Science.gov

Sample records for african shelf margin

  1. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    SciTech Connect

    Aadland, R.K.; Schamel, S.

    1989-03-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desert basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.

  2. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    SciTech Connect

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  3. Evolution of Devonian carbonate-shelf margin, Nevada

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.

    2008-01-01

    The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of

  4. Marginality Theory and the African American Student.

    ERIC Educational Resources Information Center

    Grant, G. Kathleen; Breese, Jeffrey R.

    1997-01-01

    Reports on a study of African-American college students at a state university in the Midwest. The study examined the effects of marginality on their college experience and performance. Identifies six reactions to marginality and provides case study examples of each. Includes extensive references and verbatim comments from the students. (MJP)

  5. Late Quaternary shelf-margin deltas, northwest Gulf of Mexico

    SciTech Connect

    Suter, J.R.; Berryhill, H.L. Jr.

    1985-12-01

    Interpretations of 35,000 km (21,900 mi) of single-channel, high-resolution, seismic profiles traversing the continental shelf and upper continental slope of the northwest Gulf of Mexico indicate the existence of five late Wisconsinan shelf margin deltas, including the Rio Grande and Mississippi deltas. The deltas were recognized by geomorphic pattern, high-angle clinoform seismic reflections, and associated with buried river systems. Isopach patterns show that the deltas range in size up to 5000 km/sup 2/ (1900 mi/sup 2/) and reach thicknesses of over 180 m (590 ft). The deposits are elongate parallel with depositional strike, indicating subsidence of the shelf margin as a whole. Internal reflection patterns show the deltas to be fluvially dominated. Multilobate structure resulted from both short-term eustatic sea level fluctuations and delta switching. The late Quaternary shelf-margin deltas provide models for analogous deposits in the ancient record. They are primary indicators of the position of ancient shelf margins, and are important for predicting sand occurrence in that environment as well as farther downslope. As exploration moves to the shelf edge and beyond, instability hazards posed by late Wisconsin deltas, as well as older deposits, must be understood and dealt with. 20 figures.

  6. Late quaternary shelf-margin deltas, northwest Gulf of Mexico

    SciTech Connect

    Suter, J.R.; Berryhill, H.L.

    1985-01-01

    Interpretations of 35,000 km (21,900 mi) of single-channel, high-resolution, seismic profiles traversing the continental shelf and upper continental slope of the northwest Gulf of Mexico indicate the existence of five late Wisconsinan shelf margin deltas, including the Rio Grande and Mississippi deltas. The deltas were recognized by geomorphic pattern, high-angle clinoform seismic reflections, and association with buried river systems. Isopach patterns show that the deltas range in size up to 5,000 km/sup 2/ (1,900 mi/sup 2/) and reach thicknesses of over 180 m (590 ft). The deposits are elongate parallel with depositional strike, indicating subsidence of the shelf margin as a whole. Internal reflection patterns show the deltas to be fluvially dominated. Multilobate structure resulted from both short-term eustatic sea level fluctuations and delta switching. The late Quaternary shelf-margin deltas provide models for analogous deposits in the ancient record. They are primary indicators of the position of ancient shelf margins, and are important for predicting sand occurrence in that environment as well as farther downslope. As exploration moves to the shelf edge and beyond, instability hazards posed by late Wisconsinan deltas, as well as older deposits, must be understood and dealt with.

  7. Statistics of Stacked Strata on Experimental Shelf Margins

    NASA Astrophysics Data System (ADS)

    Fernandes, A. M.; Straub, K. M.

    2015-12-01

    Continental margin deposits provide the most complete record on Earth of paleo-landscapes, but these records are complex and difficult to interpret. To a seismic geomorphologist or stratigrapher, mapped surfaces often present a static diachronous record of these landscapes through time. We present data that capture the dynamics of experimental shelf-margin landscapes at high-temporal resolution and define internal hierarchies within stacked channelized and weakly channelized deposits from the shelf to the slope. Motivated by observations from acoustically-imaged continental margins offshore Brunei and in the Gulf of Mexico, we use physical experiments to quantify stratal patterns of sub-aqueous slope channels and lobes that are linked to delta-top channels. The data presented here are from an experiment that was run for 26 hours of experimental run time. Overhead photographs and topographic scans captured flow dynamics and surface aggradation/degradation every ten minutes. Currents rich in sediment built a delta that prograded to the shelf-edge. These currents were designed to plunge at the shoreline and travel as turbidity currents beyond the delta and onto the continental slope. Pseudo-subsidence was imposed by a slight base-level rise that generated accommodation space and promoted the construction of stratigraphy on the delta-top. Compensational stacking is a term that is frequently applied to deposits that tend to fill in topographic lows in channelized and weakly channelized systems. The compensation index, a metric used to quantify the strength of compensation, is used here to characterize deposits at different temporal scales on the experimental landscape. The compensation timescale is the characteristic time at which the accumulated deposits begins to match the shape of basin-wide subsidence rates (uniform for these experiments). We will use the compensation indices along strike transects across the delta, proximal slope and distal slope to evaluate the

  8. Tectonic control of Silurian carbonate-shelf margin morphology and Facies, North Greenland

    SciTech Connect

    Hurst, J.M.; Surlyk, F.

    1984-01-01

    On the basis of profile and topography, three carbonateshelf margin configurations in North Greenland are identified as having been formed during the Silurian. They include escarpment margins which are abrupt and characterized by slope angles of 35/sup 0/ to 40/sup 0/; stepped margins consisting of blocks downstepping into the deep-water basin and with the slope angle inclined from a few up to 40/sup 0/; and ramp margins characterized by gentle slopes and lack of a pronounced break between carbonate shelf and deepwater basin. The carbonate-shelf margins are related to the Navarana Fjord fault and Permin Land flexure. The stepped margin had a similar origin and relation to controlling faults, but later shelf-margin downdropping of blocks may have been contemporaneous with shelf sedimentation.

  9. Carbonate shelf edge off southern Australia: A prograding open-platform margin

    NASA Astrophysics Data System (ADS)

    James, Noel P.; von der Borch, Christopher C.

    1991-10-01

    The southern continental margin of Australia is an extensive shelf that has been a site of cool-water carbonate deposition since Eocene time. The platform has no rim and is swept by high-energy waves and swells throughout the year. The shelf is deep (40 to 100 m) and typified by bryozoan-rich sediments. The shelf margin is a gentle incline that becomes progressively steeper seaward, except where it laps down onto offshore terraces. The edge of the Eucla Platform in the Great Australian Bight is used to illustrate that the margin is a series of extensive prograding clinoforms. Progradation is interpreted to be the result of off-shelf sediment transport and in-place carbonate production by actively growing deep-water bryozoa and sponges. This area is a potential model for ancient high-energy platform margins during geologic periods when large skeletal reef-building metazoans were scarce.

  10. Geometry, lateral variability, and preservation of downlapped regressive shelf deposits, eastern Tyrrhenian Margin, Italy

    SciTech Connect

    Field, M.E. ); Trincardi, F. )

    1990-05-01

    The shelf of the eastern Tyrrhenian margin changes substantially in width, shelf-break depth, and sea-floor steepness over relatively short distances, largely due to marked lateral changes in geologic structure. Remnants of late Pleistocene prograded coastal deposits are locally preserved on the middle and outer parts of this complex shelf. Through the authors studies of these prograded deposits they recognize two major controls on the distribution, lateral extent, thickness, and preservation potential. First, prograded (downlapped) deposits formed only where the physiographic shelf break was deeper than the lowstand shoreline, thus providing accommodation space for the lowstand deposits. Second, the proximity and relative size of sediment sources and the local coastal dispersal system influenced the geometry of the deposit. Mid-shelf and shelf-margin bodies composed of seaward-steepening downlapping reflectors were deposited as thin-to-thick continuous prograding sheets over an irregular eroded shelf surface and onto the shelf edge during the last fall and lowstand of sea level. A dearth of sediment at the end of lowstand conditions led to a switch from deposition to erosion. During sea level rise, shoreface erosion produced a major marine erosional (ravinement) surface landward of the 120-m isobath, and much, and in many places all, of the downlapping deposit was removed. Preservation of downlapping deposits is largely a function of their thickness. Thick continuous deposits are common on the shelf edge, whereas on the mid-shelf only thin remnants are preserved locally where depressions or morphologic steps were present in the shelf surface.

  11. Shelf export of particulates/transport in continental margin waters

    SciTech Connect

    Pietrafesa, L.J.

    1991-02-01

    SEEP-II is a sponsored multi-institutional, multi-disciplinary program designed to address the possibility of flux material along and across the MAB. The methodology in SEEP-II employed conventional taut-wire moorings surrounding four RD acoustic doppler profiling current meters along with biological sampling of the source term of the biogenic material and the geochemical measurement of sedimentation rates. The field program was 17 months in length, from February 1988--June 1989, located off the Delaware and Chesapeake Bays. The SEEP-II moored array consists of two main cross-shelf arrays the northern of which had 6 to 8 moorings spanning the 40 to 1,000 m isobaths with one (and in Phase 2, a second) mooring offset about 20 km downshelf at 90m (and in Phase 2, a mooring also at 40m). The basic schematics of the northern and southern arrays are shown. In the region where the MAB shelf water/slope water front intersects the bottom, four RD-ADCP's were the focus of the array. Each of the bottom mounted profilers was accompanied by thermister strings (chains), Aanderaa current meters, fluorometers and transmissometers. 21 figs., 4 tabs.

  12. Active processes on a mixed clastic carbonate Brazilian shelf margin: Importance for hydrocarbon exploration in turbidites

    SciTech Connect

    Cainelli, C. )

    1991-03-01

    The search for subtle hydrocarbon accumulations in turbidite systems requires additional approaches for more successful exploration, particularly when direct recognition on seismic lines is difficult. This includes the determination and understanding of processes controlling sand distribution on the shelf and the mapping of sand pathways from the shelf to the slop/basin that can guide efforts to look for more favorable sites for turbidite sandstone deposition. The approach can be exemplified in the Sergipe-Alagoas basin, on the Brazillian Atlantic passive margin. The section analyzed is the Piacabucu Formation, a thick seaward prograding wedge composed of coastal sandstones and shelf edge carbonates on a narrow shelf and slope-basin shales with turbidite lenses. Waves and currents control the redistribution of sediments transported to the shelf by rivers. More wave energy is expended in ten hours in the San Francisco delta than in an entire year in the Mississippi delta. Such environment precludes deposition of mud on the shelf, but it stimulates the development of shelf edge carbonates. Rimed carbonates along the shelf break serve as a barrier for downslope movements of coarse-grained sediment, where turbidites are oil targets. The search for gaps in the carbonate barrier which can tap the behind-barrier sands is critical for sand-rich turbidite development. It is believed that canyons create these gaps and act as active turbidity current routes.

  13. Sequence stratigraphy and continental margin development of the northwestern shelf of the South China Sea

    SciTech Connect

    Chen, P.P.H. ); Zhi Yuong Chen; Qi Min Zhang )

    1993-05-01

    Based on the sequence stratigraphic analyses of the Tertiary in the northwestern continental margin of the South China Sea, this paper summarizes the regional tectonics and their influences on the basin developments and discusses the systems tract distributions through the continental margin growth. The study area is underlain by two Tertiary basins separated by a major basin boundary fault across which two distinctly different basin structural styles developed. The Qiongdongnan basin shows characteristic rift structures and is closely related to the opening of the South China Sea. The Yinggehai basin is filled with thick Neogene monoclines overlying basement without apparent rift structures. The Yinggehai's genesis has been linked to the tectonism along the Red River suture zone. The margin development is characterized by depositional environments of sediment influx constantly exceeding accommodation space. Under these environments, the highstand deltas frequently developed near shelf edges, where vertically stacked shallow water sands of both highstand deltas and lowstand wedges/deltas could produce favorable exploration targets. High rates of sedimentation in the study area allow the identification of fourth-order cyclicity in the Quaternary. Regional sequence stratigraphic correlations suggest that many sequence boundaries appear to be synchronous, but not all boundaries exist in all basins along the eastern and southern continental margins of mainland China. The margin evolved through the repeated development of lowstand fans, lowstand wedges, transgressive systems tracts, and highstand deltas. Prior to the Pliocene, the shelf was sourced both from Vietnam and Hainan Island and, as a result, two shelf margins developed. The southwestern margin stopped growing in the late Miocene, and the northern margin continued to prograde with possible additional sediment inputs through the Red River system in the Quaternary. 29 refs., 22 figs.

  14. Across-shelf sediment transport since the Last Glacial Maximum, southern California margin

    USGS Publications Warehouse

    Sommerfield, C.K.; Lee, H.J.

    2004-01-01

    Correlation of continental shelf-slope stratigraphy in Santa Monica Bay (southern California) with Ocean Drilling Program records for nearby slope-basin sites has illuminated the timing and scale of terrigenous sediment dispersal on margin since the Last Glacial Maximum (LGM). Marine flooding surfaces preserved in a transgressive sequence on the Santa Monica Shelf provide a key link between base-level elevation and sediment transport across shelf. Sediment-accumulation rates at slope-basin sites were maximal ca. 15-10 ka, well after the LGM, decreased during the 12-9 ka transition from fluvial-estuarine to fully marine conditions on the shelf, and decelerated throughout the Holocene to 30%-75% of their values at the LGM. The deceleration is interpreted to manifest a landward shift in the margin depocenter with the onset of transgressive sedimentation beginning when sea level surmounted the shelf edge ca. 13 ka, as predicted by sequence-stratigraphic models. However, the records make clear that factors other than base level modulated slope-basin accumulation rates during the deglaciation. ?? 2004 Geological Society of America.

  15. Lower and middle Guadalupian shelf carbonates, eastern margin of Central Basin platform, Permian basin, west Texas

    SciTech Connect

    Ward, R.F.; Chalcraft, R.G.

    1988-01-01

    Lower and middle Guadalupian shelf carbonates serve as the reservoir for a nearly continuous band of oil fields extending 100 mi along the eastern margin of the Central Basin platform of west Texas. Approximately 5 billion bbl of oil have been produced from stratigraphic-structural traps within the Upper Permian (Gaudalupian Series) dolomites of the San Andrea and Grayburg Formations in Upton, Crane, Ector, Pecos, and Andrews Counties, Texas. The San Andrea and Grayburg Formations are cyclical shallowing-upward carbonate sequences of open shelf through sabkha facies whose depositional strike parallels the eastern margin of the Central Basin platform. Porosity and permeability of reservoir rock are governed by diagenetic processes such as dolomitization, anhydrite porosity occlusion, leaching, silicification, and authigenic clay formation. Self sediments are primarily burrowed wackestones and packstones that locally contain pelletal, skeletal, and ooid grainstones. Typical subtidal shelf sediments are capped by algal-laminated dolomite, nodular anhydritic dolomite, and bedded anhydrite. The fauna is normally sparse and dominated by foraminifera and algae. Less common faunal components include pelecypods, crinoids, sponges, Bryozoa, brachiopods, gastropods, and coral that are associated with the development of small scattered patch reefs. Lowering the sea level during the early Guadalpian initiated basinward progradation of San Andres carbonate facies with hydrocarbon reservoirs best developed in shallow self fusulinid wackestones to packstone and oolitic grainstone. Reservoir dolomites of the Grayburg formation are present east of San Andres fields with optimal reservoir properties occurring near the San Andreas outer shelf margin.

  16. Massive Off-Shelf Siliciclastic Fluxes on the Northeast Australian Margin During Transgression

    NASA Astrophysics Data System (ADS)

    Page, M. C.; Dickens, G. R.; Dickens, G. R.

    2001-12-01

    The northeast Australian margin is the largest extant example of a tropical mixed siliciclastic/carbonate depositional system, where substantial fluvial inputs discharge on to a broad shelf with major carbonate production. Previous work has identified 0.5 to 2 m thick siliciclastic-rich intervals in cores from the slope of this margin. Following generic depositional models, these layers have been interpreted by several authors as reflecting high fluxes of terrigenous sediment during lowstand, or intervals of starvation during transgression (e.g. Harris et al., Mar. Geo. vol. 94, p. 55-78, 1990; Kronen and Glenn, SEPM Spec. Pub. No. 66, p. 387-403, 2000). However, two studies (e.g. Peerderman and Davies, Proc. ODP. Sci. Results, 133, p. 303-313, 1993; Dunbar et al., Sed. Geo. vol. 133, p. 49-92, 2000) have questioned these interpretations, instead suggesting these intervals represent massive siliciclastic input to the slope during transgression, a view wholly inconsistent with generic models for the evolution of continental margins. Here we present new results from five widely spaced cores on the slope of the northeast Australian margin. Similar to previous work, we find 0.5 to 2 m thick siliciclastic-rich units in all cores. Using detailed records of carbonate content and AMS radiocarbon dating of planktonic foraminifera, we also clearly show that this layer was deposited between ca. 11 and 8 ka and represents up to a six-fold increase in off-shelf siliciclastic fluxes during late transgression. Completely opposite to model expectations, massive quantities of siliciclastic material were discharged from the shelf to the slope and basin after sea level transgressed the shelf. Widely accepted models for sediment deposition are fundamentally flawed on this margin because either (1) siliciclastic and carbonate components interact on a broad shelf so that subaerial carbonate (karst) hills on the outer shelf cause river avulsion and sediment storage during lowstand, or (2

  17. Sequence stratigraphy and composition of late quaternary shelf-margin deltas, Northern Gulf of Mexico

    SciTech Connect

    Morton, R.A.; Suter, J.R.

    1996-04-01

    High-resolution seismic profiles and foundation borings from the northwestern Gulf of Mexico record the physical attributes and depositional histories of several late Quaternary sequences that were deposited by wave-modified, river-dominated shelf-margin deltas during successive periods of lowered sea level. Each progressively younger deltaic sequence is thinner and exhibits a systematic decrease in the abundance and concentration of sand, which is attributed to a shift in the axes of trunk streams and greater structural influence through time. Our study shows that (1) contemporaneous structural deformation controlled the thickness of each sequence, the oblique directions of delta progradation, the axes of major fluvial channels, and the geometries of delta lobes at the shelf margin; (2) sedimentation was rapid in response to rapid eustatic fluctuations and structural influence; (3) boundaries of these high-frequency sequences are the correlative conformities of updip fluvial incision and coincide with downlap surfaces at the shelf margin; (4) the downlap surfaces are not true surfaces, but zones of parallel reflections that become progressively higher and younger in the direction of progradation; (5) the downlap zones are composed of marine muds that do not contain the high concentrations of shell debris expected in condensed sections; (6) possible paleosols capping the two oldest sequences are regressive surfaces of subaerial exposure that were preserved during transgressions; and (7) no incised valleys or submarine canyons breach the paleoshelf margin, even though incised drainages were present updip and sea level curves indicate several periods of rapid fall.

  18. Multiple uplift phases inferred from the Southwest African Atlantic margin

    NASA Astrophysics Data System (ADS)

    Scheck-Wenderoth, Magdalena; Cacace, Mauro; Dressel, Ingo

    2015-04-01

    The South Atlantic basins offshore Namibia and South Africa stored more than 10 km thick sedimentary successions that are separated by major unconformities into several sequences. These sedimentary units rest on a thinned continental crust of a magmatic passive margin. Using a 3D forward modelling approach considering flexural compensation of a rheologically differentiated lithosphere in response to sedimentary loading after stretching on one hand and the thermal feed-back between cooling of the stretched lithosphere and insulating sediments on the other hand we derive quantitative estimates on how vertical movements have influenced the margin after stretching. The approach combines the consideration of observations on sediment configuration as well as on crustal thickness (ß-factor) with the process of lithosphere thinning and subsequent thermal re-equilibration. These estimates are conservative estimates as they are based on the preserved sediments only whereas eroded sediments are not considered. Nevertheless, the approach considers thermo-mechanical coupling in 3D and both initial conditions as well as sedimentary history are constrained by observations. Specific effects include the delayed thermal re-equilibration of the thinned lithosphere due to deposition of insulating sediments and the related thermal feedback on lithosphere rheology and therefore on the flexural response to sediment loading. Our results indicate that in addition to predominantly continuous subsidence also phases of uplift have affected the southwestern African margin during the syn-rift and post-rift evolution. The spatio-temporal variation of vertical movements is controlled by the amount of initial thinning of the lithosphere, the variation of rheological characteristics (lithology and temperature) but also by the distribution of sediment supply (loading and thermal insulation).

  19. Lower Permian facies of the Palo Duro Basin, Texas: depositional systems, shelf-margin evolution, paleogeography, and petroleum potential

    SciTech Connect

    Handford, C.R.

    1980-01-01

    A Palo geological study suggests that potential hydrocarbon reservoirs occur in shelf-margin carbonates, delta-front sandstones, and fan-delta arkoses. Zones of porous (greater than 10 percent) dolomite are concentrated near shelf margins and have configurations similar to productive Lower Permian shelf-margin trends in New Mexico. Delta-front sandstones (log-computed porosity of 18 to 25 percent) are similar to producing deltaic sandstones of Morris Buie-Blaco Fields in North-Central Texas. Porous (18 percent) fan-delta sandstones along the south flank of the Amarillo Uplift may form reservoirs similiar to that of the Mobeetie Field on the north side of the Amarillo Uplife in Wheeler County, Texas. Potential hydrocarbon source beds occur in slope and basinal environments. Total organic carbon generally ranges from 1 to 2.3 percent by weight and averages 0.589 percent by weight.

  20. Depositional patterns and shelf-margin styles of a lowstand slope fan systems tract, offshore Louisiana

    SciTech Connect

    Bowen, B.E. ); Pacht, J. ); Shaffer, B.L.S.

    1990-05-01

    A complete spectrum of facies from deep-water fans to up-dip deltaics and fluvial sediments occurs in the Pliocene-Pleistocene lowstand fan systems tracts of the Gulf of Mexico. Seismic data, well logs, and biostratigraphy have been used to delineate and map the upper Pliocene slope fan systems tract, commonly referred to as the Lenticulina I interval. This tract contains sands that are major hydrocarbon producers in the southern part of the Louisiana shelf. Both a ramp margin and a growth fault modified ramp margin can be recognized in this unit. Large submarine fans with well-developed channel levee complexes occur basinward of the growth fault margin. The sands in these sediments typically are thin-bedded and highly lenticular. On the upside of the growth faults, the slope fan sediments can be chronostratigraphically correlated to deltaics by using the encasing condensed sections that have been defined by biostratigraphy. The sands in the deltaics are coarsening-upward cycles, occasionally blocky, are generally thicker bedded than the downdip fan deposits. Updip, the semicontinuous to continuous reflectors of the deltaic sediments are replaced by highly discontinuous reflectors with variable amplitude characteristic of upper delta plain or fluvial deposits. A different set of facies is characteristic of the ramp margin. Extensive slope fan sediments are rarely developed and the updip deltaic wedge tends to be thicker and is characterized by slumping along the seaward margin. The deltaics occur in an area that extends about 100 mi along strike and 75 mi in the dip direction.

  1. Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.; Schenk, C.J.

    2009-01-01

    Lower Cretaceous strata beneath the Alaska North Slope include clinoform depositional sequences that filled the western Colville foreland basin and overstepped the Beaufort rift shoulder. Analysis of Albian clinoform sequences with two-dimensional (2D) seismic data resulted in the recognition of seismic facies inferred to represent lowstand, transgressive and highstand systems tracts. These are stacked to produce shelf-margin trajectories that appear in low-resolution seismic data to alternate between aggradational and progradational. Higher-resolution seismic data reveal shelf-margin trajectories that are more complex, particularly in net-aggradational areas, where three patterns commonly are observed: (1) a negative (downward) step across the sequence boundary followed by mostly aggradation in the lowstand systems tract (LST), (2) a positive (upward) step across the sequence boundary followed by mostly progradation in the LST and (3) an upward backstep across a mass-failure d??collement. These different shelf-margin trajectories are interpreted as (1) fall of relative sea level below the shelf edge, (2) fall of relative sea level to above the shelf edge and (3) mass-failure removal of shelf-margin sediment. Lowstand shelf margins mapped using these criteria are oriented north-south in the foreland basin, indicating longitudinal filling from west to east. The shelf margins turn westward in the north, where the clinoform depositional system overstepped the rift shoulder, and turn eastward in the south, suggesting progradation of depositional systems from the ancestral Brooks Range into the foredeep. Lowstand shelf-margin orientations are consistently perpendicular to clinoform-foreset-dip directions. Although the Albian clinoform sequences of the Alaska North Slope are generally similar in stratal geometry to clinoform sequences elsewhere, they are significantly thicker. Clinoform-sequence thickness ranges from 600-1000 m in the north to 1700-2000 m in the south

  2. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  3. Large Illinoisan shelf-margin channel in the South Timbalier and Ewing Bank areas, offshore Gulf of Mexico

    SciTech Connect

    Ruggiero, R.W.; Bowman, P. )

    1991-03-01

    During an Illinoisan lowstand, a major channel became entrenched on the shelf and deposited deltaic sediment of the shelf-slope break in the South Timbalier and Ewing Bank areas. This shelf-edge delta overloaded the margin, creating a major slope failure. This 'channel,' or slump canyon, which was originally deep and narrow, evolved through retrogradational wasting of the shelf into a broader feature during back-filling and abandonment. Mapping with integrated seismic and well data indicates a feature that is 6 mi wide and has 2300 ft of relief, from the base of the channel to the highest margin. Gravel lag fills the deepest portion of the scour and constitutes an excellent, though restricted, gas reservoir. The limits of the reservoir are defined by mapping of a seismic amplitude anomaly. The balance of the back-fill is comprised of thinly bedded silstone and sandstone sequences that generally thin and fine upward; each is capped by marine shales. The fill geometry is primarily nested or stacked channels. Positive topographic features on the outer shelf tower above the channel floor, either as uneroded remnants or as part of channel margin slump mounds. Sand-prone sediment onlapped these highs, thereby creating numerous stratigraphic traps. As sea level rose, the locus of deposition within the channel shifted progressively shoreward, and the fill was capped by a clean, transgressive shale. Further work is necessary to ascertain the location of the submarine fan far down-dip of this shelf-edge channel. Laterally extensive reservoirs can be expected in more distal depositional environments.

  4. Shelf basin exchange along the Siberian continental margin: Modification of Atlantic Water and Lower Halocline Water

    NASA Astrophysics Data System (ADS)

    Bauch, Dorothea; Cherniavskaia, Ekaterina; Timokhov, Leonid

    2016-09-01

    Salinity and stable oxygen isotope (δ18O) evidence shows a modification of Atlantic Water in the Arctic Ocean by a mixture of sea-ice meltwater and meteoric waters along the Barents Sea continental margin. On average no further influence of meteoric waters is detectable within the core of the Atlantic Water east of the Kara Sea as indicated by constant δ18O, while salinity further decreases along the Siberian continental slope. Lower Halocline Waters (LHW) may be divided into different types by Principal Component Analysis. All LHW types show the addition of river water and an influence of sea-ice formation to a varying extent. The geographical distribution of LHW types suggest that the high salinity type of LHW forms in the Barents and Kara seas, while other LHW types are formed either in the northwestern Laptev Sea or from southeastern Kara Sea waters that enter the northwestern Laptev Sea through Vilkitsky Strait. No further modification of LHW is seen in the eastern Laptev Sea but the distribution of LHW-types suggest a bifurcation of LHW at this location, possibly with one branch continuing along the continental margin and a second branch along the Lomonosov Ridge. We see no pronounced distinction between onshore and offshore LHW types, as the LHW components that are found within the halocline over the basin also show a narrow bottom-bound distribution at the continental slope that is consistent with a shelf boundary current as well as a jet of water entering the western Laptev Sea from the Kara Sea through Vilkitsky Strait.

  5. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, U.S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  6. Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation

    USGS Publications Warehouse

    Brooks, G.R.; Holmes, C.W.

    1990-01-01

    Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many

  7. African-American Women in the Professoriate: Addressing Social Exclusion and Scholarly Marginalization through Mentoring

    ERIC Educational Resources Information Center

    Lloyd-Jones, Brenda

    2014-01-01

    African-American women and other underrepresented faculty members often report experiences of social exclusion and scholarly marginalization in mainstream institutions of higher education. This lack of inclusion challenges their retention and hinders them from becoming productive members of the professoriate, positioning them at a disadvantage for…

  8. Quantifying deposition from the very muddy Waipaoa River on the Poverty shelf and margin re-entrant, New Zealand

    NASA Astrophysics Data System (ADS)

    Orpin, A.; Carter, L.; Lewis, K.; Kuehl, S.; Alexander, C.

    2003-04-01

    The East Coast margin is characterised by high terrigenous sediment flux, dramatic effects of land-use changes, and by complex sediment-tectonic interactions on a steep and unstable continental slope. An estimated 18 cubic km of sediment has been deposited in an actively subsiding mid-shelf basin and outer shelf apron since 18 ka BP, with a maximum thickness of approximately 45 m. The shelf is boarded along its seaward edge by two growing anticlines, but a significant component of the sediment leaks through a 13 km-wide gap between the anticlines and cascades into a large structural re-entrant that is heavily incised by the Poverty submarine canyon system. 210Pb mass accumulation profiles indicate that the modern post-settlement sedimentation rate of around 0.9 cm/yr on the outer shelf is double that recorded at the mid-shelf. Hence, the modern sediment accumulation is inconsistent with the post-glacial sediment thicknesses, which show the largest volume has accumulated on the mid-shelf. This may suggest an increasing frequency of Waipaoa-derived hyperpycnal flows with the ability to transport sediment seawards, or a change in the storage pattern within Poverty Bay. Accumulation rates on the slope are an order of magnitude less, around 0.1 cm/yr. Cores and multibeam images suggest that Poverty Canyon is inactive as a modern sediment pathway. The mouth and floor of the canyon are composed of stiff Pleistocene mud, overlain by a thin drape of unconsolidated mud. The seabed at the canyon mouth is highly reflective, deeply scoured, and lacks a fan. These features indicate little or no sediment flux. Accepting near-full capture of riverine-derived sediment on the shelf and slope, accumulation rates indicate that the modern (post-settlement) sediment yield from the Waipaoa River is almost an order of magnitude higher than the average for the Holocene. This is broadly compatible with accelerated rates of landscape erosion measured onshore. A revised sediment budget

  9. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Obelcz, Jeffrey; Brothers, Daniel; Chaytor, Jason; Brink, Uri ten; Ross, Steve W.; Brooke, Sandra

    2014-06-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5-10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  10. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    USGS Publications Warehouse

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  11. Cenozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Chardon, Dominique; Huyghe, Damien; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Ye, Jing; Dall'Asta, Massimo; Grimaud, Jean-Louis

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. Mapping and regional correlation of dated lateritic paleo-landscape remnants allows us to reconstruct two physiographic configurations of West Africa during the Cenozoic. We corrected those reconstitutions from flexural isostasy related to the subsequent erosion. These geometries show that the present-day drainage organization stabilized by at least 29 Myrs ago (probably by 34 Myr) revealing the antiquity of the Senegambia, Niger and Volta catchments toward the Atlantic as well as of the marginal upwarp currently forming a continental divide. The drainage rearrangement that lead to this drainage organization was primarily enhanced by the topographic growth of the Hoggar swell and caused a major stratigraphic turnover along the Equatorial margin of West Africa. Elevation differences between paleo-landscape remnants give access to the spatial and temporal distribution of denudation for 3 time-increments since 45 Myrs. From this, we estimate the volumes of sediments and associated lithologies exported by the West African Craton toward different segments of the margin, taking into account the type of eroded bedrock and the successive drainage reorganizations. We compare these data to Cenozoic accumulation histories in the basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in.

  12. Sedimentary Records of Shelf Edge Glaciation: A Young Trough-Mouth Fan on the Gulf of Alaska Yakutat Margin

    NASA Astrophysics Data System (ADS)

    Swartz, J. M.; Gulick, S. P. S.; Goff, J. A.

    2015-12-01

    The St. Elias Mountains in Southeastern Alaska are an active orogen that host temperate marine glaciers. Here, ice streams advancing across the continental shelf during glacial periods create wide shelf-crossing troughs and deliver large sediment volumes directly to the shelf edge, and from there to the continental slope and the deep sea Surveyor Fan. The continental slope exhibits steep morphology (~10°-30°), controlled by the Transition Fault, a transform boundary between the Yakutat micro-plate and the Pacific plate. Prior statistical analysis of continental slope morphology indicates that these steep initial slope conditions have been modified by proximal sedimentation during repeated glacial advances. Downslope of the Yakutat Sea Valley an incipient trough-mouth fan exists while between the troughs and downslope of the Alsek Sea Valley sediment slope-bypass dominates. Seismic analysis indicates that the Yakutat margin has seen significant slope sedimentation since the intensification of northern hemisphere glaciation ~2.6 Ma, but it is only recently that sufficient sediment supply has existed to overwhelm the steep margin topography and form the young trough-mouth fan. The mid-Pleistocene climate transition at ~1 Ma, and its associated shift from 41Kyr to 100Kyr glacial-interglacial climate cycles, could have potentially allowed sustained ice stream advances to the shelf edge and associated high proximal sedimentation on the continental slope. Integration of seismic data and newly obtained age constraints from recent IODP cores allows for investigation into the timing of Yakutat trough-mouth fan sedimentation and its relation to climate transitions.

  13. Mesozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    ye, jing; Chardon, Dominique; rouby, delphine; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Huyghe, damien; Dall'Asta, Massimo; Brown, Roderick; wildman, mark; webster, david

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. We produced paleogeographic maps at the scale of West Africa spanning the continental domain and offshore basins since 200 Ma. Mapping spatial and temporal distribution of domains either in erosion (sources) or in accumulation (sinks) document the impact of the successive rifting of Central and Equatorial Atlantic on the physiography of the area. We use low temperature thermochronology dating along three transects perpendicular to the margin (Guinea, Ivory Coast and Benin) to determine periods and domains of denudation in that framework. We compare these data to the Mesozoic accumulation histories in passive margin basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in. Syn-rift architectures (Early Cretaceous) are largely impacted by transform faults that define sub-basins with contrasted width of crustal necking zone (narrower in transform segments than in oblique/normal segments). During the Late Cretaceous post-rift, sedimentary wedges record a transgression along the all margin. Proximal parts of the sedimentary wedge are preserved in basins developing on segments with wide crustal necking zone while they were eroded away in basins developing on narrow segments. As a difference, the Cenozoic wedge is everywhere preserved across the whole width of the margin.

  14. Meso-Cenozoic Source-to-Sink analysis of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Rouby, Delphine; Huyghe, Damien; Ye, Jing; Guillocheau, François; Robin, Cécile; Dall'Asta, Massimo; Brown, Roderick; Webster, David

    2015-04-01

    The Transform Source to Sink Project (TS2P) objective is to link the evolution of the offshore sedimentary basins of the African margin of the Equatorial Atlantic and their source areas on the West African Craton. The margin consists in alternating transform and oblique margin portions from Guinea, in the West, to Nigeria, in the East. Such a longitudinal structural variability is associated with variation in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns that we analyzed using offshore seismic data and onshore geology and geomorphology. We compare syn- to post rift offshore geometry and long-term stratigraphic history of each of the margin segments. Transform faults appear to play a major role in shaping Early Cretaceous syn-rift basin architectures. Immediate post-rift Late Cretaceous sedimentary wedges record a transgression and are affected by the reactivation of some of transform faults. We produced A new type of inland paleogeographic maps for key periods since the end of the Triassic, allowing delineation of intracratonic basins having accumulated material issued from erosion of the marginal upwarps that have grown since break-up along the margin. We use offshore and onshore basin analysis to estimate sediment accumulation and integrate it in a source-to-sink analysis where Mesozoic onshore denudation will be estimated by low-temperature thermochronology. Cenozoic erosion and drainage history of the continental domain have been reconstructed from the spatial analysis of dated and regionally correlated geomorphic markers. The stationary drainage configuration of the onshore domain since 30 Ma offers the opportunity to correlate the detailed onshore morphoclimatic record based on the sequence of lateritic paleolandsurfaces to offshore stratigraphy, eustasy and global climatic proxies since the Oligocene. Within this framework, we simulate quantitative solute / solid erosional fluxes based on the

  15. Collapse and flow of lowstand shelf-margin deposits: An example from the eastern Tyrrhenian Sea, Italy

    USGS Publications Warehouse

    Trincardi, F.; Field, M.E.

    1992-01-01

    The upper slope of the eastern Tyrrhenian Sea margin has a complex morphology shaped by Quaternary tectonism and by sedimentation phases controlled by changing sea levels. Sediment slides of widely varying size and shape are common in Quaternary deposits of the upper slope, particularly where gradients are steep. Our study of a large sediment failure in lowstand prograded coastal deposits west of Cape Licosa indicates that the nature of shelf-margin deposition is an additional important control on failure. The failure zone has a mobilization surface showing in-situ deformation in the sediment above it; an upper failure surface; a head scarp; and a zone of ponded sediment debris downslope from the exposed surface of failure. The basal mobilization surface is roughly parallel to the seafloor and coincident with a major downlap surface. The failed section is less that 20 m thick and local in extent, but deformation on the basal mobilization surface extends outside the immediate area of the failure. Directly downslope of the slide scarp are internally stratified mounds that show no evidence of deformation or movement. Most of the prograded deposit experienced in-situ deformation that evolved into the collapse of part of the sediment pile above the mobilization surface. A portion of the mobilized sediment flowed a few kilometers basinward and accumulated at the base of a slope-parallel ridge. Sediment failure occurred on the Licosa shelf margin following a major pulse of coastal sedimentation along the lowstand shoreline. On many continental margins, sea-level lowering is thought to be an important cause of failure unconsolidated sediment deposited during previous high-stand conditions. The Licosa slide demonstrates that sea-level fall has another, equally important but indirect, role in sediment failure. As sea level falls and reaches its lowstand position, streams are at their peak efficiency and a coarsening-upward clastic coastal wedge is rapidly emplaced at

  16. Late Mesozoic North African continental margin: Sedimentary sequences and subsidence history

    SciTech Connect

    Kuhnt, W.; Obert, D.

    1988-08-01

    Cretaceous facies types and subsidence history have been studied along two well outcropping and almost complete transversals through the Tellian units of the Mesozoic North African margin, the Western Rif (Morocco), and the Babors (Algeria). Sedimentologic observations and characteristic foraminiferal assemblages enabled estimates for Late Cretaceous paleobathymetries. Both palinspastic reconstruction and sedimentologic and biofacies analyses led to the following results. (1) The morphology and evolution of the Cretaceous North African margin, which in general represents a classic passive continental margin, were complicated by various factors such as Late Cretaceous compressional and lateral movements, the onset of (tectonically controlled ) diapirism, and the existence of intramarginal highs and basins. (2) The Cretaceous subsidence history of both areas can be divided into four stages which are accompanied by characteristic sedimentary formations: (I) distension and subsidence of the margin (Early Cretaceous); (II) a first compressional phase with uplift and slight metamorphism in the Albian/early Cenomanian which affected mainly the northerly paleogeographic zones, accompanied by first diapiric movements and resedimentation of Triassic saliferous material; (III) a Late Cretaceous stage of subsidence (Cenomanian-Santonian); and (IV) a second compressional phase starting with the Campanian and reflected by the formation of sedimentary klippes and olistostromes. (3) As a general trend, sedimentary basins deepened from south to north during Campanian/Maastrichtian time, giving rise to a characteristic succession of bathymetric zones which have been observed on both transversals.

  17. Benthic remineralisation rates in shelf and slope sediments of the northern Benguela upwelling margin

    NASA Astrophysics Data System (ADS)

    Neumann, Andreas; Lahajnar, Niko; Emeis, Kay-Christian

    2016-02-01

    The Benguela Upwelling System off Namibia is a region of intensive plankton production. Remineralisation of this biomass frequently causes the formation of an oxygen minimum zone. A part of the organic matter is further deposited on the broad shelf in form of an extensive mudbelt with high TOC concentrations. During February 2011 we retrieved sediment samples from shelf and slope sediment along the Namibian coast to establish fluxes of nutrients, oxygen, and N2 on the basis of pore water concentrations. In mudbelt sediment, fluxes were estimated as high as 8 mmol NH4+ m-2 d-1 and 0.9 mmol PO43 - m-2 d-1, which is probably attributable to the activity of large sulphur bacteria. Especially phosphate is mobilised from sediment overlain by oxygen deficient bottom water when and where bottom water oxygen concentrations fall below 50 μmol l-1. In comparison to nutrient transport by Southern Atlantic Central Water flowing onto the Namibian shelf, benthic nutrient fluxes of the mudbelt contribute less than 5% to the nutrient budget of the shelf.

  18. Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf

    EPA Science Inventory

    Physical and biogeochemical processes determining the distribution and fate of nutrients delivered by the Mississippi and Atchafalaya rivers to the inner (<50 m depth) Louisiana continental shelf (LCS) were examined using a three-dimensional hydrodynamic model of the LCS and obse...

  19. The great West African Tertiary coastal uplift: Fact or fiction? A perspective from the Angolan divergent margin

    NASA Astrophysics Data System (ADS)

    Jackson, M. P. A.; Hudec, M. R.; Hegarty, K. A.

    2005-12-01

    We explore exhumation in the coastal Kwanza Basin by combining analyses of Tertiary hiatuses and apatite fission tracks. Planktonic biozones show five major hiatuses in the Oligo-Miocene and Plio-Pleistocene. Between gaps, Oligo-Miocene strata accumulated under marine conditions. A marine setting refutes the idea of a massively raised coastal plateau in the mid-Tertiary. Marine conditions continued until ˜5 Ma. Fission track data suggest three thermal events: ˜150 Ma, during rifting and volcanism; ˜100-70 Ma, during shortening and volcanism; and ˜20-10 Ma, during exhumation. Tertiary uplift was spatially highly variable. For the Kwanza Basin, we infer that Tertiary uplift on the West African margin is indeed a fact but that estimates of uplift timing and size are unreliable when extrapolated to adjoining areas. Massive uplift (2000-4000 m) of the Precambrian craton had little structural effect in the outer basin. Instead, minor uplifts on the shelf drove late Tertiary deformation on the slope.

  20. Changes in biological productivity along the northwest African margin over the past 20,000 years

    NASA Astrophysics Data System (ADS)

    Bradtmiller, Louisa I.; McGee, David; Awalt, Mitchell; Evers, Joseph; Yerxa, Haley; Kinsley, Christopher W.; deMenocal, Peter B.

    2016-01-01

    The intertropical convergence zone and the African monsoon system are highly sensitive to climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the northwest African margin record upwelling-related changes in biological productivity connected to changes in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes using a meridional transect of four cores from 19°N-31°N along the northwest African margin to examine changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during the African Humid Period when the monsoon was invigorated due to precessional changes, with greater rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous paleoproxy studies showing similar changes, and they provide support for modeling studies showing changes in wind strength and direction consistent with increased upwelling during abrupt coolings and decreased upwelling during the African Humid Period.

  1. Data based 3D modelling of the southwest African continental margin

    NASA Astrophysics Data System (ADS)

    Freymark, J.; Sippel, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.

    2012-04-01

    The volcanic passive continental margin of southwest Africa was formed in consequence of rifting and continental break-up of Gondwana in the Late Mesozoic. Our study focusses on an area extending from the Walvis Ridge in the north to the Agulhas Falkland Fracture Zone in the south including some important petroliferous sedimentary basins such as the Walvis Basin, the Luderitz Basin, and the Orange Basin. Due to decades of industrial exploration and scientific research, some of these areas reveal a large pool of structural and geophysical data. Thus, much is known about the individual tectonic and depositional histories of several subdomains of the area. The goal of our study is to understand the margin in its entirety. We present a 3D model of the present-day configuration of the southwest African continental margin. This model integrates well information, seismic reflection and refraction data, a previously published 3D structural model (Maystrenko et al., 2011), as well as freely available global data sets on the crustal structure (e.g. crust2.0 of Bassin, Laske & Masters, 2000). To extrapolate local information on crustal thickness (respectively the depth of the Moho) across the whole margin, we perform 3D gravity modelling using the software IGMAS+ (Götze & Schmidt, 2010; Schmidt et al., 2011). As parts of the first results, we show margin-wide depth and thickness distributions of a Palaeozoic to Cenozoic sedimentary layer and a Paleoproterozoic to Mesozoic crystalline crustal layer.

  2. Subsidence, extension and thermal history of the West African margin in Senegal

    NASA Astrophysics Data System (ADS)

    Brun, Marie Véronique Latil; Lucazeau, Francis

    1988-10-01

    The subsidence of the Atlantic margin in Senegal clearly shows two rapid stages related to the formation of (1) the Central Atlantic during the early Jurassic (around 200 Ma), and (2) the Equatorial Atlantic during the Cretaceous (100 Ma). A simple model of extension is used to interpret the subsidence history and to derive the thermal evolution of this basin. The present-day gravity, bathymetry, bottom hole temperatures (BHT) in oil exploration boreholes and heat flow density are used to control the validity of the model. Two cross sections from the outcropping basement to oceanic crust are used, one in Casamance and the other one at the south to latitude of Dakar. The model can fully explain the first-order subsidence history as well as the present-day observations, and therefore can provide valuable information about the thermal evolution of sediments and about the structure of the continental crust along the margin. Comparisons with the opposite margin in North America (Blake Plateau and Carolina trough) indicate a rather different evolution (the North American margin did not undergo the second stage of rifting) and a different crustal structure (crustal thinning is less important on the African margin).

  3. Siliciclastic Progradation Within a Neogene Carbonate Passive Margin - Northern Carnarvon Basin of the Northwest Shelf of Australia

    NASA Astrophysics Data System (ADS)

    Sanchez, C. M.; Fulthorpe, C. S.; Austin, J. A.

    2008-12-01

    Interpretations of extensive industry subsurface data (3D and 2D seismic data, wireline logs and completion reports) and results from previous studies suggest that relative sea level changes and ocean currents controlled observed variations in carbonate vs. siliciclastic sediment type and stratal architecture in the Northern Carnarvon Basin, Northwest Shelf of Australia, during the Neogene. The basin has been a site of predominantly carbonate sedimentation since the late Paleogene. However, significant (at least 30-70 km) siliciclastic progradation on top of this carbonate shelf started in the late middle Miocene. Carbonate- dominated sedimentation resumed in the late Miocene/Pliocene. Siliciclastic-rich seismic packages show dip- oriented progradation northwestward, as well as strike-oriented progradation northeastward. Clinoform heights, up to approx. 140 m, and a dip-elongated lobe morphology suggest deposition by a long-lived (approx. 6 My) deltaic system which is no longer active on this margin. Consistent northeastward switching of these interpreted delta lobes and their progradation over the preexisting carbonate shelf sediments suggest wave-dominated conditions, with strong northeastward long-shore currents, for this delta system during a time of relative base level fall. During this siliciclastic progradation event, carbonate sedimentation continued in the updrift direction southwest of the delta, but carbonates were not accumulated downdrift or northeast, where progressively younger deltaic siliciclastics filled available accommodation space. By the beginning of the Pliocene, siliciclastic sedimentation had retreated towards the Australian coast, allowing widespread carbonate production to resume; interpreted shallow-water carbonate platforms then developed over subtle topographic highs created by the underlying deltaic lobes.

  4. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-08-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low-frequency, long-duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  5. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-06-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass-balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low frequency, long duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  6. Methane Seepage From the Arctic Shelf; 20 Years of Research on the Beaufort Sea Margin

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Paull, C. K.; Collett, T. S.; Dallimore, S. R.

    2008-12-01

    The U. S. Geological Survey has lead or played major roles in several efforts over the past 20 years to find geochemical evidence for gas hydrate dissociation on the Beaufort Sea shelf, a region of complex and varied geologic features that include: 1) several river deltas entering the Arctic Ocean, the largest of which is the Mackenzie River, 2) submerged continental shelf underlain by permafrost, 3) known petroleum systems of northern Alaska and the Mackenzie River Delta - Canada, 4), submerged pingo-like features (PLF's ) and, 5) pockmark fields. The results of these studies show that gas hydrate is present and that methane source can be both microbial and thermogenic. In light of our rapidly changing climate, the instability and potential methane release from Arctic gas hydrate deposits are reemerging as pivotal uncertainties. On the Alaskan Beaufort Shelf in water depths or about 10 m or less, methane concentrations in seawater are elevated relative to atmosphere. This methane likely originates from microbial degradation of organic matter deposited by rivers or coastal currents, and may be associated with organics in destabilized from recently thawed submerged shelf permafrost. In deeper water, north and west of the Prudhoe Bay area, some exceptionally high bottom water methane concentrations were measured with carbon isotopic signatures very similar (about -46 to -48‰) to gas hydrate sampled from the Mount Elbert 01 gas hydrate test well drilled in 2007 in the same area. This methane is presumably associated with the Prudhoe Bay gas hydrate and petroleum system, and likely from either gas hydrate dissociation or simple gas migration. Gas venting in and around the Mackenzie River delta is associated with offshore Pingo-like features (PLF's) and pockmarks. These PLF's resemble onshore pingos, but with an unknown origin. The region is underlain by an active petroleum system, submerged shelf permaforst, and gas hydrate. Methane concentrations are elevated in

  7. Deep-sea environment and biodiversity of the West African Equatorial margin

    NASA Astrophysics Data System (ADS)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  8. Towards an improved organic carbon budget for the Barents Sea shelf, marginal Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pathirana, I.; Knies, J.; Felix, M.; Mann, U.

    2013-08-01

    There is generally a lack of knowledge on how marine organic carbon accumulation is linked to vertical export and primary productivity patterns. In this study, a multi-proxy geochemical and organic-sedimentological approach is coupled with organic facies modelling focusing on regional calculations of carbon cycling and carbon burial on the western Barents shelf between northern Scandinavia and Svalbard. OF-Mod 3D, an organic facies modelling software tool, is used to reconstruct the marine and terrestrial organic carbon fractions and to make inferences about marine primary productivity in this region. The model is calibrated with an extensive sample dataset and reproduces the present-day regional distribution of the organic carbon fractions well. Based on this new organic facies model, we present regional carbon mass accumulation rate calculations for the western Barents Sea.

  9. Late Quaternary seismic stratigraphy and structure of the western insular shelf margin of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Hanzlik, M.; Mann, P.; Abrams, L.; Grindlay, N.

    2005-12-01

    725 km of high-resolution seismic data were collected over the insular shelf of western Puerto Rico to better understand its late Quaternary depositional and structural history. Due to low tectonic uplift rates of onshore areas in this region, well dated late Quaternary sediments and corals have only been identified in a few scattered onland localities around Puerto Rico. Seismic data from the Rio Anasco delta area of western Puerto Rico reveals four main units with characteristic stratal reflection terminations that total about 25 m in thickness. Because of a lack of well information, age estimates of these late Quaternary units are based on correlations with sea level curves derived from dated coral samples from Puerto Rico, St. Croix, and Antigua. Units include: Unit 1 - a gently folded and faulted basal section correlated to the Oliogene-early Pliocene? carbonate shelf of Puerto Rico; deeper penetration, industry MCS lines show that these rocks are deformed in a broad EW-trenching arch; Unit 2 - chaotic channel fill deposits in incisions related to the lowstand equivalent of the Rio Anasco likely formed during the Last Glacial Maximum about 25-15 ka; Unit 3 - roughly stratified deposits onlapping the top of Unit 2; these are interpreted as an estuarine facies deposited during Holocene sea level transgression; Unit 4 - highly stratified deposits related to progradation of the Anasco delta during sea level rise. The base of unit 4 is a downlap surface interpreted as a maximum flooding surface likely formed about 6 ka. East-northeast-striking faults are observed breaking the younger late Quaternary units in three separate zones off the west coast of Puerto Rico. Onland continuations of these faults have not been identified likely due to cultural overprint of natural scarps on late Quaternary floodplains.

  10. Inherited segmentation of the Iberian-African margins and tectonic reconstruction of a diffuse plate boundary.

    NASA Astrophysics Data System (ADS)

    Fernàndez, Manel; Torne, Montserrat; Vergés, Jaume; Casciello, Emilio

    2016-04-01

    Diffuse plate-boundary regions are characterized by non-well defined contacts between tectonic plates thus making difficult their reconstruction through time. The Western Mediterranean is one of these regions, where the convergence between the African and Iberian plates since Late Cretaceous resulted in the Betic-Rif arcuate orogen, the Gulf of Cadiz imbricate wedge, and the Alboran back-arc basin. Whereas the Iberia-Africa plate boundary is well defined west to the Gorringe Bank and along the Gloria Fault, it becomes much more diffuse eastwards with seismicity spreading over both the south-Iberian and north-African margins. Gravity data, when filtered for short wavelengths, show conspicuous positive Bouguer anomalies associated with the Gorringe Bank, the Gulf of Cadiz High and the Ronda/Beni-Bousera peridotitic massifs reflecting an inherited Jurassic margin segmentation. The subsequent Alpine convergence between Africa and Iberia reactivated these domains, producing crustal-scale thrusting in the Atlantic segments and eventually subduction in the proto-Mediterranean segments. The Jurassic segmentation of the Iberia-Africa margins substantiates the double-polarity subduction model proposed for the region characterized by a change from SE-dipping polarity in the Gorringe, Gulf of Cadiz and Betic-Rif domains, to NW-dipping polarity in the proto-Algerian domain. Therefore, the Algerian and Tyrrhenian basins in the east and the Alboran basin in the west are the result of SSE-E and NW-W retreating slabs of oceanic and/or hyper-extended Tethyan domains, respectively.

  11. Influence of the Kingak Shale ultimate shelf margin on frontal structures of the Brooks Range in the National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Stier, Natalie E.; Connors, Christopher D.; Houseknecht, David W.

    2014-01-01

    The Jurassic–Lower Cretaceous Kingak Shale in the National Petroleum Reserve in Alaska (NPRA) includes several southward-offlapping depositional sequences that culminate in an ultimate shelf margin, which preserves the depositional profile in southern NPRA. The Kingak Shale thins abruptly southward across the ultimate shelf margin and grades into condensed shale, which is intercalated with underlying condensed shale and chert of the Upper Triassic Shublik Formation and overlying condensed shale of the Lower Cretaceous pebble shale unit and the gamma-ray zone (GRZ) of the Hue Shale. This composite of condensed shale forms a thin (≈300-meter) and mechanically weak section between much thicker and mechanically stronger units, including the Sadlerochit and Lisburne Groups below and the sandstone-prone foredeep wedge of the Torok Formation above. Seismic interpretation indicates that the composite condensed section acted as the major detachment during an Early Tertiary phase of deformation in the northern foothills of the Brooks Range and that thrust faults step up northward to the top of the Kingak, or to other surfaces within the Kingak or the overlying Torok. The main structural style is imbricate fault-bend folding, although fault-propagation folding is evident locally, and large-displacement thrust faults incorporate backthrusting to form structural wedges. The Kingak ultimate shelf margin served as a ramp to localize several thrust faults, and the spatial relationship between the ultimate shelf margin and thrust vergence is inferred to have controlled many structures in southern NPRA. For example, the obliqueness of the Carbon Creek anticline relative to other structures in the foothills is the result of northward-verging thrust faults impinging obliquely on the Kingak ultimate shelf margin in southwestern NPRA.

  12. Mid-Permian shelf margin erosion surfaces, western escarpment, Guadalupe Mountains, Texas

    SciTech Connect

    Franseen, E.K.; Pray, L.C.; Fekete, T.E.

    1987-05-01

    Three basin-sloping erosion surfaces, interpreted as submarine seismic sequence boundaries, are spectacularly exposed along the Guadalupe Mountains' western escarpment. Each surface has about 300 m of basin margin relief over 2 to 3 km and displays 30 to 80 m of local channeling and/or listric-shaped relief. The upper (post-Grayburg) and lower (post-Victorio Peak) surfaces truncate predominantly flat-bedded, shoaling-upward bank (or low-angle ramp) dolomite strata. The middle surface (post-Cutoff) locally cuts through the deep marine drape of 300 m relief of the 75-m thick Cutoff formation. The post-Grayburg surface is listric-shaped and truncates about 140 m of Grayburg in a basinward distance of 1.5 km. This post-Grayburg erosion surface marks a major change in Permian carbonate sedimentation from earlier bank strata to the steep foreslopes of 400 + relief of the Goat Seep-Capitan reef complex. Erosional retreat of the Grayburg and Victorio Peak bank margin may have been 100 m to 1 km or more. Evidence of submarine erosion includes deep marine facies directly overlying the erosion surfaces, the regional improbability of hundreds of meters of sea level lowering, and the lack of recognition of subaerial or coastal features. The erosion processes remain uncertain. Retrograde slumping is favored for the listric-shaped post-Grayburg surface. Bottom-hugging density currents were likely important for the lower two surfaces and perhaps for all three surfaces. Bare and eroded slopes are increasingly being recognized in modern submarine environments. They are likely more abundant and important in the geologic record than has been recognized to date.

  13. Late Pleistocene to Holocene sedimentation and hydrocarbon seeps on the continental shelf of a steep, tectonically active margin, southern California, USA

    USGS Publications Warehouse

    Draut, Amy E.; Hart, Patrick E.; Lorenson, T.D.; Ryan, Holly F.; Wong, Florence L.; Sliter, Ray W.; Conrad, James E.

    2009-01-01

    Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara-Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5-20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources

  14. Shelf architectures of an isolated Late Cretaceous carbonate platform margin, Galala Mountains (Eastern Desert, Egypt)

    NASA Astrophysics Data System (ADS)

    Scheibner, C.; Marzouk, A. M.; Kuss, J.

    2001-12-01

    An asymmetrical carbonate platform margin to basin transect has been investigated in the Upper Campanian-Maastrichtian succession of the Galala Mountains, northern Egypt. Identification of systems tracts and their lateral correlation was possible in slope sections only, whereas the monotonous chalk-marl alternations of the basinal sections could not be subdivided with respect to sequence stratigraphic terminology. The platform asymmetry is expressed by varying large-scale depositional architectures exhibiting a rimmed platform with a sigmoidal slope curvature in south-easterly dip-sections and a ramp with a linear slope curvature in south-westerly dip-sections. The rimmed platform is subdivided into a gentle upper slope and a steep lower slope. The platform formed as a result of the initial topography that was controlled by the tectonic uplift of the Northern Galala/Wadi Araba Syrian Arc structure. The calculated angles of the steep lower slope of the rimmed part range from 5 to 8°, whereas the ramp part has an angle of less than 0.1°.

  15. Styles of neotectonic fault reactivation within a formerly extended continental margin, North West Shelf, Australia

    NASA Astrophysics Data System (ADS)

    Whitney, Beau B.; Hengesh, James V.; Gillam, Dan

    2016-08-01

    We have investigated the locations and patterns of neotectonic deformation in the Carnarvon basin along the Mesozoic rifted margin of Western Australia to evaluate the characteristics of post-Neogene tectonic reactivation. Geological, geophysical, geotechnical, and bathymetric data demonstrate that preferentially oriented rift-era structures have been reactivated under the current neotectonic stress regime. The most recent pulse of neotectonic reactivation initiated during the Plio-Pleistocene (4.0 to 1.8 million years ago) and is ongoing. Reactivated structures in the region demonstrate a variety of styles of deformation consistent with dextral-transpression. Structural styles include both positive and negative flower structures, restraining and releasing bends, and hourglass structures. Barrow Island lies within a broad kinematic restraining bend that appears to warp the MIS 5e marine terrace on the island. Fold reconstructions of Neogene strata on the Cape Range and Barrow anticlines yield uplift rates consistent with uplift rates determined from folded late Pleistocene units in the Cape region. Although tectonic rates are low compared to interplate settings, evidence for active tectonic deformation precludes this part of the Australian plate from being classified as a Stable Continental Region.

  16. Multichannel seismic depth sections and interval velocities over outer continental shelf and upper continental slope between Cape Hatteras and Cape Cod: rifted margins

    USGS Publications Warehouse

    Grow, John A.; Mattick, Robert E.; Schlee, John S.

    1979-01-01

    Six computer-generated seismic depth sections over the outer continental shelf and upper slope reveal that subhorizontal Lower Cretaceous reflectors continue 20 to 30 km seaward of the present shelf edge. Extensive erosion on the continental slope has occurred primarily during the Tertiary, causing major unconformities and retreat of the shelf edge to its present position. The precise age and number of erosional events is not established, but at least one major erosional event is thought to be Oligocene and related to a marine regression in response to a worldwide eustatic lowering of sea level. Velocities derived from the multichannel data reveal distinctive ranges and lateral trends as functions of sediment age, depth of burial, and distance from the coastline. Seismic units beneath the shelf and slope of inferred Tertiary age range from 1.7 to 2.7 km/sec, increasing with age and depth of burial. Units interpreted as Upper Cretaceous rocks beneath the shelf range from 2.3 to 3.6 km/sec and show a distinct lateral increase across the shelf followed by a decrease beneath the present continental slope. Inferred Lower Cretaceous and Upper Jurassic rocks beneath the shelf increase from 3.7 to 4.8 km/sec from nearshore to offshore and indicate a change in facies from clastic units below the inner shelf to carbonate units beneath the outer shelf and upper continental slope. Both reflection and refraction data suggest that thin, high-velocity limestone units (5.0 km/sec) are present within the Lower Cretaceous and Upper Jurassic units beneath the outermost shelf edge, but that these change lithology or pinch out before reaching the middle shelf. Although lateral changes in velocity across the shelf and local velocity inversions appear, the interval velocities along the length of the margin show excellent continuity between Cape Hatteras and Cape Cod. The high-velocity horizons within the Lower Cretaceous and Upper Jurassic shelf-edge complex indicate the presence of a

  17. Using pressure transient analysis to improve well performance and optimize field development in compartmentalized shelf margin deltaic reservoirs

    SciTech Connect

    Badgett, K.L.; Crawford, G.E.; Mills, W.H.

    1996-12-31

    BP Exploration`s Gulf of Mexico group developed procedures to conduct effective well tests on conventional production wells and employed them during the development drilling phase of the Mississippi Canyon 109 (MC109) field. Bottomhole pressure data were recorded during the initial few weeks of production. Typically, a 48 hour pressure buildup survey (surface shut-in) was obtained near the end of data acquisition. Data from these tests were analyzed for completion efficiency, reservoir flow capacity, reservoir heterogeneities, and drainage area. Initially wells were gravel packed for sand control, until buildup interpretations indicated skins greater than 20. Frac packing technology was then employed, and an immediate improvement was observed with skins dropping into the teens. Over a period of time frac packs were optimized using the test derived skins as a metric. Analysis of pressure data also played an important role in identifying reservoir compartmentalization. The two major reservoir horizons at MC 109 are interpreted as shelf margin deltas. However, each of these has distinctly different compartmentalization issues. The continuous character of the G Sand made it easier to define the depositional system and investigate reservoir compartmentalization issues using a combination of well log, 3D seismic, static pressure trends, and fluid information. In the more distal deltaic reservoirs of the J Sand however, complications with seismic amplitudes and a less reliable tie between wireline and seismic data required the use of pressure transient analysis to efficiently exploit the reservoir.

  18. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  19. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  20. Generic analyses for evaluation of low Charpy upper-shelf energy effects on safety margins against fracture of reactor pressure vessel materials

    SciTech Connect

    Dickson, T.L.

    1993-07-01

    Appendix G to 10 CFR Part 50 requires that reactor pressure vessel beltline material maintain Charpy upper-shelf energies of no less than 50 ft-lb during the plant operating life, unless it is demonstrated in a manner approved by the Nuclear Regulatory Commission (NRC), that lower values of Charpy upper-shelf energy provide margins of safety against fracture equivalent to those in Appendix G to Section XI of the ASME Code. Analyses based on acceptance criteria and analysis methods adopted in the ASME Code Case N-512 are described herein. Additional information on material properties was provided by the NRC, Office of Nuclear Regulatory Research, Materials Engineering Branch. These cases, specified by the NRC, represent generic applications to boiling water reactor and pressurized water reactor vessels. This report is designated as HSST Report No. 140.

  1. Optical dating of aeolian dynamism on the West African Sahelian margin

    NASA Astrophysics Data System (ADS)

    Stokes, S.; Bailey, R. M.; Fedoroff, N.; O'Marah, K. E.

