Science.gov

Sample records for afs ultrasonic examinations

  1. Ultrasonic Examination of Double-Shell Tank 241-AW-101 Examination Completed February 2009.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Anderson, Kevin K.

    2009-03-18

    AREVA Federal Services LLC (AFS), under a contract from Washington River Protection Solutions (WRPS), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AW-101. PNNL is responsible for preparing a report(s) that describes the results of the AFS ultrasonic examinations.

  2. Ultrasonic Examination of Double-Shell Tank 241-AW-105 Examination Completed April 2009.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Anderson, Kevin K.; Hathaway, John E.

    2009-05-31

    AREVA Federal Services LLC (AFS), under a contract from Washington River Protection Solutions (WRPS), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AW-105. PNNL is responsible for preparing a report(s) that describes the results of the AFS ultrasonic examinations.

  3. Ultrasonic Examination of Double-Shell Tank 241-AN-102 Examination Completed July 2008.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Anderson, Kevin K.

    2008-08-28

    AREVA Federal Services LLC (AFS), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AN-102. PNNL is responsible for preparing a report(s) that describes the results of the AFS ultrasonic examinations.

  4. Ultrasonic Examination of Double-Shell Tank 241-AW-106 Examination Completed July 2009.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Anderson, Kevin K.; Hathaway, John E.

    2009-08-28

    AREVA Federal Services LLC (AFS), under a contract from Washington River Protection Solutions (WRPS), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AW-106. PNNL is responsible for preparing a report(s) that describes the results of the AFS ultrasonic examinations.

  5. Ultrasonic Examination of Double-Shell Tank 241-AP-107 Examination Completed February 2008

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Anderson, Kevin K.

    2008-09-29

    AREVA Federal Services LLC (AFS), under a contract from CH2M HILL Hanford Group (CH2M HILL), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AP-107. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AP-107 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-34301 (Castleberry 2007) and summarized on page 1 of this document, are to be reported to CH2M HILL and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M HILL, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AFS ultrasonic examinations.

  6. Velocity variability in ultrasonic Doppler examinations.

    PubMed

    Hadlock, Jean; Beach, Kirk W

    2009-06-01

    Ultrasonic Doppler examination with spectral waveform has been used for the classification and surveillance of carotid artery stenosis for over 25 years. Progression/regression between examinations can be identified with 95% confidence if the velocity measurements change by more than two times the root mean square difference (RMSD) of the repeat measurement. Peak systolic velocity and end diastolic velocity measurements at a Doppler angle of 60 degrees were repeated in 47 carotid examinations. Measurement difference between sonographers and between instruments was tabulated. Root mean square difference was 11 cm/s (RMS%D = 11%) for systolic and 7 cm/s (RMS%D = 21%) for diastolic velocity measurements (excluding one severe stenosis case). Results for differences between sonographers and between instruments were similar to the overall results. In serial arterial studies using this Doppler velocimetry method, a difference exceeding 23 cm/s (21%) systolic, or 14 cm/s (42%) diastolic velocity indicates a significant (2 x RMSD) hemodynamic change.

  7. Ultrasonic Examination of Double-Shell Tank 214-AN-101

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2005-11-01

    COEGMA Engineering Corporation (COGEMA) under a contract from CH2M Hill Hanford Group (CH2M Hill) has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AN-101. PNNL is responsible for preparing a report(s) that describes the results of the COGEMs ultrasonic examinations.

  8. Ultrasonic examination of JBK-75 strip material

    SciTech Connect

    Cook, K.V.; Cunningham, R.A. Jr.; Lewis, J.C.; McClung, R.W.

    1982-12-01

    An ultrasonic inspection system was assembled to inspect the JBK-75 stainless steel sheath material (for the Large Coil Project) for the Westinghouse-Airco superconducting magnet program. The mechanical system provided for handling the 180-kg (400-lb) coils of strip material (1.6 mm thick by 78 mm wide by 90 to 120 m long (0.064 by 3.07 in. by 300 to 400 ft)), feeding the strip through the ultrasonic inspection and cleaning stations, and respooling the coils. We inspected 54 coils of strip for both longitudinal and laminar flaws. Simulated flaws were used to calibrate both inspections. Saw-cut notches (0.28 mm deep (0.011 in., about 17% of the strip thickness)) were used to calibrate the longitudinal flaw inspections; 1.59-mm-diam (0.063-in.) flat-bottom holes drilled halfway through a calibration strip were used to calibrate the laminar flaw tests.

  9. Ultrasonic Examination of Double-Shell Tank 241-AN-104. Examination Completed August 2005

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2005-09-15

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AN-104. PNNL is responsible for preparing a report(s) that describes the results of the COGEMA ultrasonic examinations.

  10. Ultrasonic Examination of Double-Shell Tank 241-AP-103. Examination Completed April 2003.

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2003-06-30

    COGEMA Engineering Corporation (COGEMA), under contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AP-103. PNNL is responsible for preparing a report(s)that describes the results of the COGEMA ultrasonic examinations.

  11. Ultrasonic Examination of Double-Shell Tank 241-AP-107 Examination Completed February 2008.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Anderson, Kevin K.

    2008-04-28

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AP-107. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations.

  12. Ultrasonic Examination of Double-Shell Tank 241-AY-102. Examination Completed January 2007

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2007-05-01

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AY-102. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations.

  13. Ultrasonic Examination of Double-Shell Tank 241-AY-101. Examination Completed March 2007.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2007-06-01

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AY-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations.

  14. Ultrasonic Examination of Double-Shell Tank 241-AN-103. Examination Completed October 2005

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2006-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AN-103. PNNL is responsible for preparing a report(s) that describes the results of the COGEMA ultrasonic examinations.

  15. Ultrasonic Examination of Double-Shell Tank 241-AZ-101. Examination Completed July 2007.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2007-08-12

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AZ-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AZ-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M HILL and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M HILL, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The results of the examination of Tank 241-AZ-101 have been evaluated by PNNL personnel. The ultrasonic examination consisted of two vertical 15-in.-wide scan paths over the entire height of the tank and the heat-affected zone (HAZ) of five vertical welds and one horizontal weld from Riser 89. The examination also included two vertical 15-in.-wide scan paths over the entire height of the tank from Riser 90. The examination was performed to detect any wall thinning, pitting, or cracking in the primary tank wall.

  16. Ultrasonic Examination of Double-Shell Tank 241-AY-101. Examination completed October 2007

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2008-01-26

    AREVA NC Inc., under contract from CH2M Hill Hanford Group, has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AY-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. This report is Revision 1 - more data has been added to the original report. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan, RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill Hanford Group and the Pacific Northwest National Laboratory for further evaluation. Under the contract with CH2M Hill Hanford Group, all data is to be recorded on electronic media and paper copies of all measurements are provided to Pacific Northwest National Laboratory for third-party evaluation. Pacific Northwest National Laboratory is responsible for preparing a report(s) that describes the results of the AREVA NC Inc. ultrasonic examinations.

  17. Ultrasonic Examination of Double-Shell Tank 241-AN-107. Examination Completed March 2007

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2007-04-01

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AN-107. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AN-107 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The results of the examination of Tank 241-AN-107 have been evaluated by PNNL personnel. The ultrasonic examination consisted of two vertical 15-in.-wide scan paths over the entire height of the tank, the heat-affected zone (HAZ) of four vertical welds and one horizontal weld, the upper portion of the knuckle region, four small areas of the lower portion of the knuckle region within the air slot entrances, and the lower portion of the knuckle utilizing a multiple V path technique qualified for the extended Y-arm scanner from Riser 26. The examination also included two vertical 15-in.-wide scan paths over the entire height of the tank from Riser 25. The examination was performed to detect any wall thinning, pitting, or cracking in the primary tank wall.

  18. Ultrasonic Examination of Double-Shell Tank 241-SY-103. Examination completed February 2004

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2004-02-20

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-103. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations.

  19. Ultrasonic Examination of Double-Shell Tank 241-AW-103. Examination Completed September 2006

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.; Weier, Dennis R.

    2007-04-01

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AW-103. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary and secondary tank. The requirements for the ultrasonic examination of Tank 241-AW-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank and the wall of the secondary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The results of the examination of Tank 241-AW-103 have been evaluated by PNNL personnel. The primary tank ultrasonic examination consisted of two vertical 15-in.-wide scan paths over the entire height of the tank, the heat-affected zone (HAZ) of four vertical welds and one horizontal weld from Riser 29 and two vertical 15-in.-wide scan paths over the entire height of the tank from Riser 28. Additionally, two vertical 15-in.-wide scan paths over the entire height of the secondary tank from Riser 28 were performed. The examinations were performed to detect any wall thinning, pitting, or cracking in the primary tank wall.

  20. Ultrasonic Examination of Double-Shell Tank 241-AW-103 Examination Completed September 2006

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2006-11-06

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AW-103. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary and secondary tank. The requirements for the ultrasonic examination of Tank 241-AW-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank and the wall of the secondary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The results of the examination of Tank 241-AW-103 have been evaluated by PNNL personnel. The primary tank ultrasonic examination consisted of two vertical 15-in.-wide scan paths over the entire height of the tank, the heat-affected zone (HAZ) of four vertical welds and one horizontal weld from Riser 29 and two vertical 15-in.-wide scan paths over the entire height of the tank from Riser 28. Additionally, two vertical 15-in.-wide scan paths over the entire height of the secondary tank from Riser 28 were performed. The examinations were performed to detect any wall thinning, pitting, or cracking in the primary tank wall.

  1. Ultrasonic Examination of Double-Shell Tank 241-AN-106. Completed June 2007

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2007-07-24

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AN-106. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations.

  2. Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld

    NASA Technical Reports Server (NTRS)

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  3. Multi-Canister overpack ultrasonic examination of closure weld

    SciTech Connect

    SMITH, K.E.

    1998-11-03

    The method used for non-destructive examination of the closure weld must provide adequate assurance that the weld is structurally sound for the pressure and lifting loads to be imposed, and must be consistent with NRC equivalency requirements established for the SNF Project. Given the large flaw size that would need to exist before the structural integrity of the weld is challenged, liquid penetrant testing of the root and final passes provides adequate assurance of weld quality to meet structural loads. In addition, the helium leak test provides confirmation that the containment boundary is intact and leaktight. While UT examination does provide additional evidence of weld integrity, the value of that additional evidence for this particular application does not justify performing UT examination, given the additional financial and ALARA costs associated with performing the examination.

  4. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  5. Ultrasonics

    NASA Technical Reports Server (NTRS)

    Leonard, B. E.; Gardner, C. G.

    1973-01-01

    Ultrasonic testing is discussed as a primary means of nondestructive evaluation of subsurface flaws. The advantages and disadvantages are listed. The elementary principles, basic components of test units, scan modes, resonance testing, detection of fatigue cracks, monitoring fatigue crack growth, and determination of residual stress are discussed.

  6. Capabilities of Ultrasonic Phased Arrays for Far-Side Examinations of Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system austenitic piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements for near side inspection. For this study, four circumferential welds in 610mm (24inch) diameter, 36mm (1.42inch) thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and compared to conventional ultrasonic techniques as a baseline. The examinations showed that phased-array methods were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  7. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  8. Capabilities of Ultrasonic Techniques for the Far-Side Examination of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-02-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, four circumferential welds in 610mm diameter, 36mm thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and with low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  9. Examination of the Spatial Correlation of Statistics Information in the Ultrasonic Echo from Diseased Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Moriyasu, Fuminori

    2002-05-01

    To realize a quantitative diagnosis of liver cirrhosis, we have been analyzing the characteristics of echo amplitude in B-mode images. Realizing the distinction between liver diseases such as liver cirrhosis and chronic hepatitis is required in the field of medical ultrasonics. In this study, we examine the spatial correlation, with the coefficient of correlation between the frames and the amplitude characteristics of each frame, using the volumetric data of RF echo signals from normal and diseased liver. It is found that there is a relationship between the tissue structure of liver and the spatial correlation of echo information.

  10. Capabilities of Ultrasonic Techniques for Far-Side Examinations of Austenitic Stainless Steel Piping Welds.

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately length-size flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, austenitic stainless steel specimens with flaws located on the far-side of full penetration structural welds were used. The welds were fabricated with varied welding parameters to simulate as-built conditions in the components, and were examined with phased array technology at 2.0 MHz, and low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to reliably detect and length-size, but not depth size, notches and implanted fatigue cracks through the welds.

  11. SPARTACUS - A new system of data acquisition and processing for ultrasonic examination

    NASA Astrophysics Data System (ADS)

    Benoist, Ph.; Cartier, F.; Chapius, N.; Pincemaille, G.

    SPARTACUS, a novel data acquisition and processing system for ultrasonic examination, was developed in order to overcome the problem in which all the techniques of characterization, sizing, or of improving the SNR making use of information processing cannot be employed because the complete form of the HF signal and hence its frequency content are not accessible. In acquisition mode, SPARTACUS helps to record all the waveforms continuously in numerical form, and at a rate compatible with industrial requirements. In processing mode, SPARTACUS offers vast processing and imaging possibilities, which makes it possible to set up the analytical method adapted to a specific problem, so that the industrial operator has a tool capable of diagnostic automation in complex testing situations.

  12. 46 CFR 52.05-20 - Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Radiographic and ultrasonic examination (modifies PW-11 and PW-41.1). 52.05-20 Section 52.05-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Boilers Fabricated by Welding §...

  13. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-2, Operation of Ultrasonic Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John

    This second in a series of six modules for a course titled Nondestructive Examination (NDE) II describes specific ultrasonic test techniques and calibration principles. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  14. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  15. A STRUCTURAL IMPACT ASSESSMENT OF FLAWS DETECTED DURING ULTRASONIC EXAMINATION OF TANK 15

    SciTech Connect

    Wiersma, B; James Elder, J

    2008-08-21

    Ultrasonic (UT) inspection of Tank 15 was conducted between April and July 2007 in accordance with the Tank 15 UT inspection plan. This was a planned re-inspection of this tank, the previous one was performed in 2002. Ten cracks were characterized in the previous examination. The re-inspection was performed to verify the present models and understanding for stress corrosion cracking. During this re-examination, one indication that was initially reported as a 'possible perpendicular crack <25% through wall' in 2002, was clearly shown not to be a crack. Additionally, examination of a new area immediately adjacent to other cracks along a vertical weld revealed three new cracks. It is not known when these new cracks formed as they could very well have been present in 2002 as well. Therefore, a total of twelve cracks were evaluated during the re-examination. A critical review of the information describing stress corrosion crack behavior for the SRS waste tanks, as well as a summary review of the service history of Tank 15, was performed. Each crack was then evaluated for service exposure history, consistency of the crack behavior with the current understanding of stress corrosion cracking, and present and future impact to the structural integrity of the tank. Crack instability calculations were performed on each crack for a bounding waste removal loading condition in Tank 15. In all cases, the crack behavior was determined to be consistent with the previous understanding of stress corrosion cracking in the SRS waste tank environment. The length of the cracks was limited due to the short-range nature of the residual stresses near seam, repair and attachment welds. Of the twelve cracks, nine were located in the vapor space above the sludge layer, including the three new cracks. Comparison of the crack lengths measured in 2002 and 2007 revealed that crack growth had occurred in four of the six previously measured vapor space cracks. However, the growth remained within the

  16. Examination of Sandwich-Type Multidegree-of-Freedom Spherical Ultrasonic Motor

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Aoyagi, Manabu; Takano, Takehiro; Tamura, Hideki

    2010-07-01

    A sandwich-type multidegree-of-freedom (MDOF) spherical ultrasonic motor (SUSM) is newly proposed. The motor consists of a spherical rotor and two stator vibrators holding the rotor. This structure has both a rotor support and a preload mechanism. The stator excites five vibration modes, and the rotor can rotate on three axes. An experiment of a torque composition of two stators was carried out. The contact surface between the rotor and the stators forms a spherical surface. Moreover, a displacement magnification mechanism, which was used in the former model to rotate on the Z-axis, is no longer necessary. Hence the stator is simpler in construction than the former model. In this paper, we describe the construction and the operating principle of the MDOF ultrasonic motor, modal analysis results for the stator, and some measurement results from trial manufacturing. The miniaturization of the motor and increase in torque were successfully realized.

  17. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    SciTech Connect

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.; Anderson, M. T.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  18. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  19. Noninvasive Ultrasonic Examination Technology in Support of Counter-Terrorism and Drug Interdiction Activities: the Acoustic Inspection Device (AID)

    SciTech Connect

    Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Shepard, Chester L.; Samuel, Todd J.; Pappas, Richard A.

    2003-07-16

    The Pacific Northwest National Laboratory (PNNL) has developed a portable, battery-operated handheld ultrasonic device that provides non-invasive container interrogation and material identification capabilities. The Acoustic Inspection Device (AID) performs an automated analysis of the return echoes to identify the material, and detect contraband in the form of submerged packages and concealed compartments in liquid filled containers and solid-form commodities. This device utilizes a database consisting of material property measurements acquired from an automated ultrasonic fluid characterization system called the Velocity-Attenuation Measurement System (VAMS).

  20. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  1. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  2. Ultrasonic Imaging System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, Steven (Inventor)

    1999-01-01

    An imaging system is described which can be used to either passively search for sources of ultrasonics or as an active phase imaging system. which can image fires. gas leaks, or air temperature gradients. This system uses an array of ultrasonic receivers coupled to an ultrasound collector or lens to provide an electronic image of the ultrasound intensity in a selected angular region of space. A system is described which includes a video camera to provide a visual reference to a region being examined for ultrasonic signals.

  3. Ultrasonic bone densitometer

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    A device, for measuring the density of a bone structure so as to monitor the calcium content, is described. A pair of opposed spaced ultrasonic transducers are held within a clamping apparatus closely adjacent the bone being analyzed. These ultrasonic transducers incude piezoelectric crystals shaped to direct signals through the bone encompassed in the heel and finger of the subject being tested. A pulse generator is coupled to one of the transducers and generates an electric pulse for causing the transducers to generate an ultrasonic sound wave which is directed through the bone structure to the other transducer. An electric circuit, including an amplifier and a bandpass filter couples the signals from the receiver transducer back to the pulse generator for retriggering the pulse generator at a frequency proportional to the duration that the ultrasonic wave takes to travel through the bone structure being examined.

  4. Dermabrasion using an ultrasonic surgical aspirator.

    PubMed

    Ito, Y; Kondo, S; Sumiya, N; Yoshii, M; Otani, K; Wako, M

    1996-04-01

    We used an ultrasonic surgical aspirator on the epidermal surface to perform dermabrasion instead of the conventional motor-driven grinder. It was determined on histologic examination that it is possible to fragment the epidermis with greater selectively using the ultrasonic surgical aspirator. Abrasion also can be performed safely on spotty lesions and intricate, problematic regions with the ultrasonic surgical aspirator. We feel that the ultrasonic surgical aspirator is a promising device for use in dermabrasion.

  5. Ultrasonic Maintenance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Ultraprobe 2000, manufactured by UE Systems, Inc., Elmsford, NY, is a hand-held ultrasonic system that detects indications of bearing failure by analyzing changes in amplitude. It employs the technology of a prototype ultrasonic bearing-failure monitoring system developed by Mechanical Technology, Inc., Latham, New York and Marshall Space Flight Center (which was based on research into Skylab's gyroscope bearings). Bearings on the verge of failure send ultrasonic signals indicating their deterioration; the Ultraprobe changes these to audible signals. The operator hears the signals and gages their intensity with a meter in the unit.

