Sample records for african savanna ecosystem

  1. Ecosystem management can mitigate vegetation shifts induced by climate change in African savannas

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Savadogo, Patrice

    2017-04-01

    The welfare of people in the tropics and sub-tropics strongly depends on goods and services that ecosystems supply. Flows of these ecosystem services are strongly influenced by interactions between climate change and land use. A prominent example are savannas, covering approximately 20% of the Earth's land surface. Key ecosystem services in these areas are fuel wood for cooking and heating, food production and livestock. Changes in the structure and dynamics of savanna vegetation may strongly influence local people's living conditions, as well as the climate system and biogeochemical cycles. We used a dynamic vegetation model to explore interactive effects of climate and land use on the vegetation structure, distribution and carbon cycling of African savannas under current and future conditions. More specifically, we simulate long term impacts of fire management, grazing and fuel wood harvesting. The model projects that under future climate without human land use impacts, large savanna areas would shift towards more wood dominated vegetation due to CO2 fertilization effects and changes in water use efficiency. However, land use activities can mitigate climate change impacts on vegetation to maintain desired ecosystem states that ensure fluxes of important ecosystem services. We then use optimization algorithms to identify sustainable land use strategies that maximize the utility of people managing savannas while preserving a stable vegetation state. Our results highlight that the development of land use policy for tropical and sub-tropical areas needs to account for climate change impacts on vegetation.

  2. Human impacts in African savannas are mediated by plant functional traits.

    PubMed

    Osborne, Colin P; Charles-Dominique, Tristan; Stevens, Nicola; Bond, William J; Midgley, Guy; Lehmann, Caroline E R

    2018-05-28

    Tropical savannas have a ground cover dominated by C 4 grasses, with fire and herbivory constraining woody cover below a rainfall-based potential. The savanna biome covers 50% of the African continent, encompassing diverse ecosystems that include densely wooded Miombo woodlands and Serengeti grasslands with scattered trees. African savannas provide water, grazing and browsing, food and fuel for tens of millions of people, and have a unique biodiversity that supports wildlife tourism. However, human impacts are causing widespread and accelerating degradation of savannas. The primary threats are land cover-change and transformation, landscape fragmentation that disrupts herbivore communities and fire regimes, climate change and rising atmospheric CO 2 . The interactions among these threats are poorly understood, with unknown consequences for ecosystem health and human livelihoods. We argue that the unique combinations of plant functional traits characterizing the major floristic assemblages of African savannas make them differentially susceptible and resilient to anthropogenic drivers of ecosystem change. Research must address how this functional diversity among African savannas differentially influences their vulnerability to global change and elucidate the mechanisms responsible. This knowledge will permit appropriate management strategies to be developed to maintain ecosystem integrity, biodiversity and livelihoods. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  3. Nutrient vectors and riparian nutrient processing in African semiarid savanna ecosystems

    USGS Publications Warehouse

    Jacobs, Shayne M.; Bechtold, J.S.; Biggs, Harry C.; Grimm, N. B.; McClain, M.E.; Naiman, R.J.; Perakis, Steven S.; Pinay, G.; Scholes, M.C.

    2007-01-01

    This review article describes vectors for nitrogen and phosphorus delivery to riparian zones in semiarid African savannas, the processing of nutrients in the riparian zone and the effect of disturbance on these processes. Semiarid savannas exhibit sharp seasonality, complex hillslope hydrology and high spatial heterogeneity, all of which ultimately impact nutrient fluxes between riparian, upland and aquatic environments. Our review shows that strong environmental drivers such as fire and herbivory enhance nitrogen, phosphorus and sediment transport to lower slope positions by shaping vegetative patterns. These vectors differ significantly from other arid and semiarid ecosystems, and from mesic ecosystems where the impact of fire and herbivory are less pronounced and less predictable. Also unique is the presence of sodic soils in certain hillslopes, which substantially alters hydrological flowpaths and may act as a trap where nitrogen is immobilized while sediment and phosphorus transport is enhanced. Nutrients and sediments are also deposited in the riparian zone during seasonal, intermittent floods while, during the dry season, subsurface movement of water from the stream into riparian soils and vegetation further enrich riparian zones with nutrients. As is found in mesic ecosystems, nutrients are immobilized in semiarid riparian corridors through microbial and plant uptake, whereas dissimilatory processes such as denitrification may be important where labile nitrogen and carbon are in adequate supply and physical conditions are suitablea??such as in seeps, wallows created by animals, ephemeral wetlands and stream edges. Interaction between temporal hydrologic connectivity and spatial heterogeneity are disrupted by disturbances such as large floods and extended droughts, which may convert certain riparian patches from sinks to sources for nitrogen and phosphorus. In the face of increasing anthropogenic pressure, the scientific challenges are to provide a basic

  4. Determinants of woody cover in African savannas

    USGS Publications Warehouse

    Sankaran, M.; Hanan, N.P.; Scholes, Robert J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; Le, Roux X.; Ludwig, F.; Ardo, J.; Banyikwa, F.; Bronn, A.; Bucini, G.; Caylor, K.K.; Coughenour, M.B.; Diouf, A.; Ekaya, W.; Feral, C.J.; February, E.C.; Frost, P.G.H.; Hiernaux, P.; Hrabar, H.; Metzger, K.L.; Prins, H.H.T.; Ringrose, S.; Sea, W.; Tews, J.; Worden, J.; Zambatis, N.

    2005-01-01

    Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties 1-3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ???650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ???650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation 6 may considerably affect their distribution and dynamics. ?? 2005 Nature Publishing Group.

  5. Modeling pulsed soil respiration in an African savanna ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Zhaosheng; Neff, Jason C.; Hanan, Niall P.

    2015-01-01

    Savannas cover 60% of the African continent and play an important role in the global carbon (C) emissions from fire and land use. To better characterize the biophysical controls over soil respiration in these settings, half-hourly observations of volumetric soil-water content, temperature, and the concentration of carbon dioxide (CO2) at different soil depths were continually measured from 2005 to 2007 under trees ("sub-canopy") and between trees ("inter-canopy") in a savanna vegetation near Skukuza, Kruger National Park, South Africa. The measured soil climate and CO2 concentration data were assimilated into a process-based model that estimates the CO2 production and flux withmore » coupled dynamics of dissolved organic C (DOC) and microbial biomass C. Our results show that temporal and spatial variations in CO2 flux were strongly influenced by precipitation and vegetation cover, with two times greater CO2 flux in the subcanopy plots (similar to 2421 g CO2 m(-2) yr(-1)) than in the inter-canopy plots (similar to 1290 g CO2 m(-2) yr(-1)). Precipitation influenced soil respiration by changing soil temperature and moisture; however, our modeling analysis suggests that the pulsed response of soil respiration to precipitation events (known as "Birch effect") is a key control on soil fluxes at this site. At this site, "Birch effect" contributed to approximately 50% and 65% of heterotrophic respiration or 20% and 39% of soil respiration in the sub-canopy and inter-canopy plots, respectively. These results suggest that pulsed response of respiration to precipitation events is an important component of the C cycle of savannas and should be considered in both measurement and modeling studies of carbon exchange in similar ecosystems. (C) 2014 Elsevier B.V. All rights reserved.« less

  6. Spatial pattern enhances ecosystem functioning in an African savanna.

    PubMed

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  7. The extent of burning in African savanna

    NASA Technical Reports Server (NTRS)

    Cahoon, D. R. JR.; Levine, J. S.; Cofer, W. R. Iii; Stocks, B. J.

    1994-01-01

    The temporal and spatial distribution of African savanna grassland fires has been examined, and the areal extent of these fires has been estimated for the subequatorial African continent. African savanna fires have been investigated using remote sensing techniques and imagery collected by low-light sensors on Defense Meteorological Satellite Program (DMSP) satellites and by the Advanced Very High Resolution Radiometer (AVHRR) which is aboard polar orbiting National Oceanic and Atmospheric Administration (NOAA) satellites. DMSP imagery has been used to map the evolution of savanna burning over all of the African continent and the analysis of AVHRR imagery has been used to estimate the areal extent of the burning in the southern hemispheric African savannas. The work presented primarily reflects the analysiscompleted for the year 1987. However, comparisons have been made with other years and the representativeness of the 1987 analysis is discussed.

  8. Seasonal Distribution of African Savanna Fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    Savannas consist of a continuous layer of grass interspersed with scattered trees or shrubs, and cover approx. 10 million square kilometers of tropical Africa. African savanna fires, almost all resulting from human activities, may produce as much as a third of the total global emissions from biomass burning. Little is known, however, about the frequency and location of these fires, and the area burned each year. Emissions from African savanna burning are known to be transported over the mid-Atlantic, south Pacific and Indian oceans; but to study fully the transport of regional savanna burning and the seasonality of the atmospheric circulation must be considered simultaneously. Here we describe the temporal and spatial distribution of savanna fires over the entire African continent, as determined from night-time satellite imagery. We find that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires will aid monitoring of the climatically important trace gases emitted from burning biomass.

  9. Determinants of woody encroachment and cover in African savannas.

    PubMed

    Devine, Aisling P; McDonald, Robbie A; Quaife, Tristan; Maclean, Ilya M D

    2017-04-01

    Savanna ecosystems are an integral part of the African landscape and sustain the livelihoods of millions of people. Woody encroachment in savannas is a widespread phenomenon but its causes are widely debated. We review the extensive literature on woody encroachment to help improve understanding of the possible causes and to highlight where and how future scientific efforts to fully understand these causes should be focused. Rainfall is the most important determinant of maximum woody cover across Africa, but fire and herbivory interact to reduce woody cover below the maximum at many locations. We postulate that woody encroachment is most likely driven by CO 2 enrichment and propose a two-system conceptual framework, whereby mechanisms of woody encroachment differ depending on whether the savanna is a wet or dry system. In dry savannas, the increased water-use efficiency in plants relaxes precipitation-driven constraints and increases woody growth. In wet savannas, the increase of carbon allocation to tree roots results in faster recovery rates after disturbance and a greater likelihood of reaching sexual maturity. Our proposed framework can be tested using a mixture of experimental and earth observational techniques. At a local level, changes in precipitation, burning regimes or herbivory could be driving woody encroachment, but are unlikely to be the explanation of this continent-wide phenomenon.

  10. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  11. IDESSA: An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Authmann, Christian; Dreber, Niels; Hess, Bastian; Kellner, Klaus; Morgenthal, Theunis; Nauss, Thomas; Seeger, Bernhard; Tsvuura, Zivanai; Wiegand, Kerstin

    2017-04-01

    Bush encroachment is a syndrome of land degradation that occurs in many savannas including those of southern Africa. The increase in density, cover or biomass of woody vegetation often has negative effects on a range of ecosystem functions and services, which are hardly reversible. However, despite its importance, neither the causes of bush encroachment, nor the consequences of different resource management strategies to combat or mitigate related shifts in savanna states are fully understood. The project "IDESSA" (An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas) aims to improve the understanding of the complex interplays between land use, climate patterns and vegetation dynamics and to implement an integrative monitoring and decision-support system for the sustainable management of different savanna types. For this purpose, IDESSA follows an innovative approach that integrates local knowledge, botanical surveys, remote-sensing and machine-learning based time-series of atmospheric and land-cover dynamics, spatially explicit simulation modeling and analytical database management. The integration of the heterogeneous data will be implemented in a user oriented database infrastructure and scientific workflow system. Accessible via web-based interfaces, this database and analysis system will allow scientists to manage and analyze monitoring data and scenario computations, as well as allow stakeholders (e. g. land users, policy makers) to retrieve current ecosystem information and seasonal outlooks. We present the concept of the project and show preliminary results of the realization steps towards the integrative savanna management and decision-support system.

  12. Impacts of savanna trees on forage quality for a large African herbivore

    PubMed Central

    De Kroon, Hans; Prins, Herbert H. T.

    2008-01-01

    Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems. PMID:18309522

  13. Carbon balance of a grazed savanna grassland ecosystem in South Africa

    NASA Astrophysics Data System (ADS)

    Räsänen, Matti; Aurela, Mika; Vakkari, Ville; Beukes, Johan P.; Tuovinen, Juha-Pekka; Van Zyl, Pieter G.; Josipovic, Miroslav; Venter, Andrew D.; Jaars, Kerneels; Siebert, Stefan J.; Laurila, Tuomas; Rinne, Janne; Laakso, Lauri

    2017-03-01

    Tropical savannas and grasslands are estimated to contribute significantly to the total primary production of all terrestrial vegetation. Large parts of African savannas and grasslands are used for agriculture and cattle grazing, but the carbon flux data available from these areas are limited. This study explores carbon dioxide fluxes measured with the eddy covariance method for 3 years at a grazed savanna grassland in Welgegund, South Africa. The tree cover around the measurement site, grazed by cattle and sheep, was around 15 %. The night-time respiration was not significantly dependent on either soil moisture or soil temperature on a weekly temporal scale, whereas on an annual timescale higher respiration rates were observed when soil temperatures were higher. The carbon dioxide balances of the years 2010-2011, 2011-2012 and 2012-2013 were -85 ± 16, 67 ± 20 and 139 ± 13 gC m-2 yr-1, respectively. The yearly variation was largely determined by the changes in the early wet season fluxes (September to November) and in the mid-growing season fluxes (December to January). Early rainfall enhanced the respiratory capacity of the ecosystem throughout the year, whereas during the mid-growing season high rainfall resulted in high carbon uptake.

  14. Restoring a disappearing ecosystem: the Longleaf Pine Savanna.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Timothy B.; Miller, Karl V.; Park, Noreen

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, treemore » thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.« less

  15. Large-scale impacts of herbivores on the structural diversity of African savannas

    PubMed Central

    Asner, Gregory P.; Levick, Shaun R.; Kennedy-Bowdoin, Ty; Knapp, David E.; Emerson, Ruth; Jacobson, James; Colgan, Matthew S.; Martin, Roberta E.

    2009-01-01

    African savannas are undergoing management intensification, and decision makers are increasingly challenged to balance the needs of large herbivore populations with the maintenance of vegetation and ecosystem diversity. Ensuring the sustainability of Africa's natural protected areas requires information on the efficacy of management decisions at large spatial scales, but often neither experimental treatments nor large-scale responses are available for analysis. Using a new airborne remote sensing system, we mapped the three-dimensional (3-D) structure of vegetation at a spatial resolution of 56 cm throughout 1640 ha of savanna after 6-, 22-, 35-, and 41-year exclusions of herbivores, as well as in unprotected areas, across Kruger National Park in South Africa. Areas in which herbivores were excluded over the short term (6 years) contained 38%–80% less bare ground compared with those that were exposed to mammalian herbivory. In the longer-term (> 22 years), the 3-D structure of woody vegetation differed significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy cover in the areas without herbivores. Our maps revealed 2 scales of ecosystem response to herbivore consumption, one broadly mediated by geologic substrate and the other mediated by hillslope-scale variation in soil nutrient availability and moisture conditions. Our results are the first to quantitatively illustrate the extent to which herbivores can affect the 3-D structural diversity of vegetation across large savanna landscapes. PMID:19258457

  16. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  17. North African savanna fires and atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Iacobellis, Sam F.; Frouin, Robert; Razafimpanilo, Herisoa; Somerville, Richard C. J.; Piper, Stephen C.

    1994-01-01

    The effect of north African savanna fires on atmospheric CO2 is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO2 concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO2 sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO2 concentrations in South America. The effect is more pronounced during the period from January through March, when biomass burning in South America is almost nonexistent. During this period, atmospheric CO2 concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO2 concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO2 concentration increase at 970 mbar. At higher levels in the atmosphere, less CO2 emitted by north African savanna fires reaches South America, and at 100 mbar no significant amount of CO2 is transported across the Atlantic Ocean. The vertical

  18. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.

    PubMed

    Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian

    2018-01-21

    Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. North African savanna fires and atmospheric carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacobellis, S.F.; Frouni, Razafimpaniolo, H.

    1994-04-20

    The effect of north African savanna fires on atmospheric CO{sub 2} is investigated using a tracer transport model. The model uses winds from operational numerical weather prediction analyses and provides CO{sub 2} concentrations as a function of space and time. After a spin-up period of several years, biomass-burning sources are added, and model experiments are run for an additional year, utilizing various estimates of CO{sub 2} sources. The various model experiments show that biomass burning in the north African savannas significantly affects CO{sub 2} concentrations in South America. The effect is more pronounced during the period from January through March,more » when biomass burning in South America is almost nonexistent. During this period, atmospheric CO{sub 2} concentrations in parts of South America typically may increase by 0.5 to 0.75 ppm at 970 mbar, the average pressure of the lowest model layer. These figures are above the probable uncertainty level, as model runs with biomass-burning sources estimated from independent studies using distinct data sets and techniques indicate. From May through September, when severe biomass burning occurs in South America, the effect of north African savanna fires over South America has become generally small at 970 mbar, but north of the equator it may be of the same magnitude or larger than the effect of South American fires. The CO{sub 2} concentration increase in the extreme northern and southern portions of South America, however, is mostly due to southern African fires, whose effect may be 2-3 times larger than the effect of South American fires at 970 mbar. Even in the central part of the continent, where local biomass-burning emissions are maximum, southern African fires contribute to at least 15% of the CO{sub 2} concentration increase at 970 mbar. 20 refs., 15 figs., 1 tab.« less

  20. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire

    NASA Astrophysics Data System (ADS)

    SerçA, D.; Delmas, R.; Le Roux, X.; Parsons, D. A. B.; Scholes, M. C.; Abbadie, L.; Lensi, R.; Ronce, O.; Labroue, L.

    1998-12-01

    NO emission rates from soils were measured for twelve major African ecosystems in four countries (Congo, Niger, Ivory Coast, and South Africa) and within four major phytogeographic domains: the Guineo-Congolese, Guinean, Sahelian, and Zambezian domains. Measurements were performed during wet and/or dry seasons. All the measurements were made with the same dynamic chamber device, which allowed true comparisons to be made. This study showed that emission rates strongly differed between ecosystems and exhibited a marked temporal variability. Ecosystem effect was highly significant during both the dry and wet seasons. Emission rates were low (<0.6 ng NO-N m-2 s-1) in Hyparrhenia and Loudetia savannas of the Guinean or Guineo-Congolese domains. Intermediate NO fluxes were obtained in rain forest and gallery forest ecosystems, in a broad-leafed savanna and in a seasonally wetted grassland (sandy soil) of the Zambezian domain, and in a dry fallow savanna of the Sahelian domain. Emission rates were maximum (>7 ng NO-N m-2 s-1) in a seasonally wetted grassland (site 2) and in particular sites subjected to various disturbances, for example soil fauna activity (termite mounds) or past human disturbance (Acacia patches-settlement site). Microbial activity potentials (i.e., carbon mineralization, nitrification, denitrification, and total net N mineralization) were determined for most of the soils where NO fluxes were measured. In some sites, these potential activities were useful to identify the major processes controlling NO emission rates. Denitrification potential was very low and could not explain substantial NO fluxes from broad- and fine-leafed savannas and Hyperihelia savannas of the Zambezian domain. Very low potentials of both nitrification and denitrification could be related to the low NO fluxes for the three Guinean savanna sites studied. NO fluxes were significantly higher during the wet season than the dry season in both savanna and forest ecosystems. Emission

  1. Seasonal distribution of African savanna fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    The temporal and spatial distribution of savanna fires over the entire African continent, as determined from nighttime satellite imagery, is described. It is found that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires is helpful in the monitoring of climatically important trace gases emitted from burning biomass.

  2. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and PM2.5 for Southern African Savanna Fires

    NASA Technical Reports Server (NTRS)

    Korontzi, S.; Ward, D. E.; Susott, R. A.; Yokelson, R. J.; Justice, C. O.; Hobbs, P. V.; Smithwick, E. A. H.; Hao, W. M.

    2003-01-01

    In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

  3. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    NASA Astrophysics Data System (ADS)

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-02-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.

  4. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna.

    PubMed

    Fox-Dobbs, Kena; Doak, Daniel F; Brody, Alison K; Palmer, Todd M

    2010-05-01

    The mechanisms by which even the clearest of keystone or dominant species exert community-wide effects are only partially understood in most ecosystems. This is especially true when a species or guild influences community-wide interactions via changes in the abiotic landscape. Using stable isotope analyses, we show that subterranean termites in an East African savanna strongly influence a key ecosystem process: atmospheric nitrogen fixation by a monodominant tree species and its bacterial symbionts. Specifically, we applied the 15N natural abundance method in combination with other biogeochemical analyses to assess levels of nitrogen fixation by Acacia drepanolobium and its effects on co-occurring grasses and forbs in areas near and far from mounds and where ungulates were or were not excluded. We find that termites exert far stronger effects than do herbivores on nitrogen fixation. The percentage of nitrogen derived from fixation in Acacia drepanolobium trees is higher (55-80%) away from mounds vs. near mounds (40-50%). Mound soils have higher levels of plant available nitrogen, and Acacia drepanolobium may preferentially utilize soil-based nitrogen sources in lieu of fixed nitrogen when these sources are readily available near termite mounds. At the scale of the landscape, our models predict that termite/soil derived nitrogen sources influence >50% of the Acacia drepanolobium trees in our system. Further, the spatial extent of these effects combine with the spacing of termite mounds to create highly regular patterning in nitrogen fixation rates, resulting in marked habitat heterogeneity in an otherwise uniform landscape. In summary, we show that termite-associated effects on nitrogen processes are not only stronger than those of more apparent large herbivores in the same system, but also occur in a highly regular spatial pattern, potentially adding to their importance as drivers of community and ecosystem structure.

  5. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink

    PubMed Central

    Fei, Xuehai; Jin, Yanqiang; Zhang, Yiping; Sha, Liqing; Liu, Yuntong; Song, Qinghai; Zhou, Wenjun; Liang, Naishen; Yu, Guirui; Zhang, Leiming; Zhou, Ruiwu; Li, Jing; Zhang, Shubin; Li, Peiguang

    2017-01-01

    Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha−1 yr−1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and −1.30 tC ha−1 yr−1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha−1 yr−1 in the dry season and a considerable carbon sink of 1.14 tC ha−1 yr−1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes. PMID:28145459

  6. Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes.

    PubMed

    Parr, C L; Eggleton, P; Davies, A B; Evans, T A; Holdsworth, S

    2016-06-01

    In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the "little things that run the world." However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel large-scale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that top-down control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest).

  7. Seasonality of semi-arid and savanna-type ecosystems in an Earth system model

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.

    2016-12-01

    Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.

  8. Pyrodiversity interacts with rainfall to increase bird and mammal richness in African savannas.

    PubMed

    Beale, Colin M; Courtney Mustaphi, Colin J; Morrison, Thomas A; Archibald, Sally; Anderson, T Michael; Dobson, Andrew P; Donaldson, Jason E; Hempson, Gareth P; Probert, James; Parr, Catherine L

    2018-04-01

    Fire is a fundamental process in savannas and is widely used for management. Pyrodiversity, variation in local fire characteristics, has been proposed as a driver of biodiversity although empirical evidence is equivocal. Using a new measure of pyrodiversity (Hempson et al.), we undertook the first continent-wide assessment of how pyrodiversity affects biodiversity in protected areas across African savannas. The influence of pyrodiversity on bird and mammal species richness varied with rainfall: strongest support for a positive effect occurred in wet savannas (> 650 mm/year), where species richness increased by 27% for mammals and 40% for birds in the most pyrodiverse regions. Range-restricted birds were most increased by pyrodiversity, suggesting the diversity of fire regimes increases the availability of rare niches. Our findings are significant because they explain the conflicting results found in previous studies of savannas. We argue that managing savanna landscapes to increase pyrodiversity is especially important in wet savannas. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  10. Textural analysis of historical aerial photography to characterize woody plant encroachment in South African savanna

    Treesearch

    Andrew T. Hudak; Carol A. Wessman

    1998-01-01

    Transitions from grassland to shrubland through woody plant encroachment result in potentially significant shifts in savanna ecosystem function. Given high resolution imagery, a textural index could prove useful for mapping woody plant densities and monitoring woody plant encroachment across savanna landscapes. Spatial heterogeneity introduced through mixtures of...

  11. Improving the prediction of African savanna vegetation variables using time series of MODIS products

    NASA Astrophysics Data System (ADS)

    Tsalyuk, Miriam; Kelly, Maggi; Getz, Wayne M.

    2017-09-01

    vegetation by examining the transferability of predictive models through space and time. Our results show that models created in the wetter part of Etosha could accurately predict trees' and shrubs' variables in the drier part of the reserve and vice versa. Moreover, our results demonstrate that models created for vegetation variables in the dry season of 2011 could be successfully applied to predict vegetation in the wet season of 2012. We conclude that extensive field data combined with multiyear time series of MODIS vegetation products can produce robust predictive models for multiple vegetation forms in the African savanna. These methods advance the monitoring of savanna vegetation dynamics and contribute to improved management and conservation of these valuable ecosystems.

  12. Using Paleoecology to Inform Land Management as Climates Change: An Example from an Oak Savanna Ecosystem.

    PubMed

    Spencer, Jessica D; Brunelle, Andrea; Hepola, Tim

    2017-12-01

    Oak savanna, a transitional ecosystem between open prairie and dense oak forest, was once widespread in Minnesota. Upon European settlement much of the oak savanna was destroyed. Recently, efforts to restore this ecosystem have increased and often include the reintroduction of fire. Though fire is known to serve an important role within oak savannas, there are currently few studies which address fire regimes on timescales longer than the last century. This research presents a paleoecological history of Sherburne National Wildlife Refuge (SNWR) in MN, USA, spanning the last ~8000 years. The objectives of this study were to use charcoal, pollen, and magnetic susceptibility of lake sediments collected from Johnson Slough (JS) within the refuge to evaluate the natural range of variability and disturbance history of the oak savanna within the refuge, assess the success of current restoration strategies, and add to the regional paleoecological history. The mid/late Holocene period of the JS record shows a period of high fire activity from ca. 6500 to 2600 cal year BP, with a shift from prairie to oak savanna occurring over this same period. A (possibly agricultural) disturbance to JS sediments affected the period from ca. 2600 cal year BP to 1963 AD, which includes the time of Euro-American settlement. However, the destruction and subsequent restoration of the oak savanna is evident in a pollen ratio of Quercus:Poaceae, indicating that current restoration efforts have been successful at restoring the oak savanna to within the natural range of variability seen just prior to destruction.

  13. Using Paleoecology to Inform Land Management as Climates Change: An Example from an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    Spencer, Jessica D.; Brunelle, Andrea; Hepola, Tim

    2017-12-01

    Oak savanna, a transitional ecosystem between open prairie and dense oak forest, was once widespread in Minnesota. Upon European settlement much of the oak savanna was destroyed. Recently, efforts to restore this ecosystem have increased and often include the reintroduction of fire. Though fire is known to serve an important role within oak savannas, there are currently few studies which address fire regimes on timescales longer than the last century. This research presents a paleoecological history of Sherburne National Wildlife Refuge (SNWR) in MN, USA, spanning the last 8000 years. The objectives of this study were to use charcoal, pollen, and magnetic susceptibility of lake sediments collected from Johnson Slough (JS) within the refuge to evaluate the natural range of variability and disturbance history of the oak savanna within the refuge, assess the success of current restoration strategies, and add to the regional paleoecological history. The mid/late Holocene period of the JS record shows a period of high fire activity from ca. 6500 to 2600 cal year BP, with a shift from prairie to oak savanna occurring over this same period. A (possibly agricultural) disturbance to JS sediments affected the period from ca. 2600 cal year BP to 1963 AD, which includes the time of Euro-American settlement. However, the destruction and subsequent restoration of the oak savanna is evident in a pollen ratio of Quercus:Poaceae, indicating that current restoration efforts have been successful at restoring the oak savanna to within the natural range of variability seen just prior to destruction.

  14. An Overview of Nitrogen Cycling in a Semiarid Savanna: Some Implications for Management and Conservation in a Large African Park

    NASA Astrophysics Data System (ADS)

    Coetsee, Corli; Jacobs, Shayne; Govender, Navashni

    2012-02-01

    Nitrogen (N) is a major control on primary productivity and hence on the productivity and diversity of secondary producers and consumers. As such, ecosystem structure and function cannot be understood without a comprehensive understanding of N cycling and dynamics. This overview describes the factors that govern N distribution and dynamics and the consequences that variable N dynamics have for structure, function and thresholds of potential concern (TPCs) for management of a semiarid southern African savanna. We focus on the Kruger National Park (KNP), a relatively intact savanna, noted for its wide array of animal and plant species and a prized tourist destination. KNP's large size ensures integrity of most ecosystem processes and much can be learned about drivers of ecosystem structure and function using this park as a baseline. Our overview shows that large scale variability in substrates exists, but do not necessarily have predictable consequences for N cycling. The impact of major drivers such as fire is complex; at a landscape scale little differences in stocks and cycling were found, though at a smaller scale changes in woody cover can lead to concomitant changes in total N. Contrasting impacts of browsers and grazers on N turnover has been recorded. Due to the complexity of this ecosystem, we conclude that it will be complicated to draw up TPCs for most transformations and pools involved with the N cycle. However, we highlight in which cases the development of TPCs will be possible.

  15. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa.

    PubMed

    Quansah, Emmanuel; Mauder, Matthias; Balogun, Ahmed A; Amekudzi, Leonard K; Hingerl, Luitpold; Bliefernicht, Jan; Kunstmann, Harald

    2015-12-01

    The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO 2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO 2 , mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO 2 assimilation leading to higher GPP. However, CO 2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.

  16. Fuel moisture content estimation: a land-surface modelling approach applied to African savannas

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Spessa, A.; Kaduk, J.; Balzter, H.

    2009-04-01

    Despite the importance of fire to the global climate system, in terms of emissions from biomass burning, ecosystem structure and function, and changes to surface albedo, current land-surface models do not adequately estimate key variables affecting fire ignition and propagation. Fuel moisture content (FMC) is considered one of the most important of these variables (Chuvieco et al., 2004). Biophysical models, with appropriate plant functional type parameterisations, are the most viable option to adequately predict FMC over continental scales at high temporal resolution. However, the complexity of plant-water interactions, and the variability associated with short-term climate changes, means it is one of the most difficult fire variables to quantify and predict. Our work attempts to resolve this issue using a combination of satellite data and biophysical modelling applied to Africa. The approach we take is to represent live FMC as a surface dryness index; expressed as the ratio between the Normalised Difference Vegetation Index (NDVI) and land-surface temperature (LST). It has been argued in previous studies (Sandholt et al., 2002; Snyder et al., 2006), that this ratio displays a statistically stronger correlation to FMC than either of the variables, considered separately. In this study, simulated FMC is constrained through the assimilation of remotely sensed LST and NDVI data into the land-surface model JULES (Joint-UK Land Environment Simulator). Previous modelling studies of fire activity in Africa savannas, such as Lehsten et al. (2008), have reported significant levels of uncertainty associated with the simulations. This uncertainty is important because African savannas are among some of the most frequently burnt ecosystems and are a major source of greenhouse trace gases and aerosol emissions (Scholes et al., 1996). Furthermore, regional climate model studies indicate that many parts of the African savannas will experience drier and warmer conditions in future

  17. Fire in Australian savannas: from leaf to landscape

    PubMed Central

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767

  18. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna.

    PubMed

    Palmer, Todd M; Stanton, Maureen L; Young, Truman P; Goheen, Jacob R; Pringle, Robert M; Karban, Richard

    2008-01-11

    Mutualisms are key components of biodiversity and ecosystem function, yet the forces maintaining them are poorly understood. We investigated the effects of removing large mammals on an ant-Acacia mutualism in an African savanna. Ten years of large-herbivore exclusion reduced the nectar and housing provided by plants to ants, increasing antagonistic behavior by a mutualistic ant associate and shifting competitive dominance within the plant-ant community from this nectar-dependent mutualist to an antagonistic species that does not depend on plant rewards. Trees occupied by this antagonist suffered increased attack by stem-boring beetles, grew more slowly, and experienced doubled mortality relative to trees occupied by the mutualistic ant. These results show that large mammals maintain cooperation within a widespread symbiosis and suggest complex cascading effects of megafaunal extinction.

  19. Fire in Australian savannas: from leaf to landscape.

    PubMed

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Patterns in woody vegetation structure across African savannas

    NASA Astrophysics Data System (ADS)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal

  1. Preferential production and transport of grass-derived pyrogenic carbon in NE-Australian savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Saiz, Gustavo; Goodrick, Iain; Wurster, Christopher; Nelson, Paul N.; Wynn, Jonathan; Bird, Michael

    2017-12-01

    Understanding the main factors driving fire regimes in grasslands and savannas is critical to better manage their biodiversity and functions. Moreover, improving our knowledge on pyrogenic carbon (PyC) dynamics, including formation, transport and deposition, is fundamental to better understand a significant slow-cycling component of the global carbon cycle, particularly as these ecosystems account for a substantial proportion of the area globally burnt. However, a thorough assessment of past fire regimes in grass-dominated ecosystems is problematic due to challenges in interpreting the charcoal record of sediments. It is therefore critical to adopt appropriate sampling and analytical methods to allow the acquisition of reliable data and information on savanna fire dynamics. This study uses hydrogen pyrolysis (HyPy) to quantify PyC abundance and stable isotope composition (δ13C) in recent sediments across 38 micro-catchments covering a wide range of mixed C3/C4 vegetation in north Queensland, Australia. We exploited the contrasting δ13C values of grasses (i.e. C4; δ13C >-15‰) and woody vegetation (i.e. C3; δ13C <-24‰) to assess the preferential production and transport of grass-derived PyC in savanna ecosystems. Analyses were conducted on bulk and size-fractionated samples to determine the fractions into which PyC preferentially accumulates. Our data show that the δ13C value of PyC in the sediments is decoupled from the δ13C value of total organic carbon, which suggests that a significant component of PyC may be derived from incomplete grass combustion, even when the proportion of C4 grass biomass in the catchment was relatively small. Furthermore, we conducted 16 experimental burns that indicate that there is a comminution of PyC produced in-situ to smaller particles, which facilitates the transport of this material, potentially affecting its preservation potential. Savanna fires preferentially burn the grass understory rather than large trees, leading to

  2. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  3. Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments.

    PubMed

    Goheen, Jacob R; Augustine, David J; Veblen, Kari E; Kimuyu, Duncan M; Palmer, Todd M; Porensky, Lauren M; Pringle, Robert M; Ratnam, Jayashree; Riginos, Corinna; Sankaran, Mahesh; Ford, Adam T; Hassan, Abdikadir A; Jakopak, Rhiannon; Kartzinel, Tyler R; Kurukura, Samson; Louthan, Allison M; Odadi, Wilfred O; Otieno, Tobias O; Wambua, Alois M; Young, Hillary S; Young, Truman P

    2018-05-11

    African savannas support an iconic fauna, but they are undergoing large-scale population declines and extinctions of large (>5 kg) mammals. Long-term, controlled, replicated experiments that explore the consequences of this defaunation (and its replacement with livestock) are rare. The Mpala Research Centre in Laikipia County, Kenya, hosts three such experiments, spanning two adjacent ecosystems and environmental gradients within them: the Kenya Long-Term Exclosure Experiment (KLEE; since 1995), the Glade Legacies and Defaunation Experiment (GLADE; since 1999), and the Ungulate Herbivory Under Rainfall Uncertainty experiment (UHURU; since 2008). Common themes unifying these experiments are (1) evidence of profound effects of large mammalian herbivores on herbaceous and woody plant communities; (2) competition and compensation across herbivore guilds, including rodents; and (3) trophic cascades and other indirect effects. We synthesize findings from the past two decades to highlight generalities and idiosyncrasies among these experiments, and highlight six lessons that we believe are pertinent for conservation. The removal of large mammalian herbivores has dramatic effects on the ecology of these ecosystems; their ability to rebound from these changes (after possible refaunation) remains unexplored. © 2018 New York Academy of Sciences.

  4. Large herbivores promote habitat specialization and beta diversity of African savanna trees.

    PubMed

    Pringle, Robert M; Prior, Kirsten M; Palmer, Todd M; Young, Truman P; Goheen, Jacob R

    2016-10-01

    Edaphic variation in plant community composition is widespread, yet its underlying mechanisms are rarely understood and often assumed to be physiological. In East African savannas, Acacia tree species segregate sharply across soils of differing parent material: the ant-defended whistling thorn, A. drepanolobium (ACDR), is monodominant on cracking clay vertisols that are nutrient rich but physically stressful, whereas poorly defended species such as A. brevispica (ACBR) dominate on nutrient-poor but otherwise less-stressful sandy loams. Using a series of field experiments, we show that large-mammal herbivory interacts with soil properties to maintain this pattern. In the absence of large herbivores, transplanted saplings of both species established on both soil types. Browsers strongly suppressed survival and growth of ACDR saplings on sandy soil, where resource limitation constrained defensive investment. On clay soil, ACBR saplings established regardless of herbivory regime, but elephants prevented recruitment to maturity, apparently because trees could not tolerate the combination of biotic and abiotic stressors. Hence, each tree species was filtered out of one habitat by browsing in conjunction with different edaphic factors and at different ontogenetic stages. Browser abundance was greater on sandy soil, where trees were less defended, consistent with predicted feedbacks between plant community assembly and herbivore distributions. By exploring two inversely related axes of soil "quality" (abiotic stress and nutrient content), our study extends the range of mechanisms by which herbivores are known to promote edaphic specialization, illustrates how the high cost of a protection mutualism can constrain the realized niche of host trees, and shows that large-scale properties of savanna ecosystems are shaped by species interactions in cryptic ways that mimic simple abiotic determinism. These results suggest that ongoing declines in large-herbivore populations may

  5. Integrating in-situ, Landsat, and MODIS data for mapping in Southern African savannas: experiences of LCCS-based land-cover mapping in the Kalahari in Namibia.

    PubMed

    Hüttich, Christian; Herold, Martin; Strohbach, Ben J; Dech, Stefan

    2011-05-01

    Integrated ecosystem assessment initiatives are important steps towards a global biodiversity observing system. Reliable earth observation data are key information for tracking biodiversity change on various scales. Regarding the establishment of standardized environmental observation systems, a key question is: What can be observed on each scale and how can land cover information be transferred? In this study, a land cover map from a dry semi-arid savanna ecosystem in Namibia was obtained based on the UN LCCS, in-situ data, and MODIS and Landsat satellite imagery. In situ botanical relevé samples were used as baseline data for the definition of a standardized LCCS legend. A standard LCCS code for savanna vegetation types is introduced. An object-oriented segmentation of Landsat imagery was used as intermediate stage for downscaling in-situ training data on a coarse MODIS resolution. MODIS time series metrics of the growing season 2004/2005 were used to classify Kalahari vegetation types using a tree-based ensemble classifier (Random Forest). The prevailing Kalahari vegetation types based on LCCS was open broadleaved deciduous shrubland with an herbaceous layer which differs from the class assignments of the global and regional land-cover maps. The separability analysis based on Bhattacharya distance measurements applied on two LCCS levels indicated a relationship of spectral mapping dependencies of annual MODIS time series features due to the thematic detail of the classification scheme. The analysis of LCCS classifiers showed an increased significance of life-form composition and soil conditions to the mapping accuracy. An overall accuracy of 92.48% was achieved. Woody plant associations proved to be most stable due to small omission and commission errors. The case study comprised a first suitability assessment of the LCCS classifier approach for a southern African savanna ecosystem.

  6. Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments

    USDA-ARS?s Scientific Manuscript database

    African savannas support an iconic fauna, but they are undergoing large-scale population declines and extinctions of large (>5 kg) mammals. Long-term, controlled, replicated experiments that explore the consequences of this defaunation (and its replacement with livestock) are rare. The Mpala Researc...

  7. A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Schnase, John L.; Weber, Keith T.; Brown, Molly E.; Gill, Roger L.; Haskett, George W.; Gardner, Tess A.

    2013-01-01

    The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies.

  8. Termites and large herbivores influence seed removal rates in an African savanna.

    PubMed

    Acanakwo, Erik Francis; Sheil, Douglas; Moe, Stein R

    2017-12-01

    Seed removal can influence plant community dynamics, composition, and resulting vegetation characteristics. In the African savanna, termites and large herbivores influence vegetation in various ways, likely including indirect effects on seed predators and secondary dispersers. However, the intensity and variation of seed removal rates in African savannas has seldom been studied. We experimentally investigated whether termites and large herbivores were important factors in the mechanisms contributing to observed patterns in tree species composition on and off mounds, in Lake Mburo National Park, Uganda. Within fenced (excluding large herbivores) and unfenced termite mound and adjacent savanna plots, we placed seeds of nine native tree species within small open "cages," accessed by all animals, roofed cages that only allowed access to small vertebrates and invertebrates, and closed cages that permitted access by smaller invertebrates only (5 mm wire mesh). We found that mean seed removal rate was high (up to 87.3% per 3 d). Mound habitats experienced significantly higher removal rates than off-mound habitats. The mean removal rate of native seeds from closed cages was 11.1% per 3 d compared with 19.4% and 23.3% removed per 3 d in the roofed and open cages, respectively. Smaller seeds experienced higher removal rates than larger seeds. Large herbivore exclusion on mounds reduced native seed removal rates by a mean of 8.8% in the open cages, but increased removal rates by 1.7% in the open cages when off-mound habitats were fenced. While removal rates from open cages were higher on active mounds (30.9%) than on inactive mounds (26.7%), the removal rates from closed cages were lower on active vs. inactive mounds (6.1% vs. 11.6%, respectively). Thus, we conclude that large herbivores and Macrotermes mounds influence seed removal rates, though these effects appear indirect. © 2017 by the Ecological Society of America.

  9. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    NASA Technical Reports Server (NTRS)

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  10. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  11. Soil Texture Mediates the Response of Tree Cover to Rainfall Intensity in African Savannas

    NASA Astrophysics Data System (ADS)

    Case, M. F.; Staver, A. C.

    2017-12-01

    Global circulation models predict widespread shifts in the frequency and intensity of rainfall, even where mean annual rainfall does not change. Resulting changes in soil moisture dynamics could have major consequences for plant communities and ecosystems, but the direction of potential vegetation responses can be challenging to predict. In tropical savannas, where tree and grasses coexist, contradictory lines of evidence have suggested that tree cover could respond either positively or negatively to less frequent, more intense rainfall. Here, we analyzed remote sensing data and continental-scale soils maps to examine whether soil texture or fire could explain heterogeneous responses of savanna tree cover to intra-annual rainfall variability across sub-Saharan Africa. We find that tree cover generally increases with mean wet-season rainfall, decreases with mean wet-season rainfall intensity, and decreases with fire frequency. However, soil sand content mediates these relationships: the response to rainfall intensity switches qualitatively depending on soil texture, such that tree cover decreases dramatically with less frequent, more intense rainfall on clay soils but increases with rainfall intensity on sandy soils in semi-arid savannas. We propose potential ecohydrological mechanisms for this heterogeneous response, and emphasize that predictions of savanna vegetation responses to global change should account for interactions between soil texture and changing rainfall patterns.

  12. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna.

    PubMed

    Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh

    2017-02-01

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.

  13. Challenges and opportunities in land surface modelling of savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Beringer, Jason; Hutley, Lindsay B.; Abramowitz, Gabriel; De Kauwe, Martin G.; Evans, Bradley; Haverd, Vanessa; Li, Longhui; Moore, Caitlin; Ryu, Youngryel; Scheiter, Simon; Schymanski, Stanislaus J.; Smith, Benjamin; Wang, Ying-Ping; Williams, Mathew; Yu, Qiang

    2017-10-01

    The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and

  14. Modeling the effects of anthropogenic habitat change on savanna snake invasions into African rainforest.

    PubMed

    Freedman, Adam H; Buermann, Wolfgang; Lebreton, Matthew; Chirio, Laurent; Smith, Thomas B

    2009-02-01

    We used a species-distribution modeling approach, ground-based climate data sets, and newly available remote-sensing data on vegetation from the MODIS and Quick Scatterometer sensors to investigate the combined effects of human-caused habitat alterations and climate on potential invasions of rainforest by 3 savanna snake species in Cameroon, Central Africa: the night adder (Causus maculatus), olympic lined snake (Dromophis lineatus), and African house snake (Lamprophis fuliginosus). Models with contemporary climate variables and localities from native savanna habitats showed that the current climate in undisturbed rainforest was unsuitable for any of the snake species due to high precipitation. Limited availability of thermally suitable nest sites and mismatches between important life-history events and prey availability are a likely explanation for the predicted exclusion from undisturbed rainforest. Models with only MODIS-derived vegetation variables and savanna localities predicted invasion in disturbed areas within the rainforest zone, which suggests that human removal of forest cover creates suitable microhabitats that facilitate invasions into rainforest. Models with a combination of contemporary climate, MODIS- and Quick Scatterometer-derived vegetation variables, and forest and savanna localities predicted extensive invasion into rainforest caused by rainforest loss. In contrast, a projection of the present-day species-climate envelope on future climate suggested a reduction in invasion potential within the rainforest zone as a consequence of predicted increases in precipitation. These results emphasize that the combined responses of deforestation and climate change will likely be complex in tropical rainforest systems.