    2004-04-01

    The Sahelian Margin of West Africa is widely recognised as an area of recent environmental catastrophe and human suffering arising from food shortage and land degradation associated with prolonged drought. The propensity of this region to suffer drought has been related, using environmental data collected during the period of instrumental records, to a combination of low mean annual rainfall levels and a high degree of rainfall variability which relates to sea surface temperature anomalies in the adjacent tropical Atlantic Ocean. Despite the significant environmental and human consequences of such droughts, there is a paucity of long-term environmental data for the West African Sahel. Aeolian dune reactivations in this area are a potentially highly useful environmental archive of past periods of extended drought conditions, which may have resulted in localised or widespread dune reactivation. Here we describe the initial results from an ongoing programme of research, which seeks to develop a detailed record of past dune reactivations in Mali. We find evidence for repeated Holocene dune reactivation events and a significant number of reactivations, which commenced at the time of onset of the last major drought cycle in the early 1970s. We obtain ages as young as 20-30 years for some significant dune units (thickness up to 1 m) and describe the results of experiments which test the performance of our dating exercise. We specifically test for the significance of preheat temperature on single aliquot regeneration (SAR) equivalent dose determinations and recycling ratios; neither are found vary significantly as a function of preheating. Optical dating of sand sized quartz could provide a useful tool for palaeogeographical mapping of ancient and historical dune reactivations in this region and elsewhere.

  2. The Golden Lady: The Storied Life of a Multilingual Teacher and Author of Supplemental Reading Materials in a Marginalized South African Language

    ERIC Educational Resources Information Center

    Horan, Deborah A.; Sailors, Misty; Martinez, Miriam; Skerrett, Allison; Makalela, Leketi

    2012-01-01

    Personal narratives can be powerful venues for understanding human experiences. In this paper, we tell the story of Lutanyani, a Black South African multilingual teacher and author of supplemental reading materials in a marginalized South African language. Through various word images, we convey the role of language, in particular written language,…

  3. Basin Dynamics and Sedimentary Infilling of Miocene Sandstone Reservoir Systems In Eastern Tunisian African Margin

    NASA Astrophysics Data System (ADS)

    Bédir, Mourad; Khomsi, Sami

    2015-04-01

    Most of hydrocarbon accumulations and aquifers within the Cap Bon, Gulf of Hammamet and Sahel basins in eastern tunisian foreland are reservoired within the Upper Miocene Birsa and Saouaf sandstones and shales Formations. In the gulf of Hammamet, these sandstones constitutes oil and gas fields and are exploited on anticline highs and described as varying from shoreface to shallow marine and typically exhibit excellent reservoir quality of 30% to 35% porosity and good permeability from 500 to 1100 md. In addition, the fracturing of faults enhanced the reservoir quality potential. In contrary, the same hydrocarbon reservoirs are important hydrogeologic ones in the Cap Bon and Sahel basins with huge amount of hundred millions of cubic meters of water only partially exploited. Integrated wire line logging correlations, seismic sequence stratigraphic, tectonics and outcrop geologic analogue studies had permitted to highlight the basin structuring and sedimentary environments of sequence deposits infilling of the reservoir distribution between high platforms to subsiding graben and syncline basins bounded by deep-seated transtensive and transpressive flower faults. Seven third order sequence deposits limited by downlap prograding and onlap/toplap aggrading/retrograding system tracts extend along the eastern margin around the three basins by facies and thickness variances. System tracts exhibit around high horst and graben a channelized and levee infillings extending from 100 meters to more than a kilometer of width. They present a stacked single story and multistory channels types showing space lateral and vertical migrations along NE-SW, E-W and N-S directions. Paleogeographic depositional reservoir fair maps distribution highlight deltaic horst domain with floodplain and incised valley of fluvial amalgamed and braided sandstones distributary channels that occupy the high folded horsts. Whereas folded horst-graben and syncline borders domain of Shelf prodelta are

  4. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: Implications for differential sedimentation and transport at the coastal margin

    USGS Publications Warehouse

    Bianchi, T.S.; Mitra, Siddhartha; McKee, B.A.

    2002-01-01

    In this study, we examined the temporal and spatial variability of terrestrial organic carbon sources in lower Mississippi River and Louisiana shelf sediments (during 11 cruises over a 22-month period) to further understand the sorting dynamics and selective transport of vascular plant materials within the primary dispersal system of the river. Bulk ??13C values in lower river sediments ranged from -21.90??? to -24.64??? (mean=-23.20??1.09???), these values were generally more depleted than those found in shelf sediments (-22.5??? to -21.2???). The ??8 (??8 = sum of vanillyl, syringyl and cinnamyl phenols produced from the oxidation of 100 mg of organic carbon) values in the lower river ranged from 0.71 to 3.74 (mean = 1.78??0.23). While there was no significant relationship between ??8 and river discharge (p>0.05), the highest value occurred during peak discharge in April 1999-which corresponded to the highest observed C/N value of 17.41. The ??8 values on the shelf ranged from 0.68 to 1.36 (mean = 0.54??0.30) and were significantly lower (p <0.05) than the average value for lower river sediments. The range of S/V (syringyl/vanillyl) and C/V (cinnamyl/vanillyl) ratios on the shelf, 0.11 to 0.95 and 0.01 to 0.08, respectively, were similar to that found in the lower river. These low C/V ratios are indicative a mixture of woody and non-woody carbon sources. Recent work by Goni et al. [Nature 389 (1997) 275; Geochim. Cosmochim. Acta 62 (1998) 3055], which did not include sampling transects within the primary dispersal system of the Mississippi River, showed a non-woody vascular plant signature on the Louisiana shelf. This suggests that riverine-derived woody tissues preferentially settle out of the water column, in the lower river and inner shelf, prior to the selective dispersal of C3 versus C4 non-woody materials in other regions the shelf and slope. This works further demonstrates the importance of differential settlement of particles, sampling location within the

  5. The MORENA Project: Shelf-ocean exchanges and transport processes along the continental margin in the European coastal upwelling region

    SciTech Connect

    Fiuza, A.F.G.; Perez, F.; Johnson, J.

    1994-12-31

    The MORENA Project (Multidisciplinary Oceanographic Research in the Eastern Boundary of the North Atlantic) is sponsored by the CEC MAST-2 Programme and has as general objective to measure, understand and model shelf-ocean exchange in a typical coastal upwelling region of the eastern boundary layer of the subtropical ocean. This is being attained through a multidisciplinary approach aimed at the quantitative understanding of the physical, chemical and biological processes involved in the transfer of matter (including salt, particulates, nutrients, organic compounds, biomass), momentum and energy across and along the shelf, the shelf break and the slope, in the Iberian region of the European Atlantic. MORENA has the following components: Observations, Modelling and Combined Analysis.

  6. Tectonic and eustatic controls of late quaternary shelf sedimentation along the Central California (Santa Cruz) continental margin: high-resolution seismic stratigraphic evidence

    NASA Astrophysics Data System (ADS)

    Mullins, Henry T.; Nagel, David K.; Dominguez, Laura L.

    1985-07-01

    A high-resolution "uniboom", seismic stratigraphic investigation of a portion of the central California continental shelf has demonstrated that depositional patterns and sequences are controlled largely by an interplay of glacioeustatic sea-level fluctuations superimposed on local tectonics. Wrench tectonics, associated with active right-lateral shear along the San Gregorio fault zone, and the Pigeon Point Basement High control the location, distribution and overall geometry of depositional sequences via en echelon folding and differential subsidence. Areas of relatively thick and thin late Quaternary sediments conform in large part with structures produced during wrenching. Glacioeustatic sea-level oscillations have also shaped depositional patterns and sequences. Correlation of our seismic stratigraphic data with a southern California continental margin sea-level curve, suggests that during the last glacial maximum, approximately 18,000 yrs ago, a relative lowstand resulted in the erosion of a distinct unconformity upon which late Quaternary sediments have accumulated. A rapid rise of sea level to a relative stillstand, approximately 12,000 yrs ago, produced a concave-up, marine terrace profile across the mid-shelf, that has since been infilled with as much as 22 m of Holocene clastic sediments. A relative drop of sea level, approximately 11,000 yrs ago, allowed sediments to build seaward as a series of prograding clinoforms that form the basal sequences of the late Quaternary sediment fill. The succeeding Holocene transgression partially eroded the top of this earlier regressive sequence, and has now established a typical, wave-graded shelf along which sediments fine in a seaward direction to water depths of 90-100 m. At greater shelf water depths, surface sediments coarsen and appear to be relicts of previous relative sea-level lowstands. The presence of now submerged and buried marine terraces along both the central and southern California continental margins

  7. Moving beyond the Margins: An Exploration of Low Performing African American Male College Students

    ERIC Educational Resources Information Center

    Jackson, Ronald C.

    2011-01-01

    Data have shown that African American male college students are being outperformed. Compared to all other populations by ethnicity and gender, African American males most often fare the worst in terms of persistence, performance, and completion. The impetus of this study was to explore the motivation of those that have low academic performance and…

  8. Geology and biology of the "Sticky Grounds", shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane

    2016-08-01

    Shelf-margin carbonate mounds in water depths of 116-135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the "Sticky Grounds", trend along slope, are 5-15 m in relief with base diameters of 5-30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem

  9. Comparative analysis of post-breakup basin evolution along the South-American and South-African margins, southern Atlantic

    NASA Astrophysics Data System (ADS)

    Strozyk, F.; Back, S.; Kukla, P. A.

    2012-04-01

    Recently, considerable attempts have been made to compare the sedimentary basin evolution and the associated tectonic framework on both sides of the South-Atlantic. However, yet there are still unresolved questions concerning the tectono-sedimentary styles of margin basin evolution that markedly differ from north to south. Amongst the most striking observations is that multiple phases of uplift and subsidence are recorded after the break-up of the southern South Atlantic margin segment on both sides of the Florianopolis-Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup margin successions. Adding to the heterogeneity of the system, the northernmost segment of the South Atlantic rift and salt basins is also characterized by a pronounced asymmetry, with the Brazilian margin now comprising narrower and deeper rift basins with less salt than the Congo-Gabon conjugate margin. This project deals with a large-scale comparison of this very different post-breakup tectono-stratigraphic development of the southern and northern South American and African continental margins that both record thick post-rift sedimentary successions. To gain detail of the basin margin evolution, we focus on a regional comparison between the post-breakup records archived in the large offshore southern Brazil basins (Pelotas, Santos, Campos) and the post-breakup continental margin successions of offshore Namibia (e.g. Orange Basin) and southern Angola (e.g. Kwanza Basin). A tectonic-stratigraphic comparison of representative geological transects provides a comprehensive basin-to-basin documentation of key factors influencing margin development which include the subsidence development through time, the sediment (in-)flux and storage patterns and the respective type of basin fill (e.g. salt vs. non-salt systems; carbonate-rich vs. clastics-dominated systems). Data from the salt-prone areas offshore South America and southern

  10. Continental environment variations (climate, erosion) recorded by Marine quaternary sediments of the northwestern and eastern African margins

    NASA Astrophysics Data System (ADS)

    Faugères, J. C.; Pujol, Cl.

    Samples collected from 4 sites on the northwestern and eastern African margins were used to test the reliability of marine sedimentary record of continental environmental variations, during the last Glacial and Interglacial climatic cycle. On the northwestern margin which is passive and stable (between Cape Verde and Cape Blanc), climatic variations are marked by parameters such as sedimentary facies, sedimentary dynamics, sedimentation rates or faunal assemblages. These parameters are controlled by climatic changes that modify continental environments (erosion conditions, rate of terrigenous supplies) and marine environments as well (sea-level, currents and biogenic sediment productivity). On the opposite, in the Gulf of Aden, 3 sites show the extent to which tectonics may affect the record of environment modifications due to climatic changes. In the East of the Gulf, on the Sukra margin that is passive but with young and still active structures, the continental slope is uneven with tectonic basins acting as sediment traps. Here, several parameters like sedimentation rates become unreliable for they no longer reflect the importance of terrigenous inputs nor that of primary productivity. Further to the West, the deep narrow trough of Alula Fartak and the epicontinental domain belonging to the Assal rift (Ghubbet el Kharab), are part of highly active tectonic and volcanic margins. Continental environment variations cease to be recorded through sedimentological parameters which are closely related to morpho-structural and volcanic factors.

  11. Depositional architecture and evolution of the Late Miocene slope channel-fan-system in the northeastern shelf-margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Lin, Changsong; Zhang, Zhongtao; Tian, Hongxun; Tao, Ze; Liu, Hanyao

    2016-04-01

    The Upper Miocene in the Pearl River Mouth Basin of northwestern shelf-margin of South China Sea Basin contains a series of slope channel - fan systems. Their depositional architecture and evolution are documented in this investigation based on an integrated analysis of cores, logs, and seismic data. Four depositional-palaeogeomorphological elements have been identified in the slope channel-fan systems as follows: broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; deeply incised and confined unidirectionally migrating slope channels; broad or U-shaped, unconfined erosional-depositional channels; frontal splays-lobes and nonchannelized sheets. The slope channels are mostly oriented NW-SE, which migrated unidirectionally northeastwards and intensively eroded almost the whole shelf-slope zone. The channel infillings are mainly mudstones, interbedded with siltstones. They might be formed by gravity flow erosion as bypassing channels. They were filled with limited gravity flow sediments at the base and mostly filled with lateral accretionary packages of bottom current deposits. At the end of the channels, a series of small-scale slope fans developed and coalesced into fan aprons along the base of the slope. The unconfined erosional-depositional channels at the upper parts of the fan-apron-systems display compound infill patterns, and commonly have concave erosional bases and convex tops. The frontal splays-lobes representing middle to distal deposits of fan-apron-systems have flat-mounded or gull-wing geometries, and the internal architectures include bidirectional downlap, progradation, and chaotic infillings. The distal nonchannelized turbidite sheets are characterized by thin-bedded, parallel to sub-parallel sheet-like geometries. Three major unconformities or obvious erosional surfaces in the channel-fan systems of the Upper Miocene are recognized, and indicate the falling of sea-level. The depositional architecture of sequences

  12. Plate Kinematic model of the NW Indian Ocean and derived regional stress history of the East African Margin

    NASA Astrophysics Data System (ADS)

    Tuck-Martin, Amy; Adam, Jürgen; Eagles, Graeme

    2015-04-01

    Starting with the break up of Gondwana, the northwest Indian Ocean and its continental margins in Madagascar, East Africa and western India formed by divergence of the African and Indian plates and were shaped by a complicated sequence of plate boundary relocations, ridge propagation events, and the independent movement of the Seychelles microplate. As a result, attempts to reconcile the different plate-tectonic components and processes into a coherent kinematic model have so far been unsatisfactory. A new high-resolution plate kinematic model has been produced in an attempt to solve these problems, using seafloor spreading data and rotation parameters generated by a mixture of visual fitting of magnetic isochron data and iterative joint inversion of magnetic isochron and fracture zone data. Using plate motion vectors and plate boundary geometries derived from this model, the first-order regional stress pattern was modelled for distinct phases of margin formation. The stress pattern is correlated with the tectono-stratigraphic history of related sedimentary basins. The plate kinematic model identifies three phases of spreading, from the Jurassic to the Paleogene, which resulted in the formation of three main oceanic basins. Prior to these phases, intracontinental 'Karoo' rifting episodes in the late Carboniferous to late Triassic had failed to break up Gondwana, but initiated the formation of sedimentary basins along the East African and West Madagascan margins. At the start of the first phase of spreading (183 to 133 Ma) predominantly NW - SE extension caused continental rifting that separated Madagascar/India/Antarctica from Africa. Maximum horizontal stresses trended perpendicular to the local plate-kinematic vector, and parallel to the rift axes. During and after continental break-up and subsequent spreading, the regional stress regime changed drastically. The extensional stress regime became restricted to the active spreading ridges that in turn adopted trends

  13. How Does the Morphology of Shelf-Margin Deltas Relate to Sea-Level Elevation? Clues From the Modern Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Bart, P. J.

    2005-12-01

    Scientists have attempted to precisely determine eustatic changes using various techniques. One of these is the sequence stratigraphic technique which relies on vertical changes in the position of coastal onlap (Vail et al, 1977). In subsequent years, several authors have recognized many limitations in this approach (Christie-Blick et al., 1990). Our ongoing study focuses on the possibility of using the morphology of modern and ancient shelf-margin deltas as sea-level indicators to determine past sea-level elevations. The Mississippi River Delta provides an excellent opportunity to study the precise relationship between shelf-edge delta morphology and sea-level elevation. A morphological analysis of the modern Mississippi River Delta suggests that there may be a direct relationship between the sea-level and the offlap break features of the delta. The offlap break is defined at the intersection of topset and foreset at the location of a marked increase in slope. At this point, the bathymetric curvature (i.e. second derivative of sea-floor) is highest. This is analogous to O'Grady and Syvitski (2002) definition of shelf break offshore Greenland. More than a hundred bathymetric cross sections were made across the modern Balize lobe of the Mississippi River Delta using Rivertools software. The geomorphic analysis showed that there were two distinct morphologic types of the delta. In one type, there is a sharp transition from the topset to the foreset, whereas in a second type, the topset-foreset transition is gradual. It was observed that sharp offlap breaks characterize the eastern part of the delta at water depths of 1 ± 0.3 m. The southern and southwestern parts of the delta are characterized by gradual offlap breaks at water depths of 4 ± 2 m.

  14. The extent of ocean acidification on aragonite saturation state along the Washington-Oregon continental shelf margin in late summer 2012

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.

    2012-12-01

    The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.

  15. The Bay of Bengal and the Statement of Understanding Concerning the Establishment of the Outer Edge of the Continental Margin: Regional Implications for Delimiting the Juridical Continental Shelf

    NASA Astrophysics Data System (ADS)

    Mridha, M.; Varma, H.; Macnab, R.

    2005-12-01

    The Bay of Bengal is the site of massive depositions of sediment from the Ganga-Brahmaputra river systems, which discharge an estimated 2300 million tons of material into the Indian Ocean every year. The accumulated material comprises an enormous fan that extends some 4000 km from the Mouths of the Ganges, a delta system which encompasses the entire coast of Bangladesh and a segment of the coast of India. The major tectonic elements of the Bay of Bengal and surrounding areas are: the passive eastern continental margin of India; the 85E Ridge; the Ninetyeast Ridge; the intervening basin buried beneath deep sediment; and the Sunda Arc system with the associated back-arc Andaman Basin. Except for the Nikitin Seamounts which rise above the seabed just south of the Equator, the 85E Ridge is totally covered by thick sediment. The Ninetyeast Ridge, on the other hand, protrudes above the seabed as far north as 10N, where it plunges beneath the thickening sediment and separates the deposits into the Bengal Fan and the smaller Nicobar Fan. The 85E and Ninetyeast Ridges present the most significant relief in the crystalline basement underlying the Bay of Bengal, and should therefore figure substantially in any analysis of sediment thickness pursuant to the delimitation of the outer continental shelf. In this region, the sediment thickness provision of Article 76 has been modified by a Statement of Understanding in Annex II of the Final Act of the Third UN Conference on the Law of the Sea. To avoid a perceived inequity that might arise from the application of the standard one percent sediment thickness formula of Article 76, the Statement introduced a new formula: a qualified State in this region, even if it has a narrow physiographic continental shelf, may establish the outer edge of its continental margin by a line where the thickness of sedimentary rock is not less than one km. This presentation will describe the development of a joint formula line for the States that

  16. Geology and biology of the "Sticky Grounds," shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

    USGS Publications Warehouse

    Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane

    2016-01-01

    Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve

  17. Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    PubMed Central

    Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.

    2010-01-01

    Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life

  18. The tectono-stratigraphic evolution of the mid-Norway shelf in an Atlantic margin context, and its implications for prospectivity

    SciTech Connect

    Dore, A.G.; Birkeland, O.; Lundin, E.

    1995-08-01

    Source rock, reservoir rock and trap formation along the Atlantic margin between offshore Ireland and the northern part of the Mid-Norwegian shelf can be related to repeating tectonic motifs. Interaction of N-S and NE-SW fault and basin trends and NW-SE transfer lineaments is particularly significant. At least some of this structural grain can be related to basement anisotrophy dating back to the late Caledonian or earlier. Using tectonic maps, facies maps and profiles we demonstrate the establishment and exploitation of these structural elements in response to successive extensional episodes will varying stress fields, magmatic episodes and transtension/transpression. The following key tectonic episodes are selected for discussion: Late Caledonian establishment of basement grain; Carboniferous - Triassic extension; Late Jurassic rifting with a dominant E-W extension vector; Cretaceous extension and magmatism with a dominant NW-SE extension vector; Latest Cretaceous-Eocene tectonism, magmatism and break-up; Cenozoic (primarily Oligocene-Miocene) compression/inversion; and Late Cenozoic uplift. The analysis is described with special reference to the new exploration areas offshore Mid-Norway - the More Basin, Voring Basin and Lofoten area. The potential for play analogies and transfer of exploration models along the Atlantic margin trend is particularly emphasised.

  19. Geometry and structural evolution of Lorbeus diapir, northwestern Tunisia: polyphase diapirism of the North African inverted passive margin

    NASA Astrophysics Data System (ADS)

    Masrouhi, Amara; Bellier, Olivier; Koyi, Hemin

    2014-04-01

    Detailed geologic mapping, structural analysis, field cross-sections, new dating based on planktonic foraminifera, in addition to gravity signature of Lorbeus diapir, are used to characterize polyphase salt diapirism. This study highlights the role of inherited faulting, which controls and influences the piercement efficiency and the style and geometry of the diapir; and also the localization of evaporite early ascent displaying diapiric growth during extension. Salt was extruded along the graben axis developed within extensional regional early Cretaceous tectonic associated with the North African passive margin evolution. Geologic data highlight reactive diapirism during Albian time (most extreme extension period) and passive diapirism during the late Cretaceous post-rift stage. Northeastern Maghreb salt province gives evidences that contractional deformations are not associated with significant diapirism. During shortening, the initial major graben deforms as complex anticlines where diapirs are squeezed and pinched from their feeding.

  20. A new type of shelf margin deposit: rigid microbial sheets and unconsolidated grainstones riddled with meter-scale cavities

    NASA Astrophysics Data System (ADS)

    de Wet, C. B.; Dickson, J. A. D.; Wood, R. A.; Gaswirth, S. B.; Frey, H. M.

    1999-10-01

    Middle Cambrian microbial limestone contains a network of unusual, predominantly horizontal cavities up to 2 m in length and 0. 5 m in height. The microbialite experienced rapid syndepositional lithification, but adjacent grainstone sediments remained unlithified during deposition. This juxtaposition contributed to sediment instability, resulting in fracturing and brecciation of the lithified microbialite while unconsolidated grainstones underwent slumping and injection into some cavities. Remaining space within the cavities was colonized by a series of encrustations: thin crusts (2-8 mm) of laminated algal mats, followed by several generations of calcified Renalcis-like cyanobacteria up to 45 mm thick. Remaining void space was partially filled by internal sediment, and then sequentially occluded by banded radiaxial fibrous calcite, herringbone calcite, and finally saddle dolomite cements. The radiaxial and herringbone calcite cements precipitated from porewaters derived from seawater that became anoxic through the breakdown of organic matter in the microbialite. Noteworthy is the presence of herringbone calcite cement, not as a seafloor precipitate, but as an early cavity fill. We propose that the unusual bedding-parallel fractures were caused by gravity collapse along a shallow platform margin. Coeval foreslope sediments show syndepositional slumping, faulting, and mass flow deposits. These redeposited sediments contain boulders of microbialite and grainstone of platform margin provenance.

  1. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T. C. L.; Done, T. J.; Beaman, R. J.; Friedman, A.; Williams, S. B.; Pizarro, O.; Webster, J. M.

    2011-03-01

    Habitats and ecological communities occurring in the mesophotic region of the central Great Barrier Reef (GBR), Australia, were investigated using autonomous underwater vehicle (AUV) from 51 to 145 m. High-resolution multibeam bathymetry of the outer-shelf at Hydrographers Passage in the central GBR revealed submerged linear reefs with tops at 50, 55, 80, 90, 100 and 130 m separated by flat, sandy inter-reefal areas punctuated by limestone pinnacles. Cluster analysis of AUV images yielded five distinct site groups based on their benthic macrofauna, with rugosity and the presence of limestone reef identified as the most significant abiotic factors explaining the distribution of macrofaunal communities. Reef-associated macrofaunal communities occurred in three distinct depth zones: (1) a shallow (<60 m) community dominated by photosynthetic taxa, notably scleractinian corals, zooxanthellate octocorals and photosynthetic sponges; (2) a transitional community (60-75 m) comprising both zooxanthellate taxa and azooxanthellate taxa (notably gorgonians and antipatharians); and (3) an entirely azooxanthellate community (>75 m). The effects of depth and microhabitat topography on irradiance most likely play a critical role in controlling vertical zonation on reef substrates. The lower depth limits of zooxanthellate corals are significantly shallower than that observed in many other mesophotic coral ecosystems. This may be a result of resuspension of sediments from the sand sheets by strong currents and/or a consequence of cold water upwelling.

  2. The habitat of petroleum in the Brazilian marginal and west African basins: A biological marker investigation

    SciTech Connect

    Mello, M.R.; Soldan, A.L. ); Maxwell, J.R. ); Figueira, J. )

    1990-05-01

    A geochemical and biological marker investigation of a variety of oils from offshore Brazil and west Africa, ranging in age from Lower Cretaceous to Tertiary, has been done, with the following aims: (1) assessing the depositional environment of source rocks, (2) correlating the reservoired oils, (3) comparing the Brazilian oils with their west African counterparts. The approach was based in stable isotope data; bulk, elemental, and hydrous pyrolysis results; and molecular studies involving quantitative geological marker investigations of alkanes using GC-MS and GC-MS-MS. The results reveal similarities between groups of oils from each side of the Atlantic and suggest an origin from source rocks deposited in five types of depositional environment: lacustrine fresh water, lacustrine saline water, marine evaporitic/carbonate, restricted marine anoxic, and marine deltaic. In west Africa, the Upper Cretaceous marine anoxic succession (Cenomanian-Santonian) appears to be a major oil producer, but in Brazil it is generally immature. The Brazilian offshore oils have arisen mainly from the pre-salt sequence, whereas the African oils show a balance between origins from the pre-salt and marine sequences. The integration of the geochemical and geological data indicate that new frontiers of hydrocarbon exploration in the west African basins must consider the Tertiary reservoirs in the offshore area of Niger Delta, the reservoirs of the rift sequences in the shallow-water areas of south Gabon, Congo, and Cuanza basins, and the reservoirs from the drift sequences (post-salt) in the deep-water areas of Gabon, Congo Cabinda, and Cuanza basins.

  3. Principles of Geological Mapping of Marine Sediments (with Special Reference to the African Continental Margin). Unesco Reports in Marine Science No. 37.

    ERIC Educational Resources Information Center

    Lisitzin, Alexandre P.

    Designed to serve as a complement to the Unesco Technical Papers in Marine Science, this report concentrates on theoretical and practical problems of geological mapping of the sea floor. An introduction is given to geological mapping procedures at continental margins as well as some practical recommendations taking as an example the African region…

  4. Climatic changes along the northwestern African Continental Margin over the last 30 kyrs

    NASA Astrophysics Data System (ADS)

    Ternois, Yann; Sicre, Marie-Alexandrine; Paterne, Martine

    2000-01-01

    Two sediment cores were investigated to study the regional climatic variability of the NW African upwelling over the late Quaternary. Biomarker data and Sea Surface Temperatures (SSTs) predicted from alkenones at 25°N and 21°N exhibited distinct features. The amplitude of the last deglaciation was estimated to 4.5°C at 25°N and 2-2.5°C at 21°N. At 25°N, terrestrial and marine glacial inputs were higher than Holocene ones as a result of a strengthening of the trade winds and intensification of oceanic production. In contrast, at 21°N, warmer SSTs and lower organic carbon and alkenone productions during the last glacial suggest a regression of the upwelling and therefore a change of wind regime. Low glacial n-alkanols are consistent with the migration of the vegetation belt during the maximum of African aridity, while their decrease towards the core-top may be indicative of anthropogenic disturbances.

  5. Thermal history from both sides of the South Atlantic passive margin - A comparison: Argentinean pampa vs. South African escarpement.

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. In existing literature the Sierras Australes are correlated with the South African cape fold belt (Torsvik 2009; Lopez Gamundi & Rossello 1998). Existing thermochronological data shows different post-breakup cooling histories for both areas and different AFT-ages. Published thermochronological ages (e.g. Raab et al. 2002, 2005, Gallagher et al et al. 1998)from the south African escarpement vary around 150 and 100 Ma (Gallagher et al. 1998). Only some spots in the eastern part of South Africa towards the pacific margin show older ages of 250 Ma and older than 350 Ma (Gallagher et al. 1998). New thermochronological data (AHe, AFT and ZHe) from the Sierras Australes indicate a different cooling history by revealing a range of varying ages due to younger tectonic activity. By comparing the data sets from both areas it is getting clear that the post-rift evolution of both continents is differing very strong. Gallagher, K., Brown, R. and Johnson, C. 1998. Fission track analysis and its application to geological problems. Annual review of Earth and Planetary Science, 26, 519-572. Lopez Gamundi, O.R., Rossello, E.A. (1998): Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) revisited. Geol Rundsch 86 :819-834. Raab, M.J., Brown, R.W., Gallagher, K., Carter, A. and Webber, K. 2002. late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics. 349, 75-92. Raab, M.J., Brown, R.W., Gallagher, K., Webber, K. and Gleadow, A.J.W. 2005. denudational and

  6. Sediment movement and dispersal patterns on the Grand Banks continental shelf and slope were tied to the dynamics of the Laurentide ice-sheet margin

    NASA Astrophysics Data System (ADS)

    Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.

    2015-12-01

    The expansion and contraction of the late Pleistocene Laurentide ice-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental margin, with abundant mass-transport deposits (MTDs) seaward of ice margins on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an ice margin on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental margin. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake

  7. Phytoplankton along the coastal shelf of an oligotrophic hypersaline environment in a semi-enclosed marginal sea: Qatar (Arabian Gulf)

    NASA Astrophysics Data System (ADS)

    Quigg, Antonietta; Al-Ansi, Mohsin; Al Din, Nehad Nour; Wei, Chih-Lin; Nunnally, Clifton C.; Al-Ansari, Ibrahim S.; Rowe, Gilbert T.; Soliman, Yousria; Al-Maslamani, Ibrahim; Mahmoud, Ismail; Youssef, Nabiha; Abdel-Moati, Mohamed A.

    2013-06-01

    Phytoplankton biomass (chlorophyll a concentration), primary production, abundance, species diversity and species groupings were measured in the coastal waters surrounding Qatar (Arabian Gulf) at 13 stations in February 2010, July 2010, February 2011 and May 2011. In addition, a broad suite of physico-chemical characteristics were measured: temperature, salinity, pH, dissolved oxygen, turbidity, and nutrients (dissolved and particulate). Waters surrounding the Qatari peninsula were found to be highly diverse (125 species of diatoms, dinoflagellates and cyanobacteria were identified) but were low in both biomass (0.18-2.19 μg Chl a l-1) and productivity (0.14-0.97 mg C m-2 day-1). Phytoplankton physiology (Fv/Fm, σPSII, τQa, p) revealed acclimation strategies consistent with phytoplankton populations receiving ample light but insufficient nutrients. The finding of low primary production is consistent with water column nutrient ratios (DIN:P and DIN:Si ratios<1) and nutrient enrichment experiments in which the addition of nitrate or the addition of near-bottom waters stimulated biomass production of phytoplankton. This study in an oligotrophic, hypersaline semi-enclosed marginal sea is intended to contribute to the growing body of ecological information on this ecosystem functions.

  8. X-ray synchrotron diffraction study of natural gas hydrates from African margin

    NASA Astrophysics Data System (ADS)

    Bourry, Christophe; Charlou, Jean-Luc; Donval, Jean-Pierre; Brunelli, Michela; Focsa, Cristian; Chazallon, Bertrand

    2007-11-01

    Natural gas hydrates recovered from the Congo-Angola basin and Nigerian margins are analyzed by synchrotron X-ray powder diffraction. Biogenic methane is the most abundant gas trapped in the samples and others minor components (CO2, H2S) are co-clathrated in a type I cubic lattice structure. The refinement for the type I structure gives lattice parameters of a = 11.8646 (39) Å and a = 11.8619 (23) Å for specimens from Congo-Angola and Nigerian margins respectively at 90 K. These values, intermediate between the lattice constant of less pure methane specimens and pure artificial methane hydrates, indicate that lattice constants can be affected by the presence of encaged CO2, H2S and other gas molecules, even in small amounts. Thermal expansion is also presented for Congo-Angola hydrate in the temperature range 90-200 K. The coefficients are comparable with values reported for synthetic hydrates at low temperature and tend to approach thermal expansion of ice at higher temperature.

  9. Cryosphere/ocean interactions at the margin of the Laurentide Ice Sheet during the Younger Dryas Chron: SE Baffin Shelf, northwest Territories

    NASA Astrophysics Data System (ADS)

    Andrews, J. T.; Evans, L. W.; Williams, K. M.; Briggs, W. M.; Jull, A. J. T.; Erlenkeuser, H.; Hardy, I.

    1990-12-01

    Cores HU82-034-057 and HU84-035-008, Resolution Basin, SE Baffin Shelf, contain 200 and 450 cm, respectively, of sediment that spans the Younger Dryas chron. In both cores the interval is bracketed by 14C dates on foraminifera or molluscs. These sites were close to the margin of the late Wisconsin (Foxe) ice sheet as it flowed toward the Labrador Sea. Prior to 11 ka, both cores record moderate to high accumulations of foraminifera, relatively high del 18O values in planktonic foraminifera, and low values of detrital carbonate. The diatom and percent opal records imply occasional seasonally open water conditions. During part of the Younger Dryas chron both the diatom and opal analyses imply a shutoff of biogenic silica production, suggesting surface water conditions affected by increased sea ice and/or reduced nutrients. In addition, the Younger Dryas interval is marked by an increase in coarse sand and detrital carbonate, a decrease in total organic carbon and foraminifera, and high rates of sediment accumulation. The inferred environment during the Younger Dryas is ice-proximal. In HU82-034-057, the foraminifera and other data suggest a change in conditions during the middle part of the Younger Dryas chron.

  10. Seismic stratigraphy, facies architecture, and reservoir character of a pleistocene shelf-margin delta complex, Eugene Island Block 330 field, offshore Louisiana

    SciTech Connect

    Hart, B.S.; Sibley, D.M.; Flemings, P.B.

    1997-03-01

    The GA interval of the Eugene Island Block 330 field is the deposit of late Pleistocene ({approximately}0.8 Ma) shelf-margin lowstand delta complex. We integrated three-dimensional (3-D) seismic, wireline log, core, and cuttings data to examine the delta`s internal architecture and to reconstruct its depositional history. This interval displays a complex vertical and lateral interfingering of channel, clinoform, and base-of-slope failure deposits over short distances (a few kilometers), and is the product of delta lobe progradation structural development (growth faults, rollover anticline) and relative sea level change. We then integrated our sequence stratigraphic interpretation with production data. Hydrocarbon accumulations in the interval are primarily associated with updip facies (delta mouth bar, delta front) beneath the flooding surface at the top of the interval, and not the sequence boundary at the base of the interval. Maps of seismic amplitudes associated with the top of the GA interval show patchy (mouth bar deposits) and curvilinear (interdistributary delta front) trends that indicate reservoir heterogeneities associated with depositional features. There is a good qualitative relationship between seismic amplitude and production characteristics, with the best production being from high-amplitude areas that sit high on the structure.

  11. Structural and Seismic Stratigrapic study in the Center of the Magdalena Shelf in the Western Margin of Baja California Based on Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    González-Escobar, Mario; Salazar-Cárdenas, Rosa M.; Munguía, Luis; Martín, Arturo; Suárez-Vidal, Francisco

    2016-09-01

    The Magdalena Shelf is a shallow, low-relief surface located along the Baja California Pacific margin. As part of a forearc basin, the shelf was a convergent margin setting before the oblique divergent plate boundary formed in the Gulf of California at 12 Ma. It is thought that since 12-8 Ma, this basin has been a transtensional or strike-slip basin. To constrain the geometry, structural characteristics and some stratigraphic relationships, an active-source, seismic-reflection study was carried out in the central part of the shelf. As a result, the analyzed data show faults, basins and unconformities. Two out of four observed basins are clearly controlled by the Santa Margarita and San Lázaro faults that dip ~40° NE; a third basin is controlled by the Tosco-Abreojos fault. These three basins are part of the deformation zone that is associated with the Tosco-Abreojos fault system. The Iray-Margarita basin, on the other hand, is a fourth basin located at the northeast sector of the study area. An additional feature observed is a stepover lying between the overlapping ends of the Santa Margarita and San Lázaro faults. Small faults oriented sub-parallel to the above major faults are present, mainly throughout the western sector of the study area. Some of those minor faults cut through the seafloor indicating recent tectonic activity. Santa Margarita, San Lázaro and Tosco-Abreojos are also the names given to half-grabens controlled by the active faults that have the same names. The first two basins are affected by many more small faults in comparison with what we see in the third basin. Tectonically, this means that those two basins are the more active in the area of study. In all four basins, the upper seismic sequence consists of sediments controlled by faults of Neogene age. We found that the Iray-Santa Margarita basin is the deepest of all four basins (beyond the resolution of the data, >5 km), and lack of minor faults there indicates that the basin is not

  12. Structural and Seismic Stratigrapic study in the Center of the Magdalena Shelf in the Western Margin of Baja California Based on Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    González-Escobar, Mario; Salazar-Cárdenas, Rosa M.; Munguía, Luis; Martín, Arturo; Suárez-Vidal, Francisco

    2016-10-01

    The Magdalena Shelf is a shallow, low-relief surface located along the Baja California Pacific margin. As part of a forearc basin, the shelf was a convergent margin setting before the oblique divergent plate boundary formed in the Gulf of California at 12 Ma. It is thought that since 12-8 Ma, this basin has been a transtensional or strike-slip basin. To constrain the geometry, structural characteristics and some stratigraphic relationships, an active-source, seismic-reflection study was carried out in the central part of the shelf. As a result, the analyzed data show faults, basins and unconformities. Two out of four observed basins are clearly controlled by the Santa Margarita and San Lázaro faults that dip ~40° NE; a third basin is controlled by the Tosco-Abreojos fault. These three basins are part of the deformation zone that is associated with the Tosco-Abreojos fault system. The Iray-Margarita basin, on the other hand, is a fourth basin located at the northeast sector of the study area. An additional feature observed is a stepover lying between the overlapping ends of the Santa Margarita and San Lázaro faults. Small faults oriented sub-parallel to the above major faults are present, mainly throughout the western sector of the study area. Some of those minor faults cut through the seafloor indicating recent tectonic activity. Santa Margarita, San Lázaro and Tosco-Abreojos are also the names given to half-grabens controlled by the active faults that have the same names. The first two basins are affected by many more small faults in comparison with what we see in the third basin. Tectonically, this means that those two basins are the more active in the area of study. In all four basins, the upper seismic sequence consists of sediments controlled by faults of Neogene age. We found that the Iray-Santa Margarita basin is the deepest of all four basins (beyond the resolution of the data, >5 km), and lack of minor faults there indicates that the basin is not

  13. Cenozoic denudation rates of the West African marginal upwarp recorded by lateritic paleotopographies

    NASA Astrophysics Data System (ADS)

    Beauvais, Anicet; Chardon, Dominique

    2013-04-01

    Quantifying long-term erosion of tropical shields is crucial to constraining the role of lateritic regolith covers as prominent sinks and sources of CO2 and sediments in the context of long-term Cenozoic climate change. It is also a key to understanding long-term landform evolution processes operating over most of the continental surface, particularly passive margins, and their control onto the sediment routing system. We study the surface evolution of West Africa over three erosion periods (~ 45-24, ~ 24-11 and ~ 11-0 Ma) recorded by relicts of 3 sub-continental scale lateritic paleolandsurfaces whose age is bracketed by 39Ar/40Ar dating of lateritic K-Mn oxides [1]. Denudation depths and rates compiled from 380 field stations show that despite heterogeneities confined to early-inherited reliefs, the sub-region underwent low and homogeneous denudation (~ 2-20 m Ma-1) over most of its surface whatever the considered time interval. This homogeneity is further documented by a worldwide compilation of cratonic denudation rates, over long-term, intermediate and modern Cenozoic time scales (100 - 107 yr). These results allow defining a steady-state cratonic denudation regime that is weathering-limited i.e. controlled by the thickness of the (lateritic) regolith available for stripping. Steady-state cratonic denudation regimes are enabled by maintained compartmentalization of the base levels between river knick points controlled by relief inheritance. Under such regimes, lowering of base levels and their fossilization are primarily imposed by long-term eustatic sea level fall and climate rather than by epeirogeny. The results suggest that Cenozoic post-rift vertical mobility of marginal upwarps in the tropical belt was unable to modify slow, weathering-controlled, steady state denudation regimes. The potentially complex expression of steady-state cratonic denudation regimes in clastic sedimentary fluxes remains to be investigated. [1] Beauvais et al., Journal of

  14. Post-rift uplift, paleorelief and sedimentary fluxes: the case example of the African margin of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.; Dauteuil, O.

    2012-04-01

    volume of eroded sediments. This can explain abnormal stratigraphic response along the African South Atlantic passive margins, such as thin clayey basin floor fans at time of uplift and erosion of weathering profiles. Keywords: Africa, Cenozoic, Siliciclastic sediment fluxes, Tectonics, Climate

  15. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth)

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Wenzhöfer, F.; Ramette, A.; Zabel, M.; Fischer, D.; Kasten, S.; Boetius, A.

    2012-07-01

    The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.

  16. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth)

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Wenzhöfer, F.; Ramette, A.; Zabel, M.; Fischer, D.; Kasten, S.; Boetius, A.

    2012-12-01

    The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining pore water geochemistry, in situ quantification of fluxes and consumption of methane, as well as bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption rates and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.

  17. Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey)

    NASA Astrophysics Data System (ADS)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Schnurle, P.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabdellouahed, M.; Reichert, C.

    2015-08-01

    The structure of the Moroccan and Nova Scotia conjugate rifted margins is of key importance for understanding the Mesozoic break-up and evolution of the northern central Atlantic Ocean basin. Seven combined multichannel reflection (MCS) and wide-angle seismic (OBS) data profiles were acquired along the Atlantic Moroccan margin between the latitudes of 31.5° and 33° N during the MIRROR seismic survey in 2011, in order to image the transition from continental to oceanic crust, to study the variation in crustal structure, and to characterize the crust under the West African Coast Magnetic Anomaly (WACMA). The data were modeled using a forward modeling approach. The final models image crustal thinning from 36 km thickness below the continent to approximately 8 km in the oceanic domain. A 100 km wide zone characterized by rough basement topography and high seismic velocities up to 7.4 km/s in the lower crust is observed westward of the West African Coast Magnetic Anomaly. No basin underlain by continental crust has been imaged in this region, as has been identified north of our study area. Comparison to the conjugate Nova Scotian margin shows a similar continental crustal thickness and layer geometry, and the existence of exhumed and serpentinized upper mantle material on the Canadian side only. The oceanic crustal thickness is lower on the Canadian margin.

  18. Comparative analysis of the Late Cretaceous to Recent post-breakup basin evolution of the South-American and South-African margin of the southern Atlantic

    NASA Astrophysics Data System (ADS)

    Kukla, Peter; Back, Stefan

    2010-05-01

    Recently, considerable attempts have been made to compare the sedimentary basin evolution and the associated tectonic framework on both sides of the South-Atlantic (e.g. Mohriak et al., 2008, and references therein). Yet there are still unresolved questions. Amongst the most striking observations is that multiple phases of volcanism, uplift and subsidence are recorded after the break-up of the southern South Atlantic margin segment on both sides of the Florianopolis - Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup continental margin successions. However, the tectono-sedimentary and magmatic styles markedly differ from south to north across the volcanic complex. In seismic reflection data, voluminous extrusives are manifested by the occurrence of large wedges of seaward dipping reflector sequences south of the volcanic complex, whilst large volumes of Cretaceous mafic alkaline rocks only occur north of the Florianopolis - Walvis Ridge complex. It can be expected that these differences are of a broad importance for the understanding of both break-up and post-breakup processes. This presentation focuses on a comparison of the post-breakup stratigraphic development of the South American and South African continental margins that both record thick post-rift sedimentary successions. Basins along the southern African margin are much narrower in comparison to their South American counterparts, constituting a pronounced margin asymmetry across the Atlantic. Adding to the heterogeneity of the system, the northernmost segment of the South Atlantic rift and salt basins is also characterized by a pronounced asymmetry, with the Brazilian margin now comprising narrower and deeper rift basins with less salt than the Congo-Gabon conjugate margin. In general, it seems that in the salt-prone areas both offshore South America and southern Africa, salt-related tectonics are amongst the key parameters

  19. Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton (Anti-Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Bouougri, E.; Porada, H.

    2002-11-01

    Proterozoic inliers in the central Anti-Atlas mountains expose predominantly siliciclastic sedimentary successions deposited in peritidal zones along the Neoproterozoic continental margin of the West African Craton (WAC). The low-grade metamorphic and modestly deformed sediments contain a wealth of sedimentary structures related to the former presence and activities of microbial mats and respective physicobiological processes. The well-preserved structures include wrinkle structures, erosion marks, microbial sand chips, spindle-shaped and subcircular microbial shrinkage cracks, and possibly gas domes and cabbage-head structures. Thin sections exhibit mat fragments and dispersed grains of hematite/limonite after pyrite in fine-grained quartzitic storm deposits. Post-storm layers frequently consist of matrix-supported sand-sized to silt-sized grains and are overlain by argillaceous veneers including isolated silt-sized grains and black carbonaceous laminae. The muddy veneers are considered to represent compacted stacks of microbial mats (biolaminites), which colonized and biostabilized storm and post-storm layers, and thus prevented them from eroding. In the absence of grazing and burrowing organisms and at suitable depositional and hydrodynamic conditions, it may be expected that Proterozoic microbial mats extensively grew from the supratidal to the intertidal zones and occasionally, e.g. behind protective barriers, in the subtidal zone and beyond. Mat-related structures, however, need specific conditions for their formation and preservation: Wrinkle structures, erosion marks, and microbial sand chips require tractional currents and soon deposition and burial, respectively. Such conditions are preferably met in intertidal and supratidal zones. Spindle-shaped and subcircular cracks require mat shrinkage due to either desiccation or "syneresis". Crack propagation implies progressive shrinkage, while superposition of crack generations indicates repeated alternation

  20. Kinematics of a growth fault/raft system on the West African margin using 3-D restoration

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Raillard, Stéphane; Guillocheau, François; Bouroullec, Renaud; Nalpas, Thierry

    2002-04-01

    The ability to quantify the movement history associated with growth structures is crucial in the understanding of fundamental processes such as the growth of folds or faults in 3-D. In this paper, we present an application of an original approach to restore in 3-D a listric growth fault system resulting from gravity-induced extension located on the West African margin. Our goal is to establish the 3-D structural framework and kinematics of the study area. We construct a 3-D geometrical model of the fault system (from 3-D seismic data), then restore six stratigraphic surfaces and reconstruct the 3-D geometry of the system at six incremental steps of its history. The evolution of the growth fault/raft system corresponds to the progressive separation of two rafts by regional extension, resulting in the development of an intervening basin located between them that evolved in three main stages: (1) the rise of an evaporite wall, (2) the development of a symmetric basin as the elevation of the diapir is reduced and buried, and (3) the development of asymmetric basins related to two systems of listric faults (the main fault F1 and the graben located between the rollovers and the lower raft). Important features of the growth fault/raft system could only be observed in 3-D and with increments of deformation restored. The rollover anticline (associated with the listric fault F1) is composed of two sub-units separated by an E-W oriented transverse graben indicating that the displacement field was divergent in map view. The rollover units are located within the overlap area of two fault systems and displays a 'mock-turtle' anticline structure. The seaward translation of the lower raft is associated with two successive vertical axis rotations in the opposite sense (clockwise then counter-clockwise by about 10°). This results from the fact that the two main fault systems developed successively. Fault system F1 formed during the Upper Albian, and the graben during the Cenomanian

  1. Submarine allochthonous salt sheets: Gravity-driven deformation of North African Cretaceous passive margin in Tunisia - Bled Dogra case study and nearby salt structures

    NASA Astrophysics Data System (ADS)

    Masrouhi, Amara; Bellier, Olivier; Ben Youssef, Mohamed; Koyi, Hemin

    2014-09-01

    We used structural, stratigraphic and sedimentologic data, together with a comparison of nearby structures and a Bouguer gravity map, to evaluate the evolution of the Bled Dogra salt structure (northern Tunisia) during the Cretaceous. Triassic salt sheets are recognized in the northwestern region of the Tunisian Atlas. These salt sheets are the result of Cretaceous thick and/or thin-skinned extension along the south Tethyan margin. The Bled Dogra salt structure is one of these submarine allochthonous salt sheets, which was emplaced during the Early Cretaceous. The geologic framework, during this period, produces conditions for a predominantly gravity-driven deformation: extension has produced space for the salt to rise; vigorous differential sedimentation created differential loading that resulted in the emplacement and extrusion of a large volume of Triassic salt and formation of large submarine salt sheets. Geologic field data suggest an interlayered Triassic salt sheet within Albian sequences. Salt was extruded at the sea floor during the Early-Middle Albian and was initially buried by Middle-Late Albian strata. The Coniacian corresponds to a second transgressive cover onto the salt sheet after the gliding of the first salt cover (Late Albian-Turonian). In addition, this northwest Tunisian area exposes evidences for salt flow and abundant slump features at the base of a northward facing submarine slope, which was probably dominant from the Early Cretaceous to Santonian. Two gravity deformation processes are recognized: gravity gliding and gravity spreading. Acting concurrently, these two processes appear indistinguishable in this geologic context. Like the present-day salt-involved passive margins - such as the northern Gulf of Mexico, the Atlantic margin of Morocco, the Brazilian Santos basin, the Angola margin, Cadiz in western Iberia, and the Red Sea - the North African Cretaceous passive margin in Tunisia provides evidences that deformation in a passive-margin

  2. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.

    2016-04-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  3. A facies distribution model controlled by a tectonically inherited sea bottom topography in the carbonate rimmed shelf of the Upper Tithonian-Valanginian Southern Tethyan continental margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio

    2016-08-01

    The Upper Tithonian-Valanginian shallow-water carbonates outcropping in the Palermo Mts (NW Sicily) consist of several facies associations reflecting different depositional environments of a carbonate rimmed shelf, pertaining to the Southern Tethyan continental margin. The reconstructed depositional model, based on the sedimentological features, cyclic facies arrangement and biota distribution, shows that a wide protected lagoon, dominated by algae, molluscs and scattered patch reefs, was bordered landward by a tidal flat, where stromatolitic algal mats were cyclically subaerial exposed, and seaward by a marine sand belt and reef complex. Oolitic packstone-grainstone lithofacies, cyclically subjected to subaerial exposure, suggests the occurrence of a barrier island, located nearly to the lagoonal carbonate shoreline, allowing the development of narrow embayments with restricted circulation. In the outer platform, the oolitic lithofacies of the marine sand belt pass landward into the protected lagoon, where washover oolite sands occur, and seaward into a high-energy zone (back-reef apron) gradually merging in the reef complex. In the latter, coral framestone occupied the inner sector (reef flat), while the facies association dominated by boundstone with Ellipsactinia sp. developed in the outer sectors (reef wall), adjacent to the fore-reef and upper slope environments. Stratigraphic evidence, associated with the recognized facies associations, helped to reconstruct the geo-tectonic setting of the carbonate platform, where the distribution of the depositional facies along the shelf and their extension were influenced by the tectonically-inherited sea bottom topography. In a regime of extensional tectonics, localized and thin succession of high-energy prograding oolite sand belt depositional facies occupied structural highs (footwall uplift), while the largely diffused and thick low energy aggrading peritidal-to-lagoonal depositional facies developed in subsiding

  4. Nature and evolution of Neoproterozoic ocean-continent transition: Evidence from the passive margin of the West African craton in NE Mali

    NASA Astrophysics Data System (ADS)

    Renaud, Caby

    2014-03-01

    The Timétrine massif exposed west of the Pan-African suture zone in northeastern Mali belongs to the passive margin of the West African craton facing to the east intra-oceanic arc assemblages and 730 Ma old pre-collisional calc-alkaline plutons. The Timétrine lithologic succession includes from the base to the top Mesoproterozoic cratonic to passive margin formations overlain by deep-sea Fe-Mg schists. Submarine metabasalts and two ultramafic massifs of serpentinized mantle peridotites are inserted as olistoliths towards the top whereas turbidites of continental origin represent the younger unit. Field and petrological data have revealed a distinct metasedimentary sequence attached to the serpentinized peridotites. It essentially consists of impure carbonates, Fe jaspers and polymictic breccias containing altered blocks of mantle peridotites, most rocks being enriched in detrital chromite. This association is interpreted as reworked chemical and detrital sediments derived from the alteration of mafic-ultramafic rocks. It is argued that mantle exhumation above sea floor took place during the Neoproterozoic rifting and crustal thinning period under possible tropical conditions, as suggested by the large volume of silicified serpentinites. In spite of greenschist facies metamorphic overprint characterized by widespread Fe-rich blue amphiboles that are not diagnostic of high-pressure conditions, it is possible to reconstruct a former ocean-continent transition similar to that evidenced for the Mesozoic period, followed by the deposition of syn-to post rift terrigeneous turbidites roughly coeval with ocean spreading some time before 800 Ma. It is concluded that the serpentinite massifs were tectonically emplaced first in an extensional setting, then incorporated within deep-sea sediments as olistoliths and finally transported westward during late Neoproterozoic collisional tectonics onto the West African craton.

  5. Nannofossil age constraints for the northern KwaZulu-Natal shelf-edge wedge: Implications for continental margin dynamics, South Africa, SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Green, A. N.; Ovechkina, M.; Uken, R.

    2008-10-01

    Samples collected from the shelf-edge wedge using surface grab samples and the Jago submersible constrain the KwaZulu-Natal shelf-edge wedge to a late Pliocene age on the basis of the absence of Gephyrocapsa oceanica s.l. and Discoaster brouweri, and the presence of Calcidiscus macintyrei. This correlates with proposed Tertiary sea-level curves for southern Africa and indicates relative sea-level fall during the late Pliocene coupled with hinterland uplift. Exposed failure scarps in the upper portions of submarine canyons yield sediment samples of early Pleistocene ages, indicating the uppermost age of deposition of clinoform topsets exposed in the scarp walls. Partially consolidated, interbedded silty and sandy deposits of similar age outcrop in the thalweg of Leven canyon at a depth of 150 m. These sediments provide an upper age limit of the shelf-edge wedge of early Pleistocene, giving a sedimentation rate of this wedge of 162-309 m/Ma. The distribution of widespread basal-most Pleistocene sediments on the upper slope indicates that these sediments escaped major reworking during sea-level falls associated with Pleistocene glaciations and remain as relict upper slope veneers. The absence of more recent sediments suggests that this area has been a zone of sediment bypass or starvation since the early Pleistocene. Areas where younger sediments mantle deposits of early Pleistocene ages represent areas of offshore bedload parting, re-distributing younger Holocene sediment offshore and downslope.

  6. Changes in opal fluxes along the northwest African margin during the last glacial period; linking high and low latitude patterns of productivity

    NASA Astrophysics Data System (ADS)

    Bradtmiller, L. I.; Galgay, M.; McGee, D.; Kinsley, C. W.; Anderson, R. F.

    2014-12-01

    Recent studies have proposed competing hypotheses to explain increased opal fluxes in high and low latitudes during the most recent deglaciation. Anderson et al. (2009) rely on increased wind-driven upwelling in the Southern Ocean to explain the increased availability of Si in both the Southern Ocean and tropical thermoclines, leading to increased opal fluxes in both regions coincident with the deglacial rise in CO2. Meckler et al. (2013) suggest that a decrease in the presence of North Atlantic intermediate water (GNAIW) during the deglaciation allowed Si-rich southern-sourced waters to fill the tropical Atlantic leading to increased opal burial. We attempt to distinguish between these two mechanisms by reconstructing opal fluxes and fluxes of windblown dust over the past ~65ka at four sites along the northwest African margin. The records include the deglaciation, including Heinrich Event 1 (H1) and the Younger Dryas (YD), as well as several earlier Heinrich events. We find that opal and dust fluxes increase simultaneously during the deglaciation, and more highly resolved cores record H1 and the YD as distinct peaks within the deglaciation. Furthermore, opal and dust fluxes scale approximately linearly with one another during these events. We observe opal peaks associated with most Heinrich Events through H6. Finally, we observe a strong similarity between patterns of opal flux in the Southern Ocean and along the African Margin. This suggests that the pattern of diatom productivity and opal flux along the African Margin reflects a combination of changes in wind strength due to shifting temperature gradients, and changes in the export of silica-rich water from the Southern Ocean, both as a result of the global scale climate changes associated with Heinrich Events. Anderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson and L. H. Burckle. Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2

  7. High-resolution seismic stratigraphy of the late Neogene of the central sector of the Colombian Pacific continental shelf: A seismic expression of an active continental margin

    NASA Astrophysics Data System (ADS)

    Martínez, Jaime Orlando; López Ramos, Eduardo

    2011-02-01

    The sedimentary prism of the central Pacific continental shelf of Colombia was affected by regional folding and faulting, and probably later mud diapirism, from the Late Miocene to the Holocene. Interpretation of high-resolution seismic lines (2 s/dt) revealed that the prism consists of 13 high-resolution seismic units, that can be separated into 5 seismic groups. Deposition of the prism and the associated stacking pattern, are probably the response to variable uplift and subsidence in a fore-arc basin that underwent important tectonic events by the end of the Miocene. Throughout the Pliocene, the continental shelf sedimentation was affected by the growing of a dome structure probable due to mud diapirism. This fact caused peripheral faults both normal and reverse that controlled the distribution of some of the seismic units. During the Late Pleistocene (Wisconsin stage?) a eustatic sea level fall caused the shoreline to advance about 50 km westward of its present position. Because of this eustatic sea level change, a strong fluvial dissection took place and is interpreted as the probable extension of the San Juan River to the south of the present day river mouth. Within this framework it is believed that the Malaga and Buenaventura Bays were the passageways of branches of the old drainage system of the San Juan River. The inner branch circulated through the present Buenaventura Bay and runs southward leaving the mark of an apparent valley identified in the seismic information in the eastern sector of the study area. This old fluvial valley and its filling material located in the present day inner continental shelf front of Buenaventura are postulated as important targets to find placer minerals such as gold and platinum.

  8. Plio-Quaternary paleostresses in the Atlantic passive margin of the Moroccan Meseta: Influence of the Central Rif escape tectonics related to Eurasian-African plate convergence

    NASA Astrophysics Data System (ADS)

    Chabli, Ahmed; Chalouan, Ahmed; Akil, Mostapha; Galindo-Zaldívar, Jesús; Ruano, Patricia; Sanz de Galdeano, Carlos; López-Garrido, Angel Carlos; Marín-Lechado, Carlos; Pedrera, Antonio

    2014-07-01

    The Atlantic Moroccan Meseta margin is affected by far field recent tectonic stresses. The basement belongs to the variscan orogen and was deformed by hercynian folding and metamorphism followed by a post-Permian erosional stage, producing the flat paleorelief of the region. Tabular Mesozoic and Mio-Plio-Quaternary deposits locally cover the Meseta, which has undergone recent uplift, while north of Rabat the subsidence continues in the Gharb basin, constituting the foreland basin of the Rif Cordillera. The Plio-Quaternary sedimentary cover of the Moroccan Meseta, mainly formed by aeolian and marine terraces deposits, is affected by brittle deformations (joints and small-scale faults) that evidence that this region - considered up to date as stable - is affected by the far field stresses. Striated faults are recognized in the oldest Plio-Quaternary deposits and show strike-slip and normal kinematics, while joints affect up to the most recent sediments. Paleostress may be sorted into extensional, only affecting Rabat sector, and three main compressive groups deforming whole the region: (1) ENE-WSW to ESE-WNW compression; (2) NNW-SSE to NE-SW compression and (3) NNE-SSW compression. These stresses can be attributed mainly to the NW-SE oriented Eurasian-African plate convergence in the western Mediterranean and the escape toward the SW of the Rif Cordillera. Local paleostress deviations may be related to basement fault reactivation. These new results reveal the tectonic instability during Plio-Quaternary of the Moroccan Meseta margin in contrast to the standard passive margins, generally considered stable.

  9. Shelf export of particulates/transport in continental margin waters (SEPTIC): Progress report for the period September 15, 1986-June 30, 1987

    SciTech Connect

    Pietrafesa, L.J.

    1987-06-01

    The physical oceanographic objectives of SEEP are to identify possible pathways of exchange of particulate matter between the shelf and continental slope as these processes relate to the biological objectives of the determination of the processes governing the production and fate of biogenic particles and the chemical objectives of partitioning the natural and contaminant chemical species between dissolved and particulate phases. During the present funding period, research activities have been directed towards: publishing the results of SEEP-I; publishing further results from NCSU's South Atlantic Bight studies; designing and constructing four cages which will house the RD-Acoustic Doppler Current Profilers including one to be used in SEEP-II by the BNL and three to be used by NCSU; calibrating all current meters, thermister chains and conductivity pressure and temperature sensors for SEEP-II; determining the temporal and spatial scales of physical processes observed during SEEP-I in preparation for finalizing the mooring positions and sampling intervals for SEEP-II.

  10. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  11. Quaternary sedimentary processes on the northwestern African continental margin - An integrated study using side-scan sonar, high-resolution profiling, and core data

    SciTech Connect

    Masson, D.G.; Huggett, Q.J.; Weaver, P.P.E. ); Kidd, R.B. ); Gardner, J.V. )

    1991-08-01

    Side-scan sonar data, cores, and high-resolution profiles have been used to produce an integrated model of sedimentation for the continental margin west of the Canary Islands. Long-range side-scan sonar (GLORIA) data and a grid of 3.5-kHz profiles, covering some 200,000 km{sup 2} allow a regional appraisal of sedimentation. More detailed studies of selected areas have been undertaken using a new 30 kHz deep-towed side-scan sonar (TOBI) developed by the U.K. Institute of Oceanographic Sciences. Sediment cores have been used both to calibrate acoustic facies identified on sonographs and for detailed stratigraphic studies. The most recent significant sedimentation event in the area is to Saharan Sediment Slide, which carried material from the upper continental slope off West Africa to the edge of the Madeira Abyssal Plain, a distance of some 1000 km. The authors data shows the downslope evolution of the debris flow. Near the Canaries, it is a 20-m-thick deposit rafting coherent blocks of more than 1 km diameter; side-scan records show a strong flow-parallel fabric on a scale of tens of meters. On the lower slope, the debris flow thins to a few meters, the flow fabric disappears, and the rafted blocks decrease to meters in diameter. Side-scan data from the lower slope show that the Saharan Slide buries an older landscape of turbidity current channels, typically 1 km wide and 50 m deep. Evidence from the Madeiran Abyssal Plain indicates a history of large but infrequent turbidity currents, the emplacement of which is related to the effects of sea level changes on the northwest African margin.