  6. Scanning ultrasonic probe

    DOEpatents

    Kupperman, David S.; Reimann, Karl J.

    1982-01-01

    The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.

  7. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  8. Ultrasonic neuromodulation

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Krupa, Steve; Shoham, Shy

    2016-06-01

    Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.

  9. Ultrasonic test system

    NASA Astrophysics Data System (ADS)

    Smith, Anthony; Goff, Dan; Kruchowy, Roman; Rhoads, Carl

    1994-08-01

    An ultrasonic system for determining the quality of concrete under water without inaccuracies caused by electromagnetic interference from the ultrasonic generator. An ultrasonic generator applies pulses to the concrete. An ultrasonic detector detects the ultrasonic pulses and produces corresponding signals that are indicative of ultrasonic pulses that have passed through the material. Signal processing circuitry processes the signals to determine the transit time of the ultrasonic pulses through the material. The signal processing circuitry is disabled for a predetermined time after application of each ultrasonic pulse to the material to prevent noise produced by the means for applying ultrasonic pulses to the material from entering the signal processing circuitry and causing spurious measurements.

  10. Ultrasonic distance and velocity measurement using a pair of LPM signals for cross-correlation method: improvement of Doppler-shift compensation and examination of Doppler velocity estimation.

    PubMed

    Hirata, Shinnosuke; Kurosawa, Minoru Kuribayashi

    2012-09-01

    Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140μm in the previous method to approximately within ±10μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471mm/s and ±13.87μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9mm/s.

  11. Ultrasonic stress measurements in prestressing tendons

    NASA Astrophysics Data System (ADS)

    Washer, Glenn A.; Green, Robert E.

    2002-05-01

    The goal of this research was to examine ultrasonic stress measurement techniques for the condition assessment of prestressing tendons. Acoustoelastic measurements were made in prestressing rods and strands, and constants are reported that relate the change in ultrasonic velocity to the change in stress. The effects of dispersion in prestressing tendons, which act as circular wave guides for ultrasonic waves, were measured and evaluated. For this research, narrow-band, noncontact Electromagnetic Acoustic Transducers (EMATs) were designed to launch and receive ultrasonic waves propagating within the tendons.

  12. Ultrasonic transducer

    DOEpatents

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  13. Ultrasonic pipe assessment

    DOEpatents

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  14. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  15. Ultrasonic hydrometer

    DOEpatents

    Swoboda, Carl A.

    1984-01-01

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time "t" between the initial and returning impulses. Considering the distance "d" between the spaced sonic surfaces and the measured time "t", the sonic velocity "V" is calculated with the equation "V=2d/t". The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0.degree. and 40.degree. C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  16. Ultrasonic hydrometer

    SciTech Connect

    Swoboda, C.A.

    1984-04-17

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time ''t'' between the initial and returning impulses. Considering the distance ''d'' between the spaced sonic surfaces and the measured time ''t'', the sonic velocity ''V'' is calculated with the equation ''V=2d/t''. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0/sup 0/ and 40/sup 0/ C. and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation. The disclosed modified battery has a hollow spacer nub on the battery side wall, the sonic surfaces being on the inside of the nub and the electrolyte filling between the surfaces to the exclusion of intervening structure. An accessible pad exposed on the nub wall opposite one sonic surface allows the reliable placement thereagainst of the transducer.

  17. Ultrasonics: Fundamentals, Technologies, and Applications

    SciTech Connect

    Ensminger, Dale; Bond, Leonard J.

    2011-09-17

    This is a new edition of a bestselling industry reference. Discusses the science, technology, and applications of low and high power ultrasonics, including industrial implementations and medical uses. Reviews the basic equations of acoustics, starting from basic wave equations and their applications. New material on property determination, inspection of metals (NDT) and non-metals, imaging, process monitoring and control. Expanded discussion of transducers, transducer wave-fields, scattering, attenuation and measurement systems and models. New material that discusses high power ultrasonics - in particular using mechanical effects and sonochemistry, including applications to nano-materials. Examines diagnosis, therapy, and surgery from a technology and medical physics perspective.

  18. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  19. Ultrasonic pulser-receiver

    DOEpatents

    Taylor, Steven C.

    2006-09-12

    Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.

  20. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  1. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  2. Piezoelectric ultrasonic motors

    SciTech Connect

    Wallaschek, J.

    1994-12-31

    Piezoelectric ultrasonic motors are a new type of actuator. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. They also provide a high holding torque even if no power is applied. Compared to electromagnetic actuators the torque per volume ratio of piezoelectric ultrasonic motors can be higher by an order of magnitude. Recently various types of piezoelectric ultrasonic motors have been developed for industrial applications. This paper describes several types of piezoelectric ultrasonic motors.

  3. Ultrasonic Determination Of Recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1988-01-01

    State of recrystallization identified. Measurement of ultrasonic attenuation shows promise as means of detecting recrystallization in metal. Technique applicable to real-time acoustic monitoring of thermomechanical treatments. Starting with work-hardened material, one ultrasonically determines effect of annealing, using correlation between ultrasonic attenuation and temperature.

  4. A new AF gravitational instanton

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Teo, Edward

    2011-09-01

    It has long been conjectured that the Euclidean Schwarzschild and Euclidean Kerr instantons are the only non-trivial asymptotically flat (AF) gravitational instantons. In this Letter, we show that this conjecture is false by explicitly constructing a new two-parameter AF gravitational instanton with a U (1) × U (1) isometry group, using the inverse-scattering method. It has Euler number χ = 3 and Hirzebruch signature τ = 1, and its global topology is CP2 with a circle S1 removed appropriately. Various other properties of this gravitational instanton are also discussed.

  5. Ultrasonic Microtransport

    NASA Astrophysics Data System (ADS)

    Moroney, Richard Morgan, III

    We have observed numerous kinetic effects using ultrasonic flexural plate waves (FPWs) in 4mu -thick composite plates of low-stress silicon nitride, piezoelectric zinc oxide and aluminum. The wavelength is typically 100 mum, and the area 3 x 8 mm^2. A successful new surface micromachining fabrication process is presented here for the first time. FPWs have been used to move liquids and gasses with motion typically indicated by polysilicon blocks in air and polystyrene spheres in water; the velocity in air is 4.5 mm/s (with a zero-to-peak input of 3 V), and in water it is 100 mum/s (with an input of 7.8 V). Other observations include pumping of a liquid dye, and mixing near the FPW surface. All quantitative observations demonstrate that the kinetic effects of FPWs are proportional to the square of the wave amplitude. The amplitude for a typical device is 250 A at 9 V input; the power in a typical FPW is about 2 mW. The amplitude can be accurately measured using a laser diffraction technique. Experimental error is about +/-10%, and many of the results agree well with a simple theory to predict the FPW amplitude; extensions of the theory model the fluid loading of FPW devices, but experiment and theory disagree by about 15%. Pumping by flexural plate waves is an example of the phenomenon known as acoustic streaming. A common solution approach is the method of successive approximations, where the nonlinear equations are first linearized and solved. This "first-order" solution is then used to determine the inhomogeneous source terms in the linearized, "second -order" equations of motion. Theoretical predictions of streaming theory are in excellent agreement with experiment in the case where the FPW device contacts a half-space of fluid; predictions for flow in small channels encourage the development of integrated micropumps. Applications for microflow include thermal redistribution in integrated circuits and liquid movement in analytical instruments--particularly where

  6. Installation Restoration Program. Phase 1 - Records Search AAC-Northern Region, Galena AFS, Campion AFS, Cape Lisburne AFS, Fort Yukon AFS, Indian Mountain AFS, Kotzebue AFS, Murphy Dome AFS, and Tin City AFS

    DTIC Science & Technology

    1985-09-01

    registered with Defense Technical Information Center should direct requests for copies of this report to: Defense Technical Information Center Cameron Station ...Information Center should direct requests for copies of this report to: Defense Technical Information Center Cameron Station Alexandria, Virginia 22314 U’ B...Contract No. F08637 84 C0070. The locations of these installations are shown in Figure 1. INSTALLATION DESCRIPTION Galena AFS * Galena Air Force Station

  7. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  8. Ultrasonic Frost Suppression

    NASA Astrophysics Data System (ADS)

    Adachi, Kazunari; Saiki, Kazushi; Sato, Hiroki; Ito, Takahiro

    2003-02-01

    The authors have observed the accumulation of frost on the surface of a rectangular aluminum alloy (duralumin) plate flexurally vibrating at approximately 37 kHz in an atmosphere of almost 100% relative humidity at 2°C. The plate surface, which had been prepolished with abrasive slurry for maintaining its average surface roughness of about 100 nm, was refrigerated at a temperature of -20°C with cold carbon-dioxide gas as coolant. Experiments have been conducted with and without fine silver oxide powder spread on the plate surface so as to examine the effect of artificial ice crystal nuclei. Ultrasonic vibrations with an amplitude of 3.4 μm (rms) are found to suppress frost accumulation by approximately 60%. The phenomenon cannot be ascribed directly to the heat generation caused by high-amplitude vibration, but may have a complex mechanical and/or acoustical effect on small ice crystals.

  9. [Ultrasonic diagnosis of ureterocele].

    PubMed

    Urenkov, S B; Roslov, A L

    1989-01-01

    Diagnostic ultrasonic investigation has found many applications in routine urologic practices. The use of ultrasound for the investigation of 19 patients with ureterocele is reported. High diagnostic value, simplicity and noninvasiveness of echographic diagnosis of this congenital malformation of distal ureteral portions and related complications are pointed out. Its advantages over conventional means of ureterocele diagnosis, such as excretory urography and cystoscopy, are demonstrated, while their shortcomings are avoided. Echography is particularly effective in cases of impaired renal activity, doubled upper urinary tract and segmentary ureterohydronephrosis. Ultrasound makes it possible to choose the type of surgical intervention, and exclude angiography from the diagnostic complex in some cases. Follow-up echographic examination after surgery for ureterocele provides adequate information on treatment results.

  10. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  11. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  12. Ultrasonic Bolt Gage

    NASA Technical Reports Server (NTRS)

    Gleman, Stuart M. (Inventor); Rowe, Geoffrey K. (Inventor)

    1999-01-01

    An ultrasonic bolt gage is described which uses a crosscorrelation algorithm to determine a tension applied to a fastener, such as a bolt. The cross-correlation analysis is preferably performed using a processor operating on a series of captured ultrasonic echo waveforms. The ultrasonic bolt gage is further described as using the captured ultrasonic echo waveforms to perform additional modes of analysis, such as feature recognition. Multiple tension data outputs, therefore, can be obtained from a single data acquisition for increased measurement reliability. In addition, one embodiment of the gage has been described as multi-channel, having a multiplexer for performing a tension analysis on one of a plurality of bolts.

  13. Ultrasonic/Sonic Anchor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2009-01-01

    The ultrasonic/sonic anchor (U/S anchor) is an anchoring device that drills a hole for itself in rock, concrete, or other similar material. The U/S anchor is a recent addition to a series of related devices, the first of which were reported in "Ultrasonic/Sonic Drill/Corers With Integrated Sensors"

  14. Experiments in Pulsed Ultrasonics

    ERIC Educational Resources Information Center

    Palmer, S. B.; Forster, G. A.

    1970-01-01

    Describes and apparatus designed to generate and detect pulsed ultrasonics in solids and liquids over the frequency range 1-20 MHz. Experiments are suggested for velocity of sound, elastic constant and ultrasonic attenuation measurements on various materials over a wide temperature range. The equipment should be useful for demonstration purposes.…

  15. Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo

    PubMed Central

    Shirai, Cara Lunn; Ley, James N.; White, Brian S.; Kim, Sanghyun; Tibbitts, Justin; Shao, Jin; Ndonwi, Matthew; Wadugu, Brian; Duncavage, Eric J.; Okeyo-Owuor, Theresa; Liu, Tuoen; Griffith, Malachi; McGrath, Sean; Magrini, Vincent; Fulton, Robert S.; Fronick, Catrina; O’Laughlin, Michelle; Graubert, Timothy A.; Walter, Matthew J.

    2015-01-01

    SUMMARY Heterozygous somatic mutations in the spliceosome gene U2AF1 occur in ~11% of patients with myelodysplastic syndromes (MDS), the most common adult myeloid malignancy. It is unclear how these mutations contribute to disease. We examined in vivo hematopoietic consequences of the most common U2AF1 mutation using a doxycycline-inducible transgenic mouse model. Mice expressing mutant U2AF1(S34F) display altered hematopoiesis and changes in pre-mRNA splicing in hematopoietic progenitor cells by whole transcriptome analysis (RNA-seq). Integration with human RNA-seq datasets determined that common mutant U2AF1-induced splicing alterations are enriched in RNA processing genes, ribosomal genes, and recurrently-mutated MDS and acute myeloid leukemia-associated genes. These findings support the hypothesis that mutant U2AF1 alters downstream gene isoform expression, thereby contributing to abnormal hematopoiesis in MDS patients. PMID:25965570

  16. Clinical tests of an ultrasonic periodontal probe

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.

    2002-05-01

    A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.

  17. Ultrasonic displacement system

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1975-01-01

    An acoustic instrument system is described as a feasible tool for remote measurement of structural velocities. The system involves measurement of the Doppler shift of ultrasonic sound as it is reflected from an oscillating plate. Measurements were performed in air with an ultrasonic frequency source of 42.5 kilohertz. The surface under investigation was a plexiglass plate oscillating sinusoidally at 10, 13, and 15 Hz. Data are presented to show that, in such a system, the measurement of the Doppler shift is dependent upon the acoustic pathlength between the sensing device and the oscillating surface, with the distance between maximum shifts being half the wavelength of the ultrasonic source.

  18. Ultrasonic drilling apparatus

    DOEpatents

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  19. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  20. Ultrasonic determination of recrystallization

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.

  1. Ultrasonic washing of textiles.

    PubMed

    Choi, Junhee; Kim, Tae-Hong; Kim, Ho-Young; Kim, Wonjung

    2016-03-01

    We present the results of experimental investigation of ultrasonic washing of textiles. The results demonstrate that cavitation bubbles oscillating in acoustic fields are capable of removing soils from textiles. Since the washing performance is mitigated in a large washing bath when using an ultrasonic transducer, we propose a novel washing scheme by combining the ultrasonic vibration with a conventional washing method utilizing kinetic energy of textiles. It is shown that the hybrid washing scheme achieves a markedly enhanced performance up to 15% in comparison with the conventional washing machine. This work can contribute to developing a novel laundry machine with reduced washing time and waste water.

  2. Ultrasonic drilling apparatus

    DOEpatents

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  3. Perform Ultrasonic Testing on Cs Capsule Overpacks

    SciTech Connect

    DAVIS, S.J.

    2000-04-06

    This procedure provides a safe, uniform method for the performance of the ultrasonic weld inspection of the Cesium capsule overpacks. The inspection system will detect cracks, lack of fusion, and lack of penetration. This computer controlled automated system will perform the examination once the capsule overpack has been placed in the pool cell. Examination of the capsule overpacks will be in accordance with drawing H-283014, REV. 0 ,and a certified NDE examiner will perform the test procedure, provide analysis, and test documentation.

  4. Soft tissue cutting with ultrasonic mechanical waveguides

    NASA Astrophysics Data System (ADS)

    Wylie, Mark. P.; McGuinness, Garrett; Gavin, Graham P.

    2012-05-01

    The use of ultrasonic vibrations transmitted via small diameter wire waveguides represents a technology that has potential for minimally invasive procedures in surgery. This form of energy delivery results in distal tip mechanical vibrations with amplitudes of vibration of up to 50 μm and at frequencies between 20-50 kHz commonly reported. This energy can then be used by micro-cutting surgical tools and end effectors for a range of applications such as bone cutting, cement removal in joint revision surgery and soft tissue cutting. One particular application which has gained regulatory approval in recent years is in the area of cardiovascular surgery in the removal of calcified atherosclerotic plaques and chronic total occlusions. This paper builds on previous work that was focused on the ultrasonic perforation of soft vascular tissue using ultrasonically activated mechanical waveguides and the applied force required to initiate failure in soft tissue when compared with non-ultrasonic waveguides. An ultrasonic device and experimental rig was developed that can deliver ultrasonic vibrations to the distal tip of 1.0 mm diameter nickel-titanium waveguides. The operation of the ultrasonic device has been characterized at 22.5 kHz with achievable amplitudes of vibration in the range of 16 - 40μm. The experimental rig allows the ultrasonically activated waveguide to be advanced through a tissue sample over a range of feedrates and the waveguide-tissue interaction force can be measured during perforation into the tissue. Preliminary studies into the effects of feedrate on porcine aortic arterial tissue perforation forces are presented as part of this work. A range of amplitudes of vibration at the wire waveguide distal tip were examined. The resulting temperature increase when perforating artery wall when using the energized wire waveguides is also examined. Results show a clear multistage failure of the tissue. The first stage involves a rise in force up to some

  5. Improved AF Squadron Command Structure for Leadership, Accountability, and Efficiency

    DTIC Science & Technology

    2011-04-20

    of Defense respectively focus on span of control. The concept of span of control was developed in 1922 by Sir Ian Hamilton based on the assumption...For the AF, this means squadrons must be organized across a wing to minimize inconsistency within units as well as across them. A study by Dewar ... Dewar , Robert D., and Simet, Donald P. “A Level Specific Prediction of Spans of Control Examining the Effects of Size, Technology, and

  6. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  7. Metalworking with ultrasonic energy

    NASA Technical Reports Server (NTRS)

    Sonea, I.; Minca, M.

    1974-01-01

    The application of ultrasonic radiation for metal working of steel is discussed. It is stated that the productivity of the ultrasonic working is affected by the hardness of the material to be worked, the oscillation amplitude, the abrasive temperature, and the grain size. The factors that contribute to an increase in the dislocation speed are analyzed. Experimental data are provided to substantiate the theoretical parameters.

  8. Health Information in Somali (af Soomaali): MedlinePlus

    MedlinePlus

    ... af Soomaali (Somali) Bilingual PDF Health Information Translations Wildfires Wildfires - English Dabka duurka - af Soomaali (Somali) Multimedia Healthy Roads Media Wildfires - English Dabka duurka - af Soomaali (Somali) PDF Healthy ...

  9. Noncontact Acousto-Ultrasonics for Material Characterization

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1998-01-01

    A NdYAG 1064 nm, laser pulse was employed to produce ultrasonic waves in specimens of SiC/SiC and SiC/Ti 6-4 composites which are high temperature materials of interest for aerospace applications. Air coupled transducers were used to detect and collect the signals used for acousto-ultrasonic analysis. Conditions for detecting ultrasonic decay signals were examined. The results were compared to those determined on the same specimens with contact coupling. Some non-contact measurements were made employing conventional air focused detectors. Others were performed with a more novel micromachined capacitance transducer. Concerns of the laser-in technology include potential destructiveness of the laser pulse. Repeated laser pulsing at the same location does lead to deterioration of the ultrasonic signal in some materials, but seems to recover with time. Also, unlike contact AU, the frequency regime employed is a function of laser-material interaction rather than the choice of transducers. Concerns of the air coupled-out technology include the effect of air attenuation. This imposes a practical upper limit to frequency of detection. In the case of the experimental specimens studied ultrasonic decay signals could be imaged satisfactorily.