  15. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin)

    NASA Astrophysics Data System (ADS)

    Akpo, A. B.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C.

    2015-08-01

    burning and biofuel combustions. The second highest contribution is the calcium ion (13.3 μeq·L-1), characteristic of dust aerosols from terrigenous sources, Calcium contributes up to 46% of the precipitation chemistry in Djougou. Finally, these results are compared to those obtained for other selected African sites representative of other main natural ecosystems: dry savanna and forest. The study of the African ecosystem transect indicates a pH gradient with more acidic pH in the forested ecosystem. Nitrogenous contribution to the chemical composition of rain in Lamto, wet savanna, (24%) is equivalent to the one estimated in Djougou (24%). The last contribution concerns organic acidity, which represents 7% of total ionic content of precipitation at Djougou. The relative particulate contribution PC and the relative gaseous contribution GC are calculated using the mean chemical composition measured in Djougou for the studied period. The comparison with other African sites gives 40% and 43% PC in wet savannas of Lamto (Côte d'Ivoire) and Djougou (Benin) respectively, 20% PC in the equatorial forest of Zoetele (Cameroon) and 80% PC in dry savanna of Banizoumbou (Niger). The results shown here indicate the existence of a North-South gradients of organic, marine, terrigenous and nitrogenous contributions along the transect in West and Central Africa.

  16. Large herbivores facilitate savanna tree establishment via diverse and indirect pathways.

    PubMed

    Goheen, Jacob R; Palmer, Todd M; Keesing, Felicia; Riginos, Corinna; Young, Truman P

    2010-03-01

    1. Savanna ecosystems are defined largely by tree-grass mixtures, and tree establishment is a key driver of community structure and ecosystem function in these systems. The factors controlling savanna tree establishment are understudied, but likely involve some combination of seed, microsite and predator/fire limitation. In African savannas, suppression and killing of adult trees by large mammals like elephants (Loxodonta africana Blumenbach, 1797) and giraffes (Giraffa camelopardalis Linnaeus, 1758) can maintain tree-grass co-dominance, although the impacts of even these conspicuous herbivores on tree establishment also are poorly understood. 2. We combined seed addition and predator exclusion experiments with a large-scale, long-term field manipulation of large herbivores to investigate the relative importance of seeds, microsites and predators in limiting establishment of a monodominant tree (Acacia drepanolobium Sjostedt) in a Kenyan savanna. 3. Both wild and domestic (i.e. cattle; Bos taurus Linnaeus, 1758) large herbivores facilitated tree establishment by suppressing abundances of rodents, the most important seed and seedling predators. However, this indirect, positive effect of wild herbivores was negated by wild herbivores' suppression of seed production. Cattle did not have this direct, negative impact; rather, they further assisted tree establishment by reducing cover of understorey grasses. Thus, the impacts of both groups of large herbivores on tree establishment were largely routed through other taxa, with a negligible net effect of wild herbivores and a positive net effect of cattle on tree establishment. 4. The distinction between the (positive) net effect of cattle and (neutral) net effect of wild herbivores is due to the inclusion of browsers and mixed feeders within the assemblage of wild herbivores. Browsing by wild herbivores limited seed production, which reduced tree recruitment; grazing by cattle was more pronounced than that by wild

  17. Grasses and browsers reinforce landscape heterogeneity by excluding trees from ecosystem hotspots.

    PubMed

    Porensky, Lauren M; Veblen, Kari E

    2012-03-01

    Spatial heterogeneity in woody cover affects biodiversity and ecosystem function, and may be particularly influential in savanna ecosystems. Browsing and interactions with herbaceous plants can create and maintain heterogeneity in woody cover, but the relative importance of these drivers remains unclear, especially when considered across multiple edaphic contexts. In African savannas, abandoned temporary livestock corrals (bomas) develop into long-term, nutrient-rich ecosystem hotspots with unique vegetation. In central Kenya, abandoned corral sites persist for decades as treeless 'glades' in a wooded matrix. Though glades are treeless, areas between adjacent glades have higher tree densities than the background savanna or areas near isolated glades. The mechanisms maintaining these distinctive woody cover patterns remain unclear. We asked whether browsing or interactions with herbaceous plants help to maintain landscape heterogeneity by differentially impacting young trees in different locations. We planted the mono-dominant tree species (Acacia drepanolobium) in four locations: inside glades, far from glades, at edges of isolated glades and at edges between adjacent glades. Within each location, we assessed the separate and combined effects of herbivore exclusion (caging) and herbaceous plant removal (clearing) on tree survival and growth. Both caging and clearing improved tree survival and growth inside glades. When herbaceous plants were removed, trees inside glades grew more than trees in other locations, suggesting that glade soils were favorable for tree growth. Different types of glade edges (isolated vs. non-isolated) did not have significantly different impacts on tree performance. This represents one of the first field-based experiments testing the separate and interactive effects of browsing, grass competition and edaphic context on savanna tree performance. Our findings suggest that, by excluding trees from otherwise favorable sites, both herbaceous

  18. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna.

    PubMed

    Davidson, Zeke; Valeix, Marion; Van Kesteren, Freya; Loveridge, Andrew J; Hunt, Jane E; Murindagomo, Felix; Macdonald, David W

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs' index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group "medium Bovidae" are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs' index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour.

  19. Seasonal Diet and Prey Preference of the African Lion in a Waterhole-Driven Semi-Arid Savanna

    PubMed Central

    Van Kesteren, Freya; Loveridge, Andrew J.; Hunt, Jane E.; Murindagomo, Felix; Macdonald, David W.

    2013-01-01

    Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs’ index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group “medium Bovidae” are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs’ index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour. PMID:23405121

  20. Spiny plants, mammal browsers, and the origin of African savannas.

    PubMed

    Charles-Dominique, Tristan; Davies, T Jonathan; Hempson, Gareth P; Bezeng, Bezeng S; Daru, Barnabas H; Kabongo, Ronny M; Maurin, Olivier; Muasya, A Muthama; van der Bank, Michelle; Bond, William J

    2016-09-20

    Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils.

  1. Spiny plants, mammal browsers, and the origin of African savannas

    PubMed Central

    Charles-Dominique, Tristan; Davies, T. Jonathan; Hempson, Gareth P.; Bezeng, Bezeng S.; Kabongo, Ronny M.; Maurin, Olivier; Muasya, A. Muthama; van der Bank, Michelle; Bond, William J.

    2016-01-01

    Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils. PMID:27601649

  2. Biodiversity effects on ecosystem function due to land use: The case of buffel savannas in the Sky Islands Seas in the central region of Sonora

    Treesearch

    A. E. Castellanos; H. Celaya; C. Hinojo; A. Ibarra; J. R. Romo

    2013-01-01

    Buffel savannas have been an important landscape on cattle grazing ranches in Sonora over the past 50 years or more. Changes in land use result in biodiversity changes that may produce ecosystem functional changes; however, these are less well documented. Although fire driven processes have been proposed for Buffel savannas, this is not generally the case, and other...

  3. Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna

    PubMed Central

    Pringle, Robert M.; Young, Truman P.; Rubenstein, Daniel I.; McCauley, Douglas J.

    2007-01-01

    Despite conceptual recognition that indirect effects initiated by large herbivores are likely to have profound impacts on ecological community structure and function, the existing literature on indirect effects focuses largely on the role of predators. As a result, we know neither the frequency and extent of herbivore-initiated indirect effects nor the mechanisms that regulate their strength. We examined the effects of ungulates on taxa (plants, arthropods, and an insectivorous lizard) representing several trophic levels, using a series of large, long-term, ungulate-exclusion plots that span a landscape-scale productivity gradient in an African savanna. At each of six sites, lizards, trees, and the numerically dominant order of arthropods (Coleoptera) were more abundant in the absence of ungulates. The effect of ungulates on arthropods was mediated by herbaceous vegetation cover. The effect on lizards was simultaneously mediated by both tree density (lizard microhabitat) and arthropod abundance (lizard food). The magnitudes of the experimental effects on all response variables (trees, arthropods, and lizards) were negatively correlated with two distinct measures of primary productivity. These results demonstrate strong cascading effects of ungulates, both trophic and nontrophic, and support the hypothesis that productivity regulates the strength of these effects. Hence, the strongest indirect effects (and thus, the greatest risks to ecosystem integrity after large mammals are extirpated) are likely to occur in low-productivity habitats. PMID:17190823

  4. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.

    PubMed

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas

    2015-01-01

    The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2)  day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics

  5. Emissions From Miombo Woodland and Dambo Grassland Savanna Fires in Southern Africa

    NASA Astrophysics Data System (ADS)

    Sinha, P.; Hobbs, P. V.; Yokelson, R. J.; Blake, D. R.; Gao, S.; Kirchstetter, T. W.

    2003-12-01

    African savanna fires are the largest source of biomass burning emissions worldwide, and the miombo woodland ecosystem is the most abundant type of savanna in southern Africa. Dambo grasslands are major enclaves within miombo woodlands. Savanna fires in these two ecosystems accounted for over one-third of the total area burned in southern Africa during the dry season of 2000. Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in plots of miombo woodland and dambo grassland were obtained on September 1 and September 5, 2000, respectively. These measurements provide emission factors for a number of gaseous species including carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide (SO2), dimethyl sulfide (DMS), nitrogen oxides (NOx), ammonia (NH3), hydrogen cyanide (HCN), methane (CH4), non-methane hydrocarbons (NMHC), halocarbons, oxygenated compounds, as well as for particulates. Emission factors for the two fires are combined with measurements of fuel loading, combustion completeness, and burned area to estimate the emissions of trace gases and particles from miombo woodland and dambo grassland fires in southern Africa during the dry season of 2000. These estimates indicate that in August and September of 2000 miombo woodland and dambo grassland fires in southern Africa accounted for about 30%, 25%, 15%, and 64% of the emissions of CO2, CO, total hydrocarbons, and total particulate matter, respectively, emitted from all types of savanna fires in southern Africa. It is also estimated that the ratios of dry season emissions from miombo woodland and dambo grassland fires in Zambia to annual emissions from the use of biofuels in Zambia for CO2, CO, NOx, formic acid, CH4, NH3, ethane, ethene, propene, acetylene, formaldehyde, methanol, and acetic acid are 3.2, 1.5, 7.2, 2.5, 0.2, 0.6, 0.2, 0.5, 0.4, 0.3, 0.6, 0.3, and 0.5, respectively.

  6. Habitat differences in dung beetle assemblages in an African savanna-forest ecotone: implications for secondary seed dispersal.

    PubMed

    Kunz, Britta K; Krell, Frank-Thorsten

    2011-06-01

    The probability and pattern of secondary seed dispersal by dung beetles (Scarabaeinae) depend on their community structure and composition at the site of primary deposition, which, in turn, seem to be strongly determined by vegetation. Consequently, we expected pronounced differences in secondary seed dispersal between forest and savanna in the northern Ivory Coast, West Africa. We found 99 dung beetle species at experimentally exposed dung piles of the olive baboon (Papio anubis (Lesson, 1827)), an important primary seed disperser in West Africa. Seventy-six species belonged to the roller and tunneler guilds, which are relevant for secondary seed dispersal. Most species showed a clear habitat preference. Contrary to the Neotropics, species number and abundance were much higher in the savanna than in the forest. Rollers and tunnelers each accounted for approximately 50% of the individuals in the savanna, but in the forest rollers made up only 4%. Seeds deposited into the savanna by an omnivorous primary disperser generally have a higher overall probability of being more rapidly dispersed secondarily by dung beetles than seeds in the forest. Also, rollers disperse seeds over larger distances. In contrast to other studies, small rollers were active in dispersal of large seeds, which were seemingly mistaken for dung balls. Our results suggest that rollers can remove seeds from any plant dispersed in primate dung in this ecosystem. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  7. Synergistic effects of fire and elephants on arboreal animals in an African savanna.

    PubMed

    Pringle, Robert M; Kimuyu, Duncan M; Sensenig, Ryan L; Palmer, Todd M; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2015-11-01

    Disturbance is a crucial determinant of animal abundance, distribution and community structure in many ecosystems, but the ways in which multiple disturbance types interact remain poorly understood. The effects of multiple-disturbance interactions can be additive, subadditive or super-additive (synergistic). Synergistic effects in particular can accelerate ecological change; thus, characterizing such synergies, the conditions under which they arise, and how long they persist has been identified as a major goal of ecology. We factorially manipulated two principal sources of disturbance in African savannas, fire and elephants, and measured their independent and interactive effects on the numerically dominant vertebrate (the arboreal gekkonid lizard Lygodactylus keniensis) and invertebrate (a guild of symbiotic Acacia ants) animal species in a semi-arid Kenyan savanna. Elephant exclusion alone (minus fire) had negligible effects on gecko density. Fire alone (minus elephants) had negligible effects on gecko density after 4 months, but increased gecko density twofold after 16 months, likely because the decay of fire-damaged woody biomass created refuges and nest sites for geckos. In the presence of elephants, fire increased gecko density nearly threefold within 4 months of the experimental burn; this occurred because fire increased the incidence of elephant damage to trees, which in turn improved microhabitat quality for geckos. However, this synergistic positive effect of fire and elephants attenuated over the ensuing year, such that only the main effect of fire was evident after 16 months. Fire also altered the structure of symbiotic plant-ant assemblages occupying the dominant tree species (Acacia drepanolobium); this influenced gecko habitat selection but did not explain the synergistic effect of fire and elephants. However, fire-driven shifts in plant-ant occupancy may have indirectly mediated this effect by increasing trees' susceptibility to elephant damage. Our

  8. Climate change and long-term fire management impacts on Australian savannas.

    PubMed

    Scheiter, Simon; Higgins, Steven I; Beringer, Jason; Hutley, Lindsay B

    2015-02-01

    Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO₂ fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna.

    PubMed

    Ma, Siyan; Osuna, Jessica L; Verfaillie, Joseph; Baldocchi, Dennis D

    2017-06-01

    Ecosystem CO 2 fluxes measured with eddy-covariance techniques provide a new opportunity to retest functional responses of photosynthesis to abiotic factors at the ecosystem level, but examining the effects of one factor (e.g., temperature) on photosynthesis remains a challenge as other factors may confound under circumstances of natural experiments. In this study, we developed a data mining framework to analyze a set of ecosystem CO 2 fluxes measured from three eddy-covariance towers, plus a suite of abiotic variables (e.g., temperature, solar radiation, air, and soil moisture) measured simultaneously, in a Californian oak-grass savanna from 2000 to 2015. Natural covariations of temperature and other factors caused remarkable confounding effects in two particular conditions: lower light intensity at lower temperatures and drier air and soil at higher temperatures. But such confounding effects may cancel out. At the ecosystem level, photosynthetic responses to temperature did follow a quadratic function on average. The optimum value of photosynthesis occurred within a narrow temperature range (i.e., optimum temperature, T opt ): 20.6 ± 0.6, 18.5 ± 0.7, 19.2 ± 0.5, and 19.0 ± 0.6 °C for the oak canopy, understory grassland, entire savanna, and open grassland, respectively. This paradigm confirms that photosynthesis response to ambient temperature changes is a functional relationship consistent across leaf-canopy-ecosystem scales. Nevertheless, T opt can shift with variations in light intensity, air dryness, or soil moisture. These findings will pave the way to a direct determination of thermal optima and limits of ecosystem photosynthesis, which can in turn provide a rich resource for baseline thresholds and dynamic response functions required for predicting global carbon balance and geographic shifts of vegetative communities in response to climate change.

  10. Plant-soil feedback in East-African savanna trees.

    PubMed

    Rutten, Gemma; Prati, Daniel; Hemp, Andreas; Fischer, Markus

    2016-02-01

    Research in savannas has focused on tree-grass interactions, whereas tree species coexistence received little attention. A leading hypothesis to explain tree coexistence is the Janzen-Connell model, which proposes an accumulation of host-specific enemies, e.g., soil organisms. While it has been shown in several non-savanna case studies that seedlings dispersed away from the mother perform better than seedlings that stay close (home-away effect), few studies tested whether foreign seedling species can replace own seedlings under conspecific adults (replacement effect). Some studies additionally tested for negative effects of conspecific biota (conspecific effect) to demonstrate the accumulation of enemies. We tested these effects by reciprocally growing seedlings of four tree species on soil collected beneath adults of all species, with and without applying a soil sterilization treatment. We found negative home-away effects suggesting that dispersal is advantageous and negative replacement effects suggesting species replacement under adults. While negative conspecific effects indicate accumulated enemies, positive heterospecific effects indicate an accumulation of mutualists rather than enemies for some species. We suggest that plant-soil feedbacks may well contribute to tree coexistence in savannas due to both negative conspecific and positive heterospecific feedbacks.

  11. Trace Gas Measurements in Nascent, Aged and Cloud-processed Smoke from Africa Savanna Fires by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)

    NASA Technical Reports Server (NTRS)

    Yokelson, Robert J.; Bertschi, Isaac T.; Christian, Ted J.; Hobbs, Peter V.; Ward, Darold E.; Hao, Wei Min

    2003-01-01

    We measured stable and reactive trace gases with an airborne Fourier transform infrared spectrometer (AFTIR) on the University of Washington Convair-580 research aircraft in August/September 2000 during the SAFARI 2000 dry season campaign in Southern Africa. The measurements included vertical profiles of C02, CO, H20, and CH4 up to 5.5 km on six occasions above instrumented ground sites and below the TERRA satellite and ER-2 high-flying research aircraft. We also measured the trace gas emissions from 10 African savanna fires. Five of these fires featured extensive ground-based fuel characterization, and two were in the humid savanna ecosystem that accounts for most African biomass burning. The major constituents we detected in nascent CH3OOH, HCHO, CH30H, HCN, NH3, HCOOH, and C2H2. These are the first quantitative measurements of the initial emissions of oxygenated volatile organic compounds (OVOC), NH3, and HCN from African savanna fires. On average, we measured 5.3 g/kg of OVOC and 3.6 g/kg of hydrocarbons (including CH4) in the initial emissions from the fires. Thus, the OVOC will have profound, largely unexplored effects on tropical tropospheric chemistry. The HCN emission factor was only weakly dependent on fire type; the average value (0.53 g/kg) is about 20 times that of a previous recommendation. HCN may be useful as a tracer for savanna fires. Delta O3/Delta CO and Delta CH3COO/Delta CO increased to as much as 9% in <1 h of photochemical processing downwind of fires. Direct measurements showed that cloud processing of smoke greatly reduced CH30H, NH3, CH3COOH, SO2, and NO2 levels, but significantly increased HCHO and NO.

  12. Evapotranspiration partitioning in a semi-arid African savanna using stable isotopes of water vapor

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Good, S. P.; O'Connor, M.; King, E. G.; Caylor, K. K.

    2012-04-01

    Evapotranspiration (ET) represents a major flux of water out of semi-arid ecosystems. Thus, understanding ET dynamics is central to the study of African savanna health and productivity. At our study site in central Kenya (Mpala Research Centre), we have been using stable isotopes of water vapor to partition ET into its constituent parts of plant transpiration (T) and soil evaporation (E). This effort includes continuous measurement (1 Hz) of δ2H and δ18O in water vapor using a portable water vapor isotope analyzer mounted on a 22.5 m eddy covariance flux tower. The flux tower has been collecting data since early 2010. The isotopic end-member of δET is calculated using a Keeling Plot approach, whereas δT and δE are measured directly via a leaf chamber and tubing buried in the soil, respectively. Here we report on a two recent sets of measurements for partitioning ET in the Kenya Long-term Exclosure Experiment (KLEE) and a nearby grassland. We combine leaf level measurements of photosynthesis and water use with canopy-scale isotope measurements for ET partitioning. In the KLEE experiment we compare ET partitioning in a 4 ha plot that has only seen cattle grazing for the past 15 years with an adjacent plot that has undergone grazing by both cattle and wild herbivores (antelope, elephants, giraffe). These results are compared with a detailed study of ET in an artificially watered grassland.

  13. Using remote sensing to create indicators of ecosystem variability for a semi-arid savanna watershed in the Kavango-Zambezi region of Southern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, Narcisa Gabriela

    This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a

  14. Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity.

    PubMed

    Zhu, Likai; Southworth, Jane; Meng, Jijun

    2015-10-01

    Understanding spatial and temporal dynamics of land surface phenology (LSP) and its driving forces are critical for providing information relevant to short- and long-term decision making, particularly as it relates to climate response planning. With the third generation Global Inventory Monitoring and Modeling System (GIMMS3g) Normalized Difference Vegetation Index (NDVI) data and environmental data from multiple sources, we investigated the spatio-temporal changes in the start of the growing season (SOS) in southern African savannas from 1982 through 2010 and determined its linkage to environmental factors using spatial panel data models. Overall, the SOS occurs earlier in the north compared to the south. This relates in part to the differences in ecosystems, with northern areas representing high rainfall and dense tree cover (mainly tree savannas), whereas the south has lower rainfall and sparse tree cover (mainly bush and grass savannas). From 1982 to 2010, an advanced trend was observed predominantly in the tree savanna areas of the north, whereas a delayed trend was chiefly found in the floodplain of the north and bush/grass savannas of the south. Different environmental drivers were detected within tree- and grass-dominated savannas, with a critical division being represented by the 800 mm isohyet. Our results supported the importance of water as a driver in this water-limited system, specifically preseason soil moisture, in determining the SOS in these water-limited, grass-dominated savannas. In addition, the research pointed to other, often overlooked, effects of preseason maximum and minimum temperatures on the SOS across the entire region. Higher preseason maximum temperatures led to an advance of the SOS, whereas the opposite effects of preseason minimum temperature were observed. With the rapid increase in global change research, this work will prove helpful for managing savanna landscapes and key to predicting how projected climate changes will affect

  15. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  16. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  17. Integrating water and carbon fluxes at the ecosystem scale across African ecosystems

    NASA Astrophysics Data System (ADS)

    Merbold, Lutz; Brümmer, Christian; Archibald, Sally; Ardö, Jonas; Arneth, Almut; Brüggemann, Nicolas; de Grandcourt, Agnes; Kergoat, Laurent; Moffat, Antje M.; Mougin, Eric; Nouvellon, Yann; Saint-Andre, Laurent; Saunders, Matthew; Scholes, Robert J.; Veenendaal, Elmar; Kutsch, Werner L.

    2013-04-01

    In this study we report on water and carbon dioxide fluxes, measured using the eddy covariance (EC) technology, from different ecosystems in Sub-Saharan Africa. These sites differed in ecosystem type (C3 plant dominated woodlands to C4 plant dominated grass savannas) and covered the very dry regions of the Sahel (250 mm rainfall, Sudan), the tropical areas in Central Africa (1650 mm in Uganda) further south to the subtropical areas in Botswana, Zambia and South Africa (400-900 mm in precipitation). The link between water and carbon dioxide fluxes were evaluated for time periods (see also the corresponding abstract by Bruemmer et al.) without water limitation during the peak growing season. Our results show that plant stomata control ecosystem scale water and carbon dioxide fluxes and mediate between plant growth and plant survival. On continental scale, this switch between maximizing carbon uptake and minimizing water losses, from here on called the "Carbon-Water-Tipping Point" was positively correlated to the mean annual growing season temperature at each site. Even though similar responses of plants were shown at the individual leaf-level scale this has to our knowledge not yet been shown at the ecosystem scale further suggesting a long-term adaptation of the complete ecosystems to certain climatic regions. It remains unclear how this adaption will influence the ecosystem response to ongoing climate change and according temperature increases and changes in precipitation.

  18. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought.

    PubMed

    Arndt, Stefan K; Sanders, Gregor J; Bristow, Mila; Hutley, Lindsay B; Beringer, Jason; Livesley, Stephen J

    2015-07-01

    Seasonally dry ecosystems present a challenge to plants to maintain water relations. While native vegetation in seasonally dry ecosystems have evolved specific adaptations to the long dry season, there are risks to introduced exotic species. African mahogany, Khaya senegalensis Desr. (A. Juss.), is an exotic plantation species that has been introduced widely in Asia and northern Australia, but it is unknown if it has the physiological or phenotypic plasticity to cope with the strongly seasonal patterns of water availability in the tropical savanna climate of northern Australia. We investigated the gas exchange and water relations traits and adjustments to seasonal drought in K. senegalensis and native eucalypts (Eucalyptus tetrodonta F. Muell. and Corymbia latifolia F. Muell.) in a savanna ecosystem in northern Australia. The native eucalypts did not exhibit any signs of drought stress after 3 months of no rainfall and probably had access to deeper soil moisture late into the dry season. Leaf water potential, stomatal conductance, transpiration and photosynthesis all remained high in the dry season but osmotic adjustment was not observed. Overstorey leaf area index (LAI) was 0.6 in the native eucalypt savanna and did not change between wet and dry seasons. In contrast, the K. senegalensis plantation in the wet season was characterized by a high water potential, high stomatal conductance and transpiration and a high LAI of 2.4. In the dry season, K. senegalensis experienced mild drought stress with a predawn water potential -0.6 MPa. Overstorey LAI was halved, and stomatal conductance and transpiration drastically reduced, while minimum leaf water potentials did not change (-2 MPa) and no osmotic adjustment occurred. Khaya senegalensis exhibited an isohydric behaviour and also had a lower hydraulic vulnerability to cavitation in leaves, with a P50 of -2.3 MPa. The native eucalypts had twice the maximum leaf hydraulic conductance but a much higher P50 of -1.5 MPa

  19. EFFECTS OF PRESCRIBED FIRES ON NITROGEN FLUXES IN SAVANNA FORMATIONS OF CENTRAL BRAZIL

    EPA Science Inventory

    Savanna ecosystems are controlled by the interactions between water and nutrient availability. The savannas of Central Brazil (Cerrado) are the second most extensive plant formation in tropical South America with two million km2 of area. The Cerrado landscape contains different ...

  20. Woody overstorey effects on soil carbon and nitrogen pools in South African savanna

    Treesearch

    A. T. Hudak; C. A. Wessman; T. R. Seastedt

    2003-01-01

    Woody plant encroachment in savannas may alter carbon (C) and nitrogen (N) pools over the longterm, which could have regional or global biogeochemical implications given the widespread encroachment observed in the vast savanna biome. Soil and litter %C and %N were surveyed across four soil types in two encroached, semiarid savanna landscapes in northern South Africa....

  1. Using ground- and satellite-based measurements and models to quantify response to multiple disturbances and climate change in South African semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Brümmer, Christian; Schmullius, Christiane; Scholes, Robert; Twine, Wayne; Mudau, Azwitamisi; Midgley, Guy; Hickler, Thomas; Bradshaw, Karen; Lück, Wolfgang; Thiel-Clemen, Thomas; du Toit, Justin; Sankaran, Vaith; Kutsch, Werner

    2016-04-01

    Sub-Saharan Africa currently experiences significant changes in shrubland, savanna and mixed woodland ecosystems driving degradation, affecting fire frequency and water availability, and eventually fueling climate change. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. For a network of research clusters along an aridity gradient in South Africa, we measure greenhouse gas exchange, ecosystem structure and eco-physiological properties as affected by land use change at paired sites with natural and altered vegetation. We set up dynamic vegetation models and individual-based models to predict ecosystem dynamics under (post) disturbance managements. We monitor vegetation amount and heterogeneity using remotely sensed images and aerial photography over several decades to examine time series of land cover change. Finally, we investigate livelihood strategies with focus on carbon balance components to develop sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation of estimates obtained from eddy covariance, model approaches and satellite derivations. We envision our methodological approach on a network of research clusters a valuable means to investigate potential linkages to concepts of adaptive resilience.

  2. Age Determination by Back Length for African Savanna Elephants: Extending Age Assessment Techniques for Aerial-Based Surveys

    PubMed Central

    Trimble, Morgan J.; van Aarde, Rudi J.; Ferreira, Sam M.; Nørgaard, Camilla F.; Fourie, Johan; Lee, Phyllis C.; Moss, Cynthia J.

    2011-01-01

    Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables. PMID:22028925

  3. A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C

    PubMed Central

    Holdo, Ricardo M.; Sinclair, Anthony R. E.; Dobson, Andrew P.; Metzger, Kristine L.; Bolker, Benjamin M.; Ritchie, Mark E.; Holt, Robert D.

    2009-01-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching. PMID:19787022

  4. Analysis of the pattern of potential woody cover in Texas savanna

    NASA Astrophysics Data System (ADS)

    Yang, Xuebin; Crews, Kelley A.; Yan, Bowei

    2016-10-01

    While woody plant encroachment has been observed worldwide in savannas and adversely affected the ecosystem structure and function, a thorough understanding of the nature of this phenomenon is urgently required for savanna management and restoration. Among others, potential woody cover (the maximum realizable woody cover that a given site can support), especially its variation over environment has huge implication on the encroachment management in particular, and on tree-grass interactions in general. This project was designed to explore the pattern of potential woody cover in Texas savanna, an ecosystem with a large rainfall gradient in west-east direction. Substantial random pixels were sampled across the study area from MODIS Vegetation Continuous Fields (VCF) tree cover layer (250 m). Since potential woody cover is suggested to be limited by water availability, a nonlinear 99th quantile regression was performed between the observed woody cover and mean annual precipitation (MAP) to model the pattern of potential woody cover. Research result suggests a segmented relationship between potential woody cover and MAP at MODIS scale. Potential biases as well as the practical and theoretical implications were discussed. Through this study, the hypothesis about the primary role of water availability in determining savanna woody cover was further confirmed in a relatively understudied US-located savanna.

  5. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length

    NASA Astrophysics Data System (ADS)

    Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao

    2018-02-01

    African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.

  6. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.

    PubMed

    Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo

    2008-03-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.

  7. Water-use-efficiency of annual-dominated and bunchgrass-dominated savanna intercanopy space

    USDA-ARS?s Scientific Manuscript database

    In semiarid savannas, annual or perennial grasses intercanopy dominance may alter partitioning of ecosystem water and carbon fluxes. This could affect ecosystem water use efficiency, WUEe, the ratio of net ecosystem carbon dioxide exchange (NEE) to evapotranspiration (ET), an important metric of te...

  8. Hillslope soil movement in the oak savannas of the Southwestern Borderlands Region

    Treesearch

    Aaron Kauffman

    2009-01-01

    Oak woodlands and savannas comprise more than 31,000 square miles (80,290 square kilometers) in the southwestern United States and northern Mexico and provide various resources including forage for livestock, wildlife habitat, fuelwood, and recreational areas. Increased woody-plant encroachment into the more open savanna ecosystems has presented a problem to managers...

  9. Disaggregating tree and grass phenology in tropical savannas

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang

    Savannas are mixed tree-grass systems and as one of the world's largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem. This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation. The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency

  10. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in firemore » frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.« less

  11. African Savanna-Forest Boundary Dynamics: A 20-Year Study.

    PubMed

    Cuni-Sanchez, Aida; White, Lee J T; Calders, Kim; Jeffery, Kathryn J; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L; Lewis, Simon L

    2016-01-01

    Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.

  12. Detecting Below-Ground Processes, Diversity, and Ecosystem Function in a Savanna Ecosystem Using Spectroscopy Across Different Vegetation Layers

    NASA Astrophysics Data System (ADS)

    Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.

    2017-12-01

    Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.

  13. Loss of a large grazer impacts savanna grassland plant communities similarly in North America and South Africa.

    PubMed

    Eby, Stephanie; Burkepile, Deron E; Fynn, Richard W S; Burns, Catherine E; Govender, Navashni; Hagenah, Nicole; Koerner, Sally E; Matchett, Katherine J; Thompson, Dave I; Wilcox, Kevin R; Collins, Scott L; Kirkman, Kevin P; Knapp, Alan K; Smith, Melinda D

    2014-05-01

    Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.

  14. Complexity in African savannas: Direct, indirect, and cascading effects of animal densities, rainfall and vegetation availability

    PubMed Central

    Leeuwis, Tim; Peel, Mike

    2018-01-01

    Savanna ecosystems are popular subjects for interaction studies. Multiple studies have been done on the impact of elephants on vegetation, the impact of grass and browse availability on animal densities or on competition between herbivore species. Previous studies showed that elephant densities are frequently negatively correlated with densities of tall trees, and that browse and grass availability are correlated with browser and grazer density respectively. Additionally, a competition effect between browse and grass availability has been reported. These relationships are usually analysed by testing direct relationships between e.g., herbivore densities and food availability, without addressing competition effects or other indirect effects. In this study, multiple interactions in a savanna system have been analysed simultaneously using Partial Least Square-Path Modelling (PLS-PM) using mammal and vegetation data from three different wildlife reserves in southern KwaZulu-Natal. The results showed that the processes that three separate models for the three areas provided the best understanding of the importance of the different interactions. These models suggest that elephants had a negative impact on trees, but also on grass availability. The impact is stronger when elephants are not able to migrate during the dry season. Browsers and grazers were correlated with browse and grass availability, but competition between browse and grass was not detected. This study shows that due to the complexity of the interactions in an ecosystem and differences in environmental factors, these interactions are best studied per area. PLS-PM can be a useful tool for estimating direct, indirect, and cascading effects of changing animal densities in conservation areas. PMID:29768481

  15. Restoring a disappearing ecosystem: the longleaf pine savanna

    Treesearch

    Tim Harrington; Karl Miller; Noreen Parks

    2013-01-01

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the world’s most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as...

  16. Positive and negative effects of grass, cattle, and wild herbivores on Acacia saplings in an East African savanna.

    PubMed

    Riginos, Corinna; Young, Truman P

    2007-10-01

    Plant-plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree-grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the

  17. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2

  18. Trace gas emissions to the atmosphere by biomass burning in the west African savannas. Final report, 1 October 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frouin, R.J.; Iacobellis, S.F.; Razafimpanilo, H.

    1994-08-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer (AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of North African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linearmore » method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.« less

  19. Restoration of temperate savannas and woodlands

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  20. Projections of 21st Century African Climate: Implications for African Savanna Fire Dynamics, Human Health and Food Security

    NASA Astrophysics Data System (ADS)

    Adegoke, J. O.

    2015-12-01

    Fire is a key agent of change in the African savannas, which are shaped through the complex interactions between trees, C4 grasses, rainfall, temperature, CO2 and fire. These fires and their emitted smoke can have numerous direct and indirect effects on the environment, water resources, air quality, and climate. For instance, veld fires in southern Africa cause large financial losses to agriculture, livestock production and forestry on an annual basis. This study contributes to our understanding of the implications of projected surface temperature evolution in Africa for fire risk, human health and agriculture over the coming decades. We use an ensemble of high-resolution regional climate model simulations of African climate for the 21st century. Regional dowscalings and recent global circulation model projections obtained for Africa indicate that African temperatures are likely to rise at 1.5 times the global rate of temperature increase in the tropics, and at almost twice the global rate of increase in the subtropics. Warming is projected to occur during the 21st century, with increases of 4-6 °C over the subtropics and 3-5 °C over the tropics plausible by the end of the century relative to present-day climate under the A2 (low mitigation) scenario. We explore the significance of the projected warming by documenting increases in projected high fire danger days and heat-wave days. General drying is projected across the continent, even for areas (e.g. tropical Africa) where an increase in rainfall is plausible. This is due to the drastic increases in temperature that are projected, which leads to drier soils (through enhanced evaporation) despite the rainfall increases. This will likely impact negatively on crop yield, particularly on the maize crop that is of crucial importance in terms of African food security.

  1. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  2. Grass competition suppresses savanna tree growth across multiple demographic stages.

    PubMed

    Riginos, Corinna

    2009-02-01

    Savanna ecosystems, defined by the codominance of trees and grasses, cover one-fifth of the world's land surface and are of great socioeconomic and biological importance. Yet, the fundamental question of how trees and grasses coexist to maintain the savanna state remains poorly understood. Many models have been put forward to explain tree-grass coexistence, but nearly all have assumed that grasses do not limit tree growth and demography beyond the sapling stage. This assumption, however, has rarely been tested. Here I show that grass can strongly suppress the growth of trees. I removed grass around trees of three size classes in an Acacia drepanolobium savanna in Laikipia, Kenya. For even the largest trees, grass removal led to a doubling in growth and a doubling in the probability of transitioning to the next size class over two years. These results suggest that grass competition in productive (nutrient-rich) savannas may limit tree growth as much as herbivory and fire (the main factors thought to determine tree demography within a rainfall region) and should be incorporated into savanna models if tree-grass coexistence and savanna dynamics are to be understood.

  3. African Savanna-Forest Boundary Dynamics: A 20-Year Study

    PubMed Central

    Cuni-Sanchez, Aida; White, Lee J. T.; Calders, Kim; Jeffery, Kathryn J.; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L.; Lewis, Simon L.

    2016-01-01

    Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. PMID:27336632

  4. Influence of Vegetation Cover on Rain Pulse Responses in Semi-Arid Savannas in Central Texas

    NASA Astrophysics Data System (ADS)

    Litvak, M.; Heilman, J.; McInnes, K.; Thijs, A.; Kjelgaard, J.

    2007-12-01

    Savannas in central Texas are dominated by live oak (Quercus virginiana) and Ashe juniper (Juniperus asheii) underlain by perennial, C3/C4 grasslands, and are increasingly becoming juniper and mesquite dominated due to overgrazing and suppression of wildfires. Since 2004, we have been investigating how carbon, water and energy exchange in these rain-limited savannas respond to rainfall variability and this observed vegetation change. In semi-arid regions, rainfall pulses provide inputs of soil moisture and trigger biotic activity in the form of plant gas exchange and microbial metabolism as well as water dependent physical processes in the soil. Each of these components has a different characteristic response curve to soil moisture and integrates soil water content over a different range of depths. Here we focus on examining how the observed increase of woody species in central Texas savannas alters the response of net ecosystem exchange and its components, ecosystem respiration and gross ecosystem exchange, to rain pulses. Using data we have collected over the last three years from three Ameriflux tower sites at Freeman Ranch near San Marcos, TX (C3/C4 grassland, juniper/mesquite savanna with 50 percent woody cover, and oak/juniper woodland), we quantify the responses of both ecosystem respiration and daily carbon uptake to rainfall pulses throughout the year. Specifically, we look at the enhancement and persistence of ecosystem respiration and carbon uptake responses following a pulse, and isolate the main controlling factors on the observed response: seasonality, antecedent soil moisture and temperature, or previous pulses. In all three land covers, the general response to precipitation pulses is a respiration pulse followed by an increase in total carbon uptake. Differences in pulse responses observed at the savanna site compared to the grassland and woodland sites can be explained, in part, by the observed differences in rooting structure and photosynthetic

  5. Fire-free land use in pre-1492 Amazonian savannas

    PubMed Central

    Iriarte, José; Power, Mitchell J.; Rostain, Stéphen; Mayle, Francis E.; Jones, Huw; Watling, Jennifer; Whitney, Bronwen S.; McKey, Doyle B.

    2012-01-01

    The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions. PMID:22493248

  6. A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas

    NASA Astrophysics Data System (ADS)

    Whitley, Rhys; Beringer, Jason; Hutley, Lindsay B.; Abramowitz, Gab; De Kauwe, Martin G.; Duursma, Remko; Evans, Bradley; Haverd, Vanessa; Li, Longhui; Ryu, Youngryel; Smith, Benjamin; Wang, Ying-Ping; Williams, Mathew; Yu, Qiang

    2016-06-01

    The savanna ecosystem is one of the most dominant and complex terrestrial biomes, deriving from a distinct vegetative surface comprised of co-dominant tree and grass populations. While these two vegetation types co-exist functionally, demographically they are not static but are dynamically changing in response to environmental forces such as annual fire events and rainfall variability. Modelling savanna environments with the current generation of terrestrial biosphere models (TBMs) has presented many problems, particularly describing fire frequency and intensity, phenology, leaf biochemistry of C3 and C4 photosynthesis vegetation, and root-water uptake. In order to better understand why TBMs perform so poorly in savannas, we conducted a model inter-comparison of six TBMs and assessed their performance at simulating latent energy (LE) and gross primary productivity (GPP) for five savanna sites along a rainfall gradient in northern Australia. Performance in predicting LE and GPP was measured using an empirical benchmarking system, which ranks models by their ability to utilise meteorological driving information to predict the fluxes. On average, the TBMs performed as well as a multi-linear regression of the fluxes against solar radiation, temperature and vapour pressure deficit but were outperformed by a more complicated nonlinear response model that also included the leaf area index (LAI). This identified that the TBMs are not fully utilising their input information effectively in determining savanna LE and GPP and highlights that savanna dynamics cannot be calibrated into models and that there are problems in underlying model processes. We identified key weaknesses in a model's ability to simulate savanna fluxes and their seasonal variation, related to the representation of vegetation by the models and root-water uptake. We underline these weaknesses in terms of three critical areas for development. First, prescribed tree-rooting depths must be deep enough

  7. Emissions from miombo woodland and dambo grassland savanna fires

    NASA Astrophysics Data System (ADS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2004-06-01

    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.

  8. Emissions from Miombo Woodland and Dambo Grassland Savanna Fires

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2004-01-01

    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.

  9. The biodiversity cost of carbon sequestration in tropical savanna.

    PubMed

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  10. The biodiversity cost of carbon sequestration in tropical savanna

    PubMed Central

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha−1 year−1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation. PMID:28875172

  11. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

    PubMed

    Colombaroli, Daniele; Ssemmanda, Immaculate; Gelorini, Vanessa; Verschuren, Dirk

    2014-09-01

    Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity. © 2014 John Wiley & Sons Ltd.

  12. Nutrient resorption and patterns of litter production and decomposition in a Neotropical savanna.

    Treesearch

    A.R. Kozovits; M.M.C. Bustamante; C.R. Garofalo; S. Bucci; A.C. Franco; G. Goldstein; F. Meinzer

    2007-01-01

    1. Deposition of nutrients owing to anthropogenic activities has the potential to change nutrient availability in nutrient-limited ecosystems with consequences for plant and ecosystem processes. 2. Species-specific and ecosystem responses to the addition of nutrients were studied in a field experiment conducted in a Savanna (Cerrado sensu stricto)...

  13. N2-fixation dynamics during ecosystem recovery in longleaf pine savannas

    NASA Astrophysics Data System (ADS)

    Tierney, J. A.