  12. Lithostratigraphic framework and correlation of the Neoproterozoic northern West African Craton passive margin sequence (Siroua-Zenaga-Bouazzer Elgraara Inliers, Central Anti-Atlas, Morocco): an integrated approach

    NASA Astrophysics Data System (ADS)

    Bouougri, El Hafid; Saquaque, Ali

    2004-06-01

    The Neoproterozoic volcano-sedimentary cover (˜0.8 Ga) deposited on the northern passive margin of the West African craton occurs in the central Anti-Atlas inliers and is a ˜2 km thick succession formally termed the Tizi n-Taghatine Group. The group comprises two sedimentary packages (lower and upper) separated by a middle volcanic unit. An integrated approach of lithostratigraphy, sedimentology, sequence stratigraphy and paleogeographic setting have been combined to provide well constrained correlation and lithostratigraphic organization. The Tizi n-Taghatine Group is formally subdivided into 12 Formations, 10 of which are defined in the lower sedimentary package while the middle volcanic unit and the upper sedimentary package constitute the two uppermost Formations. The lithostratigraphic organization and subdivision of the Tizi n-Taghatine Group constitutes a stratigraphic record of major paleogeographic settings and large cyclic changes in depositional system due to relative sea-level variations. The integrated approach of combination and comparison of various data provides significant information on the nature, origin and time significance of the formal unit boundaries. This leads to proposing a correlative scheme for the Tizi n-Taghatine Group across the Neoproterozoic central Anti-Atlas suture zone.

  13. Pre-collisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon

    NASA Astrophysics Data System (ADS)

    Nkoumbou, C.; Barbey, P.; Yonta-Ngouné, C.; Paquette, J. L.; Villiéras, F.

    2014-11-01

    We reassess the geodynamic context close to the Congo craton during the pre-collisional period of the Pan-African orogeny from whole-rock major and trace element compositions and isotopic data obtained in the westward extension of the Yaounde series (Boumnyebel area, Cameroon). The series consists of metasediments (micaschists, minor calc-silicate rocks and marbles) and meta-igneous rocks (hornblende gneisses, amphibolites, metagabbros, pyroxenites and talcschists) recrystallized under high-pressure conditions. Chemically, the micaschists correspond to shales and greywackes similar to the Yaounde high-grade gneisses. 87Sr/86Sr initial ratios (0.7084-0.7134), moderately negative εNd(620 Ma) values (-5.75 to -7.81), Nd model ages (1.66 < TDM < 1.74 Ga) and radiometric ages point to the conclusion that the Yaounde basin was filled with siliciclastic sediments derived from both reworked older continental crust (Palaeoproterozoic to Archaean in age) and Neoproterozoic juvenile volcanogenic material. This occurred in the same time span (625-1100 Ma) as the deposition of the Lower Dja, Yokadouma, Nola and Mintom series (Tonian-Cryogenian). Dolomitic marble associated with mafic/ultramafic rocks and characterized by high Cr (854-1371 ppm) and Ni (517-875 ppm) contents, are considered to result from chemical precipitation in relation with submarine magmatic activity. Talcschists (orthopyroxenitic to harzburgitic in composition) show primitive-mantle-normalized multi-element patterns with significant negative Nb-Ta anomalies, and slopes similar to that of average metasomatically altered lithospheric mantle. These rocks could be mantle slices involved in the collision tectonics. Amphibolites show the compositions of island-arc basalts with systematic negative Nb-Ta anomalies, 87Sr/86Sr initial ratios mostly <0.7047 and positive εNd(620 Ma) values (+1.41 to +6.58). They are considered to be the expression of incipient oceanisation to the north of the Congo craton during the

  14. The Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Martins, L. R.; Coutinho, P. N.

    1981-04-01

    The Brazilian continental margin, with its interesting morphology, structure and sediments, has become better known only during the last two decades. Six physiographical provinces can be recognized at the continental margin and the adjacent coast: (1) Cabo Orange-Parnaiba delta; (2) Parnaiba delta-Cabo Sa˜o Roque; (3) Cabo Sa˜o Roque-Belmonte; (4) Belmonte-Cabo Frio; (5) Cabo Frio-Cabo Santa Marta; and (6) Cabo Santa Marta-Chui. The shelf is rather wide near the Amazon Mouth, becoming narrower eastwards, continuing very narrow along the northeastern and eastern coast, and becoming wider again in the south towards the Plate River. Prominent morphological features along the margin are the Amazon cone, the marginal plateaus off northeastern Brazil, the Sa˜o Francisco cone and canyon, the Abrolhos Bank, and the deep-sea plateaus of Pernambuco and Sa˜o Paulo. On the shelf proper a number of relief elements exist, such as sand waves east of the Amazon, submarine terraces at various places, and irregularities of structural origin. The shelf break is rather smooth in the far north and south, more abrupt in the remainder. Surface sediments of the Brazilian shelf show five distinct facies types: littoral quartz sands, mud, transition sand-mud, coralline algae, and biodetrital. The terrigenous elastic fractions dominate off the Amazon and in southern Brazil; between these areas they occupy a very narrow strip near the coast. The carbonate facies, predominantly composed of calcareous algae, is abundant between the Parnaiba delta and Cabo Frio; to the south this facies is more biodetrital and restricted to the outer shelf. Economically important on the Brazilian continental margin besides oil, are sands and gravels, carbonate deposits, evaporites and some subsurface coal. Other possible mineral resources could be phosphate, heavy minerals and clays for ceramics.

  15. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    USGS Publications Warehouse

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    characteristics of the Ar Rayn terrane are analogous to the Andean continental margin of Chile, with opposite subduction polarity. The Ar Rayn terrane represents a continental margin arc that lay above a west-dipping subduction zone along a continental block represented by the Afif composite terrane. The concentration of epithermal, porphyry Cu and IOCG mineral systems, of central arc affiliation, along the AAF suggests that the AAF is not an ophiolitic suture zone, but originated as a major intra-arc fault that localized magmatism and mineralization. West-directed oblique subduction and ultimate collision with a land mass from the east (East Gondwana?) resulted in major transcurrent displacement along the AAF, bringing the eastern part of the arc terrane to its present exposed position, juxtaposed across the AAF against a back-arc basin assemblage represented by the Abt schist of the Ad Dawadimi terrane. Our findings indicate that arc formation and accretionary processes in the Arabian shield were still ongoing into the latest Neoproterozoic (Ediacaran), to about 620-600 Ma, and lead us to conclude that evolution of the Ar Rayn terrane (arc formation, accretion, syn- to postorogenic plutonism) defines a final stage of assembly of the Gondwana supercontinent along the northeastern margin of the East African orogen. ?? 2007 Elsevier B.V. All rights reserved.

  16. The Role of Plumes in Breakup Processes - Traces Found in the Deep Crustal Structure at the Intersection of Walvis Ridge with the African Continental Margin

    NASA Astrophysics Data System (ADS)

    Fromm, T.; Jokat, W.; Behrmann, J. H.; Ryberg, T.; Weber, M. H.

    2014-12-01

    Large igneous provinces (LIP) are often found in close temporal and spatial proximity with continental breakups, supporting the model, that an arriving mantle plume produces large amounts of melt and has a massive influence on the breakup process. The South Atlantic is a classical example, with flood basalts on both adjacent continents and a paired age progressing ridge system connecting them with the current hotspot location at Tristan da Cunha. To estimate the influence of the plume on the preexisting continental crust, a large-scale geophysical experiment was conducted in 2011 at the intersection of Walvis Ridge with the African continent. We present four P-wave velocity models derived from seismic refraction data. One extends 430 km along the ridge crest and continues onshore to a total length of 730 km, while the other three crossing the ridge perpendicular: one (480 km long) far offshore in the oceanic regime, one (600 km) close to shelf break and the last one (400 km) onshore. Crustal velocities beneath Walvis Ridge range between 5.5 km/s and 7.0 km/s, which are typical velocities for oceanic crust. The crustal thickness, however, is approximately three times larger than of normal oceanic crust: 17 km in the western part increasing to 22 km towards the continent. The continent ocean transition is characterized by 30 km thick crust with a high velocity body (HVB) in the lower crust and seismic velocities up to 7.5 km/s. The western extend of the HVB is to a similar distance from shore as for HVBs observed south of Walvis Ridge. In contrast, the eastern boundary lies well within the continental domain, at the 40 km thick crust of the Kaoko fold belt. Here, the variation of seismic velocities indicates that hot material intruded the continental crust during the initial rifting stage. However, beyond this relatively sharp boundary (40 km wide), the remaining continental crust seems unaffected by intrusions and the root of the Kaoko belt is no eroded. The cross

  17. Offshore Benin, a classic passive margin

    SciTech Connect

    Mathalone, J.M.P. )

    1991-03-01

    Offshore Benin comprises a narrow east-west continental shelf, some 30 km wide. A sharp shelf break running parallel to the coast borders the shelf, whereupon water depths rapidly increase to over 7000 ft. The area lies within the Dahomey Embayment, one of a series of Cretaceous and younger basins lining the coast of Africa that owe their inception to the Late Mesozoic break-up of the Gondwanaland Continent. The basin extends some 100 km inland, but sedimentary section is thin onshore compared to a maximum of 20,000 ft of sediment offshore. Initial sedimentation in this basin was of Neocomian alluvial and lacustrine clastics. These were deposited in east-west-trending narrow half-grabens associated with the initial break up of the South American and African continents. They are covered unconformably by more extensive Albian and Cenomanian transgressive clastics and shallow marine Turonian sandstones which are the main reservoir at Seme, Benin's only oilfield. The Senonian section offshore comprises passive margin deep sea clastic sediments prograding southwards. Very large proximal deep sea channels up to 2500 ft thick are developed in this interval. These channels are associated with excellent petroleum source rocks, averaging 4-5% oil-prone organic carbon, and form the main exploration target in the area when configured in a trap morphology. Seismic data quality is excellent in the region allowing detailed examination of the relationships between the rifted section and later units. In addition, these data illustrate clearly both internal and external morphology of the Senonian proximal deep sea channels.

  18. Post Rift Evolution of the Indian Margin of Southern Africa

    NASA Astrophysics Data System (ADS)

    Baby, Guillaume; Guillocheau, François; Robin, Cécile; Dall'asta, Massimo

    2016-04-01

    The objective of this study is to discuss the evolution of the South African Plateau along the Indian margin of Southern Africa. Since the classical works of A. du Toit and L.C. King and the improvement of thermochronological methods and numerical models, the question of the uplift of South African Plateau was highly debated with numerous scenarios: early Cretaceous at time of rifting (Van der Beek et al., J.Geophys.Res., 2002), late Cretaceous (Braun et al., Solid Earth, 2014), late Cenozoic (Burke & Gunnell, Geol.Soc.of America, 2008). Limited attention has been paid on the constraints provided by the offshore stratigraphic record of the surrounding margins. The objective of our study is to integrate onshore and offshore data (seismic profiles and industrial wells) to (1) analyse the infill of the whole margin (21°S to 31°S) from its hinterland to the distal deep water basin, (2) to constrain and quantify the vertical movements. We discuss the impact on accommodation and sediments partitioning, and their significance on South African Plateau uplift history. 1. Sedimentary basins of the Indian margin of Southern Africa are related to the break-up of Gondwana during late Jurassic, resulting in rifts and flexural basins. First marine incursions started during early Cretaceous times (oldest marine outcropping sediments are of Barremian age ~128 Ma). The region developed as a normal continental shelf at the Aptian-Albian transition (~113 Ma). 2. The Cretaceous geological history of the basins is characterized by differential uplift and subsidence of the basement, controlled by structures inherited from break up. As example, major early Cretaceous depocenters of the margin are located on the north of Save-Limpopo uplift (Forster, Paleogography, Paleoclimatology, Paleoecology, 1975) showing an eastward drainage pattern, maybe related to a proto Limpopo drainage. Those observations suggest that the escarpment bordering the Bushveld depression is an old relief inherited

  19. Against Marginalization and Criminal Reading Curriculum Standards for African American Adolescents in Low-level Tracks: A Retrospective of Baldwin's Essay.

    ERIC Educational Resources Information Center

    Tatum, Alfred W.

    2000-01-01

    Invokes James Baldwin's 1963 essay, "A Talk to Teachers," as a brilliant statement of the challenge facing teachers of African American students. Argues that there must be a thrust toward comprehensive reading instruction that encompasses explicit strategy instruction and authentic opportunities to read culturally relevant materials. (SR)

  20. Influence of lower crustal rheology on onset and distribution of melting and serpentinisation during rifting: comparison with the Brazilian/African conjugate margins

    NASA Astrophysics Data System (ADS)

    Perez-Gussinye, M.; Araujo, M. N.; Romeiro, M. T.; Martinez, M. A.; Morgan, J. P.; Ros, E.

    2014-12-01

    The onset and distribution of melting and serpentinisation during rifting determine the continent-ocean transition width and composition and have been shown to depend on extension velocity. Conductive cooling during slow rifting favors serpentinisation and inhibits melting (Perez-Gussinye et al., 2006). Here we use numerical modeling to show that, additionally, lower crustal rheology, which also controls margin symmetry and width (Brune et al. 2014), strongly influences the onset and distribution of melting and serpentinisation. We find that strong lower crust rheologies effectively couple deformation in upper crust and mantle and lead to rapid crustal break-up through crust-cutting faults (see Brune et al., 2014), allowing serpentinisation to start relatively early and producing narrow, symmetric margins. Coupling of lithospheric layers leads to rapid asthenospheric uplift and the onset of melting at a relatively early stage during extension. For slow velocities, serpentinisation starts before melting, and the little magma produced probably ponds under the serpentinite layer exhumed after crustal break-up, generating a wide continent-ocean transition. For the same extension velocities, relatively weak lower crust shows a long initial phase of distributed faulting, with moderate lithospheric thinning, followed by a long phase of sequential, oceanward younging faults, producing wider, asymmetric margins. Serpentinisation is insignificant because lower crustal flow towards the tip of the active fault inhibits the formation of crust cutting faults. Asthenospheric upwelling is less pronounced, and the onset and amount of melting is delayed with respect to the stronger lower crust case. When crustal break-up occurs magma rises to form oceanic crust and hence a narrow continent-ocean transition. Along Brazil and Africa the margin's symmetry, width and continent-ocean transition type change as the onshore terranes in which they developed go from cratons to mobile belts

  1. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data

    NASA Astrophysics Data System (ADS)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.

    2014-12-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  2. Evolution of Cambrian-Ordovician carbonate shelf, United States Appalachians

    SciTech Connect

    Read, J.F.

    1985-02-01

    Cross sections and isopach maps (palinspastic) of the Cambrian-Ordovician continental shelf, US Appalachians, show that thickness and facies trends are controlled by the Adirondack, New Jersey, and Virginia highs and depocenters in Tennessee, Pennsylvania, and by the Rome trough. Carbonate sedimentation was initiated with drowning of Early Cambrian clastics, deposition of carbonate ramp and rimmed shelf facies followed by drowning, then regional regression and deposition of Early to Middle Cambrian red beds and platform margin rimmed shelf facies. During subsequent regional transgression, the Conasauga intrashelf shale basin formed, bounded toward the shelf edge and along depositional strike by Middle to Upper Cambrian oolitic ramp facies and cyclic peritidal carbonates. Intrashelf basin filling and regional regression caused progradation of Late Cambrian cyclic carbonates and clastics across the shelf. By this time, the margin had a relief of 2.5 km. During the Early Ordovician, incipient drowning of the shelf formed subtidal carbonates and bioherms that passed up into cyclic carbonate as sea level oscillations decreased in magnitude. Numerous unconformities interrupt this sequence in the northern Appalachians. The earlier high relief rimmed shelf was converted into a ramp, owing to uplift in the basin, heralding approaching collision. Subsidence rates on the margin were low (4 cm/1000 yr) and typical of a mature passive margin. Shelf sedimentation in the southern Appalachians ceased with arc-continent collision and development of the Knox unconformity, which dies out into the Pennsylvania depocenter. Major exploration targets are in the Late Cambrian-Early Ordovician Knox Group.

  3. Petroleum geology of Cote d`Ivoir (Abidjan margin)

    SciTech Connect

    Reymond, A.

    1995-08-01

    The Cote d`Ivoire sedimentary basin is part of a typical transform passive margin developed along the West African coast from Liberia to Ghana. It straddles the coastline and the sedimentary section expands dramatically South of the East-West trending Lagune Fault, with up to 10,000 metres of sediments from Aptian to Present in age. Albo-Aptian rift series, mainly continental clastics without evaporites, have accumulated progressively in a tilted semi-graben. The drift stage marks a widespread marine sedimentation organized in progradational sequences which blanket the Albian block-fault topography of the continental break-up. Reservoirs are mainly clastics and present in the section from Middle Albian to Maastrichtian. Sand bodies are associated with identified submarine fans, infill structures or channelized units deposited in a shelf or outer-shelf environment. Trapping opportunities are due to block-faulting in the rift section, or gravity tectonics in the drift section, often combined with sand pinch-outs to constitute mixed structural-stratigraphic traps. Thick top-seal units formed by marine shales are widespread. Source-rocks have been shown to belong mainly to the rift series and they have been characterized in terms of geochemistry and maturation timing. An efficient simulation model has been used to recontruct the expulsion, migration and trapping of hydrocarbons along a selected North-South cross-section and to better define the Petroleum Systems.

  4. East Africa continental margins

    SciTech Connect

    Bosellini, A.

    1986-01-01

    New well data from Somalia, together with the history of sea-floor spreading in the Indian Ocean derived from magnetic anomalies, show that the East African margins from latitude 15/sup 0/S into the Gulf of Aden comprise four distinct segments that formed successively by the southward drift of Madagascar from Somalia during the Middle to Late Jurassic and Early Cretaceous, by the northeastward drift of India along the Owen Transform during the Late Cretaceous and Paleocene, and by the opening of the Gulf of Aden during the Neogene.

  5. Austrian phase on the northern African margin inferred from sequence stratigraphy and sedimentary records in southern Tunisia (Chotts and Djeffara areas)

    NASA Astrophysics Data System (ADS)

    Lazzez, Marzouk; Zouaghi, Taher; Ben Youssef, Mohamed

    2008-08-01

    A multidisciplinary study concerning Aptian and Albian deposits is reported from petroleum wells and the exposed section. The biostratigraphic and sedimentological analysis defined four sedimentary units. Well-logging signals' analysis allows us to refine the record resolution on Aptian series and reveals, in the Djeffara field, a transgressive system tract (TST) and a highstand system tract (HST). Exceptionally, the first sequence (S1) in the Mareth 1 well and the fifth sequence in the two wells Mareth 1 and Gourine 1 reveal the lower-stand system tract (LST). The unconformities characterized by the absence of Upper Aptian (Clansayesian) and Lower to Middle Albian deposits signed by a significant gamma-ray reduction. The Middle and Upper Albian is represented by only one deposit sequence (S6) in Mareth 1. Towards the south, in the Gourine well, two deposit sequences were identified (S6 and S7); to specify the Aptian and Albian evolution of the deposit sequences, a tentative correlation has been established between the Chotts and Djeffara areas. This correlation allows us to characterize the sedimentary unconformities related to the tectonics and eustatic events. The Chotts and the Djeffara deposition areas were developed, characterized by an irregular subsidence and separated by the Tebaga Medenine high area. The Aptian-Albian subsidence platform of southern Tunisia may be considered as a block diagram of environmental deposit with regressive and transgressive trends, showing the impact of tectonic deformations on the palaeogeographic evolution of southeastern Tunisia during the Austrian phase. This study also must be replaced within regional structural patterns that may explain both the sequential and sedimentological evolution of the area. Deformations regionally identified are integrated in the more general context of both Tethyan and Atlantic areas related to the drift of the African platform.

  6. Dolomitization of coeval shelf and fore-shelf carbonates, Lower Permian, Midland basin, Texas

    SciTech Connect

    Mazzullo, S.J.; Qiuchang, Ye )

    1991-03-01

    Coeval shelf and fore-shelf carbonates in Lower Permian (Leonardian) rocks in the Midland basin are pervasively dolomitized. Shelf strata consist of a regional mosaic of shelf margin reef, lagoon, and peritidal facies associated with contemporaneous evaporite deposition; fore-shelf facies consist of resedimented shelf margin deposits. Numerous relative sea-level fluctuations that resulted in the formation of Type 1 and 2 unconformities are recognized throughout this section. Mean stable oxygen and carbon isotopic compositions of the shelf strate suggest that dolomitization occurred essentially syndepositionally, likely by interaction with normal marine( ) and hypersaline fluids. In fore-shelf strata petrographic evidence, in combination with paleotemperature estimates from isotopic data and the burial depth-temperature history of these rocks, suggest relatively early (late Permian) dolomitization in rock-dominated systems. Three possible modes of dolomitization could have affected these fore-shelf beds: (1) dolomitization by reflux of normal-marine and/or hypersaline fluids during sea level highstands or lowstands; (2) dolomitization by mixed meteoric-marine fluids during lowstands; and (3) replacement by calcic dolomites via reaction with circulating marine fluids during deposition and early, shallow burial without organic matter influences. The latter mode of origin, however, is favored for most of the rocks examined on the basis of the slightly positive carbon isotopic compositions, Sr versus MgCO{sub 3} compositions (mean Sr 61 ppm, mean MgCO{sub 3} 49.5), and low Mn contents (mean 61 ppm) of the dolomites, although later burial recrystallization is indicated by their relatively depleted isotopic compositions.

  7. Influence of subaqueous shelf angle on coastal plain-shelf-slope deposits resulting from a rise or fall in base-level

    SciTech Connect

    Wood, L.J.; Ethridge, F.G.; Schumm, S.A. )

    1991-03-01

    Extensive research in the past decade concerning the effects of base-level fluctuations on coastal plain-shelf-slope systems along passive margins has failed to properly assess the influence of the subaqueous shelf angle on the development, character, and preservation of the resulting deposits. A series of experiments were performed in a 4 m by 7 m flume to examine the effect that differing shelf angles have on a simulated coastal plain-shelf-slope system undergoing a cycle of base-level rise and fall. Results of the experiments indicate that the angle of the shelf affects (1) the amount of sediment available for deposition, (2) the timing of the influx of drainage basin sediment into the lower portions of the fluvial system, and (3) the width to depth ratio and sinuosity of fluvial systems that develop on the shelf. Base-level fall over a steep shelf results in deep, narrow, straight fluvial channels on the shelf and fine-grained, thick shelf-margin deltas. Depositional systems show high sedimentation rates, but a low ratio of coarse-grained to fine-grained sediment. Multiple fluvial incisions on the shelf are rapidly abandoned for a single incised valley. In contrast, gentle shelf angles result in shallow, wide, meandering fluvial channels on the shelf and coarser-grained, thinner shelf-margin deltas. Depositional systems have a lower sedimentation rate, but a high ratio of coarse-grained to fine-grained sediment. Multiple fluvial incisions on the shelf are active for a longer period of time. During subsequent base-level rise, deposits have a low potential for preservation owing to their thin nature and the slower rate at which transgression occurs over the shelf.

  8. Evolution of Cambrian-Ordovician carbonate shelf, US Appalachians

    SciTech Connect

    Read, J.F.

    1985-01-01

    Newly compiled cross sections and isopach maps of the Cambro-Ordovician continental shelf, U.S. Appalachians shows that thickness and facies trends are controlled by the Adirondack, New Jersey and Virginia and Alabama arches, and depocenters in Tennessee, Pennsylvania and the Rome Trough. Carbonate sedimentation was initiated with drowning of Early Cambrian clastics, deposition of carbonate ramp facies followed by drowning, regional regression and deposition of Early to Middle Cambrian red beds and platform margin rimmed shelf lime sands and reefs. During subsequent regional transgression the Conasauga intrashelf shale basin formed, bounded toward the shelf edge and along depositional strike by Middle to Upper Cambrian oolitic ramp facies and cyclic peritidal carbonates. During Middle Cambrian rifting, the Rome Trough was filled by thick clastics and carbonates. Intrashelf basin filling and regional regression caused progradation of Late Cambrian cyclic carbonates and clastics across the shelf. By this time, the margin had a relief of 2.5 kms. During the Early Ordovician, incipient drowning of the shelf formed subtidal carbonates and bioherms that passed up into cyclic carbonates which grade seaward into lime sands and reefs. Numerous unconformities interrupt this sequence in the Northern Appalachians. Early dolomitization patterns were controlled by regional highs. Subsidence rates on the margin were low (4 cm/1000 yrs) and typical of a mature passive margin. Shelf sedimentation in the Southern Appalachians ceased with arc-continent collision and development of the Knox unconformity, which dies out into the Pennsylvania depocenter.

  9. Downslope Eulerian mean flow associated with high-frequency current fluctuations observed on the outer continental shelf and upper slope along the northeastern United States continental margin: implications for sediment transport

    USGS Publications Warehouse

    Butman, B.

    1988-01-01

    Eulerian current measurements made 5-7 m above bottom at six stations along the United States east coast continental margin show a net downslope flow of 1-5 cm s-1. Although the scalar current speed decreases with water depth and toward the bottom, fluctuations in the cross-isobath flow were stronger and increasingly asymmetric near the bottom. Maximum downslope flow exceeded maximum upslope flow by a factor of two to three. The strength of the low-passed downslope flow was proportional to the upslope Reynolds flux of density as well as to the amplitude of the current fluctuations that have periods shorter than 30 h. These flow characteristics may be caused by differential vertical mixing in the bottom boundary layer where a stratified fluid flows upslope (unstable) and downslope (stable). The asymmetry in current strength clearly favors net downslope transport of sediments that move as bedload. ?? 1988.

  10. African American Administrators and Staff

    ERIC Educational Resources Information Center

    Wright, Dianne; Taylor, Janice D.; Burrell, Charlotte; Stewart, Gregory

    2006-01-01

    This article explores the issues of African American participation in the administrative ranks of the academy. The authors find that African Americans tend to hold positions that are marginal in academic organizations, lacking power and influence, and that not much has changed over recent decades. Forces influencing this condition are explored,…

  11. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  12. Marginality principle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is a fragile resource supplying many goods and services. Given the diversity of soil across the world and within a landscape, there are many different capacities among soils to provide the basic soil functions. Marginality of soils is a difficult process to define because the metrics to define ...

  13. Geochemical study (major, trace elements and Pb-Sr-Nd isotopes) of mantle material obducted onto the North African margin (Edough Massif, North Eastern Algeria): Tethys fragments or lost remnants of the Liguro-Provençal basin?

    NASA Astrophysics Data System (ADS)

    Bosch, Delphine; Hammor, Dalila; Mechati, Mehdi; Fernandez, Laure; Bruguier, Olivier; Caby, Renaud; Verdoux, Patrick

    2014-06-01

    The Maghrebides, Betics and some parts of the Calabrian, NE Sicilian and Tuscan allochtons constitute dismembered fragments of the Alpine belt that resulted from the Cenozoic collision between Africa and Eurasia and the opening of the Western Mediterranean basin. Mineral and whole-rock geochemical analyses have been performed on three distinct outcrops of mantle material from the Edough Massif of NE Algeria, namely the Bou Maiza (BM) gabbros, the La Voile Noire (LVN) amphibolites and the Sidi Mohamed (SM) peridotites. In all samples, Sr isotopes are largely affected by seawater alteration (87Sr/86Sract. > 0.70384 and up to 0.70888) and cannot be used to evaluate the nature of the source reservoirs. SM peridotites display variable depleted mantle Nd isotopic signatures (εNdact. from + 7.0 to + 12.2) and geochemical features suggesting no significant chemical depletion as a result of partial melting and melt extraction (Mg# < 90; slightly LREE-depleted patterns with La/YbN = 0.33-0.39). These rocks are interpreted as parts of the subcontinental lithospheric mantle incorporated into the crustal units of the Edough Massif during the early stages of opening of the Algerian basin. BM gabbros and LVN amphibolites show geochemical signatures indicating derivation from a common depleted mantle reservoir (εNd > + 7.9) and are likely cogenetic, but without filiation with the SM peridotites. Pb isotopes indicate a contribution of sediments in the source reservoir, which is attributed to contamination solely by hydrous fluids released from a sedimentary component. This observation, together with a LILE-enrichment, suggests a back-arc basin environment. These results indicate that BM and LVN units were obducted onto the North African margin and subsequently fragmented, probably during doming and exhumation of the lower continental crust of the Edough massif. Doming resulted in opposite movements of the overlying oceanic units, southward for the BM units and northward for LVN

  14. Shelf-fed turbidite system model and its application to the Oligocene deposits of the Campos Basin, Brazil

    SciTech Connect

    Peres, W.E. )

    1993-01-01

    Despite the large number of models involving the genesis and sedimentary facies of deep-water sandstones, none of these models adequately explain the origin and evolution of the extremely clean, widespread (over 6000 km[sup 2]), predominantly massive, thick (over 150 m), blanket-like sandstones deposited in the deep-water environment of the Campos Basin during the Oligocene. Consequently, to explain this sandstone, the author proposes a shelf-fed turbidite system model, which is strongly based on the Campos Basin data set. The basic framework necessary for the development of a shelf-fed turbidite system includes (1) deposition of a large volume of clastics during the buildup of a shelf-sand-rich unit, which later constitutes the main source of sediment for the system, (2) localized tectonic pulses that modify the outer shelf declivity and trigger mass flows; and (3) a relative fall of sea level, which causes the subaqueous exposure of the shelf sediments to reworking in a shallow, high-energy marine environment. These three basic elements are equally important for shelf-fed turbidity system development, but relative sea level position controls the development of the progradational, aggradational, and retrogradational depositional phases within the system. Submarine canyons commonly are scoured during all three phases on the outer shelf and lower slope environments. The shelf-fed turbidite system model may apply to other sedimentary basins, principally to those of the Atlantic-continental margins that have a thick evaporite sublayer. Halokinesis can provide the necessary room for the shelf sedimentary-unit buildup, the tectonic pulses that trigger the flows, and even localized relative sea level oscillations that can accelerate or abort any one of the depositional phases of the system. 25 refs., 26 figs.

  15. Cenozoic evolution of the Antarctic Peninsula continental margin

    SciTech Connect

    Anderson, J.B. )

    1990-05-01

    Cenozoic evolution of the Antarctic Peninsula continental margin has involved a series of ridge (Aluk Ridge)-trench collisions between the Pacific and Antarctic plates. Subduction occurred episodically between segments of the Pacific plate that are bounded by major fracture zones. The age of ridge-trench collisions decreases from south to north along the margin. The very northern part of the margin, between the Hero and Shackleton fracture zones, has the last surviving Aluk-Antarctic spreading ridge segments and the only remaining trench topography. The sedimentary cover on the northern margin is relatively thin generally less than 1.5 km, thus providing a unique setting in which to examine margin evolution using high resolution seismic methods. Over 5,000 km of high resolution (water gun) seismic profiles were acquired from the Antarctic Peninsula margin during four cruises to the region. The margin is divided into discrete fracture-zone-bounded segments; each segment displays different styles of development. Highly tectonized active margin sequences have been buried beneath a seaward-thickening sediment wedge that represents the passive stage of margin development Ice caps, which have existed in the Antarctic Peninsula region since at least the late Oligocene, have advanced onto the continental shelf on numerous occasions, eroding hundreds of meters into the shelf and depositing a thick sequence of deposits characterized by till tongues and glacial troughs. Glacial erosion has been the main factor responsible for overdeepening of the shelf; isostasy is of secondary importance. As the shelf was lowered by glacial erosion, it was able to accommodate thicker and more unstable marine ice sheets. The shelf also became a vast reservoir for cold, saline shelf water, one of the key ingredients of Antarctic bottom water.

  16. Thermostabilized Shelf Life Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Catauro, Patricia M.

    2009-01-01

    The objective of this project is to determine the shelf life end-point of various food items by means of actual measurement or mathematical projection. The primary goal of the Advanced Food Technology Project in these long duration exploratory missions is to provide the crew with a palatable, nutritious and safe food system while minimizing volume, mass, and waste. The Mars missions could be as long as 2.5 years with the potential of the food being positioned prior to the crew arrival. Therefore, it is anticipated that foods that are used during the Mars missions will require a 5 year shelf life. Shelf life criteria are safety, nutrition, and acceptability. Any of these criteria can be the limiting factor in determining the food's shelf life. Due to the heat sterilization process used for the thermostabilized food items, safety will be preserved as long as the integrity of the package is maintained. Nutrition and acceptability will change over time. Since the food can be the sole source of nutrition to the crew, a significant loss in nutrition may determine when the shelf life endpoint has occurred. Shelf life can be defined when the food item is no longer acceptable. Acceptability can be defined in terms of appearance, flavor, texture, or aroma. Results from shelf life studies of the thermostabilized food items suggest that the shelf life of the foods range from 0 months to 8 years, depending on formulation.

  17. Thermostable Shelf Life Study

    NASA Technical Reports Server (NTRS)

    Perchonok, M. H.; Antonini, D. K.

    2008-01-01

    The objective of this project is to determine the shelf life end-point of various food items by means of actual measurement or mathematical projection. The primary goal of the Advanced Food Technology Project in these long duration exploratory missions is to provide the crew with a palatable, nutritious and safe food system while minimizing volume, mass, and waste. The Mars missions could be as long as 2.5 years with the potential of the food being positioned prior to the crew arrival. Therefore, it is anticipated that foods that are used during the Mars missions will require a 5 year shelf life. Shelf life criteria are safety, nutrition, and acceptability. Any of these criteria can be the limiting factor in determining the food's shelf life. Due to the heat sterilization process used for the thermostabilized food items, safety will be preserved as long as the integrity of the package is maintained. Nutrition and acceptability will change over time. Since the food can be the sole source of nutrition to the crew, a significant loss in nutrition may determine when the shelf life endpoint has occurred. Shelf life can be defined when the food item is no longer acceptable. Acceptability can be defined in terms of appearance, flavor, texture, or aroma. Results from shelf life studies of the thermostabilized food items suggest that the shelf life of the foods range from 0 months to 8 years, depending on formulation.

  18. Organic-rich mud on the western margin of southern Africa: Nutrient source to the Southern Ocean?

    NASA Astrophysics Data System (ADS)

    Compton, John; Herbert, Caren; Schneider, Ralph

    2009-12-01

    The biological pump plays a major role in the transfer of CO2 from the atmosphere to the deep Southern Ocean, a transfer which is largely controlled by the supply of iron and which may partially explain glacial to interglacial variations in pCO2. Analogous to the well-documented, smaller-scale "island mass effect," we propose that the lateral advection of iron by south flowing intermediate waters along the southern African margin may sustain high-productivity blooms of the Subtropical Convergence Zone (SCZ) between 10 and 70°E. We assess the present-day interglacial (Holocene) reservoirs and fluxes of organic carbon (OC) and terrigenous mud on the western margin of southern Africa in order to estimate the potential supply of Fe to the Southern Ocean. The highly productive Benguela Upwelling System (BUS) appears to be a relatively inefficient coastal biological pump. Repeated sediment resuspension by wave and tidal energy dissipation limits OC burial to <0.2% of net primary production (NPP) in the southern BUS and to between 0.2 to 2.4% in the northern BUS. Productivity and OC-rich mud accumulation are focused on the inner portion of the 100-200 km wide shelf which, combined with south flowing bottom currents, limits the export of OC beyond the shelf break to 1.2-8.4% of NPP. However, winnowing of 1 million tons yr-1 of clay particles and the potential early diagenetic benthic (dissolved) Fe flux may supply 10 times more Fe than is transported by dust to the open ocean biological pump of the SCZ. Lowering sea level during glacial periods disperses interglacial mud deposits off the shelf and increases particulate Fe export by as much as a factor of 4. Glacial pulses of margin export may enhance the efficiency of the subantarctic Southern Ocean biological pump and contribute to the initial as well as glacial maximum drawdown in pCO2.

  19. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

  20. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress. PMID:26747520

  1. Modeling the dynamics of continental shelf carbon.

    PubMed

    Hofmann, Eileen E; Cahill, Bronwyn; Fennel, Katja; Friedrichs, Marjorie A M; Hyde, Kimberly; Lee, Cindy; Mannino, Antonio; Najjar, Raymond G; O'Reilly, John E; Wilkin, John; Xue, Jianhong

    2011-01-01

    Continental margin systems are important contributors to global nutrient and carbon budgets. Effort is needed to quantify this contribution and how it will be modified under changing patterns of climate and land use. Coupled models will be used to provide projections of future states of continental margin systems. Thus, it is appropriate to consider the limitations that impede the development of realistic models. Here, we provide an overview of the current state of modeling carbon cycling on continental margins as well as the processes and issues that provide the next challenges to such models. Our overview is done within the context of a coupled circulation-biogeochemical model developed for the northeastern North American continental shelf region. Particular choices of forcing and initial fields and process parameterizations are used to illustrate the consequences for simulated distributions, as revealed by comparisons to observations using quantitative statistical metrics.

  2. North Sinai-Levant rift-transform continental margin

    SciTech Connect

    Ressetar, R.; Schamel, S.; Travis, C.J.

    1985-01-01

    The passive continental margin of northern Egypt and the Levant coast formed during the Early mesozoic as the relatively small Anatolia plate broke away from northern Africa. The oceanic basin of the eastern Mediterranean and the unusual right-angle bend in the North Sinai-Levant shelf margin are both products of plate separation along a rift-transform fracture system, the south arm of Tethys. The north-south trending Levant transform margin is considerably narrower than the east-west trending rift margin of northern Egypt. Both exhibit similar facies and depositional histories through the mid-Tertiary. Analysis of subsurface data and published reports of the regional stratigraphy point to a three-stage tectonic evolution of this passive margin. The Triassic through mid-Cretaceous was marked by crustal breakup followed by rapid rotational subsidence of the shelf margins about hinge lines located just south and east of the present shorelines. Reef carbonates localized on the shelf edge separated a deep marine basin to the north from a deltaic-shallow marine platform to the south and east. In the Late Cretaceous-Early Tertiary, inversion of earlier formed half-grabens produced broad anticlinal upwarps of the Syrian Arc on the shelf margin that locally influenced facies patterns. The episode of inversion corresponds with the onset of northward subduction of the Africa plate beneath southern Asia. Beginning in the Oligocene and continuing to the present, there has been renewed subsidence of the North Sinai shelf margin beneath thick, outward building clastic wedges. The source of this large volume of sediment is the updomed and erosionally stripped margins of the Suez-Red Sea Rift and the redirected Nile River.

  3. The northern Egyptian continental margin

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Mohamed, Gad; Omar, Khaled; Farid, Walid

    2015-01-01

    Africa displays a variety of continental margin structures, tectonics and sedimentary records. The northern Egyptian continental margin represents the NE portion of the North African passive continental margin. Economically, this region is of great importance as a very rich and productive hydrocarbon zone in Egypt. Moreover, it is characterized by remarkable tectonic setting accompanied by active tectonic processes from the old Tethys to recent Mediterranean. In this article, seismicity of the northern Egyptian continental margin has been re-evaluated for more than 100-years and the source parameters of three recent earthquakes (October 2012, January 2013 and July 2013) have been estimated. Moment tensor inversions of 19th October 2012 and 17th January 2013 earthquakes reveal normal faulting mechanism with strike-slip component having seismic moment of 3.5E16 N m and 4.3E15 N m respectively. The operation of the Egyptian National Seismic Network (ENSN) since the end of 1997 has significantly enhanced the old picture of earthquake activity across northern Egyptian continental margin whereas; the record-ability (annual rate) has changed from 2-events/year to 54-event/year before and after ENSN respectively. The spatial distribution of earthquakes foci indicated that the activity tends to cluster at three zones: Mediterranean Ridge (MR), Nile Cone (NC) and Eratosthenes Seamount (ERS). However, two seismic gaps are reported along Levant Basin (LEV) and Herodotus Basin (HER).

  4. Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas

    SciTech Connect

    Kirkland, B.L.; Lighty, R.G.; Rezak, R.; Tieh, T.T.

    1987-09-01

    Along the south Texas margin, a vast carbonate-shelf complex with an extensive barrier-reef system and abundant shallow-lagoon and skeletal-shoal deposits existed during the Aptian to Albian. The Sligo Formation represents more than 609.6 m (2000 ft) of deposition along this margin. Facies types along the shelf edge were quantitatively delineated by cluster analysis of detailed point-count data from 90 thin sections of whole cores from five wells. In addition, studies of 42.6 m (140 ft) of core slabs and thin sections of well cuttings from four other wells were used to establish a regional depositional model. Along the Sligo shelf edge, three major facies occur: reef or reef rubble (two subfacies), back reef (three subfacies), and lagoonal (two subfacies). Reef facies are dominated by caprinids and also contain solenoporid algae, stromatoporoids, and an assortment of corals. Behind the reef, a spectrum of extensive back-reef deposits interfinger with shallow (< 5 m), lagoonal sediments. Farther behind the shelf-margin reef complex, along the outer shelf, benthic foraminifera, peloids, and ooids were deposited in high-energy shoals, and are interbedded with low-energy lagoonal sediments. The two types of buildups probably existed along the Sligo shelf margin and the equivalent Cupido shelf margin to the south: (1) wave-resistant coral-caprinid-stromatoporid barrier reefs (adjacent to restricted lagoonal facies), and (2) low-lying rudist banks (adjacent to diverse, washed lagoonal facies).

  5. Carbonate comparison of west Florida continental margin with margins of eastern United States

    SciTech Connect

    Doyle, L.J.

    1986-05-01

    Temperate carbonate margins may have as many similarities to clastic margins as to other carbonate systems. An example is the west Florida continental margin north of Florida Bay, a vast area of more than 150,000 km/sup 2/. The facies of this area differ from those of other Holocene carbonates, such as the Bahama Banks, the Great Barrier Reef, and the Caribbean and Pacific bioherms. The west Florida margin is analogous to the predominantly clastic southeastern US in both physiology and sedimentary processes. The shelf facies is a veneer of carbonate sand, primarily molluscan shell fragments, with low sedimentation rates. It is similar to the southeastern US sand veneer with the clastic component removed. Like the US system, the west Florida shelf has a ridge and swale topography replete with sedimentary structures, such as sand waves, with a series of drainage systems incised into its surface at lower stands of sea level. On the outer edge, it is commonly bounded by outcrops with considerable positive relief. The upper slope of the west Florida margin is a calcilutite, a Holocene chalk deposit accumulating at rates of tens of centimeters/1000 years, comparable to the clastic lutite depositional rates of the eastern US continental slope, and two orders of magnitude higher than deep-sea oozes of similar composition. These relatively high rates are probably caused by fines pumped from and across the coarser shelf-sand sheets in both systems.

  6. Interaction of tectonic and depositional processes that control the evolution of the Iberian Gulf of Cadiz margin

    USGS Publications Warehouse

    Maldonado, A.; Nelson, C.H.

    1999-01-01

    This study provides an integrated view of the growth patterns and factors that controlled the evolution of the Gulf of Cadiz continental margin based on studies of the tectonic, sedimentologic and oceanographic history of the area. Seven sedimentary regimes are identified, but there are more extensive descriptions of the late Cenozoic regimes because of the larger data base. The regimes of the Mesozoic passive margin include carbonate platforms, which become mixed calcareous-terrigenous deposits during the Late Cretaceous-early Tertiary. The Oligocene and Early Miocene terrigenous regimes developed, in contrast, over the active and transcurrent margins near the African-Iberian plate boundary. The top of the Gulf of Cadiz olistostrome, emplaced in the Late Miocene, is used as a key horizon to define the 'post-orogenic' depositional regimes. The Late Miocene progradational margin regime is characterized by a large terrigenous sediment supply to the margin and coincides with the closing of the Miocene Atlantic-Mediterranean gateways. The terrigenous drift depositional regime of the Early Pliocene resulted from the occurrence of high eustatic sea level and the characteristics of the Mediterranean outflow currents that developed after the opening of the Strait of Gibraltar. The Late Pliocene and Quaternary regimes are dominated by sequences of deposits related to cycles of high and low sea levels. Deposition of shelf-margin deltas and slope wedges correlate with regressive and low sea level regimes caused by eustasy and subsidence. During the highstand regimes of the Holocene, inner shelf prograding deltas and deep-water sediment drifts were developed under the influence of the Atlantic inflow and Mediterranean outflow currents, respectively. A modern human cultural regime began 2000 years ago with the Roman occupation of Iberia; human cultural effects on sedimentary regimes may have equalled natural factors such as climate change. Interplay of tectonic and

  7. Uncovering the glacial history of the Irish continental shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Dunlop, P.; Benetti, S.; OCofaigh, C.

    2013-12-01

    In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.

  8. Devonian shelf basin, Michigan basin, Alpena region

    SciTech Connect

    Gutschick, R.C.

    1986-08-01

    This biostratigraphic study involves the Devonian paleogeography-paleoecology-paleobathymetry of the transition from carbonate platform shelf margin to basinal sedimentation for the northern part of the Michigan basin in the Alpena region. Shelf-basin analysis is based on lithofacies, rock colors, concretion, biostratigraphy, paleoecology of faunas - especially microfaunas and trace fossils - stratified water column, eustasy, and application of Walther's Law. Field observations were made on Partridge Point along Lake Huron, where type sections of the Middle Devonian Thunder Bay Limestone and Late Devonian Squaw Bay Limestone are exposed; and the Antrim black shale at Paxton quarry. The Thunder Bay Limestone evolved as a carbonate platform, subtidal shelf-margin aerobic environment dominated by sessile benthic coralline organisms and shelly fauna, but not reef framework. The Squaw Bay Limestone is transitional shelf to basin, with aspects of slope environment and deeper water off-platform, pelagic organic biostromal molluscan-conodont carbonate deposited during the onset of a stratified water column (dysaerobic benthos-polychaete. agglutinated tubes, sulfides) and pycnocline. The Antrim Shale, in an exceptional black shale exposure in the Paxton quarry, represents deep-water basinal deposition whose bottom waters lacked oxygen. Faunas (conodonts, styliolines, radiolarians) and floras (tasmanitids, calamitids, palynomorphs) are from the aerobic pelagic realm, as indicated from concretions and shale fossil evidence. A benthos is lacking, except for bioturbation from organisms introduced by entrained oxygenated distal turbidite dispersion into the barren bottom black muds. Basinal hydrocarbon source rocks are abundant and updip carbonate reservoirs rim the basin. The Antrim Shale sequence contains the interval of Frasnian-Famennian faunal extinction.

  9. Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Warmer surface temperatures over just a few months in the Antarctic can splinter an ice shelf and prime it for a major collapse, NASA and university scientists report in the latest issue of the Journal of Glaciology. Using satellite images of tell-tale melt water on the ice surface and a sophisticated computer simulation of the motions and forces within an ice shelf, the scientists demonstrated that added pressure from surface water filling crevasses can crack the ice entirely through. The process can be expected to become more widespread if Antarctic summer temperatures increase. This true-color image from Landsat 7, acquired on February 21, 2000, shows pools of melt water on the surface of the Larsen Ice Shelf, and drifting icebergs that have split from the shelf. The upper image is an overview of the shelf's edge, while the lower image is displayed at full resolution of 30 meters (98 feet) per pixel. The labeled pond in the lower image measures roughly 1.6 by 1.6 km (1.0 x 1.0 miles). Full text of Press Release More Images and Animations Image courtesy Landsat 7 Science Team and NASA GSFC

  10. Sediments, structural framework, petroleum potential, environmental conditions, and operational considerations of the United States South Atlantic Outer Continental Shelf

    USGS Publications Warehouse

    ,

    1975-01-01

    Appalachian Piedmont province. Triassic deposits are likely to exist beneath the inner Continental Shelf, and probably consist of nonmarine arkosic sandstones, shales, basalt flows, and diabase intrusions deposited in relatively narrow northeast-trending grabens. Jurassic marine carbonates in the Bahamas grade northward to carbonates, shales, sand, and arkose in North Carolina. Salt may be present in the basal Jurassic section in the Southeast Georgia Embayment. Up to 4,000 m of Jurassic-Lower Cretaceous rocks are expected out to the 600 m water depth. Lower Cretaceous rocks in southern Florida are shallow-water marine limestone and dolomites with beds of anhydrite. In coastal North Carolina the Lower Cretaceous is a marine section made up of shales, sand, and sandy limestone. The Upper Cretaceous is composed almost entirely of marine carbonates in southern Florida grading northward to nonmarine to marginal marine, sandstones and shales with minor amounts of carbonates. In general, Upper Cretaceous rocks will probably maintain a fairly constant thickness (600 m) on the Continental Shelf and grade downdip from terrigeneous sands and shales to more marine chalks, limestones, and dolomites. The Cenozoic rocks are predominantly shallow-water marine carbonates in Florida grading northward into a marginal marine to marine clastic facies composed of sands, marls, and limestones. The offshore Cenozoic section is expected to range in thickness from 600 to 1100 m. A reconstruction of the geologic history suggests that the present continental margin is a result of a collision of the North American and African continental plates during late Paleozoic time and later modification during Late Triassic time when the continental plates separated, forming the present Atlantic Ocean. No commercial production of hydrocarbons has been developed on the Atlantic Coastal Plain immediately adjacent to the studied area even though hydrocarbon shows have been encountered in ons

  11. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on ... surfaces appear brighter on their illuminated faces, the orange color in the multi-angle composite suggests a macroscopically rough ice ...

  12. Upper Jurassic and Lower Cretaceous facies relationships in a passive margin basin, western North Atlantic

    SciTech Connect

    Prather, B.E.

    1988-02-01

    Correlation of facies from hydrocarbon-bearing continental and transitional marine sandstones to time-equivalent high-energy shelf-margin carbonates provide insight into hydrocarbon habitats of the Baltimore Canyon basin. These facies occur within a thick (> 10,000 ft) prograded wedge of shelf sediments in this passive margin basin. Wells drilled to test structural closures in shallow-water (< 600 ft) areas of Baltimore Canyon penetrate clastic facies which are time-equivalent to the downdip carbonate facies tested in deep-water wells. Numerous hydrocarbon shows, including a noncommercial gas and gas-condensate accumulation, occur with sandstone units that were deposited in prograding continental/fluvial and transitional marine environments located updip of the Oxfordian/Kimmeridgian carbonate shelf edge. The continental and transitional facies are overlain by a fine-grained deltaic complex which forms a regionally extensive top seal unit. The deltaic complex was deposited during aggradation of the Kimmeridgian through Berriasian shelf-margin carbonates penetrated by the deep-water wells. Deep-water wells (> 5000 ft) drilled off the continental shelf edge to test large structural closures along the downdip termination of the Upper Jurassic/Lower Cretaceous carbonate shelf edge encountered no significant hydrocarbon shows. Reservoir rocks in these wells consist of (1) oolite grainstone which was deposited within a shoal-water complex located at the Aptian shelf edge, and (2) coral-stromatoporoid grainstone and boundstone which formed an aggraded shelf-margin complex located at the Kimmeridgian through Berriasian shelf edge. Structural closures with reservoir and top seals are present in both updip and downdip trends. The absence of hydrocarbon shows in downdip carbonate reservoirs suggests a lack of source rocks available to charge objectives at the shelf margin.

  13. Winds influence Bering Shelf circulation

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    Circulation over the Bering Sea shelf and between the shelf and the adjacent deep basin affects the ecosystem through nutrient exchange, egg and larvae dispersal, and changes in temperature and salinity. Using numerical models and observations, Danielson et al. present a new simple framework showing how circulation on the Bering shelf varies with wind forcing. They f n d two primary modes of wind forcing, and changes in wind direction tend to reverse the flow around the shelf. Northwesterly winds, which are more common, promote off-shelf transport along the majority of the continental slope, while southeasterly winds, which are less frequent, are associated with greater on-shelf transport. The study improves overall understanding of the Bering shelf circulation. (Geophysical Research Letters, doi:10.1029/2012GL051231, 2012)

  14. Palatal shelf elevation in the Wistar rat fetus.

    PubMed Central

    Ferguson, M W

    1978-01-01

    Palatogenesis in the Wistar rat fetus was studied macroscopically, microscopically, ultrastructurally and experimentally between days 13 and 19. The developmental ages of the fetuses were calculated from the smear age of the litter adjusted for individual variations in crown-rump lengths. Palatal shelf elevation occurs at day 16.4 +/- 0.1. Experimentally induced shelf elevation in freshly delivered fetuses was sluggish at day 14, but by day 16.3 it occurred in less than 1 second. Both shelf elevation and shelf fusion begin anteriorly where the shelves show a marked convexity of their margins, and proceed posteriorly. The extreme posterior part of each shelf (future soft palate) is horizontal from the beginning. The matrix of the shelf mesenchyme (especially in the region of the anterior convexities) shows an increasing accumulation of mucopolysaccharides from day 14 to day 16.3 and becomes increasingly oedematous. The shelf attachment to the main maxillary process is progressively undercut by epithelial invagination, producing a fulcrum for shelf elevation. The maxillary and palatine osteogenic blastemata are present at the base of the shelf prior to elevation and rapidly invade the shelves after the event. The elevated palatal shelves fuse with the nasal septum anteriorly, but posteriorly the palate is not attached to the septum. The posterior septum at first has a free lower edge, but then it develops lateral flanges which fuse with corresponding bulges on the lateral nasal walls. In this way two sphenoethmoidal recesses are formed above the fused flanges, while a common nasal passage is formed above the palate, roofed anteriorly by the septal flanges and posteriorly by the cranial base. The space needed to create (simultaneous with shelf elevation) the common nasal passage is made available by flattening of the tongue and protrusion of its tip out of the oral cavity--this protrusion being facilitated by the sloping bulge of the primary palate and nasal septum

  15. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  16. Holocene sediment dynamics on a cool-water carbonate shelf: Otway, southeastern Australia

    SciTech Connect

    Boreen, T.D.; James, N.P. )

    1993-07-01

    The Otway Shelf is covered by cool waters and veneered by bryozoan-dominated carbonate sediments. Radiocarbon dating and stratigraphy of shelf vibracores and slope gravity cores document late Pleistocene/Holocene deposition. Shelf sediments of the late Pleistocene high-stand are rare, either never having been deposited or having been removed during the following sea-level fall. During the subsequent lowstand the shelf was exposed, facies shifted basinward, and beach/dune complexes were constructed near the shelf edge. The deep shelf was characterized by nondeposition and hardground formation, and the shelf margin became locally erosional. Upper-slope bryozoan/sponge assemblages continued to grow actively, and lower-slope foraminifera and nannofossil ooze was increasingly enriched in hemipelagic terrigenous mud swept off the wide shelf. Coarse shelf debris and lowstand dune sands were erosively reworked and transported onto the upper slope and redistributed to deep-slope aprons during early transgression. The late Quaternary shelf record resembles that of flat-topped, warm-water platforms with Holocene sediment overlying Pleistocene/Tertiary limestone, but for different reasons. The slow growth potential, uniform profile of sediment production and distribution, and inability of constituent organisms to construct rigid frameworks favor maintenance of a shallow ramp profile and makes the cool-water carbonate system an excellent modern analog for interpretation of many ancient ramp successions.

  17. Heat flow of the Norwegian continental shelf

    NASA Astrophysics Data System (ADS)

    Pascal, Christophe

    2015-04-01

    Terrestrial heat flow influences a large collection of geological processes. Its determination is a requirement to assess the economic potential of deep sedimentary basins. Published heat flow calculations from e.g. major oil provinces are however seldom. Robust heat flow determinations in drillholes require logging of undisturbed temperatures and intensive sampling of core material for petrophysical measurements. Temperature logging in exploration drillholes is traditionally conducted during drill breaks or shortly after drilling, resulting in temperatures severely disturbed by mud circulation and coring is restricted to selected intervals. Alternatively, test temperatures, information from electric logs and lithological descriptions of drill cuttings can be used to overcome these limitations. The present contribution introduces new heat flow determinations based on 63 exploration drillholes from the Norwegian North Sea, the Mid Norway Margin and the Barents Shelf. Our analyses are based on released DST temperatures, precise lithological descriptions of drill cuttings, previously measured rock matrix thermal conductivities and established porosity laws. Our results suggest median heat flow values of 64 mW/m2, 65 mW/m2 and 72 mW/m2 for the North Sea, the Mid Norway Margin (mainly the Trøndelag Platform) and the SW Barents Shelf respectively. The Barents Shelf shows significantly high heat flow, suggesting lateral transfer of heat from the mantle of the adjacent young ocean. In detail, heat flow increases by ~ 10 mW/m2 from the southern Norwegian North Sea towards the Mid Norway Margin. This result appears to be in very good agreement with seismic tomographic studies suggesting northward thinning of the underlying mantle lithosphere. Our results together with published marine heat flow data from the Mid Norway Margin suggest a gradual decrease in heat flow levels from both the North Sea and the Trøndelag Platform towards the centres of the deep Møre and V

  18. Comparative evolution of Pennsylvanian platform margins in Oklahoma and north-central Texas

    SciTech Connect

    Cleaves, A.W.; Puckette, J.O. )

    1991-08-01

    Pennsylvanian evolution of the Midland basin's eastern shelf and the northern shelves of the Anadarko and Arkoma basins demonstrates a strongly contrasting pattern with regard to the facies composition and stability of the shelf margin. For the Midland basin a carbonate ramp system developed adjacent to the Eastern shelf during the early Desmoinesian but received no coarse-grained clastic sediment until after the central Fort Worth basin was completely filled by Ouachita orogenic debris in the late Desmoinesian. At that time, a distinct north-south hingeline formed between the shelf and incipient Midland basin that allowed for subsequent vertical accretion of a Missourian-age double bank system. Due to the absence of active deltaic depocenters across the southern two-thirds of the shelf, the Missourian shelf margin did not prograde basinward nor did a submarine fan system develop adjacent to this reciprocal bank complex. Later, during the Virgilian, a single shelf-edge bank and submarine fan complex prograded the shelf edge westward. The shelf edges for the Anadarko and Arkoma basins demonstrate a significantly different pattern. Only during the late Desmoinesian (Marmaton Group) did a shelf-edge bank develop in association with shelf-slope reciprocal sedimentation. For the Anadarko basin, widespread submarine fans, fed from a northeasterly cratonic source, are first seen with Red Fork deposition. Post-Tonkawa cyclic sedimentation prograded the shelf edge southward and gave rise to a more carbonate-dominated shelf sequence. In virtually all instances the regressive submarine fan units indicate eustatic lowstands of sea level.

  19. Sequence stratigraphy of an Oligocene carbonate shelf, Central Kalimantan, Indonesia

    SciTech Connect

    Saller, A.; Armin, R. ); Ichram, L.O. ); Glenn-Sullivan, C. )

    1991-03-01

    Interpretations of Oligocene shelfal limestones from Central Kalimantan, Indonesia, suggest caution in predicting sea-level lowstands from seismic reflector patterns or published sea-level curves. Three major depositional sequences, each 200-400 m thick, were delineated in outcrops and seismic lines: late Eocene to early Oligocene (34-38 Ma), middle Oligocene (29.7-32 Ma), and early late Oligocene (28-29.7 Ma). The lowest sequence is mainly shale with tin sandstones and limestones (large-foram wackestone). The middle and upper sequences are carbonate with transgressive systems tracts (TSTs) overlain by highstand systems tracts (HSTs). TSTs contain large-foram wackestone-packstones and coral wackestone-packstones. HSTs are characterized by (1) shale and carbonate debris flows deposited on the lower slope, (2) argillaceous large-foram wackestones on the upper slope, (3) discontinuous coral wackestones and boundstones on the shelf margin, (4) bioclastic packstones and grainstones on backreef flats and shelf-margin shoals, and (5) branching-coral and foraminiferal wackestones in the lagoon. Bases of sequences are characterized by transgression and onlap. Deepending and/or drowning of the carbonate shelf occurred at the top of the middle and upper sequences. Basinal strata that apparently onlap the middle and upper carbonate shelf margins might be misinterpreted as lowstand deposits, although regional studies indicate they are prodelta sediments baselapping against the shelf. Shallowing the subaerial exposure of the carbonates might be expected during the large mid-Oligocene (29.5-30 Ma) sea-level drop of Haq et al. (1987), instead of the observed deepening and local drowning.

  20. Permian of Norwegian-Greenland sea margins: future exploration target

    SciTech Connect

    Surlyk, F.; Hurst, J.M.; Piasecki, S.; Rolle, F.; Stemmerik, L.; Thomsen, E.; Wrang, P.

    1984-09-01

    Oil and gas exploration in the northern North Sea and the southern Norwegian shelf has mainy been concentrated on Jurassic and younger reservoirs with Late Jurassic black shale source rocks. New onshore investigations in Jameson Land, central East Greenland, suggest that the Permian of the Norwegian-Greenland Sea margins contains relatively thick sequences of potential oil source rocks interbedded with carbonate reefs. The East Greenland, Upper Permian marine basin is exposed over a length of 400 km (250 mi) from Jameson Land in the south to Wollaston Forland in the north, parallel with the continental margin. The Upper Permian black shale is relatively thick, widely distributed, has a high organic carbon content, and a favorable kerogen type. Consequently, the possibilities for a Permian play in the northern part of the Norwegian shelf and along parts of the Norwegian-Greenland Sea margins are worth evaluating.

  1. Geology of continental shelf, Onslow Bay, North Carolina, as revealed by submarine outcrops ( USA).

    USGS Publications Warehouse

    Blackwelder, B. W.; Macintyre, Ian G.; Pilkey, O.H.

    1982-01-01

    Lithologic and stratigraphic data from rocks dredged from the continental shelf off Onslow Bay, North Carolina, provide surface control for seismic studies of the southeastern United States continental margin and help to explain the distribution of potentially economic phosphate-rich sediments on this shelf. Outcropping Miocene rocks in this area indicate that the region has long been a positive geologic feature and has received relatively little Pliocene and Pleistocene sedimentation. -from Authors

  2. Cross-shelf subtidal variability in San Pedro Bay during summer, 2001

    USGS Publications Warehouse

    Hamilton, P.; Noble, M.A.; Largier, J.; Rosenfeld, L.K.; Robertson, G.

    2006-01-01

    A total of 16 moorings were deployed across the San Pedro shelf, one of the two wider embayments in the Southern California Bight, from near the surfzone to the upper-slope. On the middle and outer shelf in the summer of 2001, the currents flowed strongly equatorward at the surface and had large vertical shears through the well-stratified water column. This equatorward flow differs from predominantly poleward flow found in previous studies of the coastal margin further west. In deeper water, near the shelf break, the shears were such that near-bottom flows were poleward and incorporated into the upper parts of the Southern California Undercurrent over the slope. Mid-shelf current fluctuations, with periods of 10-25 days, along with upwelling over the shelf, were not related to local winds, but were significantly correlated with the large-scale alongshore pressure gradient. Shorter period (???7-10 days) inner shelf alongshore currents, however, were significantly correlated with the alongshore wind at the shelf break. A CEOF analysis gives two significant modes, with the first mode dominant over the outer and middle shelf. The wind-forced second mode connects the inner shelf to the poleward undercurrent over the slope such that increases in the poleward flow over the slope are correlated with increases in the equatorward current inshore of the 15 m isobath.

  3. Continental Margins: Linking Ecosystems

    NASA Astrophysics Data System (ADS)

    Kelly-Gerreyn, Boris; Rabalais, Nancy; Middelburg, Jack; Roy, Sylvie; Liu, Kon-Kee; Thomas, Helmuth; Zhang, Jing

    2008-02-01

    Impacts of Global, Local and Human Forcings on Biogeochemical Cycles and Ecosystems, IMBER/LOICZ Continental Margins Open Science Conference; Shanghai, China, 17-21 September 2007; More than 100 scientists from 25 countries came together to address global, regional, local, and human pressures interactively affecting continental margin biogeochemical cycles, marine food webs, and society. Continental margins cover only 12% of the global ocean area yet account for more than 30% of global oceanic primary production. In addition, continental margins are the most intensely used regions of the world's ocean for natural commodities, including productive fisheries and mineral and petroleum resources. The land adjacent to continental margins hosts about 50% of the world's population, which will bear many direct impacts of global change on coastal margins. Understanding both natural and human-influenced alterations of biogeochemical cycles and ecosystems on continental margins and the processes (including feedbacks) that threaten sustainability of these systems is therefore of global interest.

  4. Eel River margin source-to-sink sediment budgets: revisited

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2014-01-01

    The Eel River coastal margin has been used as a representative source-to-sink sediment dispersal system owing to its steep, high-sediment yield river and the formation of sedimentary strata on its continental shelf. One finding of previous studies is that the adjacent continental shelf retains only ~25% of the Eel River fine-grained sediment (less than 63 μm) discharged over time scales of both individual floods and the 20th century, thus suggesting that the Eel shelf trapping-efficiency is uniquely lower than other similar systems. Here I provide data and analyses showing that sediment discharge relationships in the Eel River have varied strongly with time and include substantial decreases in suspended-sediment concentrations during the latter 20th century. Including these trends in margin-wide sediment budgets, I show that previous Eel River sediment discharge rates were overestimated by a factor of two. Thus, revised sediment budgets shown here reveal that the Eel shelf retained ~50% of the discharged river fine-grained suspended sediment during intensively sampled events of 1995–97 and over the 20th century. In light of this, hypotheses about high rates of sediment export away from the primary shelf depocenter should be reevaluated.