  10. Remote consulting based on ultrasonic digital immages and dynamic ultrasonic sequences

    NASA Astrophysics Data System (ADS)

    Margan, Anamarija; Rustemović, Nadan

    2006-03-01

    Telematic ultrasonic diagnostics is a relatively new tool in providing health care to patients in remote, islolated communities. Our project facility, "The Virtual Polyclinic - A Specialists' Consulting Network for the Islands", is located on the island of Cres in the Adriatic Sea in Croatia and has been extending telemedical services to the archipelago population since 2000. Telemedicine applications include consulting services by specialists at the University Clinical Hospital Center Rebro in Zagreb and at "Magdalena", a leading cardiology clinic in Croatia. After several years of experience with static high resolution ultrasonic digital immages for referral consulting diagnostics purposes, we now also use dynamic ultrasonic sequences in a project with the Department of Emmergency Gastroenterology at Rebro in Zagreb. The aim of the ongoing project is to compare the advantages and shortcomings in transmitting static ultrasonic digital immages and live sequences of ultrasonic examination in telematic diagnostics. Ultrasonic examination is a dynamic process in which the diagnostic accuracy is highly dependent on the dynamic moment of an ultrasound probe and signal. Our first results indicate that in diffuse parenchymal organ pathology the progression and the follow up of a disease is better presented to a remote consulting specialist by dynamic ultrasound sequences. However, the changes that involve only one part of a parenchymal organ can be suitably presented by static ultrasonic digital images alone. Furthermore, we need less time for digital imaging and such tele-consultations overall are more economical. Our previous telemedicine research and practice proved that we can greatly improve the level of medical care in remote healthcare facilities and cut healthcare costs considerably. The experience in the ongoing project points to a conclusion that we can further optimize remote diagnostics benefits by a right choice of telematic application thus reaching a

  11. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  12. Ultrasonics in Dentistry

    NASA Astrophysics Data System (ADS)

    Walmsley, A. D.

    Ultrasonic instruments have been used in dentistry since the 1950's. Initially they were used to cut teeth but very quickly they became established as an ultrasonic scaler which was used to remove deposits from the hard tissues of the tooth. This enabled the soft tissues around the tooth to return to health. The ultrasonic vibrations are generated in a thin metal probe and it is the working tip that is the active component of the instrument. Scanning laser vibrometry has shown that there is much variability in their movement which is related to the shape and cross sectional shape of the probe. The working instrument will also generate cavitation and microstreaming in the associated cooling water. This can be mapped out along the length of the instrument indicating which are the active areas. Ultrasonics has also found use for cleaning often inaccessible or different surfaces including root canal treatment and dental titanium implants. The use of ultrasonics to cut bone during different surgical techniques shows considerable promise. More research is indicated to determine how to maximize the efficiency of such instruments so that they are more clinically effective.

  13. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  14. Ultrasonic dip seal maintenance system

    DOEpatents

    Poindexter, Allan M.; Ricks, Herbert E.

    1978-01-01

    A system for removing impurities from the surfaces of liquid dip seals and or wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities.

  15. Study of ultrasonic attenuation on aging precipitation in a Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Carreón, Héctor; Dueñas, Antonio; Ruiz, Alberto; Barrera, Gerardo

    2017-02-01

    Ti-6Al-4V alloy with different microstructures was investigated by means of ultrasonic attenuation measurements. Widmanstätten and equiaxed microstructures were obtaining by heat treating a Ti-6Al-4V alloy. These two microstructures were over-aged at 545°C at different aging times. In order to find out the factors affecting the variation in the ultrasonic attenuation, the heat treated samples were examined by optical microscopy (OM) and (SEM) scanning electron microscopy. Based on the theory of ultrasonic attenuation in a solid media, the mechanisms of ultrasonic attenuation in the Ti-6Al-4V alloy with different microstructures were analyzed. It was found that in both cases with Widmanstätten and equiaxed microstructures, the ultrasonic attenuation increased with frequency. After aging, the ultrasonic attenuation was mainly attributed to the scattering loss which included the stochastic and the Rayleigh scattering due to the interaction between the ultrasonic wave and the material microstructure.

  16. Decomposition of cellulose by ultrasonic welding in water

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Miyagawa, Seiya; Mukasa, Shinobu; Toyota, Hiromichi

    2016-07-01

    The use of ultrasonic welding in water to decompose cellulose placed in water was examined experimentally. Filter paper was used as the decomposition material with a horn-type transducer 19.5 kHz adopted as the ultrasonic welding power source. The frictional heat at the point where the surface of the tip of the ultrasonic horn contacts the filter paper decomposes the cellulose in the filter paper into 5-hydroxymethylfurfural (5-HMF), furfural, and oligosaccharide through hydrolysis and thermolysis that occurs in the welding process.

  17. Sonochemical Effect Using Ultrasonic Atomizer at 2.4 MHz

    NASA Astrophysics Data System (ADS)

    Shinashi, Kiyoaki; Houkin, Toshinori; Harada, Hisashi

    2012-07-01

    Sonochemical reactions were demonstrated using a commercial ultrasonic atomizer at 2.4 MHz. The influences of experimental conditions, bottom shape and glass thickness of reactors, irradiation method, and liquid height on the sonochemical yield were discussed. The sonochemical effect was evaluated by potassium iodide dosimetry and degradation of methylene blue. Direct and indirect irradiations were examined. The former had the highest yield. In the latter case, sonochemical yield decreased in the solution because glass prevented the transmission of ultrasonic waves. Poly film, on the other hand, could transmit ultrasonic waves very well without damage.

  18. Geothermal Ultrasonic Fracture Imager

    SciTech Connect

    Patterson, Doug; Leggett, Jim

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  19. Ultrasonic nondestructive materials characterization

    NASA Technical Reports Server (NTRS)

    Green, R. E., Jr.

    1986-01-01

    A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.

  20. Ultrasonic vehicle rangefinder

    SciTech Connect

    Obayashi, H.; Kobayashi, H.; Takeuchi, K.

    1987-06-30

    An ultrasonic rangefinder is described comprising: an oscillator for intermittently generating high frequency signals; a transmitter microphone for emitting an ultrasonic pulse toward a target object when the high frequency signals are received from the oscillator; a receiver microphone for receiving an ultrasonic pulse reflected from the target object; means for measuring the time difference between transmitted and received pulses; means for detecting attenuation vibrations generated in the transmitter microphone after the high frequency signals have been input into the transmitter microphone; means for distinguishing between a malfunction in the rangefinder on a transmission side or a reception side based on the output from the detecting means; the detecting means comprising a switching means for disconnecting the oscillator from the distinguishing means when high frequency signals from the oscillator are input into transmitter microphone.

  1. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  2. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  3. Acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1990-01-01

    The theoretical development, methodology, and potential applications of acousto-ultrasonic nondestructive testing are set forth in an overview to assess the effectiveness of the technique. Stochastic wave propagation is utilized to isolate and describe defects in fiber-reinforced composites, particularly emphasizing the integrated effects of diffuse populations of subcritical flaws. The generation and nature of acousto-ultrasonic signals are described in detail, and stress-wave factor analysis of the signals is discussed. Applications of acousto-ultrasonics are listed including the prediction of failure sites, assessing fatique and impact damage, calculating ultimate tensile strength, and determining interlaminar bond strength. The method can identify subtle but important variations in fiber-reinforced composites, and development of the related instrumentation technology is emphasized.

  4. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Herz, Jack L. (Inventor)

    2014-01-01

    The invention provides a novel jackhammer that utilizes ultrasonic and/or sonic vibrations as source of power. It is easy to operate and does not require extensive training, requiring substantially less physical capabilities from the user and thereby increasing the pool of potential operators. An important safety benefit is that it does not fracture resilient or compliant materials such as cable channels and conduits, tubing, plumbing, cabling and other embedded fixtures that may be encountered along the impact path. While the ultrasonic/sonic jackhammer of the invention is able to cut concrete and asphalt, it generates little back-propagated shocks or vibrations onto the mounting fixture, and can be operated from an automatic platform or robotic system. PNEUMATICS; ULTRASONICS; IMPACTORS; DRILLING; HAMMERS BRITTLE MATERIALS; DRILL BITS; PROTOTYPES; VIBRATION

  5. STBC AF relay for unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara

    2015-01-01

    If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.

  6. Ultrasonic encapsulation - A review.

    PubMed

    Leong, Thomas S H; Martin, Gregory J O; Ashokkumar, Muthupandian

    2017-03-01

    Encapsulation of materials in particles dispersed in water has many applications in nutritional foods, imaging, energy production and therapeutic/diagnostic medicine. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. Examples include highly stable emulsions, functional polymeric particles with environmental sensitivity, and microspheres for encapsulating drugs for targeted delivery. This article provides an overview of the primary mechanisms arising from ultrasonics responsible for the formation of these materials, highlighting examples that show promise particularly in the development of foods and bioproducts.

  7. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  8. Ultrasonic/Sonic Jackhammer

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Herz, Jack

    2005-01-01

    An ultrasonic/sonic jackhammer (USJ) is the latest in a series of related devices. Each of these devices cuts into a brittle material by means of hammering and chiseling actions of a tool bit excited with a combination of ultrasonic and sonic vibrations. A small-scale prototype of the USJ has been demonstrated. A fully developed, full-scale version of the USJ would be used for cutting through concrete, rocks, hard asphalt, and other materials to which conventional pneumatic jackhammers are applied, but the USJ would offer several advantages over conventional pneumatic jackhammers.

  9. Ultrasonic Processing of Materials

    SciTech Connect

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  10. Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model.

    PubMed

    Guo, Xiasheng; Zhang, Dong; Gong, Xiufen

    2007-01-07

    A weak scattering model based on small perturbations in a binary mixture is developed to estimate the ultrasonic scattering from human cancellous bone, which is modelled as a random isotropic continuum containing identical scatters. Ultrasonic scattering is determined by both velocity fluctuation and density fluctuation, when k(2)a(2) < 1 is satisfied. Two kinds of trabeculae thickness distributions, i.e. even distribution and Gauss distribution, are applied in the calculation of attenuation and backscattering. Frequency dependence of the backscatter coefficient is found to be Af(3.13) and Af(2.84) with the Gauss distribution and an even distribution, respectively. Both backscattering and attenuation change significantly against porosity for the case of high porosity. The predicted results are close to the measured ones from the literature. The errors of this theoretical model are also discussed in this paper.

  11. Ultrasonic arrays in NDE: Beyond the B-scan

    NASA Astrophysics Data System (ADS)

    Wilcox, Paul D.

    2013-01-01

    The primary outputs of ultrasonic arrays in NDE are B-scan images that mimic the mechanical scanning of a single-element transducer. An alternative, that has only become practically feasible in the last decade, is to capture the full matrix of raw array data from all transmit-receive element combinations and perform other operations in post-processing. This article examines the ways in which the full matrix of raw array data can be exploited to improve ultrasonic NDE.

  12. Dynamic system model for ultrasonic lubrication in perpendicular configuration.

    PubMed

    Dong, Sheng; Dapino, Marcelo J

    2017-03-01

    Ultrasonic lubrication can be achieved by superimposing ultrasonic vibrations onto the relative sliding velocity between two surfaces. Ultrasonic vibrations are typically generated by a piezoelectric actuator. Relative to the macroscopic velocity, the vibrations can be longitudinal, transverse, or perpendicular. Often considered as a purely interfacial effect, ultrasonic lubrication is in fact a system phenomenon incorporating the dynamics of the actuator, sliding surfaces, and surrounding structure. This article presents a dynamic system model for ultrasonic lubrication configured in perpendicular mode, as experimentally measured with a modified pin-on-disc tribometer. The framework includes a lumped-parameter, dynamic model for the tribometer, an electromechanical model for the piezoelectric transducer used to generated the ultrasonic vibrations in the tribometer, and a "cube" model for the contact mechanics between asperities. Electrical impedance, system vibrations, and friction reduction are examined. Results show a strong match between experiments and simulations with errors lower than 10%. A parametric study is conducted to investigate the influence of driving voltage, macroscopic velocity, driving frequency, and signal waveform on ultrasonic friction reduction.

  13. Ultrasonic Drilling and Coring

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    1998-01-01

    A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.

  14. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  15. Experiments with Ultrasonic Transducers.

    ERIC Educational Resources Information Center

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  16. Dynamic ultrasonic contact detection using acoustic emissions.

    PubMed

    Turner, S L; Rabani, A; Axinte, D A; King, C W

    2014-03-01

    For a non-contact ultrasonic material removal process, the control of the standoff position can be crucial to process performance; particularly where the requirement is for a standoff of the order of <20 μm. The standoff distance relative to the surface to be machined can be set by first contacting the ultrasonic tool tip with the surface and then withdrawing the tool to the required position. Determination of this contact point in a dynamic system at ultrasonic frequencies (>20 kHz) is achieved by force measurement or by detection of acoustic emissions (AE). However, where detection of distance from a surface must be determined without contact taking place, an alternative method must be sought. In this paper, the effect of distance from contact of an ultrasonic tool is measured by detection of AE through the workpiece. At the point of contact, the amplitude of the signal at the fundamental frequency increases significantly, but the strength of the 2nd and 3rd harmonic signals increases more markedly. Closer examination of these harmonics shows that an increase in their intensities can be observed in the 10 μm prior to contact, providing a mechanism to detect near contact (<10 μm) without the need to first contact the surface in order to set a standoff.

  17. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  18. Evaluation of Ultrasonic Measurement Variation in the Double-Shell Tank Integrity Project

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Crawford, Susan L.; Munley, John T.

    2010-01-12

    Washington River Protection Solutions (WRPS) under contract from the U.S. Department of Energy (DOE) is responsible for assessing the condition of the double-shell tanks (DST) on the Hanford nuclear site. WRPS has contracted with AREVA Federal Services LLC (AFS) to perform ultrasonic testing (UT) inspections of the 28 DSTs to assess the condition of the tanks, judge the effects of past corrosion control practices, and satisfy a regulatory requirement to periodically assess the integrity of the tanks. Since measurement inception in 1997, nine waste tanks have been examined twice (at the time of this report) providing UT data that can now be compared over specific areas. During initial reviews of these two comparable data sets, average UT wall-thickness measurement reductions were noted in most of the tanks. This variation could be a result of actual wall thinning occurring on the waste-tanks walls, or some other unexplained anomaly resulting from measurement error due to causes such as the then-current measurement procedures, operator setup, or equipment differences. WRPS contracted with the Pacific Northwest National Laboratory (PNNL) to assist in understanding why this variation exists and where it stems from.

  19. Introduction to ultrasonic motors

    SciTech Connect

    Sashida, Toshiiku; Kenjo, Takashi.

    1993-01-01

    The ultrasonic motor, invented in 1980, utilizes the piezoelectric effect in the ultrasonic frequency range to provide the motive force. (In conventional electric motors the motive force is electromagnetic.) The result is a motor with unusually good low-speed high-torque and power-to-weight characteristics. It has already found applications in camera autofocus mechanisms, medical equipment subject to high magnetic fields, and motorized car accessories. Its applications will increase as designers become more familiar with its unique characteristics. This book is the result of a collaboration between the inventor and an expert in conventional electric motors: the result is an introduction to the general theory presented in a way that links it to conventional motor theory. It will be invaluable both to motor designers and to those who design with and use electric motors as an introduction to this important new invention.

  20. Ultrasonic thermometer isolation standoffs

    DOEpatents

    Arave, Alvin E.

    1977-01-01

    A method is provided for minimizing sticking of the transmission line to the protective sheath and preventing noise echoes from interfering with signal echoes in an improved high temperature ultrasonic thermometer which includes an ultrasonic transmission line surrounded by a protective sheath. Small isolation standoffs are mounted on the transmission line to minimize points of contact between the transmission line and the protective sheath, the isolation standoffs serving as discontinuities mounted on the transmission line at locations where a signal echo is desired or where an echo can be tolerated. Consequently any noise echo generated by the sticking of the standoff to the protective sheath only adds to the amplitude of the echo generated at the standoff and does not interfere with the other signal echoes.

  1. Fresnel lenses for ultrasonic inspection

    NASA Technical Reports Server (NTRS)

    Kammerer, C. C.

    1980-01-01

    Ultrasonic Fresnel lenses are effective focusing elements with potential applications in ultrasonic "contact" testing for defects in materials. Ultrasonic beams focused on concave lenses are used successfully with immersion transducers, for which test object is immersed in water bath. However, for large objects, objects that are already installed, objects on production lines, and objects that can be damaged by water, contact testing is more practical than immersion.

  2. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  3. Ultrasonic techniques for process monitoring and control.

    SciTech Connect

    Chien, H.-T.

    1999-03-24

    Ultrasonic techniques have been applied successfully to process monitoring and control for many industries, such as energy, medical, textile, oil, and material. It helps those industries in quality control, energy efficiency improving, waste reducing, and cost saving. This paper presents four ultrasonic systems, ultrasonic viscometer, on-loom, real-time ultrasonic imaging system, ultrasonic leak detection system, and ultrasonic solid concentration monitoring system, developed at Argonne National Laboratory in the past five years for various applications.

  4. Ultrasonic Clothes Drying Technology

    SciTech Connect

    Patel, Viral; Momen, Ayyoub

    2016-05-09

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  5. Ultrasonic Clothes Drying Technology

    ScienceCinema

    Patel, Viral; Momen, Ayyoub

    2016-07-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE’s Building Technologies Office in 2014.

  6. Ultrasonic differential measurement

    DOEpatents

    Rhodes, George W.; Migliori, Albert

    1995-01-01

    A method and apparatus for ultrasonic resonance testing of an object is shown and described. Acoustic vibrations are applied to an object at a plurality of frequencies. Measurements of the object's vibrational response are made simultaneously at different locations on said object. The input frequency is stepped by using small frequency changes over a predetermined range. There is a pause interval or ring delay which permits the object to reach a steady state resonance before a measurement is taken.

  7. HIGHER FREQUENCY ULTRASONIC LIGHT MODULATORS.

    DTIC Science & Technology

    LIGHT ), (*MODULATORS, (*ULTRASONIC RADIATION, MODULATORS), OPTICAL COMMUNICATIONS, BANDWIDTH, TRANSDUCERS, HIGH FREQUENCY, VERY HIGH FREQUENCY, ATTENUATION, DATA PROCESSING, OPTICAL EQUIPMENT, ANALOG COMPUTERS, THEORY.

  8. Magnetic sensing via ultrasonic excitation

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Takashima, Kazuya; Ikushima, Kenji; Toida, Hiraku; Sato, Michitaka; Ishizawa, Yoshiichi

    2013-04-01

    We present ultrasonic techniques for magnetic measurements. Acoustically modulated magnetization is investigated with sensitive rf detection by narrowband loop antennas. Magnetization on the surface of ferromagnetic metals is temporally modulated with the rf frequency of the irradiated ultrasonic waves, and the near-field components emitted from the focal point of the ultrasonic beam are detected. Based on the principle of the acoustically stimulated electromagnetic (ASEM) response, magnetic sensing and tomography are demonstrated by ultrasonic scanning. We show that ASEM imaging combines good acoustic resolution with magnetic contrast. The sensitivity of this method is estimated to be about 6 G/Hz1/2 in our current setup.

  9. Ultrasonic Transducers for Fourier Analysis.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1995-01-01

    Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)

  10. Piezocomposites improve ultrasonic testing

    SciTech Connect

    Meyer, P.A.