    2016-12-01

    Biological nitrogen fixation (BNF) can alleviate nitrogen (N) deficiencies that inhibit ecosystem recovery. BNF may be particularly important in ecosystems recovering from land-use change and perturbations from fire, as these disturbances can exacerbate N limitation. Here, we investigated how BNF dynamics change throughout ecosystem development in restored longleaf pine savannas, and how BNF responds to fire. We conducted this study in 59 1-ha plots of longleaf pine distributed across gradients of stand age and fire frequency at two sites in the southeastern US. We determined BNF contributions by three functional groups of N2-fixers (herbaceous legumes, biological soil crusts, and asymbiotic N2-fixing bacteria) by quantifying their abundances, assessing nitrogenase activity, and scaling these estimates up to the plot-level. To determine aboveground N demands, we measured tree growth using diameter increments and allometric equations paired with tissue-specific N concentrations. We fit linear models to evaluate the effects of stand age and time since fire on BNF and N demands throughout stand development, and performed separate analyses on mature stands to determine how fire return interval affects BNF. We observed distinct temporal patterns of N2-fixation across stand development among the three groups of N2 fixers. N2-fixation by legumes and asymbiotic bacteria remained low until stands reached maturity, while N2-fixation by biological soil crusts (BSCs) was high in juvenile stands and decreased with stand age. These patterns suggest a compensatory shift in the importance of these functional groups throughout stand development such that contributions from BSCs are critical for meeting N demands when disturbances may hinder the establishment of legumes and asymbiotic bacteria. N2-fixation by BSCs and asymbiotic bacteria throughout stand development was not affected by time since fire, but legume abundance increased the year following fire, suggesting a recovery

  14. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  15. Mapping Brazilian savanna vegetation gradients with Landsat time series

    NASA Astrophysics Data System (ADS)

    Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick

    2016-10-01

    Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important

  16. Carnivore stable carbon isotope niches reflect predator-prey size relationships in African savannas.

    PubMed

    Codron, Jacqueline; Avenant, Nico L; Wigley-Coetsee, Corli; Codron, Daryl

    2018-03-01

    Predator-prey size relationships are among the most important patterns underlying the structure and function of ecological communities. Indeed, these relationships have already been shown to be important for understanding patterns of macroevolution and differential extinction in the terrestrial vertebrate fossil record. Stable isotope analysis (SIA) is a powerful remote approach to examining animal diets and paleodiets. The approach is based on the principle that isotope compositions of consumer tissues reflect those of their prey. In systems where resource isotope compositions are distributed along a body size gradient, SIA could be used to reconstruct predator-prey size relationships. We analyzed stable carbon isotope distributions amongst mammalian herbivores in extant and Plio-Pleistocene African savanna assemblages, and show that the range of δ 13 C values among mammalian prey species (herbivores and rodents) increases with body mass (BM), because C 4 plant feeding (essentially grazing) is more common among larger taxa. Consequently, δ 13 C values of mammalian carnivores in these systems are related to species' BM, reflecting a higher average C 4 prey component in the diets of larger-bodied carnivores. This pattern likely emerges because only the largest carnivores in these systems have regular access to the C 4 prey base, whereas smaller carnivores do not. The δ 13 C-BM relationship observed in mammalian carnivores is a potentially powerful approach for reconstructing and parameterizing predator-prey size relationships in contemporary and fossil savanna assemblages, and for interpreting how various behavioral, ecological and environmental factors influence prey size selection. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. Allometric Convergence in Savanna Trees and Implications for the Use of Plant Scaling Models in Variable Ecosystems

    PubMed Central

    Tredennick, Andrew T.; Bentley, Lisa Patrick; Hanan, Niall P.

    2013-01-01

    Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those

  18. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    NASA Astrophysics Data System (ADS)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    Drylands account for 40% of the land surface and have been identified as increasingly important in driving interannual variability of the land carbon sink. Yet, understanding of dryland seasonal ecosystem productivity dynamics - termed Gross Primary Productivity (GPP) - is limited due to complex interactions between vegetation health, seasonal drought dynamics, a paucity of long-term measurements across these under-studied regions, and unanticipated disturbances from varying fire regimes. For instance, fire disturbance has been found to either greatly reduce post-fire GPP through vegetation mortality or enhance post-fire GPP though increased resource availability (e.g., water, light, nutrients, etc.). Here, we explore post-fire ecosystem recovery by evaluating seasonal GPP dynamics for two Ameriflux eddy covariance flux tower sites within the Santa Rita Experimental Range of southeastern Arizona: 1) the US-SRG savanna site dominated by a mix of grass and woody mesquite vegetation that was burned in May 2017, and 2) the US-SRM savanna site dominated by similar vegetation but unburned for the full measurement record. For each site, we collected leaf-level spectral and gas exchange measurements, as well as leaf-level chemistry and soil chemistry to characterize differences in nutrient availability and microbial activity throughout the 2017 growing season. From spectral data, we derived and evaluated multiple common vegetation metrics, including normalized difference vegetation index (NDVI), photochemical reflectivity index (PRI), near-infrared reflectance (NIRv), and MERIS terrestrial chlorophyll index (MTCI). Early results suggest rates of photosynthesis were enhanced at the burned site, with productivity increasing immediately following the onset of monsoonal precipitation; whereas initial photosynthesis at the unburned site remained relatively low following first monsoonal rains. MTCI values for burned vegetation appear to track higher levels of leaf-level nitrogen

  19. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna

    USDA-ARS?s Scientific Manuscript database

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation; interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-year longitudinal study of spatially explicit growth patterns of woody ve...

  20. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment

    NASA Astrophysics Data System (ADS)

    Gignoux, Jacques; Konaté, Souleymane; Lahoreau, Gaëlle; Le Roux, Xavier; Simioni, Guillaume

    2016-12-01

    The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

  1. Vegetation-climate feedbacks in the conversion of tropical savanna to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, W.A.; Jackson, R.B.

    2000-05-01

    Tropical savannas have been heavily impacted by human activity, with large expanses transformed from a mixture of trees and grasses to open grassland and agriculture. The National Center for Atmospheric Research (NCAR) CCM3 general circulation model, coupled with the NCAR Land Surface Model, was used to simulate the effects of this conversion on regional climate. Conversion of savanna to grassland reduced precipitation by approximately 10% in four of the five savanna regions under study; only the northern African savannas showed no significant decline. Associated with this decline was an increase in the frequency of dry periods within the wet season,more » a change that could be particularly damaging to shallow-rooted crops. The overall decline in precipitation is almost equally attributable to changes in albedo and roughness length. Conversion to grassland increased mean surface air temperature of all the regions by 0.5 C, primarily because of reductions in surface roughness length. Rooting depth, which decreases dramatically with the conversion of savanna to grassland, contributed little to the overall effect of savanna conversion, but deeper rooting had a small positive effect on latent heat flux with a corresponding reduction in sensible heat flux. The authors propose that the interdependence of climate and vegetation in these regions is manifested as a positive feedback loop in which anthropogenic impacts on savanna vegetation are exacerbated by declines in precipitation.« less

  2. Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile.

    PubMed

    Meza, Francisco J; Montes, Carlo; Bravo-Martínez, Felipe; Serrano-Ortiz, Penélope; Kowalski, Andrew S

    2018-06-05

    Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO 2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was -53 g C m -2 in 2011 and -111 g C m -2 in 2012, showing that the ecosystem acts as a net sink of CO 2 , notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.

  3. SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.

    2010-12-01

    We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.

  4. Restoration of temperate savannas and woodlands [Chapter 11

    Treesearch

    Brice B. Hanberry; John M. Kabrick; Peter W. Dunwiddie; Tibor Hartel; Theresa B. Jain; Benjamin O. Knapp

    2017-01-01

    Savannas and woodlands are open forest phases that occur along a gradient between grasslands and closed canopy forests. These ecosystems are characterized by open to nearly closed canopies of overstorey trees, relatively sparse midstorey and understorey woody vegetation, and dense, species-rich ground flora. In contrast to closed forests, the dominant and codominant...

  5. Fire history and age structure analysis in the Sherburne National Wildlife Refuge: Establishing reference conditions in a remnant oak savanna woodland

    Treesearch

    Kurt F. Kipfmueller; Tim Hepola

    2007-01-01

    Oak savanna woodlands were once a dominant ecotone throughout the upper Midwest. These ecosystems represented a transitional zone between prairie communities to the west that eventually graded into Big Woods forest. Most of the oak savanna landscapes of most of the Midwest were extensively homesteaded and farmed during the middle 1800s and few intact savanna landscapes...

  6. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems

    Treesearch

    Guang You Hao; William A. Hoffmann; Fabian G. Scholz; Sandra J. Bucci; Frederick C. Meinzer; Augusto C. Franco; Kun Fang Cao; Guillermo Goldstein

    2008-01-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna...

  7. Sources and sinks of methane in the African Savanna. CH4 emissions from biomass burning

    NASA Astrophysics Data System (ADS)

    Delmas, R. A.; Marenco, A.; Tathy, J. P.; Cros, B.; Baudet, J. G. R.

    1991-04-01

    Sources and sinks of atmospheric methane are studied in savanna regions of west and central Africa. Flux measured over dry savanna soils, using static chambers, is always negative the average uptake rate being 2×1010 molecules/cm2/s. In these regions, sources are linked to biomass burning. Methane and CO2 emission from combustion of savanna plants and wood is studied by both field experiments and laboratory experiments using a combustion chamber. For savanna plants most of the carbon (85%) contained in the biomaterial is volatilized as CO2 and 0.1 to 0.25% as methane. For graminaceous plants like loudetia simplex the ratio C-CH4/C-CO2 is 0.11%; it is 0.28% for hyparrhenia the other main type of savanna plants and it attains 1.4% for the combustion of wood. In natural fire plumes this ratio is around 0.26% for savanna fires and 0.56 to 2.22% for forest fires. These results show that methane release is highly dependent on the type of combustion. Methane to CO2 ratios are also studied in vertical profiles in the troposphere taken during the TROPOZ I campaign, an aerial research expedition carried out over west Africa during the bushfire period. Within polluted layers, the average ratio of CH4 to CO2 excess over ambient air concentration is 0.34%. These results show that biomass burning in tropical Africa constitutes an important source of atmospheric methane estimated to about 9.2×106 T(CH4)/yr.

  8. Local versus landscape-scale effects of savanna trees on grasses

    USGS Publications Warehouse

    Riginos, C.; Grace, J.B.; Augustine, D.J.; Young, T.P.

    2009-01-01

    1. Savanna ecosystems - defined by the coexistence of trees and grasses - cover more than one-fifth the world's land surface and harbour most of the world's rangelands, livestock and large mammal diversity. Savanna trees can have a variety of effects on grasses, with consequences for the wild and domestic herbivores that depend on them. 2.Studies of these effects have focused on two different spatial scales. At the scale of individual trees, many studies have shown net positive effects of trees on sub-canopy grass nutrient concentrations and biomass. At the landscape scale, other studies have shown negative effects of high tree densities on grass productivity. These disparate results have led to different conclusions about the effects of trees on forage quality and ungulate nutrition in savannas. 3.We integrate these approaches by examining the effects of trees on grasses at both spatial scales and across a range of landscape-scale tree densities. 4.We quantified grass biomass, species composition and nutrient concentrations in these different contexts in an Acacia drepanolobium savanna in Laikipia, Kenya. Individual trees had positive effects on grass biomass, most likely because trees enrich soil nitrogen. Grass leaf phosphorus in sub-canopy areas, however, was depressed. The effects of individual trees could explain the effects of increasing landscape-scale tree cover for the biomass of only two of the four dominant grass species. 5.The negative effects of trees on grass and soil phosphorus, combined with depressed grass productivity in areas of high tree cover, suggest that ungulate nutrition may be compromised in areas with many trees. 6.Synthesis. We conclude that few, isolated trees may have positive local effects on savanna grasses and forage, but in areas of high tree density the negative landscape-scale effects of trees are likely to outweigh these positive effects. In savannas and other patchy landscapes, attempts to predict the consequences of changes

  9. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    PubMed

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape

  10. Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Tagesson, T.; Fensholt, R.; Huber, S.; Horion, S.; Guiro, I.; Ehammer, A.; Ardo, J.

    2015-08-01

    This paper investigates how hyperspectral reflectance (between 350 and 1800 nm) can be used to infer ecosystem properties for a semi-arid savanna grassland in West Africa using a unique in situ-based multi-angular data set of hemispherical conical reflectance factor (HCRF) measurements. Relationships between seasonal dynamics in hyperspectral HCRF and ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. HCRF data (ρ) were used to study the relationship between normalised difference spectral indices (NDSIs) and the measured ecosystem properties. Finally, the effects of variable sun sensor viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared (biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A band at 761 nm used for estimating chlorophyll fluorescence (GPP and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI with the strongest correlation to (i) biomass combined red-edge HCRF (ρ705) with green HCRF (ρ587), (ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), (iii) LUE combined red (ρ688) with blue HCRF (ρ436), and (iv) FAPAR combined blue (ρ399) and near-infrared (ρ1295) wavelengths. NDSIs combining near infrared and shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data for validation of Earth-observation-based properties of semi-arid ecosystems, as well as insights for designing spectral characteristics of future sensors for ecosystem monitoring.

  11. Greenhouse gas exchange in West African savanna ecosystems - how important are emissions from termite mounds?

    NASA Astrophysics Data System (ADS)

    Brümmer, C.; Brüggemann, N.

    2012-04-01

    Savannas cover large areas of the Earth's surface and play an important role in global carbon and nitrogen cycling. In this study, we present the soil-atmosphere exchange of N2O, CH4, and CO2 during two field campaigns throughout the growing seasons 2005 and 2006 at a natural savanna site that was not subject to human disturbances except for annual burning, and four agricultural sites planted with sorghum (n=2), cotton and peanut in Burkina Faso. The annual N2O emission of the nature reserve site amounted to 0.52 kg N2O-N ha-1 yr-1 in 2005 and to 0.67 kg N2O-N ha-1 yr-1 in 2006, whereas the calculated average annual N2O release of the crop sites was only 0.19 and 0.20 kg N2O-N ha-1 yr-1 in 2005 and 2006, respectively. As a result of a temporal up-scaling approach, a lower bound of annual N2O release could be given for two fertilized sorghum plots, that is, 0.83 kg N2O-N ha-1 yr-1 for a highly fertilized plot and 0.44 kg N2O-N ha-1 yr-1 for a moderately fertilized plot. During the rainy season both CH4 uptake in the range of up to 20 μg CH4-C m-2 h-1 as well as CH4 emission up to 300 μg CH4-C m-2 h-1 were observed at the nature reserve site, which was on average a CH4 source of 87.4 and 30.8 μg CH4-C m-2 h-1 in 2005 and 2006, respectively. All crop sites were on average weak CH4 sinks without significant seasonal variation. Uptake rates ranged between 2.5 and 8.7 μg CH4-C m-2 h-1. Occasionally very low net CH4 emission was observed after heavy rainfall events. Mean annual CH4 rates could be estimated to 2.48 kg CH4-C ha-1 yr-1 and -0.68 kg CH4-C ha-1 yr-1 for the nature reserve site and the crop sites, respectively. Trace gas emissions from termite (Cubitermes fungifaber) mounds that were almost exclusively found at the nature reserve were one order of magnitude higher for N2O and CO2, and two orders of magnitude higher for CH4 than soil emissions of the respective trace gas. Termite N2O, CH4 and CO2 release at the nature reserve contributed only 3.2%, 8.1% and

  12. Soil properties in fire-consumed log burnout openings in a Missouri oak savanna

    Treesearch

    Charles C. Rhoades; A. J. Meier; A. J. Rebertus

    2004-01-01

    Downed logs are known to increase species diversity in many forest ecosystems by increasing resource and structural complexity and by altering fire behavior in fire-prone ecosystems. In a frequently burned oak savanna in central Missouri, combustion of downed logs formed patches that have remained free of herbaceous vegetation for more than 3 years. To assess the...

  13. Soil microbial communities following bush removal in a Namibian savanna

    USDA-ARS?s Scientific Manuscript database

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the grazing value of the land and hence the carrying capacity for wildlife and livestock. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil at a chronose...

  14. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia.

    PubMed

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio

    2017-01-01

    Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.

  15. CLANIMAE: Climatic and Anthropogenic Impacts on African Ecosystems

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; André, L.; Mahy, G.; Cocquyt, C.; Plisnier, P.-D.; Gelorini, V.; Rumes, B.; Lebrun, J.; Bock, L.; Marchant, R.

    2009-04-01

    Global studies of historical land use focusing on the large-scale landscape change that can potentially affect global climate (via effects on surface albedo, aerosols, and the carbon cycle) have concluded that the impact of pre-colonial East African cultures on regional ecosystems was limited, due to very low mean population density. This contrasts with the paradigm in East African archaeology and paleoecology that the onset of anthropogenic deforestation started at least 2500 years ago, following the introduction of iron metallurgy by Bantu immigrants. This conflict highlights the present lack of real data on historical climate-environment-human interactions in East Africa, which are eminently relevant to sustainable natural resource management and biodiversity conservation in a future of continued population growth and global climate change. CLANIMAE responds to the urgent need of a correct long-term perspective to today's climate-environment-human interactions in East Africa, by reconstructing simultaneously the histories of past climate change and of vegetation and water-quality changes over the last 2500 years, through multi-disciplinary analysis of dated lake-sediment records. The climate reconstructions integrate information on biological, geochemical and sedimentological indicators of past changes in the water balance of the study lakes, which cover the climatological gradient from (sub-)humid western Uganda to semi-arid eastern Kenya. Reconstruction of past terrestrial vegetation dynamics is based on analyses of fossil plant pollen and phytoliths, plus the fossil spores of fungi associated with the excrements of large domestic animals as indicators of lake use by pastoralists. The evolution of water quality through time is reconstructed using silicon isotopes in diatom algae as proxy indicator for past phytoplankton productivity, and paleoecological analyses of fossil diatoms and aquatic macrophytes, following calibration of diatom and macrophyte species

  16. Impact of savanna conversion to oil palm plantations on C stocks dynamics and soil fertility

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Guillaume, Thomas; Buttler, Alexandre; Ruegg, Johanna

    2017-04-01

    Large-scale expansion of oil palm cultivation on forested land in South-East Asia during the last decades lead to high negative environmental impacts. Because rainforests store high amount of C, their conversion to oil palm plantations results in large net CO2 emissions. Oil palm cultivation in tropical ecosystems such as savanna that store less C than forests is seen as an alternative to reduce greenhouse gas emissions of future oil palm development. While this option is more and more frequently mentioned, few data are available on the effective gain in C storage. Furthermore negative impact on soil organic carbon and soil fertility could offset gains of C storage in oil palm biomass. Here, we present results on aboveground and belowground C stocks and soil nutrient dynamics over a full rotation cycle of oil palm plantations established on tropical savanna grasslands. Three natural savanna grasslands as reference sites and 9 oil palm plantations ranging from two to twenty-seven years old were selected in the Llanos in Colombia. Oxisols were sampled down to 70 cm in each management zones of oil palm plantations (weeded circle, interrow, frond piles and harvesting path). Taking advantages of a shift from C4 to C3 vegetation, we quantified savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC stabilization rates and how they were affected by management practices (mineral fertilization, organic amendments, etc.). Results show that, in opposite to forest conversion, C storage increases when savannas are converted to oil palm plantations. Because soil C storage was very low in natural conditions, SOC changes had little effects on overall C storage. Substitution of savanna-derived SOC by oil palm-derived SOC was very fast in the topsoil and highest under frond pile and weeded circle where C and nutrients inputs are highest. However, stabilization of oil palm-derived SOC compensated loss of savanna-derived SOC rather than increased SOC stocks

  17. Vegetative characteristics of oak savannas in the southwestern United States: a comparative analysis with oak woodlands in the region

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2005-01-01

    Much has been learned about the oak woodlands of the Southwestern United States in recent years. However, comparable characterizations of the companion oak savannas are needed to help in enhancing the knowledge of all oak ecosystems in the Madrean Archipelago region. Oak savannas differ from oak woodlands in that they are more open in their structure with fewer trees...

  18. Effect of wildfires on surface reflectance from a savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Gatebe, C. K.; Ichoku, C. M.; Varnai, T.

    2015-12-01

    During an airborne field campaign in South Africa in 2005, NASA's Cloud Absorption Radiometer (CAR) flew aboard South Africa Weather Service, Aerocommander 690A and measured surface bidirectional reflectance-distribution function (BRDF) over savanna comprised mostly of grasses and a few scattered trees. Savannas cover half the surface of Africa, large areas of Australia, South America, and India. . The region that was studied is located in Kruger National Park in northeastern South Africa, which was heavily affected by the wildfires. The CAR measured surface reflectance along its flight path covering both burned and unburned areas. . In this study, we compared surface reflectance between burnt and un-burnt areas at various wavelengths (340nm, 380nm, 472nm, 682nm, 870nm, 1036nm, 1219nm, 1273nm, and 2205nm) at satellite sub-pixel scales. We found a relative burnt surface reflectance decrease of between 8 and 65% due to fires. These results not only serve to highlight the importance of biomass burning and effects on the energy budgets, but also the need to determine the effects of albedo changes due to fires on soil moisture budget, evapotranspiration, infiltration, and runoff, all of which govern the land-surface component of the water cycle.

  19. Inferences of Present and Past Changes at Isolated Enclaves and Matrix of Savannas by Carbon Isotopes in a Transitional Forest-Savanna Area in Northern Amazonia

    NASA Astrophysics Data System (ADS)

    Couto-Santos, F. R.; Luizao, F. J.; Camargo, P. B.

    2013-12-01

    The evolutionary history of savannas influenced by short term climate cycles, during the Quaternary Period, could prompt variations in forest cover often related to movements of the forest-savanna boundary. In this study we investigated current and past changes in the structure of vegetation and the origins of savannas of different natures in a biogeographically and climatic transitional forest-savanna area in northern Amazonia. Variations in the isotopic composition of soil organic matter (δ13C) from surface soils (0-10 cm) along forest-savanna boundaries, detected by a sigmoidal non-linear function, were used to identify current changes in vegetation, while past changes were inferred by discontinuities in the evolution of δ13C with soil depth using piecewise regression associated with radiocarbon dating (14C). By comparing small isolated savanna enclaves inside a strictly protected nature reserve (ESEC Maracá) with its outskirts unprotected continuous savanna matrix, we found that origins and the patterns of dynamics were distinct between these areas and did not respond in the same way to climate change and fire events, either in the last decades or during the Holocene. The stability of the present boundaries of the surrounding savanna matrix reflects the resilience of the transitional forests under a recent intensified fire regime and favorable climate, while the deep forest soil isotopic signal indicated a forest shrinkage of at least 70 m occurring since its origin in early Holocene until 780 years BP associated with a climate drier than the current one. Contrarily, the protected enclaves inside ESEC Maracá, remained stable since the middle Holocene, suggesting a non-anthropogenic origin related to soil edaphic conditions, but with recent dynamics of advancing forest by 8 m century-1 favored by current climate and lacking fire events. A detailed understanding of the origins of savannas of distinct natures and the way they are affected by climate and fire

  20. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    NASA Astrophysics Data System (ADS)

    Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K.; Arndt, S. K.

    2011-09-01

    Savanna ecosystems are subject to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicated sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5-7 and 25-30 yr ago, respectively) in the Douglas Daly region of northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m-2 h-1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m-2 h-1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha-1 yr-1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha-1 yr-1) and young pasture (20.0 t CO2-C ha-1 yr-1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ~70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.

  1. Land use change and the impact on greenhouse gas exchange in north Australian savanna soils

    NASA Astrophysics Data System (ADS)

    Grover, S. P. P.; Livesley, S. J.; Hutley, L. B.; Jamali, H.; Fest, B.; Beringer, J.; Butterbach-Bahl, K.; Arndt, S. K.

    2012-01-01

    Savanna ecosystems are subjected to accelerating land use change as human demand for food and forest products increases. Land use change has been shown to both increase and decrease greenhouse gas fluxes from savannas and considerable uncertainty exists about the non-CO2 fluxes from the soil. We measured methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) over a complete wet-dry seasonal cycle at three replicate sites of each of three land uses: savanna, young pasture and old pasture (converted from savanna 5-7 and 25-30 yr ago, respectively) in the Douglas Daly region of Northern Australia. The effect of break of season rains at the end of the dry season was investigated with two irrigation experiments. Land use change from savanna to pasture increased net greenhouse gas fluxes from the soil. Pasture sites were a weaker sink for CH4 than savanna sites and, under wet conditions, old pastures turned from being sinks to a significant source of CH4. Nitrous oxide emissions were generally very low, in the range of 0 to 5 μg N2O-N m-2 h-1, and under dry conditions soil uptake of N2O was apparent. Break of season rains produced a small, short lived pulse of N2O up to 20 μg N2O-N m-2 h-1, most evident in pasture soil. Annual cumulative soil CO2 fluxes increased after clearing, with savanna (14.6 t CO2-C ha-1 yr-1) having the lowest fluxes compared to old pasture (18.5 t CO2-C ha-1 yr-1) and young pasture (20.0 t CO2-C ha-1 yr-1). Clearing savanna increased soil-based greenhouse gas emissions from 53 to ∼ 70 t CO2-equivalents, a 30% increase dominated by an increase in soil CO2 emissions and shift from soil CH4 sink to source. Seasonal variation was clearly driven by soil water content, supporting the emerging view that soil water content is a more important driver of soil gas fluxes than soil temperature in tropical ecosystems where temperature varies little among seasons.

  2. Fire effects on herbaceous plants and shrubs in the oak savannas of the Southwestern Borderlands

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Cody L. Stropki; Daniel G. Neary

    2012-01-01

    Much has been learned in recent years about the ecological, hydrologic, and environmental characteristics of the oak (encinal) woodlands of the Southwestern Borderlands. Comparable information for the lower-elevation oak savannas, including the impacts of fire on ecosystem resources, is also necessary to enhance the knowledge of the oak ecosystems in the region. Oak...

  3. Tree-grass phenology information improves light use efficiency modelling of gross primary productivity for an Australian tropical savanna

    NASA Astrophysics Data System (ADS)

    Moore, Caitlin E.; Beringer, Jason; Evans, Bradley; Hutley, Lindsay B.; Tapper, Nigel J.

    2017-01-01

    The coexistence of trees and grasses in savanna ecosystems results in marked phenological dynamics that vary spatially and temporally with climate. Australian savannas comprise a complex variety of life forms and phenologies, from evergreen trees to annual/perennial grasses, producing a boom-bust seasonal pattern of productivity that follows the wet-dry seasonal rainfall cycle. As the climate changes into the 21st century, modification to rainfall and temperature regimes in savannas is highly likely. There is a need to link phenology cycles of different species with productivity to understand how the tree-grass relationship may shift in response to climate change. This study investigated the relationship between productivity and phenology for trees and grasses in an Australian tropical savanna. Productivity, estimated from overstory (tree) and understory (grass) eddy covariance flux tower estimates of gross primary productivity (GPP), was compared against 2 years of repeat time-lapse digital photography (phenocams). We explored the phenology-productivity relationship at the ecosystem scale using Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and flux tower GPP. These data were obtained from the Howard Springs OzFlux/Fluxnet site (AU-How) in northern Australia. Two greenness indices were calculated from the phenocam images: the green chromatic coordinate (GCC) and excess green index (ExG). These indices captured the temporal dynamics of the understory (grass) and overstory (trees) phenology and were correlated well with tower GPP for understory (r2 = 0.65 to 0.72) but less so for the overstory (r2 = 0.14 to 0.23). The MODIS enhanced vegetation index (EVI) correlated well with GPP at the ecosystem scale (r2 = 0.70). Lastly, we used GCC and EVI to parameterise a light use efficiency (LUE) model and found it to improve the estimates of GPP for the overstory, understory and ecosystem. We conclude that phenology is an important parameter to

  4. Strategic management of livestock to improve biodiversity conservation in African savannahs: A conceptual basis for wildlife-livestock coexistence

    USDA-ARS?s Scientific Manuscript database

    African savannas are complex socio-ecological systems with diverse wild and domestic herbivore assemblages, which utilize functional heterogeneity of habitats to adapt to intra- and inter-annual variation in forage quantity and quality, predation and disease risks. As African savannas become increas...

  5. Invasive C4 Perennial Grass Alters Net Ecosystem Exchange in Mixed C3/C4 Savanna Grassland

    NASA Astrophysics Data System (ADS)

    Basham, T. S.; Litvak, M.

    2006-12-01

    The invasion of ecosystems by non-native plants that differ from native plants in physiological characteristics and phenology has the potential to alter ecosystem function. In Texas and other regions of the southern central plains of the United States, the introduced C4 perennial grass, Bothriochloa ischaemum, invades C3/C4 mixed grasslands and savannas, resulting in decreased plant community diversity (Gabbard 2003; Harmoney et al 2004). The objective of this study was to quantify how the conversion of these mixed grass communities to C4 dominated, B. ischaemum monocultures impacts carbon cycling and sequestration. Seasonal measurements of Net Ecosystem Exchange (NEE) of CO2, leaf level gas exchange and soil respiration were compared between savanna grassland plots composed of either naturally occurring B. ischaemum monocultures or native mixed grasses (n=16). NEE was measured using a closed system chamber that attached to permanently installed stainless steel bases. Temperature, soil moisture, aerial percent species cover and leaf area index were also monitored in plots to explain variability in measured responses. Results showed that NEE differed seasonally between invaded and native plots due to 1) greater leaf surface area per unit ground area in invaded plots, 2) differences in phenological patterns of plant activity and 3) differences in responses to water limitation between invaded and native plots. Cold season and summer drought NEE were driven primarily by belowground respiration in both plot types, however spring uptake activity commenced two months later in invaded plots. This later start in invaded plots was compensated for by greater uptake throughout the growing season and in particular during the drier summer months. Differences in NEE between plot types were not due to differences in soil respiration nor were they due to greater leaf level photosynthetic capabilities of B. ischaemum relative to the dominant native grasses. NEE, soil respiration and

  6. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia

    PubMed Central

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza

    2017-01-01

    Abstract Background Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. New information We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms. PMID:28848372

  7. The magnitude and persistence of soil NO, N20, CH4, and C02 fluxes from burned tropical savanna in Brazil

    Treesearch

    Mark Poth; Iris Cofman Anderson; Heloisa Sinatora Miranda; Antonia Carlos Miranda; Philip J. Riggan

    1995-01-01

    Among all global ecosystems, tropical savannas are the most severely and extensively affected by anthropogenic burning. Frequency of fire in cerrado, a type of tropical savanna covering 25% of Brazil, is 2 to 4 years. In 1992 we measured soil fluxes of NO, N20, CH4, and C02 from cerrado sites that had...

  8. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  9. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  10. Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna.

    Treesearch

    William A. Hoffmann; Edson Rangel da Silva; Gustavo C. Machado; Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer

    2005-01-01

    Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants 1-m tall), in the Brazilian...

  11. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America

    PubMed Central

    2018-01-01

    Climate change has been identified as the primary threat to the integrity and functioning of ecosystems in this century, although there is still much uncertainty about its effects and the degree of vulnerability for different ecosystems to this threat. Here we propose a new methodological approach capable of measuring and mapping the resilience of terrestrial ecosystems at large scales based on their climatic niche. To do this, we used high spatial resolution remote sensing data and ecological niche modeling techniques to calculate and spatialize the resilience of three stable states of ecosystems in South America: forest, savanna, and grassland. Also, we evaluated the sensitivity of ecosystems to climate stress, the likelihood of exposure to non-analogous climatic conditions, and their respective adaptive capacities in the face of climate change. Our results indicate that forests, the most productive and biodiverse terrestrial ecosystems on the earth, are more vulnerable to climate change than savannas or grasslands. Forests showed less resistance to climate stress and a higher chance of exposure to non-analogous climatic conditions. If this scenario occurs, the forest ecosystems would have less chance of adaptation compared to savannas or grasslands because of their narrow climate niche. Therefore, we can conclude that a possible consolidation of non-analogous climatic conditions would lead to a loss of resilience in the forest ecosystem, significantly increasing the chance of a critical transition event to another stable state with a lower density of vegetation cover (e.g., savanna or grassland). PMID:29554132

  12. The effects of past climate variability on fire and vegetation in the cerrãdo savanna ecosystem of the Huanchaca Mesetta, Noel Kempff Mercado National Park, NE Bolivia

    NASA Astrophysics Data System (ADS)

    Maezumi, S. Y.; Power, M. J.; Mayle, F. E.; McLauchlan, K.; Iriarte, J.

    2015-01-01

    than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Late Glacial period.

  13. Restoration of Longleaf Pine Ecosystems

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; Everett E. Johnson

    2005-01-01

    Longleaf pine (Pinus palustris) ecosystems once occupied 38 million ha in the Southeastern United States, occurring as forests, woodlands, and savannas on a variety of sites ranging from wet flatwoods to xeric sandhills and rocky mountainous ridges. Characterized by an open parklike structure, longleaf pine ecosystems are a product of frequent fires...

  14. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment

    NASA Astrophysics Data System (ADS)

    Naidoo, L.; Cho, M. A.; Mathieu, R.; Asner, G.

    2012-04-01

    The accurate classification and mapping of individual trees at species level in the savanna ecosystem can provide numerous benefits for the managerial authorities. Such benefits include the mapping of economically useful tree species, which are a key source of food production and fuel wood for the local communities, and of problematic alien invasive and bush encroaching species, which can threaten the integrity of the environment and livelihoods of the local communities. Species level mapping is particularly challenging in African savannas which are complex, heterogeneous, and open environments with high intra-species spectral variability due to differences in geology, topography, rainfall, herbivory and human impacts within relatively short distances. Savanna vegetation are also highly irregular in canopy and crown shape, height and other structural dimensions with a combination of open grassland patches and dense woody thicket - a stark contrast to the more homogeneous forest vegetation. This study classified eight common savanna tree species in the Greater Kruger National Park region, South Africa, using a combination of hyperspectral and Light Detection and Ranging (LiDAR)-derived structural parameters, in the form of seven predictor datasets, in an automated Random Forest modelling approach. The most important predictors, which were found to play an important role in the different classification models and contributed to the success of the hybrid dataset model when combined, were species tree height; NDVI; the chlorophyll b wavelength (466 nm) and a selection of raw, continuum removed and Spectral Angle Mapper (SAM) bands. It was also concluded that the hybrid predictor dataset Random Forest model yielded the highest classification accuracy and prediction success for the eight savanna tree species with an overall classification accuracy of 87.68% and KHAT value of 0.843.

  15. Fire history and age structure analysis in the Sherburne National Wildlife Refuge, Minnesota: establishing reference conditions in a remnant oak savanna woodland

    Treesearch

    Kurt F. Kipfmueller; Tim Hepola

    2009-01-01

    Oak savanna woodlands were once a dominant ecotone in southwestern Minnesota and throughout the upper Midwest. These ecosystems represented a transitional zone between prairie communities to the west that eventually graded into Big Woods forest. Most of the oak savanna landscape of southern Minnesota (and indeed most of the Midwest) were extensively homesteaded and...

  16. Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire Frequency in African Savannas.

    PubMed

    Smit, Izak P J; Prins, Herbert H T

    2015-01-01

    With grasslands and savannas covering 20% of the world's land surface, accounting for 30-35% of worldwide Net Primary Productivity and supporting hundreds of millions of people, predicting changes in tree/grass systems is priority. Inappropriate land management and rising atmospheric CO2 levels result in increased woody cover in savannas. Although woody encroachment occurs world-wide, Africa's tourism and livestock grazing industries may be particularly vulnerable. Forecasts of responses of African wildlife and available grazing biomass to increases in woody cover are thus urgently needed. These predictions are hard to make due to non-linear responses and poorly understood feedback mechanisms between woody cover and other ecological responders, problems further amplified by the lack of long-term and large-scale datasets. We propose that a space-for-time analysis along an existing woody cover gradient overcomes some of these forecasting problems. Here we show, using an existing woody cover gradient (0-65%) across the Kruger National Park, South Africa, that increased woody cover is associated with (i) changed herbivore assemblage composition, (ii) reduced grass biomass, and (iii) reduced fire frequency. Furthermore, although increased woody cover is associated with reduced livestock production, we found indigenous herbivore biomass (excluding elephants) remains unchanged between 20-65% woody cover. This is due to a significant reorganization in the herbivore assemblage composition, mostly as a result of meso-grazers being substituted by browsers at increasing woody cover. Our results suggest that woody encroachment will have cascading consequences for Africa's grazing systems, fire regimes and iconic wildlife. These effects will pose challenges and require adaptation of livelihoods and industries dependent on conditions currently prevailing.

  17. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.

    PubMed

    Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.

  18. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example

    PubMed Central

    Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453

  19. Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory, not herbivore identity

    USDA-ARS?s Scientific Manuscript database

    The replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: 1) loss or reduction in numbers of individual wildlife species or guilds, and 2) addition of livestock to the system. Yet very few studies have addressed the individual, c...

  20. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  1. Inter-annual Variability of Evapotranspiration in a Semi-arid Oak-savanna Ecosystem: Measured and Modeled Buffering to Precipitation Changes

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Baldocchi, D. D.

    2010-12-01

    Precipitation (P) is the primary control on vegetation dynamics and productivity, implying that climate induced disturbances in frequency and timing of P are intimately coupled with fluxes of carbon, water and energy. Future climate change is expected to increase extreme rainfall events as well as droughts, suggesting linked vegetation changes to an unknown extent. Semi-arid climates experience large inter-annual variability (IAV) in P, creating natural conditions adequate to study how year-to-year changes in P affect atmosphere-biosphere fluxes. We used a 10-year flux database collected at a semi-arid savanna site in order to: (1) define IAV in P by means of frequency and timing; (2) investigate how changes in P affect the ecohydrology of the forest and its partitioning into the main vapor fluxes, and (3) evaluate model capability to predict IAV of carbon and water fluxes above and below the canopy. This is based on the perception that the capability of process-oriented models to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site was a low density and low LAI (0.8) semi-arid (P=523±180 mm yr-1) savanna site, combined of oaks and grass, and located at Tonzi ranch, California. Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Measured fluxes were compared to modeled based on two bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Our results show that IAV in P was large, and standard deviation (STD) was 38% of the average. Accordingly, the wet soil period (measured volumetric water content > 8%) varied between 156 days in dry years to 301 days in wet years. IAV of the vapor fluxes were lower than that of P (STD was 17% for the trees and 23% for the floor components), suggesting on ecosystem buffering to changes in P. The timing of grass green up

  2. Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia

    NASA Astrophysics Data System (ADS)

    Bristow, Mila; Hutley, Lindsay B.; Beringer, Jason; Livesley, Stephen J.; Edwards, Andrew C.; Arndt, Stefan K.

    2016-11-01

    The clearing and burning of tropical savanna leads to globally significant emissions of greenhouse gases (GHGs); however there is large uncertainty relating to the magnitude of this flux. Australia's tropical savannas occupy the northern quarter of the continent, a region of increasing interest for further exploitation of land and water resources. Land use decisions across this vast biome have the potential to influence the national greenhouse gas budget. To better quantify emissions from savanna deforestation and investigate the impact of deforestation on national GHG emissions, we undertook a paired site measurement campaign where emissions were quantified from two tropical savanna woodland sites; one that was deforested and prepared for agricultural land use and a second analogue site that remained uncleared for the duration of a 22-month campaign. At both sites, net ecosystem exchange of CO2 was measured using the eddy covariance method. Observations at the deforested site were continuous before, during and after the clearing event, providing high-resolution data that tracked CO2 emissions through nine phases of land use change. At the deforested site, post-clearing debris was allowed to cure for 6 months and was subsequently burnt, followed by extensive soil preparation for cropping. During the debris burning, fluxes of CO2 as measured by the eddy covariance tower were excluded. For this phase, emissions were estimated by quantifying on-site biomass prior to deforestation and applying savanna-specific emission factors to estimate a fire-derived GHG emission that included both CO2 and non-CO2 gases. The total fuel mass that was consumed during the debris burning was 40.9 Mg C ha-1 and included above- and below-ground woody biomass, course woody debris, twigs, leaf litter and C4 grass fuels. Emissions from the burning were added to the net CO2 fluxes as measured by the eddy covariance tower for other post-deforestation phases to provide a total GHG emission from

  3. Molecular phylogeny of Panaspis and Afroablepharus skinks (Squamata: Scincidae) in the savannas of sub-Saharan Africa.

    PubMed

    Medina, Maria F; Bauer, Aaron M; Branch, William R; Schmitz, Andreas; Conradie, Werner; Nagy, Zoltán T; Hibbitts, Toby J; Ernst, Raffael; Portik, Daniel M; Nielsen, Stuart V; Colston, Timothy J; Kusamba, Chifundera; Behangana, Mathias; Rödel, Mark-Oliver; Greenbaum, Eli

    2016-07-01

    African snake-eyed skinks are relatively small lizards of the genera Panaspis and Afroablepharus. Species allocation of these genera frequently changed during the 20th century based on morphology, ecology, and biogeography. Members of these genera occur primarily in savanna habitats throughout sub-Saharan Africa and include species whose highly conserved morphology poses challenges for taxonomic studies. We sequenced two mitochondrial (16S and cyt b) and two nuclear genes (PDC and RAG1) from 76 Panaspis and Afroablepharus samples from across eastern, central, and southern Africa. Concatenated gene-tree and divergence-dating analyses were conducted to infer phylogenies and biogeographic patterns. Molecular data sets revealed several cryptic lineages, with most radiations occurring during the mid-Miocene to Pliocene. We infer that rifting processes (including the formation of the East African Rift System) and climatic oscillations contributed to the expansion and contraction of savannas, and caused cladogenesis in snake-eyed skinks. Species in Panaspis and Afroablepharus used in this study, including type species for both genera, formed a monophyletic group. As a result, the latter genus should be synonymized with the former, which has priority. Conservatively, we continue to include the West African species P. breviceps and P. togoensis within an expanded Panaspis, but note that they occur in relatively divergent clades, and their taxonomic status may change with improved taxon sampling. Divergence estimates and cryptic speciation patterns of snake-eyed skinks were consistent with previous studies of other savanna vertebrate lineages from the same areas examined in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Carbon and water fluxes in semi-arid ecosystems of central Australia

    NASA Astrophysics Data System (ADS)

    Tarin, T.; Eamus, D.; Nolan, R.; Cleverly, J. R.

    2016-12-01

    The southern hemisphere, and especially Australia, has been shown to play a significant role in the 2011 global carbon sink anomaly (Poulter et al 2014, Nature 509: 600-603). Australia is an extensive continent, of which 70% is arid or semi-arid. Two biomes dominate the central semi-arid region: (1) Mulga, a low woodland dominated by species of the genus Acacia (a N-fixing tree); and (2) open Corymbia-savanna where the dominant cover is Spinifex (a C4 grass) with widely spaced tall evergreen Corymbia trees. Within each biome an eddy covariance tower has been in operation for the past 4 years. The aim of this study is to compare seasonal budgets of carbon and water fluxes in these two ecosystems from 2013 two 2015. We also look at water-use efficiency (WUE; the ratio of gross primary production (GPP) to evapotranspiration (ET). Most precipitation occurred during the summer period (December-February), and ET accounted for up to 80% of total annual precipitation for both ecosystems. Mulga and Corymbia-savanna ecosystems received 360 (± 4) mm y-1 of rain in 2014 and 2015, but 2013 was considerably drier, with 142 mm and 180 mm of rain received at each site respectively (the long term average is about 320 mm pa). Average GPP across 2013-2015 in the woodland ecosystem was 458 ± 46 g C m-2 yr-1, in contrast to 341 ± 78 g C m-2 yr-1 for the Corymbia savanna. Ecosystem WUE was larger in 2013 with 3.6 and 1.7 (g C m-2 mm-1 H2O), for Mulga and Corymbia-savanna respectively. By contrast 2014 had the lowest values of WUE with 1.7 and 1.1 (g C m-2 mm-1 H2O) for the Mulga and Corymbia savanna respectively. We found the Mulga site was the most water efficient ecosystem, these quantifications of the WUE in central Australia where similar to other studies in arid regions, where WUE increase with increasing aridity.

  5. Abundance of birds in the oak savannas of the southwestern United States

    Treesearch

    Wendy D. Jones; Carlton M. Jones; Peter F. Ffolliott; Gerald J. Gottfried

    2005-01-01

    Oak ecosystems of the Southwestern United States are important habitats for a variety of wildlife species. Information is available on the abundance and habitat preferences of some species inhabiting the more densely structured oak woodlands, but little information is available on these topics for the comparatively open oak savannas. Studies are underway to alleviate...

  6. RECOVER - An Automated Burned Area Emergency Response Decision Support System for Post-fire Rehabilitation Management of Savanna Ecosystems in the Western US

    NASA Astrophysics Data System (ADS)

    Weber, K.; Schnase, J. L.; Carroll, M.; Brown, M. E.; Gill, R.; Haskett, G.; Gardner, T.

    2013-12-01

    In partnership with the Department of Interior's Bureau of Land Management (BLM) and the Idaho Department of Lands (IDL), we are building and evaluating the RECOVER decision support system. RECOVER - which stands for Rehabilitation Capability Convergence for Ecosystem Recovery - is an automatically deployable, context-aware decision support system for savanna wildfires that brings together in a single application the information necessary for post-fire rehabilitation decision-making and long-term ecosystem monitoring. RECOVER uses state-of-the-art cloud-based data management technologies to improve performance, reduce cost, and provide site-specific flexibility for each fire. The RECOVER Server uses Integrated Rule-Oriented Data System (iRODS) data grid technology deployed in the Amazon Elastic Compute Cloud (EC2). The RECOVER Client is an Adobe Flex web map application that is able to provide a suite of convenient GIS analytical capabilities. In a typical use scenario, the RECOVER Server is provided a wildfire name and geospatial extent. The Server then automatically gathers Earth observational data and other relevant products from various geographically distributed data sources. The Server creates a database in the cloud where all relevant information about the wildfire is stored. This information is made available to the RECOVER Client and ultimately to fire managers through their choice of web browser. The Server refreshes the data throughout the burn and subsequent recovery period (3-5 years) with each refresh requiring two minutes to complete. Since remediation plans must be completed within 14 days of a fire's containment, RECOVER has the potential to significantly improve the decision-making process. RECOVER adds an important new dimension to post-fire decision-making by focusing on ecosystem rehabilitation in semiarid savannas. A novel aspect of RECOVER's approach involves the use of soil moisture estimates, which are an important but difficult

  7. Sustainable development and use of ecosystems with non-forest trees

    USDA-ARS?s Scientific Manuscript database

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  8. Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius).