  5. Shelf to basin transition of Silurian-Devonian rocks, Porcupine River area, east-central Alaska

    SciTech Connect

    Colean, D.A.

    1985-04-01

    Exposures of Silurian to lowermost Devonian strata in the Porcupine River region consist of an unnamed carbonate unit and the Road River Formation. Petrographic studies indicate that these rocks display facies representative of five depositional environments: basin, open sea shelf, deep shelf margin, open platform, and restricted shelf. The unnamed carbonate unit, exposed in the Linear Ridge area, is 390 ft (126 m) thick and records a history of restricted shelf to basinal sedimentation. Stratigraphic relations and paleontological studies suggest a Middle to Late Silurian (Ludlovian) age for this unit. The Road River Formation is Late Silurian (Ludlovian) to Early Devonian (Lochkovian) in age and is exposed near the confluence of the Porcupine-Salmontrout Rivers and downstream along the Lower Ramparts. It consists of 30-190 ft (10-61 m) of graptolitic shale with interbeds of siliceous limestone. Petrographic studies of the shales are interpreted to reflect deposition in a basinal setting, whereas the siliceous limestones represent deep shelf-margin debris flows derived from nearby, coeval shallow-water shelf environments. Together, the unnamed carbonate unit and the Road River Formation represent a shelf to basin transition on a carbonate ramp that transcends the Silurian-Devonian boundary. Petrographic examination of these rocks reveals that they are susceptible to a wide range of diagenetic processes, including (1) micritition, (2) neomorphism, (3) syntaxial overgrowths, (4) pressure solution (stylolitization), (5) trapping of dried hydrocarbons, (6) tensional stress (calcite veining), and (7) silicification.

  6. Systematic mapping of the Spanish continental margin

    NASA Astrophysics Data System (ADS)

    Acosta, Juan; Muñoz, Araceli; Uchupi, Elazar

    2012-07-01

    For economic, environmental, recreational, military, and political reasons it is critical for coastal states to have up-to-date information on their marine margins. Spain began to acquire such data 17 years ago. From 1995 to the present, the Spanish Oceanographic Institute (IEO), a research organization of the state, has carried out a systematic geological and geophysical study of the Spanish margins. Among these projects are (1) the hydrographic and oceanographic study of the Spanish Exclusive Economic Zone (EEZ) that was implemented by the Navy Hydrographic Institute (IHM); (2) the Espace Project, a study of the Spanish continental shelf; and (3) the Capesme Project, which created fisheries maps of the Mediterranean Sea. The latter two projects were carried out in collaboration with the Secretariat General of the Sea (SGM).

  7. Heavy mineral provinces of the Palos Verdes margin, southern California

    USGS Publications Warehouse

    Wong, F.L.

    2002-01-01

    Natural sources of sediment for the Palos Verdes margin, southern California, have been augmented by effluent discharged from Los Angeles County Sanitation District's sewage-treatment facility and by the reactivation of the Portuguese Bend landslide. Heavy minerals in very fine and fine sand (63-250 ??m) from beach and shelf sites off the Palos Verdes Peninsula distinguish effluent-affected sediment from unaffected deposits, and track the sediment contributed by the Portuguese Bend landslide. Heavy minerals also identify heterogeneous sediment sources for the nearshore zone and relate outer-shelf sediment to depositional cells north and south of the area.

  8. Heat Flow of the Norwegian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Pascal, C.

    2015-12-01

    Terrestrial heat flow determination is of prime interest for oil industry because it impacts directly maturation histories and economic potential of oil fields. Published systematic heat flow determinations from major oil provinces are however seldom. Robust heat flow determinations in drillholes require logging of undisturbed temperatures and intensive sampling of core material for petrophysical measurements. Temperature logging in exploration drillholes is traditionally conducted during drill breaks or shortly after drilling, resulting in temperatures severely disturbed by mud circulation and coring is restricted to selected intervals. Alternatively, test temperatures, information from electric logs and lithological descriptions of drill cuttings can be used to overcome these limitations. The present contribution introduces new heat flow determinations based on 63 exploration drillholes from the Norwegian North Sea, the Mid Norway Margin and the Barents Shelf. Our analyses are based on released DST temperatures, precise lithological descriptions of drill cuttings, previously measured rock matrix thermal conductivities and established porosity laws. For the sake of comparison, we carefully review previous heat flow studies carried out both onshore and offshore Norway. Our results suggest median heat flow values of 64 mW/m2, 65 mW/m2 and 72 mW/m2 for the North Sea, the Mid Norway Margin (mainly the Trøndelag Platform) and the SW Barents Shelf respectively. In detail, heat flow increases by ~ 10 mW/m2 from the southern Norwegian North Sea towards the Mid Norway Margin. This result appears to be in very good agreement with seismic tomographic studies suggesting northward thinning of the underlying mantle lithosphere. Our results together with published marine heat flow data from the Mid Norway Margin suggest a gradual decrease in heat flow levels from both the North Sea and the Trøndelag Platform towards the centres of the deep Møre and Vøring basins. This latter

  9. Late Permian to mid-Cretaceous carbonate platform along the passive margin of the southeastern Mediterranean

    SciTech Connect

    Derin, B.; Garfunkel, Z.

    1988-08-01

    Starting from the Late Permian and throughout most of the Mesozoic, up to 5 km of shallow-water carbonates formed in a subsiding belt along the northern fringe of the Arabo-African continent, passing inland into thinner and clastic-rich sections. This sedimentation pattern was established in the Late Permian and evolved in several distinct stages that depended on global oscillations of sea level and local tectonic events. In Middle Triassic to early Liassic times, several pulses of faulting and magmatism, interpreted as rifting, occurred along the subsiding belt of carbonate deposition and produced a passive continental margin. Tectonic activity ended by the Roarcian, and since then a rather uniform shallow-water carbonate shelf formed. It was delimited by shoals of high-energy sediments and fringing reefs, inland of which low-energy carbonate muds and sometimes dolomite accumulated. By the Late Jurassic a more than 1.5 km-high continental slope developed, separating the shallow-water domain from a starved deep-water basin. In latest Jurassic and earliest Cretaceous time the activity of an intraplate hot spot caused extensive magmatism, uplifting, and erosion. The eroded material formed a thick sediment body in front of the continental slope. Since late Valanginian time, renewed regional subsidence and a rise in sea level led to a new phase of carbonate deposition over a wide shallow-water shelf. This was fringed by an accentuated continental slope covered by a basinward-thinning wedge-shaped apron of calciclastic sediments. This region was terminated by Senonian and later deformation related to plate collision in the Alpine orogenic belt.

  10. Investigating the Flow Dynamics at Ice Shelf Calving Fronts

    NASA Astrophysics Data System (ADS)

    Wearing, Martin; Hindmarsh, Richard; Worster, Grae

    2015-04-01

    Ice-shelf calving-rates and the buttressing ice shelves provide to grounded ice are both difficult to model and quantify. An increased understanding of the mechanics of this process is imperative in determining the dynamics of marine ice sheets and consequently predicting their future extent, thickness and discharge. Alley et al. (2008) proposed an empirically derived calving law, relating the calving rate to the strain rate at the calving front. However, Hindmarsh (2012) showed that a similar relationship could be deduced by considering the viscous flow of the ice shelf. We investigate the relationship between the ice shelf flow field and the strain rate field in the area close to the calving front. Analysis is undertaken of ice surface velocity data for a range of Antarctic ice shelves (data from Rignot et al., 2011) and an inferred strain rate field produced from that data. These geophysical results are compared with a simple mathematical model for laterally confined ice shelf flow. Correlations are calculated between the same variables as Alley et al. but using a new and larger data compilation, which gives a greater degree of scatter. Good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of laterally confined ice shelves. This lateral confinement ensures flow is aligned in the along-shelf direction and resistance to flow is provided by near stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute on a case-by-case basis to marginal weakening or the presence of ice tongues. We develop statistical methodologies for identifying these outliers.

  11. The geodynamics of the Levant margin

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Z.

    2006-12-01

    The Levant continental margin, offshore Israel, Lebanon and Syria, is usually defined as a passive margin that was formed through rifting processes. During the formation two major continental fragments are assumed to separate from the northern edge of the Afro-Arabian plate to form the Levant basin: the Tauride and Eratosthenes blocks. Today an oceanic crust and, in places, a very thin continental crust are present between the Levant margin and Eratosthenes seamount. The margin can be divided into two distinct provinces that are separated by the Carmel Structure, which extends from seawards to the northwest across the continental shelf and slope. The preservation of segmentation, both in the shallow and in the deep structure, insinuates that the two segments were formed through different continental breakup processes, which continue to dictate the style of sediment accumulation. The nature and development of the continental margin offshore Israel were the subject of numerous studies, which suggest that the southern Levant segment (south of the Carmel Structure) was formed through continental rifting processes. In contrast, the northern segment, from the Carmel structure northwards and offshore southern Lebanon, was hardly studied before. Recent studies however indicate that the northern segment shows a strong similarity to classical transform margins in the world. In view of the new classification of the northern Levant margin a modified scenario is suggested for: (a) the initial stages in which the Levant margin was formed; and (b) the present day structural differences between the two segments of the margin. At present, the northern Levant continental margin is being reactivated by transpressional faulting of the marine continuation of the Carmel fault which bends northward at the base of the continental slope due to the rheological discontinuity in this region. This fault system coincides with the sharp continental-oceanic crustal transition, and acts as an

  12. [Marginalization and health. Introduction].

    PubMed

    Yunes, J

    1992-06-01

    The relationship between marginalization and health is clear. In Mexico, for example, life expectancy is 53 years for the poorest population sectors and 20 years more for the wealthiest. Infant mortality in poor Colombian families is twice that of wealthier families, and one-third of developing countries the rural population is only half as likely as the urban to have access to health services. Women in the Southern hemisphere are 12 times likelier than those in the Northern to die of maternal causes. The most important step in arriving at a solution to the inequity may be to analyze in depth the relationship between marginality and health. Marginality may be defined as the lack of participation of individuals or groups in certain key phases of societal life, such as production, consumption, or political decision making. Marginality came to be viewed as a social problem only with recognition of the rights of all individuals to participate in available social goods. Marginality is always relative, and marginal groups exist because central groups determine the criteria for inclusion in the marginal and central groups. Marginality thus always refers to a concrete society at a specific historical moment. Marginal groups may be of various types. At present, marginal groups include women, rural populations, people with AIDS or mental illness or certain other health conditions, refugees, ethnic or religious groups, homosexuals, and the poor, who are the largest group of marginal persons in the world. Even in developed countries, 100-200 million persons live below the poverty line. Latin America is struggling to emerge from its marginal status in the world. The economic crisis of the 1980s increased poverty in the region, and 40% are not considered impoverished. Latin America is a clear example of the relationship between marginality and health. Its epidemiologic profile is intimately related to nutrition, availability of potable water, housing, and environmental

  13. [Marginalization and health. Introduction].

    PubMed

    Yunes, J

    1992-06-01

    The relationship between marginalization and health is clear. In Mexico, for example, life expectancy is 53 years for the poorest population sectors and 20 years more for the wealthiest. Infant mortality in poor Colombian families is twice that of wealthier families, and one-third of developing countries the rural population is only half as likely as the urban to have access to health services. Women in the Southern hemisphere are 12 times likelier than those in the Northern to die of maternal causes. The most important step in arriving at a solution to the inequity may be to analyze in depth the relationship between marginality and health. Marginality may be defined as the lack of participation of individuals or groups in certain key phases of societal life, such as production, consumption, or political decision making. Marginality came to be viewed as a social problem only with recognition of the rights of all individuals to participate in available social goods. Marginality is always relative, and marginal groups exist because central groups determine the criteria for inclusion in the marginal and central groups. Marginality thus always refers to a concrete society at a specific historical moment. Marginal groups may be of various types. At present, marginal groups include women, rural populations, people with AIDS or mental illness or certain other health conditions, refugees, ethnic or religious groups, homosexuals, and the poor, who are the largest group of marginal persons in the world. Even in developed countries, 100-200 million persons live below the poverty line. Latin America is struggling to emerge from its marginal status in the world. The economic crisis of the 1980s increased poverty in the region, and 40% are not considered impoverished. Latin America is a clear example of the relationship between marginality and health. Its epidemiologic profile is intimately related to nutrition, availability of potable water, housing, and environmental

  14. Larval Transport on the Atlantic Continental Shelf of North America: a Review

    NASA Astrophysics Data System (ADS)

    Epifanio, C. E.; Garvine, R. W.

    2001-01-01

    This review considers transport of larval fish and crustaceans on the continental shelf. Previous reviews have contained only limited treatments of the physical processes involved. The present paper provides a physical background that is considerably more comprehensive. It includes a discussion of three principal forcing agents: (1) wind stress; (2) tides propagating from the deep ocean; and (3) differences in density associated with the buoyant outflow of estuaries, surface heat flux, or the interaction of coastal and oceanic water masses at the seaward margin of the shelf. The authors discuss the effects of these forcing agents on transport of larvae in the Middle Atlantic and South Atlantic Bights along the east coast of North America. The discussion concentrates on three species (blue crab, menhaden, bluefish) that have been the subject of a very recent multi-disciplinary study. Taken as a whole, the reproductive activities of these three species span the entire year and utilize the entire shelf, from the most seaward margin to the estuarine nursery. The blue crab is representative of species affected by physical processes occurring during summer and early autumn on the inner and mid-shelf. Menhaden are impacted by processes occurring in winter on the outer and mid-shelf. Bluefish are influenced primarily by processes occurring during early spring at the outer shelf margin near the western boundary current. The authors conclude that alongshore wind stress and density differences, i.e. buoyancy-driven flow, are the primary agents of larval transport in the region. Circulation associated with the western boundary current is only important at the shelf margin and tidally driven processes are generally inconsequential.

  15. Export of terrigenous organic carbon along submarine canyons driven by dense shelf water cascading

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Puig, P.; Goni, M.; Canals, M.; Langone, L.; Palanques, A.; Miserocchi, S.; Heussner, S.; Trincardi, F.; Calafat, A.; Turchetto, M.; Fabres, J.; Durrieu de Madron, X.; Boldrin, A.

    2008-12-01

    At current highstand in sea level, shelves are considered major sites of terrigenous organic carbon (OCterr) accumulation with relatively little connectivity to the ocean interior. In recent years, the process of dense water cascading from the continental shelf, which occurs in numerous places around the world, has been suggested as carrier for OCterr to the deep ocean. The land-locked Mediterranean Sea is characterized by intense and recurrent cascades of dense shelf water. In winter, cold and dry winds cause the formation of dense water over the shelf that may overflow it and travel down to the outer margin and basin. Moored instruments were deployed in the canyons of the Gulf of Lion (France-Spain) and the Adriatic Sea (Italy) to intercept particulate material escaping the shelf and to investigate hydrodynamic and physical properties of the water column. Surface sediments along the shelves were also sampled to evaluate their contribution to the particle fluxes. The relative fractions of autochthonous and advected OC in sediment trap samples were investigated using biogeochemical proxies including alkaline CuO oxidation products (lignin phenols, dicarboxylic acids, and fatty acids), radiocarbon measurements (Ä14C), and elemental and carbon stable isotope (ä13C) compositions. Lignin-derived CuO products were a powerful biogeochemical tool that allowed us to identify the provenance of the material from the continental margin and to assess the amount of OCterr transferred across the slope in both Mediterranean regions. The results indicate that the composition of OC escaping the shelf through submarine canyons depends on the geomorphological setting. At the present sea level stage, cascading on a broad shelf limits the transport of OCterr, promoting instead the down-slope export of material accumulated in the mid- and outer-shelf. In contrast, cascade events on narrow shelves lead to the efficient export of OCterr from shallower regions of the margin along with

  16. North African geology: exploration matrix for potential major hydrocarbon discoveries

    SciTech Connect

    Kanes, W.H.; O'Connor, T.E.

    1985-02-01

    Based on results and models presented previously, it is possible to consider an exploration matrix that examines the 5 basic exploration parameters: source, reservoir, timing, structure, and seal. This matrix indicates that even those basins that have had marginal exploration successes, including the Paleozoic megabasin and downfaulted Triassic grabens of Morocco, the Cyrenaican platform of Libya, and the Tunisia-Sicily shelf, have untested plays. The exploration matrix also suggests these high-risk areas could change significantly, if one of the 5 basic matrix parameters is upgraded or if adjustments in political or financial risk are made. The Sirte basin and the Gulf of Suez, 2 of the more intensely explored areas, also present attractive matrix prospects, particularly with deeper Nubian beds or with the very shallow Tertiary sections. The Ghadames basin of Libya and Tunisia shows some potential, but its evaluation responds strongly to stratigraphic and external nongeologic matrix variations based on degree of risk exposure to be assumed. Of greatest risk in the matrix are the very deep Moroccan Paleozoic clastic plays and the Jurassic of Sinai. However, recent discoveries may upgrade these untested frontier areas. Based on the matrix generated by the data presented at a North African Petroleum Geology symposium, significant hydrocarbon accumulations are yet to be found. The remaining questions are: where in the matrix does each individual company wish to place its exploration capital and how much should be the risk exposure.

  17. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    SciTech Connect

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexico shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.

  18. Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Canals, Miquel; Sanz, José Luis; Lastras, Galderic; Amblas, David; Micallef, Aaron

    2014-01-01

    The northern Catalan continental shelf, in the northwestern Mediterranean Sea, extends along 200 km from the Cap de Creus submarine canyon to the Llobregat Delta, in the vicinity of the city of Barcelona. In this paper we present the results of a systematic investigation of this area by means of very high-resolution multibeam bathymetry to fully assess its morphological variability. The causative factors and processes determining such variability are subsequently interpreted. The shelf is divided in three segments by two prominent submarine canyons: the northernmost Roses Shelf is separated from the intermediate La Planassa Shelf by the La Fonera Canyon, while the boundary between the La Planassa Shelf and the southernmost Barcelona Shelf is marked by the Blanes Canyon. These two canyons are deeply incised in the continental margin, with their heads located at only 0.8 and 5 km from the shore, respectively. The seafloor character reflects the influence of external controlling factors on the geomorphology and sediment dynamics of the northern continental shelf of Catalonia. These factors are the geological setting, the volume and nature of sediment input, and the type and characteristics of processes leading to sediment redistribution, such as dense shelf water cascading (DSWC) and eastern storms. The interaction of all these factors determines sediment dynamics and allows subdividing the northern Catalan continental shelf into three segments: the erosional-depositional Roses Shelf to the north, the non-depositional La Planassa Shelf in the middle, and the depositional Barcelona Shelf to the south. Erosional features off the Cap de Creus Peninsula and an along-shelf subdued channel in the outer shelf illustrate prevailing sediment dynamics in the Roses segment, which is dominated by erosional processes, local sediment accumulations and the southward bypass of sediment. The rocky character of the seafloor immediately north of the Blanes Canyon head demonstrates that

  19. Evolving Toward the Next Antarctic Ice Shelf Disintegration: Recent Ice Velocity, Climate, and Ocean Observations of the Larsen B Ice Shelf Remnants

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Shuman, C. A.; Truffer, M.; Pettit, E. C.; Huber, B. A.; Haran, T. M.; Ross, R.; Domack, E. W.

    2013-12-01

    Ice shelf / ice tongue disintegrations and break-ups have a major effect on glacier mass balance, and nowhere has this been more evident than in the northern sections of the Larsen Ice Shelf in the Antarctic Peninsula. Ice flux in this region surged 2- to 6-fold after the 1995 and 2002 ice shelf disintegration events, driven by a group of processes based on the presence of extensive surface melt lakes. However, precursor changes in the ice shelves beginning more than a decade before the events have been identified. A new assessment of these provides insight on the earliest causes of ice shelf change. Among the precursor changes are an increase in meltwater lake extent, structural changes in the ice shelf shear margins, grounding line changes, and pre-breakup acceleration of the ice shelves and feeder glaciers. In the aftermath of the 2002 disintegration of the Larsen B, the two large remnant ice shelves at Seal Nunataks (~400 km2) and Scar Inlet (~2400 km2) have also evolved in these ways. These changes have been measured by a combination of in situ automated observation systems (AMIGOS: see Scambos et al., 2013, J. Glaciol.) and remote sensing as part of the Larsen Ice Shelf System, Antarctica (LARISSA) NSF project and NASA Cryosphere Program funding. Ice flow speed on the central Scar Inlet ice shelf has increased 60% between 2002 and 2012 (425 to 675 m/yr), and by 20% (540 to 660 m/yr) just above the grounding line of Flask Glacier, a tributary. Elevation change data from ICESat altimetry and ASTER stereo images show evidence of grounding line movement for Flask between 2003 and 2008, and for Crane Glacier prior to the 2002 break-up. In late 2002, and again in late 2012, major new rifts have formed on the southern portion of the Scar Inlet shelf, and the northwestern shear zone has rapidly evolved. The ice speed increase and the new rifts are inferred to be due to significant structural changes in the ice shelf shear margin on its northern side (concentration of

  20. North African petroleum geology: regional structure and stratigraphic overview of a hydrocarbon-rich cratonic area

    SciTech Connect

    O'Connor, T.E.; Kanes, W.H.

    1985-02-01

    North Africa, including Sinai, contains some of the most important hydrocarbon-producing basins in the world. The North African Symposium is devoted to examining the exploration potential of the North African margin in light of the most recent and promising exploration discoveries. The geologic variety of the region is extraordinary and can challenge any exploration philosophy. Of primary interest are the Sirte basin of Libya, which has produced several billion barrels of oil, and the Gulf of Suez, a narrow, evaporite-capped trough with five fields that will produce more than 5 billion bbl. Both are extensional basins with minimal lateral movement and with good source rocks in direct proximity to reservoirs. Structural models of these basins give firm leads for future exploration. More difficult to evaluate are the Tethyan realm basins of the northern Sinai, and the Western Desert of Egypt, the Cyrenaican Platform of Libya, and the Tunisia-Sicily shelf area, where there are only limited subsurface data. These basins are extensional in origin also, but have been influenced by lateral tectonics. Favorable reservoirs exist, but source rocks have been a problem locally. Structural models with strong stratigraphic response offer several favorable play concepts. The Paleozoic Ghadames basin in Libya, Tunisia, and Algeria has the least complex structural history, and production appears to be limited to small structures. A series of stratigraphic models indicates additional areas with exploration potential. The Paleozoic megabasin of Morocco, with its downfaulted Triassic grabens, remains an untested but attractive area.

  1. Mesozoic and Cenozoic structural trends under southern Bering Sea Shelf

    SciTech Connect

    Marlow, M.S.; Cooper, A.K.

    1980-12-01

    Mesozoic rocks exposed near the tip of the Alaska Peninsula form an antiformal structure that flanks the southern side of Bristol Bay basin and that can be traced with geophysical data about 700 km offshore to the vicinity of the Pribilof Islands. Upper Jurassic sandstone and Upper Cretaceous mudstone dredged from the top and flanks of this structure near the islands confirm that Mesozoic rocks extend from the Alaska Peninsula to the Bering sea margin. The southern part of the Bering Sea Shelf is underlain by several large structural basins. These filled basins encompass an offshore area of about 31,000 sq km. Reflection profiles show that the surface of the offshore antiformal structures is an angular unconformity overlain by Cenozoic beds. The downdip trace of the unconformity in Bristol Bay basin is underlain by reflectors paralleling the contact, a relation suggesting that the basin and perhaps other shelf basins may be underlain by ancient Mesozoic depocenters. The bulk of the thick sections in these basins is, however, thought to be mainly Cenozoic in age. Strata in the basins are cut by high-angle growth faults. The faults commonly offset the seafloor, which implies that basin subsidence and filling continue to the present. Shallow-water diatomaceous mudstone of Eocene and Oligocene age dredged from the continental slope near the Pribilof Islands indicates that collapse of the margin and outer shelf basins began by at least early Tertiary time. In Mesozoic time, the Bering margin between Siberia and the Alaska Peninsula (Beringian margin) may have been a zone of either oblique underthrusting or transform motion between the North American and Pacific lithosphere (Kula plate.). This motion may have rifted the edge of the North American plate, resulting in the formation of a series of elongate basins and ridges paralleling the plate edge.

  2. "Teaching while Black": Narratives of African American Student Affairs Faculty

    ERIC Educational Resources Information Center

    Patton, Lori D.; Catching, Christopher

    2009-01-01

    African American faculty have historically been underrepresented within predominantly white institutions (PWIs) and deal with academic isolation, marginalization of their scholarship, and racial hostility. Little is known about the experiences of African American faculty who teach in student affairs graduate programs. The purpose of this study was…

  3. The influence of advection on the spatial variability of nutrient concentrations on the Texas-Louisiana continental shelf

    NASA Astrophysics Data System (ADS)

    Sahl, Lauren E.; Merrell, William J.; Biggs, Douglas C.

    1993-02-01

    Water column nutrient concentrations are presented for winter 1989 over the continental margin of the northwest Gulf of Mexico. Three physical processes advect waters of different nutrient concentrations onto the Texas-Louisiana shelf. These advection processes: (1) river discharge; (2) bay discharge; and (3) shelf-edge upwelling, influence the large-scale spatial variations of nutrient concentrations observed over the shelf. On the inner shelf near Atchafalaya Bay, river discharge injects high concentrations of silicate, phosphate, nitrate and nitrite into near surface water. Farther west, near Galveston and Port Aransas, inner shelf waters have high silicate and phosphate concentrations due to nutrient enrichment in the discharges from Galveston Bay and Corpus Christi Bay. Finally, upwelling at the shelf edge can introduce high nutrient midwater near the base of the mixed layer over the outer shelf. This upwelled water usually has higher silicate, phosphate and nitrate concentrations than those in the overlying surface water. However, if upwelled from below the nitrite maximum, the upwelled water can have quite low nitrite concentrations. The shelf edge upwelling is a result of bottom Ekman upwelling caused by a northeastward current on the outer shelf. At the shelf edge off Galveston the data show that upwelling was not occurring at the time of the study but dissolved oxygen saturation levels and nutrient concentrations show that it had occurred.

  4. Coordination: Southeast continental shelf studies

    SciTech Connect

    Menzel, D.W.

    1989-01-26

    The objective of this investigation is to obtain model descriptions of the flow modifications in the Southeast Atlantic continental shelf due to Gulf Stream fluctuations and topographic effects. 2 refs., 4 figs.

  5. Shelf-Stable Food Safety

    MedlinePlus

    ... process of packing meat and poultry in glass bottles, corking them, and submerging them in boiling water. ... fsis.usda.gov. [ Top of Page ] Are any egg products shelf stable? Pasteurized, dried egg products can ...

  6. A review of the geology and petroleum possibilities of the continental margins of India

    SciTech Connect

    Sahay, B.

    1984-05-01

    Continental margins which flank western and eastern limits of India are broadly divided into West and East Coast. The width of the Western Continental Shelf varies from 300 km near Bombay to approximately 80 kms near Porbandar, narrowing further towards south to 60 kms near Cochin. The Eastern Continental Shelf which extends from Cape Comorin to Calcutta, has the width varying from 2.5 km, about 150 kms south of Madras to 210 kms upto Ganges river delta, near Calcutta.

  7. Geology and petroleum potential of Shumagin continental margin, western Gulf of Alaska

    SciTech Connect

    Bruns, T.R.; Von Huene, R.; Culotta, R.D.; Lewis, S.D.; Ladd, J.W.

    1986-07-01

    Interpretations of multichannel seismic reflection data indicate that the Shumagin continental margin seaward of the Border Ranges fault is underlain by two major seismic sequences, separated by an erosional unconformity beneath the shelf and by the time-correlative conformity seaward. Rocks above the unconformity are late Miocene and younger. Rocks below the unconformity can be as young as middle Miocene beneath the outer shelf and slope, seaward of a paleoshelf break. However, beneath the shelf they are primarily Late Cretaceous turbidites of the Shumagin Formation and Paleocene granodiorite. Late Miocene and younger structures of the Shumagin margin include Shumagin, Sanak, and Unimak basins and Unimak Ridge, a midslope structural high. Strata in Sanak and Unimak basins were deposited on a subsiding outer shelf and slope, and trapped behind Unimak Ridge and its now-buried structural continuation. Sanak and Unimak basins are in part bounded by northwest-trending extensional faults that parallel both the early Tertiary Beringian margin and a transverse tectonic boundary that segments the fore-arc. These faults may have developed during collapse and extension along the southeastward continuation of the old Beringian margin, analogous to the processes that created the Bering Shelf basins. The most promising areas of the Shumagin margin for petroleum potential are Sanak, and Unimak basins, which contain strata 8 and 4.5 km thick, respectively, and beneath the outer shelf and slope. Paleogene source rocks like those on the adjacent Alaska Peninsula may be preserved offshore, seaward of the inferred paleoshelf break. Reservoir rocks might have formed from granitic-rich erosional products derived during Oligocene and Miocene erosion of the shelf plutons.

  8. Retreat of northern margins of George VI and Wilkins Ice Shelves, Antarctic Peninsula

    USGS Publications Warehouse

    Lucchitta, B.K.; Rosanova, C.E.

    1998-01-01

    The George VI and Wilkins Ice Shelves are considered at risk of disintegration due to a regional atmospheric warming trend on the Antarctic Peninsula. Retreat of the northern margin of the George VI Ice Shelf has been observed previously, but the Wilkins Ice Shelf was thought to be stable. We investigated the positions of the northern fronts of these shelves from the literature and looked for changes on 1974 Landsat and 1992 and 1995 European remote-sensing satellite (ERS) synthetic aperture radar images. Our investigation shows that the northern George VI Ice Shelf lost a total of 906 km2 between 1974 and 1992, and an additional 87 km2 by 1995. The northern margin of the Wilkins Ice Shelf lost 796 km2 between 1990 and 1992, and another 564 km2 between 1992 and 1995. Armadas of tabular icebergs were visible in front of this shelf in the ERS images. These two ice shelves mark the southernmost documented conspicuous retreat of ice-shelf margins.

  9. Ocean margins workshop

    SciTech Connect

    1990-12-31

    The Department of Energy (DOE) is announcing the refocusing of its marine research program to emphasize the study of ocean margins and their role in modulating, controlling, and driving Global Change phenomena. This is a proposal to conduct a workshop that will establish priorities and an implementation plan for a new research initiative by the Department of Energy on the ocean margins. The workshop will be attended by about 70 scientists who specialize in ocean margin research. The workshop will be held in the Norfolk, Virginia area in late June 1990.

  10. Late Quaternary Morphological Changes of the Waipaoa River Outer Shelf and Upper Slope, New Zealand

    NASA Astrophysics Data System (ADS)

    Walsh, J. P.; Sumners, B.; Alexander, C.; Orpin, A.; Gerber, T.; Pratson, L.

    2006-12-01

    The outer shelf and slope seaward of the Waipaoa River, New Zealand has experienced considerable morphological change in the late Quaternary. The complexion of the margin has evolved as a result of sedimentation affected by sea level, oceanographic, and tectonic forcings. Integration of seismic, core and multibeam data indicate that the modern seabed morphology along a 30-km stretch of the margin can be categorized as 3 distinct regions: 1) east of Ariel Anticline the shelf edge is scalloped-shaped and steep, with a thin blanket of Holocene mud (generally <5 m); 2) immediately seaward of the Waipaoa River mouth, two shelf-indenting but small canyons with distinct gully patterns are found, and moderately think (<15 m) Holocene sediments are seen in the vicinity; and, 3) east of Lachlan Anticline where a larger canyon incises the shelf, gullying is smoothed by a Holocene mud fill (0- >15 m thick). These intra-system morphological differences are thought to reflect the complex and continual evolution of the margin. Seismic and multibeam evidence suggests a paleo-river channel incised across the Ariel Anticline and supplied a considerable volume of sediment to the low-stand coastline, in the northern portion of the study area. This delta apparently experienced a failure, producing an expansive debris field in the adjacent slope basin and the distinct scalloped-shaped shelf-edge morphology. With sea-level rise, shelf sediment storage has been enhanced, but off-shelf transport has been maintained throughout the Holocene. The pattern of sediment accumulation suggests sediment escaping through Poverty Gap is being advected southward into Lachlan Canyon. As a result the erosional gully morphology that was created during the low-stand, which is still evident to the north, is subsequently being overlain.

  11. Recent carbonate slope development on southwest Florida continental margin

    SciTech Connect

    Brooks, G.R.; Holmes, C.W.

    1987-05-01

    The southwest Florida continental slope bordering the Florida Strait contains a thick sequence of seaward-prograding sediments. Sediments consist principally of a mixture of shallow water and pelagic carbonate sands and muds deposited rapidly on the upper slope. Sedimentary patterns are interpreted to be a function of high-frequency sea level fluctuations. Most vigorous off-shelf transport and highest sedimentation rates (exceeding 2.5 m/1000 years) occur during early transgressions and late regressions when water depths on the shelf are shallow. During sea level highstands, off-shelf transport is less vigorous and sedimentation rates decrease. During sea level lowstands, no off-shelf transport takes place and erosion of the previously deposited sequence occurs as a result of an increase in erosional capacity of the Florida Current. The presence of at least nine such sequences, all with similar characteristics, indicates that these processes have been occurring since at least the late Pleistocene in response to high-frequency glacial fluctuations. The location of the southwest Florida slope between the rimmed Bahama platform and the nonrimmed remainder of the west Florida margin, as well as similarities with ancient carbonate slope deposits formed during periods when shelf-edge reef-forming organisms were lacking, suggest that depositional patterns on the southwest Florida slope may be indicative of a transition between rimmed and nonrimmed carbonate platform environments. The southwest Florida slope may provide a valuable modern analog for identifying similar transitional environments in the geologic record.

  12. Sedimentation of shelf sandstones in Queen Formation, McFarland and Means fields, central basin platform of Permian basin

    SciTech Connect

    Malicse, A.; Mazzullo, J.; Holley, C.; Mazzullo, S.J.

    1988-01-01

    The Queen Formation is a sequence of carbonates, evaporites, and sandstones of Permian (Guadalupian) age that is found across the subsurface of the Central Basin platform of the Permian basin. The formation is a major hydrocarbon reservoir in this region, and its primary reservoir facies are porous shelf sandstones and dolomites. Cores and well logs from McFarland and Means fields (on the northwest margin of the Central Basin platform) were examined to determine the sedimentary history of the shelf sandstones.

  13. Sequence stratigraphy on an early Cretaceous passive margin, Exmouth Plateau

    SciTech Connect

    Boyd, R.; Gorur, N.; Ito, M.; O'Brien, D.; Wilkens, R.; Tang, C.

    1989-03-01

    Permian-Jurassic rifting of northwestern Australia resulted in the development of a passive continental margin flanking the northeastern Indian Ocean. On this margin the relatively thin synrift to postrift sedimentary sequence of southern Exmouth Plateau was drilled during ODP Leg 122. A sequence-stratigraphy analysis of the complete Mesozoic-Cenozoic sedimentary succession at Sites 762 and 763 was derived from a synthesis of seismic stratigraphy, wireline logs, lithostratigraphy, biostratigraphy, and magnetostratigraphy. Results indicate that during breakup, the southern Exmouth Plateau was a transform margin with an extensional component. Between the Tithonian and Valanginian, a thick clastic wedge prograded from the transform margin south of Site 763 northwestward toward Site 762 and onto subsiding continental crust. Southern clastic supply decreased into the Aptian-Cenomanian, and cyclic deposition of deep-water mudstones continued during subsidence of the earlier shelf margin wedge. Between the Albian and Cenomanian, deposition gradually became dominated by pelagic carbonates. Two regional unconformities mark the Cenomanian/Turonian and Cretaceous/Tertiary boundaries. Each was an erosional event, succeeded by renewed pelagic carbonate deposition that began in the distal northern basin and onlapped progressively toward the topographic high, which persisted into the Tertiary along the southern margin. The entire Jurassic to Holocene record at the southern Exmouth Plateau ODP sites is less than 1500 m thick and represents a classic rift to mature ocean passive-margin succession.

  14. African Aesthetics

    ERIC Educational Resources Information Center

    Abiodun, Rowland

    2001-01-01

    No single traditional discipline can adequately supply answers to the many unresolved questions in African art history. Because of the aesthetic, cultural, historical, and, not infrequently, political biases, already built into the conception and development of Western art history, the discipline of art history as defined and practiced in the West…

  15. "African Connection."

    ERIC Educational Resources Information Center

    Adelman, Cathy; And Others

    This interdisciplinary unit provides students in grades kindergarten through seventh grade an opportunity to understand diversity through a study of Africa as a diverse continent. The project is designed to provide all elementary students with cultural enrichment by exposing them to African music, art, storytelling, and movement. This project can…

  16. Geology and petroleum potential of Adelie Coast margin, east Antarctica

    SciTech Connect

    Wanneson, J.

    1987-05-01

    The few rock outcrops on Adelie Coast-Wilkes Land consist mainly of Precambrian plutonic rocks and metasediments. On the continental margin, several multichannel seismic surveys, including the 1982 IFP survey, reveal the presence of a thick sedimentary basin, especially beneath the outer continental shelf and upper slope, where it may exceed 6000 m. Thin basin results from the creation and evolution of a continental margin, initiated some 100 Ma from the separation of Australia and Antarctica. Beneath the outer shelf, which is 400-500 m deep, the sedimentary series consist of four units separated by three major unconformities: (1) a predrift unit including a Precambrian basement, possible Paleozoic and early Mesozoic sediments, and a Mesozoic syn-rift sequence; (2) an upper Eocene to Oligocene unit in a shallow marine environment; and (3) a Neogene glacial prograding unit. The predrift and early postrift units are considered to be a promising target with reference to other passive margins, although no major hydrocarbon accumulation has been discovered as yet on the Australian conjugate margin.

  17. Early Miocene sequence development across the New Jersey margin

    USGS Publications Warehouse

    Monteverde, D.H.; Mountain, Gregory S.; Miller, K.G.

    2008-01-01

    Sequence stratigraphy provides an understanding of the interplay between eustasy, sediment supply and accommodation in the sedimentary construction of passive margins. We used this approach to follow the early to middle Miocene growth of the New Jersey margin and analyse the connection between relative changes of sea level and variable sediment supply. Eleven candidate sequence boundaries were traced in high-resolution multi-channel seismic profiles across the inner margin and matched to geophysical log signatures and lithologic changes in ODP Leg 150X onshore coreholes. Chronologies at these drill sites were then used to assign ages to the intervening seismic sequences. We conclude that the regional and global correlation of early Miocene sequences suggests a dominant role of global sea-level change but margin progradation was controlled by localized sediment contribution and that local conditions played a large role in sequence formation and preservation. Lowstand deposits were regionally restricted and their locations point to both single and multiple sediment sources. The distribution of highstand deposits, by contrast, documents redistribution by along shelf currents. We find no evidence that sea level fell below the elevation of the clinoform rollover, and the existence of extensive lowstand deposits seaward of this inflection point indicates efficient cross-shelf sediment transport mechanisms despite the apparent lack of well-developed fluvial drainage. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.

  18. Shelf response to intense offshore wind

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Espino, Manuel

    2015-09-01

    Cross and along-shelf winds drive cross-shelf transport that promotes the exchange of tracers and nutrients to the open sea. The shelf response to cross-shelf winds is studied in the north shelf of the Ebro Delta (Mediterranean Sea), where those winds are prevalent and intense. Offshore winds in the region exhibit strong intensities (wind stress larger than 0.8 Pa) during winter and fall. The monthly average flow observed in a 1 year current meter record at 43.5 m was polarized following the isobaths with the along-shelf variability being larger than the cross-shelf. Prevalent southwestward along-shelf flow was induced by the three-dimensional regional response to cross-shelf winds and the coastal constraint. Seaward near-surface velocities occurred predominantly during offshore wind events. During intense wind periods, the surface cross-shelf water transport exceeded the net along-shelf transport. During typically stratified seasons, the intense cross-shelf winds resulted in a well-defined two-layer flow and were more effective at driving offshore transport than during unstratified conditions. While transfer coefficients between wind and currents were generally around 1%, higher cross-shelf transfer coefficients were observed in the near-inertial band. The regional extent of the resulting surface cold water during energetic cross-shelf winds events was concentrated around the region of the wind jet. Cross-shelf transport due to along-shelf winds was only effective during northeast wind events. During along-shelf wind conditions, the transport was estimated to be between 10 and 50% of the theoretical Ekman transport.

  19. Access of warm Southern Ocean water along the East Antarctic Margin - first results from the NBP1503 cruise

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Guerrero, R.; Williams, G. D.; Porter, D. F.; Cougnon, E.; Fraser, A. D.; Correia, R.; Richardson, D.

    2015-12-01

    The future of the Antarctic Ice Sheet is one of the critical questions in assessing the effects of climate change. The East Antarctic Ice Sheet (EAIS) was regarded as relatively stable, and only recently has become the subject of a series of studies to determine if parts of the EAIS might be susceptible to melting if warm ocean masses reach the ice sheet. We are presenting new oceanographic and bathymetry observations from the East Antarctic continental margin between 115° E and 135° E that have been collected as part of the scientific cruise NBP1503 onboard the NB Palmer in early 2015. The goal of the scientific cruise was to determine to what extent warmer ocean water could reach (or is reaching) the inner shelf. Sea ice conditions prevented access to most inner continental shelf areas. Instead, we collected detailed multibeam bathymetry and Conductivity-Temperature-Depth (CTD) data from the continental slope, rise and the outer shelf north of the Dibble Glacier, Frost Glacier, Dalton Iceberg Tongue and Totten Glacier. An oceanographic section of 19 CTD stations on the continental slope parallel to the margin shows that modified Circumpolar Deep Water (mCDW) with higher salinity and temperatures is present near the shelf break over large sections of the investigated margin, but is absent in other sections. The shelf break depth varies significantly along the margin between ~300 and ~500 m. The shallower depths are potentially an obstacle for access of mCDW to the shelf. As a result, a ~100 m thick layer of mCDW resides on the ~500 m deep outer shelf north of the Totten Glacier, but there is no indication of mCDW in the Dibble Polynya because the shelf break is shallower. The access and presence of warmer mCDW water, especially north of Totten Glacier and the Moscow University Ice Shelf, has important implications in understanding the observed thinning of this ice stream.

  20. Middle Cambrian to Late Ordovician evolution of the Appalachian margin: Foundering of a passive margin to form a subduction zone and volcanic arc

    SciTech Connect

    Washington, P.A. , Southern Pines, NC )

    1994-03-01

    From late Middle Cambrian to early Late Ordovician time, the Appalachian passive margin experienced a series of orogenic events culminating in the Taconic orogeny. Most of these events are generally viewed as enigmatic and isolated, but they can be viewed as a coherent tectonic sequence of events. The early stages involved broad uplifts and localized extension, especially of internal shelf and adjacent continental interiors. Later stages involved increased subsidence rates of the outer shelf, resulting in retreat of the outer margin of the carbonate platform.The beginning of volcanic activity coincides with, or immediately follows, the rapid subsidence. Onset of compressional orogenesis is often temporally separated from the initial rapid subsidence. These events can be integrated into a tectonic model in which the passive margin is converted into an active Andean margin. Early uplift and extension events represented the surface expression of the beginning of deep-seated downward mantle convection. Subsequent rapid subsidence events represented the mechanical failure of the lithosphere as the convection reaches maturity. Failure of the lithosphere resulted in a subduction zone that quickly created arc volcanism. The compressive Taconic orogenesis occurred when the arc was thrust back onto the shelf margin as the subduction zone migrated continentward in response to progressively channeled convective flow.

  1. Structure of the North American Atlantic Continental Margin.

    USGS Publications Warehouse

    Schlee, J.S.; Klitgord, K.K.

    1986-01-01

    Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors

  2. Modern cool-water siliciclastic/carbonate sediments, lacepede shelf South Australia

    SciTech Connect

    Bone, Y.; Gostin, V. ); James, N.P. ); Von der Borch, C.C. )

    1991-03-01

    The Lacepeded Shelf is a 130 km {times} 100 km open embayment along the southern passive continental margin of Australia. The shelf includes the mouth of the River Murray - Australia's largest drainage system- the extensive arcuate Coorong strand, the 50-70 m deep and flat plateau of the shelf proper, the nonrimmed shelf break, and the upper slope to depths of 200 m. The shelf bathymetry is locally interrupted by seafloor highs, reflecting the underlying rugged terrain of deformed Precambrian and early Paleozoic bedrock in the west and Tertiary limestones and Quaternary dunes in the east. The late Pleistocene/Holocene sediment blanket is formed by discrete sedimentary facies. Quartz sands cover a significant cross-shelf zone opposite the river mouth, with current generated offsets. High-resolution seismic profiles reveal buried lowstand channels. The mid-shelf is an area of conspicuously coarse-grained, mud-free loose sediments composed of variable amounts of bryozoans and bivalves. The shelf break and upper slop bryozoan sands are similar, apart from species differences, from 40 to 100 m, with an increase in mud below 100 m. The seafloor highs are sites of prolific bryozoan, calcareous algae, sponge, and bivalve growth, the skeletons of which are shed onto the shelf. Bryozoan distribution is moderated by water depth and substrate type. Most forms are low-Mg calcite to high-Mg calcite, but two major groups are aragonitic. Distribution of these different mineralogical types is important for later diagenesis. Both terrigenous clastic and carbonate sediments are a mixture of relict and modern components, depending upon location, and reflect Holocene glacio-eustatic sea-level changes.

  3. Development of an Upper Cambrian rimmed shelf along the Mississippi Valley Graben, Reelfoot Rift, and the southeastern Ozarks, southern Missouri

    SciTech Connect

    Palmer, J.R. . Dept. of Natural Resources)

    1993-03-01

    The paleogeographic distribution of intrashelf basin shales and limestones in the Bonneterre (Dresbachian) and Davis (Franconian) Formations, and associated data, suggests that rimmed shelf conditions separated the central Missouri part of the shelf from the Mississippi Valley Graben (MVG) of the Reelfoot Rift to the southeast. Middle Dresbachian rocks of the intrashelf basin area, predominantly limestones, indicate a discontinuous carbonate shelf rim. The succeeding widespread shales of the Franconian intrashelf basin indicate that a continuous rim had developed. The margin of the shelf rim is preserved in part of the 4,700-ft-thick Upper Cambrian succession along the northwest margin of the Mississippi Valley Graben (MVG) of the Reelfoot Rift. Equivalent rocks within the MVG are dominantly dark shales (1,600+ ft thick). The Amoco Spence test well penetrated the rim succession on the northwest margin of the MVG. At least 11 large-scale transgressive-regressive (T-R) carbonate cycles (120--600 ft thick) have been defined in this well; 7 cycles are equivalent to the Bonneterre and Davis Formations. These latter cycles have shaly limestone, or limestone at the base, and grade upward to dolostone or coarsely crystalline dolostone, which are interpreted to be shallowing-upward, bank margin-peritidal carbonates. Northwest of the rim margin and on the southeast side of the St. Francois Mountains, rocks equivalent to the rim succession consist of a series of ramp to platform cycles made up of dolostones and local limestones. Many carbonate shelves on passive margins are rimmed. The development of this Upper Cambrian rimmed shelf along the northwest margin of the MVG suggests that failed rifts can also localized such rims.

  4. On the Evolution of Glaciated Continental Margins

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Rydningen, Tom Arne; Safronova, Polina A.; Forwick, Matthias

    2016-04-01

    Glaciated continental margins, continental margins where a grounded ice sheet repeatedly has been at or near the shelf break, are found at both northern and southern high-latitudes. Their evolution are in several aspects different from their low-latitude counterparts where eustatic sea-level variations possess a fundamental control on their evolution and where fluvial systems provide the main sediment input. From studies of the Norwegian - Barents Sea - Svalbard and NE Greenland continental margins we propose the following factors as the main control on the evolution of glaciated continental margins: 1) Pre-glacial relief controlling the accommodation space, 2) Ice sheet glaciology including the location of fast-flowing ice streams where source area morphology exerts a fundamental control, 3) Composition of the glacigenic sediments where the clay content in previous studies have been found to be important, and 4) Sea-level controlled both by eustacy and isostacy. From three case studies, 1) the western Barents Sea, 2) part of the North Norwegian (Troms), and 3) the Mid-Norwegian margin, the influence on these factors for the sea-floor morphology, sedimentary processes of the continental slope - deep sea and continental margin architecture are discussed. The pre-glacial relief of the mid-Norwegian and Troms margins relates to the onset of rifting and plate break-up from the early Cenozoic while for the SW Barents Sea, plate shear was followed by rifting. A wide zone of extended continental crust occurs offshore mid-Norway while this zone is much narrower offshore Troms leading to a more pronounced pre-glacial relief. Regarding sediment delivery and ice sheet glaciology the western Barents Sea exemplifies very high sediment input corresponding to an estimated average erosion of the source area of ~0.4 mm/yr (SW Barents Sea), much of which is related to subglacial erosion of Mesozoic - Cenozoic sedimentary rocks from large paleo-ice streams. The mid-Norwegian margin

  5. Mapping Subsea Permafrost, Relict Methane Hydrate, and Gas Migration: New Cross-Shelf Multichannel Seismic Surveys on the Central US Beaufort Shelf

    NASA Astrophysics Data System (ADS)

    Ruppel, C. D.; Hart, P. E.; Moore, E.; Worley, C.; Brothers, L.

    2012-12-01

    In August 2012, the USGS Gas Hydrates Project, with support from DOE's Methane Hydrates R&D Program, conducted the first research-oriented multichannel seismic survey in 35 years across the Alaskan Beaufort Sea continental shelf. Our Central Beaufort margin study area stretches from Camden Bay on the west to Harrison Bay on the east and lies offshore some of the North Slope's most important petroleum systems. The new MCS data were collected in the eastern part of the Alaskan passive margin terrane, near the transition zone to the compressional Canning Mackenzie Deformed Margin described by Houseknecht and Bird. The Central Beaufort shelf was mostly exposed subaerially during Late Pleistocene time, leading to the formation of continuous permafrost and associated gas hydrates at depths greater than ~225 m. As Holocene sea level rise inundated the present-day shelf, the now-subsea permafrost began to thaw and associated gas hydrates would have begun to dissociate. The new surveys constitute the shelf component of site survey activities for Integrated Ocean Drilling pre-proposal 797, which outlines a multiplatform drilling program at 9 sites from the innermost shelf to the upper continental slope of the Alaskan Beaufort margin. The proposed drilling program will elucidate Late Pleistocene to contemporary climate history by accessing sediments currently or formerly hosting subsea permafrost and permafrost-associated methane hydrates on the shelf and sediments in which gas hydrate dynamics are driven by warming of impinging intermediate waters on the upper continental slope. Using a 24-channel digital streamer and a 2 kJ sparker source, the new MCS surveys provided up to several hundred meters of subseafloor penetration and were complemented by 4-24 kHz Chirp surveys for the shallowmost section, high frequency water column imaging for gas plumes, and Swathplus bathymetric mapping at water depths less than 60 to 80 m. The new MCS data, which in part reoccupy 30-year

  6. Coordination: southeast continental shelf studies. Progress report

    SciTech Connect

    Menzel, D.W.

    1981-02-01

    The objectives are to identify important physical, chemical and biological processes which affect the transfer of materials on the southeast continental shelf, determine important parameters which govern observed temporal and spatial varibility on the continental shelf, determine the extent and modes of coupling between events at the shelf break and nearshore, and determine physical, chemical and biological exchange rates on the inner shelf. Progress in meeting these research objectives is presented. (ACR)

  7. West Florida Shelf: A natural laboratory for the study of ocean acidificiation

    USGS Publications Warehouse

    Hallock, Pamela; Robbins, Lisa L.; Larson, Rebekka A.; Beck, Tanya; Schwing, Patrick; Martinez-Colon, Michael; Gooch, Brad

    2010-01-01

    southwest Florida shelf is a rimmed carbonate margin where organisms produce virtually all of the substrate; it also exhibits a greater sediment thickness as compared to the west Florida shelf (Enos, 1977). Temperature, which is usually associated with latitude, plays a major role in locations of foramol versus chlorozoan assemblages, but other factors beyond latitude influence temperature on the west and southwest Florida shelves. The potential of cooler, deep-water upwelling and transport over the bottom waters of the shelf may have a significant role in the species assemblage at the sediment/water interface and ultimately on location of foramol versus chlorozoan production. Deep water transported onto and over the shelf may also have environmental ramifications beyond temperature by bringing in water of different chemistry.

  8. Shelf Reading as a Collaborative Service Model

    ERIC Educational Resources Information Center

    Brown, Kevin N.; Kaspar, Wendi Arant

    2006-01-01

    Shelf reading the stacks is very often not seen as scholarly work in library circles and is therefore overlooked. However, there is a very real frustration of a patron who cannot find the material they need. There are very few studies that provide a working model for shelf reading. The authors suggest a collaborative shelf reading model based on…

  9. West Florida shelf upwelling: Origins and pathways

    NASA Astrophysics Data System (ADS)

    Weisberg, Robert H.; Zheng, Lianyuan; Liu, Yonggang

    2016-08-01

    Often described as oligotrophic, the west Florida continental shelf supports abundant fisheries, experiences blooms of the harmful alga, Karenia brevis, and exhibits subsurface chlorophyll maxima evident in shipboard and glider surveys. Renewal of inorganic nutrients by the upwelling of deeper ocean water onto the shelf may account for this, but what are the origins and pathways by which such new water may broach the shelf break and advance toward the shoreline? We address these questions via numerical model simulations of pseudo-Lagrangian, isopycnic water parcel trajectories. Focus is on 2010, when the west Florida shelf was subjected to an anomalously protracted period of upwelling caused by Gulf of Mexico Loop Current interactions with the shelf slope. Origins and pathways are determined by integrating trajectories over successive 45 day intervals, beginning from different locations along the shelf break and at various locations and depths along the shelf slope. Waters upwelling across the shelf break are found to originate from relatively shallow depths along the shelf slope. Even for the anomalous 2010 year, much of this upwelling occurs from about 150 m and above, although waters may broach the shelf break from 300 m depth, particularly in the Florida Panhandle. Such interannual renewal of west Florida shelf waters appears to have profound effects on west Florida shelf ecology.

  10. Predicting service life margins

    NASA Technical Reports Server (NTRS)

    Egan, G. F.

    1971-01-01

    Margins are developed for equipment susceptible to malfunction due to excessive time or operation cycles, and for identifying limited life equipment so monitoring and replacing is accomplished before hardware failure. Method applies to hardware where design service is established and where reasonable expected usage prediction is made.

  11. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  12. Volcanic passive margins

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent

    2005-12-01

    Compared to non-volcanic ones, volcanic passive margins mark continental break-up over a hotter mantle, probably subject to small-scale convection. They present distinctive genetic and structural features. High-rate extension of the lithosphere is associated with catastrophic mantle melting responsible for the accretion of a thick igneous crust. Distinctive structural features of volcanic margins are syn-magmatic and continentward-dipping crustal faults accommodating the seaward flexure of the igneous crust. Volcanic margins present along-axis a magmatic and tectonic segmentation with wavelength similar to adjacent slow-spreading ridges. Their 3D organisation suggests a connection between loci of mantle melting at depths and zones of strain concentration within the lithosphere. Break-up would start and propagate from localized thermally-softened lithospheric zones. These 'soft points' could be localized over small-scale convection cells found at the bottom of the lithosphere, where adiabatic mantle melting would specifically occur. The particular structure of the brittle crust at volcanic passive margins could be interpreted by active and sudden oceanward flow of both the unstable hot mantle and the ductile part of the lithosphere during the break-up stage. To cite this article: L. Geoffroy, C. R. Geoscience 337 (2005).

  13. Marginalization and School Nursing

    ERIC Educational Resources Information Center

    Smith, Julia Ann

    2004-01-01

    The concept of marginalization was first analyzed by nursing researchers Hall, Stevens, and Meleis. Although nursing literature frequently refers to this concept when addressing "at risk" groups such as the homeless, gays and lesbians, and those infected with HIV/AIDS, the concept can also be applied to nursing. Analysis of current school nursing…

  14. Paleogeography and evolution of the Ordovician/Silurian (Whiterockian-Llandoverian) continental margin in central Nevada

    SciTech Connect

    Britt, L.W. )

    1991-02-01

    In central Nevada, stratigraphic successions of Whiterockian-Llandoverian lithofacies, transitional with autochthonous platform/shelf carbonates to the east, occur in isolated windows in outer slope to basinal lithotopes of the Roberts Mountains allochthon. Petrologic, chronostratigraphic and lithostratigraphic, and paleontologic comparison of those successions with platform/shelf facies to the east is integral for reconstruction of Ordovician-Silurian platform margin paleogeography and pre-Antler genesis of the western North American continental margin. Numerous facies changes and/or stratigraphic omissions in central Nevada can be related to sea level fluctuation and aggradation/progradation of the carbonate platform to the east, and not to a postulated, offshore geanticline (i.e., the Toiyabe Ridge). Stratigraphic omission of the Eureka Quartzite above Pogonip equivalents in transitional successions of the Toquima Range and the presence of correlative quartzite in outer slope/basinal parautochthonous facies of the Toiyabe Range suggest development of a possible bypass-margin during the Middle Ordovician. Deposition of Late Ordovician platform margin dolostones (Ely Springs Dolostone) and upper ramp limestones (Hanson Creek Formation and Martin Ridge strata) followed Late Ordovician transgression that drowned the margin and reestablished the carbonate factory. Glacioeustatic drawdown of Late Ordovician-earliest Silurian seas due to the Gondwanan glacial fluctuation can be recognized in strata along the platform margin and upper ramp. Rapid, Early Silurian transgression produced dark-gray carbonates and may have induced marginal flexure and regional, massive slope failure in central Nevada, generating stratigraphic hiatuses west of the platform margin.

  15. Forward modeling of late pleistocene shelf-edge deltas offshore Louisiana

    SciTech Connect

    Nissen, S.E.; Combes, J.M.; Scott, R.W.

    1995-12-31

    The University of South Carolina`s SEDPAK program has been used to construct a two-dimensional forward stratigraphic model of the Louisiana shelf edge from 168 ka to the present. With eustasy as the only time-varying parameter, the model effectively reproduces the geometries of major sequence stratigraphic surfaces, general lithofacies distributions, and paleobathymetric trends. Modeling also confirms that shelf margin delta sand bodies were deposited during sea level lowstands. A more accurate model could be obtained by slight variations in sediment supply and subsidence rates through time.

  16. Evidence for a former large ice sheet in the Orville Coast- Ronne Ice Shelf area, Antarctica.

    USGS Publications Warehouse

    Carrara, P.

    1981-01-01

    The Orville Coast area of the Antarctic Peninsula was extensively glacierized in the past. Striations, polished rock surfaces, and erratics on nunatak summits indicate that this area was covered by a broad regional ice sheet whose grounded ice margin was on the continental shelf, in the present-day Ronne Ice Shelf area. If the glacial history of Antarctica has been controlled by eustatic sea-level changes, the destruction of this ice sheet would have been contemporaneous with that of the Ross Sea ice sheet due to the world-wide rise of eustatic sea-level at the end of the Wisconsin glaciation. -Author

  17. Effects of basin type on coastal plain-shelf-slope systems during base-level fluctuations: An experimental approach

    SciTech Connect

    Wood, L.J. )

    1991-03-01

    Sequence stratigraphic models emphasize the importance of basin type on the reactions of coastal plain-shelf-slope systems to base-level changes. A series of experiments were performed in a 4.5 m by 7 m flume to examine the effects of a passive margin basin with a shelf/slope break versus a ramp margin basin on coastal plain-shelf-slope deposits that result from base-level fluctuations. Results indicate that basin type has a strong influence on the erosional features and deposits that develop in response to base-level fluctuations. Fluctuations that occur along a shelf/slope break margin result in well-defined, deeply incised valleys, which develop early in lowstand time and have low width:depth ratios. Rivers may incise into and deposit over outer-middle shelf deposits of the previous highstand. Late lowstand deposits are coarser grained than early lowstand deposits and include fine- and coarse-grained slope and basin floor fans. During subsequent base-level rise early transgressive deposits are confined to incised valleys. Fluctuations along a ramp margin result in shallow, wide incised valleys with high width:depth ratios, which develop late in lowstand time. Incision occurs into shelf deltaic deposits and these are overlain by valley fill deposits. Deposits of the lowstand systems tract do not coarsen upward significantly and contain only sand-rich, small, thin delta front fan deposits. During subsequent base-level rise transgressive deposits are not confined to incised valleys. Transgressive deposition within the valleys occurs over a short time interval and is followed closely by flooding of the adjacent shelf.

  18. Manganese flux from continental margin sediments in a transect through the oxygen minimum.

    PubMed

    Johnson, K S; Berelson, W M; Coale, K H; Coley, T L; Elrod, V A; Fairey, W R; Iams, H D; Kilgore, T E; Nowicki, J L

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest fluxes occurred in the oxygen minimum zone (at a depth of 600 to 1000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  19. Manganese flux from continental margin sediments in a transect through the oxygen minimum

    SciTech Connect

    Johnson, K.S. Monterey Bay Aquarium Research Inst., Pacific Grove, CA ); Berelson, W.M.; Iams, H.D.; Kilgore, T.E. ); Coale, K.H.; Coley, T.L.; Elrod, V.A.; Fairey, W.R.; Nowicki, J.L. )

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest flux occurred in the oxygen minimum zone (at a depth of 600 to 1,000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  20. Neogene sedimentation on the outer continental margin, southern Bering Sea

    USGS Publications Warehouse

    Vallier, T.L.; Underwood, M.B.; Gardner, J.V.; Barron, J.A.

    1980-01-01

    Neogene sedimentary rocks and sediments from sites on the outer continental margin in the southern Bering Sea and on the Alaska Peninsula are dominated by volcanic components that probably were eroded from an emergent Aleutian Ridge. A mainland continental source is subordinate. Most sediment in the marine environment was transported to the depositional sites by longshore currents, debris flows, and turbidity currents during times when sea level was near the outermost continental shelf. Fluctuations of sea level are ascribed both to worldwide glacio-eustatic effects and to regional vertical tectonics. Large drainage systems, such as the Yukon and Kuskokwim Rivers, had little direct influence on sedimentation along the continental slope and Unmak Plateau in the southern Bering Sea. Sediments from those drainage systems probably were transported to the floor of the Aleutian Basin, to the numerous shelf basins that underlie the outer continental shelf, and to the Arctic Ocean after passing through the Bering Strait. Environments of deposition at the sites along the outer continental margin have not changed significantly since the middle Miocene. The site on the Alaska Peninsula, however, is now emergent following shallow-marine and transitional sedimentation during the Neogene. ?? 1980.

  1. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge

  2. Evolution of Northeast Atlantic magmatic continental margins

    NASA Astrophysics Data System (ADS)

    England, Richard; Cornwell, David; Ramsden, Alice

    2014-05-01

    from fissures which are now observed as the ODRS. The oceanward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition. The structure of the Main Ethiopian rift appears to have been influenced by the pre-existing basement structure at an early stage in the rift process, defining the geometry of the rift and providing a control on the later magmatic phase and modification of the crust. This early influence of existing structure is less clear on the NE Atlantic margins and in the UK and Irish sectors it is difficult to link substantial along strike variations in the properties of the margin to variations in basement structures which can be traced across the continental shelf. It is possible that such variations are completely overprinted by magmatic additions to the crust to the point at which they no longer influence the break-up mechanism.

  3. Sandstream on the northeast Brazilian shelf

    NASA Astrophysics Data System (ADS)

    Vianna, Marcio L.; Solewicz, Reynaldo; Cabral, Alexandre P.; Testa, Viviane

    1991-06-01

    upstream trough are presented, and species composition of bryozoa observed as epibionts on live gastropod shells are analysed. This sandstream shows some similarities to one described from the southeast African continental shelf, which is also under the influence of unidirectional currents.