    1997-02-01

    Ultrasonic testing is a nondestructive technique in which beams of high-frequency sound waves are introduced into materials for the detection of surface and subsurface flaws. Ultrasound probes--the devices that generate and receive acoustic energy--have historically been made of lead zirconate titanate (PZT) and similar piezoelectric ceramics. these materials have the capability to convert an electrical signal into acoustic energy (sound waves) to be transmitted into a part. The piezoelectric ceramic then converts the returning echoes into an electrical signal, which is evaluated by an electronic instrument similar to an oscilloscope. Although conventional transducers based on piezoelectric ceramics provide adequate performance, newly undeveloped piezocomposite transducers enable ultrasonic nondestructive testing devices to detect flaws with greater sensitivity than possible before. These are mixtures of conventional piezoelectric ceramics and polymers such as epoxy, polyurethane, and silicone rubber. A typical piezocomposite consists of an array of ceramic rods in a polymer matrix. This article explains the basics of ultrasonic testing, describes the advantages of the composite detector material, and shows how it is applied to detect flaws.

  11. Degradation of AF1Q by chaperone-mediated autophagy

    SciTech Connect

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru; Li, Huanjie; Cui, Taixing; Li Wang, Xing; Tang, Dongqi; Ji, Chunyan

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  12. Influence of Air Humidity and Water Particles on Dust Control Using Ultrasonic Atomization

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Nishi, Kentaro; Shindo, Dai; Kawamura, Youhei

    2012-07-01

    The influence of air humidity and water particles on dust control was examined using ultrasonic atomization at 2.4 MHz, an acrylic box (61 L), and four types of ore dust samples: green tuff (4 µm), green tuff (6 µm), kaolin, and silica. It was clearly demonstrated that ultrasonic atomization was effective in raising humidity rapidly. However, at high relative air humidity, the water particles remained stable in the box without changing to water vapor. Ultrasonic atomization was applied to suppress dust dispersion and 40-95% dust reduction was achieved at 83% relative air humidity. Dust dispersion was more effective with ultrasonic atomization than without.

  13. AFS Estuaries Section - A Successful Partnership

    EPA Science Inventory

    The Estuaries Section of the American Fisheries Society offers travel awards to students in support of their attendance and presentations at the AFS meeting. Since 2007, the Southern Association of Marine Laboratories has partnered with the Estuaries Section to sponsor two stude...

  14. Topological ferrimagnetic behaviours of coordination polymers containing manganese(II) chains with mixed azide and carboxylate bridges and alternating F/AF/AF'/AF'/AF interactions.

    PubMed

    Wang, Yan-Qin; Liu, Hou-Ting; Qi, Yan; Gao, En-Qing

    2014-08-21

    Two Mn(ii) complexes with azide and a new zwitterionic tetracarboxylate ligand 1,2,4,5-tetrakis(4-carboxylatopyridinium-1-methylene)benzene (L(1)), {[Mn5(L(1))2(N3)8(OH)2]·12H2O}n () and {[Mn5(L(1))2(N3)8(H2O)2](ClO4)2·6H2O}n (), have been synthesized and characterized crystallographically and magnetically. and contain similar alternating chains constructed by azide and carboxylate bridges. The independent sets of bridges alternate in an ABCCB sequence between adjacent Mn(ii) ions: (EO-N3)2 double bridges (EO = end-on) (denoted as A), [(EO-N3)(OCO)2] triple bridges (denoted as B) and [(EO-N3)(OCO)] double bridges (denoted as C). The alternating chains are interlinked into 2D coordination networks by the tetrapyridinium spacers. Magnetic studies demonstrate that the magnetic coupling through the double EO azide bridges is ferromagnetic and that through mixed azide/carboxylate bridges is antiferromagnetic. The unprecedented F/AF/AF'/AF'/AF coupling sequence along the chain dictates an uncompensated ground spin state (S = 5/2 per Mn5 unit) and leads to one-dimensional topological ferrimagnetism, which features a minimum in the χT versus T plot.

  15. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  16. Functions and Requirements for the DST Knuckle Region Ultrasonic Scanning System

    SciTech Connect

    Pardini, Allan F.; Samuel, Todd J.

    2001-01-29

    This document defines the functions and requirements for a ultrasonic scanning system to provide an examination of the knuckle region of Hanford's double shell waste tanks, This document provides the basis for the ultrasonic concept selection, design, fabrication, and deployment methodology.

  17. Riser Difference Evaluation from Ultrasonic Wall Thickness Inspection of Thirteen Double-Shell Tanks

    SciTech Connect

    Weier, Dennis R.; Pardini, Allan F.

    2010-03-15

    PNNL has performed an analysis of ultrasonic thickness measurements taken on Hanford's double-shell tanks (DSTs) approximately eight years apart. The analysis was performed to determine whether significant differences exist between ultrasonic thickness measurements made in two opposite risers in Hanford DSTs that have been examined twice.

  18. Effect of ultrasonic vibration on freezing of supercooled water

    SciTech Connect

    Inada, Takaaki; Zhang, Xu; Yabe, Akira; Tanaka, Makoto; Kozawa, Yoshiyuki

    1999-07-01

    A method to actively control the supercooling of water is one of the critical issues for cold-energy storage systems utilizing ice slurry. The authors experimentally studied the use of ultrasonic water to ice. Figure A-1 shows a schematic of the experimental apparatus. A heat transfer plate made of copper was immersed in water and cooled by coolant from its upper side. The authors measured the maximum degree of supercooling in the absence of ultrasonic vibration (Exp. 1), and they examined the tendency for the supercooled water to freeze on the heat transfer surface when ultrasonic vibration was applied to the water (Exp. 2). Figure A-2 shows the probability of the freezing for pure water as a function of the degree of supercooling. A{sub e} represents the rate of surface erosion on an aluminum film attached to the heat transfer surface, which is an index of the cavitation intensity. Comparing the results of Exp. 1 and Exp. 2 shows that ultrasonic vibration is effective for promoting freezing. The results of Exp. 2 indicate that the probability of freezing on the heat transfer surface exposed to ultrasonic vibration increased as the surface erosion increased. Furthermore, the authors found that ultrasonic vibration is effective not only for controlling the freezing temperature but also for making ice slurry.

  19. Evaluation of the Sustainability and Clinical Outcome of Alternatives for Families: A Cognitive-Behavioral Therapy (AF-CBT) in a Child Protection Center

    ERIC Educational Resources Information Center

    Kolko, David J.; Iselin, Anne-Marie R.; Gully, Kevin J.

    2011-01-01

    This paper examines the sustainability and outcome of Alternatives for Families: A Cognitive-Behavioral Therapy (AF-CBT) as delivered by practitioners in a community-based child protection program who had received training in the model several years earlier. Formerly described as Abuse-Focused CBT, AF-CBT is an evidence-based treatment (EBT) for…

  20. AF fixer: new incremental OPC method for optimizing assist feature

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Gon; Kim, Sang-Wook; Suh, Sung-Soo; Kim, Young-Chang; Lee, Suk-Joo; Choi, Sung-Woon; Han, Woo-Sung; Moon, Joo-Tae; Barnes, Levi D.; Li, Xiaohai; Lugg, Robert M.; Lee, Sooryong; Koo, Kyoil; Do, Munhoe; Amoroso, Frank P.; Painter, Benjamin

    2008-05-01

    Due to shrinking design nodes and to some limitations of scanners, extreme off-axis illumination (OAI) required and its use and implementation of assist features (AF) to solve depth of focus (DOF) problems for isolated features and specific pitch regions is essential. But unfortunately, the strong periodic character of OAI illumination makes AF's print more easily. Present OPC flows generate AFs before OPC, which is also causes some AF printing problems. At present, mask manufacturers must downsize AF's below 30nm to solve this problem. This is challenging and increases mask cost. We report on an AF-fixer tool which is able to check AF printability and correct weak points with minimal cost in terms of DOF after OPC. We have devised an effective algorithm that removes printing AF's. It can not only search for the best non-printing AF condition to meet the DOF spec, but also reports uncorrectable spots, which could be marked as design errors. To limit correction times and to maximize DOF in full-chip correction, a process window (PW) model and incremental OPC method are applied. This AF fixer, which suggests optimum AF in only weak point region, solves AF printing problems economically and accurately.

  1. Ultrasonic Bonding to Metalized Plastic

    NASA Technical Reports Server (NTRS)

    Conroy, B. L.; Cruzan, C. T.

    1986-01-01

    New technique makes it possible to bond wires ultrasonically to conductor patterns on such soft substrates as plain or ceramic-filled polytetrafluoroethylene. With ultrasonic bonding, unpackaged chips attached to soft circuit boards. Preferred because chips require substrate area and better matched electrically to circuit board at high frequencies.

  2. Acousto-ultrasonics - An update

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1989-01-01

    The application possibilities and limitations of acoustoultrasonics are reviewed. One of the most useful aspects of acousto-ultrasonics is its ability to assess degradation and damage states in composites. The sensitivity of the acousto-ultrasonic approach for detecting and measuring subtle but significant material property variations in composites has been demonstrated.

  3. Ultrasonic absortion in fatigued materials

    NASA Astrophysics Data System (ADS)

    Dugan, S.; Arnold, W.

    2013-01-01

    Non-destructive detection of fatigue damage, allowing an estimate of the residual life-time of components, could contribute to a safe and reliable operation of components and installations. Ultrasonic absorption, i.e. the internal friction, of a material increases with increasing fatigue or creep damage and there are many theories trying to explain the physics behind this phenomenon. Measurement of ultrasonic absorption directly on components could provide information on the degree of damage. A laser ultrasonic method, using laser-generated pulses and optical detection, was applied to study ultrasonic absorption in fatigue specimens of different metals. A characteristic behavior of the ultrasonic absorption coefficient with increasing levels of fatigue damage was found for the titanium alloy Ti-6Al-4V. Another aim of this study was to relate the absorption mechanisms to the behavior of ultrasonic absorption observed in metals with complex microstructure. To achieve this, different ultrasonic absorption mechanisms were analyzed with respect to experimental data. A thermoelastic effect related to the size and elasticity of the microstructure is discussed as the origin of the increased ultrasonic absorption.

  4. Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2001-01-01

    Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.

  5. Utilizing an Experiential Approach to Teacher Learning about AfL: A Consciousness Raising Opportunity

    ERIC Educational Resources Information Center

    Dixon, Helen; Hawe, Eleanor

    2016-01-01

    In this article we focus on how an experiential based approach to teacher learning about assessment for learning (AfL) provided opportunities for teachers to examine: their deep-seated beliefs about effective learning (and teaching); how these beliefs permeated their day-to-day actions and interactions with students, and the consequence of these…

  6. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  7. Ultrasonic Force Microscopies

    NASA Astrophysics Data System (ADS)

    Kolosov, Oleg; Briggs, Andrew

    Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as "mechanical diode" detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as

  8. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  9. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  10. Ultrasonics in food processing.

    PubMed

    Chandrapala, Jayani; Oliver, Christine; Kentish, Sandra; Ashokkumar, Muthupandian

    2012-09-01

    In recent years, the physical and chemical effects of ultrasound in liquid and solid media have been extensively used in food processing applications. Harnessing the physical forces generated by ultrasound, in the absence and presence of cavitation, for specific food processing applications such as emulsification, filtration, tenderisation and functionality modification have been highlighted. While some applications, such as filtration and emulsification are "mature" industrial processes, other applications, such as functionality modification, are still in their early stages of development. However, various investigations discussed suggest that ultrasonic processing of food and dairy ingredients is a potential and viable technology that will be used by many food industries in the near future.

  11. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scaler. 872.4850 Section 872.4850 Food... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic... calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth....

  12. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scaler. 872.4850 Section 872.4850 Food... DEVICES DENTAL DEVICES Surgical Devices § 872.4850 Ultrasonic scaler. (a) Identification. An ultrasonic... calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth....

  13. Sulfur removal from bauxite water slurry (BWS) electrolysis intensified by ultrasonic.

    PubMed

    Ge, Lan; Gong, Xuzhong; Wang, Zhi; Zhao, Lixin; Wang, Yuhua; Wang, Mingyong

    2015-09-01

    Effects of ultrasonic on desulfurization ratio from bauxite water slurry (BWS) electrolysis in NaOH solution were examined under constant current. The results indicated that ultrasonic improved the desulfurization ratio at high temperatures because of the diffusion and transfer of oxygen gas in electrolyte. However, due to the increase in oxygen gas emission, ultrasonic could not improve the desulfurization ratio obviously at low temperatures. Additionally, the particle size of bauxite became fine in the presence of ultrasonic, indicating that the mass transfer of FeS2 phase was improved. According to the polarization curves, the current density increased in the presence of ultrasonic, indicating that the mass transfer of liquid phase was improved. The apparent activation energy (AAE) of electrode reaction revealed that ultrasonic did not change the pathway of water electrolysis. However, ultrasonic changed the pathway of BWS electrolysis, converting indirect oxidation into direct oxidation. The AAE of BWS electrolysis in the presence of ultrasonic was higher than that in the absence of ultrasonic. And the low AAEs (less than 20 kJ/mol) clearly indicated the diffusion control during BWS electrolysis reaction.

  14. Piezoelectric paint sensor for ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, Y.

    2007-04-01

    This paper deals with a distributed acoustic emission sensing method, which is especially suitable for piezoelectric paint. Piezoelectric paint is a composite piezoelectric material that is comprised of tiny piezoelectric particles randomly dispersed within a polymer matrix phase. An overview of the distributed acoustic emission sensing method for defect monitoring is given in this paper. The use of piezoelectric materials for ultrasonic signal measurements is next discussed along with a series of ultrasonic tests performed to verify the ultrasonic sensing capability of piezoelectric paint. To examine the mechanism of the distributed acoustic emission sensing method for crack initiation detection, the results of a finite element simulation based study is presented in this paper. The finite element model used in the parametric study is calibrated with experimental data. The effect of sensor numbers included in the array has been studied using both simulation and experimental data. Based on the preliminary results of this study, piezoelectric paint sensor appears to hold a potential for use in on-line monitoring of cracks such as those caused by fatigue in metal structures although more work is still needed before successful practical application can be made.

  15. A device for human ultrasonic echolocation

    PubMed Central

    Gaub, Benjamin M.; Rodgers, Chris C.; Li, Crystal; DeWeese, Michael R.; Harper, Nicol S.

    2015-01-01

    Objective We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are 1) not otherwise available to the human auditory system and 2) richer in object, and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. Methods The echoes of ultrasonic pulses were recorded and time-stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments in which the locations of echo-reflective surfaces were judged using these time stretched echoes. Results Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However trained subjects demonstrated an ability to judge elevation as well. Conclusion This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Significance Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment. PMID:25608301

  16. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    NASA Technical Reports Server (NTRS)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  17. AFS men and women differ most in their lifestyle choices

    USGS Publications Warehouse

    Connelly, N.A.; Brown, T.L.; Hardiman, J.M.

    2006-01-01

    The American Fisheries Society sponsored a survey to examine the career development choices of men and women and how they might differ by gender. A random sample of 700 men and 700 women was selected from the AFS membership database. The survey was mailed out in October 2004 and 991 questionnaires were returned for an adjusted response rate of 71%. Some differences exist between men and women in the areas of interest development, education, and employment, but the substantive differences occur in lifestyle choices. Women with a fisheries career are less likely to be married than men, even when age is controlled for, and women who are married are more likely to have dual-career considerations than their male counterparts. Among respondents without dependents in their home during their professional career, twice as many women as men think having children will adversely affect their career. For those with dependents, more than twice as many women as men said they had to put their career "on hold" because of their dependents. While AFS members do not represent all members of the fisheries profession, their experiences shed substantial light on the lifestyle choices likely faced by most members of the profession.

  18. Ultrasonic Lamb wave tomography

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.

    2002-12-01

    Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.

  19. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  20. Ultrasonic Evaluation and Imaging

    SciTech Connect

    Crawford, Susan L.; Anderson, Michael T.; Diaz, Aaron A.; Larche, Michael R.; Prowant, Matthew S.; Cinson, Anthony D.

    2015-10-01

    Ultrasonic evaluation of materials for material characterization and flaw detection is as simple as manually moving a single-element probe across a speci-men and looking at an oscilloscope display in real time or as complex as automatically (under computer control) scanning a phased-array probe across a specimen and collecting encoded data for immediate or off-line data analyses. The reliability of the results in the second technique is greatly increased because of a higher density of measurements per scanned area and measurements that can be more precisely related to the specimen geometry. This chapter will briefly discuss applications of the collection of spatially encoded data and focus primarily on the off-line analyses in the form of data imaging. Pacific Northwest National Laboratory (PNNL) has been involved with as-sessing and advancing the reliability of inservice inspections of nuclear power plant components for over 35 years. Modern ultrasonic imaging techniques such as the synthetic aperture focusing technique (SAFT), phased-array (PA) technolo-gy and sound field mapping have undergone considerable improvements to effec-tively assess and better understand material constraints.

  1. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  2. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  3. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  4. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  5. Ultrasonic characterization of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Baaklini, G. Y.

    1986-01-01

    Ultrasonic velocity and attenuation measurements were used to characterize density and microstructure in monolithic silicon nitride and silicon carbide. Research samples of these structural ceramics exhibited a wide range of density and microstructural variations. It was shown that bulk density variations correlate with and can be estimated by velocity measurements. Variations in microstructural features such as grain size or shape and pore morphology had a minor effect on velocity. However, these features had a pronounced effect on ultrasonic attenuation. The ultrasonic results are supplemented by low-energy radiography and scanning laser acoustic microscopy.

  6. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  7. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  8. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  9. Quantitative ultrasonic phased array imaging

    NASA Astrophysics Data System (ADS)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  10. Apparatus for ultrasonic nebulization

    DOEpatents

    Olson, Kenneth W.; Haas, Jr., William J.; Fassel, Velmer A.

    1978-08-29

    An improved apparatus for ultrasonic nebulization of liquid samples or suspensions in which the piezoelectric transducer is protected from chemical attack and erosion. The transducer is protected by being bonded to the inner surface of a glass plate which forms one end wall of a first hollow body provided with apparatus for circulating a fluid for cooling and stabilizing the transducer. The glass plate, which is one-half wavelength in thickness to provide an acoustically coupled outer nebulizing surface, seals an opening in a second hollow body which encloses an aerosol mixing chamber. The second body includes apparatus for delivering the sample solution to the nebulizing surface, a gas inlet for providing a flow of carrier gas for transporting the aerosol of the nebulized sample and an aerosol outlet.

  11. A practical ultrasonic plethysmograph.

    PubMed

    Wu, V C; Nickell, W T; Bhagat, P K

    1982-04-01

    An ultrasonic plethysmograph, which gives improved performance over the standard Whitney Strain Gauge, is described. This instrument monitors dimension changes in human limbs by measuring the transit times of acoustic pulses across two chords of the limb. In the case of a small uniform expansion, the percentage change in limb volume is shown to be proportional to twice the percentage change in either of the measured chords. Measurement of two chords allows correction for possible non-uniform expansion. In addition, measurement of two chords allows an estimate of the absolute cross-sectional area of the limb. The developed instrument incorporates a microprocessor, which performs necessary calculation and control functions. Use of the microprocessor allows the instrument to be self-calibrating. In addition, the device can be easily reprogrammed to incorporate improvements in operating features or computational schemes.

  12. Laboratory and Field Tests of Ultrasonic Sensors for Precision Sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliable function of sensors under rough field conditions is required for the development of variable-rate sprayers to deliver pest control agents to tree liners in ornamental nurseries. Two ultrasonic sensors were examined to identify how their durability and detection stability would be influenced...

  13. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  14. Ultrasonic Technology in Duress Alarms.

    ERIC Educational Resources Information Center

    Lee, Martha A.

    2000-01-01

    Provides the pros and cons of the most commonly used technologies in personal duress alarm systems in the school environment. Discussed are radio frequency devices, infrared systems, and ultrasonic technology. (GR)

  15. Thermal and ultrasonic evaluation of porosity in composite laminates

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.