    PubMed

    Stevens, Jens T; Beckage, Brian

    2009-10-01

    * Fire disturbance can mediate the invasion of ecological communities by nonnative species. Nonnative plants that modify existing fire regimes may initiate a positive feedback that can facilitate their continued invasion. Fire-sensitive plants may successfully invade pyrogenic landscapes if they can inhibit fire in the landscape. * Here, we investigated whether the invasive shrub Brazilian pepper (Schinus terebinthifolius) can initiate a fire-suppression feedback in a fire-dependent pine savanna ecosystem in the southeastern USA. * We found that prescribed burns caused significant (30-45%) mortality of Brazilian pepper at low densities and that savannas with more frequent fires contained less Brazilian pepper. However, high densities of Brazilian pepper reduced fire temperature by up to 200 degrees C, and experienced as much as 80% lower mortality. * A cellular automaton model was used to demonstrate that frequent fire may control low-density populations, but that Brazilian pepper may reach a sufficient density during fire-free periods to initiate a positive feedback that reduces the frequency of fire and converts the savanna to an invasive-dominated forest.

  9. Savanna elephant numbers are only a quarter of their expected values

    PubMed Central

    Robson, Ashley S.; Trimble, Morgan J.; Purdon, Andrew; Young-Overton, Kim D.; Pimm, Stuart L.; van Aarde, Rudi J.

    2017-01-01

    Savannas once constituted the range of many species that human encroachment has now reduced to a fraction of their former distribution. Many survive only in protected areas. Poaching reduces the savanna elephant, even where protected, likely to the detriment of savanna ecosystems. While resources go into estimating elephant populations, an ecological benchmark by which to assess counts is lacking. Knowing how many elephants there are and how many poachers kill is important, but on their own, such data lack context. We collated savanna elephant count data from 73 protected areas across the continent estimated to hold ~50% of Africa’s elephants and extracted densities from 18 broadly stable population time series. We modeled these densities using primary productivity, water availability, and an index of poaching as predictors. We then used the model to predict stable densities given current conditions and poaching for all 73 populations. Next, to generate ecological benchmarks, we predicted such densities for a scenario of zero poaching. Where historical data are available, they corroborate or exceed benchmarks. According to recent counts, collectively, the 73 savanna elephant populations are at 75% of the size predicted based on current conditions and poaching levels. However, populations are at <25% of ecological benchmarks given a scenario of zero poaching (~967,000)—a total deficit of ~730,000 elephants. Populations in 30% of the 73 protected areas were <5% of their benchmarks, and the median current density as a percentage of ecological benchmark across protected areas was just 13%. The ecological context provided by these benchmark values, in conjunction with ongoing census projects, allow efficient targeting of conservation efforts. PMID:28414784

  10. Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity

    Treesearch

    Joseph W. Veldman; Lars A. Brudvig; Ellen I. Damschen; John L. Orrock; W. Brett Mattingly; Joan L. Walker

    2014-01-01

    Question: Human-altered disturbance regimes and agricultural land uses are broadly associated with reduced plant species diversity in terrestrial ecosystems. In this study, we seek to understand how fire frequency and agricultural land-use history influence savanna understorey plant diversity through complex relationships (i.e. indirect effects) among multiple...

  11. The roles of fire in Holocene ecosystem changes of West Africa

    NASA Astrophysics Data System (ADS)

    Dupont, L. M.; Schefuß, E.

    2018-01-01

    The climate changes associated with the Holocene wet phase in the Sahara, the African Humid Period, are subject to ongoing debate discussing interactions between climate and vegetation and possible feedbacks between vegetation, albedo, desertification, and dust. However, very little attention has been given to the role of fire in shaping the land cover, although it is known that fires are important in the formation and consolidation of the African savanna. To fill this gap, we investigated the interaction between precipitation changes, vegetation shifts, and fire occurrence in West Africa by combining stable isotope measurements on plant waxes with pollen and micro-charcoal counts of marine sediments retrieved offshore of Cape Blanc. Our study focuses on the roles of fire at the dry limit of savanna during the Holocene evolution of precipitation changes indicating that the impact of fire during a relative wet climate differs from that during aridification. During the humid early Holocene, increased savanna extension and diversification ran parallel to increased fire occurrence. In contrast, after aridification of northern Africa started at the end of the African Humid Period, a maximum in fire occurrence correlated with a deterioration of the vegetation promoting desertification.

  12. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa)

    NASA Astrophysics Data System (ADS)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas

    2009-03-01

    The contribution of West African savanna ecosystems to global greenhouse gas budgets is highly uncertain. In this study we quantified soil-atmosphere CH4 and CO2 fluxes in the southwest of Burkina Faso from June to September 2005 and from April to September 2006 at four different agricultural fields planted with sorghum (n = 2), cotton, and peanut and at a natural savanna site with termite (Cubitermes fungifaber) mounds. During the rainy season both CH4 uptake and CH4 emission were observed in the savanna, which was on average a CH4 source of 2.79 and 2.28 kg CH4-C ha-1 a-1 in 2005 and 2006, respectively. The crop sites were an average CH4 sink of -0.67 and -0.70 kg CH4-C ha-1 a-1 in the 2 years, without significant seasonal variation. Mean annual soil respiration ranged between 3.86 and 5.82 t CO2-C ha-1 a-1 in the savanna and between 2.50 and 4.51 t CO2-C ha-1 a-1 at the crop sites. CH4 emission from termite mounds was 2 orders of magnitude higher than soil CH4 emissions, whereas termite CO2 emissions were of the same order of magnitude as soil CO2 emissions. Termite CH4 and CO2 release in the savanna contributed 8.8% and 0.4% to the total soil CH4 and CO2 emissions, respectively. At the crop sites, where termite mounds had been almost completely removed because of land use change, termite fluxes were insignificant. Mound density-based upscaling of termite CH4 fluxes resulted in a global termite CH4 source of 0.9 Tg a-1, which corresponds to 0.15% of the total global CH4 budget of 582 Tg a-1, hence significantly lower than those obtained previously by biomass-based calculations. This study emphasizes that land use change, which is of high relevance in this region, has particularly affected soil CH4 fluxes in the past and might still do so in the future.

  13. Fire-induced albedo change and surface radiative forcing in sub-Saharan Africa savanna ecosystems: Implications for the energy balance

    NASA Astrophysics Data System (ADS)

    Dintwe, Kebonye; Okin, Gregory S.; Xue, Yongkang

    2017-06-01

    Surface albedo is a critical parameter that controls surface energy balance. In dryland ecosystems, fires play a significant role in decreasing surface albedo, resulting in positive radiative forcing. Here we investigate the long-term effect of fire on surface albedo. We devised a method to calculate short-, medium-, and long-term effect of fire-induced radiative forcing and their relative effects on energy balance. We used Moderate Resolution Imaging Spectroradiometer (MODIS) data in our analysis, covering different vegetation classes in sub-Saharan Africa (SSA). Our analysis indicated that mean short-term fire-induced albedo change in SSA was -0.022, -0.035, and -0.041 for savannas, shrubland, and grasslands, respectively. At regional scale, mean fire-induced albedo change in savannas was -0.018 and -0.024 for northern sub-Saharan of Africa and the southern hemisphere Africa, respectively. The short-term mean fire-induced radiative forcing in burned areas in sub-Saharan Africa (SSA) was 5.41 W m-2, which contributed continental and global radiative forcings of 0.25 and 0.058 W m-2, respectively. The impact of fire in surface albedo has long-lasting effects that varies with vegetation type. The long-term energetic effects of fire-induced albedo change and associated radiative forcing were, on average, more than 19 times greater across SSA than the short-term effects, suggesting that fires exerted far more radiative forcing than previously thought. Taking into account the actual duration of fire's effect on surface albedo, we conclude that the contribution of SSA fires, globally and throughout the year, is 0.12 W m-2. These findings provide crucial information on possible impact of fire on regional climate variability.

  14. Savanna fire and the origins of the 'underground forests' of Africa.

    PubMed

    Maurin, Olivier; Davies, T Jonathan; Burrows, John E; Daru, Barnabas H; Yessoufou, Kowiyou; Muasya, A Muthama; van der Bank, Michelle; Bond, William J

    2014-10-01

    The origin of fire-adapted lineages is a long-standing question in ecology. Although phylogeny can provide a significant contribution to the ongoing debate, its use has been precluded by the lack of comprehensive DNA data. Here, we focus on the 'underground trees' (=geoxyles) of southern Africa, one of the most distinctive growth forms characteristic of fire-prone savannas. We placed geoxyles within the most comprehensive dated phylogeny for the regional flora comprising over 1400 woody species. Using this phylogeny, we tested whether African geoxyles evolved concomitantly with those of the South American cerrado and used their phylogenetic position to date the appearance of humid savannas. We found multiple independent origins of the geoxyle life-form mostly from the Pliocene, a period consistent with the origin of cerrado, with the majority of divergences occurring within the last 2 million yr. When contrasted with their tree relatives, geoxyles occur in regions characterized by higher rainfall and greater fire frequency. Our results indicate that the geoxylic growth form may have evolved in response to the interactive effects of frequent fires and high precipitation. As such, geoxyles may be regarded as markers of fire-maintained savannas occurring in climates suitable for forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  15. Herbaceous Forage and Selection Patterns by Ungulates across Varying Herbivore Assemblages in a South African Savanna

    PubMed Central

    Treydte, Anna Christina; Baumgartner, Sabine; Heitkönig, Ignas M. A.; Grant, Catharina C.; Getz, Wayne M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types. PMID:24358228

  16. Monitoring African savanna water use and water stress from local to regional scale: supporting rangeland management (pilot experience in Kruger National Park, South Africa).

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Dube, Timothy; Nieto, Hector; González-Dugo, Maria P.; Hülsmann, Stephan

    2017-04-01

    Drought periods and erratic rainfall patterns across large parts of Africa result in water-limited environments like savannas, highly sensitive to land management practices and changes in climate. Over the Southern part of the continent, savannas are key productive landscapes supporting livestock, crops and rural livelihoods. Monitoring water use and the natural vegetation stress over these semi-arid complex ecosystems can support rangeland management, to maintain long-term productivity. However, the precision/resolution/accuracy of the information required for management will differ at each scale: farm-local (e.g. evaluating the effect of management practices, livestock densities, crop production and grazing), to watershed (e.g. evaluating the effect of fire, detection of vulnerable areas) and regional (e.g. early prediction of drought). To overcome these constrains, TIGER project 401 combines two approaches that take advantage of different conceptual and operational capabilities of Earth Observation data sources. Sentinel 2 high spatial (10 m) and temporal ( 5 days) resolution VIS/NIR images are used for a continuous monitoring of vegetation cover and unstressed evapotranspiration (ET - using Kc-FAO56 method). This methodology will provide the required resolution for farm-local scales, tracking separately the seasonal variations of each canopy layer growth (grass and trees). Meanwhile, lower spatial resolution (1 km) MODIS thermal data allow to determine a regional water stress index (ratio between actual ET, estimated using Two Source Energy Balance-TSEB, and potential ET), supporting the detection of vulnerable areas. The model framework was tested and validated over savanna-type experimental areas (Skukuza & Malopeni), and later applied over the whole Kruger National Park during 2015-2016.

  17. Carbon mapping of Argentine savannas: Using fractional tree cover to scale from field to region

    NASA Astrophysics Data System (ADS)

    González-Roglich, M.; Swenson, J. J.

    2015-12-01

    Programs which intend to maintain or enhance carbon (C) stocks in natural ecosystems are promising, but require detailed and spatially explicit C distribution models to monitor the effectiveness of management interventions. Savanna ecosystems are significant components of the global C cycle, covering about one fifth of the global land mass, but they have received less attention in C monitoring protocols. Our goal was to estimate C storage across a broad savanna ecosystem using field surveys and freely available satellite images. We first mapped tree canopies at 2.5 m resolution with a spatial subset of high resolution panchromatic images to then predict regional wall-to-wall tree percent cover using 30-m Landsat imagery and the Random Forests algorithms. We found that a model with summer and winter spectral indices from Landsat, climate and topography performed best. Using a linear relationship between C and % tree cover, we then predicted tree C stocks across the gradient of tree cover, explaining 87 % of the variability. The spatially explicit validation of the tree C model with field-measured C-stocks revealed an RMSE of 8.2 tC/ha which represented ~30% of the mean C stock for areas with tree cover, comparable to studies based on more advanced remote sensing methods, such as LiDAR and RADAR. Sample spatial distribution highly affected the performance of the RF models in predicting tree cover, raising concerns regarding the predictive capabilities of the model in areas for which training data is not present. The 50,000 km2 has ~41 Tg C, which could be released to the atmosphere if agricultural pressure intensifies in this semiarid savanna.

  18. From savanna to campus woodlot: the historical ecology of farm woodlots in southern Illinois

    Treesearch

    C. M. Ruffner; A. Trieu; S. Chandy; M. D. Davis; D. Fishel; G. Gipson; J. Lhotka; K. Lynch; P. Perkins; S. van de Gevel; W. Watson; E. White

    2003-01-01

    The historical ecology of Thompson Woods, a 4.1 ha forest remnant on the campus of Southern Illinois University-Carbondale, was investigated through stand structure analysis, dendroecology, and historical records. Historical records indicate the area was a savanna ecosystem prior to European settlement dominated by large, open grown mixed oak-hickory trees. No trees in...

  19. Mammals of Australia's Tropical Savannas: A Conceptual Model of Assemblage Structure and Regulatory Factors in the Kimberley Region

    PubMed Central

    Radford, Ian J.; Dickman, Christopher R.; Start, Antony N.; Palmer, Carol; Carnes, Karin; Everitt, Corrin; Fairman, Richard; Graham, Gordon; Partridge, Thalie; Thomson, Allan

    2014-01-01

    We construct a state-and-transition model for mammals in tropical savannas in northern Australia to synthesize ecological knowledge and understand mammalian declines. We aimed to validate the existence of alternative mammal assemblage states similar to those in arid Australian grasslands, and to speculate on transition triggers. Based on the arid grassland model, we hypothesized that assemblages are partitioned across rainfall gradients and between substrates. We also predicted that assemblages typical of arid regions in boom periods would be prevalent in savannas with higher and more regular rainfall. Data from eight mammal surveys from the Kimberley region, Western Australia (1994 to 2011) were collated. Survey sites were partitioned across rainfall zones and habitats. Data allowed us to identify three assemblage states: State 0:- low numbers of mammals, State II:- dominated by omnivorous rodents and State III:- dominated by rodents and larger marsupials. Unlike arid grasslands, assemblage dominance by insectivorous dasyurids (State I) did not occur in savannas. Mammal assemblages were partitioned across rainfall zones and between substrates as predicted, but—unlike arid regions—were not related strongly to yearly rainfall. Mammal assemblage composition showed high regional stability, probably related to high annual rainfall and predictable wet season resource pulses. As a consequence, we speculate that perpetually booming assemblages in savannas allow top-down control of the ecosystem, with suppression of introduced cats by the dingo, the region's top predator. Under conditions of low or erratic productivity, imposed increasingly by intense fire regimes and introduced herbivore grazing, dingoes may not limit impacts of cats on native mammals. These interacting factors may explain contemporary declines of savanna mammals as well as historical declines in arid Australia. The cat-ecosystem productivity hypothesis raised here differs from the already

  20. Mammals of Australia's tropical savannas: a conceptual model of assemblage structure and regulatory factors in the Kimberley region.

    PubMed

    Radford, Ian J; Dickman, Christopher R; Start, Antony N; Palmer, Carol; Carnes, Karin; Everitt, Corrin; Fairman, Richard; Graham, Gordon; Partridge, Thalie; Thomson, Allan

    2014-01-01

    We construct a state-and-transition model for mammals in tropical savannas in northern Australia to synthesize ecological knowledge and understand mammalian declines. We aimed to validate the existence of alternative mammal assemblage states similar to those in arid Australian grasslands, and to speculate on transition triggers. Based on the arid grassland model, we hypothesized that assemblages are partitioned across rainfall gradients and between substrates. We also predicted that assemblages typical of arid regions in boom periods would be prevalent in savannas with higher and more regular rainfall. Data from eight mammal surveys from the Kimberley region, Western Australia (1994 to 2011) were collated. Survey sites were partitioned across rainfall zones and habitats. Data allowed us to identify three assemblage states: State 0:--low numbers of mammals, State II:--dominated by omnivorous rodents and State III:--dominated by rodents and larger marsupials. Unlike arid grasslands, assemblage dominance by insectivorous dasyurids (State I) did not occur in savannas. Mammal assemblages were partitioned across rainfall zones and between substrates as predicted, but-unlike arid regions-were not related strongly to yearly rainfall. Mammal assemblage composition showed high regional stability, probably related to high annual rainfall and predictable wet season resource pulses. As a consequence, we speculate that perpetually booming assemblages in savannas allow top-down control of the ecosystem, with suppression of introduced cats by the dingo, the region's top predator. Under conditions of low or erratic productivity, imposed increasingly by intense fire regimes and introduced herbivore grazing, dingoes may not limit impacts of cats on native mammals. These interacting factors may explain contemporary declines of savanna mammals as well as historical declines in arid Australia. The cat-ecosystem productivity hypothesis raised here differs from the already-articulated cat

  1. Ecology and management of oak woodlands and savannas in the southwestern Borderlands Region

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott

    2013-01-01

    Management of the Madrean oak woodlands and the less dense and ecologically different oak savannas must be based on sound ecological information. However, relatively little is known about the Madrean oak ecosystems in spite of the fact that they cover about 80,000 km2 in the southwestern United States and northern Mexico. Emory oak (Quercus emoryi), the dominant tree...

  2. Climate-biomes, pedo-biomes and pyro-biomes: which world view explains the tropical forest - savanna boundary in South America?

    NASA Astrophysics Data System (ADS)

    Langan, Liam; Higgins, Steven; Scheiter, Simon

    2015-04-01

    Elucidating the drivers of broad vegetation formations improves our understanding of earth system functioning. The biome, defined primarily by the dominance of a particular growth strategy, is commonly employed to group vegetation into similar units. Predicting tropical forest and savanna biome boundaries in South America has proven difficult. Process based DGVMs (Dynamic global vegetation models) are our best tool to simulate vegetation patterns, make predictions for future changes and test theory, however, many DGVMs fail to accurately simulate the spatial distribution or indeed presence of the South American savanna biome which can result in large differences in modelled ecosystem structural properties. Evidence suggests fire plays a significant role in mediating these forest and savanna biome boundaries, however, fire alone does not appear to be sufficient to predict these boundaries in South America using DGVMs hinting at the presence of one or more missing environmental factors. We hypothesise that soil depth, which affects plant available water by determining maximum storage potential and influences temporal availability, may be one of these missing environmental factors. To test our hypothesis we use a novel vegetation model, the aDGVM2. This model has been specifically designed to allow plant trait strategies, constrained by trade-offs between traits, evolve based on the abiotic and biotic conditions where the resulting community trait suites are emergent properties of model dynamics. Furthermore it considers root biomass in multiple soil layers and therefore allows the consideration of alternative rooting strategies, which in turn allows us to explore in more detail the role of soil hydraulic factors in controlling biome boundary distributions. We find that changes in soil depth, interacting with fire, affect the relative dominance of tree and grass strategies and thus the presence and spatial distribution of forest and savanna biomes in South America

  3. Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    PubMed Central

    Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.

    2011-01-01

    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure

  4. Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna.

    PubMed

    Schwieder, M; Leitão, P J; Pinto, J R R; Teixeira, A M C; Pedroni, F; Sanchez, M; Bustamante, M M; Hostert, P

    2018-05-15

    The quantification and spatially explicit mapping of carbon stocks in terrestrial ecosystems is important to better understand the global carbon cycle and to monitor and report change processes, especially in the context of international policy mechanisms such as REDD+ or the implementation of Nationally Determined Contributions (NDCs) and the UN Sustainable Development Goals (SDGs). Especially in heterogeneous ecosystems, such as Savannas, accurate carbon quantifications are still lacking, where highly variable vegetation densities occur and a strong seasonality hinders consistent data acquisition. In order to account for these challenges we analyzed the potential of land surface phenological metrics derived from gap-filled 8-day Landsat time series for carbon mapping. We selected three areas located in different subregions in the central Brazil region, which is a prominent example of a Savanna with significant carbon stocks that has been undergoing extensive land cover conversions. Here phenological metrics from the season 2014/2015 were combined with aboveground carbon field samples of cerrado sensu stricto vegetation using Random Forest regression models to map the regional carbon distribution and to analyze the relation between phenological metrics and aboveground carbon. The gap filling approach enabled to accurately approximate the original Landsat ETM+ and OLI EVI values and the subsequent derivation of annual phenological metrics. Random Forest model performances varied between the three study areas with RMSE values of 1.64 t/ha (mean relative RMSE 30%), 2.35 t/ha (46%) and 2.18 t/ha (45%). Comparable relationships between remote sensing based land surface phenological metrics and aboveground carbon were observed in all study areas. Aboveground carbon distributions could be mapped and revealed comprehensible spatial patterns. Phenological metrics were derived from 8-day Landsat time series with a spatial resolution that is sufficient to capture gradual

  5. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa.

    PubMed

    Mondol, Samrat; Moltke, Ida; Hart, John; Keigwin, Michael; Brown, Lisa; Stephens, Matthew; Wasser, Samuel K

    2015-12-01

    The African elephant consists of forest and savanna subspecies. Both subspecies are highly endangered due to severe poaching and habitat loss, and knowledge of their population structure is vital to their conservation. Previous studies have demonstrated marked genetic and morphological differences between forest and savanna elephants, and despite extensive sampling, genetic evidence of hybridization between them has been restricted largely to a few hybrids in the Garamba region of northeastern Democratic Republic of Congo (DRC). Here, we present new genetic data on hybridization from previously unsampled areas of Africa. Novel statistical methods applied to these data identify 46 hybrid samples--many more than have been previously identified--only two of which are from the Garamba region. The remaining 44 are from three other geographically distinct locations: a major hybrid zone along the border of the DRC and Uganda, a second potential hybrid zone in Central African Republic and a smaller fraction of hybrids in the Pendjari-Arli complex of West Africa. Most of the hybrids show evidence of interbreeding over more than one generation, demonstrating that hybrids are fertile. Mitochondrial and Y chromosome data demonstrate that the hybridization is bidirectional, involving males and females from both subspecies. We hypothesize that the hybrid zones may have been facilitated by poaching and habitat modification. The localized geography and rarity of hybrid zones, their possible facilitation from human pressures, and the high divergence and genetic distinctness of forest and savanna elephants throughout their ranges, are consistent with calls for separate species classification. © 2015 John Wiley & Sons Ltd.

  6. High spatial resolution mapping of land cover types in a priority area for conservation in the Brazilian savanna

    NASA Astrophysics Data System (ADS)

    Ribeiro, F.; Roberts, D. A.; Hess, L. L.; Davis, F. W.; Caylor, K. K.; Nackoney, J.; Antunes Daldegan, G.

    2017-12-01

    Savannas are heterogeneous landscapes consisting of highly mixed land cover types that lack clear distinct boundaries. The Brazilian Cerrado is a Neotropical savanna considered a biodiversity hotspot for conservation due to its biodiversity richness and rapid transformation of its landscape by crop and pasture activities. The Cerrado is one of the most threatened Brazilian biomes and only 2.2% of its original extent is strictly protected. Accurate mapping and monitoring of its ecosystems and adjacent land use are important to select areas for conservation and to improve our understanding of the dynamics in this biome. Land cover mapping of savannas is difficult due to spectral similarity between land cover types resulting from similar vegetation structure, floristically similar components, generalization of land cover classes, and heterogeneity usually expressed as small patch sizes within the natural landscape. These factors are the major contributor to misclassification and low map accuracies among remote sensing studies in savannas. Specific challenges to map the Cerrado's land cover types are related to the spectral similarity between classes of land use and natural vegetation, such as natural grassland vs. cultivated pasture, and forest ecosystem vs. crops. This study seeks to classify and evaluate the land cover patterns across an area ranked as having extremely high priority for future conservation in the Cerrado. The main objective of this study is to identify the representativeness of each vegetation type across the landscape using high to moderate spatial resolution imagery using an automated scheme. A combination of pixel-based and object-based approaches were tested using RapidEye 3A imagery (5m spatial resolution) to classify the Cerrado's major land cover types. The random forest classifier was used to map the major ecosystems present across the area, and demonstrated to have an effective result with 68% of overall accuracy. Post

  7. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    NASA Astrophysics Data System (ADS)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  8. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  9. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  10. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    PubMed

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  11. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions

  12. Drought sensitivity changes over the last century at the North American savanna-forest boundary

    NASA Astrophysics Data System (ADS)

    Heilman, K.; McLachlan, J. S.

    2017-12-01

    Future environmental changes can affect the sensitivity of tree growth to climate. Theses changes are of particular concern at biome boundaries where tree distribution could shift as a result of changes in both drought and drought sensitivity. One such region is the North American savanna-forest boundary, where increased CO2 and droughts could alter savanna and forest ecosystem distributions in two contrasting ways: 1). More severe droughts may increase drought sensitivity, favoring open savanna ecosystems or, 2). Increases in water use efficiency resulting from higher atmospheric CO2 may decrease drought sensitivity, promoting forest expansion. This study sought to understand whether the past 100 years of climate and CO2 changes have impacted regional tree growth-climate sensitivity. To test for these climate sensitivity changes, we measured the sensitivity of Quercus spp. radial growth to Palmer Drought Severity Index (PDSI). Tree growth sensitivity to climate can vary according to many factors, including: stand structure, available moisture, and tree age. To control for these factors, we sampled tree growth-climate responses at sites in both open and closed forests, and at both low and high annual precipitation. Within each site, we compared growth responses to climate between trees established under high CO2 conditions after 1950 (high CO2 young), and tree established before 1950 under low CO2 levels (low CO2 young). At most sites, low CO2 young have a higher drought sensitivity than higher CO2 young. These changes in the sensitivity to drought are consistent with CO2 enhancement of water use efficiency. Furthermore, these differences in drought sensitivity are higher at sites with high temperature and low precipitation, suggesting that the alleviation of drought is more likely in hot and dry regions. Thus, if CO2 enhancement is indeed occurring in these systems, lower growth sensitivity to drought in hot and dry regions could favor increased forest growth. If

  13. Effects of controlled fire and livestock grazing on bird communities in East African savannas.

    PubMed

    Gregory, Nathan C; Sensenig, Ryan L; Wilcove, David S

    2010-12-01

    In East Africa fire and grazing by wild and domestic ungulates maintain savannas, and pastoralists historically set fires and herded livestock through the use of temporary corrals called bomas. In recent decades traditional pastoral practices have declined, and this may be affecting biodiversity. We investigated the effects of prescribed fires and bomas on savanna bird communities in East Africa during the first and second dry seasons of the year (respectively before and after the rains that mark the onset of breeding for most birds). We compared abundance, richness, and community composition on 9-ha burned plots, recently abandoned bomas, and control plots in the undisturbed matrix habitat over a 3-year period. Generally, recently burned areas and abandoned bomas attracted greater densities of birds and had different community assemblages than the surrounding matrix. The effects of disturbances were influenced by interactions between primary productivity, represented by the normalized difference vegetation index, and time. Bird densities were highest and a greater proportion of species was observed on burned plots in the months following the fires. Drought conditions equalized bird densities across treatments within 1 year, and individuals from a greater proportion of species were more commonly observed on abandoned bomas. Yearly fluctuations in abundance were less pronounced on bomas than on burns, which indicate that although fire may benefit birds in the short term, bomas may have a more-lasting positive effect and provide resources during droughts. Several Palearctic migrants were attracted to burned plots regardless of rainfall, which indicates continued fire suppression may threaten their already-declining populations. Most notably, the paucity of birds observed on the controls suggests that the current structure of the matrix developed as a result of fire suppression. Traditional pastoralism appears critical to the maintenance of avian diversity in these

  14. Intra-seasonal risk of agriculturally-relevant weather extremes in West African Sudan Savanna

    NASA Astrophysics Data System (ADS)

    Boansi, David; Tambo, Justice A.; Müller, Marc

    2018-01-01

    Using household survey data and historical daily climate data for 29 communities across Upper East Ghana and Southwest Burkina Faso, we document climatic conditions deemed major threat to farming in the West African Sudan Savanna and assess risks posed by such conditions over the period 1997-2014. Based on farmers' perception, it is found that drought, low rainfall, intense precipitation, flooding, erratic rainfall pattern, extremely high temperatures, delayed rains, and early cessation of rains are the major threats farmers face. Using first-order Markov chain model and relevant indices for monitoring weather extremes, it is discovered that climatic risk is a general inherent attribute of the rainy season in the study area. Due to recent changes in onset of rains and length of the rainy season, some farmers have either resorted to early planting of drought-hardy crops, late planting of drought-sensitive crops, or spreading of planting across the first 3 months of the season to moderate harm. Each of these planting decisions however has some risk implications. The months of May, June, and October are found to be more susceptible to relatively longer duration of dry and hot spells, while July, August, and September are found to be more susceptible to intense precipitation and flooding. To moderate harm from anticipated weather extremes, farmers need to adjust their cropping calendar, adopt appropriate crop varieties, and implement soil and water management practices. For policy makers and other stakeholders, we recommend the supply of timely and accurate weather forecasts to guide farmers in their seasonal cropping decisions and investment in/installation of low cost irrigation facilities to enhance the practice of supplemental irrigation.

  15. Chapter 10 - The roles of fire, overstory thinning, and understory seeding for the restoration of Iowa Oak Savannas (Project NC-F-07-1)

    Treesearch

    Lars A. Brudvig; Heidi Asbjornsen

    2014-01-01

    Savanna ecosystems historically comprised more than 10 million ha of the Midwestern United States, forming a transition zone between western prairies and eastern deciduous forest that extended from Texas into Canada (Nuzzo 1986).

  16. A geographically-referenced multiple-resource data management system for the oak savannas of the Malpai Borderland Region

    Treesearch

    Hui Chen; Cody L. Stropki; Peter F. Ffolliott; Gerald J. Gottfried

    2009-01-01

    Twelve watersheds in the oak savannas on the eastern side of the Peloncillo Mountains in the Southwestern Borderlands Region of New Mexico are being monitored to document the ecological and hydrologic characteristics, and to determine the effects of burning treatments on this ecosystem. Ecological components monitored include tree overstories, loadings of fuel...

  17. The climatic sensitivity of the forest, savanna and forest-savanna transition in tropical South America.

    PubMed

    Hirota, Marina; Nobre, Carlos; Oyama, Marcos Daisuke; Bustamante, Mercedes M C

    2010-08-01

    *We used a climate-vegetation-natural fire (CVNF) conceptual model to evaluate the sensitivity and vulnerability of forest, savanna, and the forest-savanna transition to environmental changes in tropical South America. *Initially, under current environmental conditions, CVNF model results suggested that, in the absence of fires, tropical forests would extend c. 200 km into the presently observed savanna domain. *Environmental changes were then imposed upon the model in temperature, precipitation and lightning strikes. These changes ranged from 2 to 6 degrees C warming, +10 to -20% precipitation change and 0 to 15% increase in lightning frequency, which, in aggregate form, represent expected future climatic changes in response to global warming and deforestation. *The most critical vegetation changes are projected to take place over the easternmost portions of the basin, with a widening of the forest-savanna transition. The transition width would increase from 150 to c. 300 km, with tree cover losses ranging from 20 to 85%. This means that c. 6% of the areas currently covered by forests could potentially turn into grass-dominated savanna landscapes. The mechanism driving tree cover reduction consists of the combination of less favorable climate conditions for trees and more fire activity. In addition, this sensitivity analysis predicts that the current dry shrubland vegetation of northeast Brazil could potentially turn into a bare soil landscape.

  18. Competition favors elk over beaver in a riparian willow ecosystem

    USGS Publications Warehouse

    Baker, B.W.; Peinetti, H.R.; Coughenour, M.C.; Johnson, T.L.

    2012-01-01

    Beaver (Castor spp.) conservation requires an understanding of their complex interactions with competing herbivores. Simulation modeling offers a controlled environment to examine long-term dynamics in ecosystems driven by uncontrollable variables. We used a new version of the SAVANNA ecosystem model to investigate beaver (C. Canadensis) and elk (Cervus elapses) competition for willow (Salix spp.). We initialized the model with field data from Rocky Mountain National Park, Colorado, USA, to simulate a 4-ha riparian ecosystem containing beaver, elk, and willow. We found beaver persisted indefinitely when elk density was or = 30 elk km_2. The loss of tall willow preceded rapid beaver declines, thus willow condition may predict beaver population trajectory in natural environments. Beaver were able to persist with slightly higher elk densities if beaver alternated their use of foraging sites in a rest-rotation pattern rather than maintained continuous use. Thus, we found asymmetrical competition for willow strongly favored elk over beaver in a simulated montane ecosystem. Finally, we discuss application of the SAVANNA model and mechanisms of competition relative to beaver persistence as metapopulations, ecological resistance and alternative state models, and ecosystem regulation.

  19. Tree foliar chemistry in an African savanna and its relation to life history strategies and environmental filters.

    PubMed

    Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P

    2015-01-01

    Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.

  20. Structure and tree species composition in different habitats of savanna used by indigenous people in the Northern Brazilian Amazon.

    PubMed

    de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo

    2017-01-01

    Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.

  1. Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna.

    PubMed

    Kimuyu, Duncan M; Sensenig, Ryan L; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2014-06-01

    interactions between fire and herbivory in savanna ecosystems.

  2. Restoring fire to long-unburned Pinus palustris ecosystems: novel fire effects and consequences for long-unburned ecosystems

    Treesearch

    Morgan J. Varner; Doria r. Gordon; Francis E. Putz; J. Kevin Hiers

    2005-01-01

    Biologically rich savannas and woodlands dominated by Pinus palustris once dominated the southeastern U.S. landscape. With European settlement, fire suppression, and landscape fragmentation, this ecosystem has been reduced in area by 97%. Half of remnant forests are not burned with sufficient frequency, leading to declines in plant and animal species...

  3. Rapid assessment and mapping of tree cover in southern African savanna woodlands using a new iPhone App and Landsat 8 imagery

    NASA Astrophysics Data System (ADS)

    Fuller, D. O.

    2016-12-01

    Tree cover is a key parameter in climate modeling. It strongly influences CO2 exchanges between the land surface and atmosphere and surface energy balance. We measured percent woody canopy cover (PWCC) in the savanna woodlands of eastern Zambia over a 10-day period in May 2016 using a new iPhone App (CanopyApp) and related these field measurements to Landsat 8 (L8) Band 4 (red) imagery acquired approximately the same time. We then used parameters from the band 4 digital numbers (DNs)-PWCC linear regression to derive a new map of PWCC for the entire L8 scene. Consistent with theory and previous empirical studies, we found that the relationship between L8 band 4 DNs- PWCC was negative and linear (r2 = 0.61, p < 0.05). Interestingly, the relationship between PWCC and L8 band 4 surface reflectance was weaker (r2 = 0.46, p < 0.05) than that for DNs. This suggests that the scene model used in L8 atmospheric correction may not account well for within-pixel shadowing effects and other spatial inhomogeneities from variable soil and background reflectance. Our PWCC map agreed qualitatively with similar percent tree-cover maps based on Landsat level 1 products and past field studies in the area conducted using a hemispherical lens. Our results also compared favorably with other remote sensing studies that have used complex multivariate approaches to estimate tree cover, which suggests that use of a single L8 band 4 is sufficient to estimate PWCC when spectral contrast exists between the grass, soil and tree layers during the austral fall period in southern African savannas.

  4. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna

    Treesearch

    R. Flint Hughes; Seeven R. Archer; Gegory P. Asner; Carol A. Wessman; Chad McMurtry; Jim Nelson; R. James. Ansley

    2006-01-01

    When woody plant abundance increases in grasslands and savannas, a phenomenon widely observed worldwide, there is considerable uncertainty as to whether aboveground net primary productivity (ANPP) and ecosystem carbon (C) and nitrogen (N) pools increase, decrease, or remain the same. We estimated ANPP and C and N pools in aboveground vegetation and surface soils on...

  5. Hydrology of southwestern encinal oak ecosystems: A review and more

    Treesearch

    Gerald J. Gottfried; Peter F. Ffolliott; Daniel G. Neary

    2007-01-01

    Information about the hydrology of oak ecosystems of the southwestern United States and northern Mexico is lacking (Lopes and Ffolliott 1992, Baker et al. 1995) even though the woodlands and savannas cover more than 31,000 square miles. These ecosystems generally are found between 4,000 and 7,300 feet in elevation. Precipitation occurs in the winter and summer and...

  6. Termite mounds as hot spots of nitrous oxide emissions in South-Sudanian savanna of Burkina Faso (West Africa)

    NASA Astrophysics Data System (ADS)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas

    2009-05-01

    Despite a considerable knowledge of the significant role of termites in the global methane budget, very little is known about their contribution to the global nitrous oxide (N2O) budget. Release of N2O from termite (Cubitermes fungifaber) mounds was measured at a natural savanna site in the southwest of Burkina Faso from May to September 2006. Termite N2O emissions were around 20 μg N2O-N m-2 h-1 at the end of the dry season, and up to two orders of magnitude higher than N2O emissions from the surrounding termite-free soil after the onset of the rainy season. The average N2O emission rate from termite mounds during the observation period was 204 μg N2O-N m-2 h-1, and termite mounds contributed 3.0% to total N2O emissions from this savanna ecosystem. However, in other tropical terrestrial ecosystems with other termite species and/or higher termite density this share might be significantly higher.

  7. Sustaining Oak Ecosystems in the Central Hardwood Region: Lessons from the Past--Continuing the History of Disturbance

    Treesearch

    Daniel C. Dey; Richard P. Guyette

    2000-01-01

    Oak savannas, woodlands and forests were dominant ecosystems throughout the central hardwood Region (CHR) before European settlement. Today, only 0.02 percent of the original oak savannas present at the time of European settlement remain, and bottomland hardwood forests have been reduced by 70 to 95 percent depending on the watershed (Nuzzo 1986, Sharitz and Mitsch...

  8. Tropical savannas and dry forests.

    PubMed

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Shifts on reproductive phenology of tropical cerrado savanna trees and climate changes

    NASA Astrophysics Data System (ADS)

    Morellato, Patricia

    2010-05-01

    Phenology is the study of cyclic biological events and its relationship to abiotic factors. Timing of flowering, fruiting and leafing is highly correlated to environmental factors such as temperature, precipitation, irradiance and isolation. Accordingly, any change in these factors may have a direct effect on the initiation, intensity and duration of different phenophases. Tropical phenology has not contributed much for climatic change research since historical data sets are scarce and the absence of sharp seasons and distinct factors driving phenology makes difficult the detection of changes over time. One way to have insights on climate driven phenology shifts on tropical plants is through the comparison of plant phenology under different environmental conditions. Fragmentation of natural landscape has exposed plants to edge effects - the interaction between two adjacent ecosystems, when the two are separated by an abrupt transition - the edge, including both abiotic and biological changes on environmental conditions that likely affect plant phenology. The microclimatic conditions along edges have important direct biological effects on the reproductive phenology and fitness of plant species. One can expected that the abiotic edge effects on plant phenology may be similar to some extent to certain effects induced by climate change on plant phenology since both involve shifts on environmental conditions. Due to the threatened status and rich biodiversity of Brazilian Neotropical savanna, or the Brazilian Cerrado, the present study aimed to understand edge effects on cerrado savanna species. We compared micro environmental factors and phenology of several species on the edge and in the interior of cerrado savanna. Our first results indicated that shifts on the micro environmental condition may have driven changes in time, duration and intensity of species phenology and may give us insights on savanna responses to climate changes.

  10. Oak savanna restoration in central Iowa: Assessing indicators of forest health for ecological monitoring (PROJECT NC-F-04-02)

    Treesearch

    Heidi Asbjornsen; Lars Brudvig

    2013-01-01

    Savanna ecosystems were once a dominant feature of the Midwestern Corn Belt Plains ecoregion, occurring within the dynamic boundary between prairies to the west and forests to the east, and maintained in the landscape by complex interactions between fire, climate, topography, and human activities (Anderson 1998). Characterized by their continuous understory layer and...

  11. Characteristics and behavior of a cool-season prescribed fire in the oak savannas of the Southwestern Borderlands

    Treesearch

    Karen A. Koestner; Daniel G. Neary; Gerald J. Gottfired; Ruben Morales

    2008-01-01

    Oak-savannas and woodlands comprise over 80,000 km2 (31,000 mi2) in the mountains and high valleys of the southwestern United States and northern Mexico (Figure 1). Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel...

  12. Origin and dynamics of the northern South American coastal savanna belt during the Holocene - the role of climate, sea-level, fire and humans

    NASA Astrophysics Data System (ADS)

    Alizadeh, Kamaleddin; Cohen, Marcelo; Behling, Hermann

    2015-08-01

    Presence of a coastal savanna belt expanding from British Guiana to northeastern Brazil cannot be explained by present-day climate. Using pollen and charcoal analyses on an 11.6 k old sediment core from a coastal depression in the savanna belt near the mouth of the Amazon River we investigated the paleoenvironmental history to shed light on this question. Results indicate that small areas of savanna accompanied by a forest type composed primarily by the genus Micropholis (Sapotaceae) that has no modern analog existed at the beginning of the Holocene. After 11,200 cal yr BP, savanna accompanied by few trees replaced the forest. In depressions swamp forest developed and by ca 10,000 cal yr BP replaced by Mauritia swamps. Between 8500 and 5600 cal yr BP gallery forest (composed mainly of Euphorbiaceae) and swamp forest succeeded the treeless savanna. The modern vegetation with alternating gallery forest and savanna developed after 5600 cal yr BP. We suggest that the early Holocene no-analog forest is a relict of previously more extensive forest under cooler and moister Lateglacial conditions. The early Holocene savanna expansion indicates a drier phase probably related to the shift of the Intertropical Convergence Zone (ITCZ) towards its northernmost position. The mid-Holocene forest expansion is probably a result of the combined influence of equatorwards shift of ITCZ joining the South Atlantic Convergence Zone (SACZ). The ecosystem variability during the last 5600 cal yr BP, formed perhaps under influence of intensified ENSO condition. High charcoal concentrations, especially during the early Holocene, indicate that natural and/or anthropogenic fires may have maintained the savanna. However, our results propose that climate change is the main driving factor for the formation of the coastal savanna in this region. Our results also show that the early Holocene sea level rise established mangroves near the study site until 7500 cal yr BP and promoted swamp formation in

  13. Couse white-tailed deer and desert cottontail in the southwestern oak savannas: Their presence before and after burning events

    Treesearch

    Peter F. Ffolliott; Hui Chen; Gerald J. Gottfried; Cody L. Stropki

    2012-01-01

    Coues white-tallied deer (Odocoileus virginianus couesi) and desert cottontail (Sylvilagus auduboni), also known as Audubon cottontail, are inhabits of oak savannas in the Southwestern Borderlands region. Food, cover, and scattered water for these two species are found in this comparatively open ecosystem. The results of a study on the presence (occurrence) of Coues...

