ubiquitous presence of glassy flows and a complete absence of sediment cover, with the exception of microbial mats in the deepest section (FeMO Deep). Flows are predominantly lobate and pillow types. Pyroclastic deposits are expressed as loose volcanic sand in localized depressions, and are found at depths as great as 4909 meters. Distinct meter-scale flow morphologies were identified and constrained, and this information can be used to determine rudimentary stratigraphic relationships of individual flows. The compilation of lava flow morphologies from the ROV data, in conjunction with along-axis structure, bathymetry, and distribution of talus and pyroclastic deposits, will be presented.

  3. Variations of seismic velocities in the Kachchh rift zone, Gujarat, India, during 2001-2013

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2016-03-01

    We herein study variations of seismic velocities in the main rupture zone (MRZ) of the Mw 7.7 2001 Bhuj earthquake for the time periods [2001-05, 2006-08, 2009-10 and 2011-13], by constructing dVp(%), dVs(%) and d(Vp/Vs)(%) tomograms using high-quality arrival times of 28,902 P- and 28,696 S-waves from 4644 precise JHD (joint hypocentral determination) relocations of local events. Differential tomograms for 2001-05 reveal a marked decrease in seismic velocities (low dVp, low dVs and high d(Vp/Vs)) in the MRZ (at 5-35 km depths) during 2001-10, which is attributed to an increase in crack/fracture density (higher pore fluid pressure) resulted from the intense fracturing that occurred during the mainshock and post-seismic periods. While we observe a slight recovery or increase in seismic velocities 2011-13, this could be related to the healing process (lower pore fluid pressure due to sealing of cracks) of the causative fault zone of the 2001 Bhuj mainshock. The temporal reduction in seismic velocities is observed to be higher at deeper levels (more fluid enrichment under near-lithostatic pressure) than that at shallower levels. Fluid source for low velocity zone (LVZ) at 0-10 km depths (with high d(Vp/Vs)) could be attributed to the presence of meteoric water or soft alluvium sediments with higher water content, while fluid source for LVZ at 10-35 km depths could be due to the presence of brine fluids (released from the metamorphic dewatering) and volatile CO2 (emanating from the crystallization of carbonatite melts in the asthenosphere), in fractures and pores. We also imaged two prominent LVZs associated with the Katrol Hill fault zone and Island Belt fault zone, extending from shallow upper-crust to sub-crustal depth, which might be facilitating the deeper circulation of metamorphic fluids/volatile CO2, thereby, the generation of lower crustal earthquakes occurring in the Kachchh rift zone.

  4. Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India

    NASA Astrophysics Data System (ADS)

    Kothyari, Girish Ch.; Rastogi, B. K.; Morthekai, P.; Dumka, Rakesh K.

    2016-02-01

    An earthquake of 2006 Mw 5.7 occurred along east-west trending Gedi Fault (GF) to the north of the Kachchh rift basin in western India which had the epicenter in the Wagad upland, which is approximately 60 km northeast of the 2001 Mw 7.7 earthquake site (or epicenter). Development of an active fault scarp, shifting of a river channel, offsetting of streams and uplift of the ground indicate that the terrain is undergoing active deformation. Based on detailed field investigations, three major faults that control uplifts have been identified in the GF zone. These uplifts were developed in a step-over zone of the GF, and formed due to compressive force generated by left-lateral motion within the segmented blocks. In the present research, a terrace sequence along the north flowing Karaswali river in a tectonically active GF zone has been investigated. Reconstructions based on geomorphology and terrace stratigraphy supported by optical chronology suggest that the fluvial aggradation in the Wagad area was initiated during the strengthening (at ~ 8 ka) and declining (~ 4 ka) of the Indian Summer Monsoon (ISM). The presence of younger valley fill sediments which are dated ~ 1 ka is ascribed to a short lived phase of renewed strengthening of ISM before present day aridity. Based on terrace morphology two major phases of enhanced uplift have been estimated. The older uplift event dated to 8 ka is represented by the Tertiary bedrock surfaces which accommodated the onset of valley-fill aggradation. The younger event of enhanced uplift dated to 4 ka was responsible for the incision of the older valley fill sediments and the Tertiary bedrock. These ages suggest that the average rate of uplift ranges from 0.3 to 1.1 mm/yr during the last 9 ka implying active nature of the area.

  5. Chemical and isotope compositions of nitric thermal water of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Plyusnin, A. M.; Chernyavsky, M. K.; Peryazeva, E. G.

    2010-05-01

    Three types of hydrotherms (nitric, carbonaceous and methane) are distinguished within the Baikal Rift Zone. The unloading sites of nitric therms are mostly located in the central and north-eastern parts of the Rift. Several chemical types are found among nitric therms (Pinneker, Pisarsky, Lomonosov, 1968; Lomonosov, 1974, etc.). The formation of terms being various in chemical compositions is associated with effect of several factors, i.e. various chemical, mineralogical compositions of rocks, various temperatures, extent of interaction in water-rock system, etc. The ratio data of water oxygen and hydrogen isotopes of the studied thermal springs indicate that water is largely of meteoric origin. All established ratios of oxygen (δ18OSMOW = -19.5‰ - -17.5‰) and hydrogen (δDSMOW = -155‰ - - 130‰) isotopes are along the line of meteoric waters. Oxygen values from -20‰ to -5‰ are characteristic of the current meteoric and surface waters in the region. The average value equals -16.5‰ in Lake Baikal. By our data, a large group with oxygen lighter isotope composition that corresponds to isotope ratio being specific for glaciers is revealed in fissure-vein waters. Significant shift toward the oxygen getting heavier is observed in some springs. It is mostly observed in the springs that form chemical composition within the area of the intrusive and metamorphic rock distribution. As a result of hydrolysis reaction of alumosilicates, heavy isotope passes from rocks into water molecule, whereas oxygen heavy isotope passes from rocks into solutes during decomposition of carbonates. High contents of fluoride and sulfate-ions are specific feature of the Baikal Rift Zone most nitric therms. Water is tapped in one of the drill holes, where fluoride-ion dominates in its anion composition (46.7 mg/dm3) and pH reaches 10, 12. The sulphate sulphur isotope composition studies carried out allow to conclude that its heavy isotope (δ34SCDT = +25‰ - +30‰) prevails in

  6. Variations in the reflectivity of the moho transition zone beneath the Midcontinent Rift System of North America: results from true amplitude analysis of GLIMPCE data

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Lee, Myung W.; Behrendt, John C.; Cannon, William F.; Green, Adrian

    1992-01-01

    True amplitude processing of The Great Lakes International Multidisciplinary Program on Crustal Evolution seismic reflection data from the Midcontinent Rift System of North America shows large differences in the reflectivity of the Moho transition zone beneath the axial rift, beneath the rift flanks, and outside of the rift. The Moho reflection from the axial rift has a discontinuous, diffractive character marginally stronger (several decibels) than an otherwise transparent lower crust and upper mantle. Beneath the axial rift, Moho is interpreted to be a synrift igneous feature. Beneath the rift flanks, the reflectivity of the Moho transition is generally well developed with two identifiable boundaries, although in places it is weakly reflective to nonreflective, similar to Moho outside the rift. The two boundaries are interpreted as the base of essentially intact, although stretched, prerift Archean crust (upper boundary) and new synrift Moho 1-2 s (6-7 km) deeper (lower boundary). Beneath the rift flanks, the layered reflection Moho transition results from the preexisting crustal composition and fabric modified by synrift igneous processes and extensional tectonic/metamorphic processes. The geologic evidence for extensive basaltic magmatism in the rift is the basis for interpreting the Moho signature as a Keweenawan structure that has been preserved for 1.1 b.y. Extension and magmatism appear to enhance reflectivity in the lower crust and Moho transition zone only where stretching factors are moderate (rift flanks) and not where they are extreme (axial rift). This leads to the prediction that the reflectivity across analogous volcanic passive continental margins should be greatest beneath the moderately stretched continental shelves and should decrease towards the ocean-continent boundary.

  7. Gravity study of the Central African Rift system: a model of continental disruption 2. The Darfur domal uplift and associated Cainozoic volcanism

    NASA Astrophysics Data System (ADS)

    Bermingham, P. M.; Fairhead, J. D.; Stuart, G. W.

    1983-05-01

    Gravity studies of the Darfur uplift, Western Sudan, show it to be associated with a circular negative Bouguer anomaly, 50 mGal in amplitude and 700 km across. A three-dimensional model interpretation of the Darfur anomaly, using constraints deduced from geophysical studies of similar but more evolved Kenya and Ethiopia domes, suggests either a low-density laccolithic body at mid-lithospheric depth (~ 60 km) or a thinned lithosphere with emplacement at high level of low-density asthenospheric material. The regional setting of the Darfur uplift is described in terms of it being an integral part of the Central African Rift System which is shown to be broadly equivalent to the early to middle Miocene stage in the development of the Afro-Arabian Rift System. Comparisons between these rift systems suggest that extensional tectonics and passive rifting, resulting in the subsiding sedimentary rift basins associated with the Ngaoundere, Abu Gabra, Red Sea and Gulf of Aden rifts, are more typical of the early stage development of passive continental margins than the active domal uplift and development of rifted features associated with the Darfur, Kenya and Ethiopia domes.

  8. Rift initiation with volatiles and magma

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia; Muirhead, James; Roecker, Steve; Tiberi, Christel; Muzuka, Alfred; Ferdinand, Rrichard; Mulibo, Gabrile; Kianji, Gladys

    2015-04-01

    Rift initiation in cratonic lithosphere remains an outstanding problem in continental tectonics, but strain and magmatism patterns in youthful sectors of the East African rift provide new insights. Few teleseisms occur in the Eastern rift arm of the East African rift system, except the southernmost sector in northern Tanzania where extension occurs in Archaean lithosphere. The change in seismic energy release occurs over a narrow along-axis zone, and between sectors with and without volcanoes in the central rift valley. Are these differences in strain behavior indicative of along-strike variations in a) rheology; b) strain transfer from border faults to magma intrusion zones; c) dike vs fault slip; and/or d) shallow vs deep magma chambers? We present time-space relations of seismicity recorded on a 38-station array spanning the Kenya-Tanzania border, focal mechanisms for the largest events during those time periods, and compare these to longer-term strain patterns. Lower crustal seismicity occurs along the rift length, including sectors on and off craton, and those with and without central rift valley volcanoes, and we see no clear along-strike variation in seismogenic layer thickness. One explanation for widespread lower crustal seismicity is high gas pressures and volatile migration from active metasomatism of upper mantle and magma degassing, consistent with very high volatile flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Seismicity patterns indicate strain (and fluid?) transfer from the Manyara border fault to Gelai shield volcano (faulting, diking) via Oldoinyo Lengai volcano. Our focal mechanisms and Global CMTs from an intense fault-dike episode (2007) show a local, temporally stable, rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with longer term patterns recorded in vent and eruptive

  9. Magma Reservoir Processes Revealed by Geochemistry of the Ongoing East Rift Zone Eruption, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.

    2002-12-01

    Geochemical data were examined for a suite of 1,000 near-vent lava samples from the Pu`u `O`o-Kupaianaha eruption of Kilauea, collected from January 1983 through October 2001. Bulk lava and glass compositions reveal short- and long-term changes in pre-eruptive magma conditions that can be correlated with changes in edifice deformation, shallow magma transfer and eruptive behavior. Two decades of eruption on Kilauea's east rift zone has yielded ~2 km3 of lava, 97% of which is sparsely olivine-phyric with an MgO range of 6.8 to 9.6 wt%. During separate brief intervals of low-volume, fissure eruption (episodes 1 to 3 and 54), isolated rift-zone reservoirs with lower-MgO and olv-cpx-plg-phryic magma were incorporated by more mafic magma immediately prior to eruption. During prolonged, near-continuous eruption(e.g.,episodes 48-53 and most of 55), steady-state effusion is marked by cyclic variations in olivine-saturated magma chemistry. Bulk lava MgO and eruption temperature vary in cycles of monthly to bi-annual frequency, while olivine-incompatible elements vary inversely to these cycles. However, MgO-normalized values and ratios of highly to moderately incompatible elements (HINCE/MINCE), which nullify olivine fractionation effects, reveal cycles in magma chemistry that occur prior to olivine crystallization over the magmatic temperature range that is tapped by this eruption (1205-1155°C). These short-term cycles are superimposed on a long-term decrease of HINCE/MINCE, which is widely thought to reflect a 20-year change in mantle-source conditions. While HINCE/MINCE variation in primitive recharge magma cannot be ruled out, the short-term fluctuations of this signature may require unreasonably complex mantle variations. Alternatively, the correspondence of HINCE/MINCE cycles with edifice deformation and eruptive behavior suggests that the long-term evolving magmatic condition is a result of prolonged succession of short-term shallow magmatic events. The consistent

  10. Crustal structure of the northern mississippi embayment and a comparison with other continental rift zones

    USGS Publications Warehouse

    Mooney, W.D.; Andrews, M.C.; Ginzburg, A.; Peters, D.A.; Hamilton, R.M.

    1983-01-01

    Previous geological and geophysical investigations have suggested that the Mississippi Embayment is the site of a Late Precambrian continental rift that was reactivated in the Mesozoic. New information on the deep structure of the northern Mississippi Embayment, gained through an extensive seismic refraction survey, supports a rifting hypothesis. The data indicate that the crust of the Mississippi Embayment may be characterized by six primary layers that correspond geologically to unconsolidated Mesozoic and Tertiary sediments (1.8 km/s), Paleozoic carbonate and clastic sedimentary rocks (5.9 km/s), a low-velocity layer of Early Paleozoic sediments (4.9 km/s), crystalline upper crust (6.2 km/s), lower crust (6.6 km/s), modified lower crust (7.3 km/s), and mantle. Average crustal thickness is approximately 41 km. The presence and configuration of the low-velocity layer provide new evidence for rifting in the Mississippi Embayment. The layer lies within the northeast-trending upper-crustal graben reported by Kane et al. (1981), and probably represents marine shales deposited in the graben after rifting. The confirmation and delineation of a 7.3 km/s layer, identified in previous studies, implies that the lower crust has been altered by injection of mantle material. Our results indicate that this layer reaches a maximum thickness in the north-central Embayment and thins gradually to the southeast and northwest, and more rapidly to the southwest along the axis of the graben. The apparent doming of the 7.3 km/s layer in the north-central Embayment suggests that rifting may be the result of a triple junction located in the Reelfoot Basin area. The crustal structure of the Mississippi Embayment is compared to other continental rifts: the Rhinegraben, Limagnegraben, Rio Grande Rift, Gregory Rift, and the Salton Trough. This comparison suggests that alteration of the lower crust is a ubiquitous feature of continental rifts. ?? 1983.

  11. He-Ne-Ar isotope studies of mafic volcanic rocks and mantle xenoliths from the East African Rift System - contrasting isotope signals in different rift branches

    NASA Astrophysics Data System (ADS)

    Halldorsson, S. A.; Hilton, D. R.; Scarsi, P.; Abebe, T.; Massi, K. M.; Barry, P. H.; Fischer, T. P.; de Moor, J.; Rudnick, R. L.

    2010-12-01

    Helium isotope studies of the East African Rift System (EARS) suggest the involvement of a deep mantle plume(s) beneath the northern (Ethiopian) segment [1-3]. The highest 3He/4He (RA) signatures found to date show a close association with the greatest magma volumes erupted since the Early Cenozoic in the region. While the helium isotope characteristics are well established in the Ethiopia-Afar region, Ne and Ar systematics remain poorly constrained. Using a combined He-Ne-Ar isotope approach, our aim is to determine the regional extent of the influence of the Afar plume and to distinguish between subcontinental lithospheric mantle (SCLM) and/or a possible second mantle plume sources located to the south of the Turkana Depression. Xenoliths and mafic lavas from N-Tanzania display a limited range in He isotopes (5-7 RA) with exceptions at Arusha (7.8RA) and Labait (8.7RA), through 7.1-8.7 RA in N-Kenya and S-Ethiopia, to 14.3 RA in the Main Ethiopian Rift and Afar, spanning nearly the entire range of previously reported values. The mean 3He/4He ratio from of lavas and xenoliths from N-Tanzania is remarkably close to the global average of 6.1±0.9 (RA) for continental xenoliths and basalts, thought to represent the SCLM [4]. Thus far, only MORB-like values of 7.3-8.3 RA have been found in volcanics of the Western rift. Initial Ne isotope data reveal the presence of a solar-like Ne component in xenoliths from the Ethiopia-Afar region, with extrapolated 21Ne/22Neex ratios of 0.0365 (assuming Ne-B = 12.5). This trend overlaps that of the Loihi-Kilauea line (L-K). Interestingly, a xenolith from N-Tanzania has a 21Ne/22Neex ratio of 0.0415, falling on a trajectory intermediate between MORB and L-K. The highest 40Ar/36Ar ratio obtained on phenocrysts/xenoliths to date is 1510. The generally low 3He/4He ratios of N-Tanzania likely result from different mixing proportions of asthenospheric sources with lithospheric material, the latter having developed lower 3He/4He ratios

  12. Rift Valley fever virus infection in African Buffalo (Syncerus caffer) herds in rural South Africa: Evidence of interepidemic transmission

    USGS Publications Warehouse

    LaBeaud, A.D.; Cross, P.C.; Getz, W.M.; Glinka, A.; King, C.H.

    2011-01-01

    Rift Valley fever virus (RVFV) is an emerging biodefense pathogen that poses significant threats to human and livestock health. To date, the interepidemic reservoirs of RVFV are not well defined. In a longitudinal survey of infectious diseases among African buffalo during 2000-2006, 550 buffalo were tested for antibodies against RVFV in 820 capture events in 302 georeferenced locations in Kruger National Park, South Africa. Overall, 115 buffalo (21%) were seropositive. Seroprevalence of RVFV was highest (32%) in the first study year, and decreased progressively in subsequent years, but had no detectable impact on survival. Nine (7%) of 126 resampled, initially seronegative animals seroconverted during periods outside any reported regional RVFV outbreaks. Seroconversions for RVFV were detected in significant temporal clusters during 2001-2003 and in 2004. These findings highlight the potential importance of wildlife as reservoirs for RVFV and interepidemic RVFV transmission in perpetuating regional RVFV transmission risk. Copyright ?? 2011 by The American Society of Tropical Medicine and Hygiene.

  13. Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities

    NASA Astrophysics Data System (ADS)

    Achauer, Ulrich; Masson, Frédéric

    2002-11-01

    Tomographic images for four major continental rift zones, namely the southern Rhine Graben (SRG, Germany/France), the Gregory rift (Kenya) which is the central part of the East African rift system, the Rio Grande rift (RGR) in the United States and the Lake Baikal rift zone (LBR) in Russia have been revisited by calculating and comparing absolute velocity models. The four rifts exhibit strong structural differences in the uppermost mantle down to more than 300-km depth, suggesting major differences in their geodynamic evolution albeit their similarity in age and similar surface expression. The comparative analysis suggests that tomographic images of rift zones can be used to characterize continental rifts, once the corrections to obtain absolute velocities have been carried out. Our results suggest that while the Kenya and the Rio Grande rift may be considered active with large upwelling plumes being the main controlling factor in the evolution, the southern Rhine Graben and the Lake Baikal rift are more likely passive rifts, where complex regional stress fields and inherited structures play the governing role in the evolution.

  14. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect

    Keller, G.R. )

    1996-01-01

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  15. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect

    Keller, G.R.

    1996-12-31

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  16. The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism.

    PubMed

    Mollel, Godwin F; Swisher, Carl C

    2012-08-01

    The Ngorongoro Volcanic Highland (NVH), situated adjacent and to the east of Olduvai Gorge in northern Tanzania, is the source of the immense quantities of lava, ignimbrite, air fall ash, and volcaniclastic debris that occur interbedded in the Plio-Pleistocene sedimentary deposits in the Laetoli and Olduvai areas. These volcanics have proven crucial to unraveling stratigraphic correlations, the age of these successions, the archaeological and paleontological remains, as well as the source materials from which the bulk of the stone tools were manufactured. The NVH towers some 2,000 m above the Olduvai and Laetoli landscapes, affecting local climate, run-off, and providing varying elevation - climate controlled ecosystem, habitats, and riparian corridors extending into the Olduvai and Laetoli lowlands. The NVH also plays a crucial role in addressing the genesis and history of East African Rift (EAR) magmatism in northern Tanzania. In this contribution, we provide age and petrochemical compositions of the major NVH centers: Lemagurut, basalt to benmorite, 2.4-2.2 Ma; Satiman, tephrite to phonolite, 4.6-3.5 Ma; Oldeani, basalt to trachyandesite, 1.6-1.5 Ma; Ngorongoro, basalt to rhyolite, 2.3-2.0 Ma; Olmoti, basalt to trachyte, 2.0-1.8 Ma; Embagai, nephelinite to phonolite, 1.2-0.6 Ma; and Engelosin, phonolite, 3-2.7 Ma. We then discuss how these correlate in time and composition with volcanics preserved at Olduvai Gorge. Finally, we place this into context with our current understanding as to the eruptive history of the NVH and relationship to East African Rift volcanism. PMID:22404967

  17. The Thermal History of the East African Rift Lakes Region Since the Last Glacial Maximum Using TEX86 Paleothermometry

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Johnson, T. C.; Werne, J. P.; Schouten, S.; Sinninghe Damsté, J. S.

    2008-12-01

    We present preliminary results from a study using the TEX86 temperature proxy from sediments of East African Rift Lakes (including Lakes Turkana, Albert, and Malawi) to reconstruct the thermal history of tropical Africa for the last ~ 20,000 years at a subcentennial to multicentennial resolution. The TEX86 proxy, based on tetraether membrane lipids produced by lacustrine Crenarchaeota, has been shown to be successful at recording lake surface temperatures of some large lakes, including Lakes Malawi and Tanganyika, while providing unreasonable surface temperatures for lakes that receive a large input of soil material. The East African Rift Lakes are climatically sensitive, with the majority of water loss due to evaporation rather than outflow. Thus, they are useful for paleoclimate studies, being sensitive to even small changes in aridity. Temperature records from the northern and central basins of Lake Malawi agree well and fall within modern surface lake temperatures. A 2.5°C cooling is evident during the Younger Dryas in the northern basin record, with no response seen in the central basin. We are currently investigating mechanisms to explain why both records show a gradual cooling of 3°C during the late Holocene. Lake Albert shows an intriguing two-step cooling during the Younger Dryas, reaching temperatures 2.5°C lower than temperatures preceding or following this interval. The temperature record of Lake Turkana shows an interesting ~ 500 year cyclicity of low temperatures punctuated by abrupt warming events. Lakes Turkana and Albert show TEX86 paleotemperatures considerably lower (8°C cooler in Lake Albert and ~ 4°C cooler in Lake Turkana) than modern surface water temperatures. Although these records appear to fall in the range of temporal variability, these temperature discrepancies may indicate varying Crenarcheotal populations between lakes or other influencing factors.

  18. Puhimau thermal area: a window into the upper east rift zone of Kilauea Volcano, Hawaii?

    USGS Publications Warehouse

    McGee, K.A.; Sutton, A.J.; Elias, T.; Doukas, M.P.; Gerlach, T.M.

    2006-01-01

    We report the results of two soil CO2 efflux surveys by the closed chamber circulation method at the Puhimau thermal area in the upper East Rift Zone (ERZ) of  volcano, Hawaii. The surveys were undertaken in 1996 and 1998 to constrain how much CO2 might be reaching the ERZ after degassing beneath the summit caldera and whether the Puhimau thermal area might be a significant contributor to the overall CO2 budget of  . The area was revisited in 2001 to determine the effects of surface disturbance on efflux values by the collar emplacement technique utilized in the earlier surveys. Utilizing a cutoff value of 50 g m−2 d−1 for the surrounding forest background efflux, the CO2 emission rates for the anomaly at Puhimau thermal area were 27 t d−1 in 1996 and 17 t d−1 in 1998. Water vapor was removed before analysis in all cases in order to obtain CO2 values on a dry air basis and mitigate the effect of water vapor dilution on the measurements. It is clear that Puhimau thermal area is not a significant contributor to  CO2 output and that most of  CO2 (8500 t d−1) is degassed at the summit, leaving only magma with its remaining stored volatiles, such as SO2, for injection down the ERZ. Because of the low CO2emission rate and the presence of a shallow water table in the upper ERZ that effectively scrubs SO2 and other acid gases, Puhimau thermal area currently does not appear to be generally well suited for observing temporal changes in degassing at  .

  19. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  20. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand

    PubMed Central

    Hamling, Ian J.; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-01-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system. PMID:27386580

  1. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system. PMID:27386580

  2. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  3. Thick lithosphere, deep crustal earthquakes and no melt: a triple challenge to understanding extension in the western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Selway, K.; Nyblade, A. A.; Brazier, R. A.; Tahir, N. El; Durrheim, R. J.

    2016-02-01

    Geodynamic models predict that rifting of thick, ancient continental lithosphere should not occur unless it is weakened by heating and magmatic intrusion. Therefore, the processes occurring along sections of the western branch of the East African Rift, where ˜150 km thick, Palaeoproterozoic lithosphere is rifting with no surface expression of magmatism, are a significant challenge to understand. In an attempt to understand the apparently amagmatic extension we probed the regional uppermost mantle for signatures of thermal alteration using compressional (Vp) and shear (Vs) wave speeds derived from Pn and Sn tomography. Pervasive thermal alteration of the uppermost mantle and possibly the presence of melt can be inferred beneath the Rungwe volcanic centre, but no signatures on a similar scale were discerned beneath amagmatic portions of the western rift branch encompassing the southern half of the Lake Tanganyika rift and much of the Rukwa rift. In this region, Vp and Vs wave speeds indicate little, if any, heating of the uppermost mantle and no studies have reported dyking. Vp/Vs ratios are consistent with typical, melt-free, olivine-dominated upper mantle. Although our resolution limit precludes us from imaging potential localised magmatic intrusions with dimensions of tens of kilometres, the absence of surface volcanism, the amagmatic upper crustal rupture known to have occurred at disparate locations on the western branch, the presence of lower crustal seismicity and the low temperatures implied by the fast seismic wave speeds in the lower crust and uppermost mantle in this region suggests possible amagmatic extension. Most dynamic models predict that this should not happen. Indeed even with magmatic intrusion, rifting of continental lithosphere >100 km thick is considered improbable under conditions found on Earth. Yield strength envelopes confirm that currently modelled stresses are insufficient to produce the observed deformation along these portions of the

  4. Fault growth and propagation during incipient continental rifting: Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, B. D.; Hogan, J. P.; Atekwana, E. A.; Abdelsalam, M. G.; Modisi, M. P.

    2008-06-01

    Digital Elevation Models (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data and high-resolution aeromagnetic data are used to characterize the growth and propagation of faults associated with the early stages of continental extension in the Okavango Rift Zone (ORZ), northwest Botswana. Significant differences in the height of fault scarps and the throws across the faults in the basement indicate extended fault histories accompanied by sediment accumulation within the rift graben. Faults in the center of the rift either lack topographic expressions or are interpreted to have become inactive, or have large throws and small scarp heights indicating waning activity. Faults on the outer margins of the rift exhibit either (1) large throws or significant scarp heights and are considered older and active or (2) throws and scarp heights that are in closer agreement and are considered young and active. Fault linkages between major fault systems through a process of "fault piracy" have combined to establish an immature border fault for the ORZ. Thus, in addition to growing in length (by along-axis linkage of segments), the rift is also growing in width (by transferring motion to younger faults along the outer margins while abandoning older faults in the middle). Finally, utilization of preexisting zones of weakness allowed the development of very long faults (>100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift. This study clearly demonstrates that the integration of the SRTM DEM and aeromagnetic data provides a 3-D view of the faults and fault systems, providing new insight into fault growth and propagation during the nascent stages of continental rifting.

  5. Deriving spatial patterns from a novel database of volcanic rock geochemistry in the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu

    2016-04-01

    The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo

  6. Sedimentary record of relay zone evolution, Central Corinth Rift (Greece): Role of fault propagation and structural inheritance.

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas

    2013-04-01

    Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is

  7. Tectonic Features of the Barguzin Depression of the Baikal Rift Zone Using Computer Interpretation of Electrical Soundings Data

    NASA Astrophysics Data System (ADS)

    Nevedrova, N.; Epov, M.; Sanchaa, A.

    2003-12-01

    In 1950s of the twentieth century, extensive geophysical prospecting was carried out in the region of Baikal Rift Zone with the aim to investigate the deep depression structure. The basic method of geophysical exploration was vertical electrical sounding (VES). At that time, the sufficiently complicated structure of the section gave no way of determining the main parameters of separate depositional sequences. With the development of computer techniques it has become the possibility to interpret these complicated data of electrical exploration at the new qualitative level by using programs of mathematical modelling and inversion. At the first stage, interpretation of electrical prospecting data was executed based on solution of the inverse problem within the limit of the horizontally-layered model using the SONET program complex. Moreover, by using both 2D modelling and inversion, it is possible to refine geoelectrical parameters and to conclude that entirely acceptable results can be obtained using 1D inversion. The final results reflect the detailed deep depression structure and it tectonic features. Tectonically active zone with multiple ruptures, which form complicated block structures as in the sedimentary cover so in the base, are under investigation.The sedimentary cover is as thick as 2.5 km according to results of computer interpretation. Fractured zones exhibit the areas with decreased rock resistivity. Reconstruction of a detailed tectonic structure of Barguzin depressions allow better understanding peculiarities of geodynamic processes for the Baikal rift zone in general and for depression in particular.

  8. Hydrocarbon accumulation on rifted Continental Margin - examples of oil migration pathways, west African salt basins

    SciTech Connect

    Blackwelder, B.W.

    1989-03-01

    Examination of the oil fields in the Gabon, Lower Congo, and Cuanza basins allows modeling of oil migration and a more accurate ranking of prospects using geologic risk factors. Oil accumulations in these basins are in strata deposited during Cretaceous rift and drift phases, thus providing a diversity of geologic settings to examine. Oil accumulations in rift deposits are located on large faulted anticlines or in truncated units atop horst features. Many of these oil fields were sourced from adjacent organic shales along short direct migration paths. In Areas where source rock is more remote to fields or to prospective structures, faulting and continuity of reservoir rock are important to the migration of hydrocarbons. Because Aptian salts separate rift-related deposits from those of the drift stage, salt evacuation and faulting of the salt residuum are necessary for oil migration from the pre-salt sequences into the post-salt section. Oil migration within post-salt strata is complicated by the presence of salt walls and faulted carbonate platforms. Hydrocarbon shows in wells drilled throughout this area provide critical data for evaluating hydrocarbon migration pathways. Such evaluation in combination with modeling and mapping of the organic-rich units, maturation, reservoir facies, structural configurations, and seals in existing fields allows assessment of different plays. Based on this information, new play types and prospective structures can be ranked with respect to geologic risk.