    1992-01-01

    The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.

  16. Ultrasonic Atomization Amount for Different Frequencies

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiji; Honma, Hiroyuki; Xu, Zheng; Asakura, Yoshiyuki; Koda, Shinobu

    2011-07-01

    The mass flow rate of ultrasonic atomization was estimated by measuring the vaporization amount from a bulk liquid with a fountain. The effects of ultrasonic frequency and intensity on the atomization characteristics were investigated when the directivities of the acoustic field from a transducer were almost the same. The sample was distillated water and the ultrasonic frequencies were 0.5, 1.0, and 2.4 MHz. The mass flow rate of ultrasonic atomization increased with increasing ultrasonic intensity and decreasing ultrasonic frequency. The fountain was formed at the liquid surface where the effective value of acoustic pressure was above atmospheric pressure. The fountain height was strongly governed by the acoustic pressure at the liquid surface of the transducer center. At the same ultrasonic intensity, the dependence of ultrasonic frequency on the number of atomized droplets was small. At the same apparent surface area of the fountain, the number of atomized droplets became larger as the ultrasonic frequency increased.

  17. Computer Automated Ultrasonic Inspection System

    DTIC Science & Technology

    1985-02-06

    Microcomputer CRT Cathode Ray Tube SBC Single Board Computer xiii 1.0 INTRODUCTION 1.1 Background Standard ultrasonic inspection techniques used in industry...30 Microcomputer The heart of the bridge control microcomputer is an Intel single board computer using a high-speed 8085 HA-2 microprocessor chip ...subsystems (bridge, bridge drive electronics, bridge control microcomputer , ultrasonic unit, and master computer system), development of bridge control and

  18. Ultrasonic Imaging Of Deep Arteries

    NASA Technical Reports Server (NTRS)

    Rooney, James A.; Heyser, Richard C.; Lecroissette, Dennis H.

    1990-01-01

    Swept-frequency sound replaces pulsed sound. Ultrasonic medical instrument produces images of peripheral and coronary arteries with resolutions higher and at depths greater than attainable by previous ultrasonic systems. Time-delay-spectrometry imager includes scanning, image-processing, and displaying equipment. It sweeps in frequency from 0 to 10 MHz in 20 ms, pauses for 5 ms, and repeats sweep. Intended for use in noninvasive detection and measurement of atherosclerotic lesions.

  19. Recapping hemilaminoplasty for spinal surgical disorders using ultrasonic bone curette

    PubMed Central

    Matsuoka, Hidenori; Itoh, Yasunobu; Numazawa, Shinichi; Tomii, Masato; Watanabe, Kazuo; Hirano, Yoshitaka; Nakagawa, Hiroshi

    2012-01-01

    Objective: The authors present a novel method of the recapping hemilaminoplasty in a retrospective study of patients with spinal surgical disorders. This report describes the surgical technique and the results of hemilaminoplasty using an ultrasonic bone curette. The aim of this study was to examine the safety and effectiveness of the hemilaminoplasty technique with ultrasonic bone curette. Methods: Between April 2003 and July 2011, 33 patients with various spinal diseases (17 spinal tumors, 5 dural arteriovenous fistulas, 3 syringomyelia, 2 sacral perineural cysts, and 2 arachnoid cysts) were treated microsurgically by using an ultrasonic bone curette with scalpel blade and lightweight handpiece. The ultrasonic bone curette was used for division of lamina. After resection of the lesion, the excised lamina was replaced exactly in situ to its original anatomic position with a titanium plate and screw. Additional fusion technique was not required and the device was easy to handle. All patients were observed both neurologically and radiologically by dynamic plain radiographs and computed tomography (CT) scan. Results: The operation was performed successfully and there were no instrument-related complications such as dural laceration, nerve root injury, and vessels injury. The mean number of resected and restored lamina was 1.7. CT confirmed primary bone fusion in all patients by 12 months after surgery. Conclusion: The ultrasonic bone curette is a useful instrument for recapping hemilaminoplasty in various spinal surgeries. This method allows anatomical reconstruction of the excised bone to preserve the posterior surrounding tissues. PMID:22754735

  20. Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina

    NASA Astrophysics Data System (ADS)

    Cares, M. G.; Vargas, Y.; Gaete, L.; Sainz, J.; Alarcón, J.

    2010-01-01

    A study of ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. To address the problem it was studied the effects that could influence the extraction process through a two-level Factorial Design. The effects considered in the Experimental Design were: Granulometry, Extraction time, Acoustic Power and Acoustic Impedance. The production of the quillaja extracts is done with an aqueous extraction and the process is assisted by an ultrasonic field; no other solvents are used in its production. The final product only incorporates natural ingredients and raw materials, authorized for their use in food manufacturing processes. The principal factors affecting the ultrasonic extraction process were: Granulometry and Extraction time. The enhanced of ultrasonic assisted extraction ratio was measuring the increasing yield of extracted components, the extraction ratio was increased by ultrasonic effect and a reduction in extraction time was verified. In addition the process can be carried out at temperatures lower than the traditional way. The influence of ultrasound on the quality of bioactive principles was examined by HPLC technique and no influence of ultrasound on natural components was found.

  1. Evolution of Austenite Recrystallization and Grain Growth Using Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Moreau, A.; Militzer, M.; Poole, W. J.

    2008-04-01

    Laser ultrasonics is a noncontacting technique with which the attenuation of ultrasonic signals can be measured and related to the grain size of the investigated material. In the present article, a laser-ultrasonic grain-size measurement technique previously developed for various C-Mn and microalloyed steels has been extended to examine austenite recrystallization and subsequent grain growth following hot deformation. The ultrasonic measurements were conducted on a low-carbon (0.05 wt pct) steel that contains Mn, Mo, and Nb as the three main alloying/microalloying elements. The grain-size data measured by ultrasonic experiments were analyzed to quantify the effect of deformation conditions on the evolution of recrystallized grain size and subsequent grain growth. A significant effect of deformation temperature, applied strain, and initial grain size on the grain-size evolution was observed, while strain rate had a negligible effect. Phenomenological modeling approaches were employed to describe the recrystallized grain-size and grain-growth behavior of the present steel.

  2. Production of ultrasonic vocalizations by Peromyscus mice in the wild

    PubMed Central

    Kalcounis-Rueppell, Matina C; Metheny, Jackie D; Vonhof, Maarten J

    2006-01-01

    Background There has been considerable research on rodent ultrasound in the laboratory and these sounds have been well quantified and characterized. Despite the value of research on ultrasound produced by mice in the lab, it is unclear if, and when, these sounds are produced in the wild, and how they function in natural habitats. Results We have made the first recordings of ultrasonic vocalizations produced by two free-living species of mice in the genus Peromyscus (P. californicus and P. boylii) on long term study grids in California. Over 6 nights, we recorded 65 unique ultrasonic vocalization phrases from Peromyscus. The ultrasonic vocalizations we recorded represent 7 different motifs. Within each motif, there was considerable variation in the acoustic characteristics suggesting individual and contextual variation in the production of ultrasound by these species. Conclusion The discovery of the production of ultrasonic vocalizations by Peromyscus in the wild highlights an underappreciated component in the behavior of these model organisms. The ability to examine the production of ultrasonic vocalizations in the wild offers excellent opportunities to test hypotheses regarding the function of ultrasound produced by rodents in a natural context. PMID:16507093

  3. The acousto-ultrasonic approach

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1987-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  4. Hybrid Ultrasonic Actuator for Force-Feedback Interface

    NASA Astrophysics Data System (ADS)

    Takemura, Tsuyoshi; Aoyagi, Manabu; Takano, Takehiro; Tamura, Hideki; Tomikawa, Yoshiro

    2008-05-01

    There is a great possibility that an ultrasonic motor (USM) can effectively reproduce realistic feelings of hardness and roughness on a virtual object in a haptic virtual reality system, because it has a rapid response characteristic. However, the state following an external force does not exist in an ordinal USM, because a stator vibrator is preloaded to a rotor or a slider and a breaking force always occurs. Moreover, it is hard to arbitrarily change the preload of a USM during operation. In this study, a hybrid ultrasonic actuator that combines a USM function and a clutch one was proposed and examined. Such an actuator can electrically control a preload using piezoelectric actuators and a mechanical amplifier. It can also widely control the generation of driving and braking torques. As an experimental result, the revolution and rapid clutch functions of the hybrid ultrasonic actuator are realized.

  5. Characterization of hydrogen concentration in Zircaloy-4 using ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Gómez, M. P.; Domizzi, G.; Pumarega, M. I. López; Ruzzante, J. E.

    2006-07-01

    The relationship between hydrogen concentration precipitated as hydride particles and ultrasonic parameters, such as velocity and attenuation, was examined in Zircaloy-4 samples for potential applications in the Non-Destructive Test Field. Different amounts of hydrogen (up to 517 ppm) were introduced in the samples by gaseous charging. Ultrasonic attenuation measurements were performed with compressive waves at frequencies of 10 and 30 MHz, and propagation velocity measurements were performed at 10 MHz. Ultrasonic velocity showed an approximately linear increase with hydrogen concentration and it could be used as an assessment parameter when the hydrogen level is high enough. Attenuation versus hydrogen concentration has been fitted by a logarithmic equation at 10 MHz. At 30 MHz a fluctuating behavior of the attenuation prevented measurement of the hydrogen concentration.

  6. A Novel Application of Ultrasonic Imaging to Study Smoldering Combustion

    NASA Technical Reports Server (NTRS)

    Tse, S. D.; Anthenien, R. A.; Fernandez-Pello, A. Carlos; Miyasaka, K.

    1997-01-01

    An ultrasonic imaging technique has been developed to examine the propagation of a smolder reaction within a porous combustible material. The technique provides information about the location of a propagating smolder front, as well as line-of-sight average permeability variations of the smoldering material. The method utilizes the observation that transmission of an ultrasonic signal through a porous material increases with permeability. Since a propagating smolder reaction leaves behind char with a higher permeability than the original material, ultrasound transmission can be employed to monitor smolder progress. The technique can also be used to track the char evolution as it continues to react. Experiments are presented where the technique is applied to smoldering combustion in a two-dimensional geometry. The results have furthered the understanding of two-dimensional smolder, especially in identifying the controlling mechanisms leading to the transition from smoldering to flaming. The applicability of ultrasonic tomography to smoldering combustion has also been investigated.

  7. Ultrasonic manipulation of particles in an open fluid film.

    PubMed

    Jensen, Robert; Gralinski, Ian; Neild, Adrian

    2013-09-01

    Ultrasonic manipulation is a noncontact method of trapping and holding particles in suspension, and has found many applications in microfluidic systems. Typically, ultrasonic standing waves are used; this approach is well established in fully enclosed microfluidic systems consisting of channels or chambers with an attached piezoelectric actuator. In this work, we examine the use of ultrasonic manipulation in open fluid films, which offer a high degree of accessibility. A piezoelectric actuator is presented which can be lowered into a separate fluid tray. This two-part system offers a high degree of flexibility; indeed the actuator can be removed with little disturbance to the particle patterns, so manipulation could potentially be periodically applied as required. Particle manipulation is shown to be possible over a distance many times the size of the actuator. Furthermore, particle manipulation can also be achieved in a tilted fluid film, so alignment between the two parts of the system is not critical to its operation.

  8. Coaxially electrospun PVDF-Teflon AF and Teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties.

    PubMed

    Muthiah, Palanikkumaran; Hsu, Shu-Hau; Sigmund, Wolfgang

    2010-08-03

    This work reports the coaxial electrospinning of poly(vinylidene fluoride) (PVDF)-Teflon amorphous fluoropolymer (AF) and Teflon AF-PVDF core-sheath nanofiber mats yielding superhydrophobic properties. The coaxial electrospinning configuration allows for the electrospinning of Teflon AF, a nonelectrospinnable polymer, with the help of an electrospinnable PVDF polymer. PVDF-Teflon AF and Teflon AF-PVDF core-sheath fibers have been found to a have mean fiber diameter ranging from 400 nm to less than 100 nm. TEM micrographs exhibit a typical core-sheath fiber structure for these fibers, where the sheath fiber coats the core fiber almost thoroughly. Water contact angle measurements by sessile drop method on these core-sheath nanofiber mats exhibited superhydrophobic characteristics with contact angles close to or higher than 150 degrees. Surprisingly, PVDF-Teflon AF and Teflon AF-PVDF nanofiber mat surface properties were dominated by the fiber dimensions and less influenced by the type of sheath polymer. This suggests that highly fluorinated polymer Teflon AF does not advance the hydrophobicity beyond what surface physics and slightly fluorinated polymer PVDF can achieve. It is concluded that PVDF-Teflon AF and Teflon AF-PVDF core-sheath electrospun nanofiber mats may be used in lithium (Li)-air batteries.

  9. Signal Processing Variables for Optimization of Flaw Detection in Composites Using Ultrasonic Guided Wave Scanning

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Teemer, LeTarrie

    2004-01-01

    This study analyzes the effect of signal processing variables on the ability of the ultrasonic guided wave scan method at NASA Glenn Research Center to distinguish various flaw conditions in ceramic matrix composites samples. In the ultrasonic guided wave scan method, several time- and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. The parameters include power spectral density, centroid mean time, total energy (zeroth moment), centroid frequency, and ultrasonic decay rate. A number of signal processing variables are available to the user when calculating these parameters. These signal processing variables include 1) the time portion of the time-domain waveform processed, 2) integration type for the properties requiring integrations, 3) bounded versus unbounded integrations, 4) power spectral density window type, 5) and the number of time segments chosen if using the short-time fourier transform to calculate ultrasonic decay rate. Flaw conditions examined included delamination, cracking, and density variation.

  10. Elastic-plastic cube model for ultrasonic friction reduction via Poisson's effect.

    PubMed

    Dong, Sheng; Dapino, Marcelo J

    2014-01-01

    Ultrasonic friction reduction has been studied experimentally and theoretically. This paper presents a new elastic-plastic cube model which can be applied to various ultrasonic lubrication cases. A cube is used to represent all the contacting asperities of two surfaces. Friction force is considered as the product of the tangential contact stiffness and the deformation of the cube. Ultrasonic vibrations are projected onto three orthogonal directions, separately changing contact parameters and deformations. Hence, the overall change of friction forces. Experiments are conducted to examine ultrasonic friction reduction using different materials under normal loads that vary from 40 N to 240 N. Ultrasonic vibrations are generated both in longitudinal and vertical (out-of-plane) directions by way of the Poisson effect. The tests show up to 60% friction reduction; model simulations describe the trends observed experimentally.

  11. Microstructure and Joint Properties of Nano-Silver Paste by Ultrasonic-Assisted Pressureless Sintering

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Jing, Hongyang; Han, Yongdian; Xu, Lianyong; Lu, Guoquan

    2016-06-01

    In recent years, sintering nano-silver paste has become a popular worldwide technology. This paper presents the effect of ultrasonic vibration on the microstructure and mechanical properties of pressureless sintered nano-silver joints. Ultrasonic waves have been introduced prior to sintering using a new type of nano-silver paste in order to improve bonding of large-area chips (≥10 × 10 mm2). The results show that ultrasonic vibration can not only reduce black pores, increase the size and the density of sintered silver, but also transfer the fracture mode of joints to cohesive failure. With increasing ultrasonic power or time, the shear strength of joints gradually increases linearly. The surface of the sintered silver, the fracture surface, and the cross section of joints were examined, and the microstructure has a transition zone at the edge of the joints that is insufficiently sintered. Ultrasonic vibration can reduce the transition zone and thus improve the reliability of joints.

  12. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    SciTech Connect

    JENSEN, C.E.

    1999-08-23

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected.

  13. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    SciTech Connect

    JENSEN, C.E.

    1999-08-23

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking.

  14. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Machmeier, P. M.

    1996-09-01

    The variation in strength and Charpy impact toughness as a function of tempering temperature in the range of 200 ‡C to 650 ‡C was investigated in AF 1410 and AF 1410 + 1 pct Cr steels produced in a laboratory-scale, and a commercially produced AerMet 100 steel. The tensile test results showed that AF 1410 + 1 pct Cr had lower strength compared to AF 1410, while AerMet 100 had the highest strength of the three steels examined. Transmission electron microscopy (TEM) studies demonstrated that the strength variations among the steels can be attributed to differences in the matrix/carbide coherency strain and the volume fraction of the strengthening M2C carbides. The toughness values of the three steels were comparable when tempered up to 424 ‡C. Tempering at and above 454 ‡C resulted in a relative enhancement of toughness in AF 1410 + 1 pct Cr steel compared to AF 1410. This toughening was attributed to the destabilization of cementite at lath and prior austenite boundaries and the formation of reverted austenite.

  15. Center crack detection during continuous casting of aluminum by laser ultrasonic measurements

    NASA Astrophysics Data System (ADS)

    Grün, Hubert; Mitter, Thomas; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Burgholzer, Peter

    2014-05-01

    Crack detection during continuous direct chill casting of aluminum is a matter of economics. Determining cracks during production process saves money, energy and raw material. Of course, a non-destructive method is required for this evaluation. Because of temperature concerns conventional ultrasound is not applicable. One non-contact alternative is laser ultrasonics. In laser ultrasonics short laser pulses illuminate the sample. The electromagnetic energy gets absorbed at the surface of the sample and results in local heating followed by expansion. Thereby broadband ultrasonic waves are launched which propagate through the sample and get back reflected or scattered at interfaces (cracks, blowholes,…) like conventional ultrasonic waves. Therefore laser ultrasonics is an alternative thermal infrared technology. By using an interferometer also the detection of the ultrasonic waves at the sample surface is done in a remote manner. During preliminary examinations in the lab by scanning different aluminum studs it was able to distinguish between studs with and without cracks. The prediction of the dimension of the crack by evaluation of the damping of the broadband ultrasonic waves was possible. With simple image reconstruction methods one can localize the crack and give an estimation of its extent and even its shape. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.

  16. Activation of Wnt signaling pathway by AF1q enriches stem-like population and enhance mammosphere formation of breast cells.

    PubMed

    Tse, Charlotte Olivia; Kim, Soojin; Park, Jino

    2017-03-18

    Wnt signaling pathway is believed to be responsible for control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state. Moreover, dysregulated Wnt signaling pathway is strongly associated with several diseases including cancer. Previously, we have shown that AF1q associates with a poor prognosis in leukemia, myelodysplastic syndromes, multiple myeloid, ovarian cancer, and breast cancer. Also, AF1q plays a pivotal role as an oncogene and metastasis enhancer in breast cancer via activation of Wnt signaling pathway. AF1q is highly expressed in stem cells, and this expression is diminished by differentiation. To understand the role of AF1q in stem-like population, we examined stem-like cells derived from breast cells which dysregulated Wnt signaling pathway by alteration of AF1q expression. The effect of Wnt signaling pathway by AF1q on EMT marker expression, stem cell marker expression, and sphere formation was determined. Activated Wnt signaling pathway by AF1q enriched stem-like population showed enhanced sphere formation ability. Interestingly, Wnt signaling pathway inhibitor, Quercetin, decreased the sphere formation in these cells. These results suggest that AF1q would have a role as an enhancer in generation of stem-like population through activation of Wnt signaling pathway.

  17. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  18. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  19. Applications of a nanocomposite-inspired in-situ broadband ultrasonic sensor to acousto-ultrasonics-based passive and active structural health monitoring.

    PubMed

    Liu, Menglong; Zeng, Zhihui; Xu, Hao; Liao, Yaozhong; Zhou, Limin; Zhang, Zhong; Su, Zhongqing

    2017-03-14

    A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM.