  14. Long-term energy balance and vegetation water stress monitoring of Mediterranean oak savanna using satellite thermal data

    NASA Astrophysics Data System (ADS)

    González-Dugo, Maria P.; Chen, Xuelong; Andreu, Ana; Carpintero, Elisabet; Gómez-Giraldez, Pedro; Su, Z.(Bob)

    2017-04-01

    Drought is one of the major hazards faced by natural and cropped vegetation in the Mediterranean Sea Basin. Water scarcity is likely to be worsened under the predicted conditions of climate change, which is expected to make this region both warmer and drier. A Holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs. This ecosystem is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural economy. A similar ecosystem is worldwide distributed in areas with Mediterranean climate (as California or South Africa) and shares structural and functional properties with tropical savannas in Africa, Australia and South America. Remote sensing time series can assist the monitoring of the energy balance components, with special attention to the evapotranspiration and vegetation water stress over these areas. Long-term data analysis may improve our understanding of the functioning of the system, helping to assess drought impacts and leading to reduce the economic and environmental vulnerability of this ecosystem. This work analyzes the evolution the surface energy balance components, mapping the evapotranspiration and moisture stress of holm oak woodlands of Spain and Portugal during the last 15 years (2001-2015). The surface energy balance model (SEBS) has been applied over the Iberian Peninsula on a monthly time scale and 0.05° spatial resolution, using multi-satellite and meteorological forcing data. Modelled energy and water fluxes have been validated using ground measurements of two eddy covariance towers located in oak savanna sites during 3 years, resulting in moderate deviations from observations (10-25 W/m2). The departure of actual ET from the

  15. Episodic nitrous oxide soil emissions in Brazilian savanna (cerrado) fire-scars

    NASA Technical Reports Server (NTRS)

    Nobre, A. D.; Crill, P. M.; Harriss, R. C.

    1994-01-01

    The seasonally burned cerrados of Brazil are the largest savanna-type ecosystem of South America and their contribution to the global atmospheric nitrous oxide (N20) budget is unknown. Four types of fire-scarred cerrado along a vegetation gradient from grassland to forest were investigated during the wet season of 1992/93. The effect of fire and subsequent water additions on epiodic emissions of N2O and the associated profile dynamic of soil/gas phase N2O concentrations were studied for several months. Additionally, the effect on episodic emissions of N2O of nitrate and glucose additions to a cerrado soil after fire and the associated profile dynamic of soil/gas phase N2O mixing ratios were determined. Finally, N2O episodic emissions in cerrado converted to corn, soybean, and pasture fields were investigated during one growing/wet season. Results showed N2O consumption/emission for the four fire-scared savanna ecosystems, for nitrogen and carbon fertilization, and for agriculture/pasture ranging from -0.3 to +0.7, 1.8 to 9.1, and 0.5 to 3.7 g N2O-N ha(exp -1) d(exp -1), respectively. During the wet season the cerrado biome does not appear to be a major source of N2O to the troposphere, even following fire events. However, the results of this study suggest that conversion of the cerrado to high input agriculture, with liming and fertilization, can increase N2O emissions more than ten fold.

  16. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems

    Treesearch

    J. Kevin Hiers; Joseph J. O' Brien; Rodney E. Will; Robert J. Mitchell

    2007-01-01

    Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1–10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by .95%, and inadequate fire...

  17. Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects.

    PubMed

    Riginos, Corinna; Grace, James B

    2008-08-01

    Herbivores choose their habitats both to maximize forage intake and to minimize their risk of predation. For African savanna herbivores, the available habitats range in woody cover from open areas with few trees to dense, almost-closed woodlands. This variation in woody cover or density can have a number of consequences for herbaceous species composition, cover, and productivity, as well as for ease of predator detection and avoidance. Here, we consider two alternative possibilities: first, that tree density affects the herbaceous vegetation, with concomitant "bottom-up" effects on herbivore habitat preferences; or, second, that tree density affects predator visibility, mediating "top-down" effects of predators on herbivore habitat preferences. We sampled sites spanning a 10-fold range of tree densities in an Acacia drepanolobium-dominated savanna in Laikipia, Kenya, for variation in (1) herbaceous cover, composition, and species richness; (2) wild and domestic herbivore use; and (3) degree of visibility obstruction by the tree layer. We then used structural equation modeling to consider the potential influences that tree density may have on herbivores and herbaceous community properties. Tree density was associated with substantial variation in herbaceous species composition and richness. Cattle exhibited a fairly uniform use of the landscape, whereas wild herbivores, with the exception of elephants, exhibited a strong preference for areas of low tree density. Model results suggest that this was not a response to variation in herbaceous-community characteristics, but rather a response to the greater visibility associated with more open places. Elephants, in contrast, preferred areas with higher densities of trees, apparently because of greater forage availability. These results suggest that, for all but the largest species, top-down behavioral effects of predator avoidance on herbivores are mediated by tree density. This, in turn, appears to have cascading effects

  18. Factors influencing inter-annual variability of growing season optimum gross primary production and ecosystem respiration in a semi-arid savanna ecosystem: A case study of Skukuza, South Africa

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Mukwashi, K.; Falge, E. M.; Mudau, A.; Odipo, V.; Schmullius, C.; Lenfers, U.; Thiel-Clemen, T.; Thomas, C. K.; Kutsch, W. L.; Scholes, R. J.; Berger, C.

    2016-12-01

    The goal of this study was to improve understanding of factors affecting temporal carbon metabolism at a natural savanna site near Skukuza, South Africa. We investigated inter-annual variability of optimum gross primary production (GPPopt) and ecosystem respiration (Reco) from 2000-2014. GPPopt refers to maximum total amount of carbon fixed by plants per unit area and time. Carbon dioxide (CO2) fluxes have been measured continuously at a 16 m tower at Skukuza using eddy covariance technique since 2000. The GPPopt and Reco parameters were derived from modelled light response curve fits of net ecosystem exchange (NEE) for summer `vegetative' periods. Hydro-ecological years (HEY) were stratified into functional seasons and data were classified into three soil moisture (SM) classes, i.e. wet (SM ≥ 9%), drying (6%< SM ≤9%) and dry periods (SM ≤ 6%), in order to separate biologically functional periods from periods of water constraints. For each SM class data were sub-classified into four air temperature (Tair) classes to separate Tair effects on NEE response to light. Wet periods recorded higher GPPopt and Reco estimates compared to drying periods. The curve fits for dry periods were not significant. We found high variability of GPPopt and Reco from `summer' to `summer' of each HEY. Wet period GPPopt of 2008/2009 and 2010/2011 were highest with 29.2±1.8 and 32.7±1.6 µmol CO2 m-2s-1, respectively, whilst 2006/2007 recorded the lowest GPPopt of 6.5±1.3 µmol CO2 m-2s-1 for Tair class `20°Cair≤25°C'. A similar pattern for Reco trend was observed. We also investigated the influence of rainfall distribution and amount, vapour pressure deficit, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the GPPopt and Reco trends and found a high correlation between GPPopt and variables NDVI and EVI. Our findings have implications in understanding causality and temporal dynamics of GPPopt and Reco in precipitation pulse-driven semi

  19. Seasonal, inter-annual and decadal drivers of tree and grass productivity in an Australian tropical savanna.

    NASA Astrophysics Data System (ADS)

    Moore, C.; Beringer, J.; Hutley, L. B.; Evans, B. J.; Tapper, N. J.; Donohue, R. J.; Exbrayat, J. F.

    2016-12-01

    Tree-grass savannas are a widespread biome and are highly valued for their ecosystem services. Natural or anthropogenic shifts in the savanna tree-grass ratio have wide-reaching implications for food production, timber harvesting, biodiversity, the water cycle and carbon sequestration. It is important to understand the long-term dynamics and drivers of both tree and grass productivity separately, in order to successfully manage savannas in the future. This study investigates the inter-annual variability (IAV) of tree (overstory) and grass (understory) productivity at the Howard Springs OzFlux/Fluxnet site by combining a long-term (15 year) eddy covariance flux record and DIFFUSE model estimates of tree and grass productivity inferred from satellite remote sensing. On a seasonal basis, the primary drivers of overstory and understory productivity were solar radiation in the wet season and soil moisture in the dry season, with deeper soil layers becoming more important as the dry season progressed. On an inter-annual basis, variability in the amount of annual rainfall and length of the rainy season determined soil water availability, which had a positive effect on overstory productivity and a negative effect on understory productivity. No linear trend in the tree-grass ratio was observed over the 15-year study period, indicating that woody encroachment was not occurring to a significant degree at the study site. However, the tree-grass ratio was well correlated with modes of climate variability, namely the Southern Oscillation Index. This study has provided important insight into the long-term contributions of trees and grasses to savanna productivity, along with the respective drivers of IAV. The results will contribute towards model development and building better links with remote sensing techniques in order to more comprehensively monitor savanna structure and function across space and time.

  20. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    PubMed

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  1. Insecticides, polychlorinated biphenyls, and metals in African lake ecosystems. II. Lake McIlwaine, Rhodesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greichus, Y.A.; Greichus, A.; Draayer, H.A.

    1978-04-01

    In an effort to examine biological accumulation of pollutants in an African lake ecosystem samples of water, bottom sediment, oligochaetes, benthic insects, three species of fish, and a fish eating bird were analysed for several insecticides, PCB's, and metals. Actual concentrations as well as the expected increase in the food chain are discussed.

  2. Reconciling Agricultural Needs with Biodiversity and Carbon Conservation in a Savanna Transformation Frontier

    NASA Astrophysics Data System (ADS)

    Spiegel, M. P.; Estes, L. D.; Caylor, K. K.; Searchinger, T.

    2015-12-01

    Zambia is a major hotspot for agricultural development in the African savannas, which will be targeted for agricultural expansion to relieve food shortages and economic insecurity in the next few decades. Recent scholarship rejects the assumption that the large reserves of arable land in the African savannas could be converted to cropland with low ecological costs. In light of these findings, the selection of land for agricultural expansion must consider not only its potential productivity, but also the increase in greenhouse gas emissions and biodiversity loss that would result from the land conversion. To examine these tradeoffs, we have developed a multi-objective optimization technique to seek scenarios for agricultural development in Zambia that simultaneously achieve production targets and minimize carbon, biodiversity, and economic cost constraints, while factoring in the inter-annual variability in crop production in this highly uncertain climate. Potential production is determined from well-characterized yield potential estimates while robust metrics of biodiversity and high resolution mapping of carbon storage provide fine scale estimates of ecological impact. We draw production targets for individual crops from potential development pathways, primarily export, commodity-crop driven expansion and identify ecologically responsible agricultural development scenarios that are resilient to climate change and meet these demands. In order to achieve a doubling of production of nine key crops, assuming a modest 20% overall increase in yield potential, we find a range of scenarios that use less than 1600 km2 of new land without infringing on any protected areas or exceeding 6.7 million tons of carbon emissions.

  3. Assessing ecosystem response to multiple disturbances and climate change in South Africa using ground- and satellite-based measurements and model

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.

    2015-12-01

    Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.

  4. Long term leaf phenology and leaf exchange strategies of a cerrado savanna community

    NASA Astrophysics Data System (ADS)

    de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.

    2017-04-01

    Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global

  5. Increasing the Confidence of African Carbon Cycle Assessments

    NASA Astrophysics Data System (ADS)

    Ardö, Jonas

    2016-04-01

    Scarcity of in situ measurements of greenhouse gas (GHG) fluxes hamper calibration and validation of assessments of carbon budgets in Africa. It limits essential studies of ecosystem function and ecosystem processes. The wide range reported net primary production (NPP) and gross primary production (GPP) for continental African is partly a function of the uncertainty originating from this data scarcity. GPP estimates, based on vegetation models and remote sensing based models, range from ~17 to ~40 Pg C yr-1 and NPP estimates roughly range from ~7 to ~20 Pg C yr-1 for continental Africa. According to the MOD17 product does Africa contribute about 23 % of the global GPP and about 25 % of the global NPP. These percentages have recently increased slightly. Differences in modeled carbon use efficiency (i.e. the NPP/GPP ratio) further enhance the uncertainty caused by low spatial resolution driver data sets when deriving NPP from GPP. Current substantial uncertainty in vegetation productivity estimates for Africa (both magnitudes and carbon use efficiency) may be reduced by increased abundance and availability of in situ collected field data including meteorology, radiation, spectral properties, GHG fluxes as well as long term ecological field experiments. Current measurements of GHGs fluxes in Africa are sparse and lacking impressive coordination. The European Fluxes Database Cluster includes ~24 African sites with carbon flux data, most of them with a small amount of data in short time series. Large and diverse biomes such as the evergreen broad leafed forest are under-represented whereas savannas are slightly better represented. USA for example, with 171 flux site listed in FLUXNET has a flux site density of 17 sites per million km2, whereas Africa has density of 0.8 sites per million km2. Increased and coordinated collection of data on fluxes of GHGs, ecosystem properties and processes, both through advanced micro meteorological measurements and through cost

  6. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region.

    PubMed

    McDonough, Molly M; Šumbera, Radim; Mazoch, Vladimír; Ferguson, Adam W; Phillips, Caleb D; Bryja, Josef

    2015-10-01

    Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity. © 2015 John Wiley & Sons Ltd.

  7. Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa

    NASA Astrophysics Data System (ADS)

    Ceperley, Natalie C.; Mande, Theophile; van de Giesen, Nick; Tyler, Scott; Yacouba, Hamma; Parlange, Marc B.

    2017-08-01

    Rain-fed farming is the primary livelihood of semi-arid west Africa. Changes in land cover have the potential to affect precipitation, the critical resource for production. Turbulent flux measurements from two eddy-covariance towers and additional observations from a dense network of small, wireless meteorological stations combine to relate land cover (savanna forest and agriculture) to evaporation in a small (3.5 km2) catchment in Burkina Faso, west Africa. We observe larger sensible and latent heat fluxes over the savanna forest in the headwater area relative to the agricultural section of the watershed all year. Higher fluxes above the savanna forest are attributed to the greater number of exposed rocks and trees and the higher productivity of the forest compared to rain-fed, hand-farmed agricultural fields. Vegetation cover and soil moisture are found to be primary controls of the evaporative fraction. Satellite-derived vegetation index (NDVI) and soil moisture are determined to be good predictors of evaporative fraction, as indicators of the physical basis of evaporation. Our measurements provide an estimator that can be used to derive evaporative fraction when only NDVI is available. Such large-scale estimates of evaporative fraction from remotely sensed data are valuable where ground-based measurements are lacking, which is the case across the African continent and many other semi-arid areas. Evaporative fraction estimates can be combined, for example, with sensible heat from measurements of temperature variance, to provide an estimate of evaporation when only minimal meteorological measurements are available in remote regions of the world. These findings reinforce local cultural beliefs of the importance of forest fragments for climate regulation and may provide support to local decision makers and rural farmers in the maintenance of the forest areas.

  8. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.

    PubMed

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-12-01

    Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. The dry season (represented by Julian day 35-46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266-273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 mumol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 mumol m-2s-1 and then levels off. Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season

  9. Seasonal variations in methane and nitrous oxide emissions factors in northern Australian savanna woodlands

    NASA Astrophysics Data System (ADS)

    Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity

    2010-05-01

    Burning of savannas and grasslands consumes more than one third of the total annual biomass burning globally. In Australia, savanna fires emit annually from 2% to 4% of Australia's greenhouse gas emissions. This has led to efforts to reduce savanna burning emissions through early season prescribed burning. These programs aim to change the fire seasonality from predominantly high intensity late season fires which are characterized by low levels of patchiness and high burning efficiencies to early-season fires characterized by low intensity, a high degree of patchiness and low burning efficiency. The result is a net reduction in fire area and associated carbon emissions. Mitigation of greenhouse gas emissions is predicated on there being little change in methane (CH4) or nitrous oxide (N2O) emission factors (EFs) as the fire season progresses, however, recent analysis of the emission characteristics of African savanna fires by Korontzi et al., indicates CH4-EF, in particular, could decline substantially as the fire season progresses. If this also occurs in Australian savanna woodlands, then the current mitigation strategy could be ineffective. To address the issue a series of field campaigns were undertaken in the savanna woodlands of Western Arnhem land, Australia to quantify the variability in CH4 and N2O EFs throughout the fire season. This study compared CH4 and N2O EFs measured in smoke sampled from prescribed burning in late June/early July with those from late season fires in early October. It concentrated on the two major vegetation classes in Western Arnhemland; eucalypt open woodland, in which the fuel is composed predominantly tree leaf-litter supplemented by senescent native Sorghum, and sandstone heaths which are dominated by Spinifex hummocks. There were no significant differences in CH4 EFs between early or late season fires, however there were substantial differences between vegetation classes. The woodland emitted 0.3% of fuel carbon as CH4 compared

  10. Temperature fluctuations inside savanna termite mounds: Do size and plant shade matter?

    PubMed

    Ndlovu, M; Pérez-Rodríguez, A

    2018-05-01

    Mound building termites are key ecosystem engineers of subtropical savanna regions. Mounds allow termites to maintain suitable conditions for termite reproduction and food cultivation ('fungus gardens'). We studied how the internal mound temperature of Macrotermes natalensis, a dominant mound-building termite of the subtropical savanna of southern Africa, responds to a number of environmental variables. We used general additive mixed models (GAMM) to determine how external temperature, mound size (volume) and the amount of vegetation shade affects mound internal temperature over a 24-h period. Internal mound temperature varied daily following changes of the external temperature, although the range of variation was much smaller. Active termite mounds maintained a higher internal temperature than inactive ones, and mound activity reinforced the positive effect of mound size and moderated the negative effect of vegetation shade on internal temperatures. In turn, external temperature fluctuations equally affected active and inactive mounds. Large mounds maintained near optimal internal temperatures compared to smaller sized mounds. We therefore conclude that termite mound size is a stronger determinant of internal mound temperature stability compared to plant shade cover. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Multiple ecosystem services in a working landscape.

    PubMed

    Eastburn, Danny J; O'Geen, Anthony T; Tate, Kenneth W; Roche, Leslie M

    2017-01-01

    Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services-specifically agricultural production, biodiversity and habitat, and soil health-across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments.

  12. A Crown Cover Chart for Oak Savannas

    Treesearch

    Jay Law; Paul Johnson; Gary Houf

    1994-01-01

    Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs (Haney and Apfelbaum 1990). Nuzzo (1986, p. 11) more specifically defined oak savannas as plant communities "...dominated by oaks having between 10 and 80 percent canopy, with or without a...

  13. Indirect effects of domestic and wild herbivores on butterflies in an African savanna

    PubMed Central

    Wilkerson, Marit L; Roche, Leslie M; Young, Truman P

    2013-01-01

    Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock. PMID:24198932

  14. The long term recovery of heat and moisture fluxes to the atmosphere following fire in Australia's tropical savanna

    NASA Astrophysics Data System (ADS)

    Tapper, N.; Beringer, J.; Hutley, L.; Coutts, A.

    2003-04-01

    Fire is probably the greatest natural and anthropogenic environmental disturbance in Australia's tropical savannas, with the vast area burned each year (up to 250,000 km^2) likely to increase with predicted regional climate change. Globally savanna ecosystems cover 11.5% of the global landscape (Scholes and Hall 1996). As much as 75% of this landscape burns annually (Hao et al., 1990), accounting for more than 40% of all global biomass consumed (Hao and Ward 1993). These landscape-scale fires undoubtedly have massive impacts on regional water, energy and carbon dioxide exchanges and as a result may have important feedbacks to the atmosphere and regional climate. Fire may influence climate directly through the emission of smoke and trace gases from burning, but there are other important impacts of fire that may affect the atmosphere. Fire and the subsequent fire scars are likely to radically alter the surface energy budgets of tropical savannas through reduced surface albedo, increased available energy for partitioning into the convective fluxes, and increased substrate heat flux. The aerodynamic and biological properties of the ecosystem may also change, affecting surface-atmosphere coupling. There is a clear potential to influence atmospheric motion and moist convection at a range of scales. Potential fire scar impacts such as those mentioned above have previously been largely ignored and are the focus of the Savanna Fire Experiment (SAFE). Tower measurements of radiation, heat, moisture and CO_2 fluxes above burned and unburned savanna near Darwin, Australia, were initiated in August 2001 to observe the impacts of fire and fire scarring on flux exchange with the atmosphere, along with the longer term post-fire recovery of fluxes. Intensive field campaigns were mounted in the dry (fire) seasons of both 2001 and 2002, with flux recovery observed into the each of the subsequent monsoon seasons. Results and an early analysis of the time series of heat and moisture

  15. Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores.

    PubMed

    Coverdale, Tyler C; Kartzinel, Tyler R; Grabowski, Kathryn L; Shriver, Robert K; Hassan, Abdikadir A; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2016-11-01

    Positive indirect effects of consumers on their resources can stabilize food webs by preventing overexploitation, but the coupling of trophic and non-trophic interactions remains poorly integrated into our understanding of community dynamics. Elephants engineer African savanna ecosystems by toppling trees and breaking branches, and although their negative effects on trees are well documented, their effects on small-statured plants remain poorly understood. Using data on 117 understory plant taxa collected over 7 yr within 36 1-ha experimental plots in a semi-arid Kenyan savanna, we measured the strength and direction of elephant impacts on understory vegetation. We found that elephants had neutral effects on most (83-89%) species, with a similar frequency of positive and negative responses among the remainder. Overall, estimated understory biomass was 5-14% greater in the presence of elephants across a range of rainfall levels. Whereas direct consumption likely accounts for the negative effects, positive effects are presumably indirect. We hypothesized that elephants create associational refuges for understory plants by damaging tree canopies in ways that physically inhibit feeding by other large herbivores. As predicted, understory biomass and species richness beneath elephant-damaged trees were 55% and 21% greater, respectively, than under undamaged trees. Experimentally simulated elephant damage increased understory biomass by 37% and species richness by 49% after 1 yr. Conversely, experimentally removing elephant damaged branches decreased understory biomass by 39% and richness by 30% relative to sham-manipulated trees. Camera-trap surveys revealed that elephant damage reduced the frequency of herbivory by 71%, whereas we detected no significant effect of damage on temperature, light, or soil moisture. We conclude that elephants locally facilitate understory plants by creating refuges from herbivory, which countervails the direct negative effects of

  16. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna.

    PubMed

    Zwerts, J A; Prins, H H T; Bomhoff, D; Verhagen, I; Swart, J M; de Boer, W F

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns.

  17. Measuring conditions and trends in ecosystem services at multiple scales: the Southern African Millennium Ecosystem Assessment (SAfMA) experience

    PubMed Central

    van Jaarsveld, A.S; Biggs, R; Scholes, R.J; Bohensky, E; Reyers, B; Lynam, T; Musvoto, C; Fabricius, C

    2005-01-01

    The Southern African Millennium Ecosystem Assessment (SAfMA) evaluated the relationships between ecosystem services and human well-being at multiple scales, ranging from local through to sub-continental. Trends in ecosystem services (fresh water, food, fuel-wood, cultural and biodiversity) over the period 1990–2000 were mixed across scales. Freshwater resources appear strained across the continent with large numbers of people not securing adequate supplies, especially of good quality water. This translates to high infant mortality patterns across the region. In some areas, the use of water resources for irrigated agriculture and urban–industrial expansion is taking place at considerable cost to the quality and quantity of freshwater available to ecosystems and for domestic use. Staple cereal production across the region has increased but was outstripped by population growth while protein malnutrition is on the rise. The much-anticipated wood-fuel crisis on the subcontinent has not materialized but some areas are experiencing shortages while numerous others remain vulnerable. Cultural benefits of biodiversity are considerable, though hard to quantify or track over time. Biodiversity resources remain at reasonable levels, but are declining faster than reflected in species extinction rates and appear highly sensitive to land-use decisions. The SAfMA sub-global assessment provided an opportunity to experiment with innovative ways to assess ecosystem services including the use of supply–demand surfaces, service sources and sink areas, priority areas for service provision, service ‘hotspots’ and trade-off assessments. PMID:15814355

  18. Measuring conditions and trends in ecosystem services at multiple scales: the Southern African Millennium Ecosystem Assessment (SAfMA) experience.

    PubMed

    van Jaarsveld, A S; Biggs, R; Scholes, R J; Bohensky, E; Reyers, B; Lynam, T; Musvoto, C; Fabricius, C

    2005-02-28

    The Southern African Millennium Ecosystem Assessment (SAfMA) evaluated the relationships between ecosystem services and human well-being at multiple scales, ranging from local through to sub-continental. Trends in ecosystem services (fresh water, food, fuel-wood, cultural and biodiversity) over the period 1990-2000 were mixed across scales. Freshwater resources appear strained across the continent with large numbers of people not securing adequate supplies, especially of good quality water. This translates to high infant mortality patterns across the region. In some areas, the use of water resources for irrigated agriculture and urban-industrial expansion is taking place at considerable cost to the quality and quantity of freshwater available to ecosystems and for domestic use. Staple cereal production across the region has increased but was outstripped by population growth while protein malnutrition is on the rise. The much-anticipated wood-fuel crisis on the subcontinent has not materialized but some areas are experiencing shortages while numerous others remain vulnerable. Cultural benefits of biodiversity are considerable, though hard to quantify or track over time. Biodiversity resources remain at reasonable levels, but are declining faster than reflected in species extinction rates and appear highly sensitive to land-use decisions. The SAfMA sub-global assessment provided an opportunity to experiment with innovative ways to assess ecosystem services including the use of supply-demand surfaces, service sources and sink areas, priority areas for service provision, service 'hotspots' and trade-off assessments.

  19. Nitrogen trace gas fluxes from a semiarid subtropical savanna under woody legume encroachment

    NASA Astrophysics Data System (ADS)

    Soper, Fiona M.; Boutton, Thomas W.; Groffman, Peter M.; Sparks, Jed P.

    2016-05-01

    Savanna ecosystems are a major source of nitrogen (N) trace gases that influence air quality and climate. These systems are experiencing widespread encroachment by woody plants, frequently associated with large increases in soil N, with no consensus on implications for trace gas emissions. We investigated the impact of encroachment by N-fixing tree Prosopis glandulosa on total reactive N gas flux (Nt = NO + N2O + NOy + NH3) from south Texas savanna soils over 2 years. Contrary to expectations, upland Prosopis groves did not have greater Nt fluxes than adjacent unencroached grasslands. However, abiotic conditions (temperature, rainfall, and topography) were strong drivers. Emissions from moist, low-lying Prosopis playas were up to 3 times higher than from Prosopis uplands. Though NO dominated emissions, NH3 and NOy (non-NO oxidized N) comprised 12-16% of the total summer N flux (up to 7.9 µg N m-2 h-1). Flux responses to soil wetting were temperature dependent for NO, NH3, and NOy: a 15 mm rainfall event increased flux 3-fold to 22-fold after 24 h in summer but had no effect in winter. Repeated soil wetting reduced N flux responses, indicating substrate depletion as a likely control. Rapid (<1 min) increases in NO emissions following wetting of dry soils suggested that abiotic chemodenitrification contributes to pulse emissions. We conclude that temperature and wetting dynamics, rather than encroachment, are primary drivers of N flux from these upland savannas, with implications for future emission patterns under altered precipitation regimes.

  20. Crown cover chart for oak savannas. Forest Service technical brief

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.R.; Johnson, P.S.; Houf, G.

    1994-07-01

    Although oak savannas have been defined in many ways, they are characterized by scattered trees, largely comprised of oaks, and a sparse ground layer rich in grasses and forbs. The crown cover chart can be used to estimate the crown cover of trees as a percent of total area. Potential applications of the chart include monitoring changes in savanna crown cover, determining needed reductions in crown cover, and defining the savanna state. in restoring savannas that have grown into closed canopy stands, one can use the chart to estimate initial crown cover before restoration work is begun and again aftermore » crown cover has been reduced.« less

  1. Multiple ecosystem services in a working landscape

    PubMed Central

    Eastburn, Danny J.; O’Geen, Anthony T.; Tate, Kenneth W.; Roche, Leslie M.

    2017-01-01

    Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services—specifically agricultural production, biodiversity and habitat, and soil health—across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments. PMID:28301475

  2. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory.

    PubMed

    Karan, Mirko; Liddell, Michael; Prober, Suzanne M; Arndt, Stefan; Beringer, Jason; Boer, Matthias; Cleverly, James; Eamus, Derek; Grace, Peter; Van Gorsel, Eva; Hero, Jean-Marc; Hutley, Lindsay; Macfarlane, Craig; Metcalfe, Dan; Meyer, Wayne; Pendall, Elise; Sebastian, Alvin; Wardlaw, Tim

    2016-10-15

    Ecosystem monitoring networks aim to collect data on physical, chemical and biological systems and their interactions that shape the biosphere. Here we introduce the Australian SuperSite Network that, along with complementary facilities of Australia's Terrestrial Ecosystem Research Network (TERN), delivers field infrastructure and diverse, ecosystem-related datasets for use by researchers, educators and policy makers. The SuperSite Network uses infrastructure replicated across research sites in different biomes, to allow comparisons across ecosystems and improve scalability of findings to regional, continental and global scales. This conforms with the approaches of other ecosystem monitoring networks such as Critical Zone Observatories, the U.S. National Ecological Observatory Network; Analysis and Experimentation on Ecosystems, Europe; Chinese Ecosystem Research Network; International Long Term Ecological Research network and the United States Long Term Ecological Research Network. The Australian SuperSite Network currently involves 10 SuperSites across a diverse range of biomes, including tropical rainforest, grassland and savanna; wet and dry sclerophyll forest and woodland; and semi-arid grassland, woodland and savanna. The focus of the SuperSite Network is on using vegetation, faunal and biophysical monitoring to develop a process-based understanding of ecosystem function and change in Australian biomes; and to link this with data streams provided by the series of flux towers across the network. The Australian SuperSite Network is also intended to support a range of auxiliary researchers who contribute to the growing body of knowledge within and across the SuperSite Network, public outreach and education to promote environmental awareness and the role of ecosystem monitoring in the management of Australian environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development and characterization of microsatellite markers in the African forest elephant (Loxodonta cyclotis).

    PubMed

    Gugala, Natalie A; Ishida, Yasuko; Georgiadis, Nicholas J; Roca, Alfred L

    2016-07-26

    African elephants comprise two species, the savanna elephant (Loxodonta africana) and the forest elephant (L. cyclotis), which are distinct morphologically and genetically. Forest elephants are seriously threatened by poaching for meat and ivory, and by habitat destruction. However, microsatellite markers have thus far been developed only in African savanna elephants and Asian elephants, Elephas maximus. The application of microsatellite markers across deeply divergent lineages may produce irregular patterns such as large indels or null alleles. Thus we developed novel microsatellite markers using DNA from two African forest elephants. One hundred microsatellite loci were identified in next generation shotgun sequences from two African forest elephants, of which 53 were considered suitable for testing. Twenty-three microsatellite markers successfully amplified elephant DNA without amplifying human DNA; these were further characterized in 15 individuals from Lope National Park, Gabon. Three of the markers were monomorphic and four of them carried only two alleles. The remaining sixteen polymorphic loci carried from 3 to 8 alleles, with observed heterozygosity ranging from 0.27 to 0.87, expected heterozygosity from 0.40 to 0.86, and the Shannon diversity index from 0.73 to 1.86. Linkage disequilibrium was not detected between loci, and no locus deviated from Hardy-Weinberg equilibrium. The markers developed in this study will be useful for genetic analyses of the African forest elephant and contribute to their conservation and management.

  4. Lidar remote sensing of savanna biophysical attributes

    NASA Astrophysics Data System (ADS)

    Gwenzi, David

    Although savanna ecosystems cover approximately 20 % of the terrestrial land surface and can have productivity equal to some closed forests, their role in the global carbon cycle is poorly understood. This study explored the applicability of a past spaceborne Lidar mission and the potential of future missions to estimate canopy height and carbon storage in these biomes. The research used data from two Oak savannas in California, USA: the Tejon Ranch Conservancy in Kern County and the Tonzi Ranch in Santa Clara County. In the first paper we used non-parametric regression techniques to estimate canopy height from waveform parameters derived from the Ice Cloud and land Elevation Satellite's Geoscience Laser Altimeter System (ICESat-GLAS) data. Merely adopting the methods derived for forests did not produce adequate results but the modeling was significantly improved by incorporating canopy cover information and interaction terms to address the high structural heterogeneity inherent to savannas. Paper 2 explored the relationship between canopy height and aboveground biomass. To accomplish this we developed generalized models using the classical least squares regression modeling approach to relate canopy height to above ground woody biomass and then employed Hierarchical Bayesian Analysis (HBA) to explore the implications of using generalized instead of species composition-specific models. Models that incorporated canopy cover proxies performed better than those that did not. Although the model parameters indicated interspecific variability, the distribution of the posterior densities of the differences between composition level and global level parameter values showed a high support for the use of global parameters, suggesting that these canopy height-biomass models are universally (large scale) applicable. As the spatial coverage of spaceborne lidar will remain limited for the immediate future, our objective in paper 3 was to explore the best means of extrapolating

  5. Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants.

    PubMed

    Coverdale, Tyler C; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2018-06-25

    Intraspecific variation in plant defense phenotype is common and has wide-ranging ecological consequences. Yet prevailing theories of plant defense allocation, which primarily account for interspecific differences in defense phenotype, often fail to predict intraspecific patterns. Furthermore, although individual variation in defense phenotype is often attributed to ecological interactions, few general mechanisms have been proposed to explain the ubiquity of variable defense phenotype within species. Here, we show experimentally that associational refuges and induced resistance interact to create predictable intraspecific variation in defense phenotype in African savanna plants. Physically defended species from four families (Acanthaceae, Asparagaceae, Cactaceae, and Solanaceae) growing in close association with spinescent Acacia trees had 39-78% fewer spines and thorns than did isolated conspecifics. For a subset of these species, we used a series of manipulative experiments to show that this variability is maintained primarily by a reduction in induced responses among individuals that seldom experience mammalian herbivory, whether due to association with Acacia trees or to experimental herbivore exclusion. Unassociated plants incurred 4- to 16-fold more browsing damage than did associated individuals and increased spine density by 16-38% within one month following simulated browsing. In contrast, experimental clipping induced no net change in spine density among plants growing beneath Acacia canopies or inside long-term herbivore exclosures. Associated and unassociated individuals produced similar numbers of flowers and seeds, but seedling recruitment and survival were vastly greater in refuge habitats, suggesting a net fitness benefit of association. We conclude that plant-plant associations consistently decrease defense investment in this system by reducing both the frequency of herbivory and the intensity of induced responses, and that inducible responses

  6. Restoring longleaf pine forest ecosystems in the southern United States

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; E. E. Johnson

    2002-01-01

    Longleafpine (Pinus palustris) forests were historically one of the most extensive ecosystems in North America, covering 38 million ha along the coastal plain from Texas to Virginia and extending into central Florida and the Piedmont and mountains of Alabama and Georgia. Throughout its domain. longleaf pine occurred in forests, woodlands and savannas...

  7. Herbivory and drought interact to enhance spatial patterning and diversity in a savanna understory.

    PubMed

    Porensky, Lauren M; Wittman, Sarah E; Riginos, Corinna; Young, Truman P

    2013-10-01

    The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.

  8. Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon.

    PubMed

    Hernández-Hernández, R M; Roldán, A; Caravaca, F; Rodriguez-Caballero, G; Torres, M P; Maestre, F T; Alguacil, M M

    2017-01-01

    Knowledge of the arbuscular mycorrhizal fungal assemblages in the Trachypogon savanna ecosystems is very important to a better understanding of the ecological processes mediated by this soil microbial group that affects multiple ecosystem functions. Considering the hypothesis that the biocrusts can be linked to vegetation through the arbuscular fungi mycelial network, the objectives proposed in this study were to determine (i) whether there are arbuscular mycorrhizal fungi (AMF) in the biocrusts (ii) whether arbuscular mycorrhizal fungal assemblages are linked to the Trachypogon patches, and (iii) whether the composition of the assemblages is related to soil properties affected by microbiological activity. The community structure of the AMF was investigated in three habitats: rhizospheric soil and roots of Trachypogon vestitus, biological soil crusts, and bare soil. The canonical correspondence analysis showed that two soil properties related to enzymatic activity (protease and β-glucosidase) significantly affected the community composition of the AMF. The biocrusts in the Venezuelan savanna are colonized by an AM fungal community linked to that of the bare soil and significantly different from that hosted by the roots of the surrounding T. vestitus, suggesting that assemblages of AMF in biocrusts might be related more closely to those of annual plant species appearing in favorable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Bouvet, Mickael; Abbadie, Luc

    2011-08-01

    uptake is more than 1.5 higher in the savanna than in the rainforest (from 33 to 85 kg/ha/yr in the savanna vs 21 kg/ha/yr in the rainforest). On the contrary, DSi output from soils to stream water, which is not controlled by plant Si cycling but more likely by the soil hydrological regime (or meteoric weathering), is close to twice as high in the rainforest/ferrallitic soil ecosystem (16 vs 9 kg/ha/yr). This case study suggests that the predicted expansion of savannas at the expense of forests should significantly increase DSi uptake by plants, BSi storage in soils, BSi output with ash exportation, and, hence, LSi release through chemical weathering, without direct impact on DSi outputs from soils to stream water. Tracks for further assessing the role of plant Si cycling on chemical weathering, Si and C cycles were suggested: 1) estimates of BSi fluxes that were wrongly based on the assumption that the amount of DSi leached out from soils is linked to the magnitude of plant Si cycling and/or to BSi concentration in soils should be reappraised and 2) changes in the magnitude of plant Si cycling should be accounted in geochemical carbon cycle models, for one of the plant-induced weathering mechanisms.

  10. The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast

    NASA Astrophysics Data System (ADS)

    Alexandre, A. E.; Abbadie, L.

    2011-12-01

    uptake is more than 1.5 higher in the savanna than in the rainforest (from 33 to 85 kg/ha/yr in the savanna vs 21 kg/ha/yr in the rainforest). On the contrary, DSi output from soils to stream water, which is not controlled by plant Si cycling but more likely by the soil hydrological regime (or meteoric weathering), is close to twice as high in the rainforest/ferrallitic soil ecosystem (16 vs 9 kg/ha/yr). This case study suggests that the predicted expansion of savannas at the expense of forests should significantly increase DSi uptake by plants, BSi storage in soils, BSi output with ash exportation, and, hence, LSi release through chemical weathering, without direct impact on DSi outputs from soils to stream water. Tracks for further assessing the role of plant Si cycling on chemical weathering, Si and C cycles were suggested: 1) estimates of BSi fluxes that were wrongly based on the assumption that the amount of DSi leached out from soils is linked to the magnitude of plant Si cycling and/or to BSi concentration in soils should be reappraised and 2) changes in the magnitude of plant Si cycling should be accounted in geochemical carbon cycle models, for one of the plant-induced weathering mechanisms.

  11. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  12. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.

    PubMed

    Pellegrini, Adam F A; Ahlström, Anders; Hobbie, Sarah E; Reich, Peter B; Nieradzik, Lars P; Staver, A Carla; Scharenbroch, Bryant C; Jumpponen, Ari; Anderegg, William R L; Randerson, James T; Jackson, Robert B

    2018-01-11

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  13. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas.

    PubMed

    Colgan, Matthew S; Asner, Gregory P; Swemmer, Tony

    2013-07-01

    Tree biomass is an integrated measure of net growth and is critical for understanding, monitoring, and modeling ecosystem functions. Despite the importance of accurately measuring tree biomass, several fundamental barriers preclude direct measurement at large spatial scales, including the facts that trees must be felled to be weighed and that even modestly sized trees are challenging to maneuver once felled. Allometric methods allow for estimation of tree mass using structural characteristics, such as trunk diameter. Savanna trees present additional challenges, including limited available allometry and a prevalence of multiple stems per individual. Here we collected airborne lidar data over a semiarid savanna adjacent to the Kruger National Park, South Africa, and then harvested and weighed woody plant biomass at the plot scale to provide a standard against which field and airborne estimation methods could be compared. For an existing airborne lidar method, we found that half of the total error was due to averaging canopy height at the plot scale. This error was eliminated by instead measuring maximum height and crown area of individual trees from lidar data using an object-based method to identify individual tree crowns and estimate their biomass. The best object-based model approached the accuracy of field allometry at both the tree and plot levels, and it more than doubled the accuracy compared to existing airborne methods (17% vs. 44% deviation from harvested biomass). Allometric error accounted for less than one-third of the total residual error in airborne biomass estimates at the plot scale when using allometry with low bias. Airborne methods also gave more accurate predictions at the plot level than did field methods based on diameter-only allometry. These results provide a novel comparison of field and airborne biomass estimates using harvested plots and advance the role of lidar remote sensing in savanna ecosystems.

  14. Adenovirus infection in savanna chimpanzees (Pan troglodytes schweinfurthii) in the Issa Valley, Tanzania.

    PubMed

    Dadáková, Eva; Brožová, Kristýna; Piel, Alex K; Stewart, Fiona A; Modrý, David; Celer, Vladimír; Hrazdilová, Kristýna

    2018-01-01

    Adenoviruses are a widespread cause of diverse human infections with recently confirmed zoonotic roots in African great apes. We focused on savanna-dwelling chimpanzees in the Issa Valley (Tanzania), which differ from those from forested sites in many aspects of behavior and ecology. PCR targeting the DNA polymerase gene detected AdV in 36.7% (69/188) of fecal samples. We detected five groups of strains belonging to the species Human mastadenovirus E and two distinct groups within the species Human mastadenovirus C based on partial hexon sequence. All detected AdVs from the Issa Valley are related to those from nearby Mahale and Gombe National Parks, suggesting chimpanzee movements and pathogen transmission.

  15. The Spatial Pattern and Interactions of Woody Plants on the Temperate Savanna of Inner Mongolia, China: The Effects of Alternating Seasonal Grazing-Mowing Regimes

    PubMed Central

    2015-01-01

    Ulmus pumila tree-dominated temperate savanna, which is distributed widely throughout the forest-steppe ecotone on the Mongolian Plateau, is a relatively stable woody-herbaceous complex ecosystem in northern China. Relatively more attention has been paid to the degradation of typical steppe areas, whereas less focus has been placed on the succession of this typical temperate savanna under the present management regime. In this study, we established 3 sample plots 100 m×100 m in size along a gradient of fixed distances from one herder’s stationary site and then surveyed all the woody plants in these plots. A spatial point pattern analysis was employed to clarify the spatial distribution and interaction of these woody plants. The results indicated that old U. pumila trees (DBH ≥ 20 cm) showed a random distribution and that medium U. pumila trees (5 cm ≤ DBH < 20 cm) showed an aggregated distribution at a smaller scale and a random distribution at a larger scale; few or no juvenile trees (DBH < 5 cm) were present, and seedlings (without DBH) formed aggregations in all 3 plots. These findings can be explained by an alternate seasonal grazing-mowing regime (exclosure in summer, mowing in autumn and grazing in winter and spring); the shrubs in all 3 plots exist along a grazing gradient that harbors xerophytic and mesophytic shrubs. Of these shrubs, xerophytic shrubs show significant aggregation at a smaller scale (0-5.5 m), whereas mesophytic shrubs show significant aggregation at a larger scale (0-25 m), which may be the result of the dual effects of grazing pressure and climate change. Medium trees and seedlings significantly facilitate the distributions of xerophytic shrubs and compete significantly with mesophytic shrubs due to differences in water use strategies. We conclude that the implementation of an alternative grazing-mowing regime results in xerophytic shrub encroachment or existence, breaking the chain of normal succession in a U. pumila tree

  16. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna

    PubMed Central

    Zwerts, J. A.; Prins, H. H. T.; Bomhoff, D.; Verhagen, I.; Swart, J. M.; de Boer, W. F.

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns. PMID:26510157

  17. Validation of behave fire behavior predictions in oak savannas

    USGS Publications Warehouse

    Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.

  18. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    NASA Astrophysics Data System (ADS)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  19. Restoring longleaf pine forest ecosystems in the southern U.S

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; Everett E. Johnson

    2005-01-01

    Longleaf pine (Pinus palustris) ecosystems are native to nine states of the southern region of the U.S. Longleaf pine can grow on a variety of site types including wet flatwoods and savannas along the Atlantic and Gulf coastal plain, higher droughty sand deposits from the fall line sandhills to the central ridge of Florida (Stout and Marion 1993),...

  20. Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi).