  9. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  10. Geophysical setting of the Reelfoot Rift and relations between rift structures and the New Madrid seismic zone

    USGS Publications Warehouse

    Hildenbrand, T.G.; Hendricks, J.D.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  11. First drilling in the Ust' Lensky Rift Zone, Laptev Sea: accomplishment and preliminary results

    NASA Astrophysics Data System (ADS)

    Semiletov, I. P.; Shakhova, N. E.; Dudarev, O.; Kosmach, D.; Tumskoy, V.; Charkin, A.; Samarkin, V.; Kholodov, A.; Grigoriev, M.; Nicolsky, D.; Bukhanov, B.; Krukhmalev, A.

    2011-12-01

    The chosen borehole (71 41N, 130 21E) characterizes the morphological structure of the tectonic fractal zone that is filled in with "acoustically gassy sediments". We suggest this site exhibits a significant potential to release CH4 into the atmosphere because this area belongs to the Gakkel Ridge so-called "Middle Arctic belt", a linear seismically-active zone which is characterized by a high density and frequency of strong and shallow earthquakes: energy from a shallow earthquake of magnitude >4.0 might be enough to destabilize ocean hydrates. There is reason to believe that ultra-slow-spreading ridges such as the Gakkel Ridge may be especially conducive to the build-up and explosive discharge of volatile-rich magmatic foams. Thus, it is logical to assume that increasing (or even explosive) discharge of a volatile-rich magmatic plume might be observed in the Buor Khaya tectonic fractal zone which is underlain by the thinnest continental crust. During December 2010 (three months before the drilling) two earthquakes struck the Buor Khaya Gulf area (M4.6 and M4.9). These earthquakes have the potential to activate upward migration of deep fluid in the study area. By choosing the right location for the first borehole in the rift zone of the Buor Khaya Gulf we hoped to discover new and critically important information about: 1) the CH4 potential and the availability of this CH4 to be involved in the modern biogeochemical cycles; 2) sub-sea permafrost; 3) signs of deep super-plumes (CH4 and other gases) and pore water and sediment chemical composition. The total borehole depth was 65m; this included ~12m of ice and water column. The total length of the sediment core is 53m with diameter ~127mm. Well tubes used in our drilling were 146mm in diameter. We did not reach sub-sea permafrost: the sediments beneath the upper aleurite pelitic layer were mostly composed of alluvial sand, which traces the course of the ancient Lena fore-delta. High concentrations of CH4, non-CH4

  12. Rift-zone magmatism: Petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin

    NASA Astrophysics Data System (ADS)

    Fodor, R. V.; Vetter, S. K.

    1984-12-01

    Compositions of basaltic samples from the southeastern Brazil passive margin (18° 24° S) depict the change from continental to oceanic lithosphere during the opening of the South Atlantic Ocean. Samples studied range from 138 to 105 m.y. old and are from 12 Petrobrás drill cores recovered from the coastline to about 150 km offshore in the Espirito Santo, Campos, and Santos basins. Compositions vary, ranging, for example, from 49 54 wt.% SiO2, 0.5 3.0 wt.% TiO2, 0.6 5.0 FeO*/MgO, and <1->6 La/ Yb(n), but can be grouped: (i) basalts enriched in incompatible elements, such as K (some K2O>2.0 wt.%), Rb (>18 ppm), Zr (>120 ppm), and LREE (some FeO* 16 wt.%; most with SiO2 51 54 wt.%), and resembling Serra Geral continental flood basalts (SG-CFB) of southern Brazil; (ii) basalts less enriched, or transitional, in incompatible elements, having K2O <0.40 wt.% and flat REE patterns, and resemble N. Atlantic diabases and FAMOUS basalts; and (iii) one depleted sample, Ce/Yb(n)=0.7, where Ce(n)=4. Expressed in oceanic-basalt terminology and Zr-Nb-Y abundances, ‘enriched’ samples are P- and T-type MORB (e.g., Zr/Nb ˜4 25), ‘transitional’ samples are T-type (Zr/ Nb ˜8 27), and the ‘depleted’ sample is N-type MORB (Zr/Nb>30). Trace-element ratios (e.g., Zr/Nb, Zr/Y) link the Brazil margin basalts to a heterogeneous mantle (attributed to metasomatic veining) of variably proportioned mixtures of depleted-mantle (N-MORB) and plume (P-MORB, e.g., Tristan hotspot) materials. The various compositions therefore reflect, in part, different zones of melting during the separation of Gondwanaland, where gradual decompression during rifting enabled concurrent melting of upper, more depleted (non- or sparsely-veined) mantle and enriched (densely-veined) mantle. Within the time represented, melting produced enriched, transitional, and depleted magmas that were emplaced subaerially, hypabyssally, and subaqueously; they mark the transition from CFB before rifting and separation

  13. East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Melnick, Daniel; Strecker, Manfred R.; Olago, Daniel; Tiercelin, Jean-Jacques

    2012-05-01

    The 'wet' early to mid-Holocene of tropical Africa, with its enhanced monsoon, ended with an abrupt shift toward drier conditions and was ultimately replaced by a drier climate that has persisted until the present day. The forcing mechanisms, the timing, and the spatial extent of this major climatic transition are not well understood and remain the subject of ongoing research. We have used a detailed palaeo-shoreline record from Lake Turkana (Kenya) to decipher and characterise this marked climatic transition in East Africa. We present a high-precision survey of well-preserved palaeo-shorelines, new radiocarbon ages from shoreline deposits, and oxygen-isotope measurements on freshwater mollusk shells to elucidate the Holocene moisture history from former lake water-levels in this climatically sensitive region. In combination with previously published data our study shows that during the early Holocene the water-level in Lake Turkana was high and the lake overflowed temporarily into the White Nile drainage system. During the mid-Holocene (~ 5270 ± 300 cal. yr BP), however, the lake water-level fell by ~ 50 m, coeval with major episodes of aridity on the African continent. A comparison between palaeo-hydrological and archaeological data from the Turkana Basin suggests that the mid-Holocene climatic transition was associated with fundamental changes in prehistoric cultures, highlighting the significance of natural climate variability and associated periods of protracted drought as major environmental stress factors affecting human occupation in the East African Rift System.

  14. Insights into extensional processes during magma assisted rifting: Evidence from aligned scoria cones

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Bastow, Ian D.; Keir, Derek

    2011-04-01

    Mechanical and magmatic processes exert first-order control on the architecture and evolution of rifts. As a continental rift develops towards a new oceanic spreading centre, extension that is initially accommodated in a broad zone of faulting and ductile stretching must transition towards a narrow zone of focused magmatic intrusion. The Main Ethiopian Rift (MER), part of the East African Rift System, is an ideal location to study this transition because it captures rifting processes during continental breakup. In this contribution we synthesise geochemical data from scoria cones in the Wonji Fault Belt (WFB) and Silti-Debre Zeyit Fault Zone (SDFZ) in the MER to provide new constraints on the development of mantle melting columns and magmatic plumbing systems since the onset of rifting. We utilize the extensive geophysical and geochemical databases, collected in the Ethiopian Rift, to show that geochemical evidence of heterogeneity in the depth of the mantle melting column which produced Quaternary rift basalts correlates with lithospheric structure. When combined with existing observations of asymmetry across the rift in terms of depth of melting column and magmatic plumbing systems, it is evident that the mechanical structure of the rift, defined during the initial stages of breakup, has played a dominant role in the initial development of magma assisted rifting in the MER. Surface structures and crustal-scale geophysical studies have suggested the WFB is analogous to a sea-floor spreading centre. However, the geochemical characteristics of rift basalts are consistent with mantle tomography that shows no evidence beneath the MER for passive magmatic upwelling beneath discrete rift segments as is observed in the ocean basins. Collectively, the Ethiopian data show that the distribution of mantle melts during the initiation of magma assisted rifting is fundamentally influenced by lithospheric structures formed during earlier syn-rift stretching.

  15. Structure of backarc inner rifts as a weakest zone of arc-backarc system: a case study of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tasuya; Kato, Naoko; Abe, Susumu; Saito, Hideo; Shiraishi, Kazuya; Abe, Shiori; Iwasaki, Takaya; Inaba, Mitsuru; No, Tetsuo; Sato, Takeshi; Kodaira, Shuichi; Takeda, Tetsuya; Matsubara, Makoto; Kodaira, Chihiro

    2015-04-01

    A backarc inner rift is formed after a major opening of backarc basin near a volcanic front away from the spreading center of a major backarc basin. An obvious example is the inner rift along the Izu-Bonin arc. Similar inner rift zones have been developed along the Sea of Japan coast of Honshu island, Japan. NE and SW Japan arcs experienced strong shortening after the Miocene backarc rifting. The amount of shortening shows its maximum along the backarc inner rifts, forming a fold-and-thrust of thick post-rift sediments over all the structure of backarc. The rift structure has been investigated by onshore-offshore deep seismic reflection/wide-angle reflection surveys. We got continuous onshore-offshore image using ocean bottom cable and collected offshore seismic reflection data using two ships to obtain large offset data in the difficult area for towing a long streamer cable. The velocity structure beneath the rift basin was deduced by refraction tomography in the upper curst and earthquake tomography in the deeper part. It demonstrates larger P-wave velocity in upper mantle and lower crust, suggesting a large amount of mafic intrusion and thinning of upper continental crust. The deeper seismicity in the lower crust beneath the rift basin accords well to the mafic intrusive rocks. Syn-rift volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, characterized by thin-skin style of deformation. The syn-rift mafic intrusion in the crust forms convex shape and the boundary between pre-rift crust and mafic intrusive shows outward dipping surface. Due to the post rift

  16. Hydrothermal Zoning of Rift Zones Inferred From Magnetic Susceptibility Variations: Implications for the Collapse of Hawaiian Shield Volcanoes, and for Ore-genesis Processes.

    NASA Astrophysics Data System (ADS)

    Cañòn-Tapia, E.; Herrero-Bervera, E.

    2009-05-01

    Hawaiian shield volcanoes have experienced large scale landslides throughout their history. These collapses are due in part to the failure of the surrounding sea floor to support the weight of the spreading volcano as it grows. Nevertheless, these collapses also might be promoted by the weakening of the volcanic edifice due to the injection of dykes within rift zones, and by the alteration of the rock due to hydrothermal activity along these zones. In turn, hydrothermal alteration modifies the rock bulk magnetic susceptibility, and such relationship provides a good opportunity to estimate the zoning of alteration by completing measurements of magnetic susceptibility. In this work we show preliminary evidence suggesting that a hydrothermal zoning can be inferred to have existed in the Hawaiian Shield volcanoes, probably reflecting the variation of the optimum temperature for alteration as a function of distance from the magma center. The mechanical destabilization of the volcanic edifice due to dyke injection and that related to alteration of the rocks seems to have been inversely related, therefore resulting in an average destabilization of approximately equal magnitude along the whole extension of the rift zone. Such uniform destabilization seemingly favors the collapse of large sectors of the volcanic shield once a critical mass is achieved. In the context of ore-genesis, zoning is known to be related to paleogeography and temperature variations among other factors. Actually, different patterns of orebody zoning are known to take place depending on the conditions prevalent in each region, and it is of interest to determine the details of zoning of the deposit to understand its genesis. Despite the fact that Hawaiian volcanoes are not the most economically important places to study ore-genesis processes, the better understanding of the processes of hydrothermal alteration gained in these settings should contribute to gain a better knowledge of the distribution of

  17. Stable isotope-based Plio-Pleistocene ecosystem reconstruction of some of the earliest hominid fossil sites in the East African Rift System (Chiwondo Beds, N Malawi)

    NASA Astrophysics Data System (ADS)

    Lüdecke, Tina; Thiemeyer, Heinrich; Schrenk, Friedemann; Mulch, Andreas

    2014-05-01

    The isotope geochemistry of pedogenic carbonate and fossil herbivore enamel is a powerful tool to reconstruct paleoenvironmental conditions in particular when climate change plays a key role in the evolution of ecosystems. Here, we present the first Plio-Pleistocene long-term carbon (δ13C), oxygen (δ18O) and clumped isotope (Δ47) records from pedogenic carbonate and herbivore teeth in the Malawi Rift. These data represent an important southern hemisphere record in the East African Rift System (EARS), a key region for reconstructing vegetation patterns in today's Zambezian Savanna and correlation with data on the evolution and migration of early hominids across the Inter-Tropical Convergence Zone. As our study site is situated between the well-known hominid-bearing sites of eastern and southern Africa in the Somali-Masai Endemic Zone and Highveld Grassland it fills an important geographical gap for early hominid research. 5.0 to 0.6 Ma fluviatile and lacustrine deposits of the Chiwondo Beds (NE shore of Lake Malawi) comprise abundant pedogenic carbonate and remains of a diverse fauna dominated by large terrestrial mammals. These sediments are also home to two hominid fossil remains, a mandible of Homo rudolfensis and a maxillary fragment of Paranthropus boisei, both dated around 2.4 Ma. The Chiwondo Beds therefore document early co-existence of these two species. We evaluate δ13C data from fossil enamel of different suid, bovid, and equid species and contrast these with δ13C and δ18O values of pedogenic carbonate. We complement the latter with clumped isotope soil temperature data. Results of almost 800 pedogenic carbonate samples from over 20 sections consistently average δ13C = -8.5 ‰ over the past 5 Ma with no significant short-term δ13C excursions or long-term trends. The data from molar tooth enamel of nine individual suids of the genera Metridiochoerus, Notochoerus and Nyanzachoerus support these findings with average δ13C = -10.0 ‰. The absence

  18. An inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No. 2

    SciTech Connect

    Kennedy, Joseph

    1991-03-01

    At the request of True Mid Pacific Geothermal, Archaeological Consultants of Hawaii, Inc. has conducted an inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No.2, TMK: 1-2-10:3. The Principal Investigator was Joseph Kennedy M.A., assisted by Jacob Kaio, Field Supervisor and field crew Mark Borrello B.A., Michael O'Shaughnessy B.A., and Randy Adric. This report supercedes all previous reports submitted to the Historic Presentation Section of the Department of Land and Natural Resources. In addition to 100% surface coverage of the 400 x 400 foot well pad itself, 100% surface coverage of a substantial buffer zone was also completed. This buffer zone was established by the Department of Land and Natural Resources, Historic Preservation personnel and extends 1000 feet east and west of the well site and 500 feet north and south of the well site.

  19. Neotectonic faults and stress field in the East African Rift System around the Tanzanian Craton - A contribution to the seismotectonic map of Africa

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Macheyeki, Athanas Simon; Fernandes, Rui-Manuel; Ayele, Atalay; Meghraoui, Mustapha

    2015-04-01

    As a contribution to the UNESCO-IUGS IGCP 601 project "Seismotectonics and seismic hazards in Africa" and in preparation of the Seismotectonic Map of Africa, we compiled the neotectonic faults related to the East African Rift System around the Tanzanian craton. The initial aim was to identify and map the potentially active faults. Faults are usually defined as active when they show seismogenic displacement during the last 10,000 to 100,000 years, generally on the basis of paleoseismic investigation. In East Africa, however, very few faults have been studied by paleoseismic techniques and even fewer have known historical seismic activation. To address this issue, we mapped faults that show morphological indications of displacement. We used the SRTM DTM (90 and 30 m when available to us), with artificial shading as basis for identify neotectonic faults, in combination with existing data from geological maps, publications and reports, complemented by our own field observations. Thermal springs often occur along tectonically active faults. We use them to distinguish present-day faulting from other mapped faults as they are in most cases structurally controlled. In parallel, we used also the available focal mechanisms and geological fault-slip data to constrain the stress second-order stress field (at the scale of rift segments) and locally also the third-order stress field (at the local scale). All these elements are combined and compared with existing kinematic models for the East African Rift based on earthquake slip vectors, GPS measurements and geologic indicators. The comparison evidences some local discrepancies between the stress field and the direction of opening, probably due to the interactions between different rift segments, as in the Rukwa rift, Mbeya southern junction between the eastern and western rift branches, and in the Manyara-Natron area.

  20. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    USGS Publications Warehouse

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  1. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  2. Basaltic Martian analogues from the Baikal Rift Zone and Mongolian terranes

    NASA Astrophysics Data System (ADS)

    Gurgurewicz, J.; Kostylew, J.

    2007-08-01

    In order to compare the results of studies of the western part of the Valles Marineris canyon on Mars there have been done field works on terrestrial surface areas similar with regard to geological setting and environmental conditions. One of the possible terrestrial analogues of the Valles Marineris canyon is the Baikal Rift Zone [1]. Field investigations have been done on the south end of the Baikal Lake, in the Khamar-Daban massif, where the outcrops of volcanic rocks occur. The second part of the field works has been done in the Mongolian terranes: Mandalovoo, Gobi Altay and Bayanhongor, because of environmental conditions being similar to those on Mars. The Mandalovoo terrane comprises a nearly continuous Paleozoic islandarc sequence [2]. In the Gobi Altay terrane an older sequence is capped by younger Devonian-Triassic volcanic-sedimentary deposits [2]. The Bayanhongor terrane forms a northwest-trending, discontinuous, narrow belt that consists of a large ophiolite allochton [3]. The collected samples of basalts derive from various geologic environments. The CORONA satellite-images have been used for the imaging of the Khamar-Daban massif and the Mandalovoo terrane. These images have the same spatial resolution and range as the Mars Orbiter Camera images of the Mars Global Surveyor mission. In the Mandalovoo terrane these images allowed to find an area with large amounts of tectonic structures, mainly faults (part of the Ongi massif), similar to the studied area on Mars. Microscopic observations in thin sections show diversification of composition and structures of basalts. These rocks have mostly a porphyric structure, rarely aphyric. The main components are plagioclases, pyroxenes and olivines phenocrysts, in different proportions. The groundmass usually consist of plagioclases, pyroxenes and opaques. The most diversified are basalts from the Mandalovoo terrane. Infrared spectroscopy has been used to analyse the composition of the rock material and compare

  3. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  4. Present-day strain rates and dynamics of the East African Rift

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Flesch, L. M.; Calais, E.

    2009-04-01

    The forces and physical processes at work during continental rifting remain to be fully understood and quantified. We investigate the balance of large-scale forces affecting present-day rifting in East Africa using a thin sheet approach to quantify strain rates and deviatoric stresses. We develop a strain rate model constrained by a combination of GPS-derived kinematic models and seismic moment tensors (CMT catalog) for our region of interest. We estimate a total deviatoric stress field by combining (1) stresses caused by gravitational potential energy (GPE) gradients within the crust and (2) a buoyancy signal present in the topography that we use to compute stresses. To estimate internal body forces, we assume crustal thicknesses and lateral density variations modeled in Crust 2.0 (G. Laske and G. Masters, http://mahi.ucsd.edu/Gabi/sediment.html, 2000). In our preferred model of deviatoric stresses, we estimate and remove the dynamic topography buoyancy signal by allowing the mantle lithosphere density to vary, compensating the lithosphere to a given reference depth. To test the reliability of our total deviatoric stress field, we compare tensor patterns of deviatoric stresses, with and without contributions from the mantle, to tensor patterns from kinematic deformation indicators. Our results to date suggest that horizontal buoyancy forces arising from variable crustal thicknesses and lateral density variations within the lithosphere contribute significantly to the diverging plate boundary forces of the EAR but do not account for the entire budget of force needed to produce present-day deformation.

  5. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Tassi, F.; Vaselli, O.; Poreda, R. J.; Darrah, T.; Cuoco, E.; Yalire, M. M.

    2010-01-01

    On 17 January 2002, the city of Goma was partly destroyed by two of the several lava flows erupted from a roughly N-S oriented fracture system opened along the southern flank of Mount Nyiragongo (Democratic Republic of Congo), in the western branch of the East African rift system. A humanitarian and scientific response was promptly organized by international, governmental, and nongovernmental agencies coordinated by the United Nations and the European Union. Among the different scientific projects undertaken to study the mechanisms triggering this and possible future eruptions, we focused on the isotopic (He, C, and Ar) analysis of the magmatic-hydrothermal and cold gas discharges related to the Nyiragongo volcanic system, the Kivu and Virunga region. The studied area includes the Nyiragongo volcano, its surroundings, and peripheral areas inside and outside the rift. They have been subdivided into seven regions characterized by distinct 3He/4He (expressed as R/Rair) ratios and/or δ13C-CO2 values. The Nyiragongo summit crater fumaroles, whose R/Rair and δ13C-CO2 values are up to 8.73 and from -3.5‰ to -4.0‰ VPDB, respectively, show a clear mantle, mid-ocean ridge basalt (MORB)-like contribution. Similar mantle-like He isotopic values (6.5-8.3 R/Rair) are also found in CO2-rich gas emanations (mazukus) along the northern shoreline of Lake Kivu main basin, whereas the 13δC-CO2 values range from -5.3‰ to -6.8‰ VPDB. The mantle influence progressively decreases in (1) dissolved gases of Lake Kivu (2.6-5.5 R/Rair) and (2) the distal gas discharges within and outside the two sides of the rift (from 0.1 to 1.7 R/Rair). Similarly, δ13C-CO2 ratios of the peripheral gas emissions are lighter (from -5.9‰ to -11.6‰ VPDB) than those of the crater fumaroles. Therefore, the spatial distribution of He and C signatures in the Lake Kivu region is mainly produced by mixing of mantle-related (e.g., Nyiragongo crater fumaroles and/or mazukus gases) and crustal-related (e

  6. A methodology to track temporal dynamics and rainfall thresholds of landslide processes in the East African Rift

    NASA Astrophysics Data System (ADS)

    Monsieurs, Elise; Jacobs, Liesbet; Kervyn, François; Kirschbaum, Dalia; d'Oreye, Nicolas; Derauw, Dominique; Kervyn, Matthieu; Nobile, Adriano; Trefois, Philippe; Dewitte, Olivier

    2015-04-01

    The East African rift valley is a major tectonic feature that shapes Central Africa and defines linear-shaped lowlands between highland ranges due to the action of geologic faults associated to earthquakes and volcanism. The region of interest, covering the Virunga Volcanic Province in eastern DRC, western Rwanda and Burundi, and southwest Uganda, is threatened by a rare combination of several types of geohazards, while it is also one of the most densely populated region of Africa. These geohazards can globally be classified as seismic, volcanic and landslide hazards. Landslides, include a wide range of ground movements, such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in terms of recurring impact on the populations, causing fatalities every year and resulting in structural and functional damage to infrastructure and private properties, as well as serious disruptions of the organization of societies. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithologic and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. The source mechanisms underlying landslide triggering and dynamics in the region of interest are still poorly understood, even though in recent years, some progress has been made towards appropriate data collection. Taking into account difficulties of field accessibility, we present a methodology to study landslide processes by multi-scale and multi-sensor remote sensing data from very high to low resolution (Pléiades, TRMM, CosmoSkyMed, Sentinel). The research will address the evolution over time of such data combined with other earth observations (seismic ground based networks, catalogues, rain gauge networks, GPS surveying, field observations) to detect and study landslide occurrence, dynamics and evolution. This research aims to get insights into the rainfall

  7. Fracturing and earthquake activity within the Prestahnúkur fissure swarm in the Western Volcanic Rift Zone of Iceland

    NASA Astrophysics Data System (ADS)

    Hjartardóttir, Ásta Rut; Hjaltadóttir, Sigurlaug; Einarsson, Páll; Vogfjörd, Kristín.; Muñoz-Cobo Belart, Joaquín.

    2015-12-01

    The Prestahnúkur fissure swarm is located within the ultraslowly spreading Western Volcanic Zone in Iceland. The fissure swarm is characterized by normal faults, open fractures, and evidence of subglacial fissure eruptions (tindars). In this study, fractures and faults within the Prestahnúkur fissure swarm were mapped in detail from aerial photographs to determine the extent and activity of the fissure swarm. Earthquakes during the last ~23 years were relocated to map the subsurface fault planes that they delineate. The Prestahnúkur fissure swarm is 40-80 km long and up to ~20 km wide. Most of the areas of the fissure swarm have been glacially eroded, although a part of it is covered by postglacial lava flows. The fissure swarm includes numerous faults with tens of meters vertical offset within the older glacially eroded part, whereas open fractures are found within postglacial lava flows. Comparison of relocated earthquakes and surface fractures indicates that some of the surface fractures have been activated at depth during the last ~23 years, although no dike intrusions have been ongoing. The existence of tindars nevertheless indicates that dike intrusions and rifting events do occur within the Prestahnúkur fissure swarm. The low-fracture density within postglacial lava flows and low density of postglacial eruptive fissures indicate that rifting episodes occur less often than in the faster spreading Northern Volcanic Zone.

  8. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  9. Results From a Borehole Seismometer Array I: Microseismicity at a Productive Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Shalev, E.; Malin, P.; Kaleikini, M.; Dahl, G.

    2008-12-01

    Borehole seismometer arrays have proven successful in both the exploration and monitoring of geothermal fields. Because the seismometers are located at depth, they are isolated from human noise and record microearthquakes with clearly identifiable seismic phases that can be used for event location. Further analysis of these events can be used to resolve earthquake clouds into identifiable faults. The local fault and dike structures in Puna, in southeastern Hawaii, are of interest both in terms of electricity production and volcanic hazard monitoring. The geothermal power plant at Puna has a 30MW capacity and is built on a section of the Kilauea Lower East Rift Zone where lava flows erupted as recently as 1955. In order to improve seismic monitoring in this area, we installed eight 3-component borehole seismometers. The instrument depths range from 24 to 210 m (80 to 690 ft); the shallower instruments have 2 Hz geophones and the deepest have 4.5 Hz geophones. The seismometers are located at the vertices of two rhombs, 2 km wide x 4 km long and 4 km wide x 8 km long, both centered at the power plant. Since June 2006, we have located >4500 earthquakes; P- and S-wave arrivals were hand picked and events located using Hypoinverse-2000. Most of the earthquakes occurred at depths between 2.5 and 3 km. The large majority of events were M-0.5 to M0.5; the Gutenberg-Richter b-value is 1.4, which is consistent with microearthquake swarms. Frequency analysis indicates a 7-day periodicity; a Schuster diagram confirms increased seismicity on a weekly cycle. The location, depth, and period of the microearthquakes suggest that power plant activity affects local seismicity. Southwest of the geothermal facility, up-rift towards the Kilauea summit, earthquakes were progressively deeper at greater distances. Depths also increased towards the south, which is consistent with the eastern extension of the south-dipping, east-striking Hilina fault system. To the northeast, down-rift of the

  10. Mineralogical-geochemical features of travertines of the modern continental hydrotherms: A G-1 well, Tunka depression, Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Soktoev, B. R.; Rikhvanov, L. P.; Ilenok, S. S.; Baranovskaya, N. V.; Taisaev, T. T.

    2015-07-01

    The mineral and chemical composition of travertines is studied in the modern discharge zone of the hydrothermal fluids of the Tunka depression, Baikal rift zone. The matrix of travertines is mostly made up of aragonite and calcite, which host about 20 mineral phases of Ag, Au, Pb, Cu, Sb, Sn, Fe, and other chemical elements. Similar rocks have previously been found in areas of modern submarine ore formation and tectonically active structures of the crust (New Zealand, the Cheleken Peninsula and others). Our materials confirm the opinion of some researchers who study modern hydrothermal ore formation in spreading zones that the formation of hydrothermal deposits requires favorable geochemical barriers rather than significant contents of metals in thermal waters. It is shown that microbial communities, concentrating chemical elements playing an important role in formation of ore mineralization in the discharge zones of thermal waters may be these barriers. According to our data, at the territory of the Tunka depression, thermal carbonic waters with endogenic components are delivered to the upper crustal horizons, involved in the existing hydrogeological systems, mixed with waters of active water exchange, and contribute to their chemical composition. This is manifested in the specific elemental and micromineral (Au, Ag, etc.) composition of the limescale of drinking water. In this local discharge zone, an effect of radioactive orphans has been found, which is similar to that established in barite chimneys from the Juan-de-Fuca Ridge.

  11. Complex Rift-Parallel, Strike-Slip Faulting in Iceland: Kinematic Analysis of the Gljúfurá Fault Zone

    NASA Astrophysics Data System (ADS)

    Nanfito, A.; Karson, J. A.

    2009-12-01

    strike of the fault zone and cut across the deformation fabrics. Although no features could be correlated across the fault zone to constrain the lateral displacement, empirical gouge thickness/displacement scaling relationships suggest at least several kilometers of slip. Previous studies interpreted the Gljúfurá Fault Zone was one of a family of parallel, strike-slip “bookshelf” faults associated with a transform fault zone linking two now-extinct rifts. Unlike the well-known rift-parallel, strike-slip faults of the South Iceland Seismic Zone and the Tjornes Fracture Zone, the Gljúfurá Fault Zone appears to be an isolated structure with substantially larger displacement that is discordant with surrounding basement lineaments. Major strike-slip faults of this kind can provide important clues in the reconstruction of ridge-hot spot interactions in Iceland.

  12. The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.

    2016-02-01

    The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.

  13. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  14. Distribution of fault activity in the early stages of continental breakup: an analysis of faults and volcanic products of the Natron Basin, East African Rift, Tanzania

    NASA Astrophysics Data System (ADS)

    Muirhead, J. D.; Kattenhorn, S. A.

    2012-12-01

    Recent magmatic-tectonic crises in Ethiopia (e.g. 2005 Dabbahu rifting episode, Afar) have informed our understanding of the spatial and temporal distribution of strain in magmatic rifts transitioning to sea-floor spreading. However, the evolving contributions of magmatic and tectonic processes during the initial stages of rifting, is a subject of ongoing debate. The <5 Ma northern Tanzania and southern Kenya sectors of the East Africa Rift provide ideal locations to address this problem. We present preliminary findings from an investigation of fault structures utilizing aerial photography and satellite imagery of the ~35 km wide Natron rift-basin in northern Tanzania. Broad-scale structural mapping will be supplemented by field observations and 40Ar-39Ar dating of lava flows cut by faults to address three major aspects of magma-assisted rifting: (1) the relative timing of activity between the border fault and smaller faults distributed across the width of the rift; (2) time-averaged slip rates along rift-zone faults; and (3) the spatial distribution of faults and volcanic products, and their relative contributions to strain accommodation. Preliminary field observations suggest that the ~500 m high border fault system along the western edge of the Natron basin is either inactive or has experienced a reduced slip rate and higher recurrence interval between surface-breaking events, as evidence by a lack of recent surface-rupture along the main fault escarpments. An exception is an isolated, ~2 km-long segment of the Natron border fault, which is located in close proximity (< 5km) to the active Oldoinyo Lengai volcano. Here, ~10 m of seemingly recent throw is observed in volcaniclastic deposits. The proximity of the fault segment to Oldoinyo Lengai volcano and the localized distribution of fault-slip are consistent with magma-assisted faulting. Faults observed within the Natron basin and on the flanks of Gelai volcano, located on the eastern side of the rift, have

  15. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  16. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  17. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the

  18. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit

  19. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Smets, Benoît

    2015-04-01

    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  20. Sr-Nd-Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift: Implications for magma mixing and source heterogeneity

    NASA Astrophysics Data System (ADS)

    Muravyeva, N. S.; Belyatsky, B. V.; Senin, V. G.; Ivanov, A. V.