  20. Ultrasonic attenuation in molecular crystals

    NASA Astrophysics Data System (ADS)

    Perrin, Bernard

    1981-11-01

    It is now well established from an experimental point of view that, concerning the ultrasonic attenuation, molecular crystals exhibit a specific behavior among dielectric crystals. This fact suggests the presence of a relaxation process. Liebermann, who has introduced this field, has proposed a way to analyze this problem and in particular has given an expression for the ultrasonic absorption coefficient in terms of a relaxation time and some thermodynamic quantities. In contrast to Liebermann's approach, a solid-state viewpoint is presented here, and it is shown that this ultrasonic relaxation can be taken into account in the framework of Akhieser's theory. A general expression of the ultrasonic absorption coefficient is calculated in terms of the phonon collision operator using the Boltzmann-equation approach of Woodruff and Ehrenreich. The collision-time approximation widely used in dielectric crystals fails in molecular crystals for which the presence of slow relaxation times in the collision operator prevents the thermalization of the whole set of phonons and gives rise to an ultrasonic relaxation. Thus a more suitable approximation is suggested here, which leads to a new expression of the ultrasonic attenuation valid in molecular crystals. Different forms of this expression are discussed, and comparison with Liebermann's expression used in most of the previous papers shows that the present treatment takes better account of the anisotropy of the solid state. The fit of experimental results obtained for some ionic-molecular crystals also shows that the expression derived here gives better agreement than does Liebermann's. Finally, it is shown that in the framework of the present treatment and under rather general conditions, the anisotropy affects primarily the magnitude of the ultrasonic absorption due to the molecular relaxation, but it does not affect its frequency dependence.

  1. Ultrasonic metal etching for metallographic analysis

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1971-01-01

    Ultrasonic etching delineates microstructural features not discernible in specimens prepared for metallographic analysis by standard chemical etching procedures. Cavitation bubbles in ultrasonically excited water produce preferential damage /etching/ of metallurgical phases or grain boundaries, depending on hardness of metal specimens.

  2. [Ultrasonic examination of the breast adipose grafts after mammoplasty].

    PubMed

    Fisenko, E P; Startseva, O I; Mel'nikov, D V; Zakharenko, A S; Kirillova, K A; Ivanova, A G; Pishchikova, E D

    2017-01-01

    Цель — представить результаты совместного применения жировых аутотрансплантатов с аутоплазмой, обогащенной тромбоцитами. Материал и методы. Обследованы 25 пациенток после трансплантации жировой аутоткани. Аутотрансплантацию выполняли: для коррекции объемных дефектов молочной железы и восстановления утраченного объема после удаления полиакриламидного геля (4 человека), после мастэктомии (6), после осложненного эндопротезирования силиконовыми эндопротезами (11), после перенесенной редукции (2), после увеличивающей маммопластики (2). Средний возраст пациенток 42 года. Пациентки были разделены на две группы: в 1-ю вошли 12 пациенток, которым пересажена чистая жировая ткань, во 2-ю — 13 пациенток, которым пересажен аутожир с добавлением аутоплазмы, обогащенной тромбоцитами (PRP). Результаты. В 1-ю неделю введенный жировой аутотрансплантат лоцировался фрагментами в виде гиперэхогенных участков с неровными контурами, неравномерно распределенных в различных квадрантах молочной железы и вне ее. Четко дифференцировать удавалось только те фрагменты, вокруг которых определялась тонкая гиперэхогенная капсула или их эхогенность превышала эхогенность ткани собственной молочной железы. В иных случаях изображения трансплантата, мягких тканей передней грудной клетки и тканей железы сливались между собой, вследствие этого невозможно было их дифференцировать. В неосложненном варианте структура имплантата по ультразвуковым характеристикам была более однородной, чем подкожная жировая ткань молочной железы, или схожей с подкожной жировой клетчаткой, в ней лоцировались множественные линейные гиперэхогенные включения различной протяженности. Оба варианта ультразвуковой картины трансплантата считали вариантом нормы и наблюдали их у 4 пациенток в 7 молочных железах. Через месяц аутожир практически не дифференцировался. У остальных пациенток через месяц после операции в жировом аутоимплантате выявили мелкие (0,3—0,6 см) анэхогенные включения с гиперэхогенной капсулой различной толщины. В 4 наблюдениях в окружающих тканях определяли локальное умеренное усиление сосудистого рисунка, что указывало на воспалительный компонент. После противовоспалительной терапии у 2 пациенток анэхогенные включения исчезли, у 3 их количество уменьшилось. Через 3—6 мес у 9 пациенток в зоне жирового аутотрансплантата, помимо множественных мелких анэхогенных включений, наблюдали очаги липонекроза, имевшие вид более крупных жидкостных образований (диаметр до 1,5—2,5 см). По данным эластографии, образования имели смешанные оттенки, в 6 наблюдениях преобладали жесткие тона. Наиболее сложные, «пестрые» изменения ультразвуковой картины молочных желез определялись у 4 пациенток. В их анамнезе были увеличивающая маммопластика с помощью введения безоболочечных гелей и многократное оперативное их удаление. Ультразвуковая структура молочной железы была неоднородна, лоцировались отграниченные участки разной эхогенности, неправильной формы, без четких контуров и множественные ан- и гипоэхогенные образования. У 2 пациенток сформировались абсцессы, которые были удалены. Проведен контроль толщины молочных желез до и после введения жирового имплантата. Через 2 нед после операции толщина железы увеличилась в 1,6 раза по сравнению с исходным размером. Через 3 нед толщина железы временно уменьшилась практически до исходной величины. Через месяц после операции толщина железы повторно увеличилась. Дальнейшее наблюдение в течение полугода показало устойчивый прирост толщины молочной железы (от 1,3 до 2,3 см) у пациенток 2-й группы. У пациенток 1-й группы, напротив, уже через 3 мес прирост остановился и происходило истончение железы (от 1,7 до 1,0 см). Вывод. При проведении динамического ультразвукового наблюдения за пациентками после введения аутожира фиксируются ранние процессы резорбции (очаги липонекроза). Локальное усиление сосудистого рисунка тканей молочной железы — признак воспалительного процесса, что требует проведения противовоспалительной терапии. Обогащение жировых трансплантатов тромбоцитами улучшает приживаемость аутожира.

  3. An Examination of the Feasibility of Ultrasonic Communications Links

    DTIC Science & Technology

    2010-06-01

    29 Figure 21. 5-m sound pressure distribution data for various frequencies...31 Figure 22. 10-m sound pressure distribution data for various frequencies. ..................................32 vi Figure 23...15-m sound pressure distribution data for various frequencies. ..................................33 Figure 24. 20-m sound pressure distribution data

  4. Apparatus for the ultrasonic examination of shroud hold down bolts

    SciTech Connect

    Richardson, D.L.; Clark, J.P.; Smith, T.; Perry, R.W.

    1989-04-04

    A process of testing hold down bolts depending from the sides of a steam separator within a nuclear reactor is described the process comprising the steps of: maintaining the steam separator under water; moving the bolts to unlatch the bolts from brackets on the shroud adjacent the steam separator; providing a shoe having a piezoelectric device mounted to the bottom of the shoe and exposed upwardly; providing a remotely actuated clamp attached to the shoe overlying the piezoelectric device; providing a mount to the shoe for manipulating the shoe underwater in a depending relationship at the bottom end of a pole; providing a pole and attaching the pole to the shoe; manipulating the shoe to the bottom of the bolt; and clamping the shoe to the bolt; and testing the bolt with the piezoelectric device.

  5. Study of ultrasonic thermometry based on ultrasonic time-of-flight measurement

    NASA Astrophysics Data System (ADS)

    Jia, Ruixi; Xiong, Qingyu; Wang, Lijie; Wang, Kai; Shen, Xuehua; Liang, Shan; Shi, Xin

    2016-03-01

    Ultrasonic thermometry is a kind of acoustic pyrometry and it has been evolving as a new temperature measurement technology for various environment. However, the accurate measurement of the ultrasonic time-of-flight is the key for ultrasonic thermometry. In this paper, we study the ultrasonic thermometry technique based on ultrasonic time-of-flight measurement with a pair of ultrasonic transducers for transmitting and receiving signal. The ultrasonic transducers are installed in a single path which ultrasonic travels. In order to validate the performance of ultrasonic thermometry, we make a contrast about the absolute error between the measured temperature value and the practical one. With and without heater source, the experimental results indicate ultrasonic thermometry has high precision of temperature measurement.

  6. Ultrasonic propulsion of kidney stones

    PubMed Central

    May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.

    2016-01-01

    Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428

  7. Ultrasonic stir welding process and apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2009-01-01

    An ultrasonic stir welding device provides a method and apparatus for elevating the temperature of a work piece utilizing at least one ultrasonic heater. Instead of relying on a rotating shoulder to provide heat to a workpiece an ultrasonic heater is utilized to provide ultrasonic energy to the workpiece. A rotating pin driven by a motor assembly performs the weld on the workpiece. A handheld version can be constructed as well as a fixedly mounted embodiment.

  8. Application and development of ultrasonics in dentistry.

    PubMed

    Chen, Yen-Liang; Chang, Hao-Hueng; Chiang, Yu-Chih; Lin, Chun-Pin

    2013-11-01

    Since the 1950s, dentistry's ultrasonic instruments have developed rapidly. Because of better visualization, operative convenience, and precise cutting ability, ultrasonic instruments are widely and efficiently applied in the dental field. This article describes the development and improvement of ultrasonic instruments in several dental fields. Although some issues still need clarification, the results of previous studies indicate that ultrasonic instruments have a high potential to become convenient and efficient dental tools and deserve further development.

  9. Mechanics and mechanisms of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    de Vries, Edgar

    During ultrasonic welding of sheet metal, normal and shear forces act on the parts to be welded and the weld interface. These forces are a result of the ultrasonic vibrations of the tool, pressed onto the parts to be welded. Furthermore they determine the weld quality and the power that is needed to produce the weld. The main goal in this study is to measure and calculate the tangential forces during ultrasonic metal welding that act on the parts and the weld interface and correlate them to weld quality. In this study a mechanics based model was developed which included a model for the temperature generation during welding and its effect on the mechanical material properties. This model was then used to calculate the interface forces during welding. The model results were in good agreement with the experimental results, which included the measured shear force during welding. With the knowledge of the forces that act at the interface it might be possible to control weld quality (strength) and avoid sonotrode welding (sticking of the sonotrode to the parts). Without a solution to these two problems USMW will never be applicable to large scale automated production use, despite its advantages. In the experiments the influence of part dimensions, friction coefficient, normal force and vibration amplitude on weld quality and sonotrode adhesion were examined. The presented model is capable of predicting and explaining unfavorable welding conditions, therefore making it possible to predetermine weld locations on larger parts or what surface preparation of the parts to be welded would lead to an improved welding result. Furthermore shear force at the anvil measured during welding could be correlated to changing welding conditions. This is a new approach of explaining the process of USMW, because it is based on mechanical considerations. The use of a shear force measuring anvil has the potential to be implemented into welding systems and the shear force would provide an

  10. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  11. Decontamination of blood soaked electronic devices using ultrasonic technology.

    PubMed

    Dudeck, Kimberly C; Brennan, Tamara C; Embury, Daniel J

    2012-01-10

    With advancements in technology allowing for the miniaturization of consumer electronics, criminal investigations of all types frequently involve the forensic examination of electronic devices, such as cellular telephones, smartphones, and portable flash memory; in some extreme, violent cases, these devices are found covered in blood. Due to the complexity of such devices, standard operating procedures for the complete removal of blood had not previously been established by the Royal Canadian Mounted Police prior to this study. The electronics industry has adopted the use of the ultrasonic cleaner for sanitizing printed circuit boards (PCBs) by removing residues and contaminants. High frequency sound waves created by the machine penetrate and remove dirt and residues; however, early research during the 1950s recorded these sound waves breaking the internal bonds of integrated circuit chips. Experimentation with modern ultrasonic technology was used to determine if internal components were damaged, as well as if ultrasonic cleaning was the most suitable method for the removal of dried and liquid blood from a PCB. Several disinfectant solutions were compared against the 0.5% Triton(®) X-100 detergent solution in the ultrasonic cleaner, including: 10% sodium hypochlorite bleach, 85% isopropyl alcohol, and Conflikt(®) disinfectant spray. The results not only demonstrated that the ultrasonic cleaner did not damage the vital memory chip on the PCB, but also, with the assistance of Conflikt(®), was able to remove all traces of blood as indicated by Hemastix(®) reagent strips. Of five methods experimented with, two cycles of ultrasonic cleaning followed by sanitization with Conflikt(®) proved to be the only procedure capable of removing all traces of blood, as confirmed with both Hemastix(®) reagent strips and the hemochromogen test.

  12. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  13. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  14. Pitch-catch only ultrasonic fluid densitometer

    DOEpatents

    Greenwood, Margaret S.; Harris, Robert V.

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  15. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer. (a) Identification. An ultrasonic transducer is a device applied to the skin to transmit and...

  16. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer. (a) Identification. An ultrasonic transducer is a device applied to the skin to transmit and...

  17. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    PubMed

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%.

  18. 7 CFR Exhibits A-F to Subpart A... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false A Exhibits A-F to Subpart A of Part 1955 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... Real and Chattel Property Exhibits A-F to Subpart A of Part 1955...

  19. 7 CFR Exhibits A-F to Subpart A... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false A Exhibits A-F to Subpart A of Part 1955 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... Real and Chattel Property Exhibits A-F to Subpart A of Part 1955...

  20. 7 CFR Exhibits A-F to Subpart A... - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false A Exhibits A-F to Subpart A of Part 1955 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... Real and Chattel Property Exhibits A-F to Subpart A of Part 1955...

  1. 7 CFR Exhibits A-F to Subpart A... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true A Exhibits A-F to Subpart A of Part 1955 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... Real and Chattel Property Exhibits A-F to Subpart A of Part 1955...

  2. 7 CFR Exhibits A-F to Subpart A... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false A Exhibits A-F to Subpart A of Part 1955 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... Real and Chattel Property Exhibits A-F to Subpart A of Part 1955...

  3. Part III: AFS - A Secure Distributed File System

    SciTech Connect

    Wachsmann, A.; /SLAC

    2005-06-29

    AFS is a secure distributed global file system providing location independence, scalability and transparent migration capabilities for data. AFS works across a multitude of Unix and non-Unix operating systems and is used at many large sites in production for many years. AFS still provides unique features that are not available with other distributed file systems even though AFS is almost 20 years old. This age might make it less appealing to some but with IBM making AFS available as open-source in 2000, new interest in use and development was sparked. When talking about AFS, people often mention other file systems as potential alternatives. Coda (http://www.coda.cs.cmu.edu/) with its disconnected mode will always be a research project and never have production quality. Intermezzo (http://www.inter-mezzo.org/) is now in the Linux kernel but not available for any other operating systems. NFSv4 (http://www.nfsv4.org/) which picked up many ideas from AFS and Coda is not mature enough yet to be used in serious production mode. This article presents the rich features of AFS and invites readers to play with it.

  4. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex

    PubMed Central

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of “super elongation complexes” (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs. PMID:27679741

  5. PSIDD: A Post-Scan Interactive Data Display System for Ultrasonic Scans

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Szatmary, Steven A.

    1993-01-01

    An ultrasonic data display system was developed at NASA Lewis Research Center that allows the user to interactively examine digitized waveforms and processed information associated with any specific scan location of an ultrasonic contact scan. This information is displayed on a video display monitor and includes acquired time-domain waveforms, frequency-domain magnitude and phase spectra, and ultrasonic properties (pulse velocity, phase velocity, reflection coefficient, attenuation coefficient, attenuation coefficient error) as a function of frequency for a material. This report describes the system features and illustrates the system's usefulness for nondestructive materials characterization.

  6. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.; Sushinsky, G. F.; Chwirut, D. J.; Bechtoldt, C. J.; Ruff, A. W.

    1976-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized.

  7. Improved ultrasonic standard reference blocks

    NASA Technical Reports Server (NTRS)

    Eitzen, D. G.

    1975-01-01

    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys were considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. Some RF and spectral data on ten sets of ultrasonic reference blocks were taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and microstructural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response.

  8. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  9. Compliance Testing of the Clear AFS Power Plant, Coal-Fired Boiler 1 Clear AFS, Alaska

    DTIC Science & Technology

    1989-10-01

    Background On 3 February 1987 Clear AFS requested a permit modification to allow limited burning of waste oil for their power plant shown in Figure 1...The Alaska DEC rescindel Permit to Operate No. 8331-AA003 and issued Permit No. 8731-AA004 (Appendix B) allowing the burning of waste oil. As a...below. 1. Visible Emissions (18 AAC 50.050(a)) Visible emissions, excluding condensed water vapor from an industrial process or fuel burning

  10. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  11. Ultrasonic fluid densitometry and densitometer

    DOEpatents

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  12. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1987-12-15

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder is disclosed. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws. 5 figs.

  13. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, Donald W.; Johnson, John A.; Smartt, Herschel B.

    1987-01-01

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  14. Concurrent ultrasonic weld evaluation system

    DOEpatents

    Hood, D.W.; Johnson, J.A.; Smartt, H.B.

    1985-09-04

    A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

  15. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  16. Ultrasonic evaluation of high voltage circuit boards

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Riley, T. J.

    1976-01-01

    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite.

  17. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  18. Materials analysis by ultrasonics: Metals, ceramics, composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex (Editor)

    1987-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properties, and dynamic response.

  19. Multidimensional signal processing for ultrasonic signal classification

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ramuhalli, P.; Udpa, L.; Udpa, S.

    2001-04-01

    Neural network based signal classification systems are being used increasingly in the analysis of large volumes of data obtained in NDE applications. One example is in the interpretation on ultrasonic signals obtained from inspection of welds where signals can be due to porosity, slag, lack of fusion and cracks in the weld region. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information in a group of signals and examining the statistical characteristics of the signals. The method was 2-dimensional signal processing algorithms to analyze the information in B- and B'-scan images. In this paper, 2-dimensional transform based coefficients of the images are used as features and a multilayer perceptron is used to classify them. These results are then combined to get the final classification for the inspected region. Results of applying the technique to data obtained from the inspection of welds are presented.

  20. Optical fiber interferometer for the study of ultrasonic waves in composite materials

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Zewekh, P. S.; Turner, T. M.; Wade, J. C.; Rogers, R. T.; Garg, A. O.

    1981-01-01

    The possibility of acoustic emission detection in composites using embedded optical fibers as sensing elements was investigated. Optical fiber interferometry, fiber acoustic sensitivity, fiber interferometer calibration, and acoustic emission detection are reported. Adhesive bond layer dynamical properties using ultrasonic interface waves, the design and construction of an ultrasonic transducer with a two dimensional Gaussian pressure profile, and the development of an optical differential technique for the measurement of surface acoustic wave particle displacements and propagation direction are also examined.

  1. Ultrasonic Inspection Results of Double Shell Tank (DST) 241-AP-108 [SEC 1 and 2

    SciTech Connect

    JENSEN, C.E.

    2000-09-11

    This document presents the results and documentation of the non-destructive ultrasonic examination (NDE) of tank 241-AP-107. An NDE contractor was retained to provide and use an ultrasonic inspection system (equipment, procedures, and inspectors) to scan a limited area of the primary tank wall, welds, and lower knuckle of double-shell tank 241-AP-107. The exam found no reportable indications of wall thinning, pits, or crack in excess of the acceptance criteria.