  4. Obesity and African Americans

    MedlinePlus

    ... Data > Minority Population Profiles > Black/African American > Obesity Obesity and African Americans African American women have the ... ss6304.pdf [PDF | 3.38MB] HEALTH IMPACT OF OBESITY More than 80 percent of people with type ...

  5. Computer simulation of shelf and stream profile geomorphic evolution resulting from eustasy and uplift

    SciTech Connect

    Johnson, R.M. )

    1993-04-01

    A two-dimensional computer simulation of shelf and stream profile evolution with sea level oscillation has been developed to illustrate the interplay of coastal and fluvial processes on uplifting continental margins. The shelf evolution portion of the simulation is based on the erosional model of Trenhaile (1989). The rate of high tide cliff erosion decreases as abrasion platform gradient decreases the sea cliff height increases. The rate of subtidal erosion decreases as the subtidal sea floor gradient decreases. Values are specified for annual wave energy, energy required to erode a cliff notch 1 meter deep, nominal low tidal erosion rate, and rate of removal of cliff debris. The values were chosen arbitrarily to yield a geomorphic evolution consistent with the present coast of northern California, where flights of uplifted marine terraces are common. The stream profile evolution simulation interfaces in real time with the shelf simulation. The stream profile consists of uniformly spaced cells, each representing the median height of a profile segment. The stream simulation results show that stream response to sea level change on an uplifting coast is dependent on the profile gradient near the stream mouth, relative to the shelf gradient. Small streams with steep gradients aggrade onto the emergent shelf during sea level fall and incise at the mountain front during sea level rise. Large streams with low gradients incise the emergent shelf during sea level fall and aggrade in their valleys during sea level rise.

  6. Upper Jurassic carbonate/evaporite shelf, south Alabama and west Florida

    SciTech Connect

    Moore, B.R.

    1986-05-01

    The association of Upper Jurassic carbonates and evaporites in south Alabama and west Florida defines a brining upward and inward sequence that is indicative of deposition on an increasingly evaporitic marine shelf. Structural features that bound this evaporitic shelf were the Pensacola arch, the South Mississippi platform, and the State Line flexure. Paleo-drainage of the surrounding highlands also affected shelf salinities as fresh waters were funneled into the Covington and Manila Embayments. During the Late Jurassic, marine carbonates and evaporites of the Smackover and Lower Haynesville (Buckner) Formations were deposited over Middle Jurassic Norphlet clastics that accumulated in arid continental and marginal-marine environments. Initially, Smackover carbonate deposition was pervasive across the shallow shelf. Later, as a result of increasing water salinities, contemporaneous precipitation of central-shelf evaporites and basin-edge carbonates occurred. Maximum restriction of the basin and the culmination of subaqueous deposition resulted in the formation of a basin-wide lower Haynesville salt unit. The overlying upper Haynesville strata represents a shift to subaerial environments. Application of a shelf-basin evaporite model explains the spatial and temporal lithologic relationships observed within the study area. Onlap of evaporites over porous carbonates, due to brining-upward processes, suggest that large-scale stratigraphic traps exist within the Smackover Formation in a sparsely explored part of the basin.

  7. Highstand shelf fans: The role of buoyancy reversal in the deposition of a new type of shelf sand body

    USGS Publications Warehouse

    Steel, Elisabeth; Simms, Alexander R.; Warrick, Jonathan; Yokoyama, Yusuke

    2016-01-01

    Although sea-level highstands are typically associated with sediment-starved continental shelves, high sea level does not hinder major river floods. Turbidity currents generated by plunging of sediment-laden rivers at the fluvial-marine interface, known as hyperpycnal flows, allow for cross-shelf transport of suspended sand beyond the coastline. Hyperpycnal flows in southern California have deposited six subaqueous fans on the shelf of the northern Santa Barbara Channel in the Holocene. Using eight cores and nine grab samples, we describe the deposits, age, and stratigraphic architecture of two fans in the Santa Barbara Channel. Fan lobes have up to 3 m of relief and are composed of multiple hyperpycnite beds ∼5 cm to 40 cm thick. Deposit architecture and geometry suggest the hyperpycnal flows became positively buoyant and lifted off the seabed, resulting in well-sorted, structureless, elongate sand lobes. Contrary to conventional sequence stratigraphic models, the presence of these features on the continental shelf suggests that active-margin shelves may locally develop high-quality reservoir sand bodies during sea-level highstands, and that such shelves need not be solely the site of sediment bypass. These deposits may provide a Quaternary analogue to many well-sorted sand bodies in the rock record that are interpreted as turbidites but lack typical Bouma-type features.

  8. Some depositional patterns at continental margin of southeastern Mediterranean Sea

    SciTech Connect

    Mart, Y.; Gai, Y.B.

    1982-04-01

    The upper Miocene to Holocene sedimentary strata in the continental margin of the southeastern Mediterranean Sea depict two depositional regimes. The upper Miocene sequence is predominantly evaporitic and forms the southeastern portion of the upper Miocene evaporites present throughout the Mediterranean region. The Pliocene-Quaternary sequence is predominantly detrital and its major source of sediments has been the Nile River. Interpretation of data derived from several multichannel seismic profiles suggested facial variations in the upper Miocene and the Pliocene-Pleistocene formations. Two depositional facies of the upper Miocene evaporites, indicating basinal and shelf depositional environments, were found. Statistical analyses show correlations of the thickness of the evaporites with their interval seismic velocity, their depth, and the present bathymetry, indicating the autochthonous characteristics of the sequence. The basinal and the shelf depositional facies are separated by a transition zone that trends NNE-SSW and is associated with faulting. It is suggested that this zone, commonly known as The Pelusium Line, was the shelf-edge zone during the late Miocene. Facial analysis of the data pertaining to the Pliocene-Pleistocene sequence depicts its allochthonous characteristics. Statistical negative correlation was calculated between the distance from the continental shelf and the thickness of this sequence, indicating its detrital origin. Variations in thicknesses of both formations compared with the bathymetric depths suggest a post-Miocene subsidence of the southeast Mediterranean basin. 6 figures, 4 tables.

  9. Contrasting evolutionary patterns of Lower Permian shelf and basinal facies, Midland basin, Texas

    SciTech Connect

    Mazzullo, S.J.; Reid, A.M.

    1987-05-01

    The evolution of carbonate and siliciclastic shelf-to-basin depositional systems of the Lower Permian in the Midland basin was influenced by eustatic fluctuations, changing shelf-margin biota, and concurrent tectonism. The development of these systems from Wolfcampian to Leonardian time (28-m.y. duration) involved seven distinct phases that are recognized seismically as third and lesser order cycles. These phases are (1) highstand progradational shelf carbonate packages, separated by low-stand deltaic and basinal shales, deposited during relatively long-term eustatic cycles (early Wolfcampian); the component carbonate systems evolved from ramps to distally steepened ramps associated with nonframe-building algal reefs and grainstones, with little resedimented foreshelf detritus; (2) dominantly carbonate deposition during the middle and early late Wolfcampian, with construction of offlapping (but laterally juxtaposed) progradational shelves with steep platform margins deposited during a lengthy period of stillstand and/or slow submergence; dolomitized platform-margin facies are composed of marine-cemented, sponge-algal reefs and grainstones, with resedimented carbonate megabreccia to micrite channels and lobes in the contiguous shale basin; (3) shelf emergence and erosion during a major late middle(.) to late Wolfcampian lowstand contemporaneous with basinwide tectonism, with mass wastage into the basin of the terminal Wolfcampian platform-margin carbonate section; (4) regional transgression and black shale deposition followed by a repeat of Phase 2 type systems in the latest Wolfcampian to earliest Leonardian but under arid conditions; rapid vertical platform margin accretion by dolomitized, marine-cemented, sponge-algal-coral reefs and grainstones, and deposition of thick foreshelf megabreccia wedges, aprons, channels, and lobes;

  10. 'Marginal' BY Draconis stars

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.

    1987-01-01

    Spectroscopic observations of 52 dK-dM stars, obtained at 640-665 nm (with spectral resolution 70-90 pm) using CCD detectors on the coude-feed telescope at KPNO since 1982, are reported. Data for four stars found to have diluted absorption or weak emission above continuum at H-alpha are presented in tables and spectra and discussed in detail. These objects (Gliese numbers 256, 425A, 900, and 907.1) are shown to be 'marginal' BY Dra stars, single objects of age 2.5-3 Gyr with activity and rotational velocity (3-5 km/s) between those of normal dM stars and those of true BY Dra stars. An explanation based on evolution from the BY Dra stage through marginal BY Dra to inactive dM is proposed.

  11. [Marginality and infant mortality].

    PubMed

    Jimenez Ornelas, R

    1988-01-01

    This study is concerned with differentials in infant and child mortality among low-income urban groups in Mexico. Mortality differentials within and among marginal socioeconomic groups in suburbs of Mexico City and Leon are analyzed and compared using data collected in interviews in 1980 and 1983. The results indicate that the health benefits associated with modernization, such as improved sanitation, can sometimes be offset by their negative impact on mortality, such as industrial accidents and environmental pollution.

  12. Variations in carbonate shelf cycles in response to Appalachian tectonism

    SciTech Connect

    Algeo, T.J.

    1986-05-01

    Shelf facies strata of the Upper Mississippian Bangor Limestone in northwest Georgia and southeast Tennessee comprise asymmetric regressive cycles that are similar to shallowing-upward cycles described in many ancient and modern shallow marine carbonate sequences. Typical Bangor cycles consist of a lower 0.6-m transgressive hemicycle of poorly sorted intraclast-oolite grainstones, and an upper 15-m regressive hemicycle that grades vertically from open-marine fossil wackestone and packstone through barrier-bar oolite grainstone, to burrowed lagoonal wackestone and laminated fenestral tidal-flat mudstone and dolostone. Lateral variations in the number, thickness, and facies composition of cycles were controlled by the position of each Bangor section relative to the Mississippian shoreline and shelf margin, and by localized shelf downwarping in response to Appalachian foreland basin evolution. To the northeast, at Monteagle, Tennessee, evaporitic tidal flats flanked the low-lying Nashville dome. There, laminated fenestral mudstone and dolostone dominate a thin (58-m) Bangor section, with only one major marine transgression reaching this area. At Raccoon Mountain, Tennessee, in the midshelf area, syndepositional downwarping of the Raccoon Mountain trough controlled sedimentation and deposited a thick (120-m) Bangor section containing seven cycles of highly variable thickness and facies composition. To the southeast, at Pigeon Mountain, Georgia, the outer shelf was increasingly influenced by foreland basin sedimentation during the late Bangor. There, the lower part of a thin (52-m) Bangor section contains two normal regressive cycles, but abundant thin shale laminae and frequent facies shifts in the upper 15 m document increasing clastic influx and tectonic instability in source areas to the southeast.

  13. Holocene subsurface temperature variability in the eastern Antarctic continental margin

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Crosta, Xavier; Willmott, Veronica; Renssen, Hans; Bonnin, Jérôme; Helmke, Peer; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2012-03-01

    We reconstructed subsurface (˜45-200 m water depth) temperature variability in the eastern Antarctic continental margin during the late Holocene, using an archaeal lipid-based temperature proxy (TEX86L). Our results reveal that subsurface temperature changes were probably positively coupled to the variability of warmer, nutrient-rich Modified Circumpolar Deep Water (MCDW, deep water of the Antarctic circumpolar current) intrusion onto the continental shelf. The TEX86L record, in combination with previously published climatic records, indicates that this coupling was probably related to the thermohaline circulation, seasonal variability in sea ice extent, sea temperature, and wind associated with high frequency climate dynamics at low-latitudes such as internal El Niño Southern Oscillation (ENSO). This in turn suggests a linkage between centennial ENSO-like variability at low-latitudes and intrusion variability of MCDW into the eastern Antarctic continental shelf, which might have further impact on ice sheet evolution.

  14. Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope

    USGS Publications Warehouse

    Kindinger, J.L.

    1988-01-01

    The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.

  15. Petrophysical models of high velocity lower crust on the South Atlantic rifted margins: whence the asymmetry?

    NASA Astrophysics Data System (ADS)

    Trumbull, Robert B.; Franke, Dieter; Bauer, Klaus; Sobolev, Stephan V.

    2015-04-01

    Lower crustal bodies with high seismic velocity (Vp > 7km/s) underlie seaward-dipping reflector wedges on both margins of the South Atlantic, as on many other volcanic rifted margins worldwide. A comprehensive geophysical study of the South Atlantic margins by Becker et al. (Solid Earth, 5: 1011-1026, 2014) showed a strong asymmetry in the development of high-velocity lower crust (HVLC), with about 4 times larger volumes of HVLC on the African margin. That study also found interesting variations in the vertical position of HVLC relative to seaward-dipping reflectors which question a simple intrusive vs. extrusive relationship between these lower- and upper crustal features. The asymmetry of HVLC volumes on the conjugate margins is paradoxically exactly the opposite to that of surface lavas in the Paraná-Etendeka flood basalt province, which are much more voluminous on the South American margin. This contribution highlights the asymmetric features of magma distribution on the South Atlantic margins and explores their geodynamic significance. Petrophysical models of the HVLC are presented in the context of mantle melt generation, based on thickness-velocity (H-Vp) relations. These suggest that the greater volumes and average Vp values of HVLC on the African margin are due to active upwelling and high temperature, whereas passive upwelling under a thick lithospheric lid suppressed magma generation on the South American margin. The contrast in mantle upwelling rate and lithospheric thickness on the two margins predictably causes differential uplift, and this may help explain the greater accomodation space for surface lavas on the South American side although melt generation was strongest under the African margin.

  16. Passive margin formation, Timor Sea, Australia

    SciTech Connect

    Hillis, R.R. )

    1990-06-01

    Recent ODP data show that sea-floor spreading began in the Argo Abyssal Plain in the earliest Cretaceous, and not the Callovian-Oxfordian as had previously been believed. These data are now consistent with the Callovian-Valanginian rifting observed on seismic records over the adjacent continental shelf (Vulcan subbasin, western Timor Sea). Tectonic subsidence plots have been constructed for well, extrapolated well, and significant off-well (seismically based) locations in the Vulcan subbasin and adjacent highs. The fully corrected plots show relatively little tectonic subsidence during the Callovian-Valanginian rift phase, even in the depocenter of the Swan Graben, where the Callovian-Valanginian interval reaches its maximum thickness. This is atypical for a passive margin basin. Assuming an extensional origin for the margin, the absence of tectonic subsidence is considered to indicate that continental rifting in the area was wet (accompanied by major volcanic activity). Recent studies have shown that extensive volcanism may occur where rift zones cut through regions of anomalously hot mantle (100-200{degree}C above normal). The addition to the crust of igneous material, the density of which has been modified by adiabatic decompression, inhibits syn-rift subsidence. A wet rifting model also has implications for the origin of the nearby marginal plateaux such as the Scott Plateau. Their relatively thick crust and lack of subsidence may be due to igneous underplating associated with wet rifting. As such the plateaux may be regarded as transitional between oceanic and continental crust. The post-Valanginian Cretaceous subsidence of the Vulcan subbasin and adjacent areas is consistent with typical post-rift thermal subsidence, the predicted exponentially decaying subsidence history for a wet rift being indistinguishable from that of a dry rift.

  17. Subtropical Shelf Front off eastern South America

    NASA Astrophysics Data System (ADS)

    Piola, Alberto R.; Campos, Edmo J. D.; MöLler, Osmar O.; Charo, Marcela; Martinez, Carlos

    2000-03-01

    Historical hydrographic data from the continental shelf off eastern South America are used to examine the thermohaline properties of the water masses in the region between 20°S and 40°S. The continental shelf water masses are originated by dilution of open ocean waters of the western boundary currents of the South Atlantic Ocean. On the basis of temperature-salinity relation, two distinct water masses are identified, namely, the Subantarctic Shelf Water and the Subtropical Shelf Water. Subantarctic Shelf Water originates by dilution of Subantarctic Water, primarily in the southeast Pacific, due to excess precipitation and continental runoff and enters the continental shelf near 55°S. The Subtropical Shelf Water is modified South Atlantic Central Water diluted by continental runoff from the coast of Brazil. In addition, substantial dilution of the upper shelf waters takes place at the mouth of Río de la Plata (approximately located at 36°S) and, in a lesser extent, at the Patos-Mirim Lagoon (at 32°S). The Río de la Plata and the Patos outflows form a low-salinity tongue that caps the shelf water leading to a salinity decrease to values <30. The low-salinity tongue extends northward over the shelf penetrating farther north in winter than in summer. The extent of the low-salinity water has a strong impact on the vertical stratification and acts to limit winter convection to the layer above the halocline. There is little or no indication of mixing between Subantarctic Shelf Water and Subtropical Shelf Water. An intense temperature, salinity, and nutrient front separates these water masses. The front is oriented along the north-south direction, located on average near the 50 m isobath at 32°S and extends southward toward the shelf break near 36°S. Between 32° and 34°S the Subtropical Shelf Front follows the 100 to 200 m isobaths and separates Subantarctic Shelf Water from the oceanic South Atlantic Central Water. On the basis of the temperature and salinity

  18. Rapid and widespread dispersal of flood sediment on the northern California margin

    USGS Publications Warehouse

    Wheatcroft, R.A.; Sommerfield, C.K.; Drake, D.E.; Borgeld, J.C.; Nittrouer, C.A.

    1997-01-01

    The dispersal of flood sediment from small river systems is a poorly studied, yet potentially important aspect of active continental-margin sedimentation. In January 1995, during a flood with a 30 yr return period, the Eel River (northern California) delivered an estimated 25 ?? 3 ?? 106 t (metric tons) of tine-grained (<62 ??m) sediment to the ocean. The flood formed a distinct layer on the sea bed that was centered on the 70 m isobath, extended for 30 km along shelf and 8 km across shelf, and was as thick as 8.5 cm, but contained only 6 ?? 106 t of sediment. Thus, 75% of the flood-derived sediment did not form a recount/able deposit, but was instead rapidly and widely dispersed over the continental margin. Stratigraphic models of, and compilations of sediment flux to, active continental margins need to take the dispersive nature of small river systems into account.

  19. No reff-rimmed margins to the Permian carbonate platforms of Thailand

    NASA Astrophysics Data System (ADS)

    Dawson, Orapin; Baird, Angus; Bosence, Dan

    In the central Thailand platform, marginal buildups (Early Permian) are formed mainly by fossiliferous grainstones with boundstones occurring only as small biostrome. Boundstones have a dominant skeletal element of encrusting Archaelithoporella and Tubiphytes with calcisponges and abundant syndepositional marine cements. This boundstone texture is similar to that of many other well documented Permian examples, such as El Capitan, U.S.A. and Trogkofel, Austria. In the Ratburi area of Peninsular Thailand, small bioherms (Middle Permian) are interbedded within grainstone shoals. Boundstone textures are matrix rich, with bryozoa, the main skeletal element and Tubiphytes, the main binding element. The Peninsular Thailand buildups formed on platform interior ridges and not in a shelf marginal position. These small biostromal and biohermal buildups in central and Peninsular Thailand did not form massive shelf-margin reef bodies as have been described from Permian platforms in western U.S.A. and southern China.

  20. Geomorphic characterization of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.

    2013-01-01

    The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.

  1. Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida

    USGS Publications Warehouse

    Lidz, B.H.

    2004-01-01

    Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.

  2. Hydrocarbon traps within passive-margin evolution of Louisiana

    SciTech Connect

    Lavoie, D. ); Lowrie, A.

    1993-09-01

    The evolutionary dynamics of the Louisiana continental margin as applied to the Neogene to present are sufficiently well understood that we present a preliminary model. The external components influencing the geologic evolution are sediment input (amount, type, and transport mechanisms) and sea level oscillations (periodicity and range). The internal dynamics are subsidence (rate, total amount, and location), salt tectonics (type and rate of motion), and sediment deposition (amount, type and mechanisms). The model presented is restricted geographically to the offshore region, from the shelf to the Sigsbee Escarpment, and temporally during the Neogene, the past 20 m.y. The notion that tectonic periodicity controls the evolutionary dynamics is integral to the model. The general loci of maximal deposition and tectonics are dictated by Milankovitch fourth-order cycles ranging from 1 x 10[sup 4] to 1 x 10 [sup 5] yr. superimposed on third-order cycles of up to 1 to 2 x 10[sup 6]yr. This model suggests a highly energetic phase in overall continental margin evolution during which the Sigsbee salt wedge migrated past an arbitrary fixed reference point, changing the physiography from lower slope to shelf. The energetic phase, which lasts between 2 and 4 m.y., separated two much longer phases are the drift phase, characterized by sedimentation along lower continental rises and abyssal plains, and a depositional phase, generally minor, and erosion along the shelf, coastal plain, and interior basins. This latter phase is characterized by regional subsidence and [open quotes]catch-up[close quotes] deposition as equilibrium along the continent is maintained. We also discuss hydrocarbon traps and their ephemeral nature with the overall continental margin.

  3. Amphetamine margin in sports

    SciTech Connect

    Laties, V.G.; Weiss, B.

    1981-10-01

    The amphetamines can enhance athletic performance. That much seem clear from the literature, some of which is reviewed here. Increases in endurance have been demonstrated in both humans and rats. Smith and Beecher, 20 years ago, showed improvement of running, swimming, and weight throwing in highly trained athletes. Laboratory analogs of such performances have also been used and similar enhancement demonstrated. The amount of change induced by the amphetamines is usually small, of the order of a few percent. Nevertheless, since a fraction of a percent improvement can make the difference between fame and oblivion, the margin conferred by these drugs can be quite important.

  4. Farallon slab detachment and deformation of the Magdalena Shelf, southern Baja California

    USGS Publications Warehouse

    Brothers, Daniel S.; Harding, Alistair J.; Gonzalez-Fernandez, Antonio; Holbrook, W.S. Steven; Kent, Graham M.; Driscoll, Neal W.; Fletcher, John M.; Lizarralde, Daniel; Umhoefer, Paul J.; Axen, Gary

    2012-01-01

    Subduction of the Farallon plate beneath northwestern Mexico stalled by ~12 Ma when the Pacific-Farallon spreading-ridge approached the subduction zone. Coupling between remnant slab and the overriding North American plate played an important role in the capture of the Baja California (BC) microplate by the Pacific Plate. Active-source seismic reflection and wide-angle seismic refraction profiles across southwestern BC (~24.5°N) are used to image the extent of remnant slab and study its impact on the overriding plate. We infer that the hot, buoyant slab detached ~40 km landward of the fossil trench. Isostatic rebound following slab detachment uplifted the margin and exposed the Magdalena Shelf to wave-base erosion. Subsequent cooling, subsidence and transtensional opening along the shelf (starting ~8 Ma) starved the fossil trench of terrigenous sediment input. Slab detachment and the resultant rebound of the margin provide a mechanism for rapid uplift and exhumation of forearc subduction complexes.

  5. The Cadiz margin study off Spain: An introduction

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1999-01-01

    The Cadiz continental margin of the northeastern Gulf of Cadiz off Spain was selected for a multidisciplinary project because of the interplay of complex tectonic history between the Iberian and African plates, sediment supply from multiple sources, and unique Mediterranean Gateway inflow and outflow currents. The nature of this complex margin, particularly during the last 5 million years, was investigated with emphasis on tectonic history, stratigraphic sequences, marine circulation, contourite depositional facies, geotechnical properties, geologic hazards, and human influences such as dispersal of river contaminants. This study provides an integrated view of the tectonic, sediment supply and oceanographic factors that control depositional processes and growth patterns of the Cadiz and similar modem and ancient continental margins.

  6. Africans in America.

    ERIC Educational Resources Information Center

    Hart, Ayanna; Spangler, Earl

    This book introduces African-American history and culture to children. The first Africans in America came from many different regions and cultures, but became united in this country by being black, African, and slaves. Once in America, Africans began a long struggle for freedom which still continues. Slavery, the Civil War, emancipation, and the…

  7. Therapy with African Families.

    ERIC Educational Resources Information Center

    Nwadiora, Emeka

    1996-01-01

    Informs helping professionals about the unique history and challenges of African families to guide them toward providing ethnically sensitive psychological services to African immigrant families in need. African families undergo great stress when faced with the alienation of being Black and African in a Euro-American culture. (SLD)

  8. African Outreach Workshop 1974.

    ERIC Educational Resources Information Center

    Schmidt, Nancy J.

    This report discusses the 1974 African Outreach Workshop planned and coordinated by the African Studies Program at the University of Illinois at Urbana-Champaign. Its major aim was to assist teachers in developing curriculum units on African using materials available in their local community. A second aim was for the African Studies Program to…

  9. The crustal structure of the southern Argentine margin

    NASA Astrophysics Data System (ADS)

    Becker, Katharina; Franke, Dieter; Schnabel, Michael; Schreckenberger, Bernd; Heyde, Ingo; Krawczyk, Charlotte M.

    2012-06-01

    Multichannel reflection seismic profiles, combined with gravimetric and magnetic data provide insight into the crustal structure of the southernmost Argentine margin, at the transition from a rifted to a transform margin and outline the extent of the North Falkland Graben. Based on these data, we establish a regional stratigraphic model for the post-rift sediments, comprising six marker horizons with a new formation in the Barremian/Lower Cretaceous. Our observations support that a N-S trending subsidiary branch of the North Falkland Graben continues along the continental shelf and slope to the Argentine basin. During the rift phase, a wide shelf area was affected by the E-W extension, subsequently forming the North Falkland Graben and the subsidiary branch along which finally breakup occurred. We propose the division of the margin in two segments: a N-S trending rifted margin and an E-W trending transform margin. This is further underpinned by crustal scale gravity modelling. Three different tectono-dynamic processes shaped the study area. (1) The Triassic/Early Jurassic extensional phase resulting in the formation of the North Falkland Graben and additional narrower rift grabens ended synchronously with the breakup of the South Atlantic in the early Valanginian. (2) Extensional phase related to the opening of the South Atlantic. (3) The transform margin was active in the study area from about Hauterivian times and activity lasted until late Cretaceous/early Cenozoic. Both, the rifted margin and the transform margin are magma-poor. Very limited structures may have a volcanic origin but are suggested to be post-rift. The oceanic crust was found to be unusually thin, indicating a deficit in magma supply during formation. These findings in combination with the proposed breakup age in the early Valanginian that considerably predates the formation of the Paraná-Etendeka continental flood basalt provinces in Brazil and Namibia question the influence of the Tristan da

  10. Linking margin morphology to sedimentary processes along the US East Coast passive continental margin

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; ten Brink, U. S.; Andrews, B.; Twichell, D.

    2010-12-01

    The morphology of the US East Coast continental slope and rise has a surprising amount of along-margin variation. Multibeam bathymetry datasets that cover the slope and rise from Cape Hatteras to Georges Bank provide a unique opportunity to analyze both first-order and higher-order morphologies, including submarine canyons, landslides, slumps and sedimentary bedforms. Using the morphological characterization coupled with seismic and core data, we hope to better understand how ancient and modern sedimentary processes control the shape of the margin. As a first step, the margin bathymetry was subdivided into 20 shelf-perpendicular regions from which several statistical parameters were analyzed. Within each region, the slope gradient was computed separately for down-slope and across-slope aspect directions. Distribution curves in each region for down- and across-slope gradients and seafloor roughness as functions of depth were grouped according to their statistical similarities. Four basic groups emerge and each approximately corresponds to known regions of Quaternary glacial, fluvial, current-controlled and gravity-driven sedimentary transport. In the second part of the study, published lithologic and chronostratigraphic frameworks of this margin were used to examine the relationship between seafloor morphology and the underlying geology. Along the upper continental rise, thick Quaternary deposits appear to have a strong influence on the short- and long-wavelength variation in rise topography, revealing a complex interplay between down-slope and along-slope sediment transport. Despite the close correlation between continental slope morphology and Quaternary environmental conditions, initial results suggest that the underlying, older, stratigraphy also plays a primary role. Along the continental slope, Quaternary processes appear to control the relief of slope-confined canyons and other short-wavelength (<5 km) topography, but the first order morphology of the slope

  11. Coordination: southeast continental shelf studies. Progress report

    SciTech Connect

    Menzel, D.W.

    1980-03-01

    The GABEX I experiment is designed to provide synoptic coverage of a series of Gulf Stream wave-like disturbances, the effect of these on the circulation of the entire shelf, and on biological and chemical processes. This study was initiated in February 1980 when current meter arrays were deployed. These meters will be removed in July 1980. In April three ships will simultaneously study the effects of Gulf Stream disturbances on the hydrography, chemistry, and biology of the shelf. One vessel will track a specific wave-like disturbance and provide synoptic coverage of the shelf area. The second vessel will determine the effect of shelf break processes on adjacent shelf water; and the third will study trace metal distributions in and outside of disturbances. Research progress is reported in continental shelf studies, nearshore and estuarine studies (diffusion of freshwater out of nearshore zone), tidal currents and material transport, and mixing of inlet plumes.

  12. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  13. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  14. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  15. Preliminary summary of the 1976 Atlantic Margin Coring Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Hathaway, John Cummins; Schlee, J.J.; Poag, C.W.; Valentine, P.C.; Weed, E.G.A.; Bothner, Michael H.; Kohout, F.A.; Manheim, F. T.; Schloam, R.; Miller, R.E.; Schultz, D.M.

    1976-01-01

    The U.S. Geological Survey Atlantic Margin Coring Project, 1976, a 60-day expedition to obtain core samples by drilling beneath the floor of the Continental Shelf and Slope of the eastern United States, was carried out in July, August, and September 1976 aboard D/V GLOMAR CONCEPTION. The coring penetrated as much as 310 meters below the sea floor at 19 sites along the continental margin from Georgia to Georges Bank off New England in water depths ranging from 20 to 300 meters; 1,020 meters of material were recovered in 380 cores, ranging in age from Late Cretaceous to Holocene. One of the major findings was the discovery of relatively fresh water (salinities less than 3 parts per thousand) extending beneath the Continental Shelf as much as 60 nautical miles seaward from the New Jersey coast. Water of about 1 part per thousand salinity was found beneath the shelf more than 7 nautical miles off Ocean City, Maryland and Barnegat Inlet, New Jersey. Analyses for light hydrocarbons in the cores show the highest concentrations (as much as 412,000 ppm) at sites in water depth greater than 200 meters (the shelf-slope break), principally in Pleistocene sediments, although methane concentrations greater than 400,000 ppm also were found in Miocene sediments at one site near the shelf edge. (Woodard-USGS)

  16. Numerical Modeling of West Antarctic Ice Sheet grounding-line stability under the influence of changing continental shelf physiography

    NASA Astrophysics Data System (ADS)

    Robinson, R.; Fastook, J.; Bart, P.

    2007-12-01

    Bart and Iwai (in prep.) utilize morphologic and biologic evidence to hypothesize that the Antarctic Peninsula's outer continental shelf overdeepened during a transitory period of increased glacial erosion in the early Pliocene. They attribute the enhanced erosion of the continental shelf to a period of regional warming on the peninsula's pacific margin that produced an associated increased flux of snow and ice. On the over-deepened outer continental shelf, the deeper-water sills presumably permitted a larger influx of relatively warm circumpolar deep water. If correct and if early Pliocene overdeepening of the continental shelf was a continent-wide phenomenon, then this relatively recent modification of the Antarctic continental shelf may have greatly altered the way in which the marine terminus of the Antarctic Ice Sheet interacts with global thermohaline circulation. Our ongoing numerical modeling experiments of the Eastern Basin Ross Sea continental shelf are designed to evaluate the influence of changing shelf morphology (primarily water depth) and water-mass properties (primarily, water temperature) on West Antarctic Ice Sheet grounding-line stability.

  17. Ice velocity at the ice front of the Filchner-Ronne Ice Shelf, Antarctica, as observed with ERS interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; MacAyeal, Douglas R.

    1997-01-01

    ERS images of the two ends of the ice front of the Filchner-Ronne ice shelf (Antarctica) were utilized interferometrically to study the deformation rate of the ice shelf in response to viscous creep. On the western bank of Berkner Island (BI), near Hemmen Ice Rise (HIR), a time series of ERS data acquired in February 1992, in both ascending and descending mode, and with a three-day time interval, were utilized to map the ice velocity in two dimensions. Finite-element ice-shelf flow simulations are compared with the ERS interferograms to interpret the ice motion in terms of the physical constraints on ice-shelf flow. The efforts to fit artificial interferograms generated with model velocity output suggest that the flow regime is strongly influenced by three processes. First, a void-creation process responsible for rifts at coastal margins tends to uncouple the ice shelf from the ice rise and neighboring coast of BI. Secondly, sea ice within the void space appears to act as a binding agent between discrete ice-shelf fragments, allowing rigid-body rotations of these fragments. Third, strain rates appear to be enhanced in a narrow zone adjacent to HIR, implying significant strain softening along the boundary. It is believed that synthetic aperture radar (SAR) interferogram/model intercomparison represents a powerful impetus towards the development of better, more physically realistic ice-shelf flow models.

  18. Race on the Superhighway: How E-Mail Affects African American Student Writers.

    ERIC Educational Resources Information Center

    Redd, Teresa M.; Massey, Victoria W.

    1997-01-01

    Examines three claims about -mail and its implications for African-American students: e-mail (1) blends elements of oral and written language; (2) fosters a sense of community; and (3) leads to the enfranchisement of marginalized writers. Explores these claims through an extended e-mail exchange between African-American students at Howard…

  19. African American Women Principals: Heeding the Call to Serve as Conduits for Transforming Urban School Communities

    ERIC Educational Resources Information Center

    Newcomb, Whitney Sherman; Niemeyer, Arielle

    2015-01-01

    African American women leaders are often found in urban schools that have been exhausted of resources and lack support. However, due to their disproportionate representation in urban schools, African American women principals have become adept at uniting and engaging stakeholders in marginalized school settings into action. The intent for this…

  20. Superstar or Scholar? African American Male Youths' Perceptions of Opportunity in a Time of Change

    ERIC Educational Resources Information Center

    Conchas, Gilberto Q.; Lin, Alex R.; Oseguera, Leticia; Drake, Sean J.

    2015-01-01

    Through a Multiple Marginality Framework, this exploratory case study highlights how African American male youth in an urban high school setting perceive the opportunity structure during the historic election of the first African American President. Youth optimism generated by Obama's election gives students a sense of hope despite the persistent…

  1. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and

  2. Latest Pleistocene Deposition and Erosion on the New Jersey Shelf

    NASA Astrophysics Data System (ADS)

    Christensen, B. A.; Alexander, C.; Stackhouse, S.; Turner, R.; Nordfjord, S.; Austin, J.; Goff, J.; Gulick, S.; Fulthorpe, C.

    2007-12-01

    The New Jersey margin is an ideal location for the study of sedimentary response to glacioeustatic forcing because this passive continental edge is both wide and stable. Although the region has been intensively imaged and mapped geophysically, it is still far from being understood stratigraphically because of a lack of samples to constrain timing and paleo-depositional environment. This study examines the timing and nature of latest Pleistocene erosion and deposition on the shelf, using grab samples and core recovered using the AHC-800 (Active Heave Compensation - 800 m) drilling system. The latest Pleistocene shelf is characterized by (1) downcutting and erosion by rivers associated with subaerial exposure during glacial retreat of sea level; (2) deposition at the shelf edge during sea level fall associated with formation of an outer shelf wedge; and (3) deposition in estuarine environments as sea level rose. Foraminiferal and sediment textural analyses of cores samples ground truth previous seismic reflection-based interpretations of incision and paleochannel formation. Grab samples analyzed for foraminiferal content and grain size identify environment of deposition within three main bathymetric features: sand ridges, sand ribbons, and glacial scours. Radiometric dating (14C) further constrains the timing of intervals of erosion and deposition. We relate our results to other studies and suggest a complex, spatially variable shelf response to glacial advance and retreat. K-Ar analyses of hornblende crystals provide constraints on sediment sources. Two assemblages exist: one consistent with ages of Proterozoic age plutons in the New Jersey area, and another, younger, indicating mixing. K-Ar dates show a clear difference between and Holocene (930- 970 +/- 20 Ma) sedimentary assemblages and sediments older than 30 k.y, (850-880 Ma +/- 20-30 Ma). Holocene hornblend crystal ages are consistent with Grenvillian aged plutons common to the source region (e

  3. A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes

    NASA Astrophysics Data System (ADS)

    Arndt, Jan Erik; Jokat, Wilfried; Dorschel, Boris; Myklebust, Reidun; Dowdeswell, Julian A.; Evans, Jeffrey

    2015-10-01

    A new digital bathymetric model (DBM) for the Northeast Greenland (NEG) continental shelf (74°N-81°N) is presented. The DBM has a grid cell size of 250 m × 250 m and incorporates bathymetric data from 30 multibeam cruises, more than 20 single-beam cruises and first reflector depths from industrial seismic lines. The new DBM substantially improves the bathymetry compared to older models. The DBM not only allows a better delineation of previously known seafloor morphology but, in addition, reveals the presence of previously unmapped morphological features including glacially derived troughs, fjords, grounding-zone wedges, and lateral moraines. These submarine landforms are used to infer the past extent and ice-flow dynamics of the Greenland Ice Sheet during the last full-glacial period of the Quaternary and subsequent ice retreat across the continental shelf. The DBM reveals cross-shelf bathymetric troughs that may enable the inflow of warm Atlantic water masses across the shelf, driving enhanced basal melting of the marine-terminating outlet glaciers draining the ice sheet to the coast in Northeast Greenland. Knolls, sinks, and hummocky seafloor on the middle shelf are also suggested to be related to salt diapirism. North-south-orientated elongate depressions are identified that probably relate to ice-marginal processes in combination with erosion caused by the East Greenland Current. A single guyot-like peak has been discovered and is interpreted to have been produced during a volcanic event approximately 55 Ma ago.

  4. 7Be as a tracer of flood sedimentation on the northern California continental margin

    USGS Publications Warehouse

    Sommerfield, C. K.; Nittrouer, C. A.; Alexander, C. R.

    1999-01-01

    Sediment inventories of the cosmogenic radionuclide 7Be (t1/2=53 d) were measured on the Eel River shelf and slope (northern California continental margin) to investigate sedimentation processes associated with coastal river flooding. Seabed coring shortly after major riverflow events in 1995 and 1997 documented a shelf-wide flood deposit, and subsequent radionuclide studies determined 7Be to be a powerful tracer of fine-grained river sediment. In addition, distinctive signatures of 234Th and 210Pb were observed in oceanic flood deposits and provided additional information regarding depositional processes. During the 1995–1997 monitoring period, 7Be was present (2–35 dpm cm-2) in shelf and slope sediments only after periods of high rainfall and river runoff during the winter months. It is suggested that fluvial input was the primary source of 7Be in shelf sediments after the floods. 7Be sediment inventories and sediment-trap fluxes determined after the 1997 flood revealed that fine-grained fluvial sediments were rapidly (within one month) broadcast over the continental margin, to the 500 m isobath. Dispersal was apparently facilitated by energetic storm waves, which resuspended and redistributed some fraction of the suspended load residing on the shelf prior to accretion as flood deposits. These observations illustrate that floods are an important sedimentary process for modern environments of the Eel shelf and slope, and perhaps for other fluviomarine sedimentary systems of the northern California continental margin. Ratios of the 210Pb sediment-accumulation rate (100 yr average) to the 7Be deposition rate (1–2 month average) for shelf sites illustrate the episodic nature of shelf sedimentation, and suggest that a minimum of 3–30 depositional events complete the most recent stratigraphic record. This observation is consistent with the magnetude and frequency of fluvial sediment input, as Eel River floods with return periods of 3–33 yr (3% of the time of

  5. Benthic faunal assemblages and carbon supply along the continental shelf/shelf break-slope off Cape Hatteras, North Carolina

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Aller, R. C.; Green, M. A.

    Patterns of benthic faunal abundances, biomass, and productivity were examined in the continental shelf-break/upper-slope and mid-slope region of the Ocean Margins Program study area off Cape Hatteras, NC in July 1994, and July and August 1996. Macrofaunal abundances were comparable to or slightly higher than other shelf-slope locales in the North Atlantic. Similar to previous studies in the region, there were no clear depth (75-900 m) or latitudinal (36°20'N-35°25') trends. Sta. S300 in 300 m had greatest abundances (539,000±38,400 m -2) for individuals >0.3 mm, more than 3 times higher than the average for all stations. Annelids of all sizes dominated numerically, equaling >80% of all macrofauna regardless of size. The majority of infauna were found in the upper 5 cm, but direct visual observations and geochemical evidence from other studies imply a deep-burrowing benthos. Meiofauna (excluding benthic foraminifera) were twice as abundant at shelf-break/upper-slope stations than mid-slope stations, while foraminifera were more abundant at deeper stations. Meiofaunal-sized polychaetes and nematodes were found to at least 7-8 cm below the sediment surface. Bacterial inventories at shelf-break/upper-slope depths were high relative to other shelf regions, but declined precipitously deeper than 500 m. Relative biomass patterns were similar for all stations, highest for macrobenthos and lowest for bacteria. Although densities were high, the contribution of nematodes to benthic biomass was <1%. Macrofaunal biomass averaged 54±47 g C m -2 and ranged from 6 g C m -2 at station N455 to 188 g C m -2 (>0.3 mm) at station S300, while metazoan meiofauna contributed from 0.6 g C m -2 at station N-274 to 11 g C m -2 at M76, averaging 2.2±2.4 g C m -2. Bacterial biomass over the upper 10 cm was ˜4 times higher at shelf-break/upper-slope stations than mid-slope stations, averaging 1.05±1.14 g C m -2 and ranging from 5 g C m -2 at M76 to 0.12 g C m -2 at MLB-679Rb. Benthic

  6. Controls of tectonics and sediment source locations on along-strike variations in transgressive deposits on the northern California margin

    USGS Publications Warehouse

    Spinelli, G.A.; Field, M.E.

    2003-01-01

    We identify two surfaces in the shallow subsurface on the Eel River margin offshore northern California, a lowstand erosion surface, likely formed during the last glacial maximum, and an overlying surface likely formed during the most recent transgression of the shoreline. The lowstand erosion surface, which extends from the inner shelf to near the shelfbreak and from the Eel River to Trinidad Head (???80 km), truncates underlying strata on the shelf. Above the surface, inferred transgressive coastal and estuarine sedimentary units separate it from the transgressive surface on the shelf. Early in the transgression, Eel River sediment was likely both transported down the Eel Canyon and dispersed on the slope, allowing transgressive coastal sediment from the smaller Mad River to accumulate in a recognizable deposit on the shelf. The location of coastal Mad River sediment accumulation was controlled by the location of the paleo-Mad River. Throughout the remainder of the transgression, dispersed sediment from the Eel River accumulated an average of 20 m of onlapping shelf deposits. The distribution and thickness of these transgressive marine units was strongly modified by northwest-southeast trending folds. Thick sediment packages accumulated over structural lows in the lowstand surface. The thinnest sediment accumulations (0-10 m) were deposited over structural highs along faults and uplifting anticlines. The Eel margin, an active margin with steep, high sediment-load streams, has developed a thick transgressive systems tract. On this margin sediment accumulates as rapidly as the processes of uplift and downwarp locally create and destroy accommodation space. Sequence stratigraphic models of tectonically active margins should account for variations in accommodation space along margins as well as across them. ?? 2003 Elsevier Science B.V. All rights reserved.

  7. Ivory Coast-Ghana margin: model of a transform margin

    SciTech Connect

    Mascle, J.; Blarez, E.

    1987-05-01

    The authors present a marine study of the eastern Ivory Coast-Ghana continental margins which they consider one of the most spectacular extinct transform margins. This margin has been created during Early-Lower Cretaceous time and has not been submitted to any major geodynamic reactivation since its fabric. Based on this example, they propose to consider during the evolution of the transform margin four main and successive stages. Shearing contact is first active between two probably thick continental crusts and then between progressively thinning continental crusts. This leads to the creation of specific geological structures such as pull-apart graben, elongated fault lineaments, major fault scarps, shear folds, and marginal ridges. After the final continental breakup, a hot center (the mid-oceanic ridge axis) is progressively drifting along the newly created margin. The contact between two lithospheres of different nature should necessarily induce, by thermal exchanges, vertical crustal readjustments. Finally, the transform margin remains directly adjacent to a hot but cooling oceanic lithosphere; its subsidence behavior should then progressively be comparable to the thermal subsidence of classic rifted margins.

  8. Shelf-bypass route for lower Whiterockian quartz sandstones of Vinini Formation in Roberts Mountains, central Nevada

    SciTech Connect

    Finney, S.C. . Dept. of Geological Sciences)

    1993-04-01

    The Lower Member of the Vinini Formation in the Roberts Mountains is characterized by voluminous turbiditic quartz sandstones and associated hemipelagic strata. These rocks record the construction of a submarine fan on the western margin of North America in response to a major drop in relative sea level during the early Whiterockian. It has been demonstrated that the quartz sand was derived from the North American craton. In its dispersal, this sand must have crossed a contemporaneous carbonate peritidal platform in its delivery to the more outboard Vinini basin. All lower Whiterockian strata deposited on the platform are shallow-water carbonates. Quartz silt is common in them locally, but medium quartz sand that is so distinctive of the Vinini is lacking. For this reason and the fact that the submarine fan appears to have been constructed from a point source, it is concluded that the sand crossed the carbonate platform along a narrow, well-defined route, e.g. a shelf channel. This bypass route, however, has yet to be discovered. Quartz sand was spreading southward along the shelf in Idaho during the early Whiterockian. The Tooele Arch and its western extension into central Nevada may have served to divert the sand towards the shelf margin. Although stratigraphic data for lower Whiterockian strata are poor in this proposed location for the shelf channel, it is interesting that the greatest thickness of the Mohawkian Eureka Quartzite is found in this same area where Eureka sands were also diverted westward off the shelf.

  9. On instability and mixing on the UK Continental Shelf

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyu

    2016-06-01

    The stability of stratified flows at locations in the Clyde, Irish and Celtic Seas on the UK Continental Shelf is examined. Flows are averaged over periods of 12-30 min in each hour, corresponding to the times taken to obtain reliable estimates of the rate of dissipation of turbulent kinetic energy per unit mass, ε. The Taylor-Goldstein equation is solved to find the maximum growth rate of small disturbances to these averaged flows, and the critical gradient Richardson number, Ric. The proportion of unstable periods where the minimum gradient Richardson number, Rimin, is less than Ric is about 35%. Cases are found in which Ric < 0.25; 37% of the flows with Rimin < 0.25 are stable, and Ric < 0.24 in 68% of the periods where Rimin < 0.25. Marginal conditions with 0.8 < Rimin/Ric < 1.2 occur in 30% of the periods examined. The mean dissipation rate at the level where the fastest growing disturbance has its maximum amplitude is examined to assess whether the turbulence there is isotropic and how it relates to the wave-turbulence boundary. It is concluded that there is a background level of dissipation that is augmented by instability; instability of the averaged flow does not account for all the turbulence observed in mid-water. The effects of a horizontal separation of the measurements of shear and buoyancy are considered. The available data do not support the hypothesis that the turbulent flows observed on the UK shelf adjust rapidly to conditions that are close to being marginal, or that flows in a particular location and period of time in one sea have stability characteristics that are very similar to those in another.

  10. Reconstruction of the East Africa and Antarctica continental margins

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan C.; Hall, Stuart A.; Bird, Dale E.; Ball, Philip J.

    2016-06-01

    The Early Jurassic separation of Antarctica from Africa plays an important role in our understanding of the dispersal of Gondwana and Pangea. Previous reconstruction models contain overlaps and gaps in the restored margins that reflect difficulties in accurately delineating the continent-ocean-boundary (COB) and determining the amount and distribution of extended continental crust. This study focuses on the evolution of the African margin adjacent to the Mozambique Basin and the conjugate Antarctic margin near the Riiser-Larsen Sea. Satellite-derived gravity data have been used to trace the orientations and landward limits of fracture zones. A 3-D gravity inversion has produced a crustal thickness model that reliably quantifies the extent and amount of stretched crust. Crustal thicknesses together with fracture zone terminations reveal COBs that are significantly closer to the African and Antarctic coasts than previously recognized. Correlation of fracture zone azimuths and identified COBs suggests Antarctica began drifting away from Africa at approximately 171 Ma in a roughly SSE direction. An areal-balancing method has been used to restore the crust to a uniform prerift thickness so as to perform a nonrigid reconstruction for both nonvolcanic and volcanic margins. Both margins reveal a trend of increasing extension from east to west. Our results suggest Africa underwent extension of 60-120 km, while Antarctic crust was stretched by 105-180 km. Various models tested to determine the direction of extension during rifting suggest that Antarctica moved away from Africa in a WNW-ESE direction during the period between 184 and 171 Ma prior to the onset of seafloor spreading.

  11. CHIRP seismic reflection study of falling-stage (forced regressive) sediment wedges on the New Jersey outer continental shelf

    NASA Astrophysics Data System (ADS)

    Santra, M.; Goff, J.; Ron, S.; Austin, J.

    2007-12-01

    High-resolution (1-12 kHz), deep-towed and hull-mounted CHIRP seismic data were collected on the New Jersey outer shelf in 2001, 2002 and 2006 as part of Office of Naval Research-funded projects. These data have imaged two well-developed, offlapping sedimentary wedges (named outer-shelf wedge and deep-shelf wedge) that are now postulated to have developed on the falling-stage limb of the last glacial cycle, during some time prior to the Last Glacial Maximum (20-22 kyrs BP). These wedges formed atop the high-amplitude, regional R horizon, a complex erosional unconformity that formed about 40,000 years ago. The outer shelf wedge is also characterized in part by an enigmatic, erose boundary separating layered horizons below from a mostly transparent section above. New Jersey shelf wedges appear analogous to forced-regressive units imaged on the Rhone shelf edge, as well as Eocene sections documented from seismic-scale outcrops on Spitsbergen Island. These examples can reach thicknesses up to 100 m on the shelf edge and uppermost slope, but usually thin rapidly downslope. Such wedges represent one of two documented mechanisms involving sand transport across a shelf margin into deeper water settings, the other being a canyonized shelf-edge. Our study will includes analysis of the CHIRP data and, if available, additional ground truth provided by short cores collected in summer 2007 at numerous intra-wedge stratigraphic horizons. Our goals are to understand the external and internal geometry of the wedges and sediment pathways across the paleo-shelf. These data should allow us to characterize margin segments that build during sea-level fall by slope-apron accretion rather than by the formation of channel-levee complexes. The literature is heavily weighted by the latter and their associated canyon systems, but information on shelf-edge attached slope aprons and how they contribute to deep-water sedimentation, and in particular the delivery of clean sands to slope settings

  12. Integration of high-resolution seismic with core data delineates sequence stratigraphy of a shelf-edge delta complex

    SciTech Connect

    Combes, J.M.; Nissen, S.E.; Scott, R.W.

    1995-12-31

    Correlation of high resolution seismic and corehole data sets obtained offshore Louisiana by a cooperative consortium of Louisiana State University and ten petroleum industry partners has resulted in a detailed sequence stratigraphic interpretation of a Late Pleistocene shelf margin delta system. High resolution a Late Pleistocene shelf margin delta system. High resolution stratal geometries have been interpreted within this framework of genetically related facies and key sequence surfaces have been identified both on the high resolution seismic lines and in the core data. Regional expressions of chronostratigraphically identified sequence-bounding unconformities and transgressive ravinement surfaces emphasize the importance of these surfaces in determining stratigraphic relationships. Several key conclusions resulted from this study: (1) The optimum location for interpretation of sequence surfaces is within or near the locus of maximum deposition. (2) At a distance from a depocenter the characteristic features of sequence surfaces lose seismic resolution and minor, subtle variations in the reflection character are the only seismic indicators of major boundaries. (3) Shelf edge deltaic deposits are known to contain important hydrocarbon reservoirs and this latest Pleistocene system provides an excellent model for older Cenozoic systems. (4) Potential deep sea fan reservoirs may accumulate seaward of shelf margin deltas during both falling and rising sea level stages depending upon local sedimentological conditions.

  13. Sedimentary architecture of the Amundsen Sea Embayment shelf, West Antarctica, from pre-glacial to glacial processes

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Uenzelmann-Neben, Gabriele; Hillenbrand, Claus-Dieter; Larter, Robert; Nitsche, Frank

    2013-04-01

    Studies of the sedimentary architecture and characteristics of Antarctic shelves provide clues of past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport history from pre-glacial times to early glaciation and to the most recent glacial periods. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between outcropping basement of the inner shelf and basement ridges and highs beneath the outer shelf. A middle shelf sub-basin exists which may have formed as a result of motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata has been eroded from the present inner shelf and coastal hinterland by ice sheet advances since the onset of glaciation. Some of the eroded sediments were deposited as a progradational wedge extending the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. Comparing the observed seismic characteristics with those of other Antarctic shelf sequences, we assign an Early Cretaceous age for bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age for unit ASS-2, an Early to Mid-Miocene age for unit ASS-3, a Mid-Miocene age for unit ASS-4, a Late Miocene to Early Pliocene age for unit ASS-5, and a Pliocene to Pleistocene age for the top unit ASS-6. The survival of buried grounding zone wedges in the upper part of unit ASS-5 of the outer shelf is consistent with the onset of a long warming phase and a retreated ice sheet in the early Pliocene as observed for the Ross Sea shelf and reconstructed from paleo-ice sheet models. Our data also reveal that the paleo-ice flow paths of the central Pine Island Trough system have remained stationary across the

  14. Colorado Basin Structure and Rifting, Argentine passive margin

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  15. Observations of intermediate nepheloid layers on the northern California continental margin

    NASA Astrophysics Data System (ADS)

    McPhee-Shaw, E. E.; Sternberg, R. W.; Mullenbach, B.; Ogston, A. S.

    2004-04-01

    Conductivity-temperature-depth and transmissometer surveys were undertaken to investigate the characteristics and seasonal nature of intermediate nepheloid layers (INLs) over the outer shelf and upper slope of the northern California margin, near Eureka, CA. Observed INLs could generally be grouped into one of two categories: INLs that formed and spread seaward from the continental shelf, and INLs generated at continental slope depths greater than 150 m. Shelf INLs, forming between 70 and 150-m depth on the outer shelf and extending seaward 15-20 km past the shelf break, were prevalent during winter and early spring. Continental slope INLs were found during all seasons of the year. Their suspended particulate matter concentration was lower than that of the shelf INLs, and their horizontal extent was 3-7 km seaward from the slope. Mooring data from 450-m depth show strong bottom-trapped semidiurnal internal tidal energy and asymmetry between upslope and downslope semidiurnal motions, indicative of bore-like behavior. These analyses suggest that critical reflection of internal tides is a common feature of the outer continental slope in this region. The location of slope-depth INLs was often observed to coincide with regions where the topographic slope angle was critical for internal tide reflection. In addition, seasonal variability in the span of critical topography over the slope matches seasonal variability in the density of observed INLs over the continental slope. Slope-depth INLs appear to be associated with energetic tidal motions and interaction between internal tides and bathymetry, whereas shelf-depth INLs are likely formed by resuspension events on the outer shelf and subsequent transport offshore by mesoscale circulation processes.

  16. Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past ˜45,000 years

    NASA Astrophysics Data System (ADS)

    van der Lubbe, H. J. L.; Frank, Martin; Tjallingii, Rik; Schneider, Ralph R.

    2016-01-01

    Marine sediments deposited off the Zambezi River that drains a considerable part of the southeast African continent provide continuous records of the continental climatic and environmental conditions. Here we present time series of neodymium (Nd) isotope signatures of the detrital sediment fraction during the past ˜45,000 years, to reconstruct climate-driven changes in the provenance of clays deposited along the Mozambique Margin. Coherent with the surface current regime, the Nd isotope distribution in surface sediments reveals mixing of the alongshore flowing Zambezi suspension load with sediments supplied by smaller rivers located further north. To reconstruct past changes in sediment provenances, Nd isotope signatures of clays that are not significantly fractionated during weathering processes have been obtained from core 64PE304-80, which was recovered just north of the Zambezi mouth at 1329 m water depth. Distinctly unradiogenic clay signatures (ɛNd values <-14.2) are found during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. In contrast, the Nd isotope record shows higher, more radiogenic isotope signatures during Marine Isotope Stage 3 and between ˜15 and ˜5 ka BP, the latter coinciding with the timing of the northern hemisphere African Humid Period. The clay-sized sediment fraction with the least radiogenic Nd isotope signatures was deposited during the Holocene, when the adjacent Mozambique Shelf became completely flooded. In general, the contribution of the distinctly unradiogenic Zambezi suspension load has followed the intensity of precession-forced monsoonal precipitation and enhanced during periods of increased southern hemisphere insolation and high-latitude northern hemispheric climate variability.

  17. Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin

    SciTech Connect

    Biswas, S.K.

    1982-10-01

    The western continental margin of India can be classed as a divergent or passive margin. The western continental shelf is an extensive carbonate bank (Bombay offshore basin) passing into clastic sediments on the north and south. Three craton-margin embayed basins-Kutch, Cambay, and Narmada- in the northern part of the shelf, are filled predominantly with clastic sediments. These basins occupy grabens bounded by faults diverging seaward. The grabens were formed by three rift systems along major Precambrian tectonic trends. The rifting developed sequentially from north to south around the Saurashtra horst. Kutch basin was formed in the Early Jurassic, followed by Cambay basin in Early Cretaceous time, and the Narmada in the Late Cretaceous. It appears that these rifting events occurred at successive stages during the northward migration of the Indian plate after its break from Gondwanaland in Late Triassic or Early Jurassic. It is inferred that these rift basins opened up successively as a result of the counterclockwise drift of the Indian craton. Bombay offshore and Cambay are two major oil-producing basins in the western margin. These basins are characterized by high geothermal gradients attributed to the shallowness of the mantle in this region. Oil has not been found in KUtch basin, which is mainly an onshore Mesozoic basin. The basin basin depocenter shifted offshore at the northwestern part of the continental shelf where the shelf is wide.

  18. Geology of New England passive margin

    SciTech Connect

    Austin, J.A. Jr.; Uchupi, E.; Shaughnessy, D.R. III; Ballard, R.D.

    1980-01-01

    The New England continental margin began to develop in the Middle Triassic, when rifting of Precambrian/Paleozoic terrane produced a complex arrangement of horsts and grabens. During the Late Triassic-Early Jurassic, these grabens were filled with terrigenous clastics, volcanics, and evaporites. When plate separation took place and seafloor spreading began approximately 195 to 190 m.y.B.P., the newly formed continental edge was uplifted and eroded, truncating preexisting rift structures. As North America began to drift away from Africa, subsidence occurred along a series of normal faults now beneath the outer continental shelf. This hinge zone may represent the boundary between continental crust and a transitional zone of continental and oceanic crustal fragments. Atop the faulted and subsiding crustal platform, thick sediments were deposited. The lower part of the drift sequence is an evaporite-carbonate unit of Early-Middle Jurassic age, and the upper part is a clastic wedge of Middle Jurassic to Cenozoic age. More than 80% of these sediments are Jurassic. Their total thickness may be as much as 13 km beneath the southeastern part of Georges Bank.

  19. Adolescent Substance Use: The Role of Demographic Marginalization and Socioemotional Distress

    ERIC Educational Resources Information Center

    Benner, Aprile D.; Wang, Yijie

    2015-01-01

    We investigated the links between racial/ethnic marginalization (i.e., having few same-race/ethnic peers at school) and adolescents' socioemotional distress and subsequent initiation of substance use (alcohol and marijuana) and substance use levels. Data from 7,731 adolescents (52% female; 55% White, 21% African American, 16% Latino, 8% Asian…

  20. Salt diapirs bordering the continental margin of northern kenya and southern somalia.

    PubMed

    Rabinowitz, P D; Coffin, M F; Falvey, D

    1982-02-01

    The presence of newly discovered diapirs of presumed salt origin is documented for the continental margin of northeastern Kenya and southeastern Somalia. These structures are probably a manifestation of a significant thickness of Lower Jurassic evaporites deposited during the rift and early-drift stages of the separation of Madagascar from the African continent.

  1. Salt diapirs bordering the continental margin of northern kenya and southern somalia.

    PubMed

    Rabinowitz, P D; Coffin, M F; Falvey, D

    1982-02-01

    The presence of newly discovered diapirs of presumed salt origin is documented for the continental margin of northeastern Kenya and southeastern Somalia. These structures are probably a manifestation of a significant thickness of Lower Jurassic evaporites deposited during the rift and early-drift stages of the separation of Madagascar from the African continent. PMID:17842401

  2. Measuring Changes in the Vicinity of the Seal Nunataks Ice Shelf Remnant from Imagery and Altimetry

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Berthier, E.; Scambos, T.

    2015-12-01

    Analysis of repeated imagery and ICESat laser altimetry has enabled the ongoing losses from the northern Larsen ice shelf remnant to be assessed in detail. The remnant, the Seal Nunataks ice shelf (SNIS), has four ICESat tracks that cross it as well as adjacent tracks that cross Robertson Island (RI) and its remaining tributary, Rogosh Glacier (RG), on the Antarctic Peninsula. The altimetry data from ICESat (2003-2009) shows that elevation losses increase from west to east across the SNIS. Ice elevation differences suggest mean ice shelf thinning rates of up to 1.6 m a-1 and reveal processes impacting the remaining shelf ice as well. Limited altimetry data across RG suggests elevation losses of almost 1 m a-1 inland from the grounding zone with smaller losses further up the evolving tributary. Farther east, asymmetric elevation changes across RI suggest the magnitude of regional climate impacts vary distinctly depending on slope aspect. Imagery analysis using Landsat 7 and ASTER images from 2001-2013 shows that ice area losses continued on the shelf remnant following the Larsen A break up in 1995 as well as after the Larsen B break up in 2002. The largest losses (~350 km2) occurred on the north side of the remnant in late 2004 into 2005 with smaller losses along the remaining margins. Despite a slight regional cooling recently and more persistent sea ice since early 2008 as seen in MODIS imagery, the SNIS is still losing ice along its margins and appears to be retreating past its pinning nunataks. In contrast to SNIS, RI has experienced minor ice area losses that suggest most of its ice is grounded and thus less directly impacted by ocean interactions. Combining these remote sensing data sets provides additional insights about ongoing ice loss processes in this part of the Antarctic Peninsula.

  3. Crustal-scale architecture and segmentation of the Argentine margin and its conjugate off South Africa

    NASA Astrophysics Data System (ADS)

    Blaich, Olav A.; Faleide, Jan Inge; Tsikalas, Filippos; Franke, Dieter; León, Enric

    2009-07-01

    Integration of regional seismic reflection and refraction profiles and potential field data across the Argentine margin and its conjugate off South Africa, complemented by crustal-scale gravity modelling, is used to reveal and illustrate the whole-crust architecture, onshore-offshore crustal structure correlations, the character of the continent-ocean boundary/transition and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals, within these two provinces, distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate transfer systems governing the margin segmentation and evolution, clearly implying structural inheritance. In particular, the Colorado transfer system on the Argentina margin, marks a distinct along-margin boundary in the distribution and volume of breakup-related magmatism. Similarly, the Hope transfer system on the conjugate South Africa margin also marks a distinct along-margin transition from a zone of relative magnetic quiescence to a zone of prominent magnetic anomalies. Furthermore, the study indicates that the `G-magnetic anomaly' along the South Africa margin probably defines the eastern limit of the continent-ocean transition (COT) rather than a discrete continent-ocean boundary (COB). Potential field plate reconstructions of the South Atlantic suggest conjugate margin asymmetry, characterized by a rather broad Argentine margin conjugate to a narrow South Africa margin. In detail, the Argentine margin is characterized by a sharp and relatively constant COT, whereas the COT along the conjugate South Africa margin is considerably wider. An along-strike tectonomagmatic asymmetry variation is also observed and is expressed by the northward increase in width of the COT on the South African margin. The study clearly shows that integration of regional seismic reflection and refraction profiles, potential field data and gravity modelling provide a

  4. Marginal deformation of crustal plates as key to crustal motion, crustal spirals, and the driving force

    SciTech Connect

    Wood, B.G.M.