    2014-12-01

    Nd, Pb and Sr isotope ratios have been determined for kamafugite lava and clinopyroxene phenocrysts from Bunyaruguru (Toro-Ankole) and Virunga volcanic fields of the East African Rift. The whole rock Sr-Nd isotopic signatures of kamafugites (87Sr/86Sr: 0.70463-0.70536; 143Nd/144Nd: 0.51249-0.51255) suggest derivation from an EM1-type mantle source. In contrast, Pb isotopic compositions of the same samples (206Pb/204Pb: 19.00-19.57; 207Pb/204Pb: 15.69-15.74; 208Pb/204Pb: 39.30-40.26) reveal a similarity to EM2-type mantle. New Nd, Pb and Sr isotopic data for clinopyroxene (87Sr/86Sr: 0.70473-0.70503; 143Nd/144Nd: 0.51250-0.51254; 206Pb/204Pb: 18.04-18.17; 207Pb/204Pb: 15.58-15.60; 208Pb/204Pb: 38.09-38.23) suggest derivation from an EM1-like source, and indicate Sr and Pb isotope disequilibrium between clinopyroxene and corresponding host rock. Moreover, clinopyroxenes exhibiting a greater degree of isotopic disequilibrium with their host rock are more sodic in composition. The isotopic disequilibrium is corroborated by the presence of chemical zoning within clinopyroxene, which suggests rapid magma ascent rates preventing melt homogenization. The Pb isotopic ratios for both mineral and corresponding whole rock, together with published data on East African rift-related alkaline centers, define a trend interpreted to represent a mixing line for melts derived from sources such as EM1 and as HIMU. The similar isotopic compositions for clinopyroxene from the different volcanic rocks within the East African Rift suggest the existence of a common, older mantle source for their parental melts. The origin of these melts can be attributed to an enrichment event ~ 400-500 Ma, i.e., significantly prior the younger ultrapotassic magmatism. Our preferred interpretation for the results reported here involves the mixing of melts derived from EM1- and HIMU-like sources, which were rapidly transported to the Earth's surface. The primary magmas formed as the result of melting of a

  1. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

    USGS Publications Warehouse

    Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S.

    2001-01-01

    The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both

  2. Structural controls on the spatial distribution and geochemical composition of volcanism in a continental rift zone; an example from Owens Valley, eastern California

    NASA Astrophysics Data System (ADS)

    Haproff, P. J.; Yin, A.

    2014-12-01

    Bimodal volcanism is common in continental rift zones. Structural controls to the emplacement and compositions of magmas, however, are not well understood. To address this issue, we examine the location, age, and geochemistry of active volcanic centers, and geometry and kinematics of rift-related faults across the active transtensional Owens Valley rift zone. Building on existing studies, we postulate that the spatial distribution and geochemical composition of volcanism are controlled by motion along rift-bounding fault systems. Along-strike variation in fault geometry and characteristics of active volcanism allow us to divide Owens Valley into three segments: southern, northern, and central. The southern segment of Owens Valley is a simple shear, asymmetric rift bounded to the west by the east-dipping Sierra Nevada frontal fault (SNFF). Active vents of Coso volcanic field are distributed along the eastern rift shoulder and characterized by the eruption of bimodal lavas. The SNFF within this segment is low-angle and penetrates through the lithosphere and into the ductile asthenosphere, allowing for mantle-derived magma to migrate across the weakest part of the fault zone beneath the eastern rift shoulder. Magma thermally weakens wall rocks and eventually stalls in the crust where the melt develops a greater felsic component prior to eruption. The northern segment of Owens Valley displays similar structural geometry, as the west-dipping White Mountains fault (WMF) is listric at depth and offsets the crust and mantle lithosphere, allowing for vertical transport of magma and reservoir emplacement within the crust. Bimodal lavas periodically erupted in the Long Valley Caldera region along the western rift shoulder. The central segment of Owens Valley is a pure shear, symmetric graben generated by motion along the SNFF and WMF. The subvertical, right-slip Owens Valley fault (OVF) strikes along the axis of the valley and penetrates through the lithosphere into the

  3. San Andres Rift, Nicaraguan Shelf: A 346-Km-Long, North-South Rift Zone Actively Extending the Interior of the "Stable" Caribbean Plate

    NASA Astrophysics Data System (ADS)

    Carvajal, L. C.; Mann, P.

    2015-12-01

    The San Andres rift (SAR) is an active, 015°-trending, bathymetric and structural rift basin that extends for 346 km across the Nicaraguan platform and varies in bathymetric width from 11-27 km and in water depth from 1,250 to 2,500 m. We used four 2D regional seismic lines tied to two offshore, industry wells located west of the SAR on the Nicaraguan platform to map normal faults, transfer faults, and possibly volcanic features with the rift. The Colombian islands of San Andres (26 km2) and Providencia (17 km2) are footwall uplifts along west-dipping, normal fault bounding the eastern margin of the rift. Mapping indicates the pre-rift section is Late Cretaceous to Oligocene in age and that the onset of rifting began in the early to middle Miocene as shown by wedging of the Miocene and younger sedimentary fill controlled by north-south-striking normal faults. Structural restorations at two locations across the rift shows that the basin opened mainly by dip-slip fault motions producing a total, east-west extension of 18 km in the north and 15 km in the south. Structural restoration shows the rift formed on a 37-km-wide, elongate basement high - possibly of late Cretaceous, volcanic origin and related to the Caribbean large igneous province. Previous workers have noted that the SAR is associated with province of Pliocene to Quaternary seamounts and volcanoes which range from non-alkaline to mildly alkaline, including volcanic rocks on Providencia described as andesites and rhyolites. The SAR forms one of the few recognizable belts of recorded seismicity within the Caribbean plate. The origin of the SAR is related to Miocene and younger left-lateral displacement along the Pedro Banks fault to the north and the southwestern Hess fault to the south. We propose that the amount of left-lateral displacement that created the rift is equivalent to the amount of extension that formed it: 18-20 km.

  4. Poisson's Ratio Structure Through a Zone of Exhumed Mantle at the Goban Spur Rifted Margin, Southwest of the UK.

    NASA Astrophysics Data System (ADS)

    Bullock, A. D.; Minshull, T. A.

    2004-12-01

    Zones of exhumed mantle have been identified at the west Iberia and Goban Spur rifted margins in the eastern North Atlantic where they form a transition zone up to 130 km wide between thinned continental crust and oceanic crust further seaward. P-wave velocities range from ˜4~km~s-1 at top basement to 7.2-7.6~km~s-1 at 4-6~km depth into basement and taken in isolation are consistent with a wide range of contrasting lithologies. Poisson's ratio may be used as a discriminator between possible compositions as, for P-wave velocities <6~km~s-1, serpentinite can be clearly distinguised from basalt. We present here the Poisson's ratio structure through the zone of exhumed mantle at the Goban Spur margin up to 4~km into basement. Velocities are constrained by seven ocean-bottom hydrophones and six sonobuoys across this region at a separation of ˜15~km; S-wave arrivals are observed on five ocean-bottom hydrophones in this region as P-to-S conversions occurring at top basement. A regularised inversion with smoothing constraints was used to define the P- and S-wave velocity structures individually and the Poisson's ratio computed from these models.

  5. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.; Vignolles, C.; Lacaux, J.-P.; Bigeard, G.; Ndione, J.-A.; Lafaye, M.

    2009-09-01

    This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since "Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.

  6. How strong ist the impact of changing topography of the East African Rift System on regional climate?

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Kaspar, Frank; Cubasch, Ulrich

    2010-05-01

    The evolution of the East African Rift System (EARS) leads to a topography change at the surface and the impact of this change on climate in this region can easily be analysed with climate models. In the present study both global and regional climate models are applied. The global climate model is the coupled atmosphere ocean general circulation model ECHO-G and the regional climate model is the non-hydrostatic CLM, which is the climate version of the numerical weather prediction model of the German Meterorological Service. At the lateral boundaries the regional model is driven by the simulations performed with the global model. Different topographical situations representing possible conditions in the past, are simulated with the global and the regional climate model. One assumption affects only the highest peaks of the EARS south of the Turkana Channel by reducing them to 1200 m. The other assumptions affect a much larger area covering the whole of Southern and Eastern Africa. Over this region topography is reduced by 25%, 50%, 75% and 95%. These different topography reductions have an impact on circulation and therefore also on moisture transport. This leads to changes in the precipitation patterns over Africa. One strong effect is the decrease in orographic precipitation windward of the mountains. Wetter conditions can be found over the east coast of Africa, where moisture is transported from the Indian Ocean farther into the continent due to the lower barrier. Both global and regional models show similar results on the continental scale, however the results of the regional model are much more detailed due to the higher horizontal resolution (50 km) compared to the global model (~350 km).

  7. Incipient Crustal Stretching across AN Active Collision Belt: the Case of the Siculo-Calabrian Rift Zone (central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Tortorici, G.; Romagnoli, G.; Pavano, F.

    2012-12-01

    In the Central Mediterranean, the differential roll-back of the subducting Nubia Plate caused the Neogene-Quaternary extrusion of the Calabrian arc onto the oceanic Ionian slab, and the opening of the oceanic Tyrrhenian Basin, in the overriding Eurasia Plate. The differential motion at the edges of the arc was largely accommodated along transform faults that propagated across the orogenic belt. Since the Late Quaternary, the southern edge of the arc has been replaced by the roughly N-S oriented Siculo-Calabrian Rift Zone (SCRZ) that formed as the NNW-directed normal faults of NE Sicily, crossing the orogenic belt, have linked the NNE-oriented Tyrrhenian margin of southern Calabria with the NNW-trending Africa-Ionian boundary of southeastern Sicily. Our study focused on the Sicily shoulder of the SCRZ, where the transition zone between the extensional belt and the still active Nubia-Eurasia convergent margin is characterized by two distinct mobile crustal wedges, both lying on an upwarped Mantle, where a re-orientations of the σ1 is combined with volcanism (e.g. Etna, Aeolian islands) and a huge tectonic uplift. In southeastern Sicily, the Hyblean-Etnean region evolved, since about 0.85 Ma, as an indipendent crustal wedge, moving towards the NNW and pointing to the active Mt. Etna volcano. A local ENE crustal stretching accompanied the traslation of the block and pre-dated the ESE-oriented extension governing the propagation of the southernmost branch of the SCR, which started at about 330 ka B.P.. Similarly, the Peloritani-Aeolian region, flanked by the 125 ka-old NE-Sicily branch of the rift zone, represents a mostly submerged crustal wedge that migrates towards the NE, diverging from the rest of the Sicily collision zone and pointing to the Stromboli volcano. The Peloritani-Aeolian block is characterized by the occurrence of a wide central NE-oriented collapsed basin contoured by an actively uplifting region, whose tectonic boundaries are evidenced by a sharp

  8. Magmatic expression of lithospheric thinning across continental rifts

    NASA Astrophysics Data System (ADS)

    Thompson, R. N.; Gibson, S. A.

    1994-05-01

    Studies of magmatism associated with continental rifting have traditionally focused only on volcanism within the downfaulted axial zone and along its immediate flanks. Teleseismic travel-time delay studies during the last decade have confirmed the results of earlier gravity surveys of rifted areas, showing that thinning at the base of the continental lithosphere occurs throughout a zone up to about 10 times wider than the physiographic expression of the rift. It is, therefore, logical to consider rifting-related magmatism on the same scale. Potential sources of mafic magmas in rift zones are the thinned subcontinental lithospheric mantle (SCLM), the convecting mantle beneath the continental plate and mixtures of the two. Detailed elemental and radiogenic isotope geochemical studies show that, during the initial extension of continental rifts, the associated mafic magmatism tends to be: (1) relatively sodic and from predominantly convecting mantle sources at the rift axis; (2) relatively potassic and from predominantly lithospheric mantle sources at the margins of the thinned-plate zone. This underlying geochemical pattern is obscured in many instances by such processes as crustal contamination and magma mixing within open-system reservoirs. The mafic ultrapotassic component that provides a distinctive input to SCLM-source magmas appears to be largely fusible at temperatures well below the dry solidus of SCLM; so that, in some cases, prolonged magmatism at a site causes removal of most or all of the potassic lithosphere-source melt (as mafic ultrapotassic magmas or as a contribution to mixed-source melts) without destruction of that lithosphere segment as a geophysically defined unit. Such a zone of refractory lithosphere permits subsequent, recognisable, convecting mantle source melts to penetrate it and reach the surface. These principles are illustrated by discussion of the Neogene-Quaternary magmatism of the Rio Grande, East African, Rhine and Baikal rifts, in

  9. The permeability of fault zones: a case study of the Dead Sea rift (Middle East)

    NASA Astrophysics Data System (ADS)

    Ran, Gabay; Eyal, Shalev; Yoseph, Yechieli; Amir, Sagy; Noam, Weisbrod

    2014-03-01

    Fault zone architecture plays an important role in flow regimes of hydrological systems. Fault zones can act as conduits, barriers, or conduits/barrier systems depending on their spatial architecture. The goal of this study is to determine the fault-zone permeability structure and its effect on the local hydrogeological system in the Dead Sea fault system. Permeability was measured on small-scale outcrop plug samples at four faults along the Dead Sea fault system, and large-scale slug tests in four boreholes, in different parts of the fault, at Yair fault in Israel. The research results show that values in the damage zone are two to five orders of magnitude higher than those of the fault core (~3.5 × 10-10, 1 × 10-15 m2 respectively), resulting in an anisotropic permeability structure for the overall fault zone and preferable flow parallel to the fault. A set of injection tests in the Yair fault damage zone revealed a water-pressure-dependent behavior. The permeability of this zone increases when employing a higher water pressure in the fault fracture-dominated damage zone, due to the reopening of fractures.

  10. Volatile Chemistry of the 2007 to Present Explosive Eruption of Oldoinyo Lengai Volcano, East African Rift

    NASA Astrophysics Data System (ADS)

    de Moor, J.; Fischer, T. P.; King, P. L.; Sharp, Z.; Shaw, A. M.; Mangasini, F.

    2008-12-01

    We characterize the volatile chemistry of the ongoing explosive eruption at Oldoinyo Lengai (OL) in the Gregory Rift Valley of N Tanzania. Fieldwork was conducted from 4-8 April 2008, during which time OL exhibited Strombolian to ash plume-producing activity. Eight distinct ash lapilli layers were sampled 900m from the crater. Mini-DOAS SO2 flux measurements were conducted on 6, 7, and 8 April. Despite moderate eruptive activity, SO2 concentrations were very low, from ~ 20ppm.m to below detection. A low concentration plume was detected on 7 April, allowing a SO2 flux estimate of 0.2-0.4 tons/day. SIMS analyses of carbonatite lavas erupted in 2005 show very high S concentrations (0.62wt %), suggesting that the low SO2 flux is due to partitioning of S into the melt. Ash leachates were analyzed as a proxy for plume chemistry and to assess health risks associated with mobile elements in the ashes. The solutions had high pH of 10.6 to 11.1. This has implications for pH fluctuations of Lake Natron (pH ~10; located 20km N of the crater), which may correlate with lacustrine ash deposition during passed explosive activity at OL. In the uppermost ash layer (deposited on 4/5/2008; not influenced by rain) dominant mobile ions are Cl (18120mg/kg), SO4 (26616mg/kg), PO4 (2393mg/kg), and F (534mg/kg), Na (101679mg/kg), K (22544mg/kg), Ca (721mg/kg), and Si (189mg/kg). Leachate S/Cl from this pristine ash is 0.49, compared to 0.29 measured by SIMS in lavas from 2005. Using the SO2 flux and the S/Cl in the leachates, the Cl flux was 0.5-0.8 tons/day. High concentrations of leachable ions, particularly F, on ash presents health hazards (F poisoning; water source contamination) to local communities. Concentrations in the underlying ashes are lower (40-129 mg/kg Cl, 965-3223 mg/kg SO4 , 66-104 mg/kg F, 40-335 mg/kg PO4 ) than those in the upper deposit due to leaching by rain prior to deposition of the uppermost ash layer. FTIR spectroscopy of ashes shows at least two carbonate

  11. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  12. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift

  13. Tectono-stratigraphic signature of a rapid multistage subsiding rift basin in the Tyrrhenian-Apennine hinge zone (Italy): A possible interaction of upper plate with subducting slab

    NASA Astrophysics Data System (ADS)

    Milia, Alfonsa; Torrente, Maurizio M.

    2015-05-01

    The Campania Plain is a rapidly subsiding Quaternary basin that formed on the eastern margin of the Tyrrhenian Sea in association with the younger phase of Tyrrhenian rifting. It is located in the hinge area between the Apennines fold-thrust belt and the Tyrrhenian extensional backarc basin. By combining original stratigraphic analyses of well logs and seismic profiles we built a basin subsidence curve, mapped the fault pattern of the Campania Plain and analyzed the impact of the block faulting on the sedimentology and stratigraphic architecture of the basin fill. Well data indicate that the Quaternary succession consists of offshore, shoreface and coal-bearing coastal plain deposits arranged to form thick aggradational and retrogradational units. The sequence stratigraphy interpretation of well logs permitted us to recognize thirteen depositional sequences and the stratigraphic signatures of the rift stages. The study area corresponds to a sediment overfilled/balanced infill basin type that resulted from superposition of several rifting events characterized by high rates of basin subsidence. Taking into account the geological data of the adjacent areas, we propose a Pliocene-Quaternary rifting evolution of the upper Tyrrhenian plate consisting of four episodes. Two peculiar features of the Tyrrhenian rifting are a skip of the extensional axial zone eastwards leaving the previous zone of high strain localization (Vavilov basin), followed by a dramatic change (90°) of the direction of extension. Because these Tyrrhenian features cannot be accounted for by the current rifting models we hypothesized a link between the evolution of upper plate and subducting slab. The proposed geodynamic scenario is characterized by a progressive rupture of the subducting plate and formation of extensional basins in the upper plate.

  14. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2

  15. Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Caldwell, T. Grant; Bibby, Hugh M.; Bennie, Stewart L.

    2010-05-01

    Magmatic activity in regions of continental extension may result in huge (>400 km3) explosive eruptions of viscous, gas-rich silicic-magma. Geochemical and geological data suggest that the large volumes of magma erupted are produced by extracting interstitial liquid from a long-lived ‘mush zone’ (a mixture of solid crystals and liquid melt) that accumulates in liquid-dominated lenses at the top of a much thicker region of lower melt-fraction mush. Such lenses will be highly electrically conductive compared with normal mid-crustal rocks. Here we use results of 220 magnetotelluric (MT) soundings to construct a 3-D electrical resistivity image of the northern (silicic) part of New Zealand's Taupo Volcanic Zone, a young continental rift associated with very high heat flow and intense silicic volcanism. The electrical resistivity image shows a plume-like structure of high conductivity, interpreted to be a zone of interconnected melt, rising from depths >35 km beneath the axis of extension.

  16. Redistribution of radionuclides between a microbial mat and a carbonate body at the Garga hot spring (Baikal Rift Zone)

    NASA Astrophysics Data System (ADS)

    Lazareva, E. V.; Zhmodik, S. M.; Melgunov, M. S.; Petrova, I. V.; Bryanskaya, A. V.

    2011-08-01

    The features of present deposits that form in the vicinity of hot springs can provide clues to the parameters of paleowaters in places of past hydrothermal activity marked by remnant carbonate and/or siliceous sinter. We investigated a large carbonate body at the Garga hot spring developing in the Baikal zone of nitric hydrotherms in the Barguzin Rift Zone valley. The main focus was on the structure of the carbonate mound, as well as on the partitioning of radioactive elements between the cyanobacterial mat and the inorganic component of the body (the issue that has never been explored before). The cyanobacterial community of the Garga spring is an active biosorbent of 226Ra, 228Ra, 210Pb. The radionuclides accumulated by biosorption become preserved in minerals that form within the bacterial community. The reported data of mineral formation in the cyanobacterial mat along with the mineralogy and structure of the carbonate mound of the Garga spring have implications for the complex history of the Garga body. It has been produced jointly by precipitation from the venting thermal water (opal-calcite-fluorite-barite-celestine assemblage) and microbial metabolic activity (coarse calcite and thin black encrustation rich in Mn minerals).

  17. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture

    PubMed Central

    Roberts, Eric M.; Todd, Christopher N.; Aanen, Duur K.; Nobre, Tânia; Hilbert-Wolf, Hannah L.; O’Connor, Patrick M.; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J.

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66–24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7–10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  18. Oligocene Termite Nests with In Situ Fungus Gardens from the Rukwa Rift Basin, Tanzania, Support a Paleogene African Origin for Insect Agriculture.

    PubMed

    Roberts, Eric M; Todd, Christopher N; Aanen, Duur K; Nobre, Tânia; Hilbert-Wolf, Hannah L; O'Connor, Patrick M; Tapanila, Leif; Mtelela, Cassy; Stevens, Nancy J

    2016-01-01

    Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66-24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7-10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape. PMID:27333288

  19. Depth of alkalic magma reservoirs below Kolekole cinder cone, Southwest rift zone, East Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Chatterjee, Nilanjan; Bhattacharji, Somdev; Fein, Charles

    2005-07-01

    The Kolekole cinder cone is located on the southwest rift near the summit area of East Maui, adjacent to the Haleakala Crater. The erupted lavas consist of ankaramitic picro-basalts and basanites. The ankaramites contain 26 to 33 modal percent olivine and clinopyroxene phenocrysts. Athough the cores of the clinopyroxene phenocrysts are not in equilibrium with the bulk rock compositions, recovered matrix compositions through image analysis indicate that the rims of the clinopyroxene phenocrysts and plagioclase microphenocrysts are in equilibrium with the matrix in many samples. Equilibrium pressures calculated from clinopyroxene rim-liquid equilibrium, and from equilibrium compositions of multiple phase-saturated liquids, yield values between 4.4 and 11.2 kb. In addition, barometry based on clinopyroxene composition indicates that the cores of the clinopyroxene phenocrysts crystallized at approximately 2.5 kb higher pressures than the rims. Therefore, the alkalic magmas of Kolekole resided in reservoirs that extended well below the crust-mantle boundary. The low Mg-content of the calculated matrix compositions indicates that extensive high pressure fractional crystallization of parental magmas occurred in the lower crust and upper mantle magma chambers.

  20. The Timing of Early Magmatism and Extension in the Southern East African Rift: Tracking Geochemical Source Variability with 40Ar/39Ar Geochronology at the Rungwe Volcanic Province, SW Tanzania

    NASA Astrophysics Data System (ADS)

    Mesko, G. T.; Class, C.; Maqway, M. D.; Boniface, N.; Manya, S.; Hemming, S. R.

    2014-12-01

    The Rungwe Volcanic Province is the southernmost expression of volcanism in the East African Rift System. Rungwe magmatism is focused in a transfer zone between two weakly extended rift segments, unlike more developed rifts where magmatism occurs along segment axes (e.g. mid-ocean ridges). Rungwe was selected as the site of the multinational SEGMeNT project, an integrated geophysical, geochronological and geochemical study to determine the role of magmatism during early stage continental rifting. Argon geochronology is underway for an extensive collection of Rungwe volcanic rocks to date the eruptive sequence with emphasis on the oldest events. The age and location of the earliest events remains contested, but is critical to evaluating the relationship between magmatism and extension. Dated samples are further analyzed to model the geochemistry and isotopic signature of each melt's source and define it as lithospheric, asthenospheric, or plume. Given the goals, the geochronology focuses on mafic lavas most likely to preserve the geochemical signature of the mantle source. Groundmass was prepared and analyzed at the LDEO AGES lab. Twelve preliminary dates yield ages from 8.5 to 5.7Ma, consistent with prior results, supporting an eruptive episode concurrent with tectonic activity on the Malawi and Rukwa border faults (Ebinger et al., JGR 1989; 1993). Three additional samples yield ages from 18.51 to 17.6 Ma, consistent with the 18.6 ±1.0 Ma age obtained by Rasskazov et al. (Russ. Geology & Geophys. 2003). This eruptive episode is spatially limited to phonolite domes in the Usangu Basin and a mafic lava flow on the uplifted Mbeya Block. These eruptions predate the current tectonic extensional structure, suggesting magmatism predates extension, or that the two are not highly interdependent. No Rungwe samples dated yet can be the source of the of 26Ma carbonatitic tuffs in the nearby Songwe River Basin sequence (Roberts et al., Nature Geoscience 2012). Isochron ages

  1. Aeromagnetic evidence for a major strike-slip fault zone along the boundary between the Weddell Sea Rift and East Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.

    2012-04-01

    The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.

  2. Extension and Basin Evolution of the East Kivu Graben, Rwanda, East African Rift: Results of New Multichannel Seismic Reflection Imaging

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Zhang, X.; Wood, D.; Mburu, D.

    2012-12-01

    The East Kivu Graben resides within the eastern part of Lake Kivu, the highest Great Lake in the western branch of the East African Rift. The lake is more than 440 m deep in the East Kivu Basin, with a catchment comprised of Precambrian metasedimentary rocks and late-Cenozoic volcanics. Lake Kivu is renowned for its uniquely stratified water column, which is charged with considerable quantities of dissolved CO2 and methane, the former due to magmatic degassing. In February and March 2012 514 km of single- and multi-channel seismic reflection data were acquired in the Rwandan waters of Lake Kivu. The 24-fold multichannel seismic data were acquired aboard a modular research vessel, using a 600 m-long hydrophone streamer and single 40 cubic inch airgun. Extension in the East Kivu basin is largely accommodated along a major N-S striking, east-dipping boundary fault observed along the eastern edge of Iwawa Island, and extending for ~40 km along the length of the basin. Numerous intrabasinal normal faults occur to the east of the boundary fault, commonly displacing the lake floor and controlling the location of modern sublacustrine channels. The deepest sedimentary reflections observed on the new MCS data are 1.2-1.5 km below lake floor, near the center of the basin and boundary fault. Crystalline basement is not observed in these deepest areas however, suggesting the presence of a substantial sedimentary section below the imaged strata. Stratal surfaces dip steeply to the west over large areas of the half-graben basin. An acoustically transparent seismic sequence up to ~25 m thick is observed at the lake floor, which overlies a pronounced erosional unconformity over much of the basin. Some intrabasinal normal faults are draped by and do not penetrate the upper sequences, indicating several generations of fault activity in the basin. The late-Pleistocene exposure surface likely correlates to the previous lake level low stage that persisted prior to volcanic damming by

  3. Magma-tectonic interactions in Kīlauea's Southwest Rift Zone in 2006 through coupled geodetic/seismological analysis

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Roman, D. C.; Poland, M. P.

    2015-12-01

    For much of the first 20 years of Kīlauea's 1983-present Pu'u 'Ō'ō eruption, deformation was characterized by subsidence at the volcano's summit and along both the East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). At the end of 2003, however, Kīlauea's summit began a 4-year period of inflation due to a surge in magma supply to the volcano. In 2006, the SWRZ also experienced atypical inflation, which was last observed in 1981-82 during a series of dike intrusions. To investigate the active magma sources and their interactions with faulting in the SWRZ during 2006, we integrate contemporary geodetic data from InSAR and GPS with double-couple fault-plane solutions for volcano-tectonic earthquakes and Coulomb stress modeling. According to the rate of deformation measured in daily GPS data, two distinct periods can be defined, spanning January to 15 March 2006 (period 1) and 16 March to 30 September 2006 (period 2). Geodetic models suggest that, during period 1, deformation, due to pressurization of magma in a vertical prolate-spheroidal conduit, in the south caldera area. In addition, a major seismic swarm occurred in both the SWRZ and ERZ. Our preliminary results also suggest that, during period 2, magma was still overpressurizing the same prolate-spheroid but a subhorizontal sill also intruded further to the southwest in the seismic SWRZ (SSWRZ). The beginning of period 2 also corresponds to a switch from subsidence to inflation of the SWRZ. Faulting in the upper ERZ is primarily strike-slip, with no obvious change in FPS orientation between periods 1 and 2. In contrast, faulting in the upper SSWRZ occurs as dip-slip motion on near-vertical faults. SSWRZ FPS show a mix of orientations including NW- and NE-striking faults, which along with relative earthquake locations, suggest a series of right-stepping fault segments, particularly during period 2. Calculated Coulomb stress changes indicate that faulting in the upper SSWRZ may result from stresses produced by

  4. Olivine-rich submarine basalts from the southwest rift zone of Mauna Loa Volcano: Implications for magmatic processes and geochemical evolution

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Hulsebosch, Thomas P.; Rhodes, J. Michael

    The east Ka Lae landslide on the submarine south flank of Mauna Loa exposed a 1.3 km thick section into the interior of its southwest rift zone. We sampled this section in four dredge hauls and four submersible dives and made a multibeam survey of the rift zone. New magnetic data and our observations and bathymetric results indicate that the axis of the southwest rift is two to three kilometers west of the present topographic high. Our submersible observations of old beach deposits and the low sulfur content of pillow-rim glasses indicate that this portion of the southwest rift zone has subsided >400 m. Olivine-rich basalts are extremely abundant along the submarine portion of Mauna Loa's southwest rift zone but their abundance decreases significantly in the upper parts of the two sections examined. This change probably occurred, ˜60 ka when Mauna Loa's eruption rate slowed and was unable to keep up with its subsidence rate. The dense magmas for these olivine-rich basalts were probably intruded into the deeper portions of the rift zones and erupted from its distal regions during periods of high magma supply. The preferential eruption of olivine-rich lavas on the flanks of Mauna Loa and other Hawaiian volcanoes is a strong indication that a density filter operates within these volcanoes. These lavas contain abundant euhedral, undeforrned olivine with high forsterite contents (typically 90%). Some of these olivines grew in magmas with 17.5 wt% MgO at temperatures of 1415°C, indicating that Hawaiian tholeiitic magmas are some of the most mafic and hottest magmas erupted during the Cenozoic. All of the submarine lavas have major element contents typical of Mauna Loa, but unlike its subaerial lavas, some of the submarine lavas have trace element and isotope ratios that overlap with those of Kilauea lavas. Thus, the source for Mauna Loa contained a Kilauea-like component that has been consumed during the last hundred thousand years, but the melt extraction conditions

  5. Geochemistry of 24 Ma Basalts from Northeast Egypt: Implications for Small-Scale Convection Beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Endress, C. A.; Furman, T.; Ali Abu El-Rus, M.