  2. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  3. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  4. Desensitizing Agent Reduces Dentin Hypersensitivity During Ultrasonic Scaling: A Pilot Study

    PubMed Central

    Suda, Tomonari; Akiyama, Toshiharu; Takano, Takuya; Gokyu, Misa; Sudo, Takeaki; Khemwong, Thatawee; Izumi, Yuichi

    2015-01-01

    Background Dentin hypersensitivity can interfere with optimal periodontal care by dentists and patients. The pain associated with dentin hypersensitivity during ultrasonic scaling is intolerable for patient and interferes with the procedure, particularly during supportive periodontal therapy (SPT) for patients with gingival recession. Aim This study proposed to evaluate the desensitizing effect of the oxalic acid agent on pain caused by dentin hypersensitivity during ultrasonic scaling. Materials and Methods This study involved 12 patients who were incorporated in SPT program and complained of dentin hypersensitivity during ultrasonic scaling. We examined the availability of the oxalic acid agent to compare the degree of pain during ultrasonic scaling with or without the application of the dentin hypersensitivity agent. Evaluation of effects on dentin hypersensitivity was determined by a questionnaire and visual analog scale (VAS) pain scores after ultrasonic scaling. The statistical analysis was performed using the paired Student t-test and Spearman rank correlation coefficient. Results The desensitizing agent reduced the mean VAS pain score from 69.33 ± 16.02 at baseline to 26.08 ± 27.99 after application. The questionnaire revealed that >80% patients were satisfied and requested the application of the desensitizing agent for future ultrasonic scaling sessions. Conclusion This study shows that the application of the oxalic acid agent considerably reduces pain associated with dentin hypersensitivity experienced during ultrasonic scaling. This pain control treatment may improve patient participation and treatment efficiency. PMID:26501012

  5. Cutting Head for Ultrasonic Lithotripsy

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D. (Inventor); Goodfriend, Roger (Inventor)

    1989-01-01

    A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup-shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduces breakage thereof.

  6. Improved ultrasonic biomedical measuring apparatus

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1972-01-01

    Device for making measurements of organs in living specimens and recording movements of organs is described. System uses series of ultrasonic pulses beamed into body of animal and reflected echo pulses are picked up by transducers and recorded. Diagram of equipment required and method of application is included.

  7. Ultrasonic lithotripsy of bladder stones.

    PubMed

    Cetin, S; Ozgür, S; Yazicioğlu, A; Unsal, K; Ilker, Y

    1988-01-01

    In the second half of 1985, 15 patients with 25 bladder stones were treated with Lutzeyer's Ultrasonic Lithotriptor. Of the patients 13 underwent additional operations, mostly transurethral resection of the prostate. The average duration of lithotripsy was 30.5 minutes. Some difficulties were experienced especially when drilling hard stones and as a complication late urethral bleeding occurred in one patient.

  8. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  9. Ultrasonic-impact grinder system

    DOEpatents

    Calkins, N.C.

    1982-09-30

    The disclosure relates to an ultrasonic impact grinding apparatus utilizing a counterweight to set an unloaded friction free condition. An added weight is used to optimize feed rate in accordance with the material to be cut, tool size and the like.

  10. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  11. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  12. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  13. Federal technology alert: Ultrasonic humidifiers

    SciTech Connect

    1998-11-01

    Humidifiers are used in buildings to maintain humidity levels to ensure quality and handling capabilities in manufacturing processes, to lower the transmission rate of disease-causing bacteria in hospitals, to reduce static electricity in manufacturing clean rooms and in computer rooms, and to provide higher levels of employee comfort in offices. Ultrasonic humidifiers generate a water mist without raising its temperature. An electronic oscillation is converted to a mechanical oscillation using a piezo disk immersed in a reservoir of mineral-free water. The mechanical oscillation is directed at the surface of the water, where at very high frequencies it creates a very fine mist of water droplets. This adiabatic process, which does not heat the supply water, reduces humidifier energy use by 90 to 93% compared with systems that do boil the water. Ultrasonic humidifiers have been demonstrated to be more efficient and to require less maintenance than competing humidifier technologies such as electrode canisters, quartz lamps, and indirect steam-to-steam. They do not require anticorrosive additives that affect the indoor air quality of buildings using direct steam humidifiers. There are two potential disadvantages of ultrasonic humidifiers. They must use mineral-free, deionized water or water treated with reverse osmosis. Treated water reduces maintenance costs because it eliminates calcium deposits, but increases other operating costs. Also, the cool mist from ultrasonic humidifiers absorbs energy from the supply air as it evaporates and provides a secondary cooling effect.

  14. Ultrasonic scanner for footprint identification

    NASA Technical Reports Server (NTRS)

    Derr, L. J.

    1974-01-01

    Scanner includes transducer, acoustical drive, acoustical receiver, X and Y position indicators, and cathode-ray tube. Transducer sends ultrasonic pulses into shoe sole or shoeprint. Reflected signals are picked up by acoustic receiver and fed to cathode-ray tube. Resulting display intensity is directly proportional to reflected signal magnitude.

  15. Ultrasonic/Sonic Impacting Penetrators

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Stark, Randall A.

    2008-01-01

    Ultrasonic/sonic impacting penetrators (USIPs) are recent additions to the series of apparatuses based on ultrasonic/sonic drill corers (USDCs). A USIP enables a rod probe to penetrate packed soil or another substance of similar consistency, without need to apply a large axial force that could result in buckling of the probe or in damage to some buried objects. USIPs were conceived for use in probing and analyzing soil to depths of tens of centimeters in the vicinity of buried barrels containing toxic waste, without causing rupture of the barrels. USIPs could also be used for other purposes, including, for example, searching for pipes, barrels, or other hard objects buried in soil; and detecting land mines. USDCs and other apparatuses based on USDCs have been described in numerous previous NASA Tech Briefs articles. The ones reported previously were designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. To recapitulate: A USDC can be characterized as a lightweight, low-power, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. As shown in the figure, a basic USDC includes a piezoelectric stack, a backing and a horn connected to the stack, a free mass (free in the sense that it can slide axially a short distance between the horn and the shoulder of tool bit), and a tool bit, i.e., probe for USIP. The piezoelectric stack is driven at the resonance frequency of the stack/horn/backing assembly to create ultrasonic vibrations that are mechanically amplified by the horn. To prevent fracture during operation, the piezoelectric stack is held in compression by a bolt. The bouncing of the free mass between the horn and the tool bit at sonic frequencies generates hammering actions to the bit that are more effective for drilling than is the microhammering action of ultrasonic vibrations in ordinary ultrasonic drills. The hammering actions

  16. Ultrasonic Evaluation of Two Dissimilar Metal Weld Overlay Specimens

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Moran, Traci L.; Anderson, Michael T.

    2012-06-30

    Two dissimilar metal weld (DMW) pipe-to-nozzle specimens were implanted with thermal fatigue cracks in the 13% to 90% through-wall depth range. The specimens were ultrasonically evaluated with phased-array probes having center frequencies of 0.8, 1.0, 1.5, and 2.0 megahertz (MHz). An Alloy 82/182 weld overlay (WOL) was applied and the specimens were ultrasonically re-evaluated for flaw detection and characterization. The Post-WOL flaw depths were approximately 10% to 56% through-wall. This study has shown the effectiveness of ultrasonic examinations of Alloy 82/182 overlaid DMW specimens. Phased-array probes with center frequency in the 0.8- to 1.0-MHz range provide a strong coherent signal but the greater ultrasonic wavelength and larger beam spot size prevent the reliable detection of small flaws. These small flaws had nominal through-wall depths of less than 15% and length in the 50-60 mm (2-2.4 in.) range. Flaws in the 19% and greater through-wall depth range were readily detected with all four probes. At the higher frequencies, the reflected signals are less coherent but still provide adequate signal for flaw detection and characterization. A single inspection at 2.0 MHz could provide adequate detection and sizing information but a supplemental inspection at 1.0 or 1.5 MHz is recommended.

  17. Ultrasound body composition traits response to an endotoxin challenge in Brahman heifers supplemented with Omnigen-AF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the body composition traits response of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183 ± 5 kg) from the Texas AgriLife Research Center in Overton, TX, were separat...

  18. OmniGen-AF supplementation modulated the physiological and acute phase responses of Brahman heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the physiological and acute phase responses (APR) of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183±5 kilograms) from the Texas AgriLife Research Center in Overton...

  19. Modulation of the metabolic response to an endotoxin challenge in Brahman heifers through OmniGen-AF supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the metabolic response of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183±5 kilograms) from the Texas AgriLife Research Center in Overton, TX, were separated into 2...

  20. An Implicit LU/AF FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.

  1. Ultrasonic imaging of materials under unconventional circumstances

    SciTech Connect

    Declercq, Nico Felicien McKeon, Peter Liu, Jingfei; Shaw, Anurupa; Slah, Yaacoubi

    2015-03-31

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. “Ultrasonic Imaging of materials” covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America’s and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD’s to show rainbow patterns under sunlight, can cause spooky images and erroneous

  2. Ultrasonic imaging of materials under unconventional circumstances

    NASA Astrophysics Data System (ADS)

    Declercq, Nico Felicien; McKeon, Peter; Slah, Yaacoubi; Liu, Jingfei; Shaw, Anurupa

    2015-03-01

    This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. "Ultrasonic Imaging of materials" covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a clairvoyant. Fortunately this is impossible hence nature has offered sufficient challenges to mankind to provoke curiosity and to develop science and technology. Here we focus on the appearance of certain undesired physical effects that prohibit direct imaging of materials in ultrasonic C-scans. Furthermore we try to make use of these effects to obtain indirect images of materials and therefore make a virtue of necessity. First we return to one of the oldest quests in the progress of mankind: how thick is ice? Our ancestors must have faced this question early on during migration to Northern Europe and to the America's and Asia. If a physicist or engineer is not provided with helpful tools such as a drill or a device based on ultrasound, it is difficult to determine the ice thickness. Guided waves, similar to those used for nondestructive testing of thin plates in structural health monitoring can be used in combination with the human ear to determine the thickness of ice. To continue with plates, if an image of its interior is desired high frequency ultrasonic pulses can be applied. It is known by the physicist that the resolution depends on the wavelength and that high frequencies usually result in undesirably high damping effects inhibiting deep penetration into the material. To the more practical oriented engineer it is known that it is advantageous to polish surfaces before examination because scattering and diffraction of sound lowers the image resolution. Random scatterers cause some blurriness but cooperating scatters, causing coherent diffraction effects similar to the effects that cause DVD's to show rainbow patterns under sunlight, can cause spooky images and erroneous measurements of

  3. Tin City AFS, Alaska. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-04-01

    GL&bAL CLIMATOLOGY 9 RA14CH T AC NG VERSUS Vi’SIBILITY A .FAT"E S[ PfIC /mAC I .17 TI CITY AFS AK 73-74,77-81 T 1b. 3 19.5 17.S 19.5 19.5...2. GOVT ACCESSION NO. 3 RECIPIENT’S CATALOG NUMBER USAFETAC/DS 83017 4. TITLE (d SubtII-)Reised Uniform Summary of Surface 5 TYPE OF REPORT & PERIOD...WINDS PART 0 CEILING VERSUS VISIBILITY PART F STATION PRESSURE SKYCOVER SEA LEVEL PRESSURE STANDARD 3 -HOUR GROUPS All su-nseri- requiring diurnal

  4. Indian Mountain AFS, Alaska. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-06-01

    31 8... . 1B b w., B. 0- r] N I o N.. Ob.. M.., N.. .1 N.-. it% To’p.Wo.- R. .1.__-___ 0 F 322 F *67 F *73 F 60S F *93 F To. 4 .. P , PSYCHROMETRIC...Psychrometrl- summary Surfoc, Worlds Extreme temperature Ceiling versus vis:boloi-; Helative Humidity -Climatological data (over) 20 ABSTRACT ’C- P ,, -1...uSAFETAC A2 4EATR SERVICE/MAC WEATHER CONDITIONS 70173C INDIAN MOUNTAIN AFS AK 73-8? P PEOCENTAGE FREQUENCY OF OCCURRENCE OF WEATHER CONDITIONS FROP HOURLY

  5. Polyurea thin film ultrasonic transducers for nondestructive testing and medical imaging.

    PubMed

    Nakazawa, Marie; Kosugi, Tsutomu; Nagatsuka, Hiromi; Maezawa, Akihiro; Nakamura, Kentaro; Ueha, Sadayuki

    2007-10-01

    Ultrasonic transducers using polyurea piezoelectric thin film are studied in this paper. Aromatic polyurea thin films, prepared by vapor deposition polymerization, have useful characteristics for use as an ultrasonic transducer. This paper presents the fabrication and experimental evaluation of ultrasonic transducers formed using polyurea films. First, the vapor deposition polymerization process using two monomers is briefly reviewed, and the temperature conditions for higher piezoelectric constants are explored. Second, in order to test the fundamental characteristics of this material as a high-frequency, ultrasonic transducer, a polyurea film of 2.5 microm thickness was deposited on a silicon substrate. In the pulse/echo experiment results, a resonant frequency of about 100 MHz was observed. Third, we fabricated a concave point focus transducer and a cylindrical line focus transducer. To examine the performances of the focus transducers, two-dimensional images of a coin and V(z) curve measurements for an aluminum surface were demonstrated.

  6. Novel method for driving the ultrasonic motor.

    PubMed

    Kim, Hyeoung woo; Dong, Shuxiang; Laoratanakul, Pitak; Uchino, Kenji; Park, Tae gone

    2002-10-01

    This paper reports a novel driving method for an annular plate-type ultrasonic motor. Instead of the direct current/alternating current (DC/AC) converter type driver using conventional electromagnetic transformer, a compact disc-type piezoelectric transformer is used to obtain high voltage output for driving the ultrasonic motor. The piezoelectric transformer is operated in the radial vibration mode at resonance frequency close to the resonance frequency of the ultrasonic motor. Later, it was found that the piezoelectric transformer could drive the ultrasonic motor, even if their resonance frequencies are not exactly the same by incorporating the matching network in the circuit. The maximum speed of the ultrasonic motor obtained by using this driving method is over 300 rpm. It is believed that the results of this study will have impact on the integration and miniaturization of the ultrasonic motor and its driving circuit.

  7. Unified Ultrasonic/Eddy-Current Data Acquisition

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Imaging station for detecting cracks and flaws in solid materials developed combining both ultrasonic C-scan and eddy-current imaging. Incorporation of both techniques into one system eliminates duplication of computers and of mechanical scanners; unifies acquisition, processing, and storage of data; reduces setup time for repetitious ultrasonic and eddy-current scans; and increases efficiency of system. Same mechanical scanner used to maneuver either ultrasonic or eddy-current probe over specimen and acquire point-by-point data. For ultrasonic scanning, probe linked to ultrasonic pulser/receiver circuit card, while, for eddy-current imaging, probe linked to impedance-analyzer circuit card. Both ultrasonic and eddy-current imaging subsystems share same desktop-computer controller, containing dedicated plug-in circuit boards for each.

  8. Techniques for enhancing laser ultrasonic nondestructive evaluation

    SciTech Connect

    Candy, J; Chinn, D; Huber, R; Spicer, J; Thomas, G

    1999-02-16

    Ultrasonic nondestructive evaluation is an extremely powerful tool for characterizing materials and detecting defects. A majority of the ultrasonic nondestructive evaluation is performed with piezoelectric transducers that generate and detect high frequency acoustic energy. The liquid needed to couple the high frequency acoustic energy from the piezoelectric transducers restricts the applicability of ultrasonics. For example, traditional ultrasonics cannot evaluate parts at elevated temperatures or components that would be damaged by contact with a fluid. They are developing a technology that remotely generates and detects the ultrasonic pulses with lasers and consequently there is no requirement for liquids. Thus the research in laser-based ultrasound allows them to solve inspection problems with ultrasonics that could not be done before. This technology has wide application in many Lawrence Livermore National Laboratory programs, especially when remote and/or non-contact sensing is necessary.

  9. Enhanced ultrasonic characterization of assemblies, TLL_19

    SciTech Connect

    Chinn, D; Thomas, G

    1998-09-01

    Bonded joints, such as the autoclave bond, are critical to the performance of weapon systems. A nondestructive method to assess the integrity of these bonds is needed to certify the weapon for extended life. This project is developing ultrasonic technologies for bond quality assessment. Existing ultrasonic technology easily maps totally unbonded areas in a bond line but does not measure the quality of the bond. We are extracting information from the ultrasonic signals to quantify the mechanical. properties and assess the durability of the bond. Our approach is based on advanced signal processing and artificial intelligence techniques that process information from the ultrasonic signal after it interacts with the bondline. Computer algorithms recognize variations in bond quality from the acoustic signals. The ultrasonic signal processing and bond classification software will be installed on ultrasonic scanners at the appropriate sites.

  10. Ultrasonic ranging for the oculometer

    NASA Technical Reports Server (NTRS)

    Guy, W. J.

    1981-01-01

    Ultrasonic tracking techniques are investigated for an oculometer. Two methods are reported in detail. The first is based on measurements of time from the start of a transmit burst to a received echo. Knowing the sound velocity, distance can be calculated. In the second method, a continuous signal is transmitted. Target movement causes phase shifting of the echo. By accumulating these phase shifts, tracking from a set point can be achieved. Both systems have problems with contoured targets, but work well on flat plates and the back of a human head. Also briefly reported is an evaluation of an ultrasonic ranging system. Interface circuits make this system compatible with the echo time design. While the system is consistently accurate, it has a beam too narrow for oculometer use. Finally, comments are provided on a tracking system using the Doppler frequency shift to give range data.

  11. Cavitation-controlled ultrasonic agitator

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Raptis, A.C.

    1989-10-01

    High-intensity ultrasound generally produces nonlinear acoustic cavitation and streaming in liquids. The ultrasonic energy required to cause cavitation and streaming in a liquid depends on the physical properties of the liquid, e.g., surface tension, viscosity, and entrained gases. Both cavitation and streaming generate acoustic noise whose signatures may be used to distinguish the stage of agitation and thus allow the process to be controlled. An ultrasonic agitator has been designed for application in a confined area with a high-temperature, high-pressure, and corrosive environment. Control of this agitator is based on the detection of noise levels and subharmonics produced during cavitation and streaming. Noise signatures of agitation in different liquids and in liquids with particles have been determined, and discussed. 6 refs., 6 figs.

  12. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  13. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  14. Ultrasonic enhancement of battery diffusion.

    PubMed

    Hilton, R; Dornbusch, D; Branson, K; Tekeei, A; Suppes, G J

    2014-03-01

    It has been demonstrated that sonic energy can be harnessed to enhance convection in Galvanic cells during cyclic voltammetry; however, the practical value of this approach is limited due to the lack of open volumes for convection patterns to develop in most batteries. This study evaluates the ability of ultrasonic waves to enhance diffusion in membrane separators commonly used in sandwich-architecture batteries. Studies include the measuring of open-circuit performance curves to interpret performances in terms of reductions in concentration overpotentials. The use of a 40 kHz sonicator bath can consistently increase the voltage of the battery and reduce overpotential losses up to 30%. This work demonstrates and quantifies battery enhancement due to enhanced diffusion made possible with ultrasonic energy.

  15. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  16. Discriminating ultrasonic proximity detection system

    DOEpatents

    Annala, Wayne C.