    1986-07-01

    Present plate tectonic models concentrate on compressive- and extensive-type plate margins, often incorporating shear margins as a subtype of compressive margins. However, if a single moving plate is considered, it becomes apparent that the leading edge is a compressive margin, the trailing edge is an extensive margin, and the lateral edges are shear margins. Conversely, if a plate's margin can be recognized by identifying areas of subduction (compression), rifting (extension), and strike slip and buckle folding (shearing), then not only can a plate be identified but its motion can also be inferred. The Pacific plate provides an excellent example. It is bounded by subduction trenches along its west-northwest margin, extension rifts along its east-southeast margin, and shear and buckle-fold complexes along its south-southwest and north-northeast margins. A west-northwest motion is inferred. As other major plates are examined, two striking features are revealed. A west-northwest to northwest motion is consistently identified, and the plates line up end to end forming a northwest-spiraling segmented band encircling the globe. The lateral margins of this band form the well-known Tethyan shear system. The plates comprising this band are of varying sizes and composition, and the extent of deformation along a plate margin is directly related to plate size. The Pacific and Eurasian plates dominate in size and marginal deformation. The tail of this north-spiraling ribbon of crustal plates is deformed in the Southern Hemisphere, most notably in the area of the African, Indian, and Australian plates. Each southern plate has a strong north component of motion as well as a counterclockwise spiraling action. The plates appear to have rotated in response to drag along the southern margin of the Pacific and Eurasian plates.

  5. African American Homeschooling and the Quest for a Quality Education

    ERIC Educational Resources Information Center

    Mazama, Ama; Lundy, Garvey

    2015-01-01

    Academic interest in homeschooling has increased over the last decade, as what was once perceived as a marginal development, has, in fact, turned into a significant and growing phenomenon. There has been, in recent years, a noticeable surge in African American involvement in the homeschooling movement as well. However, there continues to be a…

  6. Exploring Artistic Practice in Global Communities of the African Diaspora

    ERIC Educational Resources Information Center

    Ellis, Auburn E.

    2014-01-01

    In 2012 an African Centered single case study was conducted in the United States. The problem is as follows: K-12 practitioners in urban areas are faced with unique circumstances while serving marginalized students in urban areas. As a response to this issue, the purpose of this study was to identify and describe curricula used in three African…

  7. Deep Crustal Structure of S-Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Becker, K.; Schnabel, M.; Franke, D.; Heyde, I.; Schreckenberger, B.; Koopmann, H.; Krawczyk, C. M.; Trumbull, R. B.

    2013-12-01

    We investigate the crustal structure along the southern South Atlantic margins with a focus on the high velocity lower crustal bodies (HVLC). This is a distinct zone at the base of the crust, where seismic P-wave velocities exceed 7.0 km/s and locally reach values up to 7.7 km/s. The study is based on a selected set of refraction seismic lines on conjugate margin segments of Uruguay-Argentina and Namibia-South Africa, acquired during marine geophysical cruises in 2004 and 1998. We performed new P-wave tomography complemented with gravity modeling along two crustal transects, and combine these with previous seismic and gravity models. The results are used to examine the interplay of rifting and magmatism during the evolution of the South Atlantic, what activated the spreading phase and how this is reflected in the distribution of high velocity lower crust. On all sections we observe HVLC, even on a magma poor southernmost section at the western margin. The HVLC varies strongly in shape and size along the margin. From South to North the area of the HVLC on 2D velocity sections increases on both margins. However, the HVLC bodies along the South American margin are much smaller than on the South African margin, possibly indicating asymmetric break up. A striking feature is the distinct seaward shift of the HVLC relative to the seaward dipping reflectors (SDRs). While in the south, the HVLC is situated below the SDRs, towards the north the HVLC formed seaward of the SDRs. From this seaward migration we infer that the formation of HVLC in the magma-rich northern sections may have formed at least partly after rifting and break up.

  8. Cruise report; RV Coastal Surveyor Cruise C1-99; multibeam mapping of the Long Beach, California continental shelf; April 12 through May 19, 1999

    USGS Publications Warehouse

    Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.

    1999-01-01

    The greater Los Angeles area of California is home to more than 10 million people. This large population puts increased pressure on the adjacent offshore continental shelf and margin with activities such as ocean disposal for dredged spoils, explosive disposal, waste-water outfall, and commercial fishing. The increased utilization of the shelf and margin in this area has generated accelerated multi-disciplinary research efforts in all aspects of the environment of the coastal zone. Prior to 1996 there were no highly accurate base maps of the continental shelf and slope upon which the research activities could be located and monitored. In 1996, the United States Geological Survey (USGS) Pacific Seafloor Mapping Project began to address this problem by mapping the Santa Monica shelf and margin (Fig. 1) using a state-of-the-art, high-resolution multibeam sonar system (Gardner, et al., 1996; 1999). Additional seafloor mapping in 1998 provided coverage of the continental margin from south of Newport to the proximal San Pedro Basin northwest of Palos Verdes Peninsula (Gardner, et al., 1998) (Fig. 1). The mapping of the seafloor in the greater Los Angeles continental shelf and margin was completed with a 30-day mapping of the Long Beach shelf in April and May 1999, the subject of this report. The objective of Cruise C-1-99-SC was to completely map the broad continental shelf from the eastern end of the Palos Verdes Peninsula to the narrow shelf south of Newport Beach, from the break in slope at about 120-m isobath to the inner shelf at about the 10-m isobath. Mapping the Long Beach shelf was jointly funded by the U.S. Geological Survey and the County of Orange (CA) Sanitation District and was conducted under a Cooperative Agreement with the Ocean Mapping Group from the University of New Brunswick (OMG/UNB). The OMG/UNB contracted with C&C Technologies, Inc. of Lafayette, LA for use of the RV Coastal Surveyor and the latest evolution of high-resolution multibeam sonars, a

  9. Petroleum possibilities in continental margin off central Chile

    SciTech Connect

    Gonzalez, E.

    1986-07-01

    The continental margin off central Chile, from Valparaiso to Valdivia, encompassing an area of 100,000 km/sup 2/, has been the target of exploratory activity by Empresa Nacional del Petroleo since 1970. Exploratory drilling began in 1972. By August 1984, total exploratory efforts had resulted in drilling 14 offshore wells and acquiring 12,130 km of seismic reflection lines. A biogenic gas accumulation was discovered in the F well. Because these attempts to find oil were unsuccessful and because drilling costs have escalated, exploratory activities have been curtailed. Forearc basins off central Chile are characterized by low geothermal gradient and a sedimentary filling of Cretaceous and Tertiary strata. Tertiary sequences are characterized by low organic carbon content, immature humic-type organic matter, and a biogenic gas potential. Cretaceous sequences are characterized by higher organic carbon content, good reservoir rocks, and fair to good source rocks. The organic matter is sapropelic, with vitrinite and liptinites, and is favorable for oil and gas generation. Seismic and well data suggest that Mesozoic and Cenozoic sedimentary rock sequences filling the basins (more than 4000 m thick at the shelf edge) extend 40-70 km beyond the present shelf edge. Mesozoic rocks deposited on the slope may generate petroleum and gas that could migrate upslope and accumulate in traps associated with the faulted basement highs and graben-type depressions existing at the shelf edge. This geologic setting favors the development of large petroleum accumulations along the shelf edge and graben on the sedimentary basins off central Chile.

  10. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    USGS Publications Warehouse

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  11. The African Connection

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2012-01-01

    From student and faculty exchanges to joint research projects, U.S. universities maintain a broad spectrum of collaborative relationships with African universities. It's unclear how many U.S. colleges and universities have partnerships with African universities. The African Studies Association, an organization of scholars, doesn't keep that kind…

  12. Linguistic Imperialism: African Perspectives.

    ERIC Educational Resources Information Center

    Phillipson, Robert

    1996-01-01

    Responds to an article on aspects of African language policy and discusses the following issues: multilingualism and monolingualism, proposed changes in language policy from the Organization for African Unity and South African initiatives, the language of literature, bilingual education, and whose interests English-language teaching is serving.…

  13. Surficial bioturbation and rapid benthic remineralization in the Cape Hatteras shelf/slope region. Final report

    SciTech Connect

    Robert C. Aller; Josephine Y. Aller; C. Lee; J. Kirk Cochran

    1999-03-17

    This is a final report for the DOE of grant DE-FG02-92ER61464 ''Surficial bioturbation and rapid benthic remineralization in the Cape Hatteras shelf slope region''. Over the past 6 years we have participated in a multidisciplinary field study called the Ocean margins Program (OMP) to examine the importance of continental margins in the global carbon cycle. Specifically, we have focused on the southern portion of the Mid-Atlantic Bight between Cape Hatteras and Chesapeake Bay where a large flux of freshwater and organic carbon enters the North Atlantic Ocean. Additionally, during the first stage of this project, we developed the use of CM-a distributions in sediments as a quantitative indicator of benthic C flux and remineralization rates. The primary objective of our research group has been to understand mechanisms and quantify biogeochemical processes in the seabed that affect cycling, flux, and storage of carbon on the ocean margin of the Mid-Atlantic Bight.

  14. Exchanges between the open Black Sea and its North West shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Zhou, Feng

    2014-05-01

    offshore flow over a large section of the shelf break. Due to the short duration of strong wind effects (4-7 days) the horizontal extent of cross-shelf-break exchanges is limited to the outer shelf. The effect of Ekman drift is confined to the upper layers. In contrast, eddies and meanders penetrate deep down to the bottom, but they are restricted laterally. During the strong wind events of April 15 - 22 and July 1 - 4, some 0.66×1012 and 0.44×1012 m3of water were removed from the northwestern shelf respectively. In comparison, the single long-lived Sevastopol Eddy generated a much larger offshore transfer of 2.84×1012 m3 over the period April 23 to June 30, which is equivalent to 102% of the volume of northwestern shelf waters. This result is consistent with the data obtained from satellite derived information (Shapiro et al, 2010). The open Black Sea is generally warmer and more saline than the northwest shelf. Hence the exchanges contribute to the increase in both salinity and temperature of shelf waters. Over the study period, salt exchanges increased the average density of the shelf waters by 0.67 kg m-3 and reduced the density contrast between the shelf and deep sea, while lateral heat exchanges reduced the density of the shelf waters by 0.16 kg m-3 and thus enhanced density contrast across the shelf break. This study was supported by the EU (via PERSEUS grant FP7-OCEAN-2011-287600 and MyOcean SPA.2011.1.5-01 grant 283367), Ministry of Science and Technology of China (Grant 2011CB409803), the Natural Science Foundation of China (Grant 41276031), Zhejiang Association for International Exchange of Personnel, and the University of Plymouth Marine Institute Innovation Fund. References Huthnance, J. M., 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge, Prog Oceanogr, 35(4), 353-431, Ivanov L.I., Besiktepe S., Ozsoy E., 1997. In: E.Ozsoy and A.Mikaelyan (eds). Sensitivity to change: Black Sea , Baltic Sea

  15. Margin Architecture and Sediment Flux as Controls on Submarine Fan Development: Tectonic-Climate Interactions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Gulick, S. P. S.; Montelli, A.; Swartz, J. M.; Morey, S.; Jaeger, J. M.; Mix, A. C.; Reece, R.; Somchat, K.; Wagner, P. F.; Worthington, L. L.

    2015-12-01

    The oblique collision of the Yakutat microplate into southeast Alaska generates the St. Elias Mountains, a coastal orogen with significant moisture from the Gulf of Alaska resulting in large, temperate glacial systems that expand to and eventually cross the continental shelf during glacial maxima. We present an overview of the evolution of sediment routing on this margin from integration of seismic images, updated age models and core-log-seismic correlations from IODP Expedition 341 drilling sites, and mapping efforts from shelf, slope, and fan. We focus on the three dominant glacial systems during the climatically important intensification of Northern Hemisphere glaciation at the Plio-Pleistocene transition and the further intensification of glaciation since the mid-Pleistocene transition. Along strike, sediment delivery to deepwater from the three glacial systems varied according to Pleistocene shelf accommodation space. The Alsek crossed a narrower shelf with a bedrock high near the shelf edge; the Malaspina-Hubbard system crossed an undeformed, ~1 km deep shelf; the Bering-Bagley system crossed a several km deep shelf deforming as an active fold and thrust belt. The Malaspina and Bering catchments exhibit high exhumation rates onshore due to the Yakutat collision and upon reaching the shelf edge these glaciers generate trough mouth fans (TMFs) on the adjacent continental slope but only after first filling the available accommodation with glacigenic sediment and lowering the slope gradient through progradation. The Alsek crosses the shelf earliest but never with sufficient sediment flux to generate a TMF. An east-west transition in adjacent deepwater submarine channels that feed and generate the Surveyor Fan suggests that shelf accommodation and sediment flux are primary controls on sediment routing from orogen to submarine fan. Both of these parameters are in turn a function of initial tectonic architecture and ongoing orogen dynamics.

  16. Surface current patterns suggested by suspended sediment distribution over the outer continental margin, Bering Sea

    USGS Publications Warehouse

    Karl, Herman A.; Carlson, P.R.

    1987-01-01

    Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.

  17. Aeromagnetic and gravity investigations of the Coastal Area and Continental Shelf of Liberia, West Africa, and their relation to continental drift

    USGS Publications Warehouse

    Behrendt, John C.; Wotorson, Cletus S.

    1970-01-01

    An aeromagnetic survey has shown the existence of several basins in which magnetic basement depths are greater than 5 km on the continental shelf off Liberia. Magnetic diabase of 176 to 192 m.y. (Jurassic) in age intruding the Paleozoic (?) rocks and overlain by younger rocks onshore requires the distinction between “magnetic basement” and “basement.” Several lines of evidence suggest that the Paleozoic(?) rocks are less than 1 km thick; this implies that the diabase does not introduce a large error in depth-to-basement estimates. The dikes or their extrusive equivalents are traceable, on the basis of the magnetic data, beneath the younger sedimentary rock in the basins to the edge of the continental slope. The magnetic data also delineate a second zone of diabase dikes 90 km inland, parallel to the coast, which cross the entire country. The intrusion of the younger dikes probably coincides with rifting at the beginning of the separation of Africa and South America, and the associated magnetic anomaly zones appear to be parallel with and continuous into the anomaly bands in the Atlantic. A major northeast-trending break in the magnetic fabric intersects the coast near 9° W. and is associated with Eburnean age rocks (about 2000 m.y.) to the southeast as contrasted with Liberian-age rocks (about 2700 m.y.) to the northwest. Change in magnetic fabric direction inland from northeast to northwest in the coastal area allows recognition of a boundary between the Liberian-age rocks inland and Pan-African-age (about 550 m.y.) rocks in the coastal area northwest of about 9° 20'W. Sets of north-northwest-and west-northwest—trending faults of 1 to 2 km vertical displacement cut the Cretaceous sedimentary rocks onshore and can be traced into the offshore basins. Vertical displacements of several kilometers in the magnetic basement underlying the continental shelf suggest a pattern of block faulting all along the coast and continental shelf. Negative Bouguer

  18. Inorganic geochemistry of surface sediments of the Ebro shelf and slope, northwestern Mediterranean

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Alonso, B.

    1990-01-01

    Distributions of major, minor, and trace elements in surface sediment of the continental shelf and upper slope of the northeastern Spanish continental margin reflect the influences of discharge from the Ebro River and changes in eustatic sea levels. Multivariate factor analysis of sediment geochemistry was used to identify five groupings of samples (factors) on the shelf and slope. The first factor is an aluminosilicate factor that represents detrital clastic material. The second factor is a highly variable amount of excess SiO2 and probably represents a quartz residuum originating from winnowing of relict detrital sediments. A carbonate factor (Factor 3) has no positive correlation with other geochemical parameters but is associated with the sand-size fraction. The carbonate in these sediments consists of a mixture of biogenic calcite and angular to subangular detrital grains. Organic carbon is associated with the aluminosilicate factor (Factor 1) but also factors out by itself (Factor 4); this suggests that there may be two sources of organic matter, terrestrial and marine. The fifth factor comprises upper slope sediments that contain high concentrations of manganese. The most likely explanation for these high manganese concentrations is precipitation of Mn oxyhydroxides at the interface between Mn-rich, oxygen-deficient, intermediate waters and oxygenated surface waters. During eustatic low sea levels of the glacial Pleistocene, the Ebro Delta built across the outer continental shelf and deposited sediment with fairly high contents of organic carbon and continental components. The period of marine transgression from eustatic low (glacial) to eustatic high (interglacial) sea levels was characterized by erosion of the outer shelf delta and surficial shelf sediments and the transport of sediment across the slope within numerous canyons. Once eustatic high sea level was reached, delta progradation resumed on the inner shelf. Today, coarse-grained sediment (silt and

  19. Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea

    NASA Astrophysics Data System (ADS)

    Eisenbarth, Simone; Zettler, Michael L.

    2016-03-01

    In late summer 2011, shortly after an upwelling event, 17 stations ranging from 30 to 2513 m water depth have been sampled at 20° south in the northern part of the Benguela Current Large Marine Ecosystem (BCLME) for the investigation of the benthic macrofauna. Sediments of this area are dominated by silt. At the time of sampling, oxygen conditions on the shelf were poor (between 0.42 and 0.68 ml l- 1) but not hypoxic. Below 400 m, however, concentrations rose steadily up to 5.28 ml l- 1. Macrozoobenthic communities along this depth gradient are described, revealing among others the community structure for the continental margin area and the deep sea off northern Namibia for the first time. Cluster analysis revealed 5 different communities along the depth gradient with three shelf communities, one continental margin community and one deep-sea community. All in all, 314 different taxa were found with polychaetes being the most abundant group. Diversity index (Shannon) was lowest for the shallow water community with 2.21 and highest for the deep-sea community with 4.79, showing a clear trend with increasing water depth. Species richness, however, reached its maximum with 187 taxa along the continental margin between 400 and 1300 m water depth. Dominant species for each community are named with the two Cumacea, Iphinoeafricana and Upselaspis caparti, being characteristic for the shallow water community. On the shelf, we found surprisingly high biomass values (23-123 g m- 2), mainly caused by polychaetes, the bivalve Sinupharus galatheae and the gastropod Nassarius vinctus. In terms of composition, the remaining communities were dominated by polychaetes with members of the Paraonidae dominating along the continental margin where we also found surprisingly high abundances of the bivalves Pecten sp. and Dosinia sp. Spionid polychaetes and some representatives of the genus Paraonis were the most common organisms for the deep-sea community.

  20. Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA

    USGS Publications Warehouse

    Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, B.; Kooi, H.; Groen, K.; Lizarralde, D.; Evans, R.L.; Day-Lewis, F. D.; Lane, J.W.

    2010-01-01

    While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km3 in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (104 km3) and passive margins globally (3 ?? 105 km3). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. ?? 2009 National Ground Water Association.

  1. Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA.

    PubMed

    Cohen, Denis; Person, Mark; Wang, Peng; Gable, Carl W; Hutchinson, Deborah; Marksamer, Andee; Dugan, Brandon; Kooi, Henk; Groen, Koos; Lizarralde, Daniel; Evans, Robert L; Day-Lewis, Frederick D; Lane, John W

    2010-01-01

    While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km(3) in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (10(4) km(3)) and passive margins globally (3 x 10(5) km(3)). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages. PMID:19754848

  2. Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA.

    PubMed

    Cohen, Denis; Person, Mark; Wang, Peng; Gable, Carl W; Hutchinson, Deborah; Marksamer, Andee; Dugan, Brandon; Kooi, Henk; Groen, Koos; Lizarralde, Daniel; Evans, Robert L; Day-Lewis, Frederick D; Lane, John W

    2010-01-01

    While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km(3) in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (10(4) km(3)) and passive margins globally (3 x 10(5) km(3)). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages.

  3. Basin evolution at the SW Barents Sea margin and its conjugate off NE Greenland

    NASA Astrophysics Data System (ADS)

    Faleide, Jan Inge; Wong, Po Wan; Helge Gabrielsen, Roy; Tsikalas, Filippos; Blaich, Olav A.; Planke, Sverre; Myklebust, Reidun

    2015-04-01

    marginal high. The northern Sørvestsnaget Basin and Vestbakken Volcanic Province formed in a pull-apart setting related to a releasing bend in the margin. These sedimentary basins subsided rapidly and received large amount of erosional products from the uplifted Barents Shelf, in particular the Stappen High in the north (surrounding Bjørnøya). Several of the marginal basins experienced reactivation by contraction/inversion, and finally they were buried by a thick westward prograding wedge of Plio-Pleistocene glacial sediments derived from the uplifted Barents Shelf.

  4. Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events

    USGS Publications Warehouse

    Cooper, A. K.; Barrett, P.J.; Hinz, K.; Traube, V.; Letichenkov, G.; Stagg, H.M.J.

    1991-01-01

    Sedimentary sections up to 6-14 km thick lie beneath many areas of the Antarctic continental margin. The upper parts of the sections contain up to 6 km of Cenozoic glacial and possibly non-glacial sequences that have prograded the continental shelf up to 85 km. We describe the Cenozoic sequences using two general categories based on their acoustic geometries. Type IA sequences, which account for most prograding of the Antarctic continental shelf, have complex sigmoidal geometries and some acoustic characteristics atypical of low-latitude margins, such as troughs and mounds lying parallel and normal to the shelf edge and high velocities (2.0-2.6 km/s) for flat layers within 150 m of the seafloor. Type IIA sequences, which principally aggrade the paleoshelf, lie beneath type IA sequences and have mostly simple geometries and gently dipping reflections. The prograding sequences are commonly located near the seaward edges of major Mesozoic and older margin structures. Relatively rapid Cenozoic subsidence has occured due to the probable rifting in the Ross Sea, thermal subsidence in the Antarctic Peninsula, and isostatic crustal flexure in Wilkes Land. In Prydz Bay and the Weddell Sea, prograding sequences cover Mesozoic basins that have undergone little apparent Cenozoic tectonism. Grounded ice sheets are viewed by us, and others, as the principal mechanism for depositing the Antarctic prograding sequences. During the initial advance of grounded ice the continental shelf is flexurally overdeepened, the inner shelf is heavily eroded, and gently dipping glacial strata are deposited on the shelf (i.e type IIA sequences). The overdeepened shelf profile is preserved (a) during glacial times, by grounded ice sheets episodically crossing the shelf, eroding sediments from onshore and inner shelf areas, and depositing sediments at the front of the ice sheet as outer shelf topset-banks and continental slope foreset-aprons (i.e. type IA sequences), and (b) during interglacial

  5. Manufacturing Marginality among Women and Latinos in Neoliberal America

    PubMed Central

    Massey, Douglas S.

    2014-01-01

    Intersectionality is the study of how categorical distinctions made on the basis of race, class, and gender interact to generate inequality, and this concept has become a primary lens by which scholars have come to model social stratification in the United States. In addition to the historically powerful interaction between race and class, gender interactions have become increasingly powerful in exacerbating class inequalities while the growing exclusion of foreigners on the basis of legal status has progressively marginalized Latinos in U.S. society. As a result, poor whites and immigrant-origin Latinos have increasingly joined African Americans at the bottom of American society to form a new, expanded underclass. PMID:25309007

  6. Manufacturing Marginality among Women and Latinos in Neoliberal America.

    PubMed

    Massey, Douglas S

    2014-01-01

    Intersectionality is the study of how categorical distinctions made on the basis of race, class, and gender interact to generate inequality, and this concept has become a primary lens by which scholars have come to model social stratification in the United States. In addition to the historically powerful interaction between race and class, gender interactions have become increasingly powerful in exacerbating class inequalities while the growing exclusion of foreigners on the basis of legal status has progressively marginalized Latinos in U.S. society. As a result, poor whites and immigrant-origin Latinos have increasingly joined African Americans at the bottom of American society to form a new, expanded underclass. PMID:25309007

  7. Exchanges between the open Black Sea and its North West shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Zhou, Feng

    2014-05-01

    offshore flow over a large section of the shelf break. Due to the short duration of strong wind effects (4-7 days) the horizontal extent of cross-shelf-break exchanges is limited to the outer shelf. The effect of Ekman drift is confined to the upper layers. In contrast, eddies and meanders penetrate deep down to the bottom, but they are restricted laterally. During the strong wind events of April 15 - 22 and July 1 - 4, some 0.66×1012 and 0.44×1012 m3of water were removed from the northwestern shelf respectively. In comparison, the single long-lived Sevastopol Eddy generated a much larger offshore transfer of 2.84×1012 m3 over the period April 23 to June 30, which is equivalent to 102% of the volume of northwestern shelf waters. This result is consistent with the data obtained from satellite derived information (Shapiro et al, 2010). The open Black Sea is generally warmer and more saline than the northwest shelf. Hence the exchanges contribute to the increase in both salinity and temperature of shelf waters. Over the study period, salt exchanges increased the average density of the shelf waters by 0.67 kg m-3 and reduced the density contrast between the shelf and deep sea, while lateral heat exchanges reduced the density of the shelf waters by 0.16 kg m-3 and thus enhanced density contrast across the shelf break. This study was supported by the EU (via PERSEUS grant FP7-OCEAN-2011-287600 and MyOcean SPA.2011.1.5-01 grant 283367), Ministry of Science and Technology of China (Grant 2011CB409803), the Natural Science Foundation of China (Grant 41276031), Zhejiang Association for International Exchange of Personnel, and the University of Plymouth Marine Institute Innovation Fund. References Huthnance, J. M., 1995. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge, Prog Oceanogr, 35(4), 353-431, Ivanov L.I., Besiktepe S., Ozsoy E., 1997. In: E.Ozsoy and A.Mikaelyan (eds). Sensitivity to change: Black Sea , Baltic Sea

  8. Middle and upper jurassic depositional environments at outer shelf and slope of Baltimore Canyon Trough

    SciTech Connect

    Gamboa, L.A.; Stoffa, P.L.; Truchan, M.

    1985-04-01

    New CDP data acquired in the Baltimore Canyon Trough during project LASE made it possible to map a continuous Jurassic sedimentary sequence from the continental margin to the abyssal plain without interruption by basement structures. Intense carbonate sedimentation is inferred at the outer shelf during the Middle and Late Jurassic. Carbonate sedimentation probably started during the Middle Jurassic with a platform that prograded seaward with the development of ramps. By the Late Jurassic, a major reef complex had developed at the outer continental shelf. The onset of reef growth can be tentatively dated as 138 Ma by using the J1 reflector dated by the Deep Sea Drilling Project. A well-developed reef-talus deposit can be identified overlying the interface that generates the J1 reflector. A detailed analysis of semblancederived interval velocities in the reef-talus sequence indicates a compressional velocity of 4.3-4.5 km/sec (14,100-14,800 ft/sec) for that interval, which was part of a major barrier reef along the United States eastern margin. After the reef formed, the deep oceanic basin was mostly starved from shelf-derived sediments until the reef died and was buried by clastic sediments. By correlation of our seismic data and COST well information, that in the Baltimore Canyon Trough this reef had terminated by about the end of the Jurassic Period.

  9. Shelf export of particulates/transport in continental margin waters. Final report

    SciTech Connect

    Pietrafesa, L.J.

    1995-07-01

    During the present funding period, research activities at NCSU have been directed towards: publishing the results of SEEP-I; publishing further results from NCSU`s South Atlantic Bight studies; designing and constructing four cages which house the 3 NCSU and 1 BNL RD-Acoustic Doppler Current Profilers used successfully in SEEP-II, calibrating all current meters, transmissometers, thermister chains and conductivity pressure and temperature sensors for SEEP-II phases 2 and 3; determining the temporal and spatial scales of physical processes observed during phase 1 of SEEP-II in preparation for finalizing the mooring positions and sampling intervals for SEEP-II; shipping all NCSU gear to the URI and ODU; and successful deployment of NCSU SEEP-II, phases 1 and 2 moorings.

  10. Shelf-Life Prediction of Chilled Foods

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Gudmundur; Kristbergsson, Kristberg

    All foods have a finite shelf life. Even foods, which mature with time, will in the end deteriorate, although their life span can exceed 100 years. Definitions of shelf life of food products differ. Some stress the suitability of the product for consump¬tion, others for how long the product can be sold. The Institute of Food Science and Technology emphasizes safety in its definition of shelf life: "The period of time under defined conditions of storage, after manufacture or packing, for which a food product will remain safe and be fit for use" ( http://www.ifst.org ). This definition does not describe what makes a food product "safe" or "fit" for use, but one can say all factors which restrict the shelf life of a food product either affect safety or quality or both.

  11. Post-Rift Compressional Deformation on the Passive Margin of a young Mediterranean Backarc Basin (Eastern Sardinian Margin, Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Chanier, F.; Gaullier, V.; Maillard, A.; Thinon, I.; Sage, F.; Lymer, G.; Vendeville, B.; Giresse, P.; Bassetti, M. A.; Lofi, J.

    2014-12-01

    Compressional deformation has been reported on many passive margins, mostly attributed to thin-skinned tectonics in response to gravity gliding or spreading from viscous layers (overpressured shales, salt décollement). However some of the reported structures are obviously related to regional stress and also affect the basement, not only the upper sedimentary cover. Such deformation has been documented and discussed in the last decade mainly from the northern Atlantic margins (Doré et al., 2008 ; Pereira et al., 2011, & ref. herein). The compressional structures on passive margins have been notably considered as linked to tectonomagmatic and active asthenospheric upwelling, post-breakup compression and compactional stresses. The western margin of the Tyrrhenian Sea (Central Mediterranean) is a passive margin formed during the late Miocene opening of a back-arc basin in relation with the roll-back and retreat of the Ionian subducting lithosphere (African Plate). From our new data, we can show evidence for compressional features that developed in the Pliocene, shortly after the main rifting period on the western Tyrrhenian Sea (Middle to Late Miocene) and beginning of oceanic spreading (Earliest Pliocene). We could describe such structures across the inner margin onshore, from field analysis, as well as offshore, from newly acquired seismic data (METYSS 1 & 3; Gaullier et al. 2014). The characters and distribution of such compressional deformation, occurring very shortly after the onset of oceanic spreading in the deep basin (earliest Pliocene), allow us to discuss the possible interactions between breakup processes and inversion episodes on passive margins. Doré A.G., Lundin E.R., Kusznir N.J., & Pascal C., 2008. Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: Pros and cons and some new ideas. Geol. Soc. London Spec. Pub., 306, 1-26. Gaullier V., Chanier F., et al., 2014. Salt tectonics and crustal tectonics along the

  12. Mud transportation on a steep shelf, Rio de La Plata shelf, Puerto Rico

    USGS Publications Warehouse

    Grove, K.A.; Pilkey, O.H.; Trumbull, J.V.A.

    1982-01-01

    Hurricanes David (August 29-30, 1979) and Frederick (September 2-5, 1979) caused major flooding of the Rio de La Plata in northern Puerto Rico. A thin mud layer was deposited across the narrow insular shelf adjacent to the river mouth. Within 5 months, fair-weather shelf-winnowing processes moved the mud layer entirely from the shelf, 0.5 to 2 km to the shelf break at the 50-m contour and beyond. The process of mud movement is termed 'mud hopping.' ?? 1982 A. M. Dowden, Inc.

  13. Modified, Packaged Tortillas Have Long Shelf Life

    NASA Technical Reports Server (NTRS)

    Bourland, Charles; Glaus-Late, Kimberly

    1995-01-01

    Tortillas made from modified recipe and sealed in low-pressure nitrogen in foil pouches in effort to increase their shelf life at room temperature. Preliminary tests show that shelf life of these tortillas at least five months; in contrast, commercial tortillas last only few days. Part of water in recipe replaced with glycerin. Particularly necessary to avoid Clostridium botulinum, which grows in anaerobic environments and produces deadly toxin that causes botulism.

  14. Freshwater peat on the continental shelf

    USGS Publications Warehouse

    Emery, K.O.; Wigley, R.L.; Bartlett, A.S.; Rubin, M.; Barghoorn, E.S.

    1967-01-01

    Freshwater peats from the continental shelf off northeastern United States contain the same general pollen sequence as peats from ponds that are above sea level and that are of comparable radiocarbon ages. These peats indicate that during glacial times of low sea level terrestrial vegetation covered the region that is now the continental shelf in an unbroken extension from the adjacent land areas to the north and west.

  15. Freshwater peat on the continental shelf.

    PubMed

    Emery, K O; Wigley, R L; Bartlett, A S; Rubin, M; Barghoorn, E S

    1967-12-01

    Freshwater peats from the continental shelf off northeastern United States contain the same general pollen sequence as peats from ponds that are above sea level and that are of comparable radiocarbon ages. These peats indicate that during glacial times of low sea level terrestrial vegetation covered the region that is now the continental shelf in an unbroken extension from the adjacent land areas to the north and west. PMID:17801856

  16. Late Pleistocene stratigraphy of a carbonate platform margin, Exumas, Bahamas

    NASA Astrophysics Data System (ADS)

    Aalto, K. R.; Dill, Robert F.

    1996-05-01

    Detailed field studies of the southern Exuma Cays on the eastern margin of the Great Bahama Bank show a complex history of late Pleistocene island construction. Pleistocene rocks include island core eolianites, overlain at island margins by fossil patch reefs and reef sands, which in turn are overlain by, and/or grade laterally into, talus breccia cones derived from the erosion of island core eolianite at paleo-seacliffs situated at approximately 5-6 m above present mean high tide. Laminated pedogenic calcrete widely caps Pleistocene rocks. Minor zones of penetrative subsurface calcretization, developed in association with root growth, occur along permeable horizons, including: contacts between talus units or crossbed sets, along tension joints, and (possibly) at the Pleistocene reef-eolianite contact. Among Pleistocene eolianite samples studied in thin-section, the relative proportions of ooids-intraclasts+grapestones-skeletal grains-peloids are approximately 48:39:6:7. Marginal to the Exuma Sound and on the Brigantine Cays, a greater proportion of ooids have peloidal nuclei and cortices with numerous laminae, which may reflect ooid derivation from shelf margin and broad platform interior regions that were characterized by high wave energy during ooid formation. Between these two areas, ooids are more commonly superficial and have cortices with few laminae and nuclei composed of subrounded micrite or pelmicrite intraclasts. Such ooid nuclei are most likely derived from storm erosion of partially cemented seafloor muds. Some skeletal-rich eolianite in this region may reflect local sediment input from platform margin reefs, or may be part of an older(?) stratigraphic unit.

  17. Geomorphology of the NE Sicily continental shelf controlled by tidal currents, canyon head incision and river-derived sediments

    NASA Astrophysics Data System (ADS)

    Gamberi, Fabiano; Rovere, Marzia; Mercorella, Alessandra; Leidi, Elisa; Dalla Valle, Giacomo

    2014-07-01

    The NE Sicily continental shelf, imaged by multibeam bathymetry data and CHIRP/sparker seismic profiles, is less than 5 km-wide, and is located in a tectonically active margin characterized by strong regional uplift rates. In this paper, we show how variations of geomorphic elements in the study area are tied to spatial and temporal changes in the driving forces that control the seafloor processes. This study demonstrates that the geomorphology of continental shelves can vary over very short spatial scales depending on the uneven distribution of sediment supply from rivers and sediment transfer both across and along the shelf by oceanographic currents. In the northeastern part, three sandwave fields were mapped in the highstand sediment wedge that, due to the small size of rivers, is restricted to the inner shelf. The sandwave fields are found in proximity of the Messina Straits, a shallow water sill with strong tidal currents between the Tyrrhenian and the Ionian Seas. The bedform fields have sandwaves of variable shape, wavelength and orientation, reflecting along-shelf variations of tidal current strength and sediment grain size distribution. In the southwestern shelf, rivers are larger and form deltas that shape a considerable part of the shelf, often having their distal, still channelized delta front at the shelf edge. In some cases, deltas are built close to the heads of canyons and a large volume of the river-borne sediments is directly fed to the deep sea through delta front terminal distributary channels. Where rivers are small, the outer shelf lacks recent river borne sediment and presents a relict morphology consisting of submerged coastal systems formed during previous sea-level lowstands. The tectonics of the study area mainly consist of structures that have a NNE-SSW trend similar to the extensional faults responsible for the Siculo-Calabrian Rift Zone in the nearby emerged areas. Our study extends the area affected by the regional deformation belt

  18. VERTICAL MOVEMENTS IN NW AFRICA MARGIN: controls on accomodation and sedimentary partionning

    NASA Astrophysics Data System (ADS)

    Baby, Guillaume; Caillaud, Aléxis; Calvès, Gérôme; Guillocheau, François; Robin, Cécile; Leparmentier, François

    2014-05-01

    Present day central Atlantic margins of West Africa are flat margins with no significant reliefs onshore. Nevertheless, recent thermochronological studies shows denudation, related to major vertical movements (Ghorbal et al., Terra Nova, 2008 ; Bertotti et al., Int J Earth Sci, 2012) along some parts of the margins. Using basin-scale regional sections, calibrated in age and lithology on different types of wells (industry, DSDP/ODP), the aim of this study was (1) to analyse the sediments geometry of the whole margin (Morocco to Senegal) from its hinterland to the distal deep-water basin, (2) to constrain and quantify the vertical movements along the margin and (3) to discuss impact of those deformations on margin morphology (accommodation, sedimentary partitioning between the shelf and the distal basin through time…) and their geodynamic significance. 1. The structure of the Triassic rift controls the aggradational geometry of the platforms from Jurassic (carbonate aggradation: Tethys type margins) to Early Cretaceous (mixed terrigenous/carbonate) times. The present day geometry of the margins is inherited from the end of the thermal subsidence period (Cenomanian - Turonian) and the decrease of the accommodation that lead to progradational geometries characteristics of Atlantic types margins, 2. Major uplifts events, probably associated with Early Cretaceous global plate reorganisation (Austrian deformations) are recorded during Valanginian and Hauterivian-Barremien times along the Moroccan margins (from Dakhla to Tarfaya). There is no major "final uplift" (Oligocene - Miocene) that characterizes most of the South Atlantic margins. 3. Some siliciclastic wedges (e.g. Oligocene - Miocene) are not necessary recording uplift of the upstream proximal onshore, but distant deformation events (e.g. Hoggar uplift).

  19. Marginal seas—Terminological crisis

    NASA Astrophysics Data System (ADS)

    Mazarovich, A. O.

    2011-07-01

    The terms marginal sea, peripheral sea, and backarc sea are widely used in the contemporary Russian geological literature as synonyms but do not have, in my opinion, unequivocal treatment. The application of the term marginal sea is briefly discussed. The seas of the Pacific transitional zone are reviewed. It is proposed to define a marginal sea as a marine basin a few thousand kilometers in extent and connected with the open ocean. Domains underlain by crust of the continental and oceanic types must coexist therein. The domains with oceanic crust are expressed in the topography as deepwater basins (one or several), where fragments of continental crust may also occur. A marginal sea must be bounded by at least one island arc.

  20. Cetacean high-use habitats of the northeast United States continental shelf

    SciTech Connect

    Kenney, R.D.; Winn, H.E.

    1986-04-01

    Results of the Cetacean and Turtle Assessment Program previously demonstrated at a qualitative level that specific areas of the continental shelf waters off the northeastern US coast consistently showed high-density utilization by several cetacean species. They have quantified, on a multispecies basis and with adjustment for level of survey effort, the intensity of habitat use by whales and dolphins, and defined areas of especially high-intensity utilization. The results demonstrate that the area off the northeast US, which is used most intensively as cetacean habitat, is the western margin of the Gulf of Maine, from the Great South Channel to Stellwagen Bank and Jeffreys Ledge. Secondary high-use areas include the continental shelf edge and the region around the eastern end of Georges Bank. High-use areas for piseivorous cetaceans are concentrated mainly in the western Gulf of Maine and secondarily at mid-shelf east of the Chesapeake region, for planktivores in the western Gulf of Maine and the southwestern and eastern portions of Georges Bank, and for teuthivores in the western Gulf of Maine and the southwestern and eastern portions of Georges Bank, and for teuthivores along the edge of the shelf. In general, habitat use by cetaceans is highest in spring and summer, and lowest in fall and winter.

  1. Influence of late Pleistocene glaciations on the hydrogeology of the continental shelf offshore Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Siegel, Jacob; Person, Mark; Dugan, Brandon; Cohen, Denis; Lizarralde, Daniel; Gable, Carl

    2014-12-01

    late Pleistocene glaciations that extended onto the continental shelf offshore Massachusetts, USA, may have emplaced as much as 100 km3 of freshwater (salinity <5 ppt) in continental shelf sediments. To estimate the volume and extent of offshore freshwater, we developed a three-dimensional, variable-density model that couples fluid flow and heat and solute transport for the continental shelf offshore Massachusetts. The stratigraphy for our model is based on high-resolution, multichannel seismic data. The model incorporates the last 3 Ma of climate history by prescribing boundary conditions of sea level change and ice sheet extent and thickness. We incorporate new estimates of the maximum extent of a late Pleistocene ice sheet to near the shelf-slope break. Model results indicate that this late Pleistocene ice sheet was responsible for much of the emplaced freshwater. We predict that the current freshwater distribution may reach depths up to 500 meters below sea level and up to 30 km beyond Martha's Vineyard. The freshwater distribution is strongly dependent on the three-dimensional stratigraphy and ice sheet history. Our predictions improve our understanding of the distribution of offshore freshwater, a potential nonrenewable resource for coastal communities along recently glaciated margins.

  2. Ocean-atmosphere-wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Navarro, Jorge; Pallares, Elena; Ràfols, Laura; Espino, Manuel; Palomares, Ana

    2016-06-01

    In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterised by persistent and energetic offshore winds during autumn and winter. During these seasons, a seaward wind jet usually develops in a ˜ 50 km wide band offshore. The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system was implemented in the region with a set of downscaling meshes to obtain high-resolution meteo-oceanographic outputs. Wind, waves and water currents were compared with in situ observations and remote-sensing-derived products with an acceptable level of agreement. Focused on an intense offshore wind event, the modelled wind jet appears in a limited area offshore with strong spatial variability. The wave pattern during the wind jet is characterised by the development of bimodal directional spectra, and the ocean circulation tends to present well-defined two-layer flow in the shallower region (i.e. inner shelf). The outer shelf tends to be dominated by mesoscale dynamics such as the slope current. Due to the limited fetch length, ocean surface roughness considering sea state (wave-atmosphere coupling) modifies to a small extent the wind and significant wave height under severe cross-shelf wind events. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.

  3. Paleochannels of the Delaware River on the mid-Atlantic shelf

    SciTech Connect

    Krantz, D.E. . Coll. of Marine Studies); McGeary, S.E.; Madsen, J.A. . Dept. of Geology); Gayes, P.T. . Dept. of Geology and Marine Science)

    1993-03-01

    Shallow seismic data recently collected from the inner and middle continental shelf off Delaware reveal what appears to be a relatively complete stratigraphic record of middle to late Pleistocene sea-level events. At least four separate paleochannels of the Delaware River that have been identified and traced across the inner and middle shelf can be projected to the major submarine canyons of the continental slope. These same channels can be traced landward through the modern Delaware Bay to the fluvial portion of the Delaware River; two of these paleochannels trend underneath the peninsula of Cape May. The relative ages of the channels have been inferred from superposition and cross-cutting relationships. Subsurface reflectors associated with these paleochannels can be traced laterally to define the shallow flanks of estuaries formed as the valley was flooded during a subsequent transgression. In two cases, the depositional margins identified in the seismic profiles coincide with distinct geomorphic boundaries on the seafloor, delimiting allostratigraphic units interpreted as Pleistocene estuaries that are preserved on the modern shelf. The complementary highstands for this system are preserved on the emergent coastal plain as shoreline complexes and paralic sequences. These data reveal a much more intricate preserved record than previously realized, and change substantially the current models for the Quaternary development of the shelf.

  4. Reconstruction of the East Africa and Antarctica continental margins

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Hall, S. A.; Ball, P.; Bird, D. E.

    2015-12-01

    The Early Jurassic separation of Antarctica from Africa plays an important role in our understanding of the dispersal of Gondwana. Previously proposed reconstruction models often contain overlaps and gaps in the restored margins that reflect difficulties in accurately delineating the continent-ocean boundary (COB) and determining the amount and distribution of extended continental crust. This study focuses on the evolution of the African margin adjacent to the Mozambique Basin and the conjugate margin of Antarctica near the Riiser Larsen Sea. New satellite-derived gravity data have been used to trace the orientations and landward limits of fracture zones in the study area. A 3-D gravity inversion has produced a crustal thickness model that reliably quantifies the extent and amount of stretched crust. Information on crustal thickness along with the identification of fracture zones reveal the COBs that are located significantly closer to the coasts of Africa and Antarctica than previously recognized. Correlation of both fracture zone azimuths and the identified COBs over the conjugate margins suggest Antarctica began drifting away from Africa at approximately 171 Ma in a roughly SSE direction. Of several scenarios examined, the Beira High is most likely oceanic and may be a conjugate feature of the southern Astrid Ridge. An areal-balancing method that involves restoring the crust to a uniform pre-rift thickness has been used to perform the non-rigid reconstruction for both non-volcanic and volcanic margin with magmatic underplating. Based on the results, Africa underwent extension of 65-105 km while Antarctic crust was stretched by 90-190 km. Both margins reveal a trend of increasing extension from east to west. Various models tested to determine the direction of extension during rifting suggest that Antarctica underwent a counter-clockwise rotation with respect to Africa between 186-171 Ma prior to the onset of seafloor spreading.

  5. Steel Industry Marginal Opportunity Analysis

    SciTech Connect

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  6. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a)...

  7. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a)...

  8. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a)...

  9. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a)...

  10. 41 CFR 101-27.205 - Shelf-life codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Shelf-life codes. 101-27...-Management of Shelf-Life Materials § 101-27.205 Shelf-life codes. Shelf-life items shall be identified by use of a one-digit code to provide for uniform coding of shelf-life materials by all agencies. (a)...

  11. African American Female Professors' Strategies for Successful Attainment of Tenure and Promotion at Predominately White Institutions: It Can Happen

    ERIC Educational Resources Information Center

    Jones, Brandolyn; Hwang, Eunjin; Bustamante, Rebecca M.

    2015-01-01

    In their pursuit of tenure and promotion, African American female faculty members continue to prevail over workplace adversities such as ridicule, marginalization, alienation, isolation, and lack of information. In this descriptive phenomenological study, the lived experiences of five African American female professors who successfully navigated…

  12. Terrestrial organic carbon contributions to sediments on the Washington margin

    SciTech Connect

    Prahl, F.G.; Sparrow, M.A.; Eversmeyer, B. ); Ertel, J.R. ); Goni, M.A. )

    1994-07-01

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, the authors estimate that the terrestrial contribution to the Washington margin is [approximately] 60% for shelf sediments, [approximately] 30% for slope sediments, and decreases further to [le] 15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that this approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.

  13. Geometries of hyperextended continental crust in northeastern continental brazilian margin: insights from potential field and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Magalhães, José; Barbosa, José; Ribeiro, Vanessa; Oliveira, Jefferson; Filho, Osvaldo; Buarque, Bruno

    2016-04-01

    The study region encompasses a set of three basins located at Northeast Brazilian continental margin: Pernambuco (south sector), Paraíba and Natal platform (north sector). These basins were formed during the last stage of separation between South America and African plates during Cretaceous. The continental breakup in these regions occurred probably during the Middle-Upper Albian (~102 m.y). The adjacent basement rocks belong to Borborema Province (BP), which was formed due a complex superposition between Pre-Cambrian orogenic cycles. The structural framework of BP is dominated by large shear zones that divided this province in three main tectonic domains: South, Central and North. The Pernambuco Basin is located in the South Domain and the Paraíba and Natal platform basins are related to the Central Domain. The tectonic and magmatic evolution of the Pernambuco Basin was influenced by oblique rifting (~ 35° to rift axis) and a thermal anomaly probably caused by the Santa Helena hotspot. The north sector represents a continental shelf characterized by basement high with a narrow platform and an abrupt shelf break on transition to the abyssal plain. The continental platform break of this sector was parallel to the rift axis. In this way, we present a regional structural interpretation of these sectors of Brazilian rifted margin based on interpretation and 2D forward modeling of potential field and 2D seismic data. The magnetic maps (Reduction to magnetic pole and Analytic signal) revealed the influence of an alternating pattern of large narrow magnetic and non-magnetic lineaments, oriented NE-SW, E-W and NW-SE. In the Pernambuco Basin these lineaments (NE-SW and E-W) are related to shear zones in the hyperextended basement which is interpreted as a continuation of the granitic-gneissic and metasedimentary rocks of the South Domain of BP. The Paraíba and Natal platform basins show a slight change in the orientation of structures trending E-W (shear zones in

  14. Arctic and Antarctic submarine gullies—A comparison of high latitude continental margins

    NASA Astrophysics Data System (ADS)

    Gales, J. A.; Forwick, M.; Laberg, J. S.; Vorren, T. O.; Larter, R. D.; Graham, A. G. C.; Baeten, N. J.; Amundsen, H. B.

    2013-11-01

    Submarine gullies are common features of high latitude continental slopes and, over the last decade, have been shown to play a key role in continental margin evolution, submarine erosion, downslope sediment transport, slope deposits, and the architecture of petroleum reservoirs. However, the processes that form these gullies, the timescales over which they develop, and the environmental controls influencing their morphology remain poorly constrained. We present the first systematic and comparative analysis between Arctic and Antarctic gullies with the aim of identifying differences in slope character, from which we infer differences in processes operating in these environments. Quantitative analysis of multibeam echosounder data along 2441 km of the continental shelf and upper slope and morphometric signatures of over 1450 gullies show that six geomorphically distinct gully types exist on high latitude continental margins. We identify distinct differences between Arctic and Antarctic gully morphologies. In the Arctic data sets, deep relief (> 30 m gully incision depth at 50 m below the shelf edge) and shelf-incising gullies are lacking. These differences have implications for the timescales over which the gullies were formed and for the magnitude of the flows that formed them. We consider two hypotheses for these differences: (1) some Antarctic gullies developed through several glacial cycles; and (2) larger Antarctic gullies were formed since the Last Glacial Maximum as a result of erosive flows (i.e., sediment-laden subglacial meltwater) being more abundant on parts of the Antarctic margin over longer timescales. A second difference is that unique gully signatures are observed on Arctic and on Antarctic margins. Environmental controls, such as the oceanographic regime and geotechnical differences, may lead to particular styles of gully erosion observed on Arctic and Antarctic margins.

  15. Map of Distribution of Bottom Sediments on the Continental Shelf, Gulf of Alaska

    USGS Publications Warehouse

    Evans, Kevin R.; Carlson, Paul R.; Hampton, Monty A.; Marlow, Michael S.; Barnes, Peter W.

    2000-01-01

    Introduction The U.S. Geological Survey has a long history of exploring marine geology in the Gulf of Alaska. As part of a cooperative program with other federal and state agencies, the USGS is investigating the relations between ocean-floor geology and benthic marine biohabitats. This bottom sediment map, compiled from published literature will help marine biologists develop an understanding of sea-floor geology in relation to various biological habitats. The pattern of sea-floor sedimentation and bottom morphology in the Gulf of Alaska reflects a complex interplay of regional tectonism, glacial advances and retreats, oceanic and tidal currents, waves, storms, eustatic change, and gravity-driven processes. This map, based on numerous cruises during the period of 1970-1996, shows distribution of bottom sediments in areas of study on the continental shelf. The samples were collected with piston, box, and gravity corers, and grab samplers. The interpretations of sediment distribution are the products of sediment size analyses combined with interpretations of high-resolution seismic reflection profiles. The sea floor was separated into several areas as follows: Cook Inlet -- Hazards studies in this embayment emphasized sediment distribution, sediment dynamics, bedforms, shallow faults, and seafloor stability. Migrating mega-sandwaves, driven by strong tidal currents, influence seabed habitats and stability of the seafloor, especially near pipelines and drilling platforms. The coarseness of the bottom sediment reinforces the influence of the strong tidal currents on the seafloor habitats. Kodiak Shelf -- Tectonic framework studies demonstrate the development of an accretionary wedge as the Pacific Plate underthrusts the Alaskan landmass. Seismic data across the accretionary wedge reveal anomalies indicative of fluid/gas vent sites in this segment of the continental margin. Geologic hazards research shows that movement along numerous shallow faults poses a risk to sea

  16. New evidence for high discharge to the Chukchi shelf since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hill, Jenna C.; Driscoll, Neal W.; Brigham-Grette, Julie; Donnelly, Jeffrey P.; Gayes, Paul T.; Keigwin, Lloyd

    2007-09-01

    Using CHIRP subbottom profiling across the Chukchi shelf, offshore NW Alaska, we observed a large incised valley that measures tens of kilometers in width. The valley appears to have been repeatedly excavated during sea level lowering; however, the two most recent incisions appear to have been downcut during the last sea level rise, suggesting an increase in the volume of discharge. Modern drainage from the northwestern Alaskan margin is dominated by small, low-discharge rivers that do not appear to be large enough to have carved the offshore drainage. The renewed downcutting and incision during the deglaciation and consequent base level rise implies there must have been an additional source of discharge. Paleoprecipitation during deglaciation is predicted to be at least 10% less than modern precipitation and thus cannot account for the higher discharge to the shelf. Glacial meltwater is the most likely source for the increased discharge.

  17. Spatial Extent of Wave-Supported Fluid Mud on the Waipaoa Continental Margin

    NASA Astrophysics Data System (ADS)

    Hale, R. P.; Ogston, A. S.; Walsh, J. P.; Orpin, A. R.

    2013-12-01

    Data from acoustic and optical sensors provide a powerful tool to connect near-bed water-column processes with the deposits they generate. Ideally, the product of water-column and seabed interactions can then be applied more broadly to understand systems as a whole, in both space and time. Recent observational research has allowed for an improved understanding of shelf sediment-transport dynamics in many coastal systems, including the dynamic Waipaoa Sedimentary System (WSS), on the east coast of the north island of New Zealand. This narrow shelf (~20 km) on an active continental margin is subject to strong environmental forcings in the form of high waves (>5 m), strong currents (>50 cm/s), and frequent floods of the Waipaoa River, which delivers an average of 15 MT of sediment to Poverty Bay and the coastal environment each year. A year-long study of the WSS during 2010-2011 combined observational data from instrumented tripods at three locations on the continental shelf, with repeat sediment cores collected in four-month intervals, to identify and assess the mechanisms of cross- and off-shelf sediment transport. Observational data identified that cross-shelf sediment transport is stochastic, typically driven by high-wave events, with 40% of the net annual cross-shelf flux for one tripod location occurring during a single wave-supported fluid mud (WSFM) in July 2010. Fortunately, this event was recorded in the instrument data, and the resulting deposit was plainly visible in x-radiograph images. This particular WSFM was observed in x-radiographs collected as deep as ~50 m, and as far as ~28 km from the mouth of the Waipaoa River, and is more prevalent on the northern portion of the shelf. A critical water depth is not the only criteria for WSFM deposition, as some shallower areas on the southern shelf, which were subject to high bed stress, show no evidence of WSFM in this event, while cores collected in deeper areas (e.g. lower bed stress) on the northern shelf

  18. Controls on reef development and the terrigenous-carbonate interface on a shallow shelf, Nicaragua (Central America)

    NASA Astrophysics Data System (ADS)

    Roberts, H. H.; Murray, S. P.

    1983-06-01

    silts and clays mantles the inner shelf floor in a linear belt paralleling the coast. This belt generally corresponds to the western flank of the coastal boundary zone. Occurrence of reefs is generally confined to areas outside this zone. Terrigenous clays and silts of the inner shelf are abruptly (<20 km from the coast) replaced by Halimeda-rich sediment of the middle and outer shelf. Within the carbonate facies belt, reef complexes thrive as small, isolated masses; large, reef-capped platforms; reef fringes around islands; and shelfedge structures with vertical relief that can exceed 25 m. In general, the frequency and proliferation of reefs increase away from the turbid coastal boundary layer and toward the cooler and saltier water that upwells at the shelf margin.

  19. New Exploration of Kerguelen Plateau Margins

    NASA Astrophysics Data System (ADS)

    Vially, R.; Roest, W. R.; Loubrieu, B.; Courreges, E.; Lecomte, J.; Patriat, M.; Pierre, D.; Schaming, M.; Schmitz, J.

    2008-12-01

    France ratified the United Nations Convention on the Law of the Sea in 1996, and has since undertaken an ambitious program of bathymetric and seismic data acquisition (EXTRAPLAC Program) to support claims for the extension of the legal continental shelf, in accordance with Article 76 of this convention. For this purpose, three oceanographic surveys took place on board of the R/V Marion Dufresne II on the Kerguelen Plateau, in Southern Indian Ocean: MD137-Kergueplac1 (February 2004), MD150-Kergueplac2 (October 2005) and MD165-Kergueplac3 (January 2008), operated by the French Polar Institute. Thus, more than 20 000 km of multibeam bathymetric, magnetic and gravimetric profiles, and almost 6 000 km of seismic profiles where acquired during a total of 62 days of survey in the study area. Ifremer's "rapid seismic" system was used, comprised of 4 guns and a 24 trace digital streamer, operated at speeds up to 10 knots. In addition to its use for the Extraplac Program, the data set issued from these surveys gives the opportunity to improve our knowledge of the structure of the Kerguelen Plateau and more particularly of its complex margins. In this poster, we will show the high resolution bathymetry (200 m) data set, that allows us to specify the irregular morphology of the sea floor in the north Kerguelen Plateau, characterised by ridges and volcanoes chains, radial to the plateau, that intersect the oceanic basin on the NE edge of the Kerguelen Plateau. We will also show magnetic and gravity data, which help us to understand the setting up of the oceanic plateau and the kinematics reconstructions. The seismic profiles show that the acoustic basement of the plateau is not much tectonised, and displays a very smooth texture, clearly contrasting it from typical oceanic basement. Both along the edge of the plateau as in the abyssal plain, sediments have variable thicknesses. The sediments on the margin of the plateau are up to 1200 meters thick and display irregular

  20. Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Okal, Emile A.; Macayeal, Douglas R.

    2009-06-01

    A seismometer operating on the floating Ross Ice Shelf near its seaward ice front (Nascent Iceberg) for 340 days (out of 730 days) during the 2004, 2005, and 2006 Antarctic field seasons recorded the arrival of 93 distantly sourced ocean swell events displaying frequency dispersion characteristic of surface gravity waves propagating on deep water. Comparison of swell event dispersion with the NOAA Wave Watch III (NWW3) ocean wave model analysis reveals that 83 of these events were linked to specific storms located in the Pacific, Southern, and Indian oceans. Nearly all major storms in the NWW3 analysis of the Pacific Ocean were linked to signals observed at the Nascent site during the period of seismometer operation. Swell-induced motion of the Ross Ice Shelf is found to increase by several orders of magnitude over the time period that sea ice surrounding Antarctica decreases from its maximum extent (October) to its minimum extent (February). The amplitude of vertical vibration of the ice shelf in the frequency band between 0.025 and 0.14 Hz varies between tens of micrometers to millimeters as sea ice decays to its minimum seasonal extent. This suggests that climate influence on sea ice extent may indirectly modulate swell energy incident on the calving margins of the Antarctic Ice Sheet. The largest swell signals observed on the Ross Ice Shelf come from storms in the tropical Pacific and Gulf of Alaska. These remote events emphasize how the iceberg calving margin of Antarctica is connected to environmental conditions well beyond Antarctica.

  1. Delineation of Late Quaternary depositional sequences by high-resolution seismic stratigraphy, Louisiana continental shelf

    SciTech Connect

    Suter, J.R.; Berryhill, H.L. Jr.; Penland, S.

    1987-05-01

    Interpretations of over 20,000 line km of single-channel, high-resolution seismic reflection profiles, coupled with nearshore vibracores and logs of industrial platform borings, provide the data base for determining the history and stratigraphy of late Quaternary sea level fluctuations on the Louisiana continental shelf. Regional unconformities, formed by subaerial exposure of the shelf during glacio-eustatic sea level withdrawals and modified by shoreface erosion during ensuing transgression, serve as markers to identify the boundaries of depositional sequences. Unconformities are recognizable on seismic profiles by high-amplitude reflectors as well as discordant relationships between reflectors. Within the upper Quaternary section, six depositional sequences have been recognized. Five of these are related to glacio-eustatic sea level fluctuations, involving sea level fall close to, or beyond, the margin of the continental shelf. Three of these fluctuations culminated in the deposition of shelf margin delta sequences. Extensive fluvial channeling characterizes the regressive phase of these sequences. Transgressive phases are marked by infilling of fluvial channels, flood-plain aggradation, truncation, or deposition of sand sheets, depending upon sediment supply and rate of sea level rise. Sequences 4 and 5 are correlated with the late Wisconsinan glacial stage and Holocene transgression. The upper portion of sequence 5 consists of an early Holocene Mississippi delta complex. Abandonment and transgression of this delta are responsible for the formation of sequence 6. Although these deposits cover a smaller area, this demonstrates that deltaic processes can produce sequences similar to those driven by glacially controlled sea level changes.

  2. Assessing the importance of tropical cyclones on continental margin sedimentation in the Mississippi delta region

    NASA Astrophysics Data System (ADS)

    Dail, Michael. B.; Reide Corbett, D.; Walsh, J. P.

    2007-08-01

    Recent research on the Mississippi margin indicates notable seasonal variation in seabed dynamics. During years with minimal tropical-system activity, sediments initially deposited from late spring to early fall are remobilized by wind-driven currents and wave energy during extra-tropical weather systems in the winter. This research reveals the profound significance of tropical cyclones on Louisiana Shelf sedimentation. The amount of material delivered to and advected across the shelf by recent tropical cyclones is considerably larger than that related to winter storm systems. In Fall 2004, the river-dominated shelf of Louisiana was impacted by three tropical systems in less than a month, including Hurricane Ivan. Ivan, with maximum sustained winds in excess of 74 m s -1 (144 knots) and a minimum measured central pressure of 910 mbar, was the eighth most intense Atlantic hurricane on record at the time. In order to assess the impact these tropical systems had on the continental margin west of the Mississippi delta, seabed samples were collected from box cores in October 2004 and analyzed for particle-reactive radionuclides 234Th, 7Be, and 210Pb. Radiochemical data and observations from X-radiographs indicate event-driven sediment deposits ranged from 4 to 30 cm on the shelf and 2-6 cm in the Mississippi Canyon. These deposits exhibit distinct radiochemical signatures and differ visually and texturally from the underlying sediment. The well-developed physical stratification and graded nature of the deposits observed in core X-radiographs suggests that the sediment could have been deposited from sediment-gravity flows. Inventories of 7Be and 7Be/ 234Th xs ratios reveal this series of cyclones transported considerably more material to the outer shelf and slope than periods of minimal tropical-system activity. When compared to seasonal depositional rates created by winter storms, tropical-cyclone-related event deposits on the middle and outer shelf are up to an order

  3. Assessment of primary production and optical variability in shelf and slope waters near Cape Hatteras, North Carolina. Final project report

    SciTech Connect

    Redalje, Donald G.; Lohrenz, Stevern E.

    2001-02-12

    In this project we determined primary production and optical variability in the shelf and slope waters off of Cape Hatteras, N.C. These processes were addressed in conjunction with other Ocean Margins Program investigators, during the Spring Transition period and during Summer. We found that there were significant differences in measured parameters between Spring and Summer, enabling us to develop seasonally specific carbon production and ecosystem models as well as seasonal and regional algorithm improvements for use in remote sensing applications.

  4. Atlantic marginal basins of Africa

    SciTech Connect

    Moore, G.T.

    1988-02-01

    The over 10,000-km long Atlantic margin of Africa is divisible into thirty basins or segments of the margin that collectively contain over 18.6 x 10/sup 6/ km/sup 3/ of syn-breakup and post-breakup sediments. Twenty of these basins contain a sufficiently thick volume of sediments to be considered prospects. These basins lie, at least partially, within the 200 m isobath. The distribution of source rocks is broad enough to give potential to each of these basins. The sedimentation patterns, tectonics, and timing of events differ from basin to basin and are related directly to the margin's complex history. Two spreading modes exist: rift and transform. Rifting dates from Late Triassic-Early Jurassic in the northwest to Early Cretaceous south of the Niger Delta. A complex transform fault system separated these two margins. Deep-water communication between the two basins became established in the middle Cretaceous. This Mesozoic-Cenozoic cycle of rifting and seafloor spreading has segmented the margin and where observable, basins tend to be bounded by these segments.