    2009-12-01

    Basalts ~24 Ma in the Cairo-Suez and Fayyum districts of NE Egypt represent the youngest and northernmost lavas potentially associated with the initiation of rifting of the Red Sea. The age of these basalts corresponds to a time period of significant regional magmatism that occurred subsequent to emplacement of 30 Ma flood basalts attributed to the Afar Plume in Ethiopia and Yemen. Beginning ~28 Ma, widespread magmatism occurred across supra-equatorial Africa in Hoggar (Algeria), Tibesti (Chad), Darfur (Sudan), Turkana (Kenya) and Samalat, Bahariya, Quesir and the Sinai Peninsula (Egypt) (e.g. Allegre et al., 1981; Meneisy, 1990; Baldridge et al., 1991; Wilson and Guiraud, 1992; Furman et al., 2006; Lucassen et al., 2008). Available geochemical and isotopic data indicate that Hoggar and Darfur basalts are similar to Turkana lavas, although no direct link between the N African lavas and the Kenya Plume has been made. New geochemical data on the NE Egyptian basalts provide insight into the thermochemical, isotopic, and mineralogical characteristics of the mantle beneath the region in which they were emplaced. The basalts are subalkaline with OIB-like incompatible trace element abundances and homogeneous major element, trace element and isotopic geochemistry. They display relatively flat ITE patterns, with notable positive Pb and negative P anomalies. Isotopic (143Nd/144Nd = 0.51274-0.51285, 87Sr/86Sr = 0.7049-0.7050) and trace element signatures (Ce/Pb = 16-22, Ba/Nb = 9-14, and La/Nb = 0.9-1.0) are consistent with melting of a sub-lithospheric source that has been slightly contaminated by continental crust during ascent and emplacement. The Pb isotopic ratios (206Pb/204Pb = 18.53-18.62, 207Pb/204Pb = 15.59-15.64, and 208Pb/204Pb = 38.80-39.00) in the Egyptian basalts are close to the range of those found in the 30 Ma Ethiopian flood basalts, which are distinct from the more highly radiogenic, high-μ type signature seen in basalts from Turkana, Darfur, and Hoggar

  6. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  7. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  8. A multidisciplinary study in the geodynamic active western Eger rift (Central Europe): The Quaternary volcanic complex Mytina and the recent CO2-degassing zone Hartousov

    NASA Astrophysics Data System (ADS)

    Flechsig, C.; Heinicke, J.; Kaempf, H. W.; Nickschick, T.; Mrlina, J.

    2013-12-01

    The Eger rift (Central Europe) belongs to the European Cenozoic rift system and represents an approximately 50 km wide and 300 km long ENE-WSW striking continental rift that formed during the Upper Cretaceous-Tertiary transition. This rift zone is one of the most active seismic regions in Central Europe. Especially, the western part of the Eger rift area is dominated by ongoing hidden magmatic processes in the intra-continental lithospheric mantle. Besides of known quaternary volcanoes, these processes take place in absence of any presently active volcanism at the surface. However, they are expressed by a series of phenomena distributed over a relatively large area, like occurrence of repeated earthquake swarms, surface exhalation of mantle-derived and CO2-enriched fluids at mofettes and mineral springs, and enhanced heat flow. At present this is the only known intra-continental region where such deep-seated, active lithospheric processes currently occur. The aim of the project is to investigate the tectonic/geologic near surface structure and the degassing processes of the mofette field of Hartousov, where soil gas measurements (concentration and flux rate) in an area of appr. 3x2 km traced a permeable NS extended segment of a fault zone and revealed highly permeable Diffuse Degassing Structures (DDS). The second target is volcanic environment of the Quaternary volcanic complex Mytina maar and the cinder cone Zelezna hurka/Eisenbühl. The investigations are intended to clarify: a) the spatio-temporal reconstruction of the maar complex, and the palaeo volcanic scenario (geological model, tectonic settings, distribution of pyroclastica, b) the geological structure and the tectonic control of the recent degassing zone, and c) the comperative interpretation of both regions in the consideration of potential future volcanic risk assessment in sub-regions of the western Eger Rift. To investigate both regions the following methods are used: geoelectrics, geomagnetics

  9. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Sakyi, Patrick Asamoah

    2016-06-01

    Mantle xenoliths hosted in Quaternary basaltic lavas from the Dillo and Megado areas of the southern Ethiopian rift are investigated to understand the geochemical composition and associated processes occurring in the lithospheric mantle beneath the region. The xenoliths are comprised of predominantly spinel lherzolite with subordinate harzburgite and clinopyroxenite. Fo content of olivine and Cr# of spinel for peridotites from both localities positively correlate and suggest the occurrence of variable degrees of partial melting and melt extraction. The clinopyroxene from lherzolites is both LREE depleted (La/Sm(N) = 0.11-0.37 × Cl) and LREE enriched (La/Sm(N) = 1.88-15.72 × Cl) with flat HREEs (Dy/Lu(N) = 0.96-1.31 × Cl). All clinopyroxene from the harzburgites and clinopyroxenites exhibits LREE-enriched (La/Sm(N) = 2.92-27.63.1 × Cl and, 0.45 and 1.38 × Cl, respectively) patterns with slight fractionation of HREE. The 143Nd/144Nd and 176Hf/177Hf ratios of clinopyroxene from lherzolite range from 0.51291 to 0.51370 and 0.28289 to 0.28385, respectively. Most of the samples define ages of 900 and 500 Ma on Sm-Nd and Lu-Hf reference isochrons, within the age range of Pan-African crustal formation. The initial Nd and Hf isotopic ratios were calculated at 1, 1.5, 2 and 2.5 Ga plot away from the trends defined by MORB, DMM and E-DMM which were determined from southern Ethiopian peridotites, thus indicating that the Dillo and Megado xenoliths could have been produced by melt extraction from the asthenosphere during the Pan-African orogenic event. There is no significant difference in 87Sr/86Sr ratios between the depleted and enriched clinopyroxene. This suggests that the melts that caused the enrichment of the clinopyroxene are mainly derived from the depleted asthenospheric mantle from which the xenoliths are extracted. Largely, the mineralogical and isotopic compositions of the xenoliths show heterogeneity of the CLM that could have been produced from various

  10. Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Realmuto, V.J.; Sutton, A.J.; Elias, T.

    1997-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne thermal infrared multispectral scanner (TIMS) and apply the procedure to TIMS data collected over the East Rift Zone of Kilauea Volcano, Hawaii, on September 30, 1988. These image data covered the Pu'u 'O'o and Kupaianaha vents and a skylight in the lava tube that was draining the Kupaianaha lava pond. Our estimate of the SO2 emission rate from Pu'u 'O'o (17 - 20 kg s-1) is roughly twice the average of estimates derived from correlation spectrometer (COSPEC) measurements collected 10 days prior to the TIMS overflight (10 kg s-1). The agreement between the TIMS and COSPEC results improves when we compare SO2 burden estimates, which are relatively independent of wind speed. We demonstrate the feasibility of mapping Pu'u 'O'o - scale SO2 plumes from space in anticipation of the 1998 launch of the advanced spaceborne thermal emission and reflectance radiometer (ASTER). Copyright 1997 by the American Geophysical Union.

  11. Reconnaissance gas measurements on the East Rift Zone of Kilauea Volcano, Hawai'i by Fourier transform infrared spectroscopy

    USGS Publications Warehouse

    McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.

    2005-01-01

    We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1

  12. A volcanic province near the western termination of the Charlie-Gibbs Fracture Zone at the rifted margin, offshore northeast Newfoundland

    NASA Astrophysics Data System (ADS)

    Keen, C. E.; Dafoe, L. T.; Dickie, K.

    2014-06-01

    A mid-Cretaceous to Late Cretaceous volcanic province, named here the Charlie-Gibbs Volcanic Province, is described near the western termination of the Charlie-Gibbs Fracture Zone, against the rifted continental margin northeast of Newfoundland. We used seismic data to map 14 volcanic seamounts, now buried below younger sediments. They rise 0.7 to 2 s two-way time (twt) above the surrounding basement level and are about 8-30 km wide. Some are conical while others are more flat-topped. Underlying igneous units resembling flows and sills are also observed. Based on magnetic modeling of the large positive magnetic anomalies associated with the seamounts, the total thickness of igneous rocks can locally reach about 8 km. This magmatism occurred in the vicinity of the Charlie-Gibbs Fracture Zone and extends about 150 km to the north along the rifted continental margin. The volcanic province also forms the northern boundary of the Jurassic-Early Cretaceous Orphan Basin, along a major transform margin there. Truncation of rift-related structures which extend to deep crustal levels is observed at the transform, along trends similar to those of prerift Appalachian terrane boundaries on the adjacent shelf. This suggests the existence of a preexisting weak zone in the continental lithosphere within which a complex strike-slip fault system developed and may have controlled the location of final continental breakup between the Rockall and North American plates in the Late Cretaceous.

  13. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  14. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  15. An integrated geophysical study of the northern Kenya rift

    NASA Astrophysics Data System (ADS)

    Mariita, Nicolas O.; Keller, G. Randy

    2007-06-01

    The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the contact between the Archean Tanzania craton and the Proterozoic Mozambique orogenic belt. Recent geophysical investigations focused on the tectonic evolution of the East African rift and on exploration for geothermal energy in the southern portion of the Kenyan rift provide considerable information and insight on the structure and evolution of the lithosphere. In the north, a variety of other data exist. However, the lack of an integrated regional analysis of these data was the motivation for this study. Our study began with the collection and compilation of gravity data, and then we used the seismic refraction results from the Kenya Rift International Seismic Project (KRISP), published seismic reflection data, aeromagnetic data, and geologic and drilling data as constraints in the construction of integrated gravity models. These models and gravity anomaly maps provide insight on spatial variations in crustal thickness and upper mantle structure. In addition, they show the distribution of basins and help characterize the distribution of magmatism along the axis of the northern sector of the rift. Our main observations are the following: (1) the region of thinning and anomalous mantle widens northward in agreement with previous studies showing that the crust thins from about 35 km in the south to 20 km in the north; (2) as observed in the south, gravity highs observed along the axis are due to mafic

  16. Geochemistry and petrology of andesites from the north rift zone of Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Smithka, I. N.; Perfit, M. R.; Clague, D. A.; Wanless, V. D.

    2014-12-01

    In 2013, the ROV Doc Ricketts onboard R/V Western Flyer explored ~4 km of an elongate pillow ridge up to ~300 m high along the eastern edge of the north rift zone of Axial Seamount. The steep-sided volcanic ridge is constructed of large pillow lavas up to 2-3 m in diameter and smaller elongated pillow tubes. Of the 27 samples collected during dive D526, all but one are andesites making it one of the largest confirmed high-silica exposures along a mid-ocean ridge (MOR). Based on radiocarbon ages of sediment on top of flows, the mounds are at least ~1390 years old. This minimum age is much younger than the 56 Ka age calculated based on distance from the rift axis, indicating eruption off-axis through older, colder crust and supporting the hypothesis and model calculations that extensive fractional crystallization (>85%) caused the high silica content. The andesitic lavas are primarily glassy, highly vesicular, crusty, and sparsely phyric with small (~1 mm) plagioclase crystals and olivine, clinopyroxene, and Fe-Ti oxide microphenocrysts. Microprobe analyses of glasses are similar to wax-core samples previously collected from this area but are more compositionally variable. Excluding one basalt (7.7 wt% MgO) sampled between mounds, the lavas are basaltic andesites and andesites (53-59 wt% SiO2) with <3 wt% MgO and 12.8-15.7 wt% FeO concentrations. Incompatible trace element abundances are ~4-6 times more enriched than in Axial Seamount T-MORB. Primitive mantle-normalized patterns are similar to those of high-silica lavas from other MORs (southern Juan de Fuca Ridge, 9N East Pacific Rise) with significant positive U anomalies, large negative Sr anomalies, small negative Eu anomalies, and slight positive Zr-Hf anomalies. The andesites are more enriched in light rare earth elements than basalts from Axial Seamount ((La/Yb)N 1.35-1.4 vs. 0.7-1.27) and N-MORB from the southern Juan de Fuca Ridge. The andesites also have high Cl (~0.3-0.6 wt%) and H2O (~1.60-1.71 wt

  17. Inferno Chasm Rift Zone, Idaho: A Terrestrial Analog for Plains-style Volcanism in Southeastern Mare Serenitatis on the Moon

    NASA Astrophysics Data System (ADS)

    Garry, W. B.; Hughes, S. S.; Kobs-Nawotniak, S. E.

    2015-12-01

    Volcanic features aligned along a linear graben in southeastern Mare Serenitatis (19°N, 27.5°E) on the Moon resemble a series of effusive basaltic landforms erupted along the Inferno Chasm rift zone within Craters of the Moon National Monument and Preserve (COTM), Idaho (42°58'00"N, 113°11'25"W). This region in Idaho is the type-locale for terrestrial plains-style volcanism. Examples of lunar plains-style volcanism have previously been described within Orientale Basin at Lacus Veris and Lacus Autumni, but this eruption style has not been used to describe the site in Mare Serenitatis. The SSERVI FINESSE team (Field Investigations to Enable Solar System Science and Exploration) has documented the features along Inferno Chasm rift using a LiDAR, Differential Global Positioning Systems, and Unmanned Aerial Vehicles (UAV) to compare with Lunar Reconnaissance Orbiter Narrow-Angle Camera images and digital terrain models. The region in southeastern Mare Serenitatis provides one of the best concentrations of features representative of lunar plains-style volcanism. On the Moon, these features include a cone (Osiris), a flat-topped dome, a rille-like channel (Isis), a vent, and a possible perched lava pond. In Idaho, the analog features include a dome (Grand View Crater), a rille-like channel (Inferno Chasm), vents (Cottrells Blowout, Horse Butte), and a perched lava pond (Papadakis). Both the scale and morphology of the features on the Moon are similar to the features in Idaho. For example, the channel in Isis is ~3 km long, 283 m-wide, and 25 m deep compared to Inferno Chasm which is ~1.7 km long, 100 m wide, and 20 m deep. The slope of the channel in Isis is -1.2°, while the channel in Inferno Chasm has a slope of -0.33°. The alignment of landforms on the Moon and Idaho are both consistent with dike emplacement. Observations of the flow stratigraphy for features in Idaho will inform the potential eruption conditions of the individual features on the Moon.

  18. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.

    2005-08-01

    The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic

  19. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  20. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal

    NASA Astrophysics Data System (ADS)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar

    2015-04-01

    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of

  1. Transient Hydrothermal Alteration in Fault Zones Cutting the Lower Oceanic Crust, Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    McCaig, Andrew; Titarenko, Sofya; Cliff, Robert; Ivan, Savov; Adrian, Boyce

    2015-04-01

    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros [1]. Alteration occurred as: 1) a largely static pseudomorphic alteration, predominantly in the greenschist and sub-greenschist facies with mainly talc and serpentine replacing olivine, and prehnite replacing plagioclase. Talc sometimes overprints serpentine mesh texture. 2) an overprinting metasomatic alteration, spatially related to cataclastic fault zones and macroscopic veins, dominated by prehnite and chlorite. Secondary clinopyroxene and epidote locally overprint the prehnite-chlorite assemblage, but the last events are veins of prehnite and zeolite. Metamorphosed dykes show chilled margins within the cataclasites, and are themselves affected by cataclastic deformation. Faults, dykes and overprinting alteration are all inferred to be related to the westward propagation of Cocos-Nazca spreading forming Hess Deep. 87Sr/86Sr ratios of small whole rock samples of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. Sampling of individual minerals has been undertaken using a microscope mounted drill, and shows that alteration is mainly affecting secondary minerals, with late prehnite veins ranging up to Sr isotope ratios of 0.7054. δ18O values range from +1 to + 6 per mil. Combined with metamorphic data this indicates alteration at temperatures between 200 and 400 °C. Secondary clinopyroxene and talc replacing serpentine are interpreted to indicate transient prograde hydrothermal events. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration, as well as transient prograde events, could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. The prehnite-chlorite assemblage is predicted to be important in off

  2. Transient Hydrothermal Alteration In Fault Zones Cutting The Lower Oceanic Crust, Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    McCaig, A. M.; Titarenko, S.; Cliff, R. A.; Savov, I. P.; Boyce, A.; Dutt, R.

    2014-12-01

    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros [1]. Alteration occurred as: 1) a largely static pseudomorphic alteration, predominantly in the greenschist and sub-greenschist facies with mainly talc and serpentine replacing olivine, and prehnite replacing plagioclase. Talc sometimes overprints serpentine mesh texture. 2) an overprinting metasomatic alteration, spatially related to cataclastic fault zones and macroscopic veins, dominated by prehnite and chlorite. Secondary clinopyroxene and epidote locally overprint the prehnite-chlorite assemblage, but the last events are veins of prehnite and zeolite. Metamorphosed dykes show chilled margins within the cataclasites, and are themselves affected by cataclastic deformation. Faults, dykes and overprinting alteration are inferred to be related to the westward propagation of Cocos-Nazca spreading forming Hess Deep. 87Sr/86Sr ratios of small whole rock samples of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. Sampling of individual minerals has been undertaken using a microscope mounted drill, and shows that alteration is mainly affecting secondary minerals, with late prehnite veins ranging up to 0.7054. δ18O values range from +1 to + 6 per mil. Combined with metamorphic data this indicates alteration at temperatures between 200 and 400 °C. Secondary clinopyroxene and talc replacing serpentine are interpreted to indicate transient prograde hydrothermal events. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration, as well as transient prograde events, could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. The prehnite-chlorite assemblage is predicted to be important in off-axis alteration, common in any

  3. Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Baldwin, S. L.; Vervoort, J. D.

    2011-09-01

    High-pressure and ultra high-pressure (U)HP metamorphic rocks occur in many of the world's major orogenic belts, suggesting that subduction of continental lithosphere is a geologically important process. Despite the widespread occurrence of these rocks, relatively little is known about the timescales associated with (U)HP metamorphism. This is because most (U)HP terranes are tectonically overprinted and juxtaposed against rocks with a different history. An exception to this are the Late Miocene (U)HP metamorphic rocks found in active metamorphic core complexes (MCC) in the Woodlark Rift of southeastern Papua New Guinea. This region provides a rare opportunity to study the garnet Lu-Hf isotopic record of (U)HP metamorphism in a terrane that is not tectonically overprinted. In order to constrain the timing of garnet growth relative to the history of (U)HP metamorphism and the evolution of the Woodlark Rift, Lu-Hf ages were determined, in conjunction with measurements of Lu and major element zoning, for garnets from three metamorphic rocks. Garnets from the three samples yielded different ages that, instead of recording the spatial and temporal evolution associated with a single metamorphic event, provide information on the timing of three separate plate boundary events. The youngest Lu-Hf age determined was 7.1 ± 0.7 Ma for garnets in a Late Miocene coesite eclogite. The age is interpreted to record the time when a garnet-bearing partial melt of the mantle crystallized within subducted continental lithosphere at (U)HP conditions. The young Lu-Hf age from the coesite eclogite is in contrast to a 68 ± 3.6 Ma Lu-Hf age obtained on large (1-2 cm) garnet porphyroblasts, from within the Pleistocene amphibolite facies shear zone carapace bounding exposures of (U)HP rocks in the D'Entrecasteaux Islands. This older age records the growth of garnet in response to continental subduction and ophiolite obduction in the region north and east of Australia during late Mesozoic

  4. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  5. The Lava sequence of the East African Rift escarpment in the Oldoinyo Lengai - Lake Natron sector, Tanzania

    NASA Astrophysics Data System (ADS)

    Neukirchen, Florian; Finkenbein, Thomas; Keller, Jörg

    2010-12-01

    A 500 m sequence of horizontal lava flows forms the Gregory rift escarpment of the western rift shoulder between Lake Natron and Oldoinyo Lengai. A detailed volcanic stratigraphy of this >1.2 Ma evolution of the EAR in Northern Tanzania is presented. The sequence is formed by several distinct rock suites, with increasing alkalinity from base to top. Alkali olivine basalts of the Waterfall Sequence at the base are followed by a basanite series, and by a range of evolved nephelinites forming the upper part of the escarpment. Numerous dykes and Strombolian scoria deposits indicate local fissure eruptions as opposed to or in addition to more distant sources. Primitive compositions within each of the series indicate variable candidates for primary magmas. The composition of the basanite suite ranges from primitive mantle melts (high Mg#, Cr, Ni) to more evolved rocks, in particular hawaiites, generated by fractionation of olivine, pyroxene and magnetite. Inter-bedded within the basanite suite, one single olivine melilitite flow with high Mg# and abundant olivine and pyroxene megacrysts is the only primitive candidate for the nephelinite suite. However, in view of the large compositional gap and marked differences in incompatible element ratios, a relation between this flow and the nephelinites remains hypothetical. The variation within the evolved nephelinite series can be partly explained by fractionation of pyroxene, apatite, perovskite (and some nepheline), while magma mixing is indicated by zonation patterns of pyroxene. The most evolved nephelinite, however, differs significantly from all other nephelinites in major and trace elements. Thus the entire sequence is petrologically not a coherent evolution, rather the result of different mantle melts fractionating under variable conditions. Carved into the rift scarp of the study area west of Engare Sero is a young explosion crater, the Sekenge Crater. Sekenge Tuffs are olivine melilitites, similar to other craters and

  6. Gravity anomaly and crustal density structure in Jilantai rift zone and its adjacent region

    NASA Astrophysics Data System (ADS)

    Wu, Guiju; Shen, Chongyang; Tan, Hongbo; Yang, Guangliang

    2016-08-01

    This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.

  7. Specific features of electric field in the atmosphere and Radon emanations in Tunkin Basin of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Soloviev, S.; Loktev, D.

    2013-05-01

    Development of methods for diagnosing local crust encourages finding new ways for preventing hazardous geologic phenomena. Using measurements of several geophysical fields in addition to seismic methods enables to improve the existing methods and increase their reliability. In summer of 2009 and 2010, complex geophysical acquisition company was organized in the Tunkin Basin of the Baikal rift zone in South-Eastern Siberia, that runs 200 km to East-West from the southern tip of Baikal. Stationary observations were carried out in the central part of the Tunkin Basin, at the Geophysical observatory "I" of Institute of Solar-Terrestrial Physics of Siberian Branch of RAS and "II" near the Arshan settlement. Along with observations of microseismic noise and electric field variations in soil, there were performed measurements of electric field strength (Ez) in lowest atmosphere and volumetric activity of natural Radon in subsoil. Meteorological parameters were monitored with the use of DavisVantagePro meteorological stations. The analysis of observations showed that characteristic features of electric field in near-surface atmosphere are majorly defined by complex orography of the place and, consequently, by quickly changing meteorological conditions: thunderstorm activity and other mesometeorological events (with characteristic scale of tens of km and few hours long) in nearby rocks. The results of Ez(t) measurements performed under "good" weather conditions showed that the character of field variations depended on the local time with their maximum in daylight hours and minimum in the night. The analysis of Radon volumetric activity evidenced that its variations are influenced by atmospheric pressure and tides, and such influence is different at points "I" and "II". In particular, the tidal and atmospheric influence on Radon variations is more pronounced at "II" if compared to "I", which can be explained by locations of the registration points. Registration Point "II" is

  8. Contemporary surface ruptures in the zone of the Baikal-Mondy fault (Baikal rift system): dynamics of formation and origin

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Sankov, Aleksei; Lebedeva, Marina; Ashurkov, Sergey; Parfeevets, Anna

    2014-05-01

    Sublatitudinal Baikal-Mondy (Tunka) left-lateral strike-slip fault accommodates North Mongolia submeridional rift basins opening (Darkhad and Khubsugul). It is the connecting link between the central and south-western parts of the Baikal rift system. We investigated the present-day activity of faulting on southern border of Mondy basin, which is due to their position at the junction of east-west trending active faults of the Baikal-Mondy fault system with submeridional structures of Khubsugul basin. The investigated area is characterized by high seismic activity. The epicenter of one of the strongest Mondy earthquake 1950 (Mw = 7.0) is located within the Mondy basin. Reconstruction of Late Cenozoic tectonic stress field shows a predominance of strike-slip deformation regime with NW-SE direction of the minimum compression axis and NE-SW direction of the maximum compression axis, which correlates with the present-day stress field derived from the data on earthquake focal mechanisms. On the top of the southern shoulder of Mondy basin a series of extended NE trending surface ruptures that cut the crust of weathering and bedrock across the local watershed were discovered. The rupture length reaches 180 m, width ruptures bedrock reaches 0.6 m. In the bedrock tectonic microfractures of NW and NE directions are dominated, but the NW trending surface ruptures are not observed. In the area of contemporary ruptures the geodetic measurements were carried out in the period 2009-2013. The results of processing the measurement data on the local testing ground showed that most divergent baselines undergoes extension with maximum values reaching 30 mm/year. The block experienced elongation in all directions, but the morphology of ruptures suggests that the main direction of stretching is NW-SE. The intensity of cracks opening decreases markedly with time. According to eyewitnesses known that active crack opening at about 100 mm/year started 4 years before Kultuk earthquake (27

  9. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  10. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  11. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    SciTech Connect

    Burtchard, G.C.; Moblo, P.

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  12. Geochemical evidence of mantle reservoir evolution during progressive rifting

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Mohr, P.; Dosso, L.; Hall, C. M.

    2010-12-01

    The Afar region in East Africa, which represents the triple junction of three well-exposed Cenozoic rift systems, is a pivotal domain in the study of rift evolution. The western margin of Afar, defined by a wide transitional region from plateau to rift floor, developed in response to the rifting of the Red Sea commencing shortly after the eruption of the ~31-29 Ma Ethiopian-Yemen flood basalts. The Oligocene lava sequence which covers this rift margin was fed from intensive diking. The dikes and the block-faulting and monoclinal warping that followed provide an opportunity to probe the geochemical reservoirs preserved in the magmatic record and the development of the rifting processes. Argon geochronology reveals that dikes along the western Afar margin span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major and trace element, and isotopic results (Sr-Nd-Pb-Hf) from these dikes demonstrate temporal geochemical heterogeneity defined by variable contributions from the Afar plume, depleted mantle and African lithosphere, consistent with studies of Quaternary basalts from the Ethiopian Rift. On a broader scale our results show that as the western Afar margin matures, the initially significant contribution from the Afar plume wanes in favor of shallow asthenospheric and lithospheric reservoirs. The early dikes, which are coincident with the initial weakening of the lithosphere in a magma-assisted rifting model, geochemically resemble the widespread plume-derived flood basalts and shields that constitute the Ethiopian Plateau. Subsequent diking is characterized by a lesser role for the Afar plume and greater contributions from the African lithosphere and depleted mantle. During the terminal stage of dike emplacement, where focused magmatic intrusion accommodated extension, a more significant fraction is derived from the depleted mantle and less of a

  13. InSAR and GPS measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Kervyn, François

    2016-04-01

    Along the East African Rift System (EARS), magma intrusions represent a major component in continental rifting. When these intrusions reach the surface, they cause volcanic eruptions. This is the case of the last flank eruption of Nyamulagira, which occurred from November 6 2011 to April 2012. Nyamulagira is an active shield volcano with a central caldera, located in the eastern part of the Democratic Republic of Congo, along the Kivu segment of the East African Rift System. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e., 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e., several months) eruptions usually emitting larger volumes of lava that take place at larger distance (>8 km) from the central caldera. The 2011-2012 Nyamulagira eruption is of that second type. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) to measure pre-, co and post-eruptive ground displacement associated with the Nyamulagira 2011-2012 eruption. Results suggest that a magma intrusion preceded by two days the eruption. This intrusion corresponded to the migration of magma from a shallow reservoir (~3km) below the caldera to the two eruptive fissures located ~11 km ENE of the central edifice. Available seismic data are in agreement with InSAR results showing increased seismic activity since November 4 2011, with long- and short-period earthquakes swarms. Using analytical models we invert the measured ground displacements during the first co-eruptive month to evaluate the deformation source parameters and the mechanism of magma emplacement for this eruption. GPS data from permanent stations in the KivuGNet network are used to constrain the temporal evolution of the eruption and evaluate far-field deformation, while the InSAR data is more sensitive to the near-field deformation

  14. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  15. Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15[degree]N, 45[degree]W

    SciTech Connect

    Rona, P.A.; Nelson, T.A. ); Bougault, H.; Charlou, J.L.; Needham, H.D. ); Appriou, P. ); Trefry, J.H. ); Eberhart, G.L.; Barone, A. )

    1992-09-01

    A hydrothermal system characterized by high ratios of methane to both manganese and suspended particulate matter was detected in seawater sampled at the eastern intersection of the rift valley of the Mid-Atlantic Ridge with the Fifteen-Twenty Fracture Zone. This finding contrasts with low ratios in black smoker-type hydrothermal systems that occur within spreading segments. Near-bottom water sampling coordinated with SeaBeam bathymetry and camera-temperature tows detected the highest concentrations of methane at fault zones in rocks with the appearance of altered ultramafic units in a large dome that forms part of the inside corner high at the intersection. The distinct chemical signatures of the two types of hydrothermal systems are inferred to be controlled by different circulation pathways related to reaction of seawater primarily with ultramafic rocks at intersections of spreading segments with fracture zones but with mafic rocks within spreading segments.

  16. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  17. Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer).

    PubMed

    Beechler, B R; Manore, C A; Reininghaus, B; O'Neal, D; Gorsich, E E; Ezenwa, V O; Jolles, A E

    2015-04-22

    The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB- buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations. PMID:25788592

  18. Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer)

    PubMed Central

    Beechler, B. R.; Manore, C. A.; Reininghaus, B.; O'Neal, D.; Gorsich, E. E.; Ezenwa, V. O.; Jolles, A. E.

    2015-01-01

    The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB− buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations. PMID:25788592

  19. Differentiation and magma mixing on Kilauea's east rift zone: A further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas

    USGS Publications Warehouse

    Wright, T.L.; Helz, R.T.

    1996-01-01

    New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches.

  20. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    USGS Publications Warehouse

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  1. Monitoring the NW volcanic rift-zone of Tenerife, Canary Islands, Spain: sixteen years of diffuse CO_{2} degassing surveys

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Halliwell, Simon; Butters, Damaris; Padilla, Germán; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria, is the only one that has developed a central volcanic complex characterized by the eruption of differentiated magmas. At present, one of the most active volcanic structures in Tenerife is the North-West Rift-Zone (NWRZ), which has hosted two historical eruptions: Arenas Negras in 1706 and Chinyero in 1909. Since the year 2000, 47 soil CO2 efflux surveys have been undertaken at the NWRZ of Tenerife Island to evaluate the temporal and spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. We report herein the last results of diffuse CO2 efflux survey at the NWRZ carried out in July 2015 to constrain the total CO2 output from the studied area. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. During 2015 survey, soil CO2 efflux values ranged from non-detectable up to 103 g m‑2 d‑1. The total diffuse CO2 output released to atmosphere was estimated at 403 ± 17 t d‑1, values higher than the background CO2 emission estimated on 143 t d‑1. For all campaigns, soil CO2 efflux values ranged from non-detectable up to 141 g m‑2 d‑1, with the highest values measured in May 2005. Total CO2 output from the studied area ranged between 52 and 867 t d‑1. Temporal variations in the total CO2 output showed a temporal correlation with the onsets of seismic activity, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the area during April 22-29, 2004. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values located along a trending WNW-ESE area. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission, as well as for the spatial distribution of

  2. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai'i with InSAR coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Schmidt, D. A.; Poland, M. P.; Cashman, K. V.