    1989-01-01

    This invention uses an ultrasonic transmitter and receiver and a microprocessor to detect the presence of an object. In the reset mode the invention uses a plurality of echoes from each ultrasonic burst to create a reference table of the echo-burst-signature of the empty monitored environment. The invention then processes the reference table so that it only uses the most reliable data. In the detection mode the invention compares the echo-burst-signature of the present environment with the reference table, detecting an object if there is a consistent difference between the echo-burst-signature of the empty monitored environment recorded in the reference table and the echo-burst-signature of the present environment.

  17. Ultrasonic disruption of algae cells

    NASA Astrophysics Data System (ADS)

    King, P. M.; Nowotarski, K.; Joyce, E. M.; Mason, T. J.

    2012-05-01

    During last decade there has been increasing interest in the production of sustainable fuels from microalgae (R.H. Wijffels and M.J. Barbosa, 2010; Singh et al 2011; D.H. Lee 2011). The aim of this project was to determine if algal cells can be ultrasonically disrupted to release lipids for biofuel production. Ultrasonic disruption of two unicellular algal species: Dunnaliella salina and Nannochloropsis oculata was investigated using a 20 kHz probe. Haemocytometer, optical density, UV-Vis, fluoro-spectrophotometer and confocal microscopy results demonstrated complete cell destruction of Dunaliella salina within 16 minutes of sonication. Results obtained for Nannochloropsis oculata differed in that ultrasound dispersed clumped cells with little or no cell disruption, as observed by haemocytometer and confocal microscopy analysis. However, UV-Visible and fluoro-spectrophotometer analysis indicated chlorophyll release following sonication, suggesting some cell disruption had occurred.

  18. Lamb Wave Multitouch Ultrasonic Touchscreen.

    PubMed

    Firouzi, Kamyar; Nikoozadeh, Amin; Carver, Thomas E; Khuri-Yakub, Butrus Pierre T

    2016-12-01

    Touchscreen sensors are widely used in many devices such as smart phones, tablets, and laptops with diverse applications. We present the design, analysis, and implementation of an ultrasonic touchscreen system that utilizes the interaction of transient Lamb waves with objects in contact with the screen. It attempts to improve on the existing ultrasound technologies, with the potential of addressing some of the weaknesses of the dominant technologies, such as the capacitive or resistive ones. Compared with the existing ultrasonic and acoustic modalities, among other advantages, it provides the capability of detecting several simultaneous touch points and also a more robust performance. The localization algorithm, given the hardware design, can detect several touch points with a very limited number of measurements (one or two). This in turn can significantly reduce the manufacturing cost.

  19. Ultrasonic cleaning of interior surfaces

    DOEpatents

    Odell, D. MacKenzie C.

    1994-01-01

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  20. Ultrasonic cleaning of interior surfaces

    DOEpatents

    MacKenzie, D.; Odell, C.

    1994-03-01

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  1. Ultrasonic cleaning of interior surfaces

    DOEpatents

    Odell, D. MacKenzie C.

    1996-01-01

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  2. Ultrasonic analysis of bolt preloads

    NASA Technical Reports Server (NTRS)

    Rollins, F. R., Jr.

    1977-01-01

    This paper covers an investigation into the feasibility of analyzing bolt preloads by ultrasonic techniques. Various techniques were evaluated and a pulse echo inteferometric method was selected for experimental testing. In agreement with theoretical predictions, the interferometer response was found to be linearly related to tensile stresses oriented parallel to the bolt axis. Under rather idealized conditions, bolt loads can be determined with errors of less than 1%. The ultimate operational accuracy depends on a number of variables, such as bolt dimensions and geometry, bolt temperature, uniformity of stresses, and bolt materials, but load analyses to within + or - 3% are readily achievable. Best results are obtained with the ultrasonic transducer contact coupled to a small flat area near the center of the bolt head. The transducer can be applied and measurements made without interfering with normal wrenching operations. Prototype instrumentation is described and calibration results are tabulated for numerous bolt sizes and materials.

  3. Fundamentals of picosecond laser ultrasonics.

    PubMed

    Matsuda, Osamu; Larciprete, Maria Cristina; Li Voti, Roberto; Wright, Oliver B

    2015-02-01

    The aim of this article is to provide an introduction to picosecond laser ultrasonics, a means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort light pulses. This method can be used to characterize materials with nanometer spatial resolution. With reference to key experiments, we first review the theoretical background for normal-incidence optical detection of longitudinal acoustic waves in opaque single-layer isotropic thin films. The theory is extended to handle isotropic multilayer samples, and is again compared to experiment. We then review applications to anisotropic samples, including oblique-incidence optical probing, and treat the generation and detection of shear waves. Solids including metals and semiconductors are mainly discussed, although liquids are briefly mentioned.

  4. Ultrasonic Imaging and Automated Flaw Detection System

    DTIC Science & Technology

    1986-03-01

    imager sold by Searle Ultrasound. An LSI-11 microcomputer is interfaced to the imager with custom designed modules. Ultrasonic image data is loaded...phased array ultrasonic imager, an LSI-11 microcomputer , and an assortment of custom-designed electronic modules. There is also a CRT display terminal...AD CONTRACTOR REPORT ARCCB-CR-86011 ULTRASONIC IMAGING AND AUTOMATED FLAW DETECTION SYSTEM L. JONES DTIC3ZLECTE J. F. MC DONALD JUNCTE G.P

  5. Calorimetric measurement of energy of ultrasonic cleaners

    SciTech Connect

    Harding, W.B.

    1994-11-01

    The development of a calorimeter that measured the power within an ultrasonic cleaning tank is presented. The principle involved is explained. Several types of calorimeter that were tested are described. Measurement of the power in an ultrasonic cleaner permits: (1) comparing different ultrasonic cleaners; (2) monitoring the performance of a specific cleaner; (3) measuring the distribution of power in a cleaning tank, and (4) evaluating the effects of process variables on the power.

  6. Ultrasonic Bonding of Solar-Cell Leads

    NASA Technical Reports Server (NTRS)

    Frasch, W.

    1984-01-01

    Rolling ultrasonic spot-bonding method successfully joins aluminum interconnect fingers to silicon solar cells with copper metalization. Technique combines best features of ultrasonic rotary seam welding and ultrasonic spot bonding: allows fast bond cycles and high indexing speeds without use of solder or flux. Achieves reliable bonds at production rates without damage to solar cells. Bonding system of interest for all solar-cell assemblies and other assemblies using flat leads (rather than round wires).

  7. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  8. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  9. Nonlinear Ultrasonic Phased Array Imaging

    NASA Astrophysics Data System (ADS)

    Potter, J. N.; Croxford, A. J.; Wilcox, P. D.

    2014-10-01

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  10. Nonlinear ultrasonic phased array imaging.

    PubMed

    Potter, J N; Croxford, A J; Wilcox, P D

    2014-10-03

    This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.

  11. Cutting head for ultrasonic lithotripsy

    NASA Technical Reports Server (NTRS)

    Anguluo, E. D.; Goodfriend, R. (Inventor)

    1985-01-01

    A cutting head for attachment to the end of the wire probe of an ultrasonic kidney stone disintegration instrument is described. The cutting head has a plurality of circumferentially arranged teeth formed at one end thereof to provide a cup shaped receptacle for kidney stones encountered during the disintegration procedure. An integral reduced diameter collar diminishes stress points in the wire and reduce breakage thereof.

  12. Stresses in ultrasonically assisted bone cutting

    NASA Astrophysics Data System (ADS)

    Alam, K.; Mitrofanov, A. V.; Bäker, M.; Silberschmidt, V. V.

    2009-08-01

    Bone cutting is a frequently used procedure in the orthopaedic surgery. Modern cutting techniques, such as ultrasonic assisted drilling, enable surgeons to perform precision operations in facial and spinal surgeries. Advanced understanding of the mechanics of bone cutting assisted by ultrasonic vibration is required to minimise bone fractures and to optimise the technique performance. The paper presents results of finite element simulations on ultrasonic and conventional bone cutting analysing the effects of ultrasonic vibration on cutting forces and stress distribution. The developed model is used to study the effects of cutting and vibration parameters (e.g. amplitude and frequency) on the stress distributions in the cutting region.

  13. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  14. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  15. Noncontacting ultrasonic and electromagnetic HTS tape NDE

    SciTech Connect

    Telschow, K.L.; Bruneel, F.W.; Walter, J.B.; Koo, L.S.

    1996-10-01

    Two noncontacting nondestructive evaluation techniques (electromagnetic and ultrasonic) for inspection of high temperature superconducting tapes are described. Results for Ag-clad BSCCO tapes are given.

  16. Flexible ultrasonic pipe inspection apparatus

    DOEpatents

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  17. Ultrasonic NDE of Multilayered Structures

    SciTech Connect

    Quarry, M J; Fisher, K A; Lehman, S K

    2005-02-14

    This project developed ultrasonic nondestructive evaluation techniques based on guided and bulk waves in multilayered structures using arrays. First, a guided wave technique was developed by preferentially exciting dominant modes with energy in the layer of interest via an ultrasonic array. Second, a bulk wave technique uses Fermat's principle of least time as well as wave-based properties to reconstruct array data and image the multilayered structure. The guided wave technique enables the inspection of inaccessible areas of a multilayered structure without disassembling it. Guided waves propagate using the multilayer as a waveguide into the inaccessible areas from an accessible position. Inspecting multi-layered structures with a guided wave relies on exciting modes with sufficient energy in the layer of interest. Multilayered structures are modeled to determine the possible modes and their distribution of energy across the thickness. Suitable modes were determined and excited by designing arrays with the proper element spacing and frequency. Bulk wave imaging algorithms were developed to overcome the difficulties of multiple reflections and refractions at interfaces. Reconstruction algorithms were developed to detect and localize flaws. A bent-ray algorithm incorporates Fermat's principle to correct time delays in the ultrasonic data that result from the difference in wave speeds in each layer and refractions at the interfaces. A planar wave-based algorithm was developed using the Green function for the multilayer structure to enhance focusing on reception for improved imaging.

  18. Predictive simulation of nonlinear ultrasonics

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2012-04-01

    Most of the nonlinear ultrasonic studies to date have been experimental, but few theoretical predictive studies exist, especially for Lamb wave ultrasonic. Compared with nonlinear bulk waves and Rayleigh waves, nonlinear Lamb waves for structural health monitoring become more challenging due to their multi-mode dispersive features. In this paper, predictive study of nonlinear Lamb waves is done with finite element simulation. A pitch-catch method is used to interrogate a plate with a "breathing crack" which opens and closes under tension and compression. Piezoelectric wafer active sensors (PWAS) used as transmitter and receiver are modeled with coupled field elements. The "breathing crack" is simulated via "element birth and death" technique. The ultrasonic waves generated by the transmitter PWAS propagate into the structure, interact with the "breathing crack", acquire nonlinear features, and are picked up by the receiver PWAS. The features of the wave packets at the receiver PWAS are studied and discussed. The received signal is processed with Fast Fourier Transform to show the higher harmonics nonlinear characteristics. A baseline free damage index is introduced to assess the presence and the severity of the crack. The paper finishes with summary, conclusions, and suggestions for future work.

  19. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, Donald O.; Hsu, David K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses.

  20. Method and means of transmitting and receiving broad-band unipolar, ultrasonic pulses for ultrasonic inspection

    DOEpatents

    Thompson, D.O.; Hsu, D.K.

    1993-12-14

    The invention includes a means and method for transmitting and receiving broadband, unipolar, ultrasonic pulses for ultrasonic inspection. The method comprises generating a generally unipolar ultrasonic stress pulse from a low impedance voltage pulse transmitter along a low impedance electrical pathway to an ultrasonic transducer, and receiving the reflected echo of the pulse by the transducer, converting it to a voltage signal, and passing it through a high impedance electrical pathway to an output. The means utilizes electrical components according to the method. The means and method allow a single transducer to be used in a pulse/echo mode, and facilitates alternatingly transmitting and receiving the broadband, unipolar, ultrasonic pulses. 25 figures.

  1. Ear examination

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003340.htm Ear examination To use the sharing features on this page, ... ear References King EF, Couch ME. History, physical examination, and the preoperative evaluation. In: Flint PW, Haughey ...

  2. Cape Newenham AFS, Alaska. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-04-01

    OBSERVATIONS) L P- 14 H~N A A-F S .~ 73-F2 ____ JA&,. ALL WI- LAt E -- .. - - 6 7 0 11 16 17 21 22 27 28- 33 34 *0 41 A7 48 5 .7 * . .3 .4 .4 . 1 . i E...PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 4LL . LAT -E- - 10 1 1 i 7 23 22 ’ 2 3 3 A 40 A 3 5 A7 A • ’ .. 5 .t",5...SCOTT A. APR 03 UNCLASSIFIED USAFETAC/DS-83/019 SBI-AD-EB50 397 F/6 4/2 NL SU 2. lii .0 EM *,*,- Ica L- 11111 1.25 s~w ,r- 1 . 11.6 I MiCRQ OPY

  3. Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.

    PubMed

    Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2014-10-29

    In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes.

  4. Assessment of Alkali-Silica Reaction Damage in Mortars with Nonlinear Ultrasonic Techniques

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jayapalan, A. R.; Kurtis, K. E.; Kim, J.-Y.; Jacobs, L. J.

    2008-02-01

    In this work, a nonlinear ultrasonic modulation technique is employed to assess the damage state of portland cement mortar samples induced by alkali-silica reaction (ASR). Due to the nonlinear interaction of propagating waves caused by distributed microcracks that are agitated from its equilibrium state, the ultrasonic responses of samples produce sideband frequencies around the frequency of propagating waves. The amplitude of the sidebands depends on the amplitude of the input signals and is particularly sensitive to the state of damage evolved in the sample. Therefore, the development of internal microcracks with increasing duration of exposure to aggressive conditions can be quantitatively related to the variation of external ultrasonic measurements. The ultrasonic results are compared with results from standard ASR expansion measurements (ASTM C 1260), and a proportionally increasing relation was found in the early stages. In addition, aggregates with different alkali-reactivity (i.e., low reactivity or high reactivity) were examined in a similar manner. The results indicate that the nonlinear parameter obtained from ultrasonic tests directly reflects the difference of aggregate reactivity. This clearly indicates that the developed nonlinear ultrasonic method is potentially a good alternative for a more rapid and still reliable assessment of aggregate alkali-reactivity.

  5. Precision cleaning verification of nonvolatile residues by using water, ultrasonics, and turbidity analyses

    NASA Astrophysics Data System (ADS)

    Skinner, S. Ballou

    1991-11-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  6. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood.

    PubMed

    Dündar, Türker; Wang, Xiping; As, Nusret; Avcı, Erkan

    2016-03-01

    The objective of this study was to examine the potential of ultrasonic velocity as a rapid and nondestructive method to predict the dimensional stability of oak (Quercus petraea (Mattuschka) Lieblein) and chestnut (Castanea sativa Mill.) that are commonly used in flooring industry. Ultrasonic velocity, specific gravity, and radial, tangential and volumetric shrinkages were measured on seventy-four 20×20×30-mm(3) specimens obtained from freshly cut oak and chestnut stems. The ultrasonic velocities of the specimens decreased with increasing moisture content (MC). We found that specific gravity was not a good predictor of the transverse shrinkages as indicated by relatively weak correlations. Ultrasonic velocity, on the other hand, was found to be a significant predictor of the transverse shrinkages for both oak and chestnut. The best results for prediction of shrinkages of oak and chestnut were obtained when the ultrasonic velocity and specific gravity were used together. The multiple regression models we developed in this study explained 77% of volumetric shrinkages in oak and 72% of volumetric shrinkages in chestnut. It is concluded that ultrasonic velocity coupled with specific gravity can be employed as predicting parameters to evaluate the dimensional stability of oak and chestnut wood during manufacturing process.

  7. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  8. Precision Cleaning Verification of Nonvolatile Residues by Using Water, Ultrasonics, and Turbidity Analyses

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1991-01-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  9. Simultaneous saccharification and fermentation and economic evaluation of ultrasonic and jet cooking pretreatment of corn slurry.

    PubMed

    Montalbo-Lomboy, Melissa; Khanal, Samir Kumar; van Leeuwen, Johannes Hans; Raman, David Raj; Grewell, David

    2011-01-01

    The potential of ultrasonics to replace hydrocooking in corn-to-ethanol plants was examined in this study. Batch and continuous experiments were conducted on corn slurry with sonication at a frequency of 20 kHz. Batch mode used a catenoidal horn operated at an amplitude of 144 μm peak-to-peak (p–p) for 90 s. Continuous experiments used a donut horn operating at inner radius amplitude of 12 μm p–p. Jet-cooked samples from the same ethanol plant were compared with ultrasonicated samples. The highest starch-to-ethanol conversion was obtained by the jet-cooked samples with a yield of 74% of the theoretical yield. Batch and continuous sonication achieved 71.2% and 68% conversion, respectively, however, statistical analysis showed no significant difference between the jet cooking and ultrasonication. On the basis of the similar performance, an economic analysis was conducted comparing jet cooking and ultrasonic pretreatment. The analysis showed that the capital cost for the ultrasonics system was ~10 times higher compared to the capital cost of a hydrocooker. However,due to the large energy requirements of hydrocookers, the analysis showed lower total overall costs for continuous ultrasonication than that for jet cooking, assuming the current energy prices. Because of the high utility cost calculated for jet cooking, it is concluded that ultrasonication poses as a more economical option than jet cooking. Overall, the study shows that ultrasonics is a technically and economically viable alternative to jet cooking in dry-grind corn ethanol plant.

  10. Transducer Joint for Kidney-Stone Ultrasonics

    NASA Technical Reports Server (NTRS)

    Angulo, E. D.

    1983-01-01

    Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.

  11. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  12. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  13. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... structures. This device includes phased arrays and two-dimensional scanning transducers. (b) Classification... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic...

  14. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  15. Physiologic mechanism of the ultrasonically activated scalpel.

    PubMed

    McCarus, S D

    1996-08-01

    An ultrasonically activated scalpel was developed and used clinically to provide hemostatic cutting in laparoscopic surgery. Results of experimental work with the ultrasonic scalpel blades were compared with those of electrosurgery and lasers. Some features that distinguish this energy form may confer specific advantages in various surgical procedures.

  16. Ultrasonic cold forming of aircraft sheet materials

    NASA Astrophysics Data System (ADS)

    Devine, J.; Krause, P. C.

    1981-01-01

    Ultrasonic forming was investigated as a means for shaping aircraft sheet materials, including titanium 6Al-4V alloy, nickel, and stainless steel AM355-CRT, into a helicopter rotor blade nosecap contour. Equipment for static forming of small coupons consisted of a modified 4000 watt ultrasonic spot welder provided with specially designed punch and die sets. The titanium alloy was successfully formed to a 60 degree angle in one step with ultrasonics, but invariably cracked under static force alone. Nickel had a low enough yield strength that it could be successfully formed either with or without ultrasonics. Insufficient ultrasonic power was available to produce beneficial effect with the high-strength steel. From analogy with commercially used ultrasonic tube drawing, it was postulated that dynamic forming of long lengths of the nosecap geometry could be achieved with an ultrasonic system mounted on a draw bench. It was recommended that the ultrasonic technique be considered for forming other aircraft sheet geometries, particularly involving titanium alloy.

  17. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medical conditions is a device that applies to specific areas of the body ultrasonic energy at a...

  18. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medical conditions is a device that applies to specific areas of the body ultrasonic energy at a...

  19. 21 CFR 890.5300 - Ultrasonic diathermy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic diathermy. 890.5300 Section 890.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... medical conditions is a device that applies to specific areas of the body ultrasonic energy at a