  5. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  6. The wind- and wave-driven inner-shelf circulation.

    PubMed

    Lentz, Steven J; Fewings, Melanie R

    2012-01-01

    The inner continental shelf, which spans water depths ofa few meters to tens of meters, is a dynamically defined region that lies between the surf zone (where waves break) and the middle continental shelf (where the along-shelf circulation is usually in geostrophic balance). Many types of forcing that are often neglected over the deeper shelf-such as tides, buoyant plumes, surface gravitywaves, and cross-shelfwind stress-drive substantial circulations over the inner shelf. Cross-shelf circulation over the inner shelf has ecological and geophysical consequences: It connects the shore to the open ocean by transporting pollutants, larvae, phytoplankton, nutrients, and sediment. This review of circulation and momentum balances over the inner continental shelf contrasts prior studies, which focused mainly on the roles of along-shelfwind and pressure gradients, with recent understanding of the dominant roles of cross-shelf wind and surface gravity waves. PMID:22457978

  7. Sensory shelf life of dulce de leche.

    PubMed

    Garitta, L; Hough, G; Sánchez, R

    2004-06-01

    The objectives of this research were to determine the sensory cutoff points for dulce de leche (DL) critical descriptors, both for defective off-flavors and for storage changes in desirable attributes, and to estimate the shelf life of DL as a function of storage temperature. The critical descriptors used to determine the cutoff points were plastic flavor, burnt flavor, dark color, and spreadability. Linear correlations between sensory acceptability and trained panel scores were used to determine the sensory failure cutoff point for each descriptor. To estimate shelf life, DL samples were stored at 25, 37, and 45 degrees C. Plastic flavor was the first descriptor to reach its cutoff point at 25 degrees C and was used for shelf-life calculations. Plastic flavor vs. storage time followed zero-order reaction rate. Shelf-life estimations at different temperatures were 109 d at 25 degrees C, 53 d at 37 degrees C, and 9 d at 45 degrees C. The activation energy, necessary to calculate shelf lives at different temperatures, was 14,370 +/- 2080 cal/mol.

  8. Glider monitoring of shelf suspended particle dynamics and transport during storm and flooding conditions

    NASA Astrophysics Data System (ADS)

    Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent

    2015-10-01

    Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at

  9. Shelfal sediment transport by undercurrents forces turbidity current activity during high sea level, Chile continental margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.

    2016-04-01

    Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.

  10. Seafloor morphology of the Montenegro/N. Albania Continental Margin (Adriatic Sea-Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Del Bianco, Fabrizio; Gasperini, Luca; Giglio, Federico; Bortoluzzi, Giovanni; Kljajic, Zoran; Ravaioli, Mariangela

    2014-12-01

    High-resolution multibeam morpho-bathymetric maps and a dense grid of seismic reflection profiles show relict and palimpsest geomorphologic features along the Montenegro/Northern Albanian Continental Margin. This sector of the Eastern Adriatic shelf, at the external front of the Dinarides Chain, is characterized by highly variable seafloor patterns and depositional styles, and shows a peculiar alternation of large-scale troughs and ridges, probably caused by tectonic compressive deformations. These tectonically controlled morphologies are overprinted by the result of sedimentary processes, such as progradation at river outflows, erosion, and reworking of sediments by longshore currents, as well as gravity-driven process caused by sediment loading and seismic shaking. Physiographic domains along this shelf-slope margin include (i) an inner and an outer shelf, separated by two major topographic highs, the Kotor and the Bar ridges; (ii) a drowned lobate delta formed during the last phase of sea level fall, likely fed by the Buna/Bojana drainage basin; and (iii) a continental slope affected by gravity-driven faulting and mass-wasting processes. Seafloor reflectivity maps, ground-truthed by grain-size analysis of bottom sediments, reveal that fine-grained deposits accumulate in the inner shelf, while other sectors appear starved. The effects of the last sea-level rise is testified by the presence of seabed forms diagnostic of erosion or depositional processes, such us large dunes, sediment ridges and sediment waves, which were studied to infer the effect of bottom currents under the present-day oceanographic regime and in the recent past. This paper presents a first description of geomorphologic features observed along the Montenegro/Northern Albanian Continental Margin, in the context of Late Quaternary sea-level changes.

  11. The Algerian Margin: an Example of a Reactivation in Compression of a Complex Cenozoic Passive Margin

    NASA Astrophysics Data System (ADS)

    Domzig, A.; Deverchere, J.; Yelles, K.; Govers, R.; Wortel, R.; Petit, C.; Cataneo, A.; Kherroubi, A.; Teams, M.

    2007-12-01

    The Western Mediterranean underwent a complex Cenozoic history involving subduction of the Tethys Ocean as well as subduction roll-back and associated opening of back-arc basins. During the Oligo-Miocene, the subduction roll-back to the south led to the collision of the Kabylies into the African plate, but subduction continued towards west, causing the Alboran slab to migrate towards the Gibraltar Arc. Northern Africa is at the southern border of this system and is therefore a major study area in the context of slow convergent plates to study the reactivation in compression of a Cenozoic passive margin but also the records of past geodynamic processes. This work aims to characterize the multi-scale structure of the offshore Algerian margin, based on the MARADJA'03 and MARADJA2/SAMRA'05 cruises data (multibeam bathymetry, seismic-reflection, side-scan sonar, backscattering, CHIRP, gravimetry). Tectonic (geomorphology, folds, faults) records reveal large recent and active structures as well as the geological inheritance of the margin. In western Algeria, slab roll-back is likely to have been accompanied by lithospheric tearing (STEP fault) as it has been modelled at a regional scale (Govers and Wortel, 2005): we provide first evidence for the presence of such structure(s) offshore Algeria. The geodynamical conditions have now changed, and we are facing new types of structures. Two main tectonic styles are identified: reverse to the centre and east; and strike-slip to the west. In Central Algeria, the compressional structures are active blind thrusts (Plio-Quaternary) verging to the north (opposite to pre-existing features) expressed as asymmetrical folds, sub-perpendicular to the convergence direction and often en echelon. These faults may all trigger M=6-7.5 earthquakes (e.g. Khair al Din fault near Algiers). Among them, the fault associated with the 2003 Boumerdes event (Mw=6.8) would continue to the surface by flats and ramps creating piggy-back basins or

  12. Assessment of the petroleum, coal, and geothermal resources of the Economic Community of West African States (ECOWAS) region

    USGS Publications Warehouse

    Mattick, R. E.

    1982-01-01

    Approximately 85 percent of the land area of the ECOWAS (Economic Community of West African States) region is covered by basement rocks (igneous and highly metamorphosed rocks) or relatively thin layers of Paleozoic, Upper Precambrian, and 'Continental Intercalaire? sedimentary rocks. These areas have little or no petroleum potential. Areas of the ECOWAS region that have potential for petroleum production or potential for increased petroleum production include the narrow belt of sedimentary rocks that stretches along the continental margin from Mauritania to Nigeria and the Niger Delta and the Benue depression. The Senegal Basin, located on the continental margin of Mauritania, Senegal, Gambia, Guinea Bissau, and Guinea, has been intensely explored by the oil industry and most of the larger structures onshore and on the shelf probably have been tested by drilling with little or no resulting commercial production. Unless basic ideas pertaining to the petroleum geology of the Senegal Basin are revised, future discoveries are expected to be limited to small fields overlooked by industry at a time when petroleum prices were low. On the continental shelf of Sierra Leone and the continental shelf of northeast and central Liberia, the sedimentary rocks are relatively thin, and industry has shown little interest in the area. On the continental rise of these countries, however, the sedimentary section, deposited in a complex fault-block system, increases in thickness. A renewal of industry interest in this deep-water area will probably follow further development of deep-water production technology. A recent oil discovery on the continental slope off the Ivory Coast is expected to spur further exploration offshore of southeastern Liberia, Ivory Coast, Ghana, Togo, and Benin. This relatively unexplored area in the Gulf of Guinea has good possibilities .for the discovery of giant oil fields. Nigeria's oil development from the Niger Delta may have peaked, as 13 of 14 giant oil

  13. Eocene Underplating Along the Kodiak Shelf, Alaska: Implications and Regional Correlations

    NASA Astrophysics Data System (ADS)

    Byrne, Tim

    1986-06-01

    Structural geology and geophysical data from the Kodiak Shelf suggest that the Mesozoic rocks exposed on the shelf are structurally underlain (at about 12 km depth) by several kms of Eocene age strata. Kinematic data from the Late Cretaceous to Paleocene Ghost Rocks Formation indicate that this formation and probably all of the Kodiak Islands, were uplifted vertically to nearly their present elevations. Landward tilting and imbrication are not indicated. The age of uplift is indicated by a regional, angular unconformity of Early Eocene to Early Oligocene age that separates deep-sea rocks from shallow water to non-marine rocks. The uplift of the accretionary prism is believed to have been caused by underplating of an Eocene sedimentary sequence because (1) a band of seismic reflections that occur 12 to 20 km beneath the shelf is interpreted as the top of the underplated material and (2) an obductively offscraped sequence of Eocene deep-sea rocks crops out on the seaward side of the Kodiak Shelf, suggesting that a thick trench-fill sequence may have been present prior to uplift of the prism. The underplated material is interpreted to be part of either a previously unrecognized turbidite fan of Early Eocene age or a proximal equivalent of the Zodiac fan of Late Eocene to Early Oligocene age. Other possible on-land remnants of the underplated material may be present in Prince William Sound (the Montague belt), the Gulf of Alaska (lower sections of the Yakutat block) and in the Coast Ranges of Oregon and Washington. The large volume of underplated material beneath the Kodiak shelf suggests that underplating may be the dominant process in the growth of convergent margins.

  14. An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan

    2016-09-01

    A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.

  15. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper

  16. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    NASA Astrophysics Data System (ADS)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and

  17. Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Canals, Miquel; Lastras, Galderic; Micallef, Aaron; Amblas, David; Pedrosa-Pàmies, Rut; Sanz, José Luis

    2013-11-01

    head rim constitute a source of coarse sediment. High-energy processes, namely river floods and coastal storms, are the main controls over the river-shelf-canyon sediment exchange. River floods increase the delivery of terrigenous particles to the coastal system. Storms, mainly from the east, remobilize the sediment temporarily accumulated on the shelf towards the canyon head, so that the finer fractions are preferentially removed and a coarse lag is normally left on the shelf floor. Exceptionally, very strong storms also remove the coarse fractions from the shelf drive them into the canyon. Processes like dense shelf water cascading, which is much more intense in canyons to the north of BC, and the Northern Current also contribute to the transport of suspended sediment from far distant northern sources. During the last post-glacial transgression the BC had a strong influence on the evolution of the inner continental margin, as it interrupted the shelf sediment dispersal system by isolating the shelves to its north and south, named La Planassa and Barcelona shelves, respectively. The detailed study of the geomorphology and uppermost sediment cover of the continental shelf surrounding the Blanes submarine canyon yields insight into the past and present shelf sediment dynamics and the shelf-to-canyon sediment exchanges. The continental shelf near the canyon head consists of mosaic where erosional, or non-depositional, and depositional zones coexist. East of the canyon and offshore Tossa de Mar, the modern sediment deposition is mostly confined to the inner and middle shelf, whilst most of the La Planassa shelf is sediment depleted with numerous relict morphosedimentary features cropping out. Rocky outcrops, narrow ridges and relict coarse sand deposits suggesting erosion or non-deposition of fine sediments in modern times occupy the middle and outer shelf floor east and northeast of the canyon head. In contrast, north and west of the canyon head, the middle and outer

  18. Sedimentological cross section of Cambro-Ordovician carbonate shelf (Knox group, Conassauga Formation) in central Alabama: facies, diagenesis, potential reservoirs

    SciTech Connect

    Sternbach, L.R.

    1984-04-01

    Cambro-Ordovician thrust-imbricated carbonates in central Alabama are the focus of renewed exploration interest. Samples from east-west-trending core holes within the surface-most thrust plates reconstruct the carbonate shelf and shelf-edge facies before deformation. The Upper Cambrian shelf margin now is in the subsurface of Talledega County; coeval dolostones in the western part of the state represent the former shelf interior. Rock analogs to former environments include the following. (1) Barrier shoals (Conasauga Formation) - dark colored, partially dolomitized ooid and skeletal grainstones. (2) Submerged back-barrier and offshelf dolomitized sediments (lower Knox Group) - western belt: finely crystalline algal thrombolites, fenestral dolopelmicrites, rippled beds; eastern belt: finely laminated dolostones, slope-derived pebbles and graded beds. (3) Tidal flats (upper Knox Group) - light-colored, crystalline dolostones, dolomitized pellet grainstones, algal laminites, pseudomorphs after sulfates and early diagenetic chertification. (4) Former emergent shelf -(Knox unconformity)-pelmicrite, skeletal wackestones, erosional chert pebble conglomerate. Multiple possibilities for hydrocarbon reservoirs appear throughout the sequence. Vuggy and intercrystalline dolostone porosity is primarily in the lower Knox formations. Primary interparticle pores are retained in lower Knox algal buildups. Breccia porosity occurs in the strata below the Knox unconformity through solution of the underlying Knox Group. Fractures in the subsurface are believed to enhance permeability in all porosity types.

  19. Sedimentological cross section of Cambro-Ordovician carbonate shelf (Knox group, Conasauga Formation) in central Alabama: facies, diagenesis, potential reservoirs

    SciTech Connect

    Sternbach, L.R.

    1984-04-01

    Cambro-Ordovician thrust-imbricated carbonates in central Alabama are the focus of renewed exploration interest. Samples from east-west-trending core holes within the surface-most thrust plates reconstruct the carbonate shelf and shelf-edge facies before deformation. The Upper Cambrian shelf margin now is in the subsurface of Talledega County; coeval dolostones in the western part of the state represent the former shelf interior. Rock analogs to former environments include the following. (1) Barrier shoals (Conasauga Formation) - dark colored, partially dolomitized ooid and skeletal grainstones. (2) Submerged back-barrier and offshelf dolomitized sediments (lower Knox Group) - western belt: finely crystalline algal thrombolites, fenestral dolopelmicrites, rippled beds; eastern belt: finely laminated dolostones, slope-derived pebbles and graded beds. (3) Tidal flats (upper Knox Group) - light-colored, crystalline dolostones, dolomitized pellet grainstones, algal laminites, pseudomorphs after sulfates and early diagenetic chertification. (4) Former emergent shelf -(Knox unconformity)-pelmicrite, skeletal wackestones, erosional chert pebble conglomerate. Multiple possibilities for hydrocarbon reservoirs appear throughout the sequence. Vuggy and intercrystalline dolostone porosity is primarily in the lower Knox formations. Primary interparticle pores are retained in lower Knox algal buildups. Breccia porosity occurs in the strata below the Knox unconformity through solution of the underlying Knox Group. Fractures in the subsurface are believed to enhance permeability in all porosity types.

  20. Continental Margins and the Law of the Sea - an `Arranged Marriage' with Huge Research Potential

    NASA Astrophysics Data System (ADS)

    Parson, L.

    2005-12-01

    The United Nations Convention on the Law of the Sea (UNCLOS) requires coastal states intending to secure sovereignty over continental shelf territory extending beyond 200 nautical miles to submit geological/geophysical data, along with their analysis and synthesis of the relevant continental margin in support of their claim. These submissions are scrutinised and assessed by a UN Commission of experts who decide if the claim is justified, and thereby ultimately allowing the exploitation of non-living resources into this extended maritime space. The amount of data required to support the case will vary from margin to margin, depending on the local geological evolution, but typically will involve the running of new, dedicated marine surveys, mostly bathymetric and seismic. Key geological/geophysical issues revolve around proof of `naturalness' of the prolongation of land mass (cue - wide-angle seismics, deep drilling and sampling programmes) and shelf and slope morphology and sediment section thickness (cue - swath bathymetry and multichannel seismics programmes). These surveys, probably primarily funded by government agencies anxious not to lose out on the `land grab', will generate datasets which will inevitably boost not only the research effort leading to increased understanding of margin evolution in academic terms, but also contribute to wider applied aspects of the work such as those leading to refinement of deepwater hydrocarbon resource potential. It is conservatively estimated that in the region of fifty coastal states world-wide have a significant potential for claiming continental shelf beyond 200 nautical miles, and that the total area available as extended shelf could easily exceed 7 million square kilometres. However, while for the vast majority of these states a UNCLOS deadline of 2009 exists for submitting a claim - to date only four have done so (Russia, Brazil, Australia and Ireland). It is therefore predictable, if not inevitable, that within the

  1. 12 CFR 220.4 - Margin account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Margin account. 220.4 Section 220.4 Banks and... BROKERS AND DEALERS (REGULATION T) § 220.4 Margin account. (a) Margin transactions. (1) All transactions not specifically authorized for inclusion in another account shall be recorded in the margin...

  2. 12 CFR 220.4 - Margin account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Margin account. 220.4 Section 220.4 Banks and... BROKERS AND DEALERS (REGULATION T) § 220.4 Margin account. (a) Margin transactions. (1) All transactions not specifically authorized for inclusion in another account shall be recorded in the margin...

  3. Post-breakup Basin Evolution along the South-Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Strozyk, Frank; Back, Stefan; Kukla, Peter

    2014-05-01

    The post-breakup tectono-stratigraphic evolution of large offshore basins along the South American and African continental margins record strongly varying post-rift sedimentary successions. The northernmost segment of the South Atlantic rift and salt basins is characterized by a pronounced asymmetry, with the Brazilian margin comprising narrower and deeper rift basins with less salt in comparison to the Congo-Gabon conjugate margin. Another important observation is that multiple phases of uplift and subsidence are recorded after the break-up of the southern South Atlantic on both sides of the Florianopolis-Walvis Ridge volcanic complex, features that are regarded as atypical when compared to published examples of other post-breakup margin successions. A regional comparison based on tectonic-stratigraphic analysis of selected seismic transects between the large basins offshore southern Brazil (Espirito Santo Basin, Campos Basin, Santos Basin, Pelotas Basin) and southwest Africa (Lower Congo Basin, Kwanza Basin, Namibe Basin, Walvis Basin) provides a comprehensive basin-to-basin documentation of the key geological parameters controlling ocean and continental margin development. This comparison includes the margin configuration, subsidence development through time, sediment influx and storage patterns, type of basin fill (e.g. salt vs. non-salt systems; carbonate-rich vs. clastics-dominated systems) and finally major tectonic and magmatic events. Data from the salt basins indicate that salt-related tectonic deformation is amongst the prime controls for the non-uniform post-rift margin development. The diversity in the stratigraphic architecture of the conjugate margins offshore southern Brazil, Namibia and Angola reflects variations in the interplay of a number of controlling factors, of which the most important are (a) the structural configuration of each margin segment at the time of break-up, (b) the post break-up subsidence history of the respective margin segment

  4. Pleistocene ice streaming and marine-margin breakup revealed by multibeam bathymetry data: The Minch, NW Scotland

    NASA Astrophysics Data System (ADS)

    Bradwell, Tom; Stoker, Martyn

    2013-04-01

    Extensive dynamically driven breakup and rapid ice loss is currently ongoing at tidewater margins of the Greenland and Antarctica Ice Sheets, yet few good analogues from the palaeo-record exist. Using ca. 55,000 km2 of echosounder bathymetry data from the continental shelf around NW Scotland we have mapped submarine glacial landforms relating to an ice sheet that covered much of the continental shelf during the Late Pleistocene and had extensive tidewater margins. Focusing on new multibeam bathymetry from the inner part of the shelf (The Minch), we present seabed geomorphological evidence showing breakup of a large marine portion of a palaeo-ice stream within the British-Irish Ice Sheet. Clearly defined, well preserved glacial lineations, elongate bedforms and seabed drumlins indicate former fast flow of a grounded palaeo-ice stream in a northerly direction in The Minch. In addition, the absence of moraines and grounding-line features deposited during ice sheet retreat and the abundance of large overprinted iceberg scours collectively indicate rapid marine-margin breakup by flotation and thinning. We suggest that this marine-margin breakup event was probably driven by unstable ice sheet retreat into shoreward deepening water and was inextricably linked with the abrupt demise of The Minch palaeo-ice stream. Importantly, this new evidence indicates that potentially large areas of the ice sheet margin were floating at times during British-Irish Ice Sheet retreat on the continental shelf. Ongoing work is seeking to date the timing of ice sheet breakup and ice stream demise in northern Scotland.

  5. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  6. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  7. Ice-sheet retreat from the continental shelf offshore of Northwest Ireland following the last glacial maximum: sedimentary facies and initial chronology

    NASA Astrophysics Data System (ADS)

    Weilbach, Kasper; O'Cofaigh, Colm; Lloyd, Jerry; Benetti, Sara; Dunlop, Paul; Howe, John; Purcell, Catriona

    2015-04-01

    The glacial history of North-West Ireland and the adjoining continental shelf have been debated for over a century. The traditional reconstruction of a British-Irish Ice Sheet (BIIS) in this region was based predominantly on terrestrial evidence and showed an ice sheet that did not extend beyond the present coastline of Britain and Ireland. This traditional reconstruction of a relatively restricted ice sheet has been replaced in the last decade by the reconstruction of a more dynamic ice sheet that, during the Last Glacial Maximum (LGM), flowed onto the continental shelf and extended to the NW-Irish shelf edge. High resolution swath bathymetry and sub bottom profiler data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores from the shelf offshore of NW Ireland are being used to reconstruct the timing, extent and the nature of retreat of the BIIS from the shelf following the LGM. A total of twenty seven vibro-cores were collected during two research cruises on the NW-Irish shelf in 2008 and 2014 on board the Irish and UK research vessels the Celtic Explorer and RRS James Cook The cores were collected in two east-west orientated transects across a series of arcuate recessional moraines from the shelf edge to Donegal Bay. These moraines record progressive stillstands of a lobate ice sheet margin during its retreat from the shelf edge, although to date, there has been a lack of direct dating control to constrain the timing and rate of ice retreat across the shelf. Sedimentary descriptions of core facies and physical properties, combined with taxonomic analysis of foraminifera will be presented along with radiocarbon dates. This forms the first detailed reconstruction of glacigenic sedimentation, depositional environments and the timing of ice sheet retreat across the shelf offshore of NW Ireland. The project is part of a larger EU funded research programme GLANAM ('Glaciated North Atlantic Margins') which is

  8. 16 Extraordinary African Americans.

    ERIC Educational Resources Information Center

    Lobb, Nancy

    This collection for children tells the stories of 16 African Americans who helped make America what it is today. African Americans can take pride in the heritage of these contributors to society. Biographies are given for the following: (1) Sojourner Truth, preacher and abolitionist; (2) Frederick Douglass, abolitionist; (3) Harriet Tubman, leader…

  9. African Studies Computer Resources.

    ERIC Educational Resources Information Center

    Kuntz, Patricia S.

    African studies computer resources that are readily available in the United States with linkages to Africa are described, highlighting those most directly corresponding to African content. Africanists can use the following four fundamental computer systems: (1) Internet/Bitnet; (2) Fidonet; (3) Usenet; and (4) dial-up bulletin board services. The…

  10. Understanding African American Males

    ERIC Educational Resources Information Center

    Bell, Edward Earl

    2010-01-01

    The purpose of this study was to assess the socialization skills, self-esteem, and academic readiness of African American males in a school environment. Discussions with students and the School Perceptions Questionnaire provided data for this investigation. The intended targets for this investigation were African American students; however, there…

  11. Africans Away from Home.

    ERIC Educational Resources Information Center

    Clarke, John Henrik

    Africans who were brought across the Atlantic as slaves never fully adjusted to slavery or accepted its inevitability. Resistance began on board the slave ships, where many jumped overboard or committed suicide. African slaves in South America led the first revolts against tyranny in the New World. The first slave revolt in the Caribbean occurred…

  12. Keeping African Masks Real

    ERIC Educational Resources Information Center

    Waddington, Susan

    2012-01-01

    Art is a good place to learn about our multicultural planet, and African masks are prized throughout the world as powerfully expressive artistic images. Unfortunately, multicultural education, especially for young children, can perpetuate stereotypes. Masks taken out of context lose their meaning and the term "African masks" suggests that there is…

  13. Educating African American Males

    ERIC Educational Resources Information Center

    Bell, Edward E.

    2010-01-01

    Background: Schools across America spend money, invest in programs, and sponsor workshops, offer teacher incentives, raise accountability standards, and even evoke the name of Obama in efforts to raise the academic achievement of African American males. Incarceration and college retention rates point to a dismal plight for many African American…

  14. Changes in North African dust deposition: 35 ka through the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Kinsley, C. W.; McGee, D.; Winckler, G.; deMenocal, P. B.; Stuut, J. W.; Bradtmiller, L. I.

    2013-12-01

    Past changes in atmospheric circulation and aridity in the North African region can be explored by examining continuous records of reconstructed eolian dust accumulation in West African margin sediments. Recent high-resolution reconstructions of dust deposition by McGee et al. (2013) from a meridional transect of cores stretching from 27°N to 19°N along the northwest African margin indicate dramatic changes in North African dust emissions over the last 20 ka. Times of high dust emissions were documented during Heinrich Stadial 1 and the Younger Dryas, and lower dust emissions during the African Humid Period. Here we present a continuation of these records, combining grain size endmember modeling with 230Th-normalized fluxes in these cores to document spatial and temporal changes in dust loads and grain size distributions within the North African dust plume from 20 to ~35 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with previous Heinrich Stadials, and lend insight to the nature of the North African dust plume through the entirety of the Last Glacial Maximum. References: McGee, D., deMenocal, P.B., Winckler, G., Stuut, J.B.W., Bradtmiller, L.I., 2013. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth And Planetary Science Letters 371-372, 163-176.

  15. African horse sickness and African carnivores.

    PubMed

    Alexander, K A; Kat, P W; House, J; House, C; O'Brien, S J; Laurenson, M K; McNutt, J W; Osburn, B I

    1995-11-01

    African horse sickness (AHS) is a disease that affects equids, and is principally transmitted by Culicoides spp. that are biological vectors of AHS viruses (AHSV). The repeated spread of AHSV from sub-Saharan Africa to the Middle East, northern Africa and the Iberian peninsula indicate that a better understanding of AHS epizootiology is needed. African horse sickness has long been known to infect and cause mortality among domestic dogs that ingest virus contaminated meat, but it is uncertain what role carnivores play in transmission of the virus. We present evidence of widespread natural AHS infection among a diversity of African carnivore species. We hypothesize that such infection resulted from ingestion of meat and organs from AHS-infected prey species. The effect of AHS on the carnivores is unknown, as is their role in the maintenance cycle of the disease.

  16. Stability margins for Hurwitz polynomials

    NASA Technical Reports Server (NTRS)

    Chapellat, Herve; Bhattacharyya, S. P.; Keel, L. H.

    1988-01-01

    The authors treat the robust stability issue using the characteristic polynomial, for two different cases: first in coefficient space with respect to perturbations in the coefficient of the characteristic polynomial; and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l-(squared) stability margin for both the monic and nonmonic cases. Following this, a method is given to find the l(infinity) margin, and the method is extended to reveal much larger stability regions. In parameter space the authors consider all single-input (multi-output) or single-output (multi-input) systems with a fixed controller and a plant described by a set of transfer functions which are ratios of polynomials with variable coefficients. A procedure is presented to calculate the radius of the largest stability ball in the space of these variable parameters. The calculation serves as a stability margin for the control system. The formulas that result are quasi-closed-form expressions for the stability margin and are computationally efficient.

  17. Diabetes in African Americans

    PubMed Central

    Marshall, M

    2005-01-01

    African Americans have a high risk for type 2 diabetes. Genetic traits, the prevalence of obesity, and insulin resistance all contribute to the risk of diabetes in the African American community. African Americans have a high rate of diabetic complications, because of poor glycaemic control and racial disparities in health care in the USA. African Americans with diabetes may have an atypical presentation that simulates type 1 diabetes, but then their subsequent clinical course is typical of type 2 diabetes. Culturally sensitive strategies, structured disease management protocols, and the assistance of nurses, diabetic educators, and other health care professionals are effective in improving the outcome of diabetes in the African American community. PMID:16344294

  18. Submarine slumps, slides, and flows dominate sculpting of Beringian Margin, Alaska

    SciTech Connect

    Carlson, P.R.; Karl, H.A.; Edwards, B.D.; Gardner, J.V.; Hall, R. )

    1990-06-01

    The 1,400 km long Beringian margin is characterized by several very large submarine canyons and by a large oceanic plateau at the southern end. GLORIA sidescan-sonar imagery provides a perspective of this margin that is unattainable with conventional acoustic profiles. The broad coverage of GLORIA images emphasizes that, of all the sedimentary processes affecting this vast margin, mass movement is clearly the dominant shaping process. Styles of failure include mud and debris flows, slumps, and massive block slides, some covering areas greater than 1,500 km{sup 2}. GLORIA imagery and seismic-reflection profiles show evidence for a wide variety of slides and slumps in the canyons of the northern margin, Navarin and Pervenets. The 100 km long shelf edge between these two canyons is characterized by a series of scalloped slide scars and incipient scars associated with blocks of sedimentary material, 1 to 2 km across. One of the largest single slide masses is a huge block tens of kilometers wide that occurs on the rise in the central part of the margin beyond the mouth of Zhemchug Canyon. Sliding of this block may have initiated the incision of the world's largest submarine canyon. The removal of this block accelerated headward erosion by retrograde failure until Zhemchug Canyon was cut back to a fault parallel to the shelf edge. Mass movement along the southern margin is widespread at the edges of Umnak Plateau. One mass failure, well-defined by GLORIA, is about 30 km wide and 55 km long. This and other slides along the plateau are associated with diapiric-like structures, suggesting relatively recent tectonism.

  19. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.

    PubMed

    King, S D; Ritsema, J

    2000-11-10

    Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere. PMID:11073447

  20. Structure and hydrocarbon potential of sedimentary basins of the far east marginal seas

    SciTech Connect

    Gnibidenko, H. ); Kononov, V. )

    1990-05-01

    Crustal structural of the Bering, Okhotsk Japan, East China, and South China marginal seas consists of continental plates and deep sea basins that are the elements of the lowermost order in the structure of transition zone from the Asia continent to the Pacific Ocean. Two stages are recognized in the crustal evolution of the northwest Pacific transition zone: (1) geosyncline development that began in the pre-Paleozoic and continues to the present within island arcs; and (2) quasiplatform stage that began in the late Cretaceous and continues to the Holocene within shelf plates. The continental margins of the Far East seas consist of Cenozoic terrigenous cover and pre-Cenozoic basement composed of geosyncline rock association. Normal faults control graben features in the basement and develop rift systems. Paleogene subcontinental formations make up the lowermost section of the cover. A major Oligocene-Holocene sequence (marine formations) overlies and smooths rough topography of the basement and creates giant sedimentary basins. Sediment thickness of the basins attains 10 km. Tectonic evolution of the marginal seas implies the shelf plates to be young platforms and deep-sea basins are believed to be parts of the Pacific thalassocraton fenced by island arcs. The tectonic criterion enables us to differ and grade the provinces according to a hydrocarbon potential. Nearly 100 promising sedimentary basins are presently known in the Bering, Okhotst Japan, East China, and South China seas. About ten basins have been identified as hydrocarbon resources. Deep-sea basins also look promising for hydrocarbons. All the economically significant hydrocarbon accumulations in the Far East marginal seas are attributed to the Cenozoic sediment cover. Major resources are concentrated in the Miocene and Pliocene terrigenous sequences composed of progradation facies within the shelf plates.

  1. Sediment accumulation on the Southern California Bight continental margin during the twentieth century

    USGS Publications Warehouse

    Alexander, C.R.; Lee, H.J.

    2009-01-01

    Sediment discharged into the portion of the Southern California Bight extending from Santa Barbara to Dana Point enters a complex system of semi-isolated coastal cells, narrow continental shelves, submarine canyons, and offshore basins. On both the Santa Monica and San Pedro margins, 210Pb accumulation rates decrease in an offshore direction (from ??0.5 g cm-2yr-1 to 0.02 g cm-2yr -1), in concert with a fining in sediment grain size (from 4.5?? to 8.5??), suggesting that offshore transport of wave-resuspended material occurs as relatively dilute nepheloid layers and that hemiplegic sedimentation dominates the supply of sediment to the outer shelf, slope, and basins. Together, these areas are effectively sequestering up to 100% of the annual fluvial input. In contrast to the Santa Monica margin, which does not display evidence of mass wasting as an important process of sediment delivery and redistribution, the San Pedro margin does provide numerous examples of failures and mass wasting, suggesting that intraslope sediment redistribution may play a more important role there. Basin deposits in both areas exhibit evidence of turbidites tentatively associated with both major floods and earthquakes, sourced from either the Redondo Canyon (San Pedro Basin) or Dume Canyon (Santa Monica Basin). On the Palos Verdes shelf, sediment-accumulation rates decrease along and across the shelf away from the White's Point outfall, which has been a major source of contaminants to the shelf deposits. Accumulation rates prior to the construction of the outfall were ??0.2 g cm-2yr-1 and increased 1.5-3.7 times during peak discharges from the outfall in 1971. The distal rate of accumulation has decreased by ??50%, from 0.63 g cm -2yr-1 during the period 1971-1992 to 0.29 g cm -2yr-1 during the period 1992-2003. The proximal rate of accumulation, however, has only decreased ??10%, from 0.83 g cm -2yr-1 during the period 1971-1992 to 0.73 g cm -2yr-1 during the period 1992-2003. Effluent

  2. African bees to control African elephants

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  3. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  4. The Northwestern Atlantic Moroccan Margin From Deep Multichannel Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Malod, J. A.; Réhault, J. P.; Sahabi, M.; Géli, L.; Matias, L.; Zitellini, N.; Sismar Group

    The NW Atlantic Moroccan margin, a conjugate of the Nova Scotia margin, is one of the oldest passive margins of the world. Continental break up occurred in the early Jurassic and the deep margin is characterized by a large salt basin. The SISMAR cruise (9 April to 4 May 2001) acquired 3667 km of 360 channel seismic reflection profiles. In addition, refraction data were recorded by means of 48 OBH/OBS deployments. Simultaneously, some of the marine profiles were extended onshore with 16 portable seismic land stations. WNW-ESE profiles 4 and 5 off El Jadida show a good section of the margin. The crustal thinning in this region is fairly abrupt. These profiles image the crust above a strong seismic reflector at about 12 s.twt., interpreted as the Moho. The crust exhibits several different characteristics from the continent towards the ocean.: - highly diffractive with a thickness larger than 25 km beneath the shelf. - stratified at a deep level and topped by few "tilted blocks" with a diffractive acoustic facies and for which 2 hypotheses are proposed: either continental crust tilted during the rifting or large landslides of crustal and sedimentary material slid down later. Liassic evapor- ites are present but seem less thick than to the south. - layered with seaward dipping reflectors: this type of crust correlates with the magnetic anomaly S1 and corresponds to the continent-ocean transition. - diffractive with an oceanic character. Oceanwards, the crust becomes more typically oceanic, but shows internal reflectors that may be re- lated to compressional reactivation during the Tertiary attested by large scale inverted basins. Our results allow us to discuss the nature and location of the continent-ocean transition at a regional scale and the rifting to spreading evolution of the very ma- ture continental margin off El Jadida. This provide us with some constraints for the initial reconstruction between Africa, North America and Iberia. Moreover, these re- sults help

  5. An Analysis of Wilson Cycle Plate Margins

    NASA Astrophysics Data System (ADS)

    Buiter, S.; Torsvik, T. H.

    2012-12-01

    The Wilson Cycle theory that oceans close and open along the same suture is a powerful concept in analyses of ancient plate tectonics. It implies that collision zones are structures that are able to localize extensional deformation for long times after the collision has waned. However, some sutures are seemingly never reactivated and already Tuzo Wilson recognized that Atlantic break-up did not follow the precise line of previous junction. We have reviewed margin pairs around the Atlantic and Indian Oceans with the aim to evaluate the extent to which oceanic opening used former sutures, summarize delay times between collision and break-up, and analyze the role of mantle plumes in continental break-up. We aid our analyses with plate tectonic reconstructions using GPlates (www.gplates.org). Although at first sight opening of the North Atlantic Ocean largely seems to follow the Iapetus and Rheic sutures, a closer look reveals deviations. For example, Atlantic opening did not utilize the Iapetus suture in Great Britain and rather than opening along the younger Rheic suture north of Florida, break-up occurred along the older Pan-African structures south of Florida. We find that today's oceanic Charlie Gibbs Fracture Zone, between Ireland and Newfoundland, is aligned with the Iapetus suture. We speculate therefore that in this region the Iapetus suture was reactivated as a transform fault. As others before us, we find no correlation of suture and break-up age. Often continental break-up occurs some hundreds of Myrs after collision, but it may also take over 1000 Myr, as for example for Australia - Antarctica and Congo - São Francisco. This places serious constraints on potential collision zone weakening mechanisms. Several studies have pointed to a link between continental break-up and large-scale mantle upwellings. It is, however, much debated whether plumes use existing rifts as a pathway, or whether plumes play an active role in causing rifting. We find a positive

  6. 75 FR 61512 - Outer Continental Shelf Official Protraction Diagrams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Outer Continental Shelf Official Protraction Diagrams (OPDs) located within Atlantic Ocean areas, with... Bureau of Ocean Energy Management, Regulation and Enforcement Outer Continental Shelf Official Protraction Diagrams AGENCY: Bureau of Ocean Energy Management, Regulation and Enforcement, Interior....

  7. Amundsen Sea sector ice shelf thickness, melt rates, and inland response from annual high-resolution DEM mosaics

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Alexandrov, O.; Moratto, Z.; Porter, C. C.; Morin, P. J.

    2014-12-01

    Significant grounding line retreat, acceleration, and thinning have occurred along the Amundsen Sea sector of West Antarctica in recent decades. These changes are driven primarily by ice-ocean interaction beneath ice shelves, but existing observations of the spatial distribution, timing, and magnitude of ice shelf melt are limited. Using the NASA Ames Stereo Pipeline, we generated digital elevation models (DEMs) with ~2 m posting from all ~450 available WorldView-1/2 along-track stereopairs for the Amundsen Sea sector. A novel iterative closest point algorithm was used to coregister DEMs to filtered Operation IceBridge ATM/LVIS data and ICESat-1 GLAS data, offering optimal sub-meter horizontal/vertical accuracy. The corrected DEMs were used to produce annual mosaics for the entire ~500x700 km region with focused, sub-annual products for ice shelves and grounding zones. These mosaics provide spatially-continuous measurements of ice shelf topography with unprecedented detail. Using these data, we derive estimates of ice shelf thickness for regions in hydrostatic equilibrium and map networks of sub-shelf melt channels for the Pine Island (PIG), Thwaites, Crosson, and Dotson ice shelves. We also document the break-up of the Thwaites ice shelf and PIG rift evolution leading up to the 2013 calving event. Eulerian difference maps document 2010-2014 thinning over fast-flowing ice streams and adjacent grounded ice. These data reveal the greatest thinning rates over the Smith Glacier ice plain and slopes beyond the margins of the fast-flowing PIG trunk. Difference maps also highlight the filling of at least two subglacial lakes ~30 km upstream of the PIG grounding line in 2011. Lagrangian difference maps reveal the spatial distribution of ice shelf thinning, which can primarily be attributed to basal melt. Preliminary results show focused ice shelf thinning within troughs and large basal channels, especially along the western margin of the Dotson ice shelf. These new data

  8. Structure of continental margin off Mid-Atlantic states (Baltimore Canyon Trough)

    USGS Publications Warehouse

    Schlee, John Stevens; Behrendt, John Charles; Mattick, Robert E.; Taylor, P.T.

    1975-01-01

    Increasing interest in the Atlantic continental margin as a future petroleum province has resulted in several recent papers (Emmerich, 1974; Burk and Drake, 1974) that attempt to summarize the structure and stratigraphic framework of this area. Most papers tend to portray the margin as a wedge of Mesozoic and Cenozoic sediment that thins at the edge of the shelf over a "basement ridge" and then thickens again under the continental rise. Off the northeastern United States, the sediment wedge under the shelf attains a thickness of 8-11 km in the Georges Bank basin (Schultz and Glover, 1974; Mattick and others, 1974; Sheridan, 1974b; Behrendt and others, 1974) and 12 km in thickness in the Baltimore Canyon trough off the middle Atlantic states of Delaware, Maryland, Virginia and New Jersey (fig. 1). Seaward of the continental shelf and its sediment prism, Emery and Uchupi (1972, figs. 133-135) infer slump deposits (eroded in some areas) covering a buried ridge thought to extend from the Laurentian Channel to Cape Hatteras, where it splits in two. The lower slope and continental rise are inferred by Drake and later investigators to be a thick prism of deep sea sediment (turbidites, hemipelagic clays, slump deposits) overlying oceanic basement in a welt that parallels the continental edge and reaches a maximum thickness of 6 km (Emery and Uchupi, 1972, fig. 188).

  9. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  10. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  11. The character of the glaciated Mid-Norwegian continental margin

    NASA Astrophysics Data System (ADS)

    Oline Hjelstuen, Berit; Haflidason, Haflidi; Petter Sejrup, Hans

    2010-05-01

    During Pleistocene the development of the NW European continental margin was strongly controlled by the variability in ocean circulation, glaciations and sea-level changes. Repeated occurrence of shelf edge glaciations, from Ireland to Svalbard, started at Marine Isotope Stage 12 (c. 0.5 Ma). During these periods, fast moving ice streams also crossed the Mid-Norwegian continental shelf on a number of locations, and a thick prograding wedge accumulated on the continental slope. During shelf edge glaciations and in early deglaciation phases high sedimentation rates (>2000 cm/ka) existed, and glacigenic debris flows and melt water plumes were deposited. Within these depositional environments we identify three slide events. These slides have affected an area between 2900 and 12000 km2 and involved 580-2400 km3 of sediments, noting that the slide debrites left by the failure events reach a maximum thickness of c. 150 m. The failures have occurred within an area dominated by gradients less than 1 degree, and observation of long run-out distances indicate that hydroplaning was important during slide development. Gas hydrate bearing sediments are identified on the mid-Norwegian continental margin, but appears to be absent in the slide scars. Thus, dissociation of gas hydrates may have promoted conditions for the failures to occur. Within the region of gas hydrate bearing Pleistocene sediments the Nyegga Pockmark Field is observed. This field contains more than 200 pockmarks and is located at a water depth of 600-800 m. The pockmarks identified are up to 15 m deep, between 30 m and 600 m across and reach a maximum area of c. 315 000 m2. The pockmarks are sediment-empty features and are restricted to a <16.2 cal ka BP old sandy mud unit. It seems that the Nyegga Pockmark Field does not show any strong relationship neither to seabed features, sub-seabed structures nor the glacial sedimentary setting. Thus, this implies a more complex development history for the Nyegga

  12. Asymmetry and polarity of the South Atlantic conjugated margins related to the presence of cratons: a numerical study

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Pérez-Gussinyé, Marta; de Monserrat Navarro, Albert; Morgan, Jason P.

    2015-04-01

    Tectonic asymmetry of conjugated passive margins, where one margin is much narrower than the conjugate one, is commonly observed at many passive margins world-wide. Conjugate margin asymmetry has been suggested to be a consequence of lateral changes in rheology, composition, temperature gradient or geometries of the crust and lithosphere. Here we use the South Atlantic margins (from Camamu/Gabon to North Santos/South Kwanza) as a natural laboratory to understand conjugate margin asymmetry. Along this margin sector the polarity of the asymmetry changes. To the North, the Brazilian margin developed in the strong Sao Francisco craton, and this constitutes the narrow side of the conjugate pair. To the South, the Brazilian margin developed in the Ribeira fold belt, and the margin is wide. The opposite is true for the African side. We have thus numerically analysed how the relative distance between the initial location of extension and the craton influences the symmetry/asymmetry and polarity of the conjugate margin system. Our numerical model is 2D visco-elasto-plastic and has a free surface, strain weakening and shear heating. The initial set-up includes a cratonic domain, a mobile belt and a transition area between both. We have run tests with different rheologies, thickness of the lithosphere, and weak seeds at different distances from the craton. Results show asymmetric conjugated margins, where the narrower margin is generally the closest to the craton. Our models also allow us to study how the polarity is controlled by the distance between the initial weakness and the craton, and help to understand how the presence of cratonic domains affects the final architecture of the conjugated margins.

  13. Circulation and melting beneath the ross ice shelf.

    PubMed

    Jacobs, S S; Gordon, A L; Ardai, J L

    1979-02-01

    Thermohaline observations in the water column beneath the Ross Ice Shelf and along its terminal face show significant vertical stratification, active horizontal circulation, and net melting at the ice shelf base. Heat is supplied by seawater that moves southward beneath the ice shelf from a central warm core and from a western region of high salinity. The near-freezing Ice Shelf Water produced flows northward into the Ross Sea.

  14. Circulation and melting beneath the ross ice shelf.

    PubMed

    Jacobs, S S; Gordon, A L; Ardai, J L

    1979-02-01

    Thermohaline observations in the water column beneath the Ross Ice Shelf and along its terminal face show significant vertical stratification, active horizontal circulation, and net melting at the ice shelf base. Heat is supplied by seawater that moves southward beneath the ice shelf from a central warm core and from a western region of high salinity. The near-freezing Ice Shelf Water produced flows northward into the Ross Sea. PMID:17734137

  15. Ocean circulation on the North Australian Shelf

    NASA Astrophysics Data System (ADS)

    Schiller, Andreas

    2011-07-01

    The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 10 6 m 3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×10 6 m 3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×10 6 m 3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing.

  16. Elephant teeth from the atlantic continental shelf

    USGS Publications Warehouse

    Whitmore, F.C.; Emery, K.O.; Cooke, H.B.S.; Swift, D.J.P.

    1967-01-01

    Teeth of mastodons and mastodons have been recovered by fishermen from at least 40 sites on the continental shelf as deep as 120 meters. Also present are submerged shorelines, peat deposits, lagoonal shells, and relict sands. Evidently elephants and other large mammals ranged this region during the glacial stage of low sea level of the last 25.000 years.

  17. Seasonal variability on the West Florida Shelf

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert H.

    2012-10-01

    The seasonal variations of the West Florida Continental Shelf (WFS) circulation and sea level are described using observations of velocity from an array of moored acoustic Doppler current profilers and various ancillary data. With record lengths ranging from 3 years to over a decade, a robust seasonal cycle in velocity is found, which varies across the shelf in a dynamically sensible way. Over most of the inner shelf these seasonal variations are primarily in response to local forcing, through Ekman-geostrophic spin-up, as previously found for the synoptic scale variability. Thus the inner shelf circulation is predominantly upwelling favorable from fall to spring months (October-April) and downwelling favorable during summer months (June-September). Seaward from about the 50 m isobath, where baroclinicity becomes of increasing importance, the seasonal variations are less pronounced. Over the outer shelf and near the southwestern end of the WFS, the seasonal variations are obscured by the deep ocean influences of the Gulf of Mexico Loop Current and its eddies. The seasonal variations in sea level are also robust. But unlike the velocity, these extend across the entire WFS and into the deep Gulf of Mexico. These seasonal sea level variations arise from two influences, one static, the other dynamic. The static influence projects onto the WFS by the static seasonal rise and fall of the Gulf of Mexico sea level due to heating and cooling (also occurring on the shelf). On climatological average, this ranges by about 0.12 m, with a minimum in February and a maximum in August and deriving primarily from the density variations over the upper 100 m of the water column. Such climatologically averaged variation due to temperature and salinity is also seen in satellite altimetry. An additional dynamic influence of about 0.06 m occurs over the inner shelf by the Ekman-geostrophic spin up to the seasonally varying winds. Together, the static and dynamic ocean responses result in

  18. Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nicholls, K. W.; Padman, L.; Schröder, M.; Woodgate, R. A.; Jenkins, A.; ØSterhus, S.

    2003-08-01

    We use new data from the southern Weddell Sea continental shelf to describe water mass conversion processes in a formation region for cold and dense precursors of Antarctic Bottom Water. The cruises took place in early 1995, 1998, and 1999, and the time series obtained from moored instruments were up to 30 months in length, starting in 1995. We obtained new bathymetric data that greatly improve our definition of the Ronne Depression, which is now shown to be limited to the southwestern continental shelf and so cannot act as a conduit to northward flow from Ronne Ice Front. Large-scale intrusions of Modified Warm Deep Water (MWDW) onto the continental shelf occur along much of the shelf break, although there is only one location where the MWDW extends as far south as Ronne Ice Front. High-Salinity Shelf Water (HSSW) produced during the winter months dominates the continental shelf in the west. During summer, Ice Shelf Water (ISW) exits the subice cavity on the eastern side of the Ronne Depression, flows northwest along the ice front, and reenters the cavity at the ice front's western limit. During winter the ISW is not observed in the Ronne Depression north of the ice front. The flow of HSSW into the subice cavity via the Ronne Depression is estimated to be 0.9 ± 0.3 Sv. When combined with inflows along the remainder of Ronne Ice Front (reported elsewhere), sufficient heat is transported beneath the ice shelf to power an average basal melt rate of 0.34 ± 0.1 m yr-1.

  19. Cretaceous shelf-sea chalk deposits

    SciTech Connect

    Hattin, D.E.

    1988-01-01

    The word ''chalk'' is linked etymologically to the Cretaceous, but chalky facies neither dominate that system nor are confined to it. As used commonly, the term ''chalk'' refers to a variety of marine limestone that is white to light gray very fine grained, soft and friable, porous, and composed predominantly of calcitic skeletal remains, especially those derived from coccolithophores. No simple definition suffices to embrace all Cretaceous chalks, which include sandy, marly, shelly, phospatic, glauconitic, dolomitic, pyritic and organic-rich lithotypes. Most of the world's exposed Cretaceous chalk deposits were formed at shelf depths rather than in the deep sea. Cretaceous shelf-sea chalks are developed most extensively in northern Europe, the U.S. Gulf Coastal Plain and Western Interior, and the Middle East, with lesser occurrences alo in Australia. Most Cretaceous shelf-sea chalks formed in the temperature zones, and in relatively deep water. Cretaceous chalks deposited on well-oxygenated sea floors are bioturbated and massive where deficient in terrigenous detritus, or bioturbated and rhythmically interbedded with argillaceous units where influx of terrigenous detritus varied systematically with climate changes. Accumulation of sufficient pelagic mud to form vast deposits of Cretaceous shelf-sea chalk required (1) sustained high productivity of calareous plankton, (2) extensive development of stable shelf and continental platform environments, (3) highstands of seal level, (4) deficiency of aragonitic skeletal material in chalk-forming sediments, and (5) low rates of terrigenous detrital influx. These conditions were met at different times in different places, even within the same general region.

  20. Numerical simulations of groundwater flow at New Jersey Shallow Shelf

    NASA Astrophysics Data System (ADS)

    Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke

    2016-04-01

    During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.

  1. Surficial sediments along the inner Continental shelf of Maine

    USGS Publications Warehouse

    Kelley, J.T.; Dickson, S.M.

    1999-01-01

    Through 10 years of support from the Minerals Management Service-Association of American State Geologists' Continental Margins Program we have mapped along the Maine coast, seaward to the 100 m isobath. In all, 1,773 bottom sample stations were occupied, 3,358 km of side-scan sonar and 5,011 km of seismic reflection profiles were gathered. On the basis of these data, a surficial sediment map was created for the Maine inner continental shelf during the Year 8 project, and cores and seismic data were collected to evaluate sand thickness during Years 9 and 10. Sand covers only 8% of the Maine shelf, and is concentrated seaward of beaches off southern Maine in water depths less than 60 m. Sand occurs in three depositional settings: (1) in shoreface deposits connected dynamically to contemporary beaches; (2) in submerged deltas associated with lower sea-level positions; and (3) in submerged lowstand shoreline positions between 50 and 60 m. Seismic profiles over the shoreface off Saco Bay, Wells Embayment, and off the Kennebec River mouth each imaged a wedge-shaped acoustic unit which tapered off between 20 and 30 m. Cores determined that this was sand that was underlain by a variable but thin (commonly < 1 m) deposit of estuarine muddy sand and a thick deposit of glacial-marine mud. Off Saco Bay, more than 55 million m3 of sand exists in the shoreface, compared with about 22 million m3 on the adjacent beach and dunes. Seaward of the Kennebec River, a large delta deposited between 13 ka and the present time holds more than 300 million m3 of sand and gravel. The best sorted sand is on the surface nearshore, with increasing amounts of gravel offshore and mud beneath the surficial sand sheet. Bedforms indicate that the surficial sand is moved by waves to at least 55 m depth. Seaward of the Penobscot River, no significant sand or gravel was encountered. Muddy estuarine sediments overlie muddy glacial-marine sediment throughout the area offshore area of this river. No

  2. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice

  3. Stratigraphical links between Miocene Alpine Foreland basin and Gulf of Lion Passive Margin during lowstands

    NASA Astrophysics Data System (ADS)

    Rubino, Jean-Loup; Gorini, Christian; Leroux, Estelle; Aslanian, Daniel; Rabineau, Marina; Parize, Olivier; Besson, David

    2015-04-01

    Miocene peri-alpine foreland basin is connected toward the south with the Gulf of Lion passive margin and is predominantly filled by marine shallow water molassic deposits ranging from lower Miocene to Pliocene in age. Nine to ten depositional sequences are recorded and partly preserved in this basin and can be traced into the post rift part of the Gulf of Lion. One of the most surprising feature of the stratigraphic infill is the total lack of lowstand deposits within the foreland basin ; All superimposed sequences only includes transgressive and highstand System Tracts separated by erosional sequence boundaries and the development of incised valley networks filled by tidal deposits during transgression; Besson et al. 2005. It means that the entire foreland basin in SE France is exposed during lowstand periods without any preservation of fluvial deposits. By place few forced regression wedges are preserved at the transition between the foreland and the passive margin, close to the present day coastline. To date no real lowstand wedges have never been reported in the offshore of the Gulf of Lion. A reinterpretation of the best old vintage 2D dip seismic profiles along the passive margin validates the idea that the foreland basin is entirely exposed as well as the proximal part of the passive margin; first because some incised valleys can be occasionally picked on the shelf and second mainly because well defined superimposed or juxtaposed prograding lowstand wedges with nicely defined clinoforms onlapping the sequence boundaries can be recognized on the distal part of the shelf from the Burdigalian to the Messinian. Their ages being constrains by the Calmar well calibration. Unfortunately, they can't be continuously mapped all along the shelf break because of the strong erosion related to the Messinian Unconformity and the associated huge sea level fall.So we have to explain why during the lowstands, exceptionally long fluvial valley networks (more than 300km) can

  4. Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt-sized sediment, Canterbury Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Villaseñor, Tania; Jaeger, John M.; Foster, David A.

    2016-01-01

    Quaternary climatic and eustatic cycles in mid-latitude regions have led to more extensive alpine glaciations and continental shelf progradation, respectively. However, the glacial influence on sediment fluxes to the ocean creating continental margin strata is poorly documented. This contribution analyzes the provenance of fine sediment accumulating on the continental shelf during the Late Pleistocene to evaluate the influence of glacial cycles on sediment erosion and routing to the continental shelf. Taking advantage of the contrasting bedrock ages exposed across the Southern Alps, New Zealand, we perform 40Ar/39Ar incremental heating on the bulk silt-size sediment from three drill sites of IODP Expedition 317, Canterbury Basin, New Zealand. The results suggest that a large proportion of sediment accumulating on the continental shelf results from erosion within the Main Divide fault zone of the Southern Alps. Sediment 40Ar/39Ar age fluctuations over this time period suggest that bedrock with various 40Ar/39Ar cooling ages has been differentially eroded in the upper Waitaki River catchment and mixed in the Waitaki-Canterbury sediment-routing system. Across-shelf variations in sediment 40Ar/39Ar age reflect changing modes of sediment dispersal on the continental shelf. Fluvial material, likely derived from the main drainage divide zone, preferentially accumulates in the middle continental shelf, whereas material representing erosion of older bedrock (Torlesse Terrane), located lower in the drainage basin, is dispersed uniformly across the shelf. The age signature of the muddy sediment accumulating on the continental shelf reflects Late Pleistocene landscape evolution of the Southern Alps and its influence on sediment dispersal to the continental shelf.

  5. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  6. Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA

    USGS Publications Warehouse

    Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J.

    2010-01-01

    Seismic and core data, combined with amino acid racemization and strontium-isotope age data, enable the definition of the Quaternary stratigraphic framework and recognition of geologic controls on the development of the modern coastal system of North Carolina, U.S.A. Seven regionally continuous high amplitude reflections are defined which bound six seismic stratigraphic units consisting of multiple regionally discontinuous depositional sequences and parasequence sets, and enable an understanding of the evolution of this margin. Data reveal the progressive eastward progradation and aggradation of the Quaternary shelf. The early Pleistocene inner shelf occurs at a depth of ca. 20-40 m beneath the western part of the modern estuarine system (Pamlico Sound). A mid- to outer shelf lowstand terrace (also early Pleistocene) with shelf sand ridge deposits comprising parasequence sets within a transgressive systems tract, occurs at a deeper level (ca. 45-70 m) beneath the modern barrier island system (the Outer Banks) and northern Pamlico Sound. Seismic and foraminiferal paleoenvironmental data from cores indicate the occurrence of lowstand strandplain shoreline deposits on the early to middle Pleistocene shelf. Middle to late Pleistocene deposits occur above a prominent unconformity and marine flooding surface that truncates underlying units, and contain numerous filled fluvial valleys that are incised into the early and middle Pleistocene deposits. The stratigraphic framework suggests margin progradation and aggradation modified by an increase in the magnitude of sea-level fluctuations during the middle to late Pleistocene, expressed as falling stage, lowstand, transgressive and highstand systems tracts. Thick stratigraphic sequences occur within the middle Pleistocene section, suggesting the occurrence of high capacity fluvial point sources debouching into the area from the west and north. Furthermore, the antecedent topography plays a significant role in the evolution

  7. Structural design/margin assessment

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1993-01-01

    Determining structural design inputs and the structural margins following design completion is one of the major activities in space exploration. The end result is a statement of these margins as stability, safety factors on ultimate and yield stresses, fracture limits (fracture control), fatigue lifetime, reuse criteria, operational criteria and procedures, stability factors, deflections, clearance, handling criteria, etc. The process is normally called a load cycle and is time consuming, very complex, and involves much more than structures. The key to successful structural design is the proper implementation of the process. It depends on many factors: leadership and management of the process, adequate analysis and testing tools, data basing, communications, people skills, and training. This process and the various factors involved are discussed.

  8. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ˜20 km of the shelf break by ˜24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ˜22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ˜24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (˜150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several readvances

  9. An assessment of vertical mixing schemes in comparison with observations in the European shelf.

    NASA Astrophysics Data System (ADS)

    Luneva, Maria; Holt, Jason; Pelling, Holly; Palmer, Mathew; Polton, Jeff; Wakelin, Sarah

    2016-04-01

    An assessment of vertical mixing schemes in comparison with observations in the European shelf. Maria Luneva, Jason Holt, , Holly Pelling, Mathew Palmer, Jeff Polton ,Sarah Wakelin. Using the NEMO-shelf model of the Atlantic Marginal Domain with 7km resolution (AMM7) we examine 5 different turbulent closures structural functions, based on the k-epsilon version of the Generic Length Scale Model: Galperin,1988 type closure ,two models by the Canuto group (2001, ab), two by Kantha and Clayson (1994,2004). The AMM7 model realistically reproduces tides and shelf sea processes in the upper and benthic layers, depth of mixed layer and pycnocline. The results have been compared with scanfish temperature sections and direct turbulence observations during 1998-2009All models show high correlations of pycnocline depth and bottom temperature with observations in, however 'less diffusive' Kantha Clayson and Galperin models have much smaller biases in bottom temperature, while more diffusive Canuto models better predicts pycnocline depth. All models underestimate dissipation rate of turbulent kinetic energy in the mixed layer and pycnocline at least by an order and have good agreement with observations in the bottom boundary layer. We discuss the effects of Stock's drift velocity and Langmure circulations in the upper layer and internal waves in pycnocline. Using algebraic equations for third order turbulence moment s we derive parameterisation for non-local terms in TKE equation and discuss asymptotical solutions in a shallow Stokes layer.

  10. Benthic foraminifers on the continental shelf and upper slope, Russian River area, northern California ( USA).

    USGS Publications Warehouse

    Quinterno, P.J.; Gardner, J.V.

    1987-01-01

    We analyzed benthic foraminifers from 71 surface samples collected from the sea floor of the continental margin. One hundred and six different taxa were identified, and Q-mode factor analysis was used to identify assemblages. Six foraminiferal assemblage factors explain 94% of the variation in the data matrix. The Inner Shelf Assemblage is characterized by Trichohyalus ornatissima, Rotalia columbiensis, Cassidulina limbata, Cibicides fletcheri, Elphidiella hannai and Elphidium sp. 1 and occupies water depths less than 50 m. The Middle Shelf Assemblage is characterized by Nonionella basispinata, Elphidium excavatum and Florilus labradoricus and occupies water depths between 50 and 90 m. A Middle Shelf to Upper Bathyal Assemblage is characterized by Uvigerina juncea, Globobulimina spp. and Nonionella basispinata and occupies depths between about 90 and 450 m. Two overlapping assemblages make up the Upper Middle Bathyal Assemblage and are most abundant between water depths of 500 and 1300 m. They are associated with low- oxygen conditions. The Mid-Bathyal Assemblage is dominated by Uvigerina proboscidea and occurs on the slope at water depths ranging from 1200 to 2500 m. -from Authors

  11. Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian Sea shelf

    NASA Astrophysics Data System (ADS)

    Gupta, G. V. M.; Sudheesh, V.; Sudharma, K. V.; Saravanane, N.; Dhanya, V.; Dhanya, K. R.; Lakshmi, G.; Sudhakar, M.; Naqvi, S. W. A.

    2016-01-01

    Observations along 10 shelf transects in 2012 near 10°N in the southeastern Arabian Sea revealed the usual warm oligotrophic conditions during the winter monsoon and upwelling of oxygen-deficient, nutrient-rich cool water during the summer monsoon (SM). By changing an oligotrophic to a nutrient-replete condition, the upwelling is the major process that regulates the biogeochemistry of this shelf. Its onset is perceptible at 100 m depth between January and March. The upwelling reaches the surface layer in May and intensifies during June-July but withdraws completely and abruptly by October. Despite the nutrient injection, the primary production during SM, integrated for euphotic zone, is comparable to that during the preceding spring intermonsoon (SIM). Again, as usual, the high oxygen demand coupled with low concentration in the upwelled subsurface waters causes severe oxygen depletion below the shallow pycnocline. The oxygen concentrations/saturations of 2012 on the midshelf are similar from those of mid-1958 to early 1960, except for marginally higher values during the peak upwelling period due to relatively weak upwelling in 2012. This implies little anthropogenic influence on coastal hypoxia unlike many other coastal regions. In 2012, the inner shelf system shifted from net autotrophy in SIM to net heterotrophy in SM but on an annual basis it was net autotrophic (gross primary production to community respiration ratio, GPP/R:1.11 ± 0.84) as organic production exceeded consumption.

  12. [Marginality, ethnic groups and health].

    PubMed

    Corretger, J M; Fortuny, C; Botet, F; Valls, O

    1992-06-01

    Main marginated ethnic groups in Span are to be found among gypsies and 3rd world immigrants. The first group include about 250,000 persons and the second group more tan half a million people. Their origins and their being past of the less fortunate social layers made them a group of health risk. Pediatric pathologies are those favored by socio-economic shortcomings as well as hygienic-sanitary deficiencies. Imported pediatric pathologies have a small incident.

  13. Paleogeographic evolution of early deep-water Gulf of Mexico and margins, Jurassic to middle Cretaceous (Comanchean)

    SciTech Connect

    Winker, C.D.; Buffler, R.T.