    2010-12-01

    Remote sensing of lava flows from the Pu`u `O`o-Kupaianaha eruption on the east rift zone of Kilauea serves to document the ongoing eruption, while yielding insights into how lava flow fields develop. InSAR is widely used to measure deformation by detecting minute changes in ground surfaces that stay correlated during repeat observations. The eruption and emplacement of fresh lava on the surface, however, disrupts the coherence of the radar echoes, allowing the area of these flows to be mapped with InSAR coherence images. We use InSAR correlation to visualize surface flow activity from 2003-2010 in order to quantify eruption rates and explore lava flow behavior from emplacement onward. This method for mapping flows does not require daylight, cloudless skies, or access to the active flow fields that is necessary for traditional visual surveys. We produce coherence maps for hundreds of 35 to 105-day periods from twelve tracks of ENVISAT SAR data using the GAMMA software package. By combining these coherence maps we create a unique dataset with which to develop this technique and amass lava flow observations. Where correlation images overlap in time, they are summed and normalized to derive a time series of surface coherence with a spatial resolution of 20 meters and a temporal resolution of as little as a few days. We identify existing stable flows by their high radar coherence, and determine a coherence threshold that is applied to each correlation image. This threshold is calibrated so as to reduce the effects of varying baseline, time duration, and atmospheric effects between images, as well as decorrelation due to vegetation. The final images illustrate lava flow activity that corresponds well with surface flow outlines and tube locations recorded by the USGS mapping effort. The InSAR-derived results serve to enhance these traditional maps by documenting pixel-scale changes over time. When compared with forward looking infrared (FLIR) thermal imagery, pixel

  3. Inland termination of the Weddell Sea Rift against a major Jurassic strike-slip fault zone between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, Tom; Ferraccioli, Fausto; Leat, Phil; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Corr, Hugh; Siegert, Martin

    2013-04-01

    The Weddell Sea Embayment (WSE) lies in a key position to study the nature of the tectonic boundary between East and West Antarctica and the development of continental rifting processes and magmatism during the early stages of Gondwana break-up. Evidence for continental rifting within the WSE derives from previous reconnaissance geophysical investigations offshore and geological studies of the associated Jurassic magmatism onshore. Seismic data reveal high stretching factors beneath the Weddell Sea Rift (WSR) between 1.5 and 3.0, and gravity data suggest a crustal thickness of ca 27 km and an effective elastic thickness of ~35 km for the rifted region. Geochemical interpretations indicate that a Middle Jurassic LIP, including extensive mafic tholeiites and some Jurassic granitic intrusions may be related to a superplume that impinged beneath the WSE. Here we present results from a recent aerogeophysical investigation that sheds new light into the previously largely unknown inland extent of the WSR beneath the West Antarctic Ice Sheet. This includes new insights into its magmatic patterns, as well as the nature of its tectonic boundaries with the adjacent Ellsworth-Whitmore block (EWM) and the margin of East Antarctica. Aeromagnetic images were interpreted to reveal pre-rift rocks, including Proterozoic basement, Middle Cambrian rift-related volcanics and metasediments and rift-related Jurassic granitoids. Magnetic depth-to-source estimates were calculated and help constrain two joint magnetic and gravity forward models for the study region. These models were used to assess crustal thickness variations, the extent of Proterozoic basement, and the thickness of Jurassic intrusions and inferred post-Jurassic sedimentary infill. The Jurassic granitoids were modelled as 5-8 km thick. These intrusions include roughly circular plutons, emplaced at the transition between the thicker crust of the EWM block and the thinner crust of the WSR, and more elongated bodies emplaced

  4. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    NASA Astrophysics Data System (ADS)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (< 35 km), most of the southern part of the rift is underlain by thick crust (~40‒44 km). Different from the Moho, the MLD is shallower beneath the axis of the Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  5. Genetic Evidence for Rift Valley Fever Outbreaks in Madagascar Resulting from Virus Introductions from the East African Mainland rather than Enzootic Maintenance▿†‡

    PubMed Central

    Carroll, Serena A.; Reynes, Jean-Marc; Khristova, Marina L.; Andriamandimby, Soa Fy; Rollin, Pierre E.; Nichol, Stuart T.

    2011-01-01

    Rift Valley fever virus (RVFV), a mosquito-borne phlebovirus, has been detected in Madagascar since 1979, with occasional outbreaks. In 2008 to 2009, a large RVFV outbreak was detected in Malagasy livestock and humans during two successive rainy seasons. To determine whether cases were due to enzootic maintenance of the virus within Madagascar or to importation from the East African mainland, nine RVFV whole genomic sequences were generated for viruses from the 1991 and 2008 Malagasy outbreaks. Bayesian coalescent analyses of available whole S, M, and L segment sequences were used to estimate the time to the most recent common ancestor for the RVFVs. The 1979 Madagascar isolate shared a common ancestor with strains on the mainland around 1972. The 1991 Madagascar isolates were in a clade distinct from that of the 1979 isolate and shared a common ancestor around 1987. Finally, the 2008 Madagascar viruses were embedded within a large clade of RVFVs from the 2006–2007 outbreak in East Africa and shared a common ancestor around 2003 to 2004. These results suggest that the most recent Madagascar outbreak was caused by a virus likely arriving in the country some time between 2003 and 2008 and that this outbreak may be an extension of the 2006–2007 East African outbreak. Clustering of the Malagasy sequences into subclades indicates that the viruses have continued to evolve during their short-term circulation within the country. These data are consistent with the notion that RVFV outbreaks in Madagascar result not from emergence from enzootic cycles within the country but from recurrent virus introductions from the East African mainland. PMID:21507967

  6. Diffuse CO2 emission from the NE volcanic rift-zone of Tenerife (Canary Islands, Spain): a 15 years geochemical monitoring

    NASA Astrophysics Data System (ADS)

    Padilla, Germán; Alonso, Mar; Shoemaker, Trevor; Loisel, Ariane; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    The North East Rift (NER) volcanic zone of Tenerife Island is one of the three volcanic rift-zones of the island (210 km2). The most recent eruptive activity along the NER volcanic zone took place in the 1704-1705 period with the volcanic eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. The aim of this study was to report the results of a soil CO2 efflux survey undertaken in June 2015, with approximately 580 measuring sites. In-situ measurements of CO2 efflux from the surface environment of NER volcanic zone were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. To quantify the total CO2 emission from NER volcanic zone, soil CO2 efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CO2 emission rate was estimated in 1209 t d‑1, with CO2 efflux values ranging from non-detectable (˜0.5 g m‑2 d‑1) up to 123 g m‑2 d‑1, with an average value of 5.9 g m‑2 d‑1. If we compare these results with those obtained in previous surveys developed in a yearly basis, they reveal slightly variations from 2006 to 2015, with to pulses in the CO2 emission observed in 2007 and 2014. The main temporal variation in the total CO2 output does not seem to be masked by external variations. First peak precedes the anomalous seismicity registered in and around Tenerife Island between 2009 and 2011, suggesting stress-strain changes at depth as a possible cause for the observed changes in the total output of diffuse CO2 emission. Second peak could be related with futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.

  7. Investigation of a rift zone in the western Fimbulisen by means of airborne radio echo sounding, satellite imagery, and ice flow modelling

    NASA Astrophysics Data System (ADS)

    Humbert, Angelika; Steinhage, Daniel

    2010-05-01

    The Fimbulisen, an ice shelf located roughly between 3°W-8°E at the coast of Dronning Maud Land, East Antarctica, consists of the fast flowing extension of Jutulstraumen and slower moving parts west and east of it. The largely rifted western part of the Fimbulisen is the subject of this study, which combines observations and modelling. Airborne radio echo sounding performed by the Alfred Wegener Institute between 1996 and 2008 with a frequency of 150 MHz and pulse length of 60 ns, respectively 600 ns, is analysed in order to study the internal structure of the ice in parts of the rift zone and to estimate the ice thickness in this area precisely. High-resolution radar imagery acquired by the TerraSAR-X in 2008 and 2009 is used to evaluate principal deformation axis at characteristic locations, to detect crack modes as well as to classify zones of similar structural characteristics. These zones were incorporated in a 2D diagnostic ice flow model as sub-domains with variable stress enhancement factor and thus treated as zones of different damage related stiffness. The temperature-dependent stiffness is calculated by applying the solution of a validated 3D temperature model of the ice shelf and thus the simulations focus on the softening effect caused by cracks. Extensive parameter studies show the effect of the stress enhancement factor on the principal deformation rates and axis. Comparison with the estimated deformation pattern aims to confine the softening effect for each zone separately.

  8. Understanding Chad Basin Evolution Since Miocene: Climate and Vegetation Simulations, Roles of Orbital Parameters and East African Rift.

    NASA Astrophysics Data System (ADS)

    Sepulchre, P.; Ramstein, G.; Krinner, G.; Schuster, M.; Fluteau, F.; Kageyama, M.; Tiercelin, J.; Vignaud, P.; Brunet, M.

    2004-12-01

    Since the discovery of the earliest hominid known, Chad basin is a major place to study paleoclimates and hominid evolution. This discovery implies to re-evaluate the "East Side Story" paradigm for early hominids. To achieve this goal, we have performed numerical simulations to quantify the climatic and vegetation response of the Rift Uplift. We used a zoomed (144 X 108) AGCM (LMDz from IPSL). On the one hand, offline continental biosphere model (ORCHIDEE) has been used to simulate the vegetation response over western and eastern parts of the rift. On the other hand, since geomorphologic evidences have shown that from Upper Miocene to mid-Holocene Lake Chad had known several level oscillations leading to a huge lake known as Mega Lake Chad (MLC), we also ran atmospheric simulations to demonstrate, with boundary conditions at 6 000 BP, that orbital forcing allowed the existence of a MLC. Volume and surface of the lake have been calculated using an adapted lake model. These simulations have shown that the ITCZ shift induced by the mid-Holocene orbital parameters drives the existence of a MegaChad. Our model result having been tested successfully for the last occurrence of the MLC, we will apply it to Upper Miocene accounting for topographic changes, in order to reconstruct as accurately as possible the first hominids environments.

  9. The Teisseyre-Tornquist Zone - early Palaeozoic strike-slip plate boundary or Ediacaran rifted margin of Baltica?

    NASA Astrophysics Data System (ADS)

    Mazur, Stanislaw; Krzywiec, Piotr; Malinowski, Michal; Lewandowski, Marek; Buffenmeyer, Vinton; Green, Christopher

    2016-04-01

    The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the northwest to the Black Sea in the southeast. This tectonic feature defines a transition between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the southwest. Being a profound zone of crustal and lithospheric thickness perturbation, the TTZ has usually been considered a Caledonian tectonic suture formed due to the closure of the Tornquist Ocean. The suture was hypothesised to originate from the collision between Baltica and Avalonia or large-scale strike-slip displacement along strike of the Caledonian Orogen. However, some minority views postulated the continuation of Baltica crystalline basement farther to the southwest up to the Elbe Lineament and the margin of the Variscan Belt. We studied the ION Geophysical PolandSPAN survey that consists of 10 regional, seismic depth profiles covering the SW margin of the EEC and the TTZ in Poland. Since the PolandSPAN profiles image to ~30 km depth their interpretation was integrated with the potential fields data and earlier results of refraction sounding to better image the deep structure of the TTZ. Our data show that the NW and central sections of the TTZ correspond, at the Moho level, to a relatively narrow crustal keel and a significant Moho step at the transition from the EEC to the Palaeozoic Platform. However, top of basement above the TTZ is smooth and moderately sloping towards the southwest. In the central part of the TTZ, top of Precambrian is covered by undisturbed lower Palaeozoic sediments. In contrast, the lower Palaeozoic sediments are involved in a latest Silurian, thin-skinned fold-and-thrust belt along the NW section of the TTZ, where the sharply defined Caledonian Deformation Front adjoins a rigid basement buttress above the TTZ. Finally, the crustal keel is mostly missing from the SE section of the TTZ. Instead, this

  10. A Review of New and Anticipated High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Hominin Evolution and Demography

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.

    2014-12-01

    Our understanding of Late Tertiary/Quaternary climate and environmental history in East Africa has, to date, largely been based on outcrop and marine drill core records. Although these records have proven extremely valuable both in reconstructing environmental change and placing human evolution in an environmental context, their quality is limited by resolution, continuity, uncertainties about superposition and outcrop weathering. To address this problem, long drill core records from extant ancient lakes and lake beds are being collected by several research groups. Long cores (up to 100s of m.) from basin depocenters in both the western and eastern rifts are now available spanning nearly the entire latitudinal range of the East Africa Rift. This network of core records, especially when coupled with outcrop data, is providing an opportunity to compare the nature of important global climate transitions (especially glacial/interglacial events and precessional cycles) across the continent, thereby documenting regional heterogeneity in African climate history. Understanding this heterogeneity is critical for realistically evaluating competing hypotheses of environmental forcing of human evolution, and especially ideas about the dispersal of anatomically modern humans out of Africa in the early Late Pleistocene. In particular, understanding the hydrological and paleoecological history of biogeographic corridors linking eastern Africa, the Nile River Valley and the Levant is likely to be vastly improved through comparative analysis of these new drill cores over the next few years. Because we do not a priori know the primary forcing factors affecting this environmental history, it will essential to develop the best possible age models, employing multiple and novel geochronometric tools to make these comparisons.

  11. Tectonic stress evolution in the Pan-African Lufilian Arc and its foreland (Katanga, DRC): orogenic bending, late orogenic extensional collapse and transition to rifting

    NASA Astrophysics Data System (ADS)

    Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.

    2012-04-01

    Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).

  12. Exhumation, cooling and deformation history of the necking zone of the fossil Adriatic rifted margin: the Campo/Grosina section (S-Switzerland and N-Italy)

    NASA Astrophysics Data System (ADS)

    Petri, Benoît; Mohn, Geoffroy; Wijbrans, Jan R.; Manatschal, Gianreto; Beltrando, Marco

    2016-04-01

    The Austroalpine units in SE Switzerland and N-Italy preserve remnants of the fossil Adriatic rifted margin. Notably the Campo-Grosina units represent the necking zone where major crustal thinning was accommodated during the Jurassic rifting. This contribution aims to unravel the complex tectonic evolution recorded in these units from the late Carboniferous - early Permian to the Jurassic rifting. The cooling and exhumation of the Campo and overlying Grosina units, separated by the Eita shear zone are explored by the acquisition of 40Ar/39Ar on hornblende, muscovite and biotite. New geochronological data on the Grosina unit present 40Ar/39Ar ages between 273 and 261 Ma for muscovite and between 248 and 246 Ma for biotite. The Campo unit shows clearly younger ages between 210 and 177 Ma on hornblende, between 186 and 176 Ma on muscovite and between 174 and 171 Ma on biotite. Numerous data were discarded due to frequent excess 40Ar on amphiboles, probably associated to the emplacement of the Sondalo gabbro with a high 40Ar/36Ar ratio in Permian times. These new ages, together with a compilation of existing ages obtained with different chronometers (U-Pb, Sm-Nd, Rb-Sr, K-Ar, 40Ar/39Ar) and performed on different lithologies from both the Campo and the Grosina units allow an estimation of the cooling rates for these units to be done. The new results show that both the Campo and the Grosina units underwent a cooling rate around 10°C/Ma in Permian time. The Grosina unit, being in a shallower crustal level, did not record the Jurassic cooling, reaching up to 50°C/Ma in the Campo unit. The notable difference in cooling rates between the Permian and the Jurassic events attests of a cooling without being associated to an exhumation in Permian times, whereas the Campo unit cooled rapidly in Jurassic times, due to an exhumation and an emplacement in shallow crustal levels. The latter tectonic event was likely caused by shearing along the Eita or other greenschist facies

  13. Olivine-liquid relations of lava erupted by Kilauea volcano from 1994 to 1998: Implications for shallow magmatic processes associated with the ongoing east-rift-zone eruption

    USGS Publications Warehouse

    Thornber, C.R.

    2001-01-01

    From 1994 through 1998, the eruption of Ki??lauea, in Hawai'i, was dominated by steady-state effusion at Pu'u 'O??'??o that was briefly disrupted by an eruption 4 km uprift at Np??au Crater on January 30, 1997. In this paper, I describe the systematic relations of whole-rock, glass, olivine, and olivine-inclusion compositions of lava samples collected throughout this interval. This suite comprises vent samples and tube-contained flows collected at variable distances from the vent. The glass composition of tube lava varies systematically with distance and allows for the "vent-correction" of glass thermometry and olivine-liquid KD as a function of tube-transport distance. Combined olivine-liquid data for vent samples and "vent-corrected" lava-tube samples are used to document pre-eruptive magmatic conditions. KD values determined for matrix glasses and forsterite cores define three types of olivine phenocrysts: type A (in equilibrium with host glass), type B (Mg-rich relative to host glass) and type C (Mg-poor relative to host glass). All three types of olivine have a cognate association with melts that are present within the shallow magmatic plumbing system during this interval. During steady-state eruptive activity, the compositions of whole-rock, glass and most olivine phenocrysts (type A) all vary sympathetically over time and as influenced by changes of magmatic pressure within the summit-rift-zone plumbing system. Type-A olivine is interpreted as having grown during passage from the summit magmachamber along the east-rift-zone conduit. Type-B olivine (high Fo) is consistent with equilibrium crystallization from bulk-rock compositions and is likely to have grown within the summit magma-chamber. Lower-temperature, fractionated lava was erupted during non-steady state activity of the Na??pau Crater eruption. Type-A and type-B olivine-liquid relations indicate that this lava is a mixture of rift-stored and summit-derived magmas. Post-Na??pau lava (at Pu'u 'O?? 'o

  14. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    NASA Astrophysics Data System (ADS)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  15. Contact zone permeability at intrusion boundaries: New results from hydraulic testing and geophysical logging in the Newark Rift Basin, New York, USA

    USGS Publications Warehouse

    Matter, J.M.; Goldberg, D.S.; Morin, R.H.; Stute, M.

    2006-01-01

    Hydraulic tests and geophysical logging performed in the Palisades sill and the underlying sedimentary rocks in the NE part of the Newark Rift Basin, New York, USA, confirm that the particular transmissive zones are localized within the dolerite-sedimentary rock contact zone and within a narrow interval below this contact zone that is characterized by the occurrence of small layers of chilled dolerite. Transmissivity values determined from fluid injection, aquifer testing, and flowmeter measurements generally fall in the range of 8.1E-08 to 9.95E-06 m2/s and correspond to various scales of investigation. The analysis of acoustic and optical BHTV images reveals two primary fracture sets within the dolerite and the sedimentary rocks - subhorizontal fractures, intersected by subvertical ones. Despite being highly fractured either with subhorizontal, subvertical or both fracture populations, the dolerite above and the sedimentary rocks below the contact zone and the zone with the layers of chilled dolerite are significantly less conductive. The distribution of the particular conductive intervals is not a function of the two dominant fracture populations or their density but rather of the intrusion path of the sill. The intrusion caused thermal fracturing and cracking of both formations, resulting in higher permeability along the contact zone. ?? Springer-Verlag 2005.

  16. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    SciTech Connect

    Sweeney, M.T.K.; Burtchard, G.C.

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  17. Distribution of differentiated tholeiitic basalts on the lower east rift zone of Kilauea Volcano, Hawaii: a possible guide to geothermal exploration.

    USGS Publications Warehouse

    Moore, R.B.

    1983-01-01

    Geological mapping of the lower east rift zone indicates that >100 eruptions have extruded an estimated 10 km3 of basalt during the past 2000 yr; six eruptions in the past 200 yr have extruded approx 1 km3. The eruptive recurrence interval has ranged 1-115 yr since the middle of the 18th century and has averaged 20 yr or less over the past 2000 yr. New chemical analyses (100) indicate that the tholeiites erupted commonly differentiated beyond olivine control or are hybrid mixtures of differentiates with more mafic (olivine-controlled) summit magmas. The distribution of vents for differentiated lavas suggests that several large magma chambers underlie the lower east rift zone. Several workers have recognized that a chamber underlies the area near a producing geothermal well, HGP-A; petrological and 14C data indicate that it has existed for at least 1300 yr. Stratigraphy, petrology and surface-deformation patterns suggest that two other areas, Heiheiahulu and Kaliu, also overlie magma chambers and show favourable geothermal prospects.-A.P.

  18. Drinking water quality in the Ethiopian section of the East African Rift Valley I--data and health aspects.

    PubMed

    Reimann, Clemens; Bjorvatn, Kjell; Frengstad, Bjørn; Melaku, Zenebe; Tekle-Haimanot, Redda; Siewers, Ulrich

    2003-07-20

    Drinking water samples were collected throughout the Ethiopian part of the Rift Valley, separated into water drawn from deep wells (deeper than 60 m), shallow wells (<60 m deep), hot springs (T>36 degrees C), springs (T<32 degrees C) and rivers. A total of 138 samples were analysed for 70 parameters (Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, NO(2), NO(3), Pb, Pr, Rb, Sb, Se, Si, Sm, Sn, SO(4), Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, temperature, pH, conductivity and alkalinity) with ion chromatography (anions), spectrometry (ICP-OES and ICP-MS, cations) and parameter-specific (e.g. titration) techniques. In terms of European water directives and WHO guidelines, 86% of all wells yield water that fails to pass the quality standards set for drinking water. The most problematic element is fluoride (F), for which 33% of all samples returned values above 1.5 mg/l and up to 11.6 mg/l. The incidence of dental and skeletal fluorosis is well documented in the Rift Valley. Another problematic element may be uranium (U)-47% of all wells yield water with concentrations above the newly suggested WHO maximum acceptable concentration (MAC) of 2 microg/l. Fortunately, only 7% of the collected samples are above the 10 microg/l EU-MAC for As in drinking water. PMID:12826384

  19. The role of Variscan to pre-Jurassic active extension in controlling the architecture of the rifted passive margin of Adria: the example of the Canavese Zone (Western Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Succo, Andrea; De Caroli, Sara; Centelli, Arianna; Barbero, Edoardo; Balestro, Gianni; Festa, Andrea

    2016-04-01

    The Canavese Zone, in the Italian Western Southern Alps, represents the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria during the opening of the Penninic Ocean (i.e., Northern Alpine Tethys). Our findings, based on detailed geological mapping, structural analysis and stratigraphic and petrographic observations, document however that the inferred hyper-extensional dismemberment of this distal part of the passive margin of Adria, up to seafloor spreading, was favored by the inherited Variscan geometry and crustal architecture of the rifted margin, and by the subsequent Alpine-related strike-slip deformation. The new field data document, in fact, that the limited vertical displacement of syn-extensional (syn-rift) Jurassic faults was ineffective in producing and justifying the crustal thinning observed in the Canavese Zone. The deformation and thinning of the continental basement of Adria are constrained to the late Variscan time by the unconformable overlying of Late Permian deposits. Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e., Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic jigsaw which only partially coincides with the direct product of the Jurassic syn-rift dismemberment of the distal part of the passive margin of Adria. Our new findings document that this dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex and still poorly understood component of the plate tectonic cycle. Geological mapping of rifted continental margins may thus provide significant information to

  20. Geochronological and Petrological Constraints on the Evolution of the Pan African Ajjaj Shear Zone, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Stuewe, K.; Abu-Alam, T. S.; Kloetzli, U. S.; Tiepolo, M.

    2014-12-01

    In the active tectonic regions, shear zones play an important role to re-configure the structure of the lithosphere. One of the largest shear zones on the Earth is the Najd Fault System of the Arabian-Nubian Shield. Literature data record the main active phase of this shear zone during the last stages of the Pan-African Orogeny (ca. 630 - 540 Ma). The Najd Fault System is composed of several shear zone segments, one of them is the Ajjaj shear zone. Determination of the age of variably deformed intrusions is expected to give approximated age of deformation in Ajjaj shear zone. Six samples of intrusive rocks showing variable composition were used to illustrate the time progress and evolution of the Ajjaj shear zone. One sample is from a very coarse grained diorite lying within the Ajjaj shear zone. It has very weak deformation and produces an intercept U-Pb zircon age of 696 ± 6 Ma. Two samples are from granodiorite-tonalite intrusions to the tenant of the Ajjaj shear zones. They show conspicuous degree of deformation and define two U-Pb clusters of concordia ages at 747 ± 12 Ma - 668 ± 8 Ma and 742 ± 5 Ma - 702 ± 12 Ma. Three samples are granites from variable plutons along the Ajjaj shear zone. Two of them show mylonitic foliation of flattened quartz and platy minerals such as biotite parallel to the main deformation trend of the shear zone. They yield U-Pb ages of 601 ± 6 Ma - 584 ± 3 Ma. The third sample is undeformed and has a cross-cut contact relationship with the foliation of the Ajjaj shear zone. It yield concordia ages of 581 ± 4 Ma. These data confine the activity of the Ajjaj shear zone to a limited period between 605 Ma and 577 Ma. As the activity of the Ajjaj shear zone was responsible for the exhumation of the Hamadat metamorphic complex, we also constrained the vertical motions that occurred during the shear zone activity using mmetamorphic rocks. It is shown that peak metamorphism occurred around 505 - 700 ºC at two ranges of pressure 8 - 11

  1. Geophysical studies of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.

    1991-12-01

    The West Antarctic rift system extends over a 3000 × 750 km, largely ice covered area from the Ross Sea to the base of the Antarctic Peninsula, comparable in area to the Basin and Range and the East African rift system. A spectacular rift shoulder scarp along which peaks reach 4-5 km maximum elevation marks one flank and extends from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. The rift shoulder has maximum present physiographic relief of 5 km in the Ross Embayment and 7 km in the Ellsworth Mountains-Byrd Subglacial Basin area. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been interpreted as rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. The rift system is characterized by bimodal alkaline volcanic rocks ranging from at least Oligocene to the present. These are exposed asymmetrically along the rift flanks and at the south end of the Antarctic Peninsula. The trend of the Jurassic tholeiites (Ferrar dolerites, Kirkpatric basalts) marking the Jurassic Transantarctic rift is coincident with exposures of the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed continuously (including the Dufek intrusion) along the lower- elevation (1-2 km) section of Transantarctic Mountains to the Weddell Sea. Widely spaced aeromagnetic profiles in West Antarctica indicate the absence of Cenozoic volcanic rocks in the ice covered part of the Whitmore-Ellsworth-Mountain block and suggest their widespread occurrence beneath the western part of the ice sheet overlying the Byrd Subglacial Basin. A German Federal Institute for Geosciences and Natural Resources (BGR)-U.S. Geological Survey (USGS) aeromagnetic

  2. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m‑2 d‑1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  3. African horse sickness surveillance systems and regionalisation/zoning: the case of South Africa.

    PubMed

    Bosman, P; Brückner, G K; Faul, A

    1995-09-01

    Central and Southern Africa are generally regarded as being endemic areas for African horse sickness (AHS). With the advent of the concepts of risk analysis and regionalisation/zoning, however, the possibility has now arisen of establishing 'zones' within South Africa for AHS surveillance purposes. In 1993, a protocol was submitted to the European Community (now European Union: EU), proposing the establishment of an AHS-free zone in the Cape peninsula. The proposal is based on historical evidence that AHS virus overwinters (in zebra) only in the Kruger National Park, from where it spreads westwards and southwards every year. The infection only extends to the Western Cape Province once every fifteen years. A ban on vaccination in the proposed AHS-free zone has been suggested, together with strict control of the movement of horses into and through this zone. The entire equine population of this zone (some 8,000 animals) would serve as sentinels. All equine mortalities would be notifiable, with mandatory post-mortem examinations. The establishment of an insect-free quarantine station in this zone would enable the movement of certified AHS virus-free horses from South Africa to the EU and the rest of the world. PMID:8593398

  4. 13C/Palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African Rift Lakes and peat bogs

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; Aucour, Anne-Marie; Bonnefille, Raymonde; Riollet, Guy; Vincens, Annie; Williamson, David

    Most terrestrial plants producing large amounts of organic matter in the East African Rift follow the Calvin (C3) photosynthetic pathway. Their end products have δ13C values of ca. -27 ± 2‰ (vs. PDB). On the contrary, most Cyperaceae (notably Cyperus papyrus and C. latifolius) are characterized by higher 13C contents ° 13C = -10.5 ± 1‰ ) in relation to their Hatch and Slack (C4) photosynthetic cycle. In consequence, δ13C values in total organic matter (TOM) from peat bog or lake cores essentially responded to the proportion of detritus from C4-Cyperaceae. Immediate evidence of the development or disappearance of Cyperaceae around lake margins or in peat bogs can be found in pollen assemblages. Lag times between pollen signals and correlative ° 13C shifts in TOM from cores are therefore indicative of the residence time of organic matter prior to its sedimentation. Delayed sedimentation of TOM will result in 14C anomalies which depend on several parameters, most of them being site specific as shown by examples from a peat bog in Burundi and from southern Lake Tanganyika. An independent assessment of the chronology by high resolution paleomagnetic correlations indicates a ca. 1.5 ka apparent 14C age of TOM in Lake Tanganyika at the Pleistocene-Holocene transition.

  5. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.

    2015-03-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  6. The Grenville orogenic cycle of southern Laurentia: Unraveling sutures, rifts, and shear zones as potential piercing points for Amazonia

    NASA Astrophysics Data System (ADS)

    Bartholomew, Mervin J.; Hatcher, Robert D., Jr.

    2010-01-01

    The magnetic anomaly map of North America serves as a useful base from which to attempt palinspastic reconstruction of terranes accreted during the Elzevirian orogeny (1250-1200 Ma); the Shawinigan (1200-1150 Ma), Ottawan (1080-1020 Ma), and Rigolet (1020-1000 Ma) phases of the Grenvillian orogeny; and post-Grenvillian magmatism (760-600 Ma) and deformation prior to Iapetan rifting at 565 Ma. Accreted terranes had unique histories prior to amalgamation and share common tectonic events afterwards. Comparisons with magnetic signatures of the Paleozoic craton-craton suture, sutures of accreted terranes, and the Jurassic rifted-margin for the southern-central Appalachians provide a basis for discriminating among alternative Grenvillian sutures beneath the Appalachian orogen. The Elzevirian suture is partially preserved beneath the Appalachians where it separates the Reading Prong terrane from Laurentia (i.e., Adirondacks and composite-arc terrane and Canadian Grenville Province). The Shawinigan suture is partially preserved in the Llano area (Texas), but separated the now-fragmented and allochthonous Amazonian (as indicated from Pb-isotope data) blocks of the outboard Blue Ridge terrane from the Reading Prong terrane in the Appalachians. Isolated blocks of the Sauratown Mountains terrane are interpreted as outboard of the Blue Ridge terrane, but were also accreted during the Shawinigan phase. Within present-day Laurentia, the only fragment of a terrane believed to have been accreted during the main Ottawan phase is the Mars Hill terrane (North Carolina-Tennessee). This suggests that the outboard Ottawan suture may have served as the locus of Iapetan rifting along much of Laurentia. The Rigolet phase (1020-1000 Ma) is characterized by widespread "Basin and Range" type extension (NW-SE) associated with sinistral or dextral movement on the NY-AL lineament, mobilization of core-complexes (Adirondack Highlands), and AMCG magmatism along the outboard flank of the extensional

  7. Early Cretaceous rifts of Western and Central Africa: an overview

    NASA Astrophysics Data System (ADS)

    Guiraud, René; Maurin, Jean-Christophe

    1992-10-01

    The structure and evolution of Early Cretaceous rift basins in Western and Central Africa are described. Two stages of rift development and fracturing have been identified: (1) from Neocomian to Early Aptian roughly E-W and NW trending troughs (Upper Benue, N Cameroon, S Chad, Sudan etc.) opened in response to a submeridian extensional regime in Central Africa while in Western Africa the N-S trending transsaharian fault zone acted as a sinistral wrench; (2) from Middle Aptian to Late Albian large northwest trending troughs (E Niger, Sudan, Sirte, etc.) opened in response to a northeast extensional regime while the Central African fault zone (from Benue to Sudan) exhibited strike-slip movements, generating pull-apart basins. These rift and fracture systems delimit three large blocks within the African plate: a Western block, an Arabian-Nubian block and an Austral block. The Arabian-Nubian block tends to separate from the two other blocks, migrating towards the north during the first stage of basin development and then towards the NE during the second stage. The opening of the Atlantic Ocean was the dominant driving force for the Western and Austral blocks while the Arabian-Nubian block probably moved in response to the opening of the Indian Ocean and to the evolution of the Tethyan margin.