    PubMed

    Lüdecke, Tina; Schrenk, Friedemann; Thiemeyer, Heinrich; Kullmer, Ottmar; Bromage, Timothy G; Sandrock, Oliver; Fiebig, Jens; Mulch, Andreas

    2016-01-01

    The development of East African savannas is crucial for the origin and evolution of early hominins. These ecosystems, however, vary widely in their fraction of woody cover and today range from closed woodland to open grassland savanna. Here, we present the first Plio-Pleistocene long-term carbon isotope (δ(13)C) record from pedogenic carbonate and Suidae teeth in the southern East African Rift (EAR). These δ(13)C data from the Chiwondo and Chitimwe Beds (Karonga Basin, Northern Malawi) represent a southern hemisphere record in the EAR, a key region for reconstructing vegetation patterns in today's Zambezian Savanna, and permit correlation with data on the evolution and migration of early hominins in today's Somali-Masai Endemic Zone. The sediments along the northwestern shore of Lake Malawi contain fossils attributed to Homo rudolfensis and Paranthropus boisei. The associated hominin localities (Uraha, Malema) are situated between the well-known hominin bearing sites of the Somali-Masai Endemic Zone in the Eastern Rift and the Highveld Grassland in southern Africa, and fill an important geographical gap for hominin research. Persistent δ(13)C values around -9‰ from pedogenic carbonate and suid enamel covering the last ∼4.3 Ma indicate a C3-dominated closed environment with regional patches of C4-grasslands in the Karonga Basin. The overall fraction of woody cover of 60-70% reflects significantly higher canopy density in the Malawi Rift than the Eastern Rift through time. The discrepancy between the two savanna types originated in the Late Pliocene, when the Somali-Masai ecosystem started to show increasing evidence for open, C4-dominated landscapes. Based on the Malawi δ(13)C data, the evolution of savanna ecosystems in Eastern Africa followed different patterns along the north-south extent of the EAR. The appearance of C4-grasses is considered a driver of evolutionary faunal shifts, but despite the difference of ecosystem evolution in the north, similar

  1. Modeling the Distribution of African Savanna Elephants in Kruger National Park: AN Application of Multi-Scale GLOBELAND30 Data

    NASA Astrophysics Data System (ADS)

    Xu, W.; Hays, B.; Fayrer-Hosken, R.; Presotto, A.

    2016-06-01

    The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (Loxodonta africana) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency's Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.

  2. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    USDA-ARS?s Scientific Manuscript database

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  3. Imprint of oaks on nitrogen availability and δ15N in California grassland-savanna: A case of enhanced N inputs?

    USGS Publications Warehouse

    Perakis, S.S.; Kellogg, C.H.

    2007-01-01

    Woody vegetation is distributed patchily in many arid and semi-arid ecosystems, where it is often associated with elevated nitrogen (N) pools and availability in islands of fertility. We measured N availability and δ15N in paired blue-oak versus annual grass dominated patches to characterize the causes and consequences of spatial variation in N dynamics of grassland-savanna in Sequoia-Kings Canyon National Park. We found significantly greater surface soil N pools (0–20 cm) in oak patches compared to adjacent grass areas across a 700 m elevation gradient from foothills to the savanna-forest boundary. N accumulation under oaks was associated with a 0.6‰ depletion in soil δ15N relative to grass patches. Results from a simple δ15N mass balance simulation model, constrained by surface soil N and δ15N measured in the field, suggest that the development of islands of N fertility under oaks can be traced primarily to enhanced N inputs. Net N mineralization and percent nitrification in laboratory incubations were consistently higher under oaks across a range of experimental soil moisture regimes, suggesting a scenario whereby greater N inputs to oak patches result in net N accumulation and enhanced N cycling, with a potential for greater nitrate loss as well. N concentrations of three common herbaceous annual plants were nearly 50% greater under oak than in adjacent grass patches, with community composition shifted towards more N-demanding species under oaks. We find that oaks imprint distinct N-rich islands of fertility that foster local feedback between soil N cycling, plant N uptake, and herbaceous community composition. Such patch-scale differences in N inputs and plant–soil interactions increase biogeochemical heterogeneity in grassland-savanna ecosystems and may shape watershed-level responses to chronic N deposition.

  4. Regional variations in biomass distribution in Brazilian savanna woodland

    Treesearch

    S.d.C. de Miranda; M. Bustamente; M. Palace; S. Hagen; M. Keller; L.G. Ferreira

    2014-01-01

    The Cerrado, the savanna biome in central Brazil, mostly comprised of woodland savanna, is experiencing intense and fast land use changes. To understand the changes in Cerrado carbon stocks, we present an overview of biomass distribution in different Cerrado vegetation types (i.e., grasslands, shrublands and forestlands). We surveyed 26 studies including 170 Cerrado...

  5. Water economy of neotropical savanna trees: six paradigms revisited.

    Treesearch

    Guillermo Goldstein; Fredrick C. Meinzer; Sandra J. Bucci

    2008-01-01

    Biologists have long been puzzled by the striking morphological and anatomical characteristics of Neotropical savanna trees which have large scleromorphic leaves, allocate more than half of their total biomass to belowground structures and produce new leaves during the peak of the dry season. Based on results of ongoing interdisciplinary projects in the savannas of...

  6. On the relative role of fire and rainfall in determining vegetation patterns in tropical savannas: a simulation study

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Fisher, Rosie

    2010-05-01

    Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the

  7. Fire in Eastern North American Oak Ecosystems: Filling the Gaps

    Treesearch

    Julian (Morgan) Varner; Mary Arthur; Stacy Clark; Daniel C. Dey; Justin Hart; Callie Schweitzer

    2016-01-01

    This special issue of Fire Ecology is focused on the fire ecology of eastern USA oak (Quercus L.) forests, woodlands, and savannas. The papers were presented as part of the Fifth Fire in Eastern Oak Forests Conference in Tuscaloosa, Alabama, USA, in 2015. The topic of fire in eastern oak ecosystems is one that has received insufficient interest from the...

  8. Hydraulic lift as a determinant of tree-grass coexistence on savannas.

    PubMed

    Yu, Kailiang; D'Odorico, Paolo

    2015-09-01

    The coexistence of woody plants and grasses in savannas is determined by a complex set of interacting factors that determine access to resources and demographic dynamics, under the control of external drivers and vegetation feedbacks with the physical environment. Existing theories explain coexistence mainly as an effect of competitive relations and/or disturbances. However, theoretical studies on the way facilitative interactions resulting from hydraulic lift affect tree-grass coexistence and the range of environmental conditions in which savannas are stable are still lacking. We investigated the role of hydraulic lift in the stability of tree-grass coexistence in savannas. To that end, we developed a new mechanistic model that accounts for both competition for soil water in the shallow soil and fire-induced disturbance. We found that hydraulic lift favors grasses, which scavenge the water lifted by woody plants. Thus, hydraulic lift expands (at the expenses of woodlands) the range of environmental conditions in which savannas are stable. These results indicate that hydraulic lift can be an important mechanism responsible for the coexistence of woody plants and grasses in savannas. Grass facilitation by trees through the process of hydraulic lift could allow savannas to persist stably in mesic regions that would otherwise exhibit a forest cover. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global

  10. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of

  11. East African Cenozoic vegetation history.

    PubMed

    Linder, Hans Peter

    2017-11-01

    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  12. Prospects of the ICESat-2 Laser Altimetry Mission for Savanna Ecosystem Structural Studies Based on Airborne Simulation Data

    NASA Technical Reports Server (NTRS)

    Gwenzi, David; Lefsky, Michael A.; Suchdeo, Vijay P.; Harding, David J.

    2016-01-01

    The next planned spaceborne lidar mission is the Ice, Cloud and land Elevation Satellite 2 (ICESat-2), which will use the Advanced Topographic Laser Altimeter System (ATLAS) sensor, a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in an oak savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA's Goddard Space Flight Center. ATLAS-like data was generated using the MATLAS simulator, which adjusts MABEL data's detected number of signal and noise photons to that expected from the ATLAS instrument. Transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we chose to use data from the near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 14 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an automated algorithm to identify cut off points where the cumulative density of photons from the highest elevation indicates the presence of the canopy top and likewise where such cumulative density from the lowest elevation indicates the mean terrain elevation. MABEL derived height metrics were moderately correlated to discrete return lidar (DRL) derived height metrics r(sub 2) and RMSE values ranging from 0.60 to 0.73 and 2.9 m to 4.4 m respectively) but MATLAS simulation resulted in more modest correlations with DRL indices r(sub 2) ranging from 0.5 to 0.64 and RMSE from 3.6 m to 4.6 m). Simulations also indicated that the expected number of signal photons from ATLAS will be substantially lower, a situation that reduces canopy height estimation precision especially in areas of low density vegetation cover. On the basis of the

  13. Prescribed burning for oak savanna restoration in central Minnesota.

    Treesearch

    Alan S. White

    1986-01-01

    Low intensity, spring prescribed burns have been used since 1964 at the Cedar Creek Natural History Area in Minnesota in an attempt to restore the area to an oak savanna. Burned areas are now more savanna like (having greater grass and forb and lower shrub and lower tree representation) than unburned areas but still have higher overstory densities than apparently...

  14. Land use scenarios development and impacts assessment on vegetation carbon/nitrogen sequestration in the West African Sudan savanna watershed, Benin

    NASA Astrophysics Data System (ADS)

    Chabi, A.

    2015-12-01

    ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin

  15. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana).

    PubMed

    Schlossberg, Scott; Chase, Michael J; Griffin, Curtice R

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  16. Distinctiveness, use, and value of midwestern oak savannas and woodlands as avian habitats

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas and woodlands historically covered millions of hectares in the midwestern United States but are rare today. We evaluated the ecological distinctiveness and conservation value of savannas and woodlands by examining bird distributions across a fire-maintained woody-vegetation gradient in northwest Indiana encompassing five habitats—open habitats with low canopy cover, savannas, woodlands, scrublands, and forests—during migration, breeding, and overwintering. Savannas and woodlands were significantly different in overall bird species composition from open and forest habitats but were often intermediate between open and forest in guild densities. Few bird species were consistently and highly concentrated in savannas or woodlands, and the Red-headed Woodpecker (Melanerpes erythrocephalus) was the only species significantly more abundant in savannas and woodlands than in open, scrub, and forest habitats. Fire frequency over a 15-year interval was a significant predictor of bird community composition and was positively related to species diversity, spring transient migrant density, and density of the most threatened species. Each habitat type had characteristics potentially important for avian conservation. Scrub had the highest density of transient migrants, which suggests it plays an important role as migration stopover habitat. More species were significantly concentrated in open or forest habitats than in the other habitats. Lack of species concentration and intermediate community composition suggested that birds experienced savannas and woodlands more as ecotones than as habitats distinct from forests or grasslands. However, this intermediate character can benefit conservation, as evidenced by savannas and woodlands having the highest density of the most threatened species along this woody-vegetation gradient.

  17. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    PubMed

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  18. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration

  19. Evaluating channel morphology in small watersheds of oak savannas Southeastern New Mexico, USA: Do seasonal prescribed burn treatments have a significant impact on sediment processes?

    NASA Astrophysics Data System (ADS)

    Koestner, Karen; Neary, Daniel; Gottfried, Gerald; Tecle, Aregai

    2010-05-01

    Oak-savannas comprise over 80,000 km2 of the southwestern United States and northern Mexico. However, there is a paucity of data to assist in the management of this vast ecotype. Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel accumulations. Prescribed fire is one management technique to restore natural processes within southwestern oak-savannas by reducing woody species density, increasing herbaceous plant production, and creating vegetative mosaics on the landscape. However, questions concerning the seasonality of burn treatments and the overall effects of these treatments on physical and ecological processes need to be addressed prior to broad management application. The Cascabel Watershed Study is a collaborative effort between multiple government agencies, universities, local land managers, and environmental interest groups to evaluate the impacts of warm and cool season burn treatments on an array of ecosystem processes. Established in 2000, the Cascabel Watershed study takes an "ecosystem approach" to watershed research by examining an array of physical and biological components, including geomorphologic, climatologic, hydrologic, and biologic (flora and fauna) data to determine ecosystem response to prescribed fire. The 182.6 ha study area is located in the eastern Peloncillo Mountains, New Mexico at about the 1,640 m elevation. It consists of 12 small watersheds dominated by an oak (Quercus spp.) overstory and bunch-grass (Bouteloua spp.), savanna component. The parent material is fine-grained Tertiary rhyolite that is part of an extensive lava field that was formed about 25 to 27 M ybp. A US Forest Service soil survey in the area classified 45% of the soils as Typic Haplustolls, coarse-loamy, mixed, mesic, 25% as Typic Haplustalfs, and 15% rock outcrops. Here, we evaluate within-channel processes to establish

  20. Chemical and Physical Weathering of Granites in a Semi-Arid Savanna

    NASA Astrophysics Data System (ADS)

    Khomo, L.; Hartshorn, A.; Chadwick, O.; Kurtz, A.; Heimsath, A.; Rogers, K.

    2005-12-01

    The catena concept describes soil properties on hillslopes and implies a hydrological mass redistribution process that has been applied differently in different parts of the Earth. In tectonically active regions, it is mostly used to describe the redistribution of mass by overland flow leading to thickening soil mantles downslope. This application is somewhat different from its initial and still popular usage in tectonically inactive areas of Africa, where it defines long-term soil property differentiation along hillslopes as controlled by internal soil hydrology as opposed to overland flow. Many ecologists have found the "African" catena concept to be useful as an organizing principal for savanna studies, but there has been little recent research on catenas per se in Africa. Elsewhere however, there is a growing body of research that places the concept ever more strongly into a landscape evolution context. Here, we apply these new approaches to catenas in a South African savanna underlain by a heterogeneous suite of Basement granites straddling a gradient in effective precipitation. We constrain the weathering extent of hilly terrains formed on these oldrocks by calculating element losses with solid-phase mass-balance calculations augmented by cosmogenic (26Al/10Be) derived rates of landscape denudation. We test the efficacy of Ti, Zr and Nb as immobile elements to benchmark chemical losses and gains in these semi-arid weathering environments. We also trace and quantify the abundance of the host minerals for these elements (Ti = rutile and ilmenite, Nb = columbite and Zr = zircon and baddleyite) in a variety of rocks in the basement complex. This analysis provides the boundary conditions for assigning immobile elements to parent materials required for the mass balance calculations. We calculate total denudation using the cosmogenic isotopes and then partition it into chemical and physical loss vectors using the mass balance calculations for representative

  1. Stability measures in arid ecosystems

    NASA Astrophysics Data System (ADS)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  2. Africanizing Science in Post-colonial Kenya: Long-Term Field Research in the Amboseli Ecosystem, 1963-1989.

    PubMed

    Lewis, Amanda E

    2017-11-08

    Following Kenya's independence in 1963, scientists converged on an ecologically sensitive area in southern Kenya on the northern slope of Mt. Kilimanjaro called Amboseli. This region is the homeland of the Ilkisongo Maasai who grazed this ecosystem along with the wildlife of interest to the scientists. Biologists saw opportunities to study this complex community, an environment rich in biological diversity. The Amboseli landscape proved to be fertile ground for testing new methods and lines of inquiry in the biological sciences that were generalizable and important for shaping natural resource management policies in Kenya. However, the local community was in the midst of its own transformation from a primarily transhumant lifestyle to a largely sedentary one, a complex political situation between local and national authorities, and the introduction of a newly educated generation. This article examines the intersection of African history and field science through the post-colonial Africanization of Kenyan politics, the broadening of scientific practices in Amboseli in previously Western-occupied spaces to include Kenyan participants, and an increasing awareness of the role of local African contexts in the results, methods, and implications of biological research. "Africanization" as an idea in the history of science is multifaceted encompassing not just Africans in the scientific process, but it needs an examination of the larger political and social context on both a local and national level.

  3. Tree and stand transpiration in a Midwestern bur oak savanna after elm encroachment and restoration thinning

    USGS Publications Warehouse

    Asbjornsen, H.; Tomer, M.D.; Gomez-Cardenas, M.; Brudvig, L.A.; Greenan, C.M.; Schilling, K.

    2007-01-01

    Oak savannas, once common in the Midwest, are now isolated remnants within agricultural landscapes. Savanna remnants are frequently encroached by invasive trees to become woodlands. Thinning and prescribed burning can restore savanna structure, but the ecohydrological effects of managing these remnants are poorly understood. In this study, we measured sap flow (Js) to quantify transpiration in an Iowa bur oak (Quercus macrocarpa) savanna woodland encroached by elms (Ulmus americana), and in an adjacent restored savanna after thinning to remove elms, during summer 2004. Savanna oaks had greater mean daily Js (35.9 L dm-2 day-1) than woodland oaks (20.7 L dm-2 day-1) and elms (12.4 L dm-2 day-1). The response of Js to vapor pressure deficit (D) was unexpectedly weak, although oaks in both stands showed negative correlation between daily Js and D for D > 0.4 kPa. An earlier daily peak in Js in the elm trees showed a possible advantage for water uptake. As anticipated, the woodland's stand transpiration was greater (1.23 mm day-1) than the savanna's (0.35 mm day-1), yet the savanna achieved 30% of the woodland's transpiration with only 11% of its sapwood area. The difference in transpiration influenced water table depths, which were 2 m in the savanna and 6.5 m in the woodland. Regionally, row-crop agriculture has increased groundwater recharge and raised water tables, providing surplus water that perhaps facilitated elm encroachment. This has implications for restoration of savanna remnants. If achieving a savanna ecohydrology is an aim of restoration, then restoration strategies may require buffers, or targeting of large or hydrologically isolated remnants. ?? 2007.

  4. Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges

    PubMed Central

    John-Bejai, C.; Farrell, A. D.; Cooper, F. M.; Oatham, M. P.

    2013-01-01

    Tropical hyperseasonal savannas provide a rare example of a tropical climax community dominated by graminoid species. Species living in such savannas are frequently exposed to excess heat and light, in addition to drought and waterlogging, and must possess traits to avoid or tolerate these stress factors. Here we examine the contrasting heat and light stress adaptations of two dominant savanna sedges: Lagenocarpus guianensis, which is restricted to the sheltered forest edge, and Lagenocarpus rigidus, which extends from the forest edge to the open savanna. An ecotone extending from the forest edge to the open savanna was used to assess differences in a range of physiological traits (efficiency of photosystem II, cell membrane thermostability, stomatal conductance, leaf surface reflectance and canopy temperature depression) and a range of leaf functional traits (length : width ratio, specific leaf area and degree of folding). Lagenocarpus guianensis showed significantly less canopy temperature depression than L. rigidus, which may explain why this species was restricted to the forest edge. The range of leaf temperatures measured was within the thermal tolerance of L. guianensis and allowed photosystem II to function normally, at least within the cool forest edge. The ability of L. rigidus to extend into the open savanna was associated with an ability to decouple leaf temperature from ambient temperature combined with enhanced cell membrane thermostability. The high degree of canopy temperature depression seen in L. rigidus was not explained by enhanced stomatal conductance or leaf reflectance, but was consistent with a capacity to increase specific leaf area and reduce leaf length: width ratio in the open savanna. Plasticity in leaf functional traits and in cell membrane thermostability are key factors in the ability of this savanna sedge to survive abiotic stress. PMID:24379971

  5. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  6. Comparative Demography of an At-Risk African Elephant Population

    PubMed Central

    Wittemyer, George; Daballen, David; Douglas-Hamilton, Iain

    2013-01-01

    Knowledge of population processes across various ecological and management settings offers important insights for species conservation and life history. In regard to its ecological role, charisma and threats from human impacts, African elephants are of high conservation concern and, as a result, are the focus of numerous studies across various contexts. Here, demographic data from an individually based study of 934 African elephants in Samburu, Kenya were summarized, providing detailed inspection of the population processes experienced by the population over a fourteen year period (including the repercussions of recent increases in illegal killing). These data were compared with those from populations inhabiting a spectrum of xeric to mesic ecosystems with variable human impacts. In relation to variability in climate and human impacts (causing up to 50% of recorded deaths among adults), annual mortality in Samburu fluctuated between 1 and 14% and, unrelatedly, natality between 2 and 14% driving annual population increases and decreases. Survivorship in Samburu was significantly lower than other populations with age-specific data even during periods of low illegal killing by humans, resulting in relatively low life expectancy of males (18.9 years) and females (21.8 years). Fecundity (primiparous age and inter-calf interval) were similar to those reported in other human impacted or recovering populations, and significantly greater than that of comparable stable populations. This suggests reproductive effort of African savanna elephants increases in relation to increased mortality (and resulting ecological ramifications) as predicted by life history theory. Further comparison across populations indicated that elongated inter-calf intervals and older ages of reproductive onset were related to age structure and density, and likely influenced by ecological conditions. This study provides detailed empirical data on elephant population dynamics strongly influenced by human

  7. Comparative demography of an at-risk African elephant population.

    PubMed

    Wittemyer, George; Daballen, David; Douglas-Hamilton, Iain

    2013-01-01

    Knowledge of population processes across various ecological and management settings offers important insights for species conservation and life history. In regard to its ecological role, charisma and threats from human impacts, African elephants are of high conservation concern and, as a result, are the focus of numerous studies across various contexts. Here, demographic data from an individually based study of 934 African elephants in Samburu, Kenya were summarized, providing detailed inspection of the population processes experienced by the population over a fourteen year period (including the repercussions of recent increases in illegal killing). These data were compared with those from populations inhabiting a spectrum of xeric to mesic ecosystems with variable human impacts. In relation to variability in climate and human impacts (causing up to 50% of recorded deaths among adults), annual mortality in Samburu fluctuated between 1 and 14% and, unrelatedly, natality between 2 and 14% driving annual population increases and decreases. Survivorship in Samburu was significantly lower than other populations with age-specific data even during periods of low illegal killing by humans, resulting in relatively low life expectancy of males (18.9 years) and females (21.8 years). Fecundity (primiparous age and inter-calf interval) were similar to those reported in other human impacted or recovering populations, and significantly greater than that of comparable stable populations. This suggests reproductive effort of African savanna elephants increases in relation to increased mortality (and resulting ecological ramifications) as predicted by life history theory. Further comparison across populations indicated that elongated inter-calf intervals and older ages of reproductive onset were related to age structure and density, and likely influenced by ecological conditions. This study provides detailed empirical data on elephant population dynamics strongly influenced by human

  8. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna

    NASA Astrophysics Data System (ADS)

    Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P. A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas

    2018-03-01

    To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.

  9. Sources and sinks of ozone in savanna and forest areas during EXPRESSO: Airborne turbulent flux measurements

    NASA Astrophysics Data System (ADS)

    Cros, B.; Delon, C.; Affre, C.; Marion, T.; Druilhet, A.; Perros, P. E.; Lopez, A.

    2000-12-01

    An airborne study of ozone concentrations and fluxes in the lower layers of the atmosphere was conducted over the Central African Republic (CAR) and northern Congo in November/December 1996, within the framework of the Experiment of Regional Sources and Sinks of Oxidants (EXPRESSO). The first 4 km of the atmosphere above savanna, rain forest, and the transitional area between them, were investigated with the French research aircraft Avion de Recherche Atmosphérique et de Télédétection (ARAT). Turbulent fluxes and deposition velocities of ozone were determined using the Eddy Correlation (EC) method. A specific methodology was developed to obtain accurate airborne turbulent flux measurements. This methodology is linked to the turbulence stationarity. The average values of ozone fluxes and ozone deposition velocities in the Atmospheric Boundary Layer (ABL) increase appreciably from savanna to forest. Near the ground, the ozone fluxes range between -0.115 +/-0.073 ppbv m/s above savanna and -0.350 +/-0.115 ppbv m/s above forest; for the deposition, the ranges are 0.0042 +/-0.0018 m/s and 0.015 +/-0.004 m/s. A simple empirical relationship between deposition velocity and Leaf Area Index (LAI) is proposed, giving an estimation of the deposition velocity for a whole latitudinal band. Vertical inputs of ozone to the ABL are estimated according to entrainment fluxes. The role of advection is neglected for horizontal transport of ozone in the ABL. The photochemical ozone production is deduced from the photo-stationary state deviation, and compared to the net ozone increase in the ABL during the flights performed above the forest. A tentative ozone budget based on the aircraft measurements is proposed in the ABL of the rain forest. Around noon, the photochemical production dominates with a net production of about 10 ppbv/h.

  10. Consistent differences between tropical forest and savanna nitrogen cycling characteristics as inferred by leaf and soil 15N/14N ratios across three continents

    NASA Astrophysics Data System (ADS)

    Schrodt, Franziska

    2017-04-01

    The ratio of 15N:14N can act as important indicator of ecosystem Nitrogen cycling and thus essential key ecosystem processes. Although evidence for general patterns accumulates across the globe, such as foliar δ15N decreasing with increasing mean annual precipitation and decreasing mean annual temperature, as well as forests generally having a more open Nitrogen cycle, a comprehensive understanding of the Nitrogen cycle in tropical ecosystems is still lacking. We present data on foliar and soil δ15N from 62 permanent sampling plots in tropical zones of transition - area where forest and savanna coexists under similar macro climatic conditions - across South America, Africa and Australia. After controlling for phylogeny and location, we show that δ15N relationships in tropical forests and Savannah are consistent irrespective of precipitation.

  11. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    PubMed

    Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  12. Disentangling How Landscape Spatial and Temporal Heterogeneity Affects Savanna Birds

    PubMed Central

    Price, Bronwyn; McAlpine, Clive A.; Kutt, Alex S.; Ward, Doug; Phinn, Stuart R.; Ludwig, John A.

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1–100 ha) and landscape (100–1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes. PMID:24066138

  13. The characterisation and management of greenhouse gas emissions from fires in northern Australian savannas

    NASA Astrophysics Data System (ADS)

    Cook, G. D.; Liedloff, A. C.; Richards, A. E.; Meyer, M.

    2016-12-01

    Australia is the only OECD country with a significant area of tropical savannas within it borders. Approximately 220 000 km2 of these savannas burn every year releasing 2 to 4 % of Australia's accountable greenhouse gas emissions. Reduction in uncertainty in the quantification of these emissions of methane and nitrous has been fundamental to improving both the national GHG inventory and developing approaches to better manage land to reduce these emissions. Projects to reduce pyrogenic emissions have been adopted across 30% of Australia's high rainfall savannas. Recent work has focussed on quantifying the additional benefit of increased carbon stocks in fine fuel and coarse woody debris (CWD) resulting from improvements in fire management. An integrated set of equations have been developed to enable seemless quantification of emissions and sequestration in these frequently burnt savannas. These show that increases in carbon stored in fine fuel and CWD comprises about 3 times the emissions abatement from improvements in fire management that have been achieved in a project area of 28 000 km2. Future work is focussing on improving the understanding of spatial and temporal variation in fire behaviour across Australia's savanna biome, improvements in quantification of carbon dynamics of CWD and improved quantification of the effects of fire on carbon dynamics in soils of the savannas.

  14. Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana)

    PubMed Central

    Schlossberg, Scott; Chase, Michael J.; Griffin, Curtice R.

    2016-01-01

    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to

  15. Maximum entropy models of ecosystem functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertram, Jason, E-mail: jason.bertram@anu.edu.au

    2014-12-05

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on themore » information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.« less

  16. A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna.

    PubMed

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-11-01

    A grass-fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha(-1)). Experimental fires, with fuel loads >10 t·ha(-1), typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.

  17. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna

    PubMed Central

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-01-01

    A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota. PMID:25505543

  18. Post-fire reproduction of herbs at a savanna-gallery forest boundary in Distrito Federal, Brazil.

    PubMed

    Massi, K G; Eugênio, C U O; Franco, A C

    2017-11-01

    In Cerrado, studies of post-fire vegetation recovery show that some herbaceous species are able to flower shortly after fires. However, these were mainly short-term studies that focused on grasslands and savannas. Little is known about the effects of fire on ground layer of forests that border the savannas in Central Brazil. Thus, an accidental burning gave us the opportunity to describe the reproductive activity of the ground layer vegetation after a fire event along a savanna-forest boundary at the IBGE Ecological Reserve, Brasília, Brazil. During the 16-month of the inventory, we registered 170 herbaceous species flowering or fruiting, of which 52 species (31%) may have been influenced by fire that changed their times of reproduction. In the savanna plots reproduction peaked at the end of the rainy season. Of the total number of reproducing species, 90 species occurred only in the savanna and four in the forest. Five herbs were recorded in the forest, savanna and border environments. Late dry season fire probably lead the majority of herbaceous species to have their reproduction spread throughout the study time.

  19. Vegetation Structure Controls Carbon Sequestration Potential in a Savannah Ecosystem of Mt. Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J. N.; Gutlein, A.; Sierra Cornejo, N.; Ralf, K.; Hertel, D.; Kuzyakov, Y.

    2016-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon (C) sequestration. Savanna ecosystems are increasingly pressured by climate and land-use changes, especially around populous areas such as the Mt. Kilimanjaro region. Savanna vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation and patchiness of canopy cover and aboveground biomass. Both are major regulators for soil ecological properties and soil-atmospheric trace gas exchange (CO2, N2O, CH4), especially in water-limited environments. Our objectives were to determine spatial trends in soil properties and trace-gas fluxes during the dry season and to relate above- and belowground processes and attributes. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At each sampling point (0-10 & 10-30 cm depth) we measured soil C and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. The tree species had no effect on soil parameters and gas fluxes under the crown. CEC, C and N fractions decreased up to 50% outside the crown-covered area. Tree leaf litter had a far lower C:N ratio than leaf litter of the C4-grass species. δ13C in soil under the crowns shifted about 15% in the direction of tree leaf litter δ13C compared to soil in open area reflecting the tree litter contribution to soil organic matter. The microbial C:N ratio and CO2 efflux were about 30% higher in the open area and strongly dependent on mineral N availability. This indicates N limitation and low C-use efficiency in soil under open grassland. We conclude that the spatial

  20. Oak savanna restoration: Oak response to fire and thinning through 28 years

    Treesearch

    Ronald E. Masters; Jack R. Waymire

    2012-01-01

    We used a small plot study on Pushmataha Wildlife Management Area in southeast Oklahoma to determine the efficacy of fire frequency and thinning as management tools for restoration of oak savanna, oak woodlands, pine-bluestem woodlands, and pine savanna for application on a landscape scale. On selected experimental units, we initially reduced stand density to favor...

  1. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    PubMed

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N

  2. Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    PubMed Central

    Smitz, Nathalie; Berthouly, Cécile; Cornélis, Daniel; Heller, Rasmus; Van Hooft, Pim; Chardonnet, Philippe; Caron, Alexandre; Prins, Herbert; van Vuuren, Bettine Jansen; De Iongh, Hans; Michaux, Johan

    2013-01-01

    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today. PMID:23437100

  3. Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span

    PubMed Central

    Zhang, Jiao-Lin; Poorter, L.; Hao, Guang-You; Cao, Kun-Fang

    2012-01-01

    Background and Aims Photosynthetic thermotolerance (PT) is important for plant survival in tropical and sub-tropical savannas. However, little is known about thermotolerance of tropical and sub-tropical wild plants and its association with leaf phenology and persistence. Longer-lived leaves of savanna plants may experience a higher risk of heat stress. Foliar Ca is related to cell integrity of leaves under stresses. In this study it is hypothesized that (1) species with leaf flushing in the hot-dry season have greater PT than those with leaf flushing in the rainy season; and (2) PT correlates positively with leaf life span, leaf mass per unit area (LMA) and foliar Ca concentration ([Ca]) across woody savanna species. Methods The temperature-dependent increase in minimum fluorescence was measured to assess PT, together with leaf dynamics, LMA and [Ca] for a total of 24 woody species differing in leaf flushing time in a valley-type savanna in south-west China. Key Results The PT of the woody savanna species with leaf flushing in the hot-dry season was greater than that of those with leaf flushing in the rainy season. Thermotolerance was positively associated with leaf life span and [Ca] for all species irrespective of the time of flushing. The associations of PT with leaf life span and [Ca] were evolutionarily correlated. Thermotolerance was, however, independent of LMA. Conclusions Chinese savanna woody species are adapted to hot-dry habitats. However, the current maximum leaf temperature during extreme heat stress (44·3 °C) is close to the critical temperature of photosystem II (45·2 °C); future global warming may increase the risk of heat damage to the photosynthetic apparatus of Chinese savanna species. PMID:22875810

  4. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  5. Burned area detection based on Landsat time series in savannas of southern Burkina Faso

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiu; Heiskanen, Janne; Maeda, Eduardo Eiji; Pellikka, Petri K. E.

    2018-02-01

    West African savannas are subject to regular fires, which have impacts on vegetation structure, biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with seasonal fires can greatly benefit decision making in land management. Since coarse resolution burned area products cannot meet the accuracy needed for fire management and climate modelling at local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In this study, we developed an algorithm for continuous monitoring of annual burned areas using Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting with Landsat time series and breakpoint identification in the time series data. This approach was tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission errors. This represents a significant improvement in comparison with MODIS burned area product (67.6%), which had more omission errors than commission errors, indicating underestimation of the total burned area. By observing the spatial distribution of burned areas, we found that the Landsat based method misclassified cropland and cloud shadows as burned areas due to the similar spectral response, and MODIS burned area product omitted small and fragmented burned areas. The proposed algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 missing lines, therefore having a high potential for being applied in other landscapes in future studies.

  6. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  7. Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2009-01-01

    Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0.5 to 2.5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3.5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0.18, <0.14, <0.08 mg/l, respectively), whereas DOC concentrations were high (7.1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7.5 mg/ l and 0.13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright ?? 2009 John Wiley & Sons, Ltd.

  8. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    NASA Astrophysics Data System (ADS)

    Saiz, G.; Wynn, J. G.; Wurster, C. M.; Goodrick, I.; Nelson, P. N.; Bird, M. I.

    2015-03-01

    Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (<125 μm), likely to be transported from the site of burning. The median (range) PyC production across all burns was 16.0 (11.5) % of total carbon exposed (TCE), with HyPyC accounting for 2.5 (4.9) % of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations.

  9. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    NASA Astrophysics Data System (ADS)

    Saiz, G.; Wynn, J. G.; Wurster, C. M.; Goodrick, I.; Nelson, P. N.; Bird, M. I.

    2014-10-01

    Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive, and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted sixteen experimental burns on a rainfall transect in northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these also partitioned into proximal (> 125 μm) and distal (< 125 μm) fluxes. The median [range] PyC production across all burns was 16.0 [11.5]% of total carbon exposed (TCE), with HyPyC accounting for 2.5 [4.9]% of TCE. Both PyC and HyPyC were dominantly partitioned into the proximal flux, likely to remain (initially) close to the site of production. Production of HyPyC was strongly related to fire residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7 ‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion was computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, and for global 13C isotopic disequilibria calculations.

  10. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  11. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the

  12. Climate change impacts on selected global rangeland ecosystem services.

    PubMed

    Boone, Randall B; Conant, Richard T; Sircely, Jason; Thornton, Philip K; Herrero, Mario

    2018-03-01

    Rangelands are Earth's dominant land cover and are important providers of ecosystem services. Reliance on rangelands is projected to grow, thus understanding the sensitivity of rangelands to future climates is essential. We used a new ecosystem model of moderate complexity that allows, for the first time, to quantify global changes expected in rangelands under future climates. The mean global annual net primary production (NPP) may decline by 10 g C m -2  year -1 in 2050 under Representative Concentration Pathway (RCP) 8.5, but herbaceous NPP is projected to increase slightly (i.e., average of 3 g C m -2  year -1 ). Responses vary substantially from place-to-place, with large increases in annual productivity projected in northern regions (e.g., a 21% increase in productivity in the US and Canada) and large declines in western Africa (-46% in sub-Saharan western Africa) and Australia (-17%). Soil organic carbon is projected to increase in Australia (9%), the Middle East (14%), and central Asia (16%) and decline in many African savannas (e.g., -18% in sub-Saharan western Africa). Livestock are projected to decline 7.5 to 9.6%, an economic loss of from $9.7 to $12.6 billion. Our results suggest that forage production in Africa is sensitive to changes in climate, which will have substantial impacts on the livelihoods of the more than 180 million people who raise livestock on those rangelands. Our approach and the simulation tool presented here offer considerable potential for forecasting future conditions, highlight regions of concern, and support analyses where costs and benefits of adaptations and policies may be quantified. Otherwise, the technical options and policy and enabling environment that are needed to facilitate widespread adaptation may be very difficult to elucidate. © 2017 John Wiley & Sons Ltd.

  13. Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna.

    PubMed

    Schutz, Alexander Ernest Noel; Bond, William J; Cramer, Michael D

    2009-05-01

    In frequently burnt mesic savannas, trees can get trapped into a cycle of surviving fire-induced stem death (i.e. topkill) by resprouting, only to be topkilled again a year or two later. The ability of savanna saplings to resprout repeatedly after fire is a key component of recent models of tree-grass coexistence in savannas. This study investigated the carbon allocation and biomass partitioning patterns that enable a dominant savanna tree, Acacia karroo, to survive frequent and repeated topkill. Root starch depletion and replenishment, foliage recovery and photosynthesis of burnt and unburnt plants were compared over the first year after a burn. The concentration of starch in the roots of the burnt plants (0.08 +/- 0.01 g g(-1)) was half that of the unburnt plant (0.16 +/- 0.01 g g(-1)) at the end of the first growing season after topkill. However, root starch reserves of the burnt plants were replenished over the dry season and matched that of unburnt plants within 1 year after topkill. The leaf area of resprouting plants recovered to match that of unburnt plants within 4-5 months after topkill. Shoot growth of resprouting plants was restricted to the first few months of the wet season, whereas photosynthetic rates remained high into the dry season, allowing replenishment of root starch reserves. (14)C labeling showed that reserves were initially utilized for shoot growth after topkill. The rapid foliage recovery and the replenishment of reserves within a single year after topkill implies that A. karroo is well adapted to survive recurrent topkill and is poised to take advantage of unusually long fire-free intervals to grow into adults. This paper provides some of the first empirical evidence to explain how savanna trees in frequently burnt savannas are able to withstand frequent burning as juveniles and survive to become adults.

  14. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  15. Plant diversity and invasives in blue oak savannas of the southern Sierra Nevada

    Treesearch

    Jon E. Keeley

    2002-01-01

    Blue oak savannas were found to be substantially more diverse at all scales from localized point diversity to the community scale, than higher elevation shrubland and coniferous forests in the southern Sierra Nevada. Also, alien plants were more diverse and represented a substantial fraction of the understory flora in these blue oak savannas, comprising three-fourths...

  16. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  17. Forage nutritive quality in the Serengeti ecosystem: The roles of fire and herbivory

    USGS Publications Warehouse

    Anderson, T.M.; Ritchie, M.E.; Mayemba, E.; Eby, S.; Grace, J.B.; McNaughton, S.J.

    2007-01-01

    Fire and herbivory are important determinants of nutrient availability in savanna ecosystems. Fire and herbivory effects on the nutritive quality of savanna vegetation can occur directly, independent of changes in the plant community, or indirectly, via effects on the plant community. Indirect effects can be further subdivided into those occurring because of changes in plant species composition or plant abundance (i.e., quality versus quantity). We studied relationships between fire, herbivory, rainfall, soil fertility, and leaf nitrogen (N), phosphorus (P), and sodium (Na) at 30 sites inside and outside of Serengeti National Park. Using structural equation modeling, we asked whether fire and herbivory influences were largely direct or indirect and how their signs and strengths differed within the context of natural savanna processes. Herbivory was associated with enhanced leaf N and P through changes in plant biomass and community composition. Fire was associated with reduced leaf nutrient concentrations through changes in plant community composition. Additionally, fire had direct positive effects on Na and nonlinear direct effects on P that partially mitigated the indirect negative effects. Key mechanisms by which fire reduced plant nutritive quality were through reductions of Na-rich grasses and increased abundance of Themeda triandra, which had below-average leaf nutrients. ?? 2007 by The University of Chicago. All rights reserved.

  18. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  19. [Ecological regulation services of Hainan Island ecosystem and their valuation].

    PubMed

    Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke

    2004-08-01

    Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.

  20. Urban morphological determinants of temperature regulating ecosystem services in African cities: the case of Dar es Salaam, Tanzania

    NASA Astrophysics Data System (ADS)

    Cavan, Gina; Lindley, Sarah; Kibassa, Deusdedit; Shemdoe, Riziki; Capuano, Paolo; De Paola, Francesco; Renner, Florian; Pauleit, Stephan

    2013-04-01

    Urban green structure provides important regulating ecosystem services, such as temperature and flood regulation, and thus, has the potential to increase the resilience of African cities to climate change. Green structures within urban areas are not only limited to discrete units associated with recreational parks, agricultural areas and open spaces: they also exist within zones which have other primary functions, such as church yards, along transport routes, and within residential areas. Differing characteristics of urban areas can be conceptualised and subsequently mapped through the idea of urban morphology types. Urban morphology types are classifications which combine facets of urban form and function. When mapped, UMT units provide biophysically relevant meso-scale geographical zones which can be used as the basis for understanding climate-related impacts and adaptations. For example, they support the assessment of urban temperature patterns and the temperature regulating services provided by urban green structures. There are some examples of the use of UMTs for assessing regulating ecosystem services in European cities but little similar knowledge is available in an African context. This paper outlines the concept of urban morphology types (UMTs) and how they were applied to African case study cities (Cavan et al., 2012). It then presents the methods used to understand temperature regulating ecosystem services across an example African case study city, including (i) a GIS-based assessment of urban green structures, and (ii) applying an energy balance model to estimate current and future surface temperatures under climate change projections. The assessment is carried out for Dar es Salaam, Tanzania. Existing evidence suggests increases in both mean and extreme temperatures in the city. Historical analysis of the number of hot days per year suggests a rise from a maximum of 47 days per year in the period 1961-87 to 72 days per year in 2003-2011 (Giugni et al

  1. The global extent and determinants of savanna and forest as alternative biome states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon A

    2011-10-14

    Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.

  2. Ecological release in lizard assemblages of neotropical savannas.

    PubMed

    Mesquita, Daniel Oliveira; Colli, Guarino Rinaldi; Vitt, Laurie J

    2007-08-01

    We compare lizard assemblages of Cerrado and Amazonian savannas to test the ecological release hypothesis, which predicts that niche dimensions and abundance should be greater in species inhabiting isolated habitat patches with low species richness (Amazonian savannas and isolated Cerrado patches) when compared with nonisolated areas in central Cerrado with greater species richness. We calculated microhabitat and diet niche breadths with data from 14 isolated Cerrado patches and Amazon savanna areas and six central Cerrado populations. Morphological data were compared using average Euclidean distances, and lizard abundance was estimated using the number of lizards captured in pitfall traps over an extended time period. We found no evidence of ecological release with respect to microhabitat use, suggesting that historical factors are better microhabitat predictors than ecological factors. However, data from individual stomachs indicate that ecological release occurs in these areas for one species (Tropidurus) but not others (Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus), suggesting that evolutionary lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release occurs in these areas using morphological data. Based on abundance data, our results indicate that the ecological release (density compensation) hypothesis is not supported: lizard species are not more abundant in isolated areas than in nonisolated areas. The ecology of species is highly conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche breadth for some species indicate that ecological release occurs as well.

  3. Structural Ecosystems Therapy for HIV+ African-American women and drug abuse relapse.

    PubMed

    Feaster, Daniel J; Burns, Myron J; Brincks, Ahnalee M; Prado, Guillermo; Mitrani, Victoria B; Mauer, Megaly H; Szapocznik, Jose

    2010-06-01

    This report examines the effect of Structural Ecosystems Therapy (SET) for (n=143) HIV+ African-American women on rate of relapse to substance use relative to both a person-centered approach (PCA) to therapy and a community control (CC) group. A prior report has shown SET to decrease psychological distress and family hassles relative to these 2 comparison groups. In new analyses, SET and CC had a significant protective effect against relapse as compared with PCA. There is evidence that SET's protective effect on relapse was related to reductions in family hassles, whereas there was not a direct impact of change in psychological distress on rates of relapse. Lower retention in PCA, perhaps caused by the lack of a directive component to PCA, may have put these women at greater risk for relapse. Whereas SET did not specifically address substance abuse, SET indirectly protected at-risk women from relapse through reductions in family hassles.

  4. Developing Remote Sensing Methodology to Characterize Savanna Vegetation Structure and Composition for Rangeland Monitoring and Conservation Applications

    NASA Astrophysics Data System (ADS)

    Tsalyuk, M.; Kelly, M.; Getz, W.