    1988-03-01

    The paleobathymetric configuration of the early Gulf of Mexico is inferred from (1) Cretaceous carbonate shelf margins interpreted from seismic profiles and other stratigraphic data; (2) distribution of Jurassic and Cretaceous platform and basinal facies; and (3) hindcasting of subsidence history in the central basin. Substantial paleogeographic ambiguity results from uncertainty about (1) kinematics and timing of Late Triassic to Jurassic extensional opening of the Gulf basin, which probably involved major strike-slip faulting, (2) the magnitude of subsequent compressive deformation on the western and southern basin margins, and (3) possible accretion of allochthonous terranes. 18 figures, 3 tables.

  14. Simulating Sediment Delivery to and Accumulation on the Poverty Shelf, New Zealand

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Gomez, B.; Syvitski, J. P.; Hutton, E. W.

    2006-12-01

    The 2203 km2 Waipaoa and 312 km2 Waimata river basins which lie within the north-central sector of the tectonically active East Coast Continental Margin, North Island, New Zealand, annually deliver ~16 Mt of suspended sediment to Poverty Bay and the adjacent Poverty Shelf. This region has experienced four magnitude >7 earthquakes and been blanketed by ash from one of the most violent and explosive volcanic eruptions known in the past 2.5 kyr. Natural fires and severe storms also periodically disturbed the native vegetation prior to the arrival of Polynesian settlers in the thirteenth century A.D., but their activities had little effect on erosion rates and the very high contemporary rate of sediment discharge is a product of deforestation, which occurred after European colonists arrived in the nineteenth century A.D. We used an integrated suite of numerical models run with daily time steps to examine the effect these events had on basin sediment yield and the sedimentary record preserved on the Poverty Shelf, which represents the major repository of the fluvial sediment discharged throughout the past 8 kyr. We used HydroTrend, which is a numerical model that creates synthetic river discharge and sediment load time series over centuries or millennia as a function of climate and basin morphology, to reconstruct the suspended sediment discharge of the Waipaoa and Waimata rivers during the past 3 kyr. Our simulations suggest that, under the indigenous forest cover, a 10% increase in precipitation is associated with a 5% increase in suspended sediment discharge, and that the disturbance to the vegetation cover by ashfall during the Taupo eruption caused an 80% increase in suspended sediment discharge. The piecemeal disturbances that occurred after Polynesian arrival and the earliest European clearances had a minimal impact on suspended sediment discharge, but the subsequent clearances in the headwaters caused suspended sediment discharge to increase by 850%. The

  15. Simulations of Debris-Flow Dominated Margins with Relevance to Morphologic Evolution of Trough-Mouth Fans

    NASA Astrophysics Data System (ADS)

    O'Grady, D. B.; Syvitski, J. P.

    2001-12-01

    Large-scale morphology of glacier-fed continental slopes is influenced by the rate and method of sediment delivery to the slope through time. Slopes fed by fast flowing ice streams (i.e. at trough-mouth fans) and dominated by debris flow deposition exhibit a morphology that is inherently different from other types of glacial margins. Empirical analyses suggest that the average gradient of a trough mouth fan is related to the width of the adjacent continental shelf and, correlatively, to the amount of sediment delivered to the margin by the ice stream. This gradient relationship is not observed for other polar margins. A process-based stratigraphic model (SedFlux) is used to examine the evolution of debris-flow dominated continental slopes under differing boundary conditions and flow properties. Margins are simulated as building from initial bathymetry of a simple shelf-slope-rise configuration. The angle of the continental slope varies between simulations ranging from 1 to 10 degrees. In addition to boundary conditions, the kinematic viscosity (0.0001 m2/s to 0.1 m2/s) and yield strength (1 pa to 500 pa) of the debris flows varies between model runs. The changing morphology of the margin is tracked by measuring the gradient of the margin profile throughout the simulation. Also tracked are the runout distances of the flows and their deposit thickness. Hydroplaning debris flows are not explicitly modeled but are approximated by implementing very low viscosities. Results show that basin depth influences the runout length of debris flows and subsequently the length of the margin slope. The rate of sediment input influences the number and frequency of slope failures leading to debris flows although the overall morphology does not change in response to sediment input rate. All simulations show an evolution of profile morphology as the margin progrades outward, with the continental slope becoming less steep through time. This morphologic evolution is coupled with a

  16. Structural framework, stratigraphy, and evolution of Brazilian marginal basins

    SciTech Connect

    Ojeda, H.A.O.

    1982-06-01

    The structural framework of the Brazilian continental margin is basically composed of eight structural types: antithetic tilted step-fault blocks, synthetic untilted step-fault blocks, structural inversion axes, hinges with compensation grabens, homoclinal structures, growth faults with rollovers, diapirs, and igneous structures. The antithetic tilted and synthetic untilted step-fault blocks are considered as synchronous, complementary structural systems, separated by an inversion axis. Two evaporitic cycles (Paripueira and Ibura) were differentiated in the Sergipe-Alagoas type basin and tentatively correlated to the evaporitic section of other Brazilian marginal basis. Four phases are considered in the evolution of the Brazilian marginal basins: pre-rift, rift, transitional, and drift. During the pre-rift phase (Late Jurassic-Early Cretaceous), continental sediments were deposited in peripheral intracratonic basins. In the rift phase (Early Cretaceous), the breakup of the continental crust of the Gondwana continent gave rise to a central graben and rift valleys where lacustrine sediments were deposited. The transitional phase (Aptian) developed under relative tectonic stability, when evaporitic and clastic lacustrine sequences were being deposited. In the drift phase (Albian to Holocene), a regionl homoclinal structure developed, consisting of two distinct sedimentary sequences, a lower clastic-carbonate and an upper clastic. From the Albian to the Holocene Epoch, structures associated to plastic displacement of salt or shale developed in many Brazilian marginal basins. Two phases of major igneous activity occurred: one in the Early Cretaceous associated with the rift phase of the Gondwana continent, and the other in the Tertiary during the migration phase of the South American and African plates.

  17. Tectonic structure and evolution of the Atlantic continental margin

    SciTech Connect

    Klitgord, K.D.; Schouten, H.; Hutchinson, D.R.

    1985-01-01

    The Atlantic continental margin developed across the boundary between continental and oceanic crust as rifting and then sea-floor spreading broke apart and separated the North American and African plates, forming the Atlantic Ocean Basin. Continental rifting began in Late Triassic with reactivation of Paleozoic thrust faults as normal faults and with extension across a broad zone of subparallel rift basins. Extension became localized in Early to Middle Jurassic along the zone that now underlies the large marginal basins, and other rift zones, such as the Newark, Hartford, and Fundy basins, were abandoned. Rifting and crustal stretching between the two continents gave way to sea-floor spreading Middle Jurassic and the formation of oceanic crust. This tectonic evolution resulted in formation of distinctive structural features. The marginal basins are underlain by a thinner crust and contain a variety of fault-controlled structures, including half-grabens, seaward- and landward-tilted blocks, faults that die out within the crust, and faults that penetrate the entire crust. This variable structure probably resulted from the late Triassic-Early Jurassic pattern of normal, listric, and antithetic faults that evolved from the Paleozoic thrust fault geometry. The boundary between marginal basins and oceanic crust is marked approximately by the East Coast Magnetic Anomaly (ECMA). A major basement fault is located in the Baltimore Canyon trough at the landward edge of the ECMA and a zone of seaward dipping reflectors is found just seaward of the ECMA off Georges Bank. The fracture zone pattern in Mesozoic oceanic crust can be traced landward to the ECMA.

  18. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  19. The Northeast Greenland Shelf - Evidence of the existence of a pronounced salt-province

    NASA Astrophysics Data System (ADS)

    Schmitz, T.; Jokat, W.

    2003-04-01

    The Northeast Greenland shelf (NEGS) is the part of the continental margin of east Greenland located between the Jan Mayen Fracture Zone at about 72°N in the south and the Spitzbergen Fracture Zone at 81°N in the north. The eastern boundary, at the shelf edge, is the approximate position of the boundary between continental and oceanic crust and the western boundary is the coastline of Greenland. The shelf has a N-S orientation, is about 1000 km long, and between 125 km (southern part) and 380 km (at 78°N) wide. Based on present data the NEGS can be subdivided into a southern part influenced by Tertiary tectonism and volcanism (approx. 72°N to 75°N) and a northern, nonvolcanic, part (approx. 75°N to 81°N). Today the sedimentary history, stratigraphy, structure and origin of the basement below the sedimentary shelf south of 74°N are reasonable known, but only sparse information exists about the northern part of the shelf. Until 1990 there weren't any seismic lines north of 74°N, and all interpretations of stratigraphy and basin structures of the northern part of the NEGS were based on aeromagnetic data. During the last decade, the first seismic lines were shot over the northern part of the shelf to give more detailed information about sediment thickness, stratigraphy, and the structure of the sedimentary shelf. The area under investigation lies on the nonvolcanic northern part of the shelf between 78°30'N and 81°N. The sea floor topography indicates some submarine banks with water depth as shallow as 30 m, which are separated by valleys up to 500 m deep. These valleys were formed through erosion processes caused by cyclic movements of big grounded glacier tongues during the last ice-ages with a maximum expansion during the Wisconsin-Weichselian glaciation. During two scientific expeditions with the German research icebreaker Polarstern in 1997 and 1999, more than 1100 km of multichannel seismic data were collected. The cruise tracks during seismic

  20. Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica

    NASA Astrophysics Data System (ADS)

    Christie, Frazer D. W.; Bingham, Robert G.; Gourmelen, Noel; Tett, Simon F. B.; Muto, Atsuhiro

    2016-06-01

    Changes to the grounding line, where grounded ice starts to float, can be used as a remotely sensed measure of ice-sheet susceptibility to ocean-forced dynamic thinning. Constraining this susceptibility is vital for predicting Antarctica's contribution to rising sea levels. We use Landsat imagery to monitor grounding line movement over four decades along the Bellingshausen margin of West Antarctica, an area little monitored despite potential for future ice losses. We show that ~65% of the grounding line retreated from 1990 to 2015, with pervasive and accelerating retreat in regions of fast ice flow and/or thinning ice shelves. Venable Ice Shelf confounds expectations in that, despite extensive thinning, its grounding line has undergone negligible retreat. We present evidence that the ice shelf is currently pinned to a sub-ice topographic high which, if breached, could facilitate ice retreat into a significant inland basin, analogous to nearby Pine Island Glacier.

  1. The three scales of submarine groundwater flow and discharge across passive continental margins

    USGS Publications Warehouse

    Bratton, J.F.

    2010-01-01

    Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0-10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacioeustatic change in sea level. ?? 2010 by The University of Chicago. All rights reserved.

  2. Astronomy for African development

    NASA Astrophysics Data System (ADS)

    Govender, Kevindran

    2011-06-01

    In recent years there have been a number of efforts across Africa to develop the field of astronomy as well as to reap benefit from astronomy for African people. This presentation will discuss the case of the SALT (Southern African Large Telescope) Collateral Benefits Programme (SCBP) which was set up to ensure societal benefit from astronomy. With African society as the target, the SCBP has embarked on various projects from school level education to public understanding of science to socio-economic development, the latter mainly being felt in the rural communities surrounding the South African Astronomical Observatory (home to SALT). A development plan for ``Astronomy in Africa'' will also be discussed. This plan has been drawn up with input from all over Africa and themed ``Astronomy for Education''. The Africa case stands as a good example for the IYA cornerstone project ``Developing Astronomy Globally'' which focuses on developing regions.

  3. African American Health

    MedlinePlus

    ... specific health concerns. Differences in the health of groups can result from Genetics Environmental factors Access to care Cultural factors On this page, you'll find links to health issues that affect African Americans.

  4. African American Suicide

    MedlinePlus

    ... accounted for 83.8% of Caucasian elderly suicides. • Firearms were the predominant method of suicide among African ... per 100,000 annually. Source: Centers for Disease Control and Prevention. National Vital Statistics System. Mortality Data. ...

  5. Neoproterozoic-Early Paleozoic rifting of the craton margin in eastern Kentucky: Evidence from subsidence analysis

    SciTech Connect

    Goodman, P.T. . Dept. of Geological Sciences); Walker, D. )

    1992-01-01

    Analysis of subsidence along the craton margin in eastern Kentucky indicates a Neoproterozoic to Early through Middle Cambrian rifting event developing on a subsiding passive margin of the Laurentian craton to the Iapetus Ocean. Subsidence associated with rifting is confined to the Rome Trough; an internally broken half-graben within the Laurentian craton; the trough trends sub-parallel to the Appalachian orogenic belt. In cross section the through as an abrupt faulted margin on the carton side and a tapering, gentle extension toward the orogenic belt. The stratigraphic sequence within the Rome Trough and toward the orogen consists of Neoproterozoic or early Cambrian basal sands overlying Grenville basement, and succeeded by silts, shales and discontinuous carbonates of the Rome Fm. that are overlain by shales and carbonates of the Conesauga Fm. Stratigraphic relationships suggest that an out-of-sequence, inboard rift developed along the Laurentian margin adjacent to a drift-phase continental shelf represented by strata of the Blue Ridge and Valley and Ridge. Analysis of the subsidence history of this region reveals trends which support the notion that the subsidence history of this area cannot be accounted for by typical passive-margin development. The subsidence history of the area within the Rome Trough presents a pattern of high thermal subsidence and produces beta values greater than in areas nearer the craton margin. These data indicate that an inboard locus of anomalous crustal extension occurred in the area of the Rome Trough while the remainder of the cratonal margin underwent drift-phase subsidence, and that the timing and magnitude of this event is related to the development of the Iapetan margin.

  6. Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia

    NASA Astrophysics Data System (ADS)

    Dell'Anno, A.; Pusceddu, A.; Corinaldesi, C.; Canals, M.; Heussner, S.; Thomsen, L.; Danovaro, R.

    2013-05-01

    The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.

  7. Moisture and shelf life in sugar confections.

    PubMed

    Ergun, R; Lietha, R; Hartel, R W

    2010-02-01

    From hardening of marshmallow to graining of hard candies, moisture plays a critical role in determining the quality and shelf life of sugar-based confections. Water is important during the manufacturing of confections, is an important factor in governing texture, and is often the limiting parameter during storage that controls shelf life. Thus, an understanding of water relations in confections is critical to controlling quality. Water content, which is controlled during candy manufacturing through an understanding of boiling point elevation, is one of the most important parameters that governs the texture of candies. For example, the texture of caramel progresses from soft and runny to hard and brittle as the moisture content decreases. However, knowledge of water content by itself is insufficient to controlling stability and shelf life. Understanding water activity, or the ratio of vapor pressures, is necessary to control shelf life. A difference in water activity, either between candy and air or between two domains within the candy, is the driving force for moisture migration in confections. When the difference in water activity is large, moisture migration is rapid, although the rate of moisture migration depends on the nature of resistances to water diffusion. Barrier packaging films protect the candy from air whereas edible films inhibit moisture migration between different moisture domains within a confection. More recently, the concept of glass transition, or the polymer science approach, has supplemented water activity as a critical parameter related to candy stability. Confections with low moisture content, such as hard candy, cotton candy, and some caramels and toffees, may contain sugars in the amorphous or glassy state. As long as these products remain below their glass transition temperature, they remain stable for very long times. However, certain glassy sugars tend to be hygroscopic, rapidly picking up moisture from the air, which causes

  8. The Tweeting Ice Shelf: geophysics and outreach

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Berger, Sophie; Drews, Reinhard; Pattyn, Frank

    2015-04-01

    Over the last decade the Antarctic and Greenland ice sheets have contributed about one third of the annual sea level rise (Hanna et al., 2013). However, it remains difficult to reconcile global mass balance estimates obtained from different satellite-based methods. A typical approach is to balance the mass input from atmospheric modelling with the outgoing mass flux at the ice-sheet boundary (Shepherd et al., 2012). The flux calculations at the boundary rely on satellite-derived surface velocities, which are currently only available as snapshots in time, and which need ground truth for validation. Here, we report on continuous, year-round measurements that aim at improving the input-output method in several aspects and carefully map the flow speed allowing for detecting seasonal variability. For this purpose, we set up in December 2014 three stand-alone single-frequency GPSes on the Roi Baudouin ice shelf (East Antarctica). The GPSes are installed across a surface depression (typical for large ice-shelf channels), where subglacial melting is expected. This setup allows us to investigate how these channels behave, i.e., if they become wider, whether or not they enhance the ice flow, and, in combination with an installed phase-sensitive radar, what amount of melting occurs below the channels in contact with the ocean. The GPS data are transmitted on a daily basis. Ice-shelf velocity is derived from the raw hourly location following the methods described in den Ouden et al. (2010), Dunse et al. (2012), and Ahlstrøm et al. (2013). However, a reference station has not been used for the correction. Basic processing involves outliers removal, smoothing, time-series analysis and comparison with tidal models. The project comes alongside an outreach event: on a weekly basis, the ice shelf 'tweets' its position, motion and relays other information with respect to the project. The GPS systems can be followed on Twitter via @TweetinIceShelf as well as the Tweeting Ice Shelf

  9. Integrated geophysical study of Newfoundland continental margin (east coast Canada)

    SciTech Connect

    Enachescu, M.E.

    1987-05-01

    A synergetic approach is used to delineate the tectono-structural framework and establish a model of the geologic evolution of the Newfoundland continental margin. Over 100,000 mi of regional and detailed reflection seismic, various potential field maps and profiles, and selected well information constitute the data base of this study. More than two decades of exploratory effort was recently rewarded by significant oil discoveries contained in the Upper Jurassic-Early Cretaceous sands of the Jeanne d'Arc basin. Although a part of the East Coast North America chain (Florida to Baffin Bay) of passive margin basins, the Jeanne d'Arc basin had a unique intracratonic setting during its development. This prolific hydrocarbon-bearing basin is only one of the structural provinces identified on the Newfoundland Shelf. Other adjacent basins, sediment-covered ridges, platforms, and basement horsts were identified through integration of all available geophysical and geological data. All of the structural provinces defined in this paper are part of an aborted rift system which initially developed in the Late Triassic and was first activated at the end of the Jurassic and then again in Aptian time. Thermal subsidence prevailed during the Late Cretaceous and Tertiary. The extensional history of the Newfoundland passive margin was additionally complicated by intensive salt tectonics. A large 2-D and 3-D seismic base of more than 100,000 mi shows numerous and complex hydrocarbon traps are present, but up to now only the extensional sedimentary cycle has been found to be productive.

  10. African-American lesbian identity management and identity development in the context of family and community.

    PubMed

    Miller, Shannon J

    2011-01-01

    Don't Ask, Don't Tell is gaining attention in family studies literature as a cultural specific context to understand lesbian, gay, and bisexual visibility in African-American families and communities. This policy suggests that sexual minorities are accepted within African-American families and communities as long as they do not label themselves or acknowledge publicly that they engage in same-sex relationships. The narratives of two African-American lesbians (aged 26 and 27 years) are chronicled in the present study to reveal their lesbian identity development, lesbian identity management, and how they defined and navigated Don't Ask, Don't Tell. They encountered challenges and successes in a quest to find communities that would embrace and affirm their multiple marginalized identities. Their stories are offered as a point of entry to further inquiry concerning African-American lesbian visibility and identity proclamation within African-American families and communities.

  11. Seafloor geology of the Monterey Bay area continental shelf

    USGS Publications Warehouse

    Eittreim, S.L.; Anima, R.J.; Stevenson, A.J.

    2002-01-01

    Acoustic swath-mapping of the greater Monterey Bay area continental shelf from Point An??o Nuevo to Point Sur reveals complex patterns of rock outcrops on the shelf, and coarse-sand bodies that occur in distinct depressions on the inner and mid-shelves. Most of the rock outcrops are erosional cuestas of dipping Tertiary rocks that make up the bedrock of the surrounding lands. A mid-shelf mud belt of Holocene sediment buries the Tertiary rocks in a continuous, 6-km-wide zone on the northern Monterey Bay shelf. Rock exposures occur on the inner shelf, near tectonically uplifting highlands, and on the outer shelf, beyond the reach of the mud depositing on the mid-shelf since the Holocene sea-level rise. The sediment-starved shelf off the Monterey Peninsula and south to Point Sur has a very thin cover of Holocene sediment, and bedrock outcrops occur across the whole shelf, with Salinian granite outcrops surrounding the Monterey Peninsula. Coarse-sand deposits occur both bounded within low-relief rippled scour depressions, and in broad sheets in areas like the Sur Platform where fine sediment sources are limited. The greatest concentrations of coarse-sand deposits occur on the southern Monterey Bay shelf and the Sur shelf. ?? 2002 Elsevier Science B.V. All rights reserved.

  12. Architectures of the Moroccan continental shelf of the Alboran Sea: insights from high-resolution bathymetry and seismic data.

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; Gorini, Christian; Leroy, Pascal; d'Acremont, Elia; Rabineau, Marina; Ercilla, Gemma; Alonso, Belén; Ammar, Abdellah

    2016-04-01

    The MARLBORO and the SARAS oceanographic surveys have explored the continental shelf in the vicinity of the transtensive Nekor basin (South Alboran Sea, Western Mediterranean) and over three submarine highs located at several tens of kilometers from the shelf. Those surveys have produced high-resolution (≤29m²/pixel) bathymetry maps. Simultaneously, seismic SPARKER and TOPAS profiles were recorded. To quantify and understand Quaternary vertical motions of this tectonically active area, we searched for morphological and sedimentary paleobathymetric or paleo-elevations markers. Shelf-edge wedges associated marine terraces and paleo-shorelines have been identified on the bathymetry and on seismic cross-sections. These features reflect the trends of long term accommodation variations. Along the Moroccan continental shelf the lateral changes of shelf-edges geometries and the spatial distribution of marine landforms (sedimentary marine terraces, sediment wave fields, marine incisions) reflect the interaction between sea level changes and spatial variations of subsidence rates. Positions of paleo-shorelines identified in the studied area have been correlated with the relative sea-level curve (Rohling et al., 2014). Several still stands or slow stands periods have been recognized between -130-125m, -100-110m and -85-80m. The astronomical forcing controls the architecture of Mediterranean continental shelves. Marine landforms distribution also reveals the way sea level changed since the LGM. The comparison with observations on other western Mediterranean margins (e.g. the Gulf of Lion, the Ionian-Calabrian shelf) allowed a first order access to vertical motion rates.

  13. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    USGS Publications Warehouse

    Ruppel, Carolyn; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-01-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  14. Ebro margins sedimentary system in the western Mediterranean Sea, from delta to deep sea

    SciTech Connect

    Nelson, C.H.; Maldonado, A. )

    1988-08-01

    During Holocene high sea level, delta-front lobes of silty mud have deposited beside a lobate Ebro delta. Topset and foreset beds of these lobes extend up to 20 km offshore in up to 30 m of water. Geostrophic currents advect fine silt and clay from river discharge and storm wave resuspension in the delta front and deposit up to 20 m of bottomset beds in a distal prodelta clay belt formed on the inner to middle shelf for 70 km south from the delta. Intensified water circulation and increased bottom-current speeds inhibit prodelta progradation over the outer shelf and north of the delta and south of the clay belt, where the shelf narrows. Deposition of Holocene hemipelagic mud on the upper slope is restricted, but some modern Ebro sediment apparently bypasses to the deep margin. During Pleistocene low sea level, a series of shelf-edge deltas resulted in extensive progradation of foreset mud beds over the continental slope east of the modern delta and south to the Columbretes Islands. In the north, rapid sediment progradation has resulted in large canyons ({plus minus}5 km wide), unconfined sediment gravity flows, and deposition of large sediment aprons (50 km diameter) downslope from canyon mouths. In the south, narrow canyons ({plus minus}2 km wide) have funneled turbidity currents to side-by-side channel-levee complexes younger and smaller to the southwest. Subsidence of the Valencia trough has facilitated sediment transport from these channel-levee complexes into Valencia Valley and thence to the Valencia fan, 200 km to the northeast. Consequently, during low sea level stands a major portion of Ebro sediment is transported north to the Valencia fan, whereas the main progradational history of the Ebro margin has been offshore and to the south of the present delta.

  15. Submarine geomorphology of the Celtic Sea - new observations and hypotheses for the glaciation of a mid-latitude continental shelf

    NASA Astrophysics Data System (ADS)

    Praeg, Daniel; McCarron, Stephen; Dove, Dayton; Cofaigh, Colm Ó.; Monteys, Xavier; Coxon, Peter; Accettella, Daniella; Cova, Andrea; Facchin, Lorenzo; Romeo, Roberto; Scott, Gill

    2015-04-01

    The southern limit of glaciation of the European continental margin lies in the Celtic Sea, where the full extent and dynamics of the British-Irish Ice Sheet (BIIS) remain in question. This is in part because the broad continental shelf contains no obvious glacial geomorphological features, but is dominated by a system of shelf-crossing sediment ridges, up to 60 m high, 10 km wide and 300 km long, traditionally interpreted as moribund palaeo-tidal sand banks. Ice sheet extent has been constrained by samples of subglacial and glacimarine sediments recovered (in the 1970s) between the ridges, and in places on their flanks, used to propose a tidewater ice margin that advanced to a grounding line on the mid-shelf, overriding a precursor ridge system. New information on the glaciation of the Celtic Sea is available from geophysical and core data acquired during Italian- and Irish-led campaigns in 2009, 2012, and 2014, both from the mid- and outer shelf. On the mid-shelf, multibeam seabed imagery of a 25 x 100 km area reveal a distinctive rectilinear network of en echelon ridge segments giving way laterally and longitudinally to transverse ribs. Seismic correlation to glacigenic sediments previously cored on a ridge flank (at core site 49/-09/44) indicates the ribs to be composed in part of glacimarine sediments, above a till reflection that can be traced across the ridge crest. No change in seabed morphology is observed across the proposed grounding line. On the outer shelf, new cores of glacigenic sediments were obtained from the flank of a shelf-crossing ridge, and provide evidence of ice sheet advance to the shelf edge, 150 km beyond the proposed grounding line. The cores from outer Cockburn Bank contain facies interpreted to record subglacial deformation and glacimarine deposition from turbid meltwater plumes during withdrawal of a tidewater ice sheet margin from the shelf edge by 24,265 ± 195 cal BP. These sediments are inferred to form part of a sheet of

  16. Silenced, Silence, Silent: Motherhood in the Margins

    ERIC Educational Resources Information Center

    Carpenter, Lorelei; Austin, Helena

    2007-01-01

    This project explores the experiences of women who mother children with ADHD. The authors use the metaphor of the text and the margin. The text is the "motherhood myth" that describes a particular sort of "good" mothering. The margin is the space beyond that text. This marginal space is inhabited by some or all of the mothers they spoke with, some…

  17. 12 CFR 220.4 - Margin account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Margin account. 220.4 Section 220.4 Banks and...) CREDIT BY BROKERS AND DEALERS (REGULATION T) § 220.4 Margin account. (a) Margin transactions. (1) All transactions not specifically authorized for inclusion in another account shall be recorded in the...

  18. 12 CFR 220.4 - Margin account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Margin account. 220.4 Section 220.4 Banks and...) CREDIT BY BROKERS AND DEALERS (REGULATION T) § 220.4 Margin account. (a) Margin transactions. (1) All transactions not specifically authorized for inclusion in another account shall be recorded in the...

  19. Diminishing Marginal Utility in Economics Textbooks

    ERIC Educational Resources Information Center

    Dittmer, Timothy

    2005-01-01

    Many introductory microeconomics textbook authors derive the law of demand from the assumption of diminishing marginal utility. Authors of intermediate and graduate textbooks derive demand from diminishing marginal rate of substitution and ordinal preferences. These approaches are not interchangeable; diminishing marginal utility for all goods is…

  20. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  1. Breakup of the Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and Ice Data Center revealed that the northern section of the Larsen B ice shelf, a large floating ice mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered ice formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. Ice shelves are thick plates of ice, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of ice flow and sediment thickness beneath the ice shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of ice released in this short time is 720 billion tons--enough ice for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by ice shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven ice shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and Ice Data Center (NSIDC) at

  2. Ice-shelf melting around Antarctica.

    PubMed

    Rignot, E; Jacobs, S; Mouginot, J; Scheuchl, B

    2013-07-19

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines. PMID:23765278

  3. Key Largo Limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA

    USGS Publications Warehouse

    Gray, Multer H.; Gischler, E.; Lundberg, J.; Simmons, K.R.; Shinn, E.A.

    2002-01-01

    New dates and analysis of 12 deep and 57 shallow cores allow a more detailed interpretation of the Pleistocene shelf edge of the Florida Platform as found in various facies of the Key Largo Limestone beneath the Florida Keys. In this study a three-phase evolution of the Quaternary units (Q1-Q5) of the Key Largo is presented with new subdivision of the Q5. (1) In the first phase, the Q1 and Q2 (perhaps deposited during oxygen-isotope stage 11) deep-water quartz-rich environment evolved into a shallow carbonate phase. (2) Subsequently, a Q3 (presumably corresponding to oxygen-isotope stage 9) flourishing reef and productive high-platform sediment phase developed. (3) Finally, a Q4 and Q5 (corresponding to oxygen-isotope stages 7 and 5) stabilization phase occured with reefs and leeward productive lagoons, followed by lower sea levels presenting a sequence of younger (isotope substages 5c, 5a) shelf-margin wedges, sediment veneers and outlier reefs. The Key Largo Limestone provides an accessible model of a carbonate shelf edge with fluctuating water depth, bordering a deep seaward basin for a period of at least 300 ka. During this time, at least four onlaps/offlaps, often separated by periods of karst development with associated diagenetic alterations, took place. The story presented by this limestone not only allows a better understanding of the history of south Florida but also aids in the interpretation of similar persistent shelf-edge sites bordering deep basins in other areas.

  4. Deciphering tectonic phases of the Amundsen Sea Embayment shelf, West Antarctica, from a magnetic anomaly grid

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Denk, Astrid; Eagles, Graeme; Wobbe, Florian

    2013-02-01

    The Amundsen Sea Embayment (ASE), with Pine Island Bay (PIB) in the eastern embayment, is a key location to understanding tectonic processes of the Pacific margin of West Antarctica. PIB has for a long time been suggested to contain the crustal boundary between the Thurston Island block and the Marie Byrd Land block. Plate tectonic reconstructions have shown that the initial rifting and breakup of New Zealand from West Antarctica occurred between Chatham Rise and the eastern Marie Byrd Land at the ASE. Recent concepts have discussed the possibility of PIB being the site of one of the eastern branches of the West Antarctic Rift System (WARS). About 30,000 km of aeromagnetic data - collected opportunistically by ship-based helicopter flights - and tracks of ship-borne magnetics were recorded over the ASE shelf during two RV Polarstern expeditions in 2006 and 2010. Grid processing, Euler deconvolution and 2D modelling were applied for the analysis of magnetic anomaly patterns, identification of structural lineaments and characterisation of magnetic source bodies. The grid clearly outlines the boundary zone between the inner shelf with outcropping basement rocks and the sedimentary basins of the middle to outer shelf. Distinct zones of anomaly patterns and lineaments can be associated with at least three tectonic phases from (1) magmatic emplacement zones of Cretaceous rifting and breakup (100-85 Ma), to (2) a southern distributed plate boundary zone of the Bellingshausen Plate (80-61 Ma) and (3) activities of the WARS indicated by NNE-SSW trending lineaments (55-30 Ma?). The analysis and interpretation are also used for constraining the directions of some of the flow paths of past grounded ice streams across the shelf.

  5. Nature of decadal-scale sediment accumulation on the western shelf of the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Reide Corbett, D.; McKee, Brent; Allison, Mead

    2006-11-01

    Sediment delivered to coastal systems by rivers (15×10 9 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×10 8 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment. Three types of 210Pb profiles were observed from short cores (15-45 cm) collected on the shelf. Proximal to Southwest Pass in 30-100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr -1 (>1.8 g cm -2 yr -1). Kasten cores (˜200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr -1; >3 g cm -2 yr -1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ˜10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr -1 (<0.5 g cm -2 yr -1). A preliminary sediment budget based on the distribution of 210Pb

  6. Seismic stratigraphy and late Quaternary shelf history, south-central Monterey Bay, California

    USGS Publications Warehouse

    Chin, J.L.; Clifton, H.E.; Mullins, H.T.

    1988-01-01

    The south-central Monterey Bay shelf is a high-energy, wave-dominated, tectonically active coastal region on the central California continental margin. A prominent feature of this shelf is a sediment lobe off the mouth of the Salinas River that has surface expression. High-resolution seismic-reflection profiles reveal that an angular unconformity (Quaternary?) underlies the entire shelf and separates undeformed strata above it from deformed strata below it. The Salinas River lobe is a convex bulge on the shelf covering an area of approximately 72 km2 in water depths from 10 to 90 m. It reaches a maximum thickness of 35 m about 2.5 km seaward of the river mouth and thins in all directions away from this point. Adjacent shelf areas are characterized by only a thin (2 to 5 m thick) and uniform veneer of sediment. Acoustic stratigraphy of the lobe is complex and is characterized by at least three unconformity-bounded depositional sequences. Acoustically, these sequences are relatively well bedded. Acoustic foresets occur within the intermediate sequence and dip seaward at 0.7?? to 2.0??. Comparison with sedimentary sequences in uplifted onshore Pleistocene marine-terrace deposits of the Monterey Bay area, which were presumably formed in a similar setting under similar processes, suggests that a general interpretation can be formulated for seismic stratigraphic patterns. Depositional sequences are interpreted to represent shallowing-upwards progradational sequences of marine to nonmarine coastal deposits formed during interglacial highstands and/or during early stages of falling sea level. Acoustic foresets within the intermediate sequence are evidence of seaward progradation. Acoustic unconformities that separate depositional sequences are interpreted as having formed largely by shoreface planation and may be the only record of the intervening transgressions. The internal stratigraphy of the Salinas River lobe thus suggests that at least several late Quaternary

  7. Iceberg scouring on the Norwegian continental shelf

    SciTech Connect

    Lien, R.

    1983-05-01

    This paper is a condensed version of parts of a Dr. ing. thesis to be presented during 1983. The first part of the paper deals with the regional distribution of iceberg scouring on the Norwegian continental shelf, and some general aspects related to it. The second part deals with iceberg scouring as a local phenomenon and its relation to the sea floor topography, sediment distribution, and geological and geotechnical properties of the sediments.

  8. Climate Relevant Processes On The Barents Shelf

    NASA Astrophysics Data System (ADS)

    Hatten, K.; Schrum, C.; Harms, I.

    The Artic Shelf, and especially the Barents Shelf , are key regions in the North At- lantic climate system. Climatic relevant processes on the shelf are on the one hand the water mass transformation and on the other hand the strong air/sea exchange. Air/sea interaction and resulting sea ice development cause water mass transformation and de- velopment of cold and salty deep water on the shelf region. The outflow of this dense water mass into the Arctic Ocean is responsible for the stabilization of the permanent halocline in the Arctic Ocean and therefore for the isolation of the cold and fresh arctic surface water from the saltier and warmer Atlantic deep water in the Arctic Ocean, and thus for preservation of the Arctic Ocean sea ice. The second climatic relevant process, the direct air/sea exchange, i.e. the annual mean heat release to the atmosphere, plays a key role as energy source for the atmosphere. Both processes are subject to strong inter-annual variability and influenced by mesoscale structures in the ice field, and thus can be assumed to be less good described by the large scale atmospheric and oceanic models. This was the background of the development of a regional eddy resolving model of the Barents Sea. Results of a multi-year model simulation will be presented and related to flux estimates from global atmospheric re-analysis, to highlight the in- fluence of mesoscale variability in the sea ice coverage on the air sea exchange and on the water mass transformation.

  9. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  10. Anaerobic methane oxidation on the Amazon shelf

    SciTech Connect

    Blair, N.E.; Aller, R.C.

    1995-09-01

    Anaerobic methane oxidation on the Amazon shelf is strongly controlled by dynamic physical sedimentation processes. Rapidly accumulating, physically reworked deltaic sediments characteristic of much of the shelf typically support what appear to be low rates of steady state anaerobic methane oxidation at depths of 5-8 m below the sediment-water interface. Methane oxidation in these cases is responsible for < {approximately}10% of the {Sigma}CO{sub 2} inventory in the oxidation zone and is limited largely by the steady-state diffusive flux of methane into the overlying sulfate reduction zone. In contrast, a large area of the shelf has been extensively eroded, reexposing once deeply buried (>10 m) methane-charged sediment directly to seawater. In this nonsteady-state situation, methane is a major source of recently produced {Sigma}CO{sub 2} and an important reductant for sulfate. These observations suggest that authigenic sedimentary carbonates derived from anaerobic methane oxidation may sometimes reflect physically enhanced nonsteady-state exposure of methane to sulfate in otherwise biogeochemically unreactive deposits. The concentration profiles of CH{sub 4}, SO{sub 4}{sup =}, and {Sigma}CO{sub 2} in the eroded deposit were reproduced by a coupled reaction-transport model. This area of the shelf was reexposed to seawater approximately 5-10 years ago based on the model results and the assumption that the erosion of the deposit occurred as a single event that has now ceased. The necessary second order rate constant for anaerobic methane oxidation was {le}0.1 mM{sup -1} d{sup -1}.

  11. Carbon Fluxes on the Florida shelf

    NASA Astrophysics Data System (ADS)

    Robbins, L. L.; Knorr, P. O.; Liu, X. S.; Byrne, R.; Gledhill, D. K.

    2008-12-01

    Lack of baseline data on carbonate saturation state and pCO2 fluxes on the west Florida shelf, a low- gradient calcium carbonate platform, constrains the ability of managers and scientists to predict aspects of ecosystem change. Ecosystem change may result from a number of factors, such as climate change, ocean acidification, riverine and groundwater contribution, and biogeochemical cycling. Maps and models of pCO2 fluxes and carbonate saturation state are needed for the Florida shelf where significant decline of carbonate ecosystems, fishery habitats, and calcifying organisms are predicted over the next decade. To address critical information gaps and an incomplete understanding of nearshore carbon flux variability, the U.S. Geological Survey (USGS) is conducting a field campaign with the University of South Florida (USF) and National Oceanographic and Atmospheric Administration (NOAA) to acquire baseline pCO2, pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) on the west Florida shelf. These data are being used to model nearshore to offshore regional pCO2 and carbonate saturation state and, in conjunction with acquired habitat data, will be used to describe and interpret habitat change over time. Using the Multiparameter Inorganic Carbon Analyzer (MICA) developed by USF, data on air and sea pCO2, pH, DIC, and TA were collected underway during July and August 2008 cruises on the west Florida shelf. Maps depicting carbonate saturation state of the marine water, underlying sediment, and habitat data show varying relations. An additional cruise is planned for winter 2009.

  12. A tectonic reconstruction of accreted terranes along the paleo-Pacific margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Bammel, Brandon

    The southern oceanic margin of Gondwana was nearly 40,000 km long or 24,854.8 miles. The southern margin was the result of the Terra Australis orogen. Spanning 18,000 km or 11,184.7 miles and is proposed as one of the largest and longest lived orogens in Earth history. The paleo-Pacific margin of Gondwana consisted of segments of the Australian-Antarctic craton, southern South America (modern Argentina and Chile), southern South Africa, Marie Byrdland, New Zealand and its adjacent continental shelf, the Ellsworth Mountains, and the Transantarctic Mountains. The process of terrane accretion has played a substantial part in the assembly of the continents as they look today. The paleo-Pacific margin of Gondwana was an active region of terrane accretion from the Neoproterozoic to the Late Mesozoic. This research study examines the accretion of terranes across the paleo-Pacific Gondwana margin to provide a comprehensive reconstruction. A paleogeographic basemap was created using PALEOMAP Project maps and the geology data was provided by the School of Geoscience from the University of Witwatersrand of South Africa. Location and data analyzed for terranes were collected building a PDF library of journal articles across numerous geological publications.

  13. Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats.

    PubMed

    Liu, Xueduan; Bagwell, Christopher E; Wu, Liyou; Devol, Allan H; Zhou, Jizhong

    2003-10-01

    This study examined the natural diversity and distributions of sulfate-reducing bacteria along a natural carbon gradient extending down the shelf-slope transition zone of the eastern Pacific continental margin. Dissimilatory (bi)sulfite reductase gene sequences (dsrAB) were PCR amplified and cloned from five different sampling sites, each at a discrete depth, from two different margin systems, one off the Pacific coast of Mexico and another off the coast of Washington State. A total of 1,762 clones were recovered and evaluated by restriction fragment length polymorphism (RFLP) analysis. The majority of the gene sequences recovered showed site and depth restricted distributions; however, a limited number of gene sequences were widely distributed within and between the margin systems. Cluster analysis identified 175 unique RFLP patterns, and nucleotide sequences were determined for corresponding clones. Several different continental margin DsrA sequences clustered with those from formally characterized taxa belonging to the delta subdivision of the class Proteobacteria (Desulfobulbus propionicus, Desulfosarcina variabilis) and the Bacillus-Clostridium (Desulfotomaculum putei) divisions, although the majority of the recovered sequences were phylogenetically divergent relative to all of the other DsrA sequences available for comparison. This study revealed extensive new genetic diversity among sulfate-reducing bacteria in continental margin sedimentary habitats, which appears to be tightly coupled to slope depth, specifically carbon bioavailability.

  14. Seismic architecture and evolution of the Disko Bay trough-mouth fan, central West Greenland margin

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia C.; Knutz, Paul C.; Nielsen, Tove; Kuijpers, Antoon

    2016-09-01

    The present study is the first to document the large-scale glacigenic evolution of a West Greenland trough-mouth fan (TMF) system, i.e. the Disko Bay TMF, from onset of shelf-based glaciation to present. We have constrained the paleo-ice sheet configuration in the Disko Bay region and determine the controlling factors of ice-stream development using 2D- and 3D-seismic reflection data, seabed bathymetry and stratigraphic information from two exploration wells. This has revealed three stages of the Disko Bay TMF development. The early stage, probably of Pliocene-early Pleistocene age, marks the onset of a central depocentre located below the modern mid-shelf and constructed by sediment progradation delivered through at least two erosive pathways related to fast-flowing, grounded ice. At that time, ice-stream routing in the Disko Bay shelf region was strongly controlled by the pre-glacial topography and structural boundaries associated with fracture zones and deep-seated faults. During the middle evolutionary stage, the focus of deposition shifted from the mid-shelf to two elongate areas fringing the outer margin. The marginal depocentres were not only related to glacial processes but also alongslope deposition by contour currents, which may have developed as a consequence of basin subsidence surrounding the Davis Strait High and the Kangerluk Structure. The late stage of TMF development, presumably representing the late Pleistocene to Holocene, is characterized by the marginal depocentres becoming less significant and sediment aggradation occurring over wide parts of the mid-outer shelf, while features of subglacial erosion are generally absent. In contrast to the inferred fast-flowing ice streams of the early-middle evolutionary stages, this points to the existence of a rather thin and "lightly" grounded ice sheet, i.e. at the threshold of floatation. The "lightly" grounded ice sheet scenario, applying to the late Pleistocene interval of the Disko Bay TMF, was

  15. Sub-ice shelf circulation and basal melting of the Fimbul Ice Shelf

    NASA Astrophysics Data System (ADS)

    Nost, Ole Anders

    2010-05-01

    The Fimbul Ice Shelf is the largest of the ice shelves in Dronning Maud Land. Due to a narrow and some places non-existent continental shelf, the ice shelves in Dronning Maud Land are situated close to the Warm Deep Water. The Antarctic Slope Front separates the Warm Deep Water from the ice shelves and complicated exchange processes working across this front controls the melting of the Fimbul Ice Shelf and the other ice shelves in Dronning Maud Land. Here we will present analysis of unique data from the Dronning Maud Land coastal zone, as well as preliminary results from the 2009/2010 field work on the Fimbul Ice Shelf. In 2008 eight elephant seals equipped with CTD data loggers collected hydrographic data in the Dronning Maud Land coastal zone from February through October. Analysis of these data shows that overturning of the Antarctic Slope Front is the main process exchanging heat into the ice shelf cavities. This overturning together with an onshore surface Ekman flow leads to a seasonal cycle in the salinity of the coastal water masses, while glacial melting sea ice formation has little influence. During the 2009/2010 field season on the Fimbul Ice Shelf glaciological and oceanographic data were collected. We will show preliminary results of ice flow, ice thickness and basal melting measured using stake nets and phase sensitive radar. Oceanographic data were collected through three hot water drilled access holes in the ice shelf. These data show a water column with temperatures close to the surface freezing point over most of the water column. Relatively warmer water was observed near the bottom on one of the CTD stations. Maximum observed temperature is -1.57 °C. We compare the sub iceshelf hydrography with the hydrography observed by the elephant seals near the ice front in an attempt to reveal the sub ice shelf circulation. We also compare estimated melt rates from the oceanographic data with melt rates estimated with the phase sensitive radar and stake

  16. Link between Mid-Ocean Ridge kinematics and uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Japsen, P.; Nielsen, T.; Thybo, H.; Dahl-Jensen, T.

    2012-04-01

    Tectonic models predict post-rift subsidence of rift margins after initial flexural rebound and transgression of a sedimentary wedge over the subsiding mar¬gin as the lithosphere cools with time. However, studies of North Atlantic rifted margins show that thermal subsidence following breakup at the Paleocene-Eocene transition was interrupted by significant uplift movements. These vertical movements represent a long-standing enigma and they have been linked to sea-level fluctuations, climate deterioration and tectonics but as yet they remain unexplained. Here we combine regional Multi-Channel Seismic reflection data across the NE Greenland Shelf, the Greenland Fracture Zone (GFZ) and continental East Greenland Ridge (EGR) in the northern NE Atlantic and stratigraphic data from a drill core. We show that a mid-Miocene change from down-faulting to uplift along the GFZ-EGR correlates with significant uplift of the NE Greenland margin. This tectonic change is associated with a regional unconformity that marks the first occurrences of mass-¬wasted deposits in the deep sea off the NE Greenland Shelf and the development of prograd¬ing mega-sequences and angular truncation of hemipelagic sediments below the unconformity, respectively, on the outer and inner NE Greenland Shelf. We attribute the tectonic changes at the GFZ to the development of a modern, continuous spreading system along the Mohns-Knipovich Ridge segments that led to an opening of the Fram Strait corridor, to large-scale changes in ocean circulation and climate and possibly to medium-scale (20-30 m) sea-level fluctuations. While these consequences of the tectonic changes may have affected the amplitude of uplift in NE Greenland, they cannot explain the uplift at the GFZ-EGR in deep sea. We therefore find that plate-tectonic changes produced the driving force for the mid-Miocene uplift in NE Greenland.

  17. Sedimentological and palaeoecological integrated analysis of a Miocene channelized carbonate margin, Matese Mountains, Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Bassi, Davide; Carannante, Gabriele; Checconi, Alessio; Simone, Lucia; Vigorito, Mario

    2010-10-01

    Lower-Middle Miocene temperate marine carbonates occur in the Matese Mountains, Southern Apennines (Italy). These carbonates formed in an open-shelf depositional system with an uneven margin, 10 km long and up to 6 km wide. Shelf margin morphology shows multiple submarine channelized carbonate deposits which are dominated by coralline red algae and subordinate bryozoans. Two main channel networks (Pietraroia and Regia Piana channels) with their sedimentary bodies were analysed. The studied submarine channels grew by sediment accumulation as prograding bodies on a tectonic modelled substrate. Shallow-water rhodalgal skeletal debris, from moderately re-mobilized up to significantly re-worked, built up the complex channel-system fills in which sedimentary lenses overlapped and partially amalgamated one another when they were still unlithified. The early channelized succession is characterized by parautochthonous bryozoan floatstone and rhodolith/bryozoan floatstone representing soft muddy substrates in a low water turbulence and high turbidity setting. The rhodoliths, dominated by melobesioid coralline algae, are sub-discoidal and sub-spheroidal in shape with a characteristic loosely-packed inner arrangement. These sediments, whose latter portion underwent submarine diagenetic processes (incipient to evoluted hard-grounds), were eroded and successively covered by shallower water gravitative deposits constituted by rhodolith floatstone/rudstone. Their rhodoliths, constituted by melobesioids, mastophoroids and subordinate lithophylloids and sporolithaceans, are mainly spheroidal/sub-spheroidal in shape with subordinate sub-discoidal specimens, with massive and laminar inner arrangements. The lack in early lithification can be drawn back to the physiography of the channelized shelf margin, to the active tectonic as well as to the temperate-type carbonate dominant biogenic components. The depositional surface profile and local hydrodynamic conditions were the major

  18. Commercial off-the-shelf DICOM teleradiology

    NASA Astrophysics Data System (ADS)

    Lyche, David K.; Williamson, Morgan P.; Suitor, Charles T.; Romlein, John R.

    1996-04-01

    The implementation of teleradiology is spreading throughout the U.S. military. In an effort to contain cost, the Medical Diagnostic Imaging Support (MDIS) Office at the Medical Advanced Technology Management Office (MATMO), Fort Detrick, Maryland, implemented an 'off- the-shelf' DICOM teleradiology system by which computed radiography (CR) images acquired at Hickam Air Force Base (AFB), Hawaii, can be transmitted electronically over a T-1 telecommunications line to Tripler Army Medical Center (TAMC), Hawaii. The goal was to provide a teleradiology system to the military services which extends the expertise and training of physicians to remote sites, while realizing cost savings through off-the-shelf DICOM technology. The TAMC teleradiology hub equipment was provided to support soft copy diagnostic reading. The Army X-Ray ISO-Shelter along with the teleradiology equipment allows Hickam AFB to maintain radiology services during an on-going construction project. This poster presents the results of a successful off-the-shelf DICOM teleradiology implementation.

  19. Determination of pyrotechnic functional margin

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    Following the failure of a previously qualified pyrotechnically actuated pin puller design, an investigation led to a redesign and requalification. The emphasis of the second qualification was placed on determining the functional margin of the pin puller by comparing the energy deliverable by the pyrotechnic cartridge to the energy required to accomplish the function. Also determined were the effects of functional variables. This paper describes the failure investigation, the test methods employed and the results of the evaluation, and provides a recommended approach to assure the successful functioning of pyrotechnic devices.

  20. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  1. Continental margin tectonics - Forearc processes

    SciTech Connect

    Lundberg, N.; Reed, D.L. )

    1991-01-01

    Recent studies of convergent plate margins and the structural development of forearc terranes are summarized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the geometry of accretionary prisms (Coulomb wedge taper and vertical motion in response to tectonic processes), offscraping vs underplating or subduction, the response to oblique convergence, fluids in forearc settings, the thermal framework and the effects of fluid advection, and serpentinite seamounts. Also included is a comprehensive bibliography for the period.

  2. Managing margins through physician engagement.

    PubMed

    Sears, Nicholas J

    2012-07-01

    Hospitals should take the following steps as they seek to engage physicians in an enterprisewide effort to effectively manage margins: Consider physicians' daily professional practice requirements and demands for time in balancing patient care and administrative duties. Share detailed transactional supply data with physicians to give them a behind-the-scenes look at the cost of products used for procedures. Institute physician-led management and monitoring of protocol compliance and shifts in utilization to promote clinical support for change. Select a physician champion to provide the framework for managing initiatives with targeted, efficient communication. PMID:22788036

  3. Precursors of Antarctic Bottom Water formed on the continental shelf off Larsen Ice Shelf

    NASA Astrophysics Data System (ADS)

    Caspel, M. van; Schröder, M.; Huhn, O.; Hellmer, H. H.

    2015-05-01

    The dense water flowing out from the Weddell Sea significantly contributes to Antarctic Bottom Water (AABW) and plays an important role in the Meridional Overturning Circulation. The relative importance of the two major source regions, the continental shelves in front of Filchner-Ronne Ice Shelf and Larsen Ice Shelf, however, remains unclear. Several studies focused on the contribution of the Filchner-Ronne Ice Shelf region for the deep and bottom water production within the Weddell Gyre, but the role of the Larsen Ice Shelf region for this process, especially the formation of deep water, remains speculative. Measurements made during the Polarstern cruise ANT XXIX-3 (2013) add evidence to the importance of the source in the western Weddell Sea. Using Optimum Multiparameter analysis we show that the dense water found on the continental shelf in front of the former Larsen A and B together with a very dense water originating from Larsen C increases the thickness and changes the θ/S characteristics of the layer that leaves the Weddell Sea to contribute to AABW.

  4. Along-shelf current variability on the Catalan inner-shelf (NW Mediterranean)

    USGS Publications Warehouse

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Espino, Manuel; Warner, John C.

    2012-01-01

    We examine the circulation over the inner shelf of the Catalan Sea using observations of currents obtained from three ADCPs within the inner-shelf (24 and 50 m depth) during March-April 2011. The along-shelf current fluctuations during that period are mainly controlled by the local wind stress on short time scales and by remote pressure gradients on synoptic time scales. Different forcing mechanisms are involved in the along-shelf momentum balance. During storm conditions, wind stress, sea level gradients and the non-linear terms dominate the balance. During weak wind conditions, the momentum balance is controlled by the pressure gradient, while during periods of moderate wind in the presence of considerable stratification, the balance is established between the Coriolis and wind stress terms. Vertical variations of velocity are affected by the strong observed density gradient. The increased vertical shear is accompanied by the development of stratified conditions due to local heating when the wind is not able to counteract (and destroy) stratification. The occasional influence of the Besòs river plume is observed in time scales of hours to days in a limited area in front of Barcelona. The area affected by the plume depends on the vertical extend of the fresher layer, the fast river discharge peak, and the relaxation of cross-shore velocities after northeast storm events. This contribution provides a first interpretation of the inner-shelf dynamics in the Catalan Sea.

  5. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically

  6. Evidence of a dense water vein along the Libyan continental margin

    NASA Astrophysics Data System (ADS)

    Gasparini, G. P.; Bonanno, A.; Zgozi, S.; Basilone, G.; Borghini, M.; Buscaino, G.; Cuttitta, A.; Essarbout, N.; Mazzola, S.; Patti, B.; Ramadan, A. B.; Schroeder, K.; Bahri, T.; Massa, F.

    2008-02-01

    For the first time it was possible to investigate a still poorly known region of the eastern Mediterranean Sea, the Libyan continental margin. An oceanographic cruise, performed during summer 2006, revealed an important and novel feature: a dense vein flowing along the continental slope. The paper describes the vein evolution with some insights on its dynamic and furnishes an estimate of its transport, which results to be comparable with the Adriatic Deep Water production rate. The cascading into a steep canyon which incises the continental shelf suggests that the vein may play an important role in ventilating the deep layers of the Ionian Sea.

  7. Paleoceanographic model of neogene phosphorite deposition, u.s. Atlantic continental margin.

    PubMed

    Riggs, S R

    1984-01-13

    The Neogene stratigraphic section of the southeastern U.S. continental shelf-coastal plain system is characterized by (i) a series of major regional phosphogenic episodes; (ii) a strong spatial relationship between the structural or topographic framework and phosphate deposition; and (iii) distinct cyclical and regional patterns of deposition of the terrigenous, carbonate, and phosphate lithofacies. The complex depositional patterns are explained by a paleoceanographic model based upon the interaction of glacial eustatic sea-level fluctuations, associated changes in climate, and the dynamics of the Gulf Stream in response to the bathymetric configurations of the continental margin during the past 20 million years.

  8. Dynamics of the continental margins

    SciTech Connect

    Not Available

    1990-11-01

    On 18--20 June 1990, over 70 oceanographers conducting research in the ocean margins of North America attended a workshop in Virginia Beach, Virginia. The purpose of the workshop was to provide the Department of Energy with recommendations for future research on the exchange of energy-related materials between the coastal and interior ocean and the relationship between the ocean margins and global change. The workshop was designed to optimize the interaction of scientists from specific research disciplines (biology, chemistry, physics and geology) as they developed hypotheses, research questions and topics and implementation plans. The participants were given few restraints on the research they proposed other than realistic time and monetary limits. The interdisciplinary structure of the meeting promoted lively discussion and creative research plans. The meeting was divided into four working groups based on lateral, vertical, air/sea and sediment/water processes. Working papers were prepared and distributed before the meeting. During the meeting the groups revised the papers and added recommendations that appear in this report, which was reviewed by an Executive Committee.

  9. Westward intensification in marginal seas

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Xue, Huijie

    2014-03-01

    An idealized model was used to examine why the strong western boundary current (WBC) is observed in the South China Sea (SCS) but not in the Gulf of Mexico (GOM) and Japan/East Sea (JES). Results suggested that the stronger WBC in the SCS is mainly attributed to the direct contribution of the inflow and the strong monsoon. Although the Gulf Stream transports a large amount of water into the GOM, the passage in the southeast corner guides the inflow out of the gulf and inhibits the inflow from intensifying the WBC. Meanwhile, the wind stress in the GOM is weakest among the three marginal seas. The meridional ocean ridge and the particular layout of the continental slope of JES prevent the whole basin from participating in the westward intensification. Besides, the throughflow has adverse effects on the formulation of WBC in JES. The variation of Coriolis parameter with latitude leads to the westward intensification in marginal seas. However, a strong WBC cannot be observed in the absence of reasonable collocation of wind, inflow, and topography.

  10. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas

    NASA Astrophysics Data System (ADS)

    Tesi, Tommaso; Semiletov, Igor; Dudarev, Oleg; Andersson, August; Gustafsson, Örjan

    2016-03-01

    This study seeks an improved understanding of how matrix association affects the redistribution and degradation of terrigenous organic carbon (TerrOC) during cross-shelf transport in the Siberian margin. Sediments were collected at increasing distance from two river outlets (Lena and Kolyma Rivers) and one coastal region affected by erosion. Samples were fractionated according to density, size, and settling velocity. The chemical composition in each fraction was characterized using elemental analyses and terrigenous biomarkers. In addition, a dual-carbon-isotope mixing model (δ13C and Δ14C) was used to quantify the relative TerrOC contributions from active layer (Topsoil) and Pleistocene Ice Complex Deposits (ICD). Results indicate that physical properties of particles exert first-order control on the redistribution of different TerrOC pools. Because of its coarse nature, plant debris is hydraulically retained in the coastal region. With increasing distance from the coast, the OC is mainly associated with fine/ultrafine mineral particles. Furthermore, biomarkers indicate that the selective transport of fine-grained sediment results in mobilizing high-molecular weight (HMW) lipid-rich, diagenetically altered TerrOC while lignin-rich, less degraded TerrOC is retained near the coast. The loading (µg/m2) of lignin and HMW wax lipids on the fine/ultrafine fraction drastically decreases with increasing distance from the coast (98% and 90%, respectively), which indicates extensive degradation during cross-shelf transport. Topsoil-C degrades more readily (90 ± 3.5%) compared to the ICD-C (60 ± 11%) during transport. Altogether, our results indicate that TerrOC is highly reactive and its accelerated remobilization from thawing permafrost followed by cross-shelf transport will likely represent a positive feedback to climate warming.

  11. Unique Views of a Shattered Ice Shelf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Both single and multi-angle views of the breakup of the northern section of the Larsen B ice shelf are shown in this image pair from the Multi-angle Imaging SpectroRadiometer. The Larsen B ice shelf collapsed and broke away from the Antarctic Peninsula during February and March, 2002 -- a progression observed by Terra's Moderate-resolution Imaging SpectroRadiometer (MODIS) and analyzed at the University of Colorado's National Snow and Ice Data Center. The collapse is thought to have been accelerated by warm summer temperatures which caused meltwater to fill crevasses along the landward side of the Larsen shelf, leading to intensified pressures within the sheet structure.

    In the left-hand view, spectral variations across the scene are highlighted by using near-infrared, red and blue data from MISR's nadir (vertical-viewing) camera. Here, the ice within the disintegrating ice shelf appears vibrant blue. Water has an intrinsic blue color due to the selective absorption of longer wavelengths such as red and infrared, and the translucent properties of ice within the collapsing shelf enables this absorption to be observed. The use of the near-infrared band within this false-color composite accentuates the effect. Light brownish streaks across the splintering sheet can also be discerned, and probably indicate regions where rocks and morainal debris were exposed from the interior of the shelf.

    On the right, data from three different view angles and only one color channel were combined to create a multi-angle composite. This image displays red-band data from MISR's 46-degree forward, nadir, and 46-degree backward-viewing cameras as red, green and blue, respectively. Here, the disintegrating ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on the chemical composition of water ice, the colors in the right-hand image represent properties related to its physical nature. Because vertical

  12. West Indian Ocean variability and East African fish catch.

    PubMed

    Jury, M; McClanahan, T; Maina, J

    2010-08-01

    We describe marine climate variability off the east coast of Africa in the context of fish catch statistics for Tanzania and Kenya. The time series exhibits quasi-decadal cycles over the period 1964-2007. Fish catch is up when sea surface temperature (SST) and atmospheric humidity are below normal in the tropical West Indian Ocean. This pattern relates to an ocean Rossby wave in one phase of its east-west oscillation. Coastal-scale analyses indicate that northward currents and uplift on the shelf edge enhance productivity of East African shelf waters. Some of the changes are regulated by the south equatorial current that swings northward from Madagascar. The weather is drier and a salty layer develops in high catch years. While the large-scale West Indian Ocean has some impact on East African fish catch, coastal dynamics play a more significant role. Climatic changes are reviewed using 200 years of past and projected data. The observed warming trend continues to increase such that predicted SST may reach 30 degrees C by 2100 while SW monsoon winds gradually increase, according to a coupled general circulation model simulation with a gradual doubling of CO(2). PMID:20471674

  13. Dense shelf water formation along the south-west Australian inner shelf

    NASA Astrophysics Data System (ADS)

    Pattiaratchi, Charitha; Hollings, Ben; Woo, Mun; Welhena, Thisara

    2011-05-01

    Hydrological data from a repeated cross-shore transect obtained using Teledyne Webb Research Slocum Electric gliders offshore Two Rocks in south-western Australia over 13 months are presented. The data revealed that formation of dense water inshore and its transport across the shelf as a near bed gravity current (defined as Dense Shelf Water Cascade, DSWC) was a regular occurrence, particularly during autumn and winter months. In autumn, the dense water is mainly formed through changes in salinity resulting from evaporation, whilst in winter; temperature change through surface cooling was the dominant factor. The mean wind speeds also decrease during the transition during autumn. The speed of the DSWC was estimated to be 0.01-0.02 m s-1, and similar to that measured in other selected regions globally. The offshore transport from the shelf is a significant component of the alongshore wind-driven transport.

  14. Structure and depositional environments of Permian-Triassic terrigeneous complex of the Barents Sea shelf

    NASA Astrophysics Data System (ADS)

    Norina, Daria; Stoupakova, Antonina

    2014-05-01

    Permian-Triassic complex of the Barents Sea shelf composed of up to 8-12 km of clastic sediments has a great interest for geology as it contains hydrocarbon-bearing reservoirs and source rocks. It is drilled on shelf margins and structural highs; it outcrops in adjoining archipelagos. However within depositional centers like the South-Barents basin where Permian-Triassic reaches maximum thickness and burial, its structure can only be understood from seismic data. We present an evaluation of structure, depositional environments and cyclicity of Permian-Triassic terrigeneous complex based on interpretation of 18 000 km of regional seismic profiles with record length of 10-12 s acquired by MAGE in 2007-09 in the south-east shelf. Transgressive-regressive sequences were identified and correlated using well log analysis for 17 wells, descriptions of well sections and outcrops in Franz Josef Land, Svalbard and Novaya Zemlya archipelagos. Cooling of the climate throughout Sakmarian-Artinskian (Lower Permian), marine transgression, and Ural orogeny in the south-east had interrupted carbonate deposition and initiated the deposition of terrigeneous (East Barents) and spiculite, siliceous-carbonate, and siliciclastic (West Barents) sediments (Geological history, 2009). Triassic is represented by clastic lithologies all over the basin. On seismic data lower boundary of Permian-Triassic complex is a high-amplitude reflector (Ia) and downlap surface corresponding to the top of Lower Permian carbonates. Upper boundary is related to Rhaetian erosional unconformity best pronounced in the pre-Novaya Zemlya foredeep, Kola monocline and Pechora Sea. Permian is represented by 5 transgressive-regressive sequences with upwar