  8. The Importance of Magmatic Fluids in Continental Rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Ebinger, C. J.; Lee, H.; Fischer, T. P.; Roecker, S. W.; Kianji, G.

    2015-12-01

    The breakup of strong continental lithosphere requires more than far-field tectonic forces. Growing evidence for early-stage cratonic rift zones points to the importance of heat, magma and volatile transfer in driving lithospheric strength reduction. The relative contributions of these processes are fundamental to our understanding of continental rifting. We present a synthesis of results from geological, geochemical and geophysical studies in one of the most seismically and volcanically active sectors of the East African Rift (Kenya-Tanzania border) to investigate the role of fluids during early-stage rifting (<10 Ma). Xenolith data indicate that rifting initiated in initially thick lithosphere. Diffuse soil CO2 flux maxima occur in the vicinity of faults, with carbon isotope values exhibiting a mantle-derived signature. These faults feed aligned sets of hydrothermal springs, which have N2-He-Ar relative abundances also indicating a mantle-derived source. Geochemical and surface faulting information are integrated with subsurface imaging and fault kinematic data derived from the 38-station CRAFTI broadband seismic array. Teleseismic and abundant local earthquakes enable assessment of the state-of-stress and b-values as a function of depth. High Vp/Vs ratios and tomographic imaging suggest the presence of fluids in the crust, with high pore fluid pressures driving failure at lower tectonic stress. Together, these cross-disciplinary data provide compelling evidence that early-stage rifting in East Africa is assisted by fluids exsolved from deep magma bodies, some of which are imaged in the lower crust. We assert that the flux of deep magmatic fluids during rift initiation plays a key role in weakening lithosphere and localizing strain. High surface gas fluxes, fault-fed hydrothermal springs and persistent seismicity highlight the East African Rift as the ideal natural laboratory for investigating fluid-driven faulting processes in extensional tectonic environments.

  9. The role of magmatic processes in strain localization from rift onset to rupture in East Africa and the Red Sea (Invited)

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Lindsey, N.; Cote, D. M.; Keir, D.; Ayele, A.; Tiberi, C.

    2010-12-01

    The continental rift zones of East Africa, Red Sea, and Gulf of Aden are sites of mechanical stretching and heating of the lithosphere in response to regional plate pulling forces and dynamic upwelling(s) within the underlying mantle. In the East African and the southern Red Sea rifts magmatism accompanied initial faulting and plateau uplift, and magma intrusion continues to accommodate deformation in many sectors, including the deeply rooted Tanzanian craton. The surface volcanism is often spectacularly evident, but the intrusion of magma in the form of dikes and sills that do not reach Earth’s surface is far more difficult to detect. The aims of our data synthesis and modeling studies are to recognize and quantify the contribution of magmatism to plate boundary deformation within one geodynamic province: the uplifted plateaux above the African superplume province. The intense and ongoing dike intrusions that commenced in 2005 in the southernmost Red Sea rift in Afar proved an eye-opener, and alerted geoscientists to the attendant seismic and volcanic hazards within active rift zones. Recent dike intrusions in the East African and Red Sea rifts provide some constraints on the time and length scales of diking processes. Current strain distributions estimated from cumulative seismic and geodetic moment release (Lindsey et al., this session) indicate predominantly aseismic deformation, even near small volume volcanoes. We compare and contrast observations of strain and volcanism with thermo-mechanical properties of the plate to predict zones of subsurface magma intrusion and possible metasomatic modification of the mantle lithosphere.

  10. Magmatic Processes Beneath the East African Rift System (EARS): Insights From Melt Inclusions in Lavas of Turkana, Kenya

    NASA Astrophysics Data System (ADS)

    Waters, C. L.; Bryce, J. G.; Furman, T.

    2004-05-01

    The EARS is an ideal site to study the magmatic processes relevant to continental basaltic volcanism. Within the EARS, the Turkana Depression exhibits maximum extension and crustal thinning [1, 2]. Whole rock elemental and isotopic analyses of Turkana lavas demonstrate heterogeneity that is unlikely due to crustal assimilation during magma transport or storage and is instead attributed to mixing between mantle sources (plume and lithosphere) [3]. In other sites of continental basaltic volcanism, compositional studies of olivine-hosted melt inclusions (MIs) lend perspective on magma chamber processing and source diversity (e.g., [4,5]). MIs hosted in primitive olivine (ol) phenocrysts often sample numerous, discrete melts that existed prior to melt aggregation and homogenization within the continental lithosphere. Thus, ol-hosted MIs from Turkana may also provide insight into magmatic processes beneath continental rifts. Furthermore, Turkana lavas afford an unusual opportunity to study MIs that are likely unaffected by crustal assimilation and provide direct evidence of mantle heterogeneity. We present major element compositional data on ol-hosted MIs from a suite of lavas from the Turkana Depression. To test for geographical control on source heterogeneity beneath the Turkana Rift, analyses in progress encompass basaltic lavas that have been sampled from South and Central Islands and the Barrier. Olivine-hosted MIs in a South Island transitional basalt (MgO= 14.10 wt%, K2O/TiO2= 0.37, K2O/P2O5= 2.08; data from [3]) are dominantly alkaline in composition. Incompatible element ratios between MIs in separate, primitive ol grains (Fo= 83.8-86.7) display significant variability (K2O/TiO2= 0.32-0.63, K2O/P2O5= 1.02-4.36). Also, primitive ol grains (e.g., Fo= 86.2) host multiple MIs that consistently display similar incompatible element variability (e.g., K2O/TiO2= 0.33-0.59, K2O/P2O5=1.27-2.04). These data suggest that melt homogenization occurs at relatively shallow

  11. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010-2011).

    PubMed

    Jori, Ferran; Alexander, Kathleen A; Mokopasetso, Mokganedi; Munstermann, Suzanne; Moagabo, Keabetswe; Paweska, Janusz T

    2015-01-01

    Rift Valley fever (RVF) is endemic in many countries in Sub-Saharan Africa and is responsible for severe outbreaks in livestock characterized by a sudden onset of abortions and high neonatal mortality. During the last decade, several outbreaks have occurred in Southern Africa, with a very limited number of cases reported in Botswana. To date, published information on the occurrence of RVF in wild and domestic animals from Botswana is very scarce and outdated, despite being critical to national and regional disease control. To address this gap, 863 cattle and 150 buffalo sampled at the interface between livestock areas and the Chobe National Park (CNP) and the Okavango Delta (OD) were screened for the presence of RVF virus (RVFV) neutralizing antibodies. Antibodies were detected in 5.7% (n = 863), 95% confidence intervals (CI) (4.3-7.5%) of cattle and 12.7% (n = 150), 95% CI (7.8-19.5%) of buffalo samples. The overall prevalence was significantly higher (p = 0.0016) for buffalo [12.7%] than for cattle [5.7%]. Equally, when comparing RVF seroprevalence in both wildlife areas for all pooled bovid species, it was significantly higher in CNP than in OD (9.5 vs. 4%, respectively; p = 0.0004). Our data provide the first evidence of wide circulation of RVFV in both buffalo and cattle populations in Northern Botswana and highlight the need for further epidemiological and ecological investigations on RVF at the wildlife-livestock-human interface in this region. PMID:26664990

  12. Serological Evidence of Rift Valley Fever Virus Circulation in Domestic Cattle and African Buffalo in Northern Botswana (2010–2011)

    PubMed Central

    Jori, Ferran; Alexander, Kathleen A.; Mokopasetso, Mokganedi; Munstermann, Suzanne; Moagabo, Keabetswe; Paweska, Janusz T.

    2015-01-01

    Rift Valley fever (RVF) is endemic in many countries in Sub-Saharan Africa and is responsible for severe outbreaks in livestock characterized by a sudden onset of abortions and high neonatal mortality. During the last decade, several outbreaks have occurred in Southern Africa, with a very limited number of cases reported in Botswana. To date, published information on the occurrence of RVF in wild and domestic animals from Botswana is very scarce and outdated, despite being critical to national and regional disease control. To address this gap, 863 cattle and 150 buffalo sampled at the interface between livestock areas and the Chobe National Park (CNP) and the Okavango Delta (OD) were screened for the presence of RVF virus (RVFV) neutralizing antibodies. Antibodies were detected in 5.7% (n = 863), 95% confidence intervals (CI) (4.3–7.5%) of cattle and 12.7% (n = 150), 95% CI (7.8–19.5%) of buffalo samples. The overall prevalence was significantly higher (p = 0.0016) for buffalo [12.7%] than for cattle [5.7%]. Equally, when comparing RVF seroprevalence in both wildlife areas for all pooled bovid species, it was significantly higher in CNP than in OD (9.5 vs. 4%, respectively; p = 0.0004). Our data provide the first evidence of wide circulation of RVFV in both buffalo and cattle populations in Northern Botswana and highlight the need for further epidemiological and ecological investigations on RVF at the wildlife–livestock–human interface in this region. PMID:26664990

  13. Statistical Modeling of the Abundance of Vectors of West African Rift Valley Fever in Barkédji, Senegal

    PubMed Central

    Talla, Cheikh; Diallo, Diawo; Dia, Ibrahima; Ba, Yamar; Ndione, Jacques-André; Sall, Amadou Alpha; Morse, Andy; Diop, Aliou; Diallo, Mawlouth

    2014-01-01

    Rift Valley fever is an emerging mosquito-borne disease that represents a threat to human and animal health. The exophilic and exophagic behavior of the two main vector in West Africa (Aedes vexans and Culex poicilipes), adverse events post-vaccination, and lack of treatment, render ineffective the disease control. Therefore it is essential to develop an information system that facilitates decision-making and the implementation of adaptation strategies. In East Africa, RVF outbreaks are linked with abnormally high rainfall, and can be predicted up to 5 months in advance by modeling approaches using climatic and environmental parameters. However, the application of these models in West Africa remains unsatisfactory due to a lack of data for animal and human cases and differences in the dynamics of the disease emergence and the vector species involved in transmission. Models have been proposed for West Africa but they were restricted to rainfall impact analysis without a spatial dimension. In this study, we developed a mixed Bayesian statistical model to evaluate the effects of climatic and ecological determinants on the spatiotemporal dynamics of the two main vectors. Adult mosquito abundance data were generated from July to December every fortnight in 2005–2006 at 79 sites, including temporary ponds, bare soils, shrubby savannah, wooded savannah, steppes, and villages in the Barkédji area. The results demonstrate the importance of environmental factors and weather conditions for predicting mosquito abundance. The rainfall and minimum temperature were positively correlated with the abundance of Cx. poicilipes, whereas the maximum temperature had negative effects. The rainfall was negatively correlated with the abundance of Ae. vexans. After combining land cover classes, weather conditions, and vector abundance, our model was used to predict the areas and periods with the highest risks of vector pressure. This information could support decision-making to improve

  14. Dynamics of continental rift propagation: the end-member modes

    NASA Astrophysics Data System (ADS)

    Van Wijk, J. W.; Blackman, D. K.

    2005-01-01

    An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.

  15. Results From a Borehole Seismometer Array II: 3-D Mapping of an Active Geothermal Field at the Kilauea Lower Rift Zone

    NASA Astrophysics Data System (ADS)

    Shalev, E.; Kenedi, C. L.; Malin, P.

    2008-12-01

    The geothermal power plant in Puna, in southeastern Hawaii, is located in a section of the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955, 1960, and 1972. In 2006 a seismic array consisting of eight 3-component stations was installed around the geothermal field in Puna. The instrument depths range from 24 to 210 m. The shallower instruments have 2 Hz geophones and the deeper have 4.5 Hz geophones. 3-D tomographic analyses of P-wave velocity, S-wave velocity, and the Vp/Vs ratio show an area of very fast P-wave velocity at the relatively shallow depth of 2.5 km in the southern section of the field. The same area shows moderate S-wave velocity. This high P-wave velocity anomaly at the southern part of the geothermal field may indicate the presence of dense rock material usually found at greater depths.

  16. Post-rift uplift, paleorelief and sedimentary fluxes: the case example of the African margin of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.; Dauteuil, O.

    2012-04-01

    Several attempts have been made to identify different paleosurfaces since the classical works of Lester King (1942, 1949) at the scale of Africa. Thermochronologists and river geomorphologists criticized this approach. This criticism mainly concerned the age of the surfaces, that were (1) poorly constraints and (2) a king of catechism on which all studies must refer. Nevertheless, those planation surfaces exist and are key features of the present-day morphology of Africa. In details, real planation surfaces are (1) no more than two or three and (2) can be deformed and then merged together. Those surfaces are incised by large smooth valleys, called pediments or glacis (with some semantic differences between English and French-speaking geomorphologists). Those pediments formed a pre-network of rivers, later re-incised by the present-day incised narrow valleys. Those different morphological structures can be dated using (1) their merge with sedimentary basins, (2) their relationship with the different types of dated weathering periods and (3) their relationships with volcanism. They also can be used as a proxy of the deformation based on the differences of elevation of the planations surfaces or on the shape of the pediments. From the Orange River to the Cameroon Volcanic Line, including the Congo Cuvette, two planations surfaces were identified (the Bauxitic or African surface, the intermediate surface), at least two generations of pediment valleys and the present-day incised valley network. The African surface is of Late Paleocene to Middle Eocene age with a climax during this last period and two major periods of uplift can be identified and mapped (1) Late Eocene-Early Oligocene and (2) Lower Miocene. Most of the relief is fossil since that period, excepted in the Angola Mountains were deformations are active during Plio-Pleistocene times. Those uplifts of smoother, most of the time weathered, relief than today, had important consequences on the petrology and the

  17. Commerce geophysical lineament - Its source, geometry, and relation to the Reelfoot rift and New Madrid seismic zone

    USGS Publications Warehouse

    Langenheim, V.E.; Hildenbrand, T.G.

    1997-01-01

    The Commerce geophysical lineament is a northeast-trending magnetic and gravity feature that extends from central Arkansas to southern Illinois over a distance of ???400 km. It is parallel to the trend of the Reelfoot graben, but offset ???40 km to the northwest of the western margin of the rift floor. Modeling indicates that the source of the aeromagnetic and gravity anomalies is probably a mafic dike swarm. The age of the source of the Commerce geophysical lineament is not known, but the linearity and trend of the anomalies suggest a relationship with the Reelfoot rift, which has undergone episodic igneous activity. The Commerce geophysical lineament coincides with several topographic lineaments, movement on associated faults at least as young as Quaternary, and intrusions of various ages. Several earthquakes (Mb > 3) coincide with the Commerce geophysical lineament, but the diversity of associated focal mechanisms and the variety of surface structural features along the length of the Commerce geophysical lineament obscure its relation to the release of present-day strain. With the available seismicity data, it is difficult to attribute individual earthquakes to a specific structural lineament such as the Commerce geophysical lineament. However, the close correspondence between Quaternary faulting and present-day seismicity along the Commerce geophysical lineament is intriguing and warrants further study.

  18. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    USGS Publications Warehouse

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  19. Deep crustal earthquakes in North Tanzania, East Africa: Interplay between tectonic and magmatic processes in an incipient rift

    NASA Astrophysics Data System (ADS)

    Albaric, Julie; Déverchère, Jacques; Perrot, Julie; Jakovlev, Andrey; Deschamps, Anne

    2014-02-01

    In this study, we explore the origin of lower crustal seismicity and the factors controlling rift propagation using seismological data recorded within the youngest part of the East African Rift System, the North Tanzanian Divergence (NTD). Most earthquakes below Lake Manyara occur at depth ranging between 20 and 40 km and have a swarm-like distribution. Focal mechanisms of 26 events indicate a combination of strike-slip and normal faulting involving Archaean basement structures and forming a relay zone. The derived local stress regime is transtensive and the minimum principal stress is oriented N110°E. Crustal seismic tomography reveals low-velocity anomalies below the rifted basins in the NTD, interpreted as localized thermomechanical perturbations promoting fluid release and subsequent seismicity in the lower crust. SKS splitting analysis in the NTD indicates seismic anisotropy beneath 17 stations most likely due to aligned magma lenses and/or dikes beneath the rift and to the lithospheric fabrics. Our results favor a strain pattern intermediate between purely mechanical and purely magmatic. We suggest that melt products arising from a large asthenospheric thermal anomaly enhance lithospheric weakening and facilitate faulting and creeping on critically oriented inherited structures of the Precambrian lower crust. Although the crust is unlikely weakened at a point comparable to other parts of the East African Rift System, this deep-seated thermomechanical process is efficient enough to allow slow rift propagation within the eastern Tanzanian cratonic edge.

  20. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore

  1. Serological survey of African horse sickness in selected districts of Jimma zone, Southwestern Ethiopia.

    PubMed

    Bitew, Molalegne; Andargie, Ashenafi; Bekele, Mihreteab; Jenberie, Shiferaw; Ayelet, Gelagay; Gelaye, Esayas

    2011-12-01

    A cross-sectional serological survey was undertaken in selected districts of different agro-ecology of Jimma zone (Dedo, Yebu, Seka, Serbo, and Jimma town) from November 2009 to February 2010 to determine the seroprevalence of African horse sickness virus and associated risk factors of the disease. Two hundred seventy-four equids (189 horses, 43 mules, and 47 donkeys) with a history of non-vaccination for at least 2 years were selected randomly from the above areas. Sera samples were collected and assayed for the presence of specific antibody against African horse sickness virus using blocking ELISA. An overall seroprevalence of 89 (32.5%) was found and it was 24 (51.1%) for donkeys, 13 (30.2%) for mules, and 52(28.3%) for horses. Seroprevalence was significantly (X(2) = 11.05, P < 0.05) different among the different species of equids. Seroprevalence was also significantly (X(2) = 11.43, P < 0.05) different among the different agro-ecological areas being higher in highlands 47 (40.5%) followed by midland 30 (34.5%) and lowland 12 (16.9%). Age and sex were not significantly (X(2) = 3.15, P > 0.05 and X(2) = 3.38, P > 0.05, respectively) associated with seroprevalence of AHSV. The present study showed that African horse sickness (AHS) is highly prevalent disease for the horses followed by mules and then donkeys in Jimma zone explained by lower seroconversion rate. Therefore, control strategy against AHS should target at high risk species of all age and sex in their locality in the initial stage for better containment of the disease. PMID:21465102

  2. Complex seismicity patterns in the Rwenzori region: insights to rifting processes at the Albertine Rift.

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rümpker, G.; Wölbern, I.; Batte, A. G.; Schumann, A.

    2012-04-01

    Numerous seismological studies in East Africa have focused on the northern and eastern branches of the East African Rift System (EARS). However, the seismic activity along the western branch is much more pronounced. Here, the Rwenzori Mountains are located within the Albertine rift valley, at the border between Uganda and D.R. Congo. During a seismic monitoring campaign between February 2006 and September 2007 we have recorded more than 800 earthquakes per month in the Rwenzori area. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, were the mountains are in contact with the rift shoulders. The hypocentral depth distribution peaks at 16 km depth and extends down to the Moho which was found at 20 - 32 km depths by teleseismic receiver functions. Local magnitudes range from -0.5 to 5.1 with a b-value of 1.1. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70% of the source mechanisms exhibit normal faulting. T-axis trends are highly uniform and oriented WNW-ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. The area of highest seismic activity NE of the Rwenzoris is characterized by the occurrence of several earthquake clusters in 5 -20 km depth. They have stable positions throughout time and form elongated pipes with 1-2 km diameter and vertical extensions of 3-5 km. From petrological considerations we presume that these earthquake swarms are triggered by fluids and gasses which originate from a magmatic source below the crust. The existence of a magmatic source within the lithosphere is supported by the detection of a shear-wave velocity reduction in 55-80 km depth from receiver-function analysis and the location of mantle earthquakes at about 60 km. We interpret these observations as indication for an

  3. The influence of pre-existing structures on the evolution of the southern Kenya Rift Valley — evidence from seismic and gravity studies

    NASA Astrophysics Data System (ADS)

    Birt, C. S.; Maguire, P. K. H.; Khan, M. A.; Thybo, H.; Keller, G. R.; Patel, J.

    1997-09-01

    The Kenya Rift is an active continental rift that has developed since the Late Oligocene. Although a thermal origin for the rifting episode is indicated by the scale of volcanism and its relative timing with uplift and faulting, the influence of pre-existing lithospheric structural controls is poorly understood. The interpretation of a 430-km-long seismic refraction and gravity line across the southern part of the Kenya Rift shows that the rift is developed across a transition zone, thought to represent the sheared Proterozoic boundary between the Archaean Nyanza Craton and the mobile Mozambique Belt. This zone of weakness has been exploited by the recent thermal rifting event. The Moho is at a depth of 33 km beneath the Archaean craton in the western part of the profile, and 40 km beneath the Mozambique Belt in the east. A few kilometres of localised crustal thinning has developed across the transition from thin to thick crust. At the surface, brittle faulting has formed an asymmetric rift basin 3.6 km deep, filled with low-velocity volcanic rocks. Basement velocities show a transition across the same area from low velocities (6.0 km s -1) in the Archaean, to high velocities (6.35 km s -1) in the Proterozoic. Mid-crustal layers show no deformation that can be attributed to the rifting event. Poorly constrained upper mantle velocities of 7.8 km s -1 beneath the southern rift confirm the continuation of the axial low-velocity zone imaged in previous seismic experiments. This is interpreted as the effect of small degrees of partial melt caused by elevated mantle temperatures. Gravity modelling suggests a contribution to the Bouguer anomaly from below the Moho, invoking the need for deep density contrasts. The regional gravity gradient necessary to model the Bouguer anomaly is used as supporting evidence for mantle-plume type circulation beneath the uplifted East African Plateau to the west of the Kenya Rift.

  4. Hawaii Rifts

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  5. Rift propagation

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  6. The uppermost mantle beneath the Kenya dome and relation to melting, rifting and uplift in East Africa

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.; Slack, Philip D.

    2002-04-01

    We compare new results on S-wave delays and P wave tomography to characterize the rising limb and melt zone of an inferred mantle convection cell beneath the Kenya dome. These results are extended to the Nyiragongo and Ethiopia domes using long wavelength gravity and topography. We suggest that the east African rift results from separation of deeper mantle upwelling into three currents that impinge on and erode the base of the lithosphere. Their thermal buoyancy drives the domal uplift, whereas brittle failure of the upper lithosphere forms the rift grabens.

  7. Magmatism in rifting and basin formation

    NASA Astrophysics Data System (ADS)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  8. Failure was not an option- the Mid-Continent Rift system succeeded

    NASA Astrophysics Data System (ADS)

    Merino, M.; Stein, C. A.; Stein, S. A.; Keller, G. R.; Flesch, L. M.; Jurdy, D. M.

    2013-12-01

    The 1.1 Ga Mid-Continent Rift (MCR) in North America is often viewed as a failed rift formed by isolated midplate volcanism and extension within the ~1.3-~0.98 Ga Grenville orogeny. An alternative view is suggested by analogy with younger and morphologically similar rift systems, whose plate tectonic settings are more easily understood because their surroundings - including seafloor with magnetic anomalies - have not been deformed or destroyed by subsequent collisions and rifting events. In this view, the MCR was part of a larger plate boundary rifting event that resulted in a successful episode of seafloor spreading. This view is motivated by various pieces of evidence. The MCR rifting looks much like rigid plate block motion, such as associated with the West Central African Rift systems formed during the Mesozoic breakup of Africa and South America and the ongoing rifting in the East African Rift region with seafloor spreading in the Gulf of Aden and the Red Sea. This view explains the affinities of the Grenville-age rocks in the central and southern Appalachians to Amazonia rather than Canadian Grenville-age Appalachian rocks. The MCR extends farther to the south than traditionally assumed along the East Continental Gravity High (a buried feature from Ohio to Alabama). This failed portion of the rift system connected to the rift successfully separating Laurentia and Amazonia. The seafloor spreading separating Amazonia from Laurentia may explain the former's relative motion toward Greenland and Baltica. This model is consistent with some of the ~1.1 Ga geological events in Amazonia. A change in the apparent polar wander path for Laurentia during the period of volcanism of the MCR could be attributed to this plate reconfiguration. The extensional phase on the MCR may have ended because motion was taken up by seafloor spreading between Laurentia and Amazonia rather ending due to another continental collision. Later reverse faulting on the MCR normal faults due to

  9. Rio Grande rift: An overview

    NASA Astrophysics Data System (ADS)

    Olsen, Kenneth H.; Scott Baldridge, W.; Callender, Jonathan F.

    1987-11-01

    The Rio Grande rift of the southwestern United States is one of the world's principal continental rift systems. It extends as a series of asymmetrical grabens from central Colorado, through New Mexico, to Presidio, Texas, and Chihuahua, Mexico—a distance of more than 1000 km. Although the Rio Grande rift is closely related in timing and structural style to the contiguous Basin and Range extensional province, the two can be distinguished by a variety of geological and geophysical signatures. Rifts (both oceanic and continental) can be defined as elongate depressions overlying places where the entire lithosphere has ruptured in extension. The lithosphere of the Rio Grande rift conforms to this definition, in that: (1) the crust is moderately thinned—Moho depths range from about 45 km under the flanks to about 33 km beneath the rift axis. (2) anomalously low P n velocities (7.6-7.8 km s -1) beneath the rift and a long wavelength gravity low suggest that the asthenosphere is in contact with the base of the crust. The P-velocity is abnormally low (6.4-6.5 km s -1) in the lower half of the crust beneath the rift, suggesting high crustal temperatures. However, associated seismic and volcanologic data indicate the sub-rift lower crust is not dominated by a massive composite mafic intrusion such as is sometimes inferred for the East African rifts. Seismic and magnetotelluric data suggest the presence of a thin (< 1 km) sill-like contemporary midcrustal magma body which may perhaps extend intermittently along much of the length of the rift. Seismic and structural studies indicate a dominant horizontal fabric in the upper and middle crust. The brittle-ductile transition is at depths -15 km except for the major volcanic fields, where it rises to 2-3 km. Structural development of the rift occurred mainly during two time intervals: the early phase beginning at -30 Ma. and lasting 10-12 m.y., and the late phase extending from -10 to 3 Ma. The early phase involved extensive

  10. Structural and palaeomagnetic Analysis of the Koolau Dyke Swarm Exposed in the Kapa'a Quarry, Oahu: Implications for the Structural Evolution of Kilauea - Type Volcanic Rift Zones.

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Herrero-Bervera, E.; Knight, M. D.

    2003-12-01

    The Koolau dyke swarms, exposed within the Kailua embayment on the northeastern side of Oahu, have been interpreted as feeders to rift zones in the Koolau volcano, analagous to the rift zones of Kilauea volcano (Walker, 1987), that developed prior to the giant Nuuanu lateral collapse at about 2.0 Ma. Systematic determination of cross-cutting relationships between Koolau dykes has proved difficult because of dense vegetation and rapid weathering in the humid tropical climate of windward Oahu. For this study we have concentrated on exposures of the dykes in the large (450 m wide and 200m deep) Kapa'a quarry, about 3 km NE of the near vertical Nuuanu Pali escarpment. Kapa'a quarry was chosen for this study because it has large, freshly exposed sections nearly perpendicular to the dyke swarm trend in hydrothermally altered but largely unweathered rocks. The hydrothermal alteration indicates that the dykes exposed in the quarry were emplaced well below a high water table resulting from trapping of water between dykes: this high water table may have played a part in the eventual collapse. The excellent exposure at Kapa'a allows systematic, accurate determination of structural data and cross-cutting relationships for every dyke in the measured sections. These data were collected for 171 dykes, of which 10 dykes have so far been sampled for palaeomagnetic analysis (i.e remanence and petrofabrics). Most dykes at Kapa'a dip steeply, from around 70 degrees SW (away from the unstable flank of the volcano) through vertical to 50 degrees NE (towards the unstable flank). NE dipping dykes are more abundant overall. Groups of SW - dipping dykes alternate with groups of subvertical to NE - dipping dykes, suggesting a quasi-periodic alternation of the stress regime within the Koolau volcano. Dyke dilations were typically subhorizontal. A final group of dykes, cross-cutting all the others, dip from 50 degrees NE to as little as 35 degrees NE, and dilated in a steeply SW - plunging

  11. East African coast overlooked. [Oil and gas potential of the east African coast

    SciTech Connect

    Not Available

    1994-09-01

    This paper reviews the petroleum and gas potential of the Tanzania-Mozambique basinal areas. It discusses the locations of the various sedimentary basins in the onshore and near offshore areas, including the central African rift zone. The paper describes the structure, stratigraphy, and petroleum geology of these basins. Finally the paper reviews the exploration history and the outlook for the future of these basins.

  12. Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African rift

    NASA Astrophysics Data System (ADS)

    Bedini, R. M.; Bodinier, J.-L.