    2012-12-01

    Rangeland ecosystems cover more than fifty percent of earth's land surface, host considerable biodiversity and provide vital ecosystem services. However, rangelands around the world face degradation due to climate change, land use change and overgrazing. Human-driven changes to fire and grazing regimes enhance degradation processes. The purpose of this research is to develop a remote sensing methodology to characterize the structure and composition of savanna vegetation, in order to improve the ability of conservation managers to monitor and address such degradation processes. Our study site, Etosha National Park, is a 22,270 km^2 semi-arid savanna located in north-central Namibia. Fencing and provision of artificial water sources for wildlife have changed the natural grazing patterns, which has caused bush encroachment and vegetation degradation across the park. We used MODIS and Landsat ETM+ 7 satellite imagery to map the vegetation type, dominant species, density, cover and biomass of herbaceous and woody vegetation in Etosha. We used imagery for 2007-2012 together with extensive field sampling, both in the wet and the dry seasons. At each sampling point, we identified the dominant species and measured the density, canopy size, height and diameter of the trees and shrubs. At only 31% of the sampling points, the identified vegetation type matched the class assigned at the 1996 classification. This may indicate significant habitat modifications in Etosha. We used two parallel analytical approaches to correlate between radiometric and field data. First, we show that traditional supervised classification identifies well five classes: bare soil, grassland, steppe, shrub savanna and tree savanna. We then refined this classification to enable us to identify the species composition in an area utilizing the phenological differences in timing and duration of greenness of the dominant tree and shrub species in Etosha. Specifically, using multi-date images we were able to

  5. Emission estimates of selected volatile organic compounds from tropical savanna burning in northern Australia

    NASA Astrophysics Data System (ADS)

    Shirai, T.; Blake, D. R.; Meinardi, S.; Rowland, F. S.; Russell-Smith, J.; Edwards, A.; Kondo, Y.; Koike, M.; Kita, K.; Machida, T.; Takegawa, N.; Nishi, N.; Kawakami, S.; Ogawa, T.

    2003-02-01

    Here we present measurements of a range of carbon-based compounds: carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nonmethane hydrocarbons (NMHCs), methyl halides, and dimethyl sulfide (DMS) emitted by Australian savanna fires studied as part of the Biomass Burning and Lightning Experiment (BIBLE) phase B aircraft campaign, which took place during the local late dry season (28 August to 13 September 1999). Significant enhancements of short-lived NMHCs were observed in the boundary layer (BL) over the region of intensive fires and indicate recent emissions for which the mean transport time was estimated to be about 9 hours. Emission ratios relative to CO were determined for 20 NMHCs, 3 methyl halides, DMS, and CH4 based on the BL enhancements in the source region. Tight correlations with CO were obtained for most of those compounds, indicating the homogeneity of the local savanna source. The emission ratios were in good agreement with some previous measurements of savanna fires for stable compounds but indicated the decay of emission ratios during transport for several reactive compounds. Based on the observed emission ratios, emission factors were derived and compared to previous studies. While emission factors (g species/kg dry mole) of CO2 varied little according to the vegetation types, those of CO and NMHCs varied significantly. Higher combustion efficiency and a lower emission factor for methane in this study, compared to forest fires, agreed well with results for savanna fires in other tropical regions. The amount of biomass burned was estimated by modeling methods using available satellite data, and showed that 1999 was an above average year for savanna burning. The gross emissions of the trace gases from Australian savanna fires were estimated.

  6. Savanna Vegetation Dynamics and their Influence on Landscape-Scale C, N, and P Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Zhou, Y.; Wu, X. B.; Hyodo, A.

    2017-12-01

    Soil carbon (C), nitrogen (N) and phosphorus (P) cycles are strongly interlinked and controlled through biological processes, and the P cycle is further controlled through geochemical processes. In grasslands, savannas, and other dryland ecosystems throughout the world, woody plant encroachment often modifies soil C, N, and P stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic C (SOC), total N (TN), and total P (TP) following woody encroachment by taking spatially-explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by trees and shrubs during the past century in the Rio Grande Plains, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns along the soil profile following woody encroachment. In contrast, TP increased slower than SOC and TN in surface soils, but faster in subsurface soils. Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in deeper portions of the profile. The encroachment of woody plants into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. Structural equation models (SEM) showed that fine root density explained the greatest proportion of variation in SOC, TN, and TP in the surface soil. In deeper portions of the profile, SEM showed that silt and clay explained much of the variation in SOC and TN, while soil pH strongly controlled TP. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic

  7. Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradão forest undergoing ecological succession

    NASA Astrophysics Data System (ADS)

    Peixoto, Karine S.; Marimon-Junior, Ben Hur; Marimon, Beatriz S.; Elias, Fernando; de Farias, Josenilton; Freitag, Renata; Mews, Henrique A.; das Neves, Eder C.; Prestes, Nayane Cristina C. S.; Malhi, Yadvinder

    2017-07-01

    The transition region between two major South American biomes, the Amazon forest and the Cerrado (Brazilian savanna), has been substantially converted into human-modified ecosystems. Nevertheless, the recovery dynamics of ecosystem functions in this important zone of (ecological) tension (ZOT) remain poorly understood. In this study, we compared two areas of cerradão (a forest-woodland of the Brazilian savanna; Portuguese augmentative of cerrado), one in secondary succession (SC) and one adjacent and well preserved (PC), to test whether the ecosystem functions lost after conversion to pasture were restored after 22 years of regeneration. We tested the hypothesis that the increase in annual aboveground biomass in the SC would be greater than that in the PC because of anticipated successional gains. We also investigated soil CO2 efflux, litter layer content, and fine root biomass in both the SC and PC. In terms of biomass recovery our hypothesis was not supported: the biomass did not increase in the successional area over the study period, which suggested limited capacity for recovery in this key ecosystem compartment. By contrast, the structure and function of the litter layer and root mat were largely reconstituted in the secondary vegetation. Overall, we provide evidence that 22 years of secondary succession were not sufficient for these short and open forests (e.g., cerradão) in the ZOT to recover ecosystem functions to the levels observed in preserved vegetation of identical physiognomy.

  8. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a “matrix” species) of the longleaf pine savanna understory, and 31 other herbaceous “non-matrix” species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in Junemore » 2004, while mean 1–2 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 ×3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.« less

  9. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas.

    PubMed

    Donzelli, D; De Michele, C; Scholes, R J

    2013-09-07

    The co-existence of trees and grasses in savannas in general can be the result of processes involving competition for resources (e.g. water and nutrients) or differential response to disturbances such as fire, animals and human activities; or a combination of both broad mechanisms. In moist savannas, the tree-grass coexistence is mainly attributed to of disturbances, while in dry savannas, limiting resources are considered the principal mechanism of co-existence. Virtually all theoretical explorations of tree-grass dynamics in dry savannas consider only competition for soil water. Here we investigate whether coexistence could result from a balanced competition for two resources, namely soil water and mineral nitrogen. We introduce a simple dynamical resource-competition model for trees and grasses. We consider two alternative hypotheses: (1) trees are the superior competitors for nitrogen while grasses are superior competitors for water, and (2) vice-versa. We study the model properties under the two hypotheses and test each hypothesis against data from 132 dry savannas in Africa using Kendall's test of independence. We find that Hypothesis 1 gets much more support than Hypothesis 2, and more support than the null hypothesis that neither is operative. We further consider gradients of rainfall and nitrogen availability and find that the Hypothesis 1 model reproduces the observed patterns in nature. We do not consider our results to definitively show that tree-grass coexistence in dry savannas is due to balanced competition for water and nitrogen, but show that this mechanism is a possibility, which cannot be a priori excluded and should thus be considered along with the more traditional explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Late Holocene vegetation and fire dynamics from a savanna-forest ecotone in Roraima state, northern Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    da Silva Meneses, Maria Ecilene Nunes; da Costa, Marcondes Lima; Behling, Hermann

    2013-03-01

    Two sediment cores from Mauritia flexuosa palm swamps have been studied by pollen and charcoal analysis. The cores Fazenda Cigana (FC) and Terra Indígena Aningal (TIA) were taken from a savanna-forest ecotone area in the Roraima State, northern Brazilian Amazon. Based on 5 radiocarbon dates, these records allow the reconstruction of the vegetation fire and climate dynamics during the past 1550 years. At the FC site was recorded a higher proportion of forest cover, suggesting local wetter climatic conditions favorable for forest expansion, especially by gallery forests, between 1550 and 1400 cal yr BP. Stands of M. flexuosa started to establish on the site indicating sufficient soil moisture. From 1400 to 1050 cal yr BP, forest cover retreated while savanna, and the Mauritia palm swamp expanded considerably. The FC site was marked by savanna and Mauritia cover with a slight increase of forest between ca. 1050 and 900 cal yr BP. From 900 to 300 cal yr BP the savanna and palm swamp taxa became dominant and the forest area decreased. At the TIA site the savanna cover was dominant between 1200 and 1000 cal yr BP. From 1000 to 700 forest expanded while savanna and Mauritia palm swamp reduced. Between 700 and 300 cal yr BP savanna and Mauritia palm swamp increased and forest area decreased. The high amount of charred particles found in the sediments, indicate fires with a marked increase between 1400 to 1000 cal yr BP (FC site) and 700 to 300 cal yr BP (TIA site), and probably caused the retreat of forest cover during these two time intervals. The relatively lower fire activity after 300 cal yr BP until present-day favored the increase of forested area at both TIA and FC sites. The arrival of the European settler and the subsequent introduction of cattle, is suggested as the main reason for the decrease of fire in the study region. The results point the fire caused by indigenous people as the principal controlling factor for forest and savanna dynamics during the past

  11. Songbirds in managed and non-managed savannas and woodlands in the central hardwoods region

    Treesearch

    Frank R., III Thompson; Jennifer L. Reidy; Sarah W. Kendrick; Jane A. Fitzgerald

    2012-01-01

    We know little about the response of birds to savanna and woodland restoration in the Ozarks or how important such habitats are to birds of conservation concern. Bird species such as red-headed woodpecker, prairie warbler, field sparrow, and blue-winged warbler are species of regional concern, and declines of these species may be due to historical declines in savannas...

  12. CERRADO SMALL MAMMALS: a dataset of abundance and distribution of marsupials, lagomorphs, and rodents in a neotropical savanna.

    PubMed

    Mendonça, André F; Percequillo, Alexandre R; de Camargo, Nicholas F; Ribeiro, Juliana F; Palma, Alexandre R T; Oliveira, Leonardo C; Câmara, Edeltrudes M V C; Vieira, Emerson M

    2018-04-27

    Patterns in distribution and local abundance of species within a biome are central concerns in ecology and allow the understanding of the effects of habitat loss on rates of species extinction; provide support for the creation and management of reserves; and contribute to the identification and quantification of the processes that allow niche partitioning by species. However, despite the importance in the conservation and management of the ecosystems, most systematized information on the abundance and distribution of small mammals is restricted to the northern hemisphere or forest ecosystems. For tropical biomes, an important part of this information remains dispersed and difficult to access in the form of theses, technical reports or unpublished datasets. Here we present a comprehensive dataset of abundance and richness of small mammals in the Cerrado, the largest Neotropical savanna. This dataset includes 2,599 records of 446 sites from 96 studies. Despite of more than 50% of references in this dataset are peer-reviewed journal articles, 45.78% of communities were compiled from theses. The dataset comprises 24,283 individuals of 55 genera and at least 118 species of small mammals including 29 marsupials, two lagomorphs (one exotic) and 87 rodents (three exotic). Local species richness ranged from one to 26 species (5.82 ±3.55, average species richness ±SD). We observed hyper-dominance of a few species; the 10 most abundant species in this dataset represented 60.19% of all recorded individuals. The hairy-tailed bolo mouse (Necromys lasiurus) represented over than 20% of all individuals and occurred at more than 50% of sites. Furthermore, we identified 18 environments, 16 native vegetation types, and two anthropic environments. Typical savanna and gallery forest were the most frequently sampled vegetation types (comprising 46.94% of all sampled sites) and the most speciose ones (57 species for typical savanna and 53 species for gallery forest). The information

  13. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae)

    USGS Publications Warehouse

    King, S.E.; Grace, J.B.

    2000-01-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  14. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae).

    PubMed

    King, S E; Grace, J B

    2000-09-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  15. Exploring the potential offered by legacy soil databases for ecosystem services mapping of Central African soils

    NASA Astrophysics Data System (ADS)

    Verdoodt, Ann; Baert, Geert; Van Ranst, Eric

    2014-05-01

    Central African soil resources are characterised by a large variability, ranging from stony, shallow or sandy soils with poor life-sustaining capabilities to highly weathered soils that recycle and support large amounts of biomass. Socio-economic drivers within this largely rural region foster inappropriate land use and management, threaten soil quality and finally culminate into a declining soil productivity and increasing food insecurity. For the development of sustainable land use strategies targeting development planning and natural hazard mitigation, decision makers often rely on legacy soil maps and soil profile databases. Recent development cooperation financed projects led to the design of soil information systems for Rwanda, D.R. Congo, and (ongoing) Burundi. A major challenge is to exploit these existing soil databases and convert them into soil inference systems through an optimal combination of digital soil mapping techniques, land evaluation tools, and biogeochemical models. This presentation aims at (1) highlighting some key characteristics of typical Central African soils, (2) assessing the positional, geographic and semantic quality of the soil information systems, and (3) revealing its potential impacts on the use of these datasets for thematic mapping of soil ecosystem services (e.g. organic carbon storage, pH buffering capacity). Soil map quality is assessed considering positional and semantic quality, as well as geographic completeness. Descriptive statistics, decision tree classification and linear regression techniques are used to mine the soil profile databases. Geo-matching as well as class-matching approaches are considered when developing thematic maps. Variability in inherent as well as dynamic soil properties within the soil taxonomic units is highlighted. It is hypothesized that within-unit variation in soil properties highly affects the use and interpretation of thematic maps for ecosystem services mapping. Results will mainly be based

  16. Tiger-Moths in Savannas in Eastern Amazon: First Assessment of Diversity and Seasonal Aspects.

    PubMed

    Valente, D M P; Zenker, M M; Teston, J A

    2018-01-06

    Biodiversity knowledge on insects is urgently needed due to the ever growing demand for food and the consequent deforestation process and loss of natural habitats in many understudied tropical regions. In this paper, we describe the outcome of a biodiversity research on tiger moths performed for the first time in a poorly studied Amazonian landscape-the savanna. We sampled tiger moths monthly with UV automatic light traps for 12 consecutive months in two sampling points in an area of savanna in eastern Amazon, and we compared our results to previously available data for eastern Amazon. We found a total of 91 species of which 80 were identified to species level. The most species-rich subtribes were Phaegopterina and Euchromiina with 32 species each. Species richness and abundance did not differ among sampling sites, but in general the species richness was higher during the dry season while abundance was higher during the wet season. This seasonal diversity pattern differs from the most common patterns recorded for savannas in other parts of the world. The species composition also changed in wet and dry seasons and correlated significantly with temperature and relative humidity. Our results suggest that the alpha diversity of the Amazonian savannas in our sampling area is lower than that in nearby rain forests and similar to that in agriculturally disturbed areas surrounded by rain forests. However, the species composition differed considerably from natural and disturbed areas. These results highlight the need of basic biodiversity surveys of insects in Amazonian savannas.

  17. Restoration of midwestern oak woodlands and savannas

    Treesearch

    Dan C. Dey; John M. Kabrick

    2015-01-01

    There are various definitions for savanna and woodland in the ecological literature. Characteristic elements of each community are broadly defined and often overlap according to the authorities (Curtis 1959; Nuzzo 1986; Nelson 2010). Some confusion is inevitable when categorizing what is in reality a continuum of states from prairie to forest in which there can be much...

  18. Silviculture to restore oak savannas and woodlands

    Treesearch

    Daniel C. Dey; John M. Kabrick; Callie J. Schweitzer

    2017-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak natural communities that were dominant across the region. In the past century, savannas and woodlands have become scarce because of conversion to agriculture or development of forest structure in the absence of fire. Their restoration is a primary goal for public agencies and...

  19. Triangulating the provenance of African elephants using mitochondrial DNA

    PubMed Central

    Ishida, Yasuko; Georgiadis, Nicholas J; Hondo, Tomoko; Roca, Alfred L

    2013-01-01

    African elephant mitochondrial (mt) DNA follows a distinctive evolutionary trajectory. As females do not migrate between elephant herds, mtDNA exhibits low geographic dispersal. We therefore examined the effectiveness of mtDNA for assigning the provenance of African elephants (or their ivory). For 653 savanna and forest elephants from 22 localities in 13 countries, 4258 bp of mtDNA was sequenced. We detected eight mtDNA subclades, of which seven had regionally restricted distributions. Among 108 unique haplotypes identified, 72% were found at only one locality and 84% were country specific, while 44% of individuals carried a haplotype detected only at their sampling locality. We combined 316 bp of our control region sequences with those generated by previous trans-national surveys of African elephants. Among 101 unique control region haplotypes detected in African elephants across 81 locations in 22 countries, 62% were present in only a single country. Applying our mtDNA results to a previous microsatellite-based assignment study would improve estimates of the provenance of elephants in 115 of 122 mis-assigned cases. Nuclear partitioning followed species boundaries and not mtDNA subclade boundaries. For taxa such as elephants in which nuclear and mtDNA markers differ in phylogeography, combining the two markers can triangulate the origins of confiscated wildlife products. PMID:23798975

  20. Contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy throughout the seasons under different nutrient availability

    NASA Astrophysics Data System (ADS)

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Moreno, G.; Carrara, A.; Kolle, O.; Reichstein, M.

    2017-12-01

    In semi-arid savanna type ecosystems, the carbon and water cycle are closely related to each other. Water availability is the main driver for the development and phenology of the vegetation, especially for annual plants. Depending on tree density, nutrient availability and species the contribution of the tree- and the herbaceous layer to ecosystem fluxes can vary substantially. We present data from an ecosystem scale nutrient manipulation experiment within a Mediterranean savanna type ecosystem which is used for cattle. The footprint areas of two out of three ecosystem eddy co-variance (EC) towers were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT) while the third one served as the control tower (CT). At each ecosystem EC-tower an additional herbaceous layer tower was installed that only sampled fluxes from the herbaceous layer. Under certain assumptions flux differences between the ecosystem EC and the herbaceous layer EC systems can be considered as the contribution of the trees to the ecosystem fluxes. Based on phenology of the herbaceous layer estimated through green-chromatic-coordinates from digital imagery the year was separated into spring, senescence, regreening, and winter. The focus of the analysis is (i) the evaluation of the method and how it works throughout the different seasons and (ii) the quantification of the contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy under different environmental conditions and nutrient stoichiometry. The contribution of the trees to total ecosystem fluxes is variable in time. Especially, during the beginning of the senescence period high evapotranspiration rates and largest carbon uptake are measured while the contribution to sensible heat fluxes is largest during the end of the summer. During the regreening and winter the contribution of ET is relatively constant around 0.25 mm d-1. During the peak of the greenness ET and carbon flux of the herbaceous EC tower are

  1. Bonobo habituation in a forest-savanna mosaic habitat: influence of ape species, habitat type, and sociocultural context.

    PubMed

    Narat, Victor; Pennec, Flora; Simmen, Bruno; Ngawolo, Jean Christophe Bokika; Krief, Sabrina

    2015-10-01

    Habituation is the term used to describe acceptance by wild animals of a human observer as a neutral element in their environment. Among primates, the process takes from a few days for Galago spp. to several years for African apes. There are also intraspecies differences reflecting differences in habitat, home range, and ape-human relationship history. Here, we present the first study of the process of bonobo habituation in a fragmented habitat, a forest-savanna mosaic in the community-based conservation area led by the Congolese nongovernmental organization Mbou-Mon-Tour, Democratic Republic of the Congo. In this area, local people use the forest almost every day for traditional activities but avoid bonobos because of a traditional taboo. Because very few flight reactions were observed during habituation, we focused on quantitative parameters to assess the development of ape tolerance and of the tracking efficiency of observer teams. During the 18-month study period (May 2012-October 2013), 4043 h (319 days) were spent in the forest and bonobos were observed for a total of 405 h (196 contacts on 134 days). The average contact duration was stable over time (124 min), but the minimal distance during a contact decreased with habituation effort. Moreover, bonobo location and tracking efficiency, daily ratio of contact time to habituation effort, and the number of observations at ground level were positively correlated with habituation effort. Our observations suggest that bonobos become habituated relatively rapidly. These results are discussed in relation to the habitat type, ape species, and the local sociocultural context of villagers. The habituation process involves changes in ape behavior toward observers and also more complex interactions concerning the ecosystem, including the building of an efficient local team. Before starting a habituation process, knowledge of the human sociocultural context is essential to assess the balance between risks and benefits.

  2. Plant composition in oak savanna and woodland restoration at Prairie Fork Conservation Area in Missouri

    Treesearch

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor

    2007-01-01

    The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...

  3. Are there consistent grazing indicators in Drylands? Testing plant functional types of various complexity in South Africa's Grassland and Savanna Biomes.

    PubMed

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A; Oomen, Roelof J; du Preez, Chris C; Ruppert, Jan C; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful

  4. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  5. Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form.

    PubMed

    Rossatto, Davi Rodrigo; Franco, Augusto Cesar

    2017-04-01

    The assessment of leaf strategies has been a common theme in ecology, especially where multiple sources of environmental constraints (fire, seasonal drought, nutrient-poor soils) impose a strong selection pressure towards leaf functional diversity, leading to inevitable tradeoffs among leaf traits, and ultimately to niche segregation among coexisting species. As diversification on leaf functional strategies is dependent on integration at whole plant level, we hypothesized that regardless of phylogenetic relatedness, leaf trait functional syndromes in a multivariate space would be associated with the type of growth form. We measured traits related to leaf gas exchange, structure and nutrient status in 57 coexisting species encompassing all Angiosperms major clades, in a wide array of plant morphologies (trees, shrubs, sub-shrubs, herbs, grasses and palms) in a savanna of Central Brazil. Growth forms differed in mean values for the studied functional leaf traits. We extracted 4 groups of functional typologies: grasses (elevated leaf dark respiration, light-saturated photosynthesis on a leaf mass and area basis, lower values of leaf Ca and Mg), herbs (high values of SLA, leaf N and leaf Fe), palms (high values of stomatal conductance, leaf transpiration and leaf K) and woody eudicots (sub-shrubs, shrubs and trees; low SLA and high leaf Ca and Mg). Despite the large range of variation among species for each individual trait and the independent evolutionary trajectory of individual species, growth forms were strongly associated with particular leaf trait combinations, suggesting clear evolutionary constraints on leaf function for morphologically similar species in savanna ecosystems.

  6. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America

    PubMed Central

    2016-01-01

    Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216507

  7. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America.

    PubMed

    Mistry, Jayalaxshmi; Bilbao, Bibiana A; Berardi, Andrea

    2016-06-05

    Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  8. Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Bertschi, Isaac T.; Blake, Donald R.; Simpson, Isobel J.; Gao, Song; Kirchstetter, Thomas W.; Novakov, Tica

    2003-01-01

    Airborne measurements made on initial smoke from 10 savanna fires in southern Africa provide quantitative data on emissions of 50 gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, ammonia, dimethyl sulfide, nonmethane organic compounds, halocarbons, gaseous organic acids, aerosol ionic components, carbonaceous aerosols, and condensation nuclei (CN). Measurements of several of the gaseous species by gas chromatography and Fourier transform infrared spectroscopy are compared. Emission ratios and emission factors are given for eight species that have not been reported previously for biomass burning of savanna in southern Africa (namely, dimethyl sulfide, methyl nitrate, five hydrocarbons, and particles with diameters from 0.1 to 3 microns). The emission factor that we measured for ammonia is lower by a factor of 4, and the emission factors for formaldehyde, hydrogen cyanide, and CN are greater by factors of about 3, 20, and 3 - 15, respectively, than previously reported values. The new emission factors are used to estimate annual emissions of these species from savanna fires in Africa and worldwide.

  9. Nocturnal behavior by a diurnal ape, the West African chimpanzee (Pan troglodytes verus), in a savanna environment at Fongoli, Senegal.

    PubMed

    Pruetz, Jill D

    2018-02-08

    I report on the nocturnal behavior of Fongoli chimpanzees in a savanna mosaic during different seasons and lunar phases and test the hypothesis that hot daytime temperatures influence activity at night. I predicted that apes would be more active at night during periods of greater lunar illuminosity given diurnal primates' lack of visual specializations for low-light conditions and in dry season months when water scarcity exacerbated heat stress. I observed chimpanzees for 403 hrs on 40 nights between 2007 and 2013 and categorized their activity as social, movement, or vocalization. I scored their activity as occurring after moonrise or before moonset and considered the influence of moon phase (fuller versus darker phases) as well as season on chimpanzee nocturnal behavior in the analyses. Results indicate that apes were more active after moonrise or before moonset during fuller moon phases in the dry season but not the wet season. Most night-time activity involved movement (travel or forage), followed by social behavior, and long-distance vocal communication. Animals in highly seasonal habitats often exhibit thermoregulatory adaptations but, like other primates, chimpanzees lack physiological mechanisms to combat thermal stress. This study provides evidence that they may exhibit behaviors that allow them to avoid high temperatures in a savanna environment, such as feeding and socializing at night during the hottest time of year and in the brightest moon phases. The results support theories invoking thermal stress as a selective pressure for hominins in open environments where heat would constrain temporal foraging niches, and suggest an adaptability of sleeping patterns in response to external factors. © 2018 Wiley Periodicals, Inc.

  10. Dynamics of Vegetatin Indices in Tropical and Subtropical Savannas Defined by Ecoregions and Moderate Resolution Imaging Spectoradiometer (MODIS) Land Cover

    NASA Technical Reports Server (NTRS)

    Hill, Michael J.; Roman, Miguel O.; Schaaf, Crytal B.

    2011-01-01

    In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.

  11. CO2 and fire influence tropical ecosystem stability in response to climate change.

    PubMed

    Shanahan, Timothy M; Hughen, Konrad A; McKay, Nicholas P; Overpeck, Jonathan T; Scholz, Christopher A; Gosling, William D; Miller, Charlotte S; Peck, John A; King, John W; Heil, Clifford W

    2016-07-18

    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.

  12. CO2 and fire influence tropical ecosystem stability in response to climate change

    NASA Astrophysics Data System (ADS)

    Shanahan, Timothy M.; Hughen, Konrad A.; McKay, Nicholas P.; Overpeck, Jonathan T.; Scholz, Christopher A.; Gosling, William D.; Miller, Charlotte S.; Peck, John A.; King, John W.; Heil, Clifford W.

    2016-07-01

    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.

  13. Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.

    PubMed

    Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P

    2011-08-01

    Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.

  14. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems.

    PubMed

    Rampelotto, Pabulo Henrique; de Siqueira Ferreira, Adão; Barboza, Anthony Diego Muller; Roesch, Luiz Fernando Wurdig

    2013-10-01

    The Brazilian Savanna, also known as "Cerrado", is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.

  15. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires.

    PubMed

    Brito, Darlan Q; Passos, Carlos José S; Muniz, Daphne H F; Oliveira-Filho, Eduardo C

    2017-08-01

    In a global scenario of climate change, several studies have predicted an increase in fires in different parts of the world. With the occurrence of rains following the fires in the Brazilian savanna (Cerrado biome), the compounds present in ashes may enter aquatic environments and cause adverse effects to these ecosystems. In this context, this study evaluated the potential toxicity of ashes from two areas of Cerrado and an area of pasture, through ecotoxicological bioassays and using three aquatic species from distinct trophic levels, which were exposed to different dilutions of ashes: the microcrustacean Ceriodaphnia dubia, the fish Danio rerio and the mollusc Biomphalaria glabrata. The ashes from the three sampled areas showed higher concentrations of some elements in relation to the soil samples (B, Ca, K, Mg, Mn, P, S, Si, Sr, Zn), but only a small quantity of these compounds was solubilised. Our data showed that all ash samples caused acute toxicity to C. dubia (48hs-LC 50  = 13.4 g L -1 ; 48hs-LC 50  = 6.33 g L -1 ; 48hs-LC 50  = 9.73 g L -1 respectively for transition area, pasture, typical cerrado areas), while in relation to D. rerio and B. glabrata, no acute toxicity was observed when they were exposed to ashes from native Cerrado vegetation and pasture areas. Ashes from a transition area showed toxicity for D. rerio (48hs-LC 50  = 25.0 g L -1 ); possibly, this was due to the combination of multiple preponderant inorganic elements of ashes with other organic compounds not analysed, such as polycyclic aromatic hydrocarbons (PAHs). In summary, these results suggest that wildfires may pose risks to zooplankton communities and emphasize the need for more studies to better understand the complexity of the ecological effects of fire on aquatic ecosystems.

  16. Will Elephants Soon Disappear from West African Savannahs?

    PubMed Central

    Bouché, Philippe; Douglas-Hamilton, Iain; Wittemyer, George; Nianogo, Aimé J.; Doucet, Jean-Louis; Lejeune, Philippe; Vermeulen, Cédric

    2011-01-01

    Precipitous declines in Africa's native fauna and flora are recognized, but few comprehensive records of these changes have been compiled. Here, we present population trends for African elephants in the 6,213,000 km2 Sudano-Sahelian range of West and Central Africa assessed through the analysis of aerial and ground surveys conducted over the past 4 decades. These surveys are focused on the best protected areas in the region, and therefore represent the best case scenario for the northern savanna elephants. A minimum of 7,745 elephants currently inhabit the entire region, representing a minimum decline of 50% from estimates four decades ago for these protected areas. Most of the historic range is now devoid of elephants and, therefore, was not surveyed. Of the 23 surveyed elephant populations, half are estimated to number less than 200 individuals. Historically, most populations numbering less than 200 individuals in the region were extirpated within a few decades. Declines differed by region, with Central African populations experiencing much higher declines (−76%) than those in West Africa (−33%). As a result, elephants in West Africa now account for 86% of the total surveyed. Range wide, two refuge zones retain elephants, one in West and the other in Central Africa. These zones are separated by a large distance (∼900 km) of high density human land use, suggesting connectivity between the regions is permanently cut. Within each zone, however, sporadic contacts between populations remain. Retaining such connectivity should be a high priority for conservation of elephants in this region. Specific corridors designed to reduce the isolation of the surveyed populations are proposed. The strong commitment of governments, effective law enforcement to control the illegal ivory trade and the involvement of local communities and private partners are all critical to securing the future of elephants inhabiting Africa's northern savannas. PMID:21731620

  17. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon.

    PubMed

    Domingues, Tomas Ferreira; Ishida, F Yoko; Feldpausch, Ted R; Grace, John; Meir, Patrick; Saiz, Gustavo; Sene, Olivier; Schrodt, Franziska; Sonké, Bonaventure; Taedoumg, Herman; Veenendaal, Elmar M; Lewis, Simon; Lloyd, Jon

    2015-07-01

    Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were-on average-slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.

  18. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  19. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  20. Rain pulses - how different data streams provide insight in response-times and help to attribute biophysical properties to ecosystem processes.

    NASA Astrophysics Data System (ADS)

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Kolle, O.; Carrara, A.; Moreno, G.; Reichstein, M.

    2017-12-01

    Rain pulses play a major role for the carbon cycle in semiarid ecosystems, as they can release large amounts of stored carbon. Physical and biological processes, triggered by the availability of water start to develop on various time scales and are dependent on the amount of available water. Especially, in savanna type ecosystems with an herbaceous understory and sparsely distributed trees the response time of the two plant functional types to rain pulses might be different. We present results from an ongoing large-scale nutrient manipulation experiment (MANIP) in a Mediterranean savanna type ecosystem and its response to rain pulses. Within MANIP the footprint areas from two out of three ecosystem eddy co-variance (EC) sites were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT), the third served as the control (CT). The analysis combines EC data to determine the net ecosystem exchange, PhenoCam data to define the senescence and re-greening period, SAP-flow measurements to evaluate the response of trees to rain pulses, high frequency (1 Hz) CO2-concentration measurements to estimate the response time to of the ecosystem to rain pulses, and meteorological measurements to quantify the intensity of the rain pulses. Additionally, at NT canopy reflectance and SIF are measured continuously for trees and grasses. The combination of SIF and SAP-flow measurements allows to separate the contribution of trees to ecosystem fluxes and can be utilized to partition NEE into ecosystem respiration and gross primary productivity during the senescence period. The analyses focus on three topics; (i) utilizing high frequency dynamics of CO2 concentration to disentangle physical and biological responses to water availability; (ii) fertilization effect of respiration pulses on ecosystem fluxes; (iii) response of tree transpiration to rain pulses. CO2 concentrations show an instantaneous reaction to rain fall. Within minutes concentrations increase strongly and follow

  1. Identifying priority areas for ecosystem service management in South African grasslands.

    PubMed

    Egoh, Benis N; Reyers, Belinda; Rouget, Mathieu; Richardson, David M

    2011-06-01

    Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning. Copyright © 2011 Elsevier Ltd. All

  2. Effects of nitrogen deposition on multiple ecosystem services of the California oak savanna

    Treesearch

    Elise M. Tulloss; Mary L. Cadenasso

    2015-01-01

    The influence of enhanced nitrogen (N) deposition on key ecosystem services provided by oak woodlands was experimentally investigated. Fertilizer was applied for 2 years to paired plots in the oak understory and adjacent open grassland. Treatments simulated four N deposition levels and effects on forage productivity, biodiversity, and soil N supply were measured. At...

  3. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    PubMed

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  4. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland

    PubMed Central

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna. PMID:26066508

  5. Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna

    Treesearch

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; William A. Hoffmann; Frederick C. Meinzer; Augusto C. Franco; Thomas Giambelluca; Fernando Miralles-Wilhelm

    2008-01-01

    Environmental controls of stand-level tree transpiration (E) and seasonal patterns of soil water utilization were studied in five central Brazilian savanna (Cerrado) sites differing in tree density. Tree density of Cerrado vegetation in the study area consistently changes along topographic gradients from ~1,000 trees ha-1 in open savannas (campo...

  6. An African-Centred Approach to Land Education

    ERIC Educational Resources Information Center

    Engel-Di Mauro, Salvatore; Carroll, Karanja Keita

    2014-01-01

    Approaches to environmental education which are engaging with place and critical pedagogy have not yet broadly engaged with the African world and insights from Africana Studies and Geography. An African-centred approach facilitates people's reconnection to places and ecosystems in ways that do not reduce places to objects of conquest and…

  7. Nitrogen Cycling and GHG Emissions of Natural and Managed Tropical Ecosystems at Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Gutlein, A.; Ralf, K.; Gerschlauer, F.; Dannenmann, M.; Butterbach-Bahl, K.; Diaz-Pines, E.

    2016-12-01

    In a rapidly changing world understanding of natural ecosystems response to human perturbations such as land use and climate changes as well as habitat destruction is crucial with respect to sustainability of ecosystem services. This is particularily true for tropical forest ecosystems which have significant effects on the major biogeochemical cycles and global climate. Here we present a comprehensive dataset of nitrogen cycling and GHG emissions of natural and managed ecosystems along land use and climate gradients at Mt. Kilimanjaro, Tanzania including different forest ecosystems, homegardens, and coffee plantations. Soil N turnover rates were highest in the Ocotea forest and progressively decreased with decreasing annual rainfall and increasing land use intensity. Nitrogen production and immobilization rates positively correlated with soil organic C and total N concentrations as well as substrate availability of dissolved organic C and N, but correlated less with soil ammonium and nitrate concentrations. By using indicators of N retention and characteristics of soil nutrient status, we observed a grouping of faster, but tighter N cycling in the (semi-) natural savanna, Helychrysum and Ocotea forest. This contrasted with a more open N cycle in managed systems (homegarden and coffee plantation) where N was more prone to leaching or gaseous losses due to high nitrate production rates. The partly disturbed lower montane forest ranged in between these two groups. These finding could be supported by differences in natural 15N abundance of litter and soil across all sites. Comparing GHG emissions at the land use gradient showed, that with increasing intensification (lower montane forest - homegarden - coffee plantation) N2O emissions increased but at the same time the soil sink for atmospheric CH4 decreased. GHG emission measurements at the climate gradient (savanna, lower montane, Ocotea and Podocarpus forest, Helychrysum) revealed that differences in soil moisture

  8. Large wood dynamics and biophysical consequences for riparian forests: A comparison of an unconfined alluvial river in a temperate rainforest and a bedrock confined river in a semi-arid South African savanna.

    NASA Astrophysics Data System (ADS)

    Latterell, J. J.; Pettit, N. E.; Naiman, R. J.

    2005-05-01

    Large wood shapes the geomorphology and ecology of rivers. We determined the origin, distribution, and fate of large wood in two rivers from contrasting environments. The Queets is an unstable temperate, rainforest river running from the Olympic Mountains (USA) through a glacial valley with colossal trees. In most years, the channel erodes a variety of forested landforms which forms jams that sculpt habitats. Many are displaced in a few years. Remaining jams initiate landform development and forest renewal. Thus, wood is stockpiled in the floodplain where it may become buried. Channel movements recapture most logs within 50 years. In contrast, the Sabie is a perennial river running through a confined bedrock channel in a fire-prone semi-arid South African savanna. Riparian trees are relatively small and many sink in water. A recent flood (February 2000) devastated the riparian forest, introducing wood to the channel. Jams formed on toppled trees, transported logs, and bedrock outcrops. Many trees survived and resprouted. Jams facilitated the establishment of woody plant seedlings and the intrusion of fire into riparian areas. Sunken wood formed unique depositional features. The Queets and Sabie rivers are strikingly different systems. However, large wood appears to promote the renewal and development of complex riparian forests in both rivers.

  9. Trait shifts associated with the subshrub life-history strategy in a tropical savanna.

    PubMed

    Giroldo, A B; Scariot, A; Hoffmann, W A

    2017-10-01

    Over the past 10 million years, tropical savanna environments have selected for small growth forms within woody plant lineages. The result has been the evolution of subshrubs (geoxyles), presumably as an adaptation to frequent fire. To evaluate the traits associated with the shift from tree to subshrub growth forms, we compared seed biomass, germination, survival, resprouting, biomass allocation, and photosynthesis between congeneric trees and subshrubs, and quantified phylogenetic conservatism. Despite large differences in adult morphology between trees and subshrub species, the differences are modest in seedlings, and most of the variation in traits was explained by genus, indicating considerable phylogenic conservatism. Regardless, tree seedlings invested more heavily in aboveground growth, compared to subshrubs, which is consistent with the adult strategy of savanna trees, which depend on a large resistant-fire stem. Subshrub seedlings also invest in greater non-structural carbohydrate reserves, likely as an adaptation to the high fire frequencies typical of tropical savannas. The modest differences as seedlings suggest that selective pressures during early development may not have contributed substantially to the evolution of the subshrub growth form and that the distinct allocation and life history must arise later in life. This is consistent with the interpretation that the subshrub growth form arose as a life-history strategy in which maturity is reached at a small stem size, allowing them to reproduce despite repeated fire-induced topkill. The convergent evolution of subshrubs within multiple tree lineages reaffirms the importance of fire in the origin and diversification of the flora of mesic savannas.

  10. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  11. Impact of fire on global land carbon, water, and energy budgets and climate during the 20th century through changing ecosystems

    NASA Astrophysics Data System (ADS)

    Li, F.; Lawrence, D. M.; Bond-Lamberty, B. P.; Levis, S.

    2016-12-01

    Fire is an integral Earth system process and the primary form of terrestrial ecosystem disturbance on a global scale. Here we provide the first quantitative assessment and understanding on fire's impact on global land carbon, water, and energy budgets and climate through changing ecosystems. This is done by quantifying the difference between 20th century fire-on and fire-off simulations using the Community Earth System Model (CESM1.2). Results show that fire decreases the net carbon gain of global terrestrial ecosystems by 1.0 Pg C/yr averaged across the 20th century, as a result of biomass and peat burning (1.9 Pg C/yr) partly offset by changing gross primary productivity, respiration, and land-use carbon loss (-0.9 Pg C/yr). In addition, fire's effect on global carbon budget intensifies with time. Fire significantly reduces land evapotranspiration (ET) by 600 km3/yr and increases runoff, but has limited impact on precipitation. The impact on ET and runoff is most clearly seen in the tropical savannas, African rainforest, and some boreal and Southern Asian forests mainly due to fire-induced reduction in the vegetation canopy. It also weakens both the significant upward trend in global land ET prior to the 1950s and the downward trend from 1950 to 1985 by 35%. Fire-induced changes in land ecosystems affects global energy budgets by significantly reducing latent heating and surface net radiation. Fire changes surface radiative budget dominantly by raising surface upward longwave radiation and net longwave radiation. It also increases the global land average surface air temperature (Tas) by 0.04°C, and significantly increases wind speed and decreases surface relative humidity. The fire-induced change in wind speed, Tas, and relative humidity implies a positive feedback loop between fire and climate. Moreover, fire-induced changes in land ecosystems contribute 20% of strong global land warming during 1910-1940, which provides a new mechanism for the early 20th

  12. Fuel management in the Subtropical and Savanna divisions

    Treesearch

    Kenneth W. Outcalt

    2012-01-01

    The Subtropical Division (230) and Savanna Division (410), both based on Bailey’s (1996) ecoregions, are found in the Southern United States (http://www.na.fs.fed.us/fire/cwedocs/map%20new_divisions.pdf). The Subtropical Division occupies the southern Atlantic and Gulf coastal areas. It is characterized by a humid subtropical climate with hot humid summers (chapter 3...

  13. Nesting success of grassland and savanna birds on reclaimed surface coal mines of the midwestern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galligan, E.W.; DeVault, T.L.; Lima, S.L.

    2006-12-15

    Reclaimed surface coal mines in southwestern Indiana support many grassland and shrub/savanna bird species of conservation concern. We examined the nesting success of birds on these reclaimed mines to assess whether such 'unnatural' places represent productive breeding habitats for such species. We established eight study sites on two large, grassland-dominated mines in southwestern Indiana and classified them into three categories (open grassland, shrub/savanna, and a mixture of grassland and shrub/savanna) based on broad vegetation and landscape characteristics. During the 1999 and 2000 breeding seasons, we found and monitored 911 nests of 31 species. Daily nest survival for the most commonlymore » monitored grassland species ranged from 0.903 (Dickcissel, Spiza americana) to 0.961 (Grasshopper Sparrow, Ammodramus savannarum). Daily survival estimates for the dominant shrub/savanna nesting species ranged from 0.932 (Brown Thrasher, Toxostoma rufum) to 0.982 (Willow Flycatcher, Empidonax traillii). Vegetation and landscape effects on nesting success were minimal, and only Eastern Meadowlarks (Sturnella magna) showed a clear time-of-season effect, with greater nesting success in the first half of the breeding season. Rates of Brown-headed Cowbird (Molothrus ater) parasitism were only 2.1% for grassland species and 12.0% for shrub/savanna species. The nesting success of birds on reclaimed mine sites was comparable to that in other habitats, indicating that reclaimed habitats on surface mines do not necessarily represent reproductive traps for birds.« less

  14. Modeling the health and productivity of Oak Savannas in central USA

    NASA Astrophysics Data System (ADS)

    Nightingale, J. M.; Hill, M. J.

    2012-12-01

    Oak species have a long history of domination in eastern North America and their present distribution in various regions exceeds that recorded in the original forests at the time of European settlement. The increase in oak during the late 18th and 19th centuries can be attributed to historical changes in disturbance regimes in the eastern biome. The expansion in oak distribution has occurred on xeric or nutrient-poor sites, which indicates the stress tolerance capabilities of many oak species. The aim of this research is to assess the health and productivity of the fragmented oak savannas that span from Texas north to the Canada border using statewide GAP, climate and MODIS data and the 3PGS (Physiological Principles Predicting Growth using satellite data) ecosystem process model. 3-PGS is a simple big-leaf productivity model that sets upper limits on monthly gross primary productivity (GPP) by determining the amount of photosynthetically active radiation absorbed (APAR) by vegetation and the photosynthetic capacity (LUE) of the canopy. The utilized portion of APAR is calculated by reducing total PAR by an amount determined by the most constraining of a series of environmental modifiers that affect gas exchange through stomata. These include: (a) high daytime atmospheric VPD; (b) soil water availability; and (c) the frequency of sub-freezing temperatures (<-2 °C). Climate data including day length, precipitation, average temperature and vapor pressure deficit are obtained from the Daymet daily gridded surface data from Oak Ridge National Laboratory (ORNL). The fraction of APAR is obtained from the MODIS terra/aqua combined product. Monthly surfaces were derived for the study period 2003-2008 spanning available MODIS and Climate datasets. Soil properties for the entire U.S.A., derived from luster analysis of STATSGO soil parameters, terrain and climate observations were obtained from ORNL. Oak savannas within this region are identified using the statewide Gap

  15. An ecosystem approach to determining effects of prescribed fire on southwestern borderlands oak savannas: A baseline study

    Treesearch

    Gerald J. Gottfried; Daniel G. Neary; Peter F. Ffolliott

    2007-01-01

    Many traditional land management activities and supporting research have concentrated on one or two resources, with limited evaluations of interactions among other potential values. An ecosystem approach to land management requires an evaluation of the blend of physical and biological factors needed to assure productive, healthy ecosystems. Ideally, social and economic...