    1999-11-01

    To constrain the geochemical models of the lithospheric mantle, we have carried out a detailed study of the distribution of incompatible trace elements between the various constituents of spinel peridotites. Predominant and accessory minerals were separated in 12 mantle xenoliths from Mega (East African Rift, Sidamo region, SE Ethiopia). The samples range in composition from cpx-rich lherzolites to refractory harzburgites and are devoid of modal metasomatism, except for minor amount of apatite in some of them. Their trace element concentration encompasses almost the whole range reported in the literature for basalt-born xenoliths. Mineral separates (ol, opx, cpx, spinel and apatite) and their leachates were analyzed by ICP-MS, for rare earth elements (REE) and several incompatible trace elements (Rb, Sr, Ba, Zr, Hf, Nb, Ta, Th, U, and Ti). Spinel surfaces were investigated by SEM and EPMA to determine the composition of the attached micro-phases. Mass-balance inversion shows that the trace element composition of whole rocks is controlled by five distinct components: 1). the silicate minerals which account for the total HREE abundance, and 50-90% of LREE, Sr, and Zr-Hf, in the apatite-free peridotites; 2). the mineral-hosted fluid inclusions which play a significant role for Rb (20-25%), and to a lesser degree for the other LILEs; 3). a pervasive grain-boundary component selectively enriched in highly incompatible elements, which contributes 25-90% of the whole-rock budget for Ba, Th and U, and 10-50% for Nb and LREE, in the apatite-free samples; 4). thin reaction layers (<10 μm thick) coating the surfaces of spinel grains and mainly composed of Ti-oxides and phlogopite. They are the predominant repository of Nb-Ta (45-60%) and Rb-Ba (30-80%) in all the studied xenoliths; 5). apatite which largely predominates the budget of Th, U, Sr and LREE (25-75%) in the samples containing this mineral. Compared to the other peridotite constituents, fluid-derived inclusions in

  13. Geomorphometric reconstruction of post-eruptive surfaces of the Virunga Volcanic Province (East African Rift), constraint of erosion ratio and relative chronology

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu

    2016-04-01

    Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes

  14. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  15. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  16. The Role of Rheological Weakening in the Formation of Narrow Rifts on Venus

    NASA Astrophysics Data System (ADS)

    Martone, Alexis; Montesi, Laurent

    2015-11-01

    The rift zones on Venus are remarkably similar to those seen on Earth, despite Venus’ current lack of plate tectonics. The Devana Chasma rift on Beta Regio accommodates extension in a narrow zone and is associated with volcanism. As a result, it has often been compared to the East African Rift (Burov and Gerya, 2014; Foster and Nimmo, 1996). It has been suggested that plate boundaries develop on Earth because an interconnected network of localized shear zones (areas of concentrated weakening) can form through the lithosphere (Regenauer-Lieb and Yuen, 2001). If Venusian rifts, such as Devana Chasma, are similar to terrestrial plate boundaries, then it is possible that shear zones should form in those locations.Montesi (2013) showed that water-bearing minerals, such as micas, which are probably not present on Venus, largely dominate weakening in the Earth’s crust. On Venus, melts are likely to play the role of the weak phase that allows for localization, due to its low viscosity relative to host rocks. Weakening due to grain size reduction is also possible if a dislocation-accommodated grain boundary sliding mechanism is active on Venus (Montesi, 2013).Rift stability for Venus-like conditions has been analyzed using the model of Buck (1991). This model links the evolution of lithospheric strength with the style of rifting (wide, narrow, or metamorphic core complex). The crust and mantle are assumed to be dry diabase and dry olivine, respectively (diabase rheological parameters are from Mackwell et. al. (1998), olivine rheological parameters are from Hirth and Kohlstedt (2003)). The crustal thickness and surface heat flux are varied based on estimated values from the literature (Nimmo and McKenzie, 1998; Buck, 2002). Without the inclusion of a weakening mechanism the large majority of model runs predict wide rifts developing. Adding a simplistic exponential decay to the lithospheric yield strength allows for more narrow rift formation to occur. Including explicit

  17. Cambrian rift-related magmatism in the Ossa-Morena Zone (Iberian Massif): Geochemical and geophysical evidence of Gondwana break-up

    NASA Astrophysics Data System (ADS)

    Sarrionandia, F.; Carracedo Sánchez, M.; Eguiluz, L.; Ábalos, B.; Rodríguez, J.; Pin, C.; Gil Ibarguchi, J. I.

    2012-10-01

    Volcanic rocks of Cambrian age from Zafra (Ossa-Morena Zone, Iberian Massif) are the result of rift processes that affected Cadomian arc units accreted to the NW edge of Gondwana during the Neoproterozoic-Early Cambrian transition. Tephrite to rhyolite volcanics define an alkaline transitional association (Coombs type). Basic-ultrabasic rocks exhibit typical alkaline REE-patterns, strongly enriched in LREE with respect to HREE. Two parental magmas are identified, one with a mantle signature, lack of Nb negative anomaly and εNd500Ma + 3.8 to + 4.2; another with crustal contribution, minor Nb negative anomaly and εNd500Ma + 0.8 to + 1.8. Intermediate-acid rocks show variable REE fractionation and share geochemical characteristics of both basic-ultrabasic groups with restricted εNd500Ma + 2.2 to 3.1 and general absence of Nb negative anomaly. Basic-ultrabasic melts resulted from different amounts of partial melting of a homogeneous source and segregation at the garnet-spinel transition zone. We argue that the "Hales transition" recently recognized in reflection seismic experiments of SW Iberia might image such a source region. Mantle-derived magmas ponded at the base of the crust and weakly interacted with crustal rocks/melts, whilst intermediate-acid rocks were generated by plagioclase ± clinopyroxene ± amphibole fractionation. Melt ascent took place through fractures, with limited crustal interaction. Based upon the new geochemical results and complementary cartographic and geophysical data, a model is presented for the Cambrian break-up of North Gondwana due to magma ascent from the mantle.

  18. Rifting in iceland: new geodetic data.

    PubMed

    Decker, R W; Einarsson, P; Mohr, P A

    1971-08-01

    Small but measurable lengthening of several survey lines within the eastern rift zone of Iceland occurred between 1967 and 1970. The changes can be interpreted as a widening of the rift by 6 to 7 centimeters, possibly during the 1970 eruption of Hekla volcano. PMID:17738437

  19. Physics-based and statistical earthquake forecasting in a continental rift zone: the case study of Corinth Gulf (Greece)

    NASA Astrophysics Data System (ADS)

    Segou, Margarita

    2016-01-01

    I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth <15 km) with magnitude M ≥ 3.0 for the time period between 1995 and 2013. I compare two short-term earthquake clustering models, based on epidemic-type aftershock sequence (ETAS) statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M > 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable

  20. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  1. Long-term CGPS Measurements (1995-2008) in the Hellenic Deformation Zone Between the Eurasian and African Plates

    NASA Astrophysics Data System (ADS)

    Kahle, H.; Mueller, M. D.; Geiger, A.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S.; Galanis, D.

    2008-12-01

    The Eastern Mediterranean forms the seismically most active region of the Alpine-Mediterranean plate boundary. It is characterized by the collision between the Eurasian and African plates. The collision is closely related to continental subduction and formation of the pronounced Hellenic trench system. In addition to the relatively slow CCW rotation of the African plate, rapid motion of the Anatolian-Aegean region is encountered, directed towards west-southwest, reaching velocities of up to 4 cm/yr along the Hellenic arc, relative to Eurasia. A long-term record of continuous GPS (CGPS) time series (1995-2008) and campaign- type GPS measurements (1991-2008) will be presented. The data has been analyzed to derive rates of plate and microplate motion and to study the strain rate field in the deforming zone between the Eurasian and African plates. This includes the deformation belt extending from the Ionian islands to the North Aegean Sea, Greece. While the Ionian islands are characterized by the Kephalonia fault zone which terminates the subduction of the Hellenic arc the most important feature in the North Aegean sea is the North Aegean trough which is considered to form the western continuation of the North Anatolian Fault Zone. Most recent GPS results will be presented for both regions and discussed in terms of ongoing deformation processes including dextral faulting and transtension, encountered in the northern Hellenic boundary region between the Eurasian and African plates.

  2. Fault-Controlled Fluid Migration during Early-Stage Continental Rifting in the Magadi Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Lee, H.; Fischer, T. P.; Kattenhorn, S. A.; Ebinger, C. J.; Kianji, G.; Maqway, M. D.; Thomas, N.; Onguso, B.

    2014-12-01

    The mechanisms controlling the migration of mantle-derived, CO­2-rich fluids in early-stage continental rifts are poorly constrained, yet have important implications for processes occurring during the initiation of continental breakup. Within the East African Rift specifically, the role of normal fault structures in transporting fluids, and the role these fluids play in driving deformation, is yet to be addressed. The 7 Ma Magadi Basin of the EAR exhibits active hydrothermal fluid flow amongst an excellently exposed array of normal faults, providing a unique opportunity to test the mechanics of fault-controlled fluid migration at an early-stage continental rift setting. We present a study utilizing both geochemical and structural data collected from active and fossilized fluid systems observed along faults in the Magadi Basin. The distribution and orientation of veins and systematic fracture sets around fault zones were recorded in the field, and fault throws were measured using a Trimble GPS. Larger faults were analyzed remotely using aerial imagery and the Aster GDEM v.2. Fault data were then compared with CO2 flux measured on soil and from gas-emitting fractures in and around fault zones using an accumulation chamber. Our data reveal that CO2-rich fluids travel along fault-parallel fractures within fault zones, and fault-oblique fracture sets in the accommodation zones between fault segments. Fluids rising through faults may additionally be diverted along lithologic boundaries in fault grabens, such as the contact between lavas and overlying sedimentary fill. The highest CO2 flux observed in the Magadi region occurs in the central axis of the rift, along faults with the highest observable throws (>150 m) as well as the 1998 earthquake rupture. This study illustrates a direct link between fluid flow and faulting during the earliest stages of continental rifting. High CO2 soil flux and active hydrothermal fluid flow is, therefore, a potential indicator of faults

  3. Cenozoic rifting in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. S.; Stock, J. M.; Clayton, R. W.; Davey, F. J.

    2007-12-01

    The West Antarctic Rift System (WARS) experienced two episodes of Cenozoic rifting. Seafloor spreading at the Adare spreading axis, north of the Ross Sea, from Middle Eocene to Late Oligocene time (43 - 26 Ma), was directly linked with motions within the WARS. For this time interval, marine magnetic anomalies within the Adare Basin and structural features within the Ross Sea constrain the motion between East and West Antarctica. During this episode, widespread intrusive activity took place in the continental part of the rift. Subsequent Late Oligocene until present-day (26 - 0 Ma) extension was characterized by a transition to volcanic activity. Yet, the details of extension during this episode have been poorly resolved. We present preliminary results of new seismic reflection and seafloor mapping data acquired on geophysical cruise 07-01 aboard the R/VIB Nathaniel Palmer in the northern part of the rift. Our results suggest that the style of deformation changed from spreading-related faulting into diffuse normal faulting (tilted blocks) that trend NE-SW with little resultant E-W extension. Recent volcanism is distributed throughout but tends to align with the NE-SW trend, into a localized zone. Formation of the Terror Rift, Ross Sea, within the same time frame suggests that the pole of rotation has changed its position, reflecting a change in the relative magnitudes of tensile stresses along the rift. Moreover, this change was accompanied with a sharp decrease of extension rates.

  4. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  5. Investigation of rifting processes in the Rio Grande Rift using data from unusually large earthquake swarms

    SciTech Connect

    Sanford, A.; Balch, R.; House, L.; Hartse, H.

    1995-12-01

    San Acacia Swarm in the Rio Grande Rift. Because the Rio Grande rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to explore the active tectonic processes within continental rifts. We have been studying earthquake swarms recorded near Socorro in an effort to link seismicity directly to the rifting process. For FY94, our research has focused on the San Acacia swarm, which occurred 25 km north of Socorro, New Mexico, along the accommodation zone between the Albuquerque-Belen and Socorro basins of the central Rio Grande rift. The swarm commenced on 25 February 1983, had a magnitude 4.2 main shock on 2 March and ended on 17 March, 1983.

  6. Colorado Basin Structure and Rifting, Argentine passive margin

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  7. Puhimau Thermal Area: A Window into the Upper East Rift Zone of [InlineMediaObject not available: see fulltext.] Volcano, Hawaii?

    NASA Astrophysics Data System (ADS)

    McGee, K. A.; Sutton, A. J.; Elias, T.; Doukas, M. P.; Gerlach, T. M.

    2006-04-01

    We report the results of two soil CO2 efflux surveys by the closed chamber circulation method at the Puhimau thermal area in the upper East Rift Zone (ERZ) of [InlineMediaObject not available: see fulltext.] volcano, Hawaii. The surveys were undertaken in 1996 and 1998 to constrain how much CO2 might be reaching the ERZ after degassing beneath the summit caldera and whether the Puhimau thermal area might be a significant contributor to the overall CO2 budget of [InlineMediaObject not available: see fulltext.]. The area was revisited in 2001 to determine the effects of surface disturbance on efflux values by the collar emplacement technique utilized in the earlier surveys. Utilizing a cutoff value of 50 g m-2 d-1 for the surrounding forest background efflux, the CO2 emission rates for the anomaly at Puhimau thermal area were 27 t d-1 in 1996 and 17 t d-1 in 1998. Water vapor was removed before analysis in all cases in order to obtain CO2 values on a dry air basis and mitigate the effect of water vapor dilution on the measurements. It is clear that Puhimau thermal area is not a significant contributor to [InlineMediaObject not available: see fulltext.] CO2 output and that most of [InlineMediaObject not available: see fulltext.] CO2 (8500 t d-1) is degassed at the summit, leaving only magma with its remaining stored volatiles, such as SO2, for injection down the ERZ. Because of the low CO2 emission rate and the presence of a shallow water table in the upper ERZ that effectively scrubs SO2 and other acid gases, Puhimau thermal area currently does not appear to be generally well suited for observing temporal changes in degassing at [InlineMediaObject not available: see fulltext.].

  8. Impact of Baltimore Healthy Eating Zones: an environmental intervention to improve diet among African American youth.

    PubMed

    Shin, Ahyoung; Surkan, Pamela J; Coutinho, Anastasia J; Suratkar, Sonali R; Campbell, Rebecca K; Rowan, Megan; Sharma, Sangita; Dennisuk, Lauren A; Karlsen, Micaela; Gass, Anthony; Gittelsohn, Joel

    2015-04-01

    This study assessed the impact of a youth-targeted multilevel nutrition intervention in Baltimore City. The study used a clustered randomized design in which 7 recreation centers and 21 corner stores received interventions and 7 additional recreation centers served as comparison. The 8-month intervention aimed to increase availability and selection of healthful foods through nutrition promotion and education using point-of purchase materials such as posters and flyers in stores and interactive sessions such as taste test and cooking demonstrations. Two hundred forty-two youth-caregiver dyads residing in low-income areas of Baltimore City recruited from recreation centers were surveyed at baseline using detailed instruments that contained questions about food-related psychosocial indicators (behavioral intentions, self-efficacy, outcome expectancies, and knowledge), healthful food purchasing and preparation methods, and anthropometric measures (height and weight). The Baltimore Healthy Eating Zones intervention was associated with reductions in youth body mass index percentile (p = .04). In subgroup analyses among overweight and obese girls, body mass index for age percentile decreased significantly in girls assigned to the intervention group (p = .03) and in girls with high exposure to the intervention (p = .013), as opposed to those in comparison or lower exposure groups. Intervention youth significantly improved food-related outcome expectancies (p = .02) and knowledge (p < .001). The study results suggest that the Baltimore Healthy Eating Zones multilevel intervention had a modest impact in reducing overweight or obesity among already overweight low-income African American youth living in an environment where healthful foods are less available. Additional studies are needed to determine the relative impact of health communications and environmental interventions in this population, both alone and in combination. PMID:25829124

  9. Multiple-frequency tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickaël; Nolet, Guust; Villaseñor, Antonio; Gallart, Josep; Thomas, Christine

    2014-09-01

    During the Cenozoic, the geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study, we take advantage of the dense broad-band station networks now available in the Alborán Sea region, to develop a high-resolution 3-D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will better constraint the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centred between 0.03 and 1.0 Hz, and for the first time interpreted using multiple frequency tomography. Our model shows, beneath the Alborán Sea, a strong (4 per cent) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly, and its extent at depth, are coherent with a lithospheric slab, thus favouring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper mantle, high intensity slow anomalies are widespread in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at the surface with the position of the Rif and Atlas orogens and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot?) upper mantle, but without clear indication for a lateral spreading of the Canary plume to the east.

  10. Tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Mickael, B.; Nolet, G.; Villasenor, A.; Josep, G.; Thomas, C.

    2013-12-01

    During Cenozoic, geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study we take advantage of the dense broadband-station networks now available in Alborán Sea region, to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will bring new constraints on the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Our model shows, beneath Alborán Sea, a strong (~ 4%) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly and its extent at depth are coherent with a lithospheric slab, thus favoring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper-mantle, several high intensity slow anomalies are widely observed in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at surface with the position of the orogens (Rif and Atlas) and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot) upper mantle, with piece of evidence for a lateral connection with the Canary volcanic islands, likely indicating a lateral spreading of the Canary plume to the east.

  11. Tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickael; Nolet, Guust; Thomas, Christine; Villaseñor, Antonio; Gallart, Josep; Levander, Alan

    2013-04-01

    In this study we take advantage of the dense broadband-station networks available in western Mediterranean region (IberArray, PICASSO and MOROCCO-MUENSTER networks) to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone. This model is based on teleseismic arrival times recorded between 2008 and 2012 for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Such a tomography is required to scrutinize the nature and extent of the thermal anomalies inferred beneath Northern Africa, especially in the Atlas ranges region and associated to sparse volcanic activities. Tomography is notably needed to help in determining the hypothetical connection between those hot anomalies and the Canary Island hotspot as proposed by geochemistry studies. It also provides new insights on the geometry of the subducting slab previously inferred from tomography, GPS measurements or shear-wave splitting patterns beneath the Alboran Sea and the Betic ranges and is indispensable for deciphering the complex geodynamic history of the Western Mediterranean region. We shall present the overall statistics of the delays, their geographical distribution, as well as the first inversion results.

  12. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  13. Subcontinental rift initiation and ocean-continent transitional setting of the Dinarides and Vardar zone: Evidence from the Krivaja-Konjuh Massif, Bosnia and Herzegovina

    NASA Astrophysics Data System (ADS)

    Faul, Ulrich H.; Garapić, Gordana; Lugović, Boško

    2014-08-01

    The Dinaride and Vardar zone ophiolite belts extend from the south-eastern margins of the Alps to the Albanian and Greek ophiolites. Detailed sampling of the Krivaja-Konjuh massif, one of the largest massifs in the Dinaride belt, reveals fertile compositions and an extensive record of deformation at spinel peridotite facies conditions. High Na2O clinopyroxene and spinel-orthopyroxene symplectites after garnet indicate a relatively high pressure, subcontinental origin of the southern and western part of Krivaja, similar to orogenic massifs such as Lherz, Ronda and the Eastern Central Alpine peridotites. Clinopyroxene and spinel compositions from Konjuh show similarities with fertile abyssal peridotite. In the central parts of the massif the spinel lherzolites contain locally abundant patches of plagioclase, indicating impregnation by melt. The migrating melt was orthopyroxene undersaturated, locally converting the peridotites to massive olivine-rich troctolites. Massive gabbros and more evolved gabbro veins cross-cutting peridotites indicate continued melt production at depth. Overall we infer that the massif represents the onset of rifting and early stages of formation of a new ocean basin. In the south of Krivaja very localized chromitite occurrences indicate that much more depleted melts with supra-subduction affinity traversed the massif that have no genetic relationship with the peridotites. This indicates that volcanics with supra-subduction affinity at the margins of the Krivaja-Konjuh massif record separate processes during closure of the ocean basin. Comparison with published compositional data from other Balkan massifs shows that the range of compositions within the Krivaja-Konjuh massif is similar to the compositional range of the western massifs of the Dinarides. The compositions of the Balkan massifs show a west to east gradient, ranging from subcontinental on the western side of the Dinarides to depleted mid-ocean ridge/arc compositions in the Vardar

  14. Differentiation and magma mixing on Kilauea's east rift zone - A further look at the eruptions of 1955 and 1960. Part I. The late 1955 lavas

    USGS Publications Warehouse

    Helz, R.T.; Wright, T.L.

    1992-01-01

    The lavas of the 1955 east rift eruption of Kilauea Volcano have been the object of considerable petrologic interest for two reasons. First, the early 1955 lavas are among the most differentiated ever erupted at Kilauea, and second, the petrographic character and chemical composition of the lava being erupted changed significantly during the eruption. This shift, from more differentiated (MgO=5.0-5.7%) to more magnesian (MgO=6.2-6.8%) lava, has been variously interpreted, as either due to systematic excavation of a zoned, differentiated magma body, or to invasion of the differentiated magma by more primitive magma, followed by rapid mixing and eruption of the resulting hybrid magmas. Petrologic examination of several nearvent spatter samples of the late 1955 lavas shows abundant evidence for magma mixing, including resorbed and/or reversely zoned crystals of olivine, augite and plagioclase. In addition, the compositional ranges of olivine, plagioclase and groundmass sulfide are very large, implying that the assemblages are hybrid. Core compositions of olivine phenocrysts range from Fo85 to Fo77. The most magnesian olivines in these samples must have originally crystallized from a melt containing 8.0-8.5% MgO, which is distinctly more magnesian than the bulk composition of the late 1955 lavas. The majorelement and trace-element data are either permissive or supportive of a hybrid origin for the late 1955 lavas. In particular, the compositional trends of the 1955 lavas on plots of CaO vs MgO, and the virtual invariance of Al2O3 and Sr in these plagioclase-phyric lavas are more easily explained by magma mixing than by fractionation. The pattern of internal disequilibrium/re-equilibration in the late 1955 spatter samples is consistent with reintrusion and mixing having occurred at least twice, during the latter part of the 1955 eruption. Plagioclase zonation preserves possible evidence for additional, earlier reintrusion events. Least-squares modelling the mixing of

  15. Mapping Precambrian Basement Fabric with Magnetic Data in the Karonga Basin Area and its Control on the Development of the Malawi Rift.

    NASA Astrophysics Data System (ADS)

    Johnson, T.; Abdelsalam, M. G.; Atekwana, E. A.; Chindandali, P. R. N.; Clappe, B.; Laó-Dávila, D. A.; Dawson, S.; Hull, C. D.; Nyalugwe, V.; Salima, J.

    2015-12-01

    The Malawi Rift forms the southern termination of the western branch of the East African Rift System. It is suggested that it propagates from the Rungwe Volcanic Province in the north for ~700 km into Mozambique in the south. The northern portion of the Malawi Rift is dominated by the Mesoproterozoic basement rocks of the Ubendian-Usagaran belts to the north and west and the Irumide Belt in the south. The Mugese shear zone (MSZ) forms the boundary between the Ubendian-Usagaran and Irumide Belts. We used magnetic data to determine the relationship between the geology of the nascent Malawi Rift and the strong magnetic fabric observed in the Mugese shear zone from aeromagnetic maps. We integrated the aeromagnetic data with ground magnetic data acquired along two W-E transects using a cesium vapor magnetometer at a nominal station spacing of 500 m. We also acquired kinematic data (strike and dip) on exposed basement geology and Karoo sediments. Both transects extend from the uplifted basement areas cutting across the MSZ into the rift floor sediments. Our results show that the MSZ is characterized by a prominent WNW-ESE magnetic anomaly that is parallel to the basement fabric north of the town of Karonga but changes orientation to NNW-SSE south of Karonga. This shear zone is composed of gneisses in amphibolite to granulite facies that are steeply dipping (50-80°) to the west. The strong magnetization and magnetic lineation of the MSZ results from alternating light and dark colored gneissic bands. This magnetization is strongest in unweathered basement rocks and lowest in weathered basement rocks and Karoo sediments. The orientation of the strong magnetic fabric of the Mugese shear zone may play an important role on the accommodation of strain within the rift basin. Detailed mapping of the magnetic fabric can improve our understanding of the formation of faults in the nascent Malawi Rift.

  16. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  17. The African swine fever control zone in South Africa and its current relevance.

    PubMed

    Magadla, Noluvuyo R; Vosloo, Wilna; Heath, Livio; Gummow, Bruce

    2016-01-01

    African swine fever (ASF) has been reported in South Africa since the early 20th century. The disease has been controlled and confined to northern South Africa over the past 80 years by means of a well-defined boundary line, with strict control measures and movement restrictions north of this line. In 2012, the first outbreak of ASF outside the ASF control zone since 1996 occurred. The objective of this study was to evaluate the current relevance of the ASF control line as a demarcation line between endemic ASF (north) areas and ASF-free (south) area and to determine whether there was a need to realign its trajectory, given the recent outbreaks of ASF, global climate changes and urban development since the line's inception. A study of ASF determinants was conducted in an area 20 km north and 20 km south of the ASF control line, in Limpopo, Mpumalanga, North West and Gauteng provinces between May 2008 and September 2012. The study confirmed that warthogs, warthog burrows and the soft tick reservoir, Ornithodoros moubata, are present south of the ASF control line, but no virus or viral DNA was detected in these ticks. There appears to be an increasing trend in the diurnal maximum temperature and a decrease in humidity along the line, but the impact of these changes is uncertain. No discernible changes in minimum temperatures and average rainfall along the disease control line were observed between 1992 and 2014. Even though the reservoirs were found south of the ASF boundary line, the study concluded that there was no need to realign the trajectory of the ASF disease control line, with the exception of Limpopo Province. However, the provincial surveillance programmes for the reservoir, vector and ASF virus south of this line needs to be maintained and intensified as changing farming practices may favour the spread of ASF virus beyond the control line. PMID:27247068

  18. The geometry of propagating rifts

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan

    1986-03-01

    The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.

  19. Continental Rifts

    NASA Astrophysics Data System (ADS)

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  20. Rifting to spreading in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Leroy, S.; Razin, P.; Lucazeau, F.; D'Acremont, E.; Autin, J.; Watremez, L.; Robinet, J.; Baurion, C.

    2011-12-01

    The Gulf of Aden margins systems are volcanic to the West, where they are influenced by the Afar hotspot, and non-volcanic East of longitude 46°E. The combined use of magnetics, gravity, seismic reflection, field observations (tectonic and sedimentological) allowed us to obtain better constraints on the timing of continental rifting and seafloor spreading. From the Permo-Triassic to the Oligocene, the Arabian-African plate was subject to distributed extension, probably due, at least from the Cretaceous, to tensile stresses related to the subduction of the Tethysian slab in the north. In Late Eocene, 35 Ma ago, rifting started to localize along the future area of continental breakup. Initially guided by the inherited basins, continental rifting then occurred synchronously over the entire gulf before becoming localized on the northern and southern borders of the inherited grabens, in the direction of the Afar hot-spot. In the areas with non-volcanic margins (in the East), the faults marking the end of rifting trend parallel to the inherited grabens. Only the transfer faults cross-cut the inherited grabens, and some of these faults later developed into transform faults. The most important of these transform faults follow a Precambrian trend. Volcanic margins were formed in the West of the Gulf, up to the Guban graben in the south-east and as far as the southern boundary of the Bahlaf graben in the North-East. Seaward dipping reflectors (SDRs) can be observed on many oil-industry seismic profiles. The influence of the hotspot during rifting was concentrated on the western part of the gulf. Therefore, it seems that the western domain was uplifted and eroded at the onset of rifting, while the eastern domain was characterized by more continuous sedimentation. The phase of distributed deformation was followed by a phase of strain localization during the final rifting stage, just before formation of the Ocean-Continent Transition (OCT), in the most distal graben (DIM

  1. Granular mechanics and rifting

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Hayman, Nicholas W.; Lavier, Luc L.

    2013-04-01

    Numerical models have proved useful in the interpretation of seismic-scale images of rifted margins. In an effort to both test and further illuminate predictions of numerical models, workers have made some strides using map-scale field relations, microstructures, and strain analyses. Yet, fundamental predictions of modeling and tectonic restorations are not able to capture critical observations. For example, many models and interpretations call on continuous faults with restorable kinematic histories. In contrast, s-reflectors and other interpreted shear fabrics in the middle crust tend to be discontinuous and non-planar across a margin. Additionally, most rift-evolution models and interpretations call on end-member ductile flow laws over a range of mechanical and thermal conditions. In contrast, field observations have found that a range of "brittle" fault rocks (e.g., cataclasites and breccias) form in the deeper crust. Similarly, upper crustal materials in deep basins and fault zones can deform through both distributed and localized deformation. Altogether, there appears to be reason to bring a new perspective to aspects of the structural evolution of rifted margins. A granular mechanics approach to crustal deformation studies has several important strengths. Granular materials efficiently localize shear and exhibit a range of stick-slip behaviors, including quasi-viscous rheological responses. These behaviors emerge in discrete element models, analog-materials experiments, and natural and engineered systems regardless of the specific micromechanical flow law. Yet, strictly speaking, granular deformation occurs via failure of frictional contacts between elastic grains. Here, we explore how to relate granular-mechanics models to mesoscale (outcrop) structural evolution, in turn providing insight into basin- and margin- scale evolution. At this stage we are focusing on analog-materials experiments and micro-to-mesoscale observations linking theoretical predictions

  2. Recognition of hyper-extended rifted margin remnants in the internal zone of the Alpine belt: A tribute to Marco Beltrando

    NASA Astrophysics Data System (ADS)

    Mohn, Geoffroy; Manatschal, Gianreto

    2016-04-01

    Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at

  3. Crustal Thickness and Seismic Anisotropy of the Rwenzori Region (Albertine Rift) From Receiver Functions and Shear-Wave Splitting

    NASA Astrophysics Data System (ADS)

    Woelbern, I.; Rümpker, G.; Schumann, A.; Batte, A.

    2008-12-01

    The Rwenzori mountain range is situated within the western branch of the East-African rift system. It is composed of metamorphic rocks and reaches altitudes of more than 5000 meters. Within the framework of the multidisciplinary RiftLink research group we have carried out a passive-source seismological study in western Uganda close to the Congo border. The project aims to constrain the development and uplift of the Rwenzori range and its relation to the formation of the rift zone. The temporary network consisted of 8 broad- band and 15 short-period seismic stations. The initial deployment started during April of 2006. The network was in operation until September 2007. Receiver functions computed for stations on the eastern rift shoulder reveal a rather simple crust. However, the Rwenzori range is characterized by a complex inter-crustal structure, which causes interference and masking of the Moho signal at several stations. Different techniques based on traveltime and waveform information are applied to derive Moho depths beneath the network. The mapping of crustal thickness provides evidence for the absence of a deep crustal root underneath the Rwenzori mountains. The receiver functions exhibit a pronounced negative phase at stations in the southeastern part of the network. This anomaly is interpreted as resulting from a low-velocity layer at roughly 15 km depth. The strong decrease of the S-wave velocity within this layer may be indicative for the presence of partial melt. The measured splitting parameters from teleseismic SKS phases exhibit fast-polarization directions that are parallel to the rift with delay times of about 1.2 seconds. The rift-parallel polarizations indicate that rifting in this region is probably assisted by magmatic intrusions. Indications for spatial changes in anisotropy come from the frequency dependence of the splitting parameters at some stations of the network.

  4. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  5. Late Proterozoic evolution of the northern part of the Hamisana zone, northeast Sudan - Constraints on Pan-African accretionary tectonics

    NASA Technical Reports Server (NTRS)

    Miller, M. M.; Dixon, T. H.

    1992-01-01

    This paper describes deformation fabrics developed in the northern part of the Hamisana zone in northeast Sudan. New structural data are presented which establish a structural chronology that characterizes distinct events of accretion, folding, and thrust faulting and reactivation of accretion-related faults. The structural data point to an intraplate compressional origin for the Hamisana zone. A review of available isotopic age data is carried out, and it is concluded that Pan-African accretionary processes may have been analogous to Phanerozoic ophiolite and island arc accretion in the western North American Cordillera, where penetrative deformation occurred in response to periodic intraplate shortening events, rather than an ultimate collision of unrelated crustal fragments.

  6. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  7. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo

    2009-09-01

    The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres. The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north-northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated. The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE-SW) and the Late

  8. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the "west" relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  9. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  10. Oppositely directed pairs of propagating rifts in back-arc basins: Double saloon door seafloor spreading during subduction rollback

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2006-06-01

    When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of

  11. Investigation of rifting processes in the Rio Grande Rift using data from an unusually large earthquake swarm. Final report, October 1, 1992--September 30, 1993

    SciTech Connect

    Sanford, A.; Balch, R.; Hartse, H.; House, L.

    1995-03-01

    Because the Rio Grande Rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to elucidate the active tectonic processes within continental rifts. Beginning on 29 November 1989, a 15 square km region near Bernardo, NM, produced the strongest and longest lasting sequence of earthquakes in the rift in 54 years. Our research focuses on the Bernardo swarm which occurred 40 km north of Socorro, New Mexico in the axial region of the central Rio Grande rift. Important characteristics concerning hypocenters, fault mechanisms, and seismogenic zones are discussed.

  12. Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Park, Munjae; Jung, Haemyeong; Kil, Youngwoo

    2015-04-01

    Mantle-derived xenoliths associated with continental rifting can provide important information about the mantle structure and the physicochemical properties of deformation processes in the upper mantle. Metasomatized spinel peridotites from Adam's Diggings (AD) at a rift shoulder and Elephant Butte (EB) at a rift axis in the Rio Grande rift (RGR) were investigated to understand the deformation processes and seismic anisotropy occurring in the upper mantle. As determined through analysis of the lattice preferred orientation (LPO) of olivine by using a scanning electron microscope equipped with electron backscatter diffraction (SEM/EBSD), AD peridotites exhibited C-type LPO of olivine indicating a dominant slip system of (100)[001] at the rift shoulder, whereas EB peridotites exhibited A-type LPO indicating a dominant slip system of (010)[100] at the rift axis. Both geochemical data and microstructural observations indicate that the localized mantle enrichment processes, including melts with hydrous fluids, controlled multiple mantle metasomatisms and deformation of rocks under wet conditions (with olivine C-type LPO) at the rift shoulder (AD), whereas mantle depletion by decompression partial melting caused deformation of rocks under dry conditions (with olivine A-type LPO) at the rift axis (EB). These observations provide evidence for localized hydration and physicochemical heterogeneity of the upper mantle in the Rio Grande rift (RGR) zone. Seismic anisotropy observed beneath this zone can be attributed to the transtensional rupture, such as inhomogeneous stretching, and the petrofabrics of olivine beneath the study area.

  13. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    The past 5 Ma were marked by systematic shifts towards colder climates and concomitant reorganizations in ocean circulation and marine heat transports. Some of the changes involved plate-tectonic shifts such as the closure of the Panamanian Isthmus and restructuring of the Indonesian archipelago that affected inter-ocean communications and altered the world ocean circulation. These changes induced ocean-atmosphere feedbacks with consequences for climates globally and locally. Two new ICDP and IODP drilling initiatives target these developments from the perspectives of marine and terrestrial palaeoclimatology and the human evolution. The ICDP drilling initiative HSPDP ("Hominid Sites and Paleolakes Drilling Project"; ICDP ref. no. 10/07) targets lacustrine depocentres in Ethiopia (Hadar) and Kenya (West Turkana, Olorgesailie, Magadi) to retrieve sedimentary sequences close to the places and times where various species of hominins lived over currently available outcrop records. The records will provide a spatially resolved record of the East African environmental history in conjunction with climate variability at orbital (Milankovitch) and sub-orbital (ENSO decadal) time scales. HSPDP specifically aims at (1) compiling master chronologies for outcrops around each of the depocentres; (2) assessing which aspects of the paleoenvironmental records are a function of local origin (hydrology, hydrogeology) and which are linked with regional or larger-scale signals; (3) correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability and (4) correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change. Ultimately the aim is to test hypotheses that link physical and cultural adaptations in the course of the hominin evolution to local environmental change and variability. The IODP initiative SAFARI ("Southern African Climates, Agulhas Warm Water Transports and Retroflection

  14. The Role of Rift Obliquity During Pangea Fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  15. Discussion of Continental Rifts and Their Structure

    NASA Astrophysics Data System (ADS)

    Gilbert, M. C.

    2011-12-01

    When continental crust rifts, two chief modifications of that crust occur: 1)stretching of older, existing crust; 2)addition of new rift mass--sediments and mantle mafic units. However, paleorifts, such as the Cambrian Southern Oklahoma Aulacogen differ from neorifts, such as the East African. Much of this difference may be reflected in the nature of the lower rift crust. Stretching of the upper crust is accomplished primarily through faulting while the lower crust flows. Concurrently addition of sediments occurs in downdropped faulted blocks in the upper crust, and of mafic magmas risen and emplaced as intrusive layered complexes through the rift and as extrusive flows. All this happens in a regime of higher temperatures and higher heat flow. Consequences of this can include either melting of the stretched existing crust, or direct fractionation of rising mafic magma or melting of already crystallized mafic complexes, forming new silicic magmas. Geochemistry of these different magmatic bodies elucidates which of these possible processes seems dominant. Most geophysical studies of rifts have two results: 1)higher gravity anomalies indicating addition of new mafic masses, usually interpreted to be concentrated in the upper rift crust; and 2)seismic characteristics indicating crustal mottling and layering of the upper rift crust. What is not clearly indicated is nature of the lower crust, and of the mantle-crust contact (M discontinuity). Comparison of paleorifts and neorifts, and later geological history of paleorifts, suggests interesting interpretations of lower rift crust,especially in paleorifts, and some of the difficulties in sorting out answers.

  16. Sirte Basin, north-central Libya: Cretaceous rifting above a fixed mantle hotspot?

    NASA Astrophysics Data System (ADS)

    van Houten, Franklyn B.

    1983-02-01

    The complex pattern of horsts and grabens in the Sirte Basin may have developed when Mesozoic drift of the African plate put north-central Libya over a fixed mantle hotspot in Early Cretaceous time (140 to 100 m.y. ago). Significant change in the motion of the plate during the prolonged residence above a hypothetical Cameroon plume may have produced stress that fragmented thinned and weakened lithosphere. Successive uplift and subsidence along a reconstructed track of the plume, as well as in the Sirte Basin, are compatible with predicted effects of the drift of northern Africa over a fixed mantle hotspot. This speculation suggests a plausible alternative to the possibility that rifting throughout northern Africa in Early Cretaceous time may have been produced along a wide zone of extension between two African plates when they were at rest relative to underlying plumes.

  17. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  18. Architecture and early evolution of the Oslo Rift

    NASA Astrophysics Data System (ADS)

    Sundvoll, B.; Larsen, B. T.

    1994-12-01

    A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation. Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305-310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300-305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.

  19. Continental rift jumps

    NASA Astrophysics Data System (ADS)

    Wood, Charles A.

    1983-05-01

    Continental rift jumps, analogous to jumps of oceanic spreading ridges, are here proposed to be common. Good examples exist in Iceland and Afar (both transitional from ridge to rift jumps), West Africa (Benue Trough and Cameroon Volcanic Line), and Kenya. Indeed, the Kenya rift appears to have jumped c. 100 km eastward c. 10 m.y. ago and is currently jumping further to the east. Possible jumps exist in the Baikal rift, the Limagne-Bresse rift pair, and parallel to ancient continental margins (e.g., the Triassic basins of the eastern U.S. to Baltimore Canyon and Georges Bank). Continental rifts jump distances that are approximately equal to local lithosphere thickness, suggesting that jumped rifts are controlled by lithosphere fracturing, but there appears to be no reason for the fracturing except migration of hot spots.

  20. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data

    USGS Publications Warehouse

    Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, Kim D.

    1992-01-01

    Recent multichannel seismic reflection data from Lake Baikal, located in a large, active, continental rift in central Asia, image three major stratigraphic units totalling 3.5 to 7.5 km thick in four subbasins. A major change in rift deposition and faulting between the oldest and middle-rift units probably corresponds to the change from slow to fast rifting. A brief comparison of the basins of Lake Baikal with those of the East African rift system highlights differences in structural style that can be explained by differences in age and evolution of the surrounding basement rocks. -from Authors

  1. An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts

    NASA Astrophysics Data System (ADS)

    Schulte, Saskia M.; Mooney, Walter D.

    2005-06-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) >= 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M>= 6.0) earthquakes are considered. The largest events (M>= 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the presence

  2. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  3. Subsidence history, crustal structure and evolution of the Nogal Rift, Northern Somalia

    NASA Astrophysics Data System (ADS)

    Ali, M. Y.; Watts, A. B.

    2013-12-01

    Seismic reflection profile, gravity anomaly, and biostratigraphic data from deep exploration wells have been used to determine the tectonic subsidence, structure and evolution of the Nogal basin, Northern Somalia, one of a number of ENE-WSW trending early Mesozoic rifts that formed prior to opening of the Gulf of Aden. Backstripping of biostratigraphic data at the Nogal-1 and Kali-1 wells provides new constraints on the age of rifting, and the amount of crustal and mantle extension. The tectonic subsidence and uplift history at the wells can be generally explained as a consequence of two, possibly three, major rifting events. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr. We interpret the rift as a late stage event associated with the break-up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi-rift extensional model with a stretching factor, β, in the range 1.17-1.38. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift only developed at the centre of the basin close to Nogal-1 well, and is related to the opening of the Gulf of Aden. The amount of crustal thinning inferred at the Kali-1 well is consistent with the results of Process-Oriented Gravity and Flexure (POGM) modelling, assuming an elastic thickness of ~30 km. The thinning at the Nogal-1 well, however, is greater by ~ 7 km than predicted suggesting that the basin may be locally underplated by magmatic material. Irrespective, POGM suggests the transition between thick crust beneath Northern Somalia to thin crust beneath the Indian Ocean forms a ~500 km wide

  4. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    NASA Astrophysics Data System (ADS)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  5. Pan-African shear zone-hosted gold mineralization in the Arabian-Nubian shield

    NASA Astrophysics Data System (ADS)

    Abu-Alam, Tamer; Grosch, Eugene; Abd El Monsef, Mohamed

    2013-04-01

    A new tectonic model of the exhumation mechanism of the Arabian-Nubian Shield will be presented at the EGU2013 by Abu-Alam and Stüwe (2013). According to this new tectonic model, the shear zones of the Arabian-Nubian Shield can be classified into two types; deep-seated and relatively shallow shear zones. The deep-seated shear zones are accompanied with deep sub-horizontal crustal channel flows which are response to the exhumation of the metamorphic complexes from the peak condition depth to a shallower crustal level (ductile-brittle transition). An example of these deep-seated shear zones is the Najd Fault System - the largest shear zone on the Earth. At the ductile-brittle transition crustal level, the deep-seated shear zones were overprinted by a greenschist facies condition or the ?2 and ?3 of the principle stresses may be flipped with each other. This flipping can produce other conjugate shallow shear zones in a greenschist facies conditions. The Egyptian gold deposits can be classified into three main types (Botros, 2004), These are stratabound deposits, non-stratabound deposits and placer gold deposits. The non-stratabound deposits are the most common (ex: Sukari, Wadi Allaqi, Abu Marawat, Atalla, El-Sid and Atud gold mines). They are found in form of vein type mineralization or as disseminated mineralization hosted in volcanics and volcaniclastic rocks (volcanogenic massive sulphides). Spatial and temporal relationships between gold veins and structures in the Arabian-Nubian Shield suggest a genetic relationship between mineralization and major tectonic events. At Sukari, Wadi Allaqi and Abu Marawat areas, the gold is hosted in quartz veins parallel to a deep-seated NW-SE to NNW-SSE shear zones. For Atud, El-Sid and Atalla area, the gold is hosted in NE-SW veins parallel to a shallow shear zone but at the conjugate point with a deep-seated NW-SE shear zone. According to the new tectonic model, we propose the following model for gold formation (non

  6. The role of tephra studies in African paleoanthropology as exemplified by the Sidi Hakoma Tuff

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Endale, Tamrat; White, Tim D.; Thouveny, Nicolas; Hart, William K.; Renne, Paul R.; Asfaw, Berhane

    2013-01-01

    Beginning in the 1960s, geological and paleoanthropological exploration of the Ethiopian rift system's basins have led to the discovery and assembly of the most comprehensive record of human biological and technological change during the last 6 million years. The hominid fossils, including partial skeletons, were primarily discovered in the Afar Rift, the Main Ethiopian Rift, and in the Omo Basin of the broadly rifted zone of SW Ethiopia. The paleoanthropological research areas within the SW Afar Rift that have yielded many diverse hominid species and the oldest stone tools are, from north to south, Woranso-Mille (aff. Ardipithecus and Au. afarensis), Hadar (Au. afarensis, Homo sp.), Dikika (Au. afarensis), Gona (Ar. kadabba, Ar. ramidus, H. erectus, and oldest stone tools), Middle Awash (Ar. kadabba, Ar. ramidus, Au. anamensis, Au. afarensis, Au. garhi, H. erectus, H. rhodesiensis, H. sapiens idaltu, and the oldest paleo-butchery locality), and Galili (Au. afarensis). Additional hominid remains were discovered at Melka Kunture on the banks of the Awash River near its source along the western margin of the central part of the Main Ethiopian Rift (H. erectus), at Konso (H. erectus and A. boisei), and at the southern end of the MER, and in the Omo Basin (Au. anamensis, Au. afarensis, Au. aethiopicus, Au. boisei, H. habilis, and H. erectus). Distal and sometimes proximal tephra units interbedded within fossilifeous sedimentary deposits have become key elements in this work by providing chronological and correlative control and depositional contexts. Several regional tephra markers have been identified within the northern half of the eastern African rift valley in Ethiopia and Kenya, and in marine sediments of the Gulf of Aden Rift and the NW Indian Ocean. Out of the many regional tephra stratigraphic markers that range in age from the early Pliocene (3.97 Ma) to the late Pleistocene (0.16 Ma), the Sidi Hakoma Tuff (SHT) has been more widely identified and thoroughly

  7. Evolution of a magma-driven earthquake swarm and triggering of the nearby Oldoinyo Lengai eruption, as resolved by InSAR, ground observations and elastic modeling, East African Rift, 2007

    NASA Astrophysics Data System (ADS)

    Baer, G.; Hamiel, Y.; Shamir, G.; Nof, R.

    2008-07-01

    An earthquake swarm struck the North Tanzania Divergence, East African Rift over a 2 month period between July and September 2007. It produced approximately 70 M > 4 earthquakes (peak magnitude Mw 5.9), and extensive surface deformation, concurrent with eruptions at the nearby Oldoinyo Lengai volcano. The spatial and temporal evolution of the entire deformation event was resolved by Interferometric Synthetic Aperture Radar (InSAR) observations, owing to a particularly favorable acquisition programming of the Envisat and ALOS satellites, and was verified by detailed ground observations. Elastic modeling based on the InSAR measurements clearly distinguishes between normal faulting, which dominated during the first week of the event, and intermittent episodes of dike propagation, oblique dike opening and dike-induced faulting during the following month. A gradual decline in the intensity of deformation occurred over the final weeks. Our observations and modeling suggest that the sequence of events was initiated by pressurization of a deep-seated magma chamber below Oldoinyo Lengai which opened the way to lateral dike injection, and dike-induced faulting and seismicity. As dike intrusion terminated, silicate magma ascended the volcano conduit, reacted with the carbonatitic magma, and set off a major episode of explosive ash eruptions producing mixed silicate-carbonatitic ejecta. The rise of the silicate magma within the volcano conduit is attributed to bubble growth and buoyancy increase in the magma chamber either due to a temporary pressure drop after the termination of the diking event, or due to the dynamic effects of seismic wave passage from the earthquake swarm. Similar temporal associations between earthquake swarms and major explosive ash eruptions were observed at Oldoinyo Lengai over the past half century.

  8. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hudgins, T. R.; Mukasa, S. B.; Simon, A. C.; Moore, G.; Barifaijo, E.

    2015-05-01

    We present new major element, trace element, and volatile (H2O, CO2, S, F, and Cl) concentrations of olivine-hosted melt inclusions from five high-K, low-silica basanites from the western branch of the East African Rift System and use these data to investigate the generation of H2O- and CO2-rich melts at up to ~150 km depth. Measured H2O and CO2 concentrations reach ~2.5 and ~1 wt%, respectively, representing some of the highest CO2 concentrations measured in a melt inclusion to date. These measurements represent direct evidence of the high CO2 and H2O concentrations required to generate high-K alkaline lavas, and the CO2 that has been previously inferred to be necessary for the low mantle potential temperatures in the area. Ratios of CO2/Nb, CO2/Ba, and CO2/Cl are used to estimate an initial melt CO2 concentration of 5-12 wt%. The measured CO2 concentrations are consistent with CO2 solubilities determined by molecular dynamics calculations and high-pressure experiments for melt generation at 3-6 GPa; the depth of melting suggested by previous studies in the area. These melt inclusions measurements represent direct evidence for the presence of H2O- and CO2-rich melts in the deep upper mantle that have been proposed based on experimental and seismic evidence. Primitive-mantle normalized trace element patterns more closely resemble those found in subduction settings rather than ocean island basalt, and ratios of slab fluid tracers such as Li/Dy and B/Be indicate that the measured volatile abundances may be related to Neoproterozoic subduction during the assembly of Gondwana, implying the storage of volatiles in the mantle by subduction-related metasomatism.

  9. The 1974 Ethiopian rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P.

    1977-01-01

    The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.

  10. Fluid pressure and flow at great depth in the continental crust. A discussion in relation to topography, temperature and salinity distribution using as an example the KTB Fault Zones in connection with the Eger Rift Hot Spot.

    NASA Astrophysics Data System (ADS)

    Kessels, W.; Kuhlmann, S.; Li, X.

    2006-12-01

    Hydraulic investigations in and between the two KTB boreholes have shown that groundwater flow is possible at great depth in the crystalline crust. Remarkable permeability was found particularly in the SE1 and SE2 fault zones. The results from a long term pump and injection test, and the related three-dimensional groundwater modelling (Graesle et al., 2006), document the existence of a large-scale (more than 10 km) hydraulic reservoir in the crystalline crust. According to this calculation, an overpressure of 0.4 MPa can be still be expected in KTB-HB in 2009, 4 years after the end of the injection. The good match with the measurement data confirms groundwater pathways at a scale of more than 10 km. The isotopic water composition recovered from the KTB pilot hole indicates a downward water flow along the SE2 fault zone, which is in contact with the Franconian Line. Moreover, there is a deep upward groundwater flow 60 km away in the western Eger Rift Valley as indicated e.g. by the temperature signature and gas flow observations. Therefore, the demand for fluid mass continuity means that water is being supplied by a downstream groundwater flow, probably from the Franconian Line. The question of potential driving processes must be answered to understand and quantify the flow in the deeper crust at a scale of 10 km to 100 km. The processes must result in a sufficient horizontal pressure gradient to allow groundwater flow at great depth. The density variations of groundwater with depth are highly relevant for the calculation of horizontal pressure differences. The two independent potential fields of gravity and pressure have to be considered. Differentiation into 4 relevant driving processes is required: \\bullet The groundwater surface topography related to the groundwater recharge and mean regional distance between neighbouring valleys \\bullet Geothermal gradient and water density depending on temperature and pressure \\bullet Different salt contents in adjacent

  11. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  12. [Fine structure of the fundic gland zone epithelium in various eastern African ruminants].

    PubMed

    Weyrauch, K D; Saber, A S

    1985-01-01

    Light- and electron microscopic investigations were conducted on the epithelium of the area glandulae gastricae propriae of the abomasum, using material of 12 East African game ruminants of nine species. The members of the main feeding categories (Hofmann, Stewart 1972): concentrate selector, roughage eater and intermediate feeder did not differ much in the ultrastructure of the fundic stomach epithelium but showed greater differences with respect to the height and shape of the glandular tubules and the arrangement of the epithelial cell types. Specifically the following cell types were observed: mucoid cells, chief cells, parietal cells, seven different endocrine cells, tuft cells and two types of migrating cells. In some epithelial celltypes of the concentrate selector dikdik, cristalloid cytoplasmic inclusions were found. PMID:4014717

  13. Description of Events Where African Buffaloes (Syncerus caffer) Strayed from the Endemic Foot-and-Mouth Disease Zone in South Africa, 1998-2008.

    PubMed

    van Schalkwyk, O L; Knobel, D L; De Clercq, E M; De Pus, C; Hendrickx, G; Van den Bossche, P

    2016-06-01

    African buffaloes (Syncerus caffer) are reservoir hosts of Southern African Territories (SAT) foot-and-mouth disease (FMD) virus strains. In South Africa, infected buffaloes are found in the FMD-infected zone comprising the Kruger National Park (KNP) and its adjoining reserves. When these buffaloes stray into livestock areas, they pose a risk of FMD transmission to livestock. We assessed 645 records of stray buffalo events (3124 animals) from the FMD infected zone during 1998-2008 for (i) their temporal distribution, (ii) group size, (iii) age and gender composition, (iv) distance from the infected zone fence and (v) outcome reported for each event. A maximum entropy model was developed to evaluate spatial predictors of stray buffalo events and assess current disease control zones. Out of all buffaloes recorded straying, 38.5% escaped from the FMD infected zone during 2000/2001, following floods that caused extensive damage to wildlife fences. Escape patterns were not apparently influenced by season. The median size of stray groups was a single animal (IQR [1-2]). Adult animals predominated, comprising 90.4% (620/686) of the animals for which age was recorded. Of the 315 events with accurate spatial information, 204 (64.8%) were recorded within 1 km from the FMD infected zone. During late winter/spring (June-October), stray buffaloes were found significantly closer to the FMD infected zone (median = 0.3 km, IQR [0.1-0.6]). Less than 13% (40/315) of stray groups reached the FMD protection zone without vaccination, posing a higher risk of spreading FMD to these more susceptible livestock. Model outputs suggest that distance from the FMD infected zone, urban areas and permanent water sources contributed almost 85% to the spatial probability of stray buffalo events. Areas with a high probability for stray buffalo events were well covered by current disease control zones, although FMD risk mitigation could be improved by expanding the vaccination zone in certain areas

  14. Habitat use by larval fishes in a temperate South African surf zone

    NASA Astrophysics Data System (ADS)

    Watt-Pringle, Peter; Strydom, Nadine A.

    2003-12-01

    Larval fishes were sampled in the Kwaaihoek surf zone on the south east coast of South Africa. On six occasions between February and May 2002, larval fishes were collected in two habitat types identified in the inner surf zone using a modified beach-seine net. The surf zone habitats were classified as either sheltered trough areas or adjacent exposed surf areas. Temperature, depth and current measurements were taken at all sites. Trough habitats consisted of a depression in surf topography characterised by reduced current velocities and greater average depth than adjacent surf areas. In total, 325 larval fishes were collected. Of these, 229 were collected in trough and 96 in surf habitats. At least 22 families and 37 species were represented in the catch. Dominant families were the Mugilidae, Sparidae, Atherinidae, and Engraulidae. Dominant species included Liza tricuspidens and Liza richardsonii (Mugilidae), Rhabdosargus holubi and Sarpa salpa (Sparidae), Atherina breviceps (Atherinidae) and Engraulis japonicus (Engraulide). Mean CPUE of postflexion larvae of estuary-dependent species was significantly greater in trough areas. The proportion of postflexion larval fishes in trough habitat was significantly greater than that of preflexion stages, a result that was not apparent in surf habitat sampled. CPUE of postflexion larvae of estuary-dependent fishes was negatively correlated with current magnitude and positively correlated with habitat depth. Mean body length of larval fishes was significantly greater in trough than in surf habitats. These results provide evidence that the CPUE of postflexion larvae of estuary-dependent fishes is higher in trough habitat in the surf zone and this may be indicative of active habitat selection for areas of reduced current velocity/wave action. The implications of this behaviour for estuarine recruitment processes are discussed.

  15. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect

    Winn, R.D. Jr.; Steinmetz, J.C. ); Kerekgyarto, W.L. )

    1993-11-01

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  16. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  17. The Main Shear Zone in Sør Rondane, East Antarctica: Implications for the late-Pan-African tectonic evolution of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Ruppel, Antonia S.; Läufer, Andreas; Jacobs, Joachim; Elburg, Marlina; Krohne, Nicole; Damaske, Detlef; Lisker, Frank

    2015-06-01

    Structural investigations in western Sør Rondane, eastern Dronning Maud Land (DML), provide new insights into the tectonic evolution of East Antarctica. One of the main structural features is the approximately 120 km long and several hundred meters wide WSW-ENE trending Main Shear Zone (MSZ). It is characterized by dextral high-strain ductile deformation under peak amphibolite-facies conditions. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between late Ediacaran to Cambrian times (circa 560 to 530 Ma). The MSZ separates Pan-African greenschist- to granulite-facies metamorphic rocks with "East African" affinities in the north from a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite complex with "Indo-Antarctic" affinities in the south. It is interpreted to represent an important lithotectonic strike-slip boundary at a position close to the eastern margin of the East African-Antarctic Orogen (EAAO), which is assumed to be located farther south in the ice-covered region. Together with the possibly coeval left-lateral South Orvin Shear Zone in central DML, the MSZ may be related to NE directed lateral escape of the EAAO, whereas the Heimefront Shear Zone and South Kirwanveggen Shear Zone of western DML are part of the south directed branch of this bilateral system.

  18. Tectono-Sedimentary Analysis of Rift Basins: Insights from the Corinth Rift, Greece

    NASA Astrophysics Data System (ADS)

    Gawthorpe, Robert; Ford, Mary

    2015-04-01

    Existing models for the tectono-sedimentary evolution of rift basins are strongly linked the growth and linkage of normal fault segments and localization of fault activity. Early stages of faulting (rift initiation phase) are characterized by distributed, short, low displacement fault segments, subdued fault-related topography and small depocentres within which sedimentation keeps pace with subsidence. Following linkage and displacement localization (rift climax phase), deformation if focused onto major, crustal-scale fault zones with kilometre-scale displacement. These major faults generate pronounced tilted fault-block topography, with subsidence rates that outpace sedimentation causing a pronounced change to deep-water deposition. Such models have been successful in helping to understand the gross structural and sedimentary evolution of rift basins, but recent work has suggested that pre-existing structures, normal fault interaction with pre-rift salt and antecedent drainage systems significantly alter this initiation-to-climax perspective of rift basin development. The E-W-striking, Pliocene-Pleistocene Corinth rift, central Greece, is an excellent natural laboratory for studying the tectono-sedimentary evolution of rift basins due to its young age, excellent onshore exposure of syn-rift structure and stratigraphy and extensive offshore seismic data. The rift cuts across the NW-SE-striking Hellenide mountain belt and has migrated northward and westward during its evolution. The Hellenide mountain belt significantly influences topography and drainage in the west of the rift. High topography and large antecedent drainage systems, focused along palaeovalleys, provided high sediment flux to NE-flowing alluvial systems that overfilled early-rift depocentres. Further east, away from the main antecedent drainage networks, contemporaneous deposits comprise deep-lacustrine turbidite channel and lobe complexes and basinal marls. Thus the stratigraphic expression within

  19. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  20. Seismic Anisotropy beneath the African Plate using Shear Wave Splitting Measurements from AfricaArray Stations

    NASA Astrophysics Data System (ADS)

    Nunley, M. E.; Weeraratne, D.; Nyblade, A.

    2011-12-01

    The African continental plate is made up of a series of cratons and fold belts with activation ages ranging from present to Archean. Recent studies have shown that this tectonic assemblage occurred over a long history of accretion and rifting cycles that likely left behind the complex crust and lithospheric fabric that we see today. Here we study seismic anisotropy beneath the African continent using a large array of permanent AfricaArray and Global Seismic Network seismic stations located throughout Africa. We supply shear wave splitting techniques to teleseismic earthquake events using the eigenvalue method where the second eigenvalue is minimized to determine anisotropy. Stations located in the Ethiopian rift zone yield a NE-SW fast direction with the largest delay times of 1.5s. One station (KOWA) located in the west African craton displays a NW-SE fast direction. Stations located near Cameroon, at the coastal edge of the central African shear zone, produce NW-SE fast directions oriented perpendicular to the shear zone axis. . A group of stations located on Archean crust in central Africa skirt the Congo craton and display consistent NNE fast directions and delay times of 1.0s. Two stations, LSZ and TEZI are located in the Damara suture belt between the Congo and Kaapvaal cratons display a NE-SW fast direction parallel to the suture axis. In the Kaapvaal craton region the average anisotropic direction is NNE with a 1.0s delay time. New stations available south of the Kaapvaal craton reveal a NE fast direction with delay times that vary from 0.5 to 1.3 s. Several splitting measurements are made for the southern station HVD which display backazimuth dependence producing NW-SE fast directions for ray paths coming from the east and are consistent with observations at GRM located east of HVD. These results show that seismic anisotropy across the continent is not uniform and shows significant variation between tectonic regions. While mantle flow and lithospheric

  1. Alkaline series related to Early-Middle Miocene intra-continental rifting in a collision zone: An example from Polatlı, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Temel, Abidin; Yürür, Tekin; Alıcı, Pınar; Varol, Elif; Gourgaud, Alain; Bellon, Hervé; Demirbağ, Hünkar

    2010-06-01

    A large volcanic area (˜7600 km 2), the Galatean Volcanic Province (GVP), developed in northwest Central Anatolia during the Miocene along the Neo-Tethys Ocean suture zone possibly by post-collisional processes. The GVP mainly comprises 20-14 My old acid to intermediate volcanites with a geochemical signature indicating a mantle source modified by earlier (Late Cretaceous) subduction-related events. 100 km south of the GVP, near Polatlı, Ankara, basaltic rocks that cover large areas are intercalated with the Miocene deposits of the Beypazarı basin, an intra-continental subsidence zone at the southwest of the GVP. Field observations, geochemistry and K-Ar age dating of the Polatlı volcanites show that they are Early (19.9 Ma) to mid (14.1 Ma) Miocene in age, covering an area as large as 215 km 2. Variations in lava thickness and the thickness of the underlying silicified/baked zones suggest that the basaltic lavas erupted from a southern source, possibly from the Eskişehir fault zone, and flowed northwards. Most Polatlı samples have chemical compositions that indicate derivation from a mantle source with crustal contamination during ascent. They do not display any characteristic to suggest a subductional component. Although the GVP and Polatlı lavas formed close in time and space, they were derived from different mantle sources. Considering the positions of these two magmatic regions with regard to the Tethyan suture zone, we propose that the mantle beneath the GVP and near the suture zone memorised the earlier subduction while the mantle beneath Polatlı that is located about 100 km further from the suture zone remained apparently unchanged. After a significant volume of magma was consumed in the GVP, a later (˜10 My) and last activity (Güvem activity) has produced quantitatively much less basaltic rocks where this subductional signature seems to completely disappear. Considering that the western Anatolian crust is proposed to undergo extension since the

  2. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  3. Closing of the Midcontinent-Rift - a far-field effect on Grenvillian compression

    USG