  16. Effects of precommercial thinning and midstory control on avian and small mammal communities during longleaf pine Savanna restoration

    Treesearch

    Vanessa R. Lane; Robert P. Simmons; Kristina J. Brunjes; John C. Kilgo; Timothy B. Harrington; Richard F. Daniels; W. Mark Ford; Karl V. Miller

    2015-01-01

    Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf...

  17. Community-Based Ecological Restoration: The Wingra Oak Savanna Project.

    ERIC Educational Resources Information Center

    Bader, Brian J.; Egan, Dave

    1999-01-01

    The University of Wisconsin-Madison Arboretum, a pioneer in ecological restoration, is involving the local community in restoring a site to its presettlement condition as an oak savanna. Besides providing the manual labor of restoration, volunteers learn about the land and the ecological processes that tie nature and culture together. A 60-hour…

  18. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    NASA Astrophysics Data System (ADS)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  19. Global biomass burning - Atmospheric, climatic, and biospheric implications

    NASA Technical Reports Server (NTRS)

    Levine, Joel S. (Editor)

    1991-01-01

    The present volume discusses the biomass burning (BMB) studies of the International Global Atmospheric Chemistry project, GEO satellite estimation of Amazonian BMB, remote sensing of BMB in West Africa with NOAA-AVHRR, an orbital view of the great Chinese fire of 1987, BMB's role in tropical rainforest reduction, CO and O3 measurements of BMB in the Amazon, effects of vegetation burning on the atmospheric chemistry of the Venezuelan savanna, an assessment of annually-burned biomass in Africa, and light hydrocarbon emissions from African savanna burnings. Also discussed are BMB in India, trace gas and particulate emissions from BMB in temperate ecosystems, ammonia and nitric acid emissions from wetlands and boreal forest fires, combustion emissions and satellite imagery of BMB, BMB in the perspective of the global carbon cycle, modeling trace-gas emissions from BMB, NO(x) emissions from BMB, and cloud-condensation nuclei from BMB.

  20. A framework to assess landscape structural capacity to provide regulating ecosystem services in West Africa.

    PubMed

    Inkoom, Justice Nana; Frank, Susanne; Greve, Klaus; Fürst, Christine

    2018-03-01

    The Sudanian savanna landscapes of West Africa are amongst the world's most vulnerable areas to climate change impacts. Inappropriate land use and agriculture management practices continuously impede the capacity of agricultural landscapes to provide ecosystem services (ES). Given the absence of practical assessment techniques to evaluate the landscape's capacity to provide regulating ES in this region, the goal of this paper is to propose an integrative assessment framework which combines remote sensing, geographic information systems, expert weighting and landscape metrics-based assessment. We utilized Analytical Hierarchical Process and Likert scale for the expert weighting of landscape capacity. In total, 56 experts from several land use and landscape management related departments participated in the assessment. Further, we adapted the hemeroby concept to define areas of naturalness while landscape metrics including Patch Density, Shannon's Diversity, and Shape Index were utilized for structural assessment. Lastly, we tested the reliability of expert weighting using certainty measurement rated by experts themselves. Our study focused on four regulating ES including flood control, pest and disease control, climate control, and wind erosion control. Our assessment framework was tested on four selected sites in the Vea catchment area of Ghana. The outcome of our study revealed that highly heterogeneous landscapes have a higher capacity to provide pest and disease control, while less heterogeneous landscapes have a higher potential to provide climate control. Further, we could show that the potential capacities to provide ecosystem services are underestimated by 15% if landscape structural aspects assessed through landscape metrics are not considered. We conclude that the combination of adapted land use and an optimized land use pattern could contribute considerably to lower climate change impacts in West African agricultural landscapes. Copyright © 2017 Elsevier

  1. Ecosystem variability and early human habitats in eastern Africa.

    PubMed

    Magill, Clayton R; Ashley, Gail M; Freeman, Katherine H

    2013-01-22

    The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma--the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ(13)C values) of lipid biomarkers from ancient plants. Within this framework, δ(13)C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C(4) grasslands abruptly transitioned to closed C(3) forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth's orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution.

  2. Ecosystem variability and early human habitats in eastern Africa

    PubMed Central

    Magill, Clayton R.; Ashley, Gail M.; Freeman, Katherine H.

    2013-01-01

    The role of savannas during the course of early human evolution has been debated for nearly a century, in part because of difficulties in characterizing local ecosystems from fossil and sediment records. Here, we present high-resolution lipid biomarker and isotopic signatures for organic matter preserved in lake sediments at Olduvai Gorge during a key juncture in human evolution about 2.0 Ma—the emergence and dispersal of Homo erectus (sensu lato). Using published data for modern plants and soils, we construct a framework for ecological interpretations of stable carbon-isotope compositions (expressed as δ13C values) of lipid biomarkers from ancient plants. Within this framework, δ13C values for sedimentary leaf lipids and total organic carbon from Olduvai Gorge indicate recurrent ecosystem variations, where open C4 grasslands abruptly transitioned to closed C3 forests within several hundreds to thousands of years. Carbon-isotopic signatures correlate most strongly with Earth’s orbital geometry (precession), and tropical sea-surface temperatures are significant secondary predictors in partial regression analyses. The scale and pace of repeated ecosystem variations at Olduvai Gorge contrast with long-held views of directional or stepwise aridification and grassland expansion in eastern Africa during the early Pleistocene and provide a local perspective on environmental hypotheses of human evolution. PMID:23267092

  3. Colleters in Rubiaceae from forest and savanna: the link between secretion and environment

    NASA Astrophysics Data System (ADS)

    Tresmondi, Fernanda; Canaveze, Yve; Guimarães, Elza; Machado, Silvia Rodrigues

    2017-04-01

    This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.

  4. Anomalous CO2 Emissions in Different Ecosystems Around the World

    NASA Astrophysics Data System (ADS)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  5. Tree stocking affects winter bird densities across a gradient of savanna, woodland, and forest in the Missouri Ozarks

    Treesearch

    Sarah W. Kendrick; Frank R., III Thompson

    2013-01-01

    Savanna and woodland were historically prevalent in the midwestern United States, and managers throughout the area are currently attempting to restore these communities. Better knowledge of the responses of breeding and non-breeding birds to savanna and woodland restoration is needed to inform management.We surveyed abundance of winter resident birds across a gradient...

  6. Body temperature responses of Savanna Brown goat to the harmattan and hot-dry season

    NASA Astrophysics Data System (ADS)

    Igono, M. O.; Molokwu, E. C. I.; Aliu, Y. O.

    1982-09-01

    Rectal and vaginal temperature responses of the Savanna Brown goat indigenous to the Nigerian guinea savanna were determined during the harmattan and the hot-dry season. Measurements were made at 06:00h and at 14:00h after 8h exposure to field conditions. At the 06:00h measurements during the harmattan, all animals were observed to shiver. A significant (P<0.01) positive correlation was found between rectal (Tre) and vaginal temperatures. During the harmattan, mean Tre was 38.2‡C at 06:00h and 39.7‡C at 14:00h; the mean difference, δTre was 1.5‡C. During the hot-dry season, Tre at 06:00h was 38.1‡C, and at 14:00h, 38.7; δTre was 0.6‡C. It is concluded that the harmattan is thermally more stressful than the hot-dry season and that passive thermolability may not be an important mechanism in the Savanna Brown goat in adaptation to thermal stress.

  7. A multi-model analysis of risk of ecosystem shifts under climate change

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Friend, Andrew; Ostberg, Sebastian; Frieler, Katja; Lucht, Wolfgang; Schaphoff, Sibyll; Beerling, David; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Kahana, Ron; Ito, Akihiko; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Nishina, Kazuya; Pavlick, Ryan; Tito Rademacher, Tim; Buechner, Matthias; Piontek, Franziska; Schewe, Jacob; Serdeczny, Olivia; Schellnhuber, Hans Joachim

    2013-12-01

    Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5-19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980-2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.

  8. FATAL ENCEPHALOMYOCARDITIS VIRUS INFECTION IN AN AFRICAN SAVANNA ELEPHANT (LOXODONTA AFRICANA) IN A FRENCH ZOO.

    PubMed

    Lamglait, Benjamin; Joris, Antoine; Romey, Aurore; Bakkali-Kassimi, Labib; Lemberger, Karin

    2015-06-01

    A fatal case of encephalomyocarditis virus (EMCV) involving an African elephant ( Loxodonta africana ) occurred in November 2013 at the Réserve Africaine de Sigean, France. An adult female was found dead without any preliminary symptoms. Gross pathologic changes consisted of petechiae and hemorrhages on mucosae and internal organs, abundant transudate in the abdominal and pericardial cavities, and myocarditis. Histopathologic examination showed extensive degeneration and necrosis of ventricular cardiomyocytes with concurrent lymphoplasmocytic and eosinophilic infiltrate. An EMCV was isolated from several organs and considered the causative agent of the myocarditis. The same strain of virus was also isolated in rodents captured on zoo premises and considered to be the reservoir of the virus. To the authors' knowledge, this is the first EMCV case in a captive African elephant in Europe.

  9. Hydraulic redistribution of soil water by neotropical savanna trees.

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; Guillermo Goldstein; et al.

    2002-01-01

    The magnitude and direction of water transport by the roots of eight dominant Brazilian savanna (Cerrado) allowed bidirectional measurements of sap flow. The patterns of sap flow observed during the dry season in species with dimorphic roots systems were consistent with the occurrence of hydraulic redistribution of soil water, the movement of water from moist to drier...

  10. Generation of ecosystem hotspots using short-term cattle corrals in an African savanna

    USDA-ARS?s Scientific Manuscript database

    Many rangelands are now being managed for multiple uses, and it is increasingly important to identify livestock management practices that maximize long-term productivity, biodiversity and wildlife conservation. In sub-Saharan Africa, pastoralists and ranchers use temporary thorn-fence corrals (“boma...

  11. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    PubMed

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  12. Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia

    PubMed Central

    Ens, Emilie; Hutley, Lindsay B.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Setterfield, Samantha A.

    2015-01-01

    Comparative studies of plant resource use and ecophysiological traits of invasive and native resident plant species can elucidate mechanisms of invasion success and ecosystem impacts. In the seasonal tropics of north Australia, the alien C4 perennial grass Andropogon gayanus (gamba grass) has transformed diverse, mixed tree-grass savanna ecosystems into dense monocultures. To better understand the mechanisms of invasion, we compared resource acquisition and usage efficiency using leaf-scale ecophysiological and stand-scale growth traits of A. gayanus with a co-habiting native C4 perennial grass Alloteropsis semialata. Under wet season conditions, A. gayanus had higher rates of stomatal conductance, assimilation, and water use, plus a longer daily assimilation period than the native species A. semialata. Growing season length was also ~2 months longer for the invader. Wet season measures of leaf scale water use efficiency (WUE) and light use efficiency (LUE) did not differ between the two species, although photosynthetic nitrogen use efficiency (PNUE) was significantly higher in A. gayanus. By May (dry season) the drought avoiding native species A. semialata had senesced. In contrast, rates of A. gayanus gas exchange was maintained into the dry season, albeit at lower rates that the wet season, but at higher WUE and PNUE, evidence of significant physiological plasticity. High PNUE and leaf 15N isotope values suggested that A. gayanus was also capable of preferential uptake of soil ammonium, with utilization occurring into the dry season. High PNUE and fire tolerance in an N-limited and highly flammable ecosystem confers a significant competitive advantage over native grass species and a broader niche width. As a result A. gayanus is rapidly spreading across north Australia with significant consequences for biodiversity and carbon and retention. PMID:26300890

  13. Are There Consistent Grazing Indicators in Drylands? Testing Plant Functional Types of Various Complexity in South Africa’s Grassland and Savanna Biomes

    PubMed Central

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A.; Oomen, Roelof J.; du Preez, Chris C.; Ruppert, Jan C.; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants’ functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa’s grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be

  14. Eastern wood-pewee (Contopus virens) breeding demography across a gradient of savanna, woodland, and forest in the Missouri Ozarks

    Treesearch

    Sarah W. Kendrick; Frank R. Thompson; Jennifer L. Reidy

    2013-01-01

    Better knowledge of bird response to savanna and woodland restoration is needed to inform management of these communities. We related temporal and habitat variables to breeding demography and densities of the Eastern Wood-Pewee (Contopus virens) across a gradient of savanna, woodland, and forest. We determined nest success, clutch size, young fledged...

  15. Bird species and numbers of birds in oak savannas of the Southwestern Borderlands region including effects of burning

    Treesearch

    Peter F. Ffolliott; Hui Chen; Gerald J. Gottfried

    2011-01-01

    Oak savannas of the Southwestern Borderlands region provide food, cover, and sites for nesting, roosting, and perching for a diversity of bird species. The results of a five-year (2003-2007) study of bird species, numbers of birds, and their diversities in the naturally occurring (unburned) oak savannas of the region are reported in this paper. Effects of cool-season...

  16. Global-change vulnerability of a key plant resource, the African palms.

    PubMed

    Blach-Overgaard, Anne; Balslev, Henrik; Dransfield, John; Normand, Signe; Svenning, Jens-Christian

    2015-07-27

    Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rural people worldwide. However, many palm species are threatened by habitat loss and over-exploitation. Furthermore, palms are sensitive to climate and thus vulnerable to future climate changes. Here, we provide a first quantitative assessment of the future risks to the African palm flora, finding that African palm species on average may experience a decline in climatic suitability in >70% of their current ranges by 2080. This suitability loss may, however, be almost halved if migration to nearby climatically suitable sites succeeds. Worryingly, 42% of the areas with 80-100% of species losing climate suitability are also characterized by high human population density (HPD). By 2080, >90% of all African palm species' ranges will likely occur at HPDs leading to increased risks of habitat loss and overexploitation. Additionally, up to 87% of all species are predicted to lose climatic suitability within current protected areas (PAs) by 2080. In summary, a major plant component of tropical ecosystems and provider of ecosystem services to rural populations will face strongly increased pressures from climate change and human populations in the near future.

  17. Compound Specific Isotope Analysis of Fatty Acids in Southern African Aerosols

    NASA Astrophysics Data System (ADS)

    Billmark, K. A.; Macko, S. A.; Swap, R. J.

    2003-12-01

    This study, conducted as a part of the Southern African Regional Science Initiative (SAFARI 2000), applied compound specific isotope analysis to describe aerosols at source regions and rural locations. Stable carbon isotopic compositions of individual fatty acids were determined for aerosol samples collected at four sites throughout southern Africa. Mongu, Zambia and Skukuza, South Africa were chosen for their location within intense seasonal Miombo woodland savanna and bushveld savanna biomass burning source regions, respectively. Urban aerosols were collected at Johannesburg, South Africa and rural samples were collected at Sua Pan, Botswana. Fatty acid isotopic compositions varied temporally. Urban aerosols showed significant isotopic enrichment of selected short chain fatty acids (C < 20) compared to aerosols produced during biomass combustion. Sua Pan short chain fatty acid signatures were significantly different from the other non-urban sites, which suggests that sources other than biomass combustion products, such as organic eolian material, impact the Sua Pan aerosol profile. However, a high degree of correlation between Sua Pan and Skukuza long chain fatty acid δ 13C values confirm atmospheric linkages between the two areas and that isotopic signatures of combusted fatty acids are unaltered during atmospheric transport highlighting their potential for use as a conservative tracer.

  18. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry.

    PubMed

    Chapman, Nadine C; Harpur, Brock A; Lim, Julianne; Rinderer, Thomas E; Allsopp, Michael H; Zayed, Amro; Oldroyd, Benjamin P

    2015-11-01

    The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas. © 2015 John Wiley & Sons Ltd.

  19. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  20. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr-1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporalmore » (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr-1 over the period 2001–2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by ~20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.« less

  1. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Qianlai; Law, Beverly E.; Baldocchi, Dennis

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) andmore » temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.« less

  2. Nocturnal and seasonal patterns of carbon isotope composition of leaf dark-respired carbon dioxide differ among dominant species in a semiarid savanna.

    PubMed

    Sun, Wei; Resco, Víctor; Williams, David G

    2010-10-01

    The C isotope composition of leaf dark-respired CO(2) (δ(13)C(l)) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ(13)C(l), and differences are likely to be modified by seasonal variation in drought intensity. We measured δ(13)C(l) in two deep-rooted C(3) trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C(3) dicot Viguiera dentata and a C(4) grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ(13)C(l) decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ(13)C(l) differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ(13)C(l) in the deep-rooted C(3) trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C(3) herb V. dentata (1.8 ± 0.4‰) and C(4) grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ(13)C(l) in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C(3) trees did not change significantly from pre-monsoon values. Cumulative daytime net CO(2) uptake was positively correlated with the magnitude of the nocturnal decline in δ(13)C(l) across all species, suggesting that nocturnal δ(13)C(l) may be controlled by (13)C/(12)C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ(13)C(l) in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water

  3. Grassland, shrubland and savanna stewardship: where do we go from here?

    USDA-ARS?s Scientific Manuscript database

    Scientific efforts to understand grasslands, shrublands and savannas and thereby develop sustainable management practices are roughly 100 years old. What have we learned in that time? Several assumptions made by scientists and policymakers early in the 20th century have proved mistaken, resulting in...

  4. A new map of standardized terrestrial ecosystems of Africa

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Hak, Jon; Josse, Carmen; Bow, Jacquie; Warner, Harumi; Larwanou, Mahamane; Kelbessa, Ensermu; Bekele, Tamrat; Kehl, Harald; Amena, Ruba; Andriamasimanana, Rado; Ba, Taibou; Benson, Laurence; Boucher, Timothy; Brown, Matthew; Cress, Jill J.; Dassering, Oueddo; Friesen, Beverly A.; Gachathi, Francis; Houcine, Sebei; Keita, Mahamadou; Khamala, Erick; Marangu, Dan; Mokua, Fredrick; Morou, Boube; Mucina, Ladislav; Mugisha, Samuel; Mwavu, Edward; Rutherford, Michael; Sanou, Patrice; Syampungani, Stephen; Tomor, Bojoi; Vall, Abdallahi Ould Mohamed; Vande Weghe, Jean Pierre; Wangui, Eunice; Waruingi, Lucy

    2013-01-01

    Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new continental datasets for several key physical environment datalayers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar datalayers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. The vegetation types and ecosystems were then mapped across the continent using a classification and regression tree (CART) inductive model, which predicted the potential distribution of vegetation types from a suite of biophysical environmental attributes including bioclimate region, biogeographic region, surficial lithology, landform, elevation and land cover. Multi-scale ecosystems were classified and mapped in an increasingly detailed hierarchical framework using vegetation-based concepts of class, subclass, formation, division, and macrogroup levels. The finest vegetation units (macrogroups) classified and mapped in this effort are defined using diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes (FGDC, 2008). The macrogroups are regarded as meso-scale (100s to 10,000s of hectares) ecosystems. A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In

  5. Concentrations of trace and other elements in the organs of wild rats and birds from the Northern Guinea savanna of Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapu, M.M.; Schaeffer, D.J.; Akanya, H.O.

    1991-01-01

    In regions of human activities, where metal enter local aquatic ecosystems from the atmosphere and through wastewater outfalls, metal concentrations in food chains can exceed natural background levels and be above the threshold levels for sensitive species. Accordingly, metal levels in the organs and tissues of livestock and wildlife have been extensively studied. However, there are no reports of metal concentrations in the organs and tissues of wild animals from the Northern Guinea savanna of Nigeria. The mole rat (Africanthus niloticus, L) and village weaver bird (Ploceus cucullatus, L) contribute significantly to farm crop losses from sowing to harvest. Becausemore » there are no industries capable of causing metal contamination in the study area, the present study was undertaken to determine the natural baseline levels of metals for wild rats and birds from this environment.« less

  6. Evaluating the Potential of Southampton Carbon Flux Model (SCARF) for Monitoring Terrestrial Gross Primary Productivity Across African Ecosystems

    NASA Astrophysics Data System (ADS)

    Chiwara, P.; Dash, J.; Ardö, J.; Ogutu, B. O.; Milton, E. J.; Saunders, M. J.; Nicolini, G.

    2016-12-01

    are the parameters that propagate much variation in model output at most sites especially in semi-arid and sub-humid ecosystems. The results demonstrate that the SCARF model can improve prediction of GPP across a wide range of African ecosystems..Key words: GPP, climate change, diagnostic model, photosynthetic quantum yield, C3/C4 photosynthesis

  7. Will savannas survive outside the parks? A lesson from Zambia

    NASA Astrophysics Data System (ADS)

    Kutsch, W.; Merbold, L.; Scholes, B.; Mukelabai, M.

    2012-04-01

    Miombo woodlands cover the transition zone between dry open savannas and moist forests in Southern Africa. They cover about 2.7 million km2 in southern Africa and provide many ecosystem services that support rural life, including medical products, wild foods, construction timber and fuel. In Zambia, as in many of its neighbouring countries, miombo woodlands are currently experiencing accelerating degradation and clearing, mostly with charcoal production as the initial driver. Domestic energy needs in the growing urban areas are largely satisfied by charcoal, which is less energy-efficient fuel on a tree-to-table basis than the firewood that is used in rural areas, but has a higher energy density and is thus cheaper to transport. This study uses data from inventories and from eddy covariance measurements of carbon exchange to characterize the impact of charcoal production on miombo woodlands. We address the following questions: (i) how much carbon is lost at local as well as at national scale and (ii) does forest degradation result in the loss of a carbon sink? On the basis of our data we (iii) estimate the per capita emissions through deforestation and forest degradation in Zambia and relate it to fossil fuel emissions. Furthermore, (iv) a rough estimate of the energy that is provided by charcoal production to private households at a national level is calculated and (v) options for alternative energy supply to private households are discussed.

  8. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    USGS Publications Warehouse

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  9. Savanna chimpanzee (Pan troglodytes verus) nesting ecology at Bagnomba (Kedougou, Senegal).

    PubMed

    Badji, L; Ndiaye, P I; Lindshield, S M; Ba, C T; Pruetz, J D

    2018-05-01

    We studied the nesting behavior of the critically endangered West African chimpanzee (Pan troglodytes verus). We assumed that the nesting data stemmed from a single, unhabituated community at the Bagnomba hill site in the savanna-woodlands of southeastern Senegal. The aim of this study was to examine chimpanzees' nesting habits in terms of the tree species utilized and sleeping nest heights. We recorded a total of 550 chimpanzee nests at Bagnomba between January 2015 and December 2015. The chimpanzees here made nests in particular tree species more often than others. The majority of nests (63%) were in two tree species: Diospyros mespiliformis and Pterocarpus erinaceus. The average height of nesting trees was 10.54 m (SD 3.91, range, 0.0-29.0 m) and average nest height was 7.90 m (SD 3.62, range, 0.0-25.0 m). The result of a linear regression analysis (r = 0.7874; n = 550; p < 0.05) is consistent with a preference for nesting at a particular height. Bagnomba chimpanzees rarely made ground nests (0.36% of nests), but the presence of any ground nesting was unexpected, given that at least one leopard (Panthera pardus) also occupied the hill. This knowledge will enable stakeholders involved in the protection of chimpanzees specifically and of biodiversity in general to better understand chimpanzee ecology and inform a conservation action plan in Senegal where the survival of this species is threatened.

  10. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    NASA Astrophysics Data System (ADS)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  11. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    EPA Science Inventory

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  12. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    PubMed

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  13. Soil erosion and deposition before and after fire in oak savannas

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Hui Chen; Aaron T. Kauffman; Cody L. Stropki; Daniel G. Neary

    2013-01-01

    Effects of low severity prescribed burning treatments and a wildfire on soil erosion and deposition in the oak savannas in the Southwestern Borderlands are reported. Measurements in the spring and fall, respectively, characterize soil movements following winter rains and high-intensity summer rainstorms. Annual values are also presented. Relationships between soil...

  14. Researching the Link Between Biomass Burning and Drought Across the Northern Sub-Saharan African Savanna/Sahel Belt

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Ellison, Luke

    2012-01-01

    The northern sub-Saharan African (NSSA) region, bounded by the Sahara, Equator, and the West and East African coastlines, is subjected to intense biomass burning every year during the dry season. This is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle anomalies that probably contribute to drought and desertification. In this presentation, we will discuss a new multi-disciplinary research in the NSSA region, review progress, evaluate preliminary results, and interact with the research and user communities to examine how best to coordinate with other research activities in order to address related environmental issues most effectively.

  15. Microbial properties and litter and soil nutrients after two prescribed fires in developing savannas in an upland Missouri Ozark Forest

    Treesearch

    Felix, Jr. Ponder; Mahasin Tadros; Edward F. Loewenstein

    2009-01-01

    On some landscapes periodic fire may be necessary to develop and maintain oak-dominated savannas. We studied the effects of two annual prescribed burns to determine their effect on microbial activity and soil and litter nutrients 1 year after the last burn. Surface litter and soil from the upper 0?5 cm soil layer in three developing savannas (oak-hickory, ...

  16. Long range lateral root activity by neo-tropical savanna trees.

    Treesearch

    Leonel da S. L. Sternberg; Sandra Bucci; Augusto Franco; Guillermo Goldstein; William A. Hoffman; Frederick C. Meinzer; Marcelo Z. Moreira; Fabian Scholz

    2004-01-01

    The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to...

  17. Using the concept of Shannon's Entropy to evaluate impacts of climate extremes on interannual variability in ecosystem CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Ma, S.; Baldocchi, D. D.

    2016-12-01

    Although interannual variability in ecosystem CO2 fluxes have been observed in the field and described with empirical or process-based models, we still lack tools for evaluating and comparing impacts of climate extremes or unusual biogeophysical events on the variability. We examined a 15-year-long dataset of net ecosystem exchange of CO2 (NEE) measured at a woody savanna and a grassland site in California from 2000 to 2015. We proposed a conceptual framework to quantify season contributions by computing relatively contributions of each season to annual anomalies of gross ecosystem productivity (GPP) and ecosystem respiration (Reco). According to the framework, we calculated the Shannon's Entropy for each year. The values of Shannon Entropy were higher in the year that variations in GPP and Reco were beyond predictions of empirical models established for the study site. We specifically examined the outliers compared to model predictions and concluded that the outliers were related to occurrences of unexpected biogeophysical events in those years. This study offers a new application of Shannon's Entropy in understanding complicated biophysical and ecological processes involved in ecosystem carbon cycling.

  18. Monitoring drought impact on Mediterranean oak savanna vegetation using remote sensing

    NASA Astrophysics Data System (ADS)

    González-Dugo, Maria P.; Carpintero, Elisabet; Andreu, Ana

    2015-04-01

    A holm oak savanna, known as dehesa in Spain and montado in Portugal, is the largest agroforest ecosystem in Europe, covering about 3 million hectares in the Iberian Peninsula and Greece (Papanastasis et al., 2004). It is considered an example of sustainable land use, supporting a large number of species and diversity of habitats and for its importance in rural development and economy (Plieninger et al., 2001). It is a combination between an agricultural and a naturally vegetated ecosystem, consisting of widely-spaced oak trees (mostly Quercus Ilex and Quercus suber) combined with a sub-canopy composed by crops, annual grassland and/or shrubs. It has a Mediterranean climate with severe periodic droughts. In the last decades, this system is being exposed to multiple threats derived from socio-economic changes and intensive agricultural use, which have caused environmental degradation, including tree decline, changes in soil properties and hydrological processes, and an increase of soil erosion (Coelho et al., 2004). Soil water dynamics plays a central role in the current decline and reduction of forested areas that jeopardizes the preservation of the system. In this work, a series of remotely sensed images since 1990 to present was used to evaluate the effect of several drought events occurred in the study area (1995, 2009, 2010/2011) on the tree density and water status. Data from satellites Landsat and field measurements have been combined in a spectral mixture model to assess separately the evolution of tree, dry grass and bare soil ground coverage. Only summer images have been used to avoid the influence of the green herbaceous layer on the analysis. Thermal data from the same sensors and meteorological information are integrated in a two source surface energy balance model to compute the Evaporative Stress Index (ESI) and evaluate the vegetation water status. The results have provided insights about the severity of each event and the spatial distribution of

  19. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem

  20. The distribution of grasslands, savannas and forests in Africa: a new look at the relationships between vegetation, fire and climate at continental scale

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Savannas occupy about a fifth of the global land surface and store approximately 15% of the terrestrial carbon. They also encompass about 85% of the global land area burnt annually. Along an increasing rainfall gradient, they are the intermediate biome between grassland and forest. Undergoing and predicted increasing temperature and CO2 concentration, modified precipitation regimes, as well as increasing land-use intensity, are expected to induce important shifts in savanna structure and in the distribution of grasslands, savannas and forests. Owing to the large extent and productivity of savanna biomes, these changes could have larger impacts on the global biogeochemical cycle and precipitation than for any other biome, thus influencing the vegetation-climate system. The dynamics of these biomes has been long studied, and the current theory postulates that while arid savannas are observed because of tree-water limitation, and competition with grasses, in mesic conditions savannas persist because a grass-fire feedback exists, which can maintain them as an alternatively stable state to closed forests. This feedback is reinforced by the different responses of savanna and forest tree type. In this context, despite their relevance, grasses and tree types have been studied mostly in small scale ecological studies, while continental analyses focused on total tree cover only. Here we analyze a recent MODIS product including explicitly the non-tree vegetation cover, allowing us to illustrate for the first time at continental scale the importance of grass cover and of tree-fire responses in determining the emergence of the different biomes. We analyze the relationships of woody and herbaceous cover with fire return time (all from MODIS satellite observations), rainfall annual average and seasonality (from TRMM satellite measurements), and we include tree phenology information, based on the ESA Global Land Cover map, also used to exclude areas with large anthropogenic land

  1. Assessing fire emissions from tropical savanna and forests of central Brazil

    Treesearch

    Philip J. Riggan; James A. Brass; Robert N. Lockwood

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the...

  2. Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna.

    PubMed

    Wei, Hui; Xu, Jialin; Quan, Guoming; Zhang, Jiaen; Qin, Zhong

    2017-02-01

    Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.

  3. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees.

    Treesearch

    Sandra J. Bucci; Guillermo Goldstein; Frederick C. Meinzer; Augusto C. Franco; Paula Campanello; Fabián G. Scholz

    2005-01-01

    Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum Ψ...

  4. Effects of anabolic and catabolic nutrients on woody plant encroachment after long-term experimental fertilization in a South African savanna

    PubMed Central

    Milewski, Antoni V.; Snyman, Dirk; Jordaan, Jorrie J.

    2017-01-01

    The causes of the worldwide problem of encroachment of woody plants into grassy vegetation are elusive. The effects of soil nutrients on competition between herbaceous and woody plants in various landscapes are particularly poorly understood. A long-term experiment of 60 plots in a South African savanna, comprising annual applications of ammonium sulphate (146–1166 kg ha-1 yr-1) and superphosphate (233–466 kg ha-1 yr-1) over three decades, and subsequent passive protection over another three decades, during which indigenous trees encroached on different plots to extremely variable degrees, provided an opportunity to investigate relationships between soil properties and woody encroachment. All topsoils were analysed for pH, acidity, EC, water-dispersible clay, Na, Mg, K, Ca, P, S, C, N, NH4, NO3, B, Mn, Cu and Zn. Applications of ammonium sulphate (AS), but not superphosphate (SP), greatly constrained tree abundance relative to control plots. Differences between control plots and plots that had received maximal AS application were particularly marked (16.3 ± 5.7 versus 1.2 ± 0.8 trees per plot). Soil properties most affected by AS applications included pH (H2O) (control to maximal AS application: 6.4 ± 0.1 to 5.1 ± 0.2), pH (KCl) (5.5 ± 0.2 to 4.0 ± 0.1), acidity (0.7 ± 0.1 to 2.6 ± 0.3 cmol kg-1), acid saturation (8 ± 2 to 40 ± 5%), Mg (386 ± 25 to 143 ± 15 mg kg-1), Ca (1022 ± 180 to 322 ± 14 mg kg-1), Mn (314 ± 11 to 118 ± 9 mg kg-1), Cu (3.6 ± 0.3 to 2.3 ± 0.2 mg kg-1) and Zn (6.6 ± 0.4 to 3.7 ± 0.4 mg kg-1). Magnesium, B, Mn and Cu were identified using principal component analysis, boundary line analysis and Kruskal-Wallis rank sum tests as the nutrients most likely to be affecting tree abundance. The ratio Mn/Cu was most related to tree abundance across the experiment, supporting the hypothesis that competition between herbaceous and woody plants depends on the availability of anabolic relative to catabolic nutrients. These findings

  5. H3Africa and the African Life Sciences Ecosystem: Building Sustainable Innovation

    PubMed Central

    Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-01-01

    Abstract Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political

  6. H3Africa and the African life sciences ecosystem: building sustainable innovation.

    PubMed

    Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-12-01

    Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science

  7. RELATIONSHIP OF MICROBIAL COMMUNITY STRUCTURE AND CARBON DYNAMICS IN SOILS FROM BRAZILIAN SAVANNAS

    EPA Science Inventory

    Fertilization is a widespread management practice in savanna areas of central Brazil (Cerrado) that are undergoing rapid agricultural land use changes. We conducted field and laboratory studies in soils with added fertilizers to determine the effect that fertilization of native a...

  8. Hydraulic lift in a neotropical savanna: experimental manipulation and model simulations

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; William A. Hoffmann; Frederick C. Meinzer; Guillermo Goldstein

    2010-01-01

    The objective of this study was to assess the magnitude of hydraulic lift in Brazilian savannas (Cerrado) and to test the hypothesis that hydraulic lift by herbaceous plants contributes substantially to slowing the decline of water potential and water storage in the upper soil layers during the dry season. To this effect, field observations of soil water content and...

  9. Mid Miocene Terrestrial Ecosystems: Information from Mammalian Herbivore Communities.

    NASA Astrophysics Data System (ADS)

    Janis, C. M.; Damuth, J.; Theodor, J. M.

    2001-05-01

    In present day ecosystems the numbers and proportions of different kinds of ecologically distinct ungulates (hoofed mammals) provide an indicator of the nature of the vegetation in the habitat. Different vegetation types (such as forest, savanna, or grassland) are characteristically associated with different arrays of ungulates, with species exhibiting differences in diet, body size, and type of digestive fermentation system. These biological attributes can also be inferred for fossil ungulate species, the first two from quantitative assessment of skull and dental anatomy, and the last from phylogenetic affinity. Thus fossil ungulate communities may be used as indicators of the vegetation types of the habitats in which they lived. Vegetation types, in turn, are determined largely by a number of physical environmental factors. Typical ungulate communities of the late early to early middle Miocene (17 - 15 Ma) from the Great Plains of North America contained a diversity of browsing (leaf-eating) and grazing (grass-eating) species, with proportions of dietary types and a diversity of body sizes indicative of a woodland savanna habitat. Paleobotanical evidence also indicates a woodland savanna type of vegetation. However, these communities included a much larger number of ungulate species than can be found in any present-day community. The "excess" ungulate species were primarily browsers. Throughout the rest of the middle Miocene both species numbers and the proportion of browsers in ungulate communities appear to have declined steadily. During this decline in browser species the numbers of grazer species remained relatively constant. Within-community species numbers comparable to the present day were attained by the late Miocene. We suggest that the early Miocene browser-rich communities, and their subsequent decline, carry an important paleoenvironmental signal. In particular, communities "over rich" in browsers may reflect higher levels of primary productivity in

  10. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Midgley, Guy F.; Bond, William J.

    2015-09-01

    Projections of ecosystem and biodiversity change for Africa under climate change diverge widely. More than other continents, Africa has disturbance-driven ecosystems that diversified under low Neogene CO2 levels, in which flammable fire-dependent C4 grasses suppress trees, and mega-herbivore action alters vegetation significantly. An important consequence is metastability of vegetation state, with rapid vegetation switches occurring, some driven by anthropogenic CO2-stimulated release of trees from disturbance control. These have conflicting implications for biodiversity and carbon sequestration relevant for policymakers and land managers. Biodiversity and ecosystem change projections need to account for both disturbance control and direct climate control of vegetation structure and function.

  11. Native grass seeding and forb planting establishment in a degraded oak savanna plant community in the Coast Range foothills of western Oregon.

    Treesearch

    Nan Vance; Andrew Neill; Frank Morton

    2006-01-01

    After a dense stand of conifers encroaching on an oak savanna/meadow was removed, exotic forbs and grasses quickly populated the newly disturbed area. Establishing desirable native grasses and forbs that contribute to native plant diversity and complete with exotic species could aid in restoring this oak savanna plant community. Two experiments were conducted over time...

  12. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.

    2017-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  13. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.

    2016-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  14. Vegetative characteristics and relationships in the oak savannas of the Southwestern Borderlands

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried; Cody L. Stropki

    2008-01-01

    In this paper, we describe species compositions, densities patterns, and annual growth rates of the tree overstory; species compositions, seasonal production of grasses, forbs, and shrubs, and the utilization of forage species by herbivores; loading of flammable fuel fractions; and ground cover conditions of "representative" oak savannas. Although much has...

  15. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment of fire’s influence on the global land air temperature during the 20th century through its impact on terrestrial ecosystems. We quantify the impact of fire by comparing 20th century fire-on and fire-off simulations with the Community Earth System Model (CESM) as the model platform. Here, results show that fire-induced changes in terrestrial ecosystems increased global land surface air temperature by 0.04 °C. Such changes significantly warmed the tropical savannas and southern Asia mainly by reducing latent heat flux, but cooledmore » Southeast China by enhancing the East Asian winter monsoon. 20% of the early 20th century global land warming can be attributed to fire-induced changes in terrestrial ecosystems, providing a new mechanism for explaining the poorly-understood climate change.« less

  16. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems

    DOE PAGES

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2017-04-03

    Fire is a global phenomenon and tightly interacts with the biosphere and climate. This study provides the first quantitative assessment of fire’s influence on the global land air temperature during the 20th century through its impact on terrestrial ecosystems. We quantify the impact of fire by comparing 20th century fire-on and fire-off simulations with the Community Earth System Model (CESM) as the model platform. Here, results show that fire-induced changes in terrestrial ecosystems increased global land surface air temperature by 0.04 °C. Such changes significantly warmed the tropical savannas and southern Asia mainly by reducing latent heat flux, but cooledmore » Southeast China by enhancing the East Asian winter monsoon. 20% of the early 20th century global land warming can be attributed to fire-induced changes in terrestrial ecosystems, providing a new mechanism for explaining the poorly-understood climate change.« less

  17. The role of prescribed burn associations in the application of prescribed fires in rangeland ecosystems.

    PubMed

    Toledo, David; Kreuter, Urs P; Sorice, Michael G; Taylor, Charles A

    2014-01-01

    Risk and liability concerns regarding fire affect people's attitudes toward fire and have led to human-induced alterations of fire regimes. This has, in turn, contributed to brush encroachment and degradation of many grasslands and savannas. Efforts to successfully restore such degraded ecosystems at the landscape scale in regions of the United States with high proportions of private lands require the reintroduction of fire. Prescribed Burn Associations (PBA) provide training, equipment, and labor to apply fire safely, facilitating the application of this rangeland management tool and thereby reducing the associated risk. PBAs help build networks and social capital among landowners who are interested in using fire. They can also change attitudes toward fire and enhance the social acceptability of using prescribed fire as a management practice. PBAs are an effective mechanism for promoting the widespread use of prescribed fire to restore and maintain the biophysical integrity of grasslands and savannas at the landscape scale. We report findings of a project aimed at determining the human dimensions of using prescribed fire to control woody plant encroachment in three different eco-regions of Texas. Specifically, we examine membership in PBAs as it relates to land manager decisions regarding the use of prescribed fire. Perceived risk has previously been identified as a key factor inhibiting the use of prescribed fire by landowners. Our results show that perceived constraints, due to lack of skill, knowledge, and access to equipment and membership in a PBAs are more important factors than risk perceptions in affecting landowner decisions about the use of fire. This emphasizes the potential for PBAs to reduce risk perceptions regarding the application of prescribed fire and, therefore, their importance for restoring brush-encroached grasslands and savannas. Published by Elsevier Ltd.

  18. STRUCTURE OF MICROBIAL COMMUNITIES IN NATIVE AND CONVERTED SAVANNA AREAS OF CENTRAL BRAZIL

    EPA Science Inventory

    Brazilian savannas (Cerrado) have suffered drastic changes in land use with major conversion of native areas to agriculture since 1960. Burning, both due to natural conditions and as a human-induced practice, is a common event during the dry season (April to September) and plays ...

  19. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium.

    PubMed

    Brody, Alison K; Palmer, Todd M; Fox-Dobbs, Kena; Doak, Dan F

    2010-02-01

    In African savannas, vertebrate herbivores are often identified as key determinants of plant growth, survivorship, and reproduction. However, plant reproduction is likely to be the product of responses to a suite of abiotic and biotic factors, including nutrient availability and interactions with antagonists and mutualists. In a relatively simple system, we examined the role of termites (which act as ecosystem engineers--modifying physical habitat and creating islands of high soil fertility), vertebrate herbivores, and symbiotic ants, on the fruiting success of a dominant plant, Acacia drepanolobium, in East African savannas. Using observational data, large-scale experimental manipulations, and analysis of foliar N, we found that Acacia drepanolobium trees growing at the edge of termite mounds were more likely to reproduce than those growing farther away, in off-mound soils. Although vertebrate herbivores preferentially used termite mounds as demonstrated by dung deposits, long-term exclusion of mammalian grazers did not significantly reduce A. drepanolobium fruit production. Leaf N was significantly greater in trees growing next to mounds than in those growing farther away, and this pattern was unaffected by exclusion of vertebrates. Thus, soil enrichment by termites, rather than through dung and urine deposition by large herbivores, is of primary importance to fruit production near mounds. Across all mound-herbivore treatment combinations, trees that harbored Crematogaster sjostedti were more likely to fruit than those that harbored one of the other three ant species. Although C. sjostedti is less aggressive than the other ants, it tends to inhabit large, old trees near termite mounds which are more likely to fruit than smaller ones. Termites play a key role in generating patches of nutrient-rich habitat important to the reproductive success of A. drepanolobium in East African savannas. Enhanced nutrient acquisition from termite mounds appears to allow plants to

  20. Gaseous Nitrogen Losses from Tropical Savanna Soils of Northern Australia: Dynamics, Controls and Magnitude of N2O, NO, and N2 emissions

    NASA Astrophysics Data System (ADS)

    Werner, C.; Hickler, T.; Hutley, L. B.; Butterbach-Bahl, K.

    2014-12-01

    Tropical savanna covers a large fraction of the global land area and thus may have a substantial effect on the global soil-atmosphere exchange of nitrogen. The pronounced seasonality of hygric conditions in this ecosystem affects strongly microbial process rates in the soil. As these microbial processes control the uptake, production, and release of nitrogen compounds, it is thought that this seasonality finally leads to strong temporal dynamics and varying magnitudes of gaseous losses to the atmosphere. However, given their areal extent and in contrast to other ecosystems, still few in-situ or laboratory studies exist that assess the soil-atmosphere exchange of nitrogen. We present laboratory incubation results from intact soil cores obtained from a natural savanna site in Northern Australia, where N2O, NO, and N2 emissions under controlled environmental conditions were investigated. Furthermore, in-situ measurements of high temporal resolution at this site recorded with automated static and dynamic chamber systems are discussed (N2O, NO). This data is then used to assess the performance of a process-based biogeochemical model (LandscapeDNDC), and the potential magnitude and dynamics of components of the site-scale nitrogen cycle where no measurements exist (biological nitrogen fixation and nitrate leaching). Our incubation results show that severe nutrient limitation of the soil only allows for very low N2O emissions (0.12 kg N ha-1 yr-1) and even a periodic N2O uptake. Annual NO emissions were estimated at 0.68 kg N ha-1 yr-1, while the release of inert nitrogen (N2) was estimated at 6.75 kg N ha-1 yr-1 (data excl. contribution by pulse emissions). We observed only minor N2O pulse emissions after watering the soil cores and initial rain events of the dry to wet season transition in-situ, but short-lived NO pulse emissions were substantial. Interestingly, some cores exhibited a very different N2O emission potential, indicating a substantial spatial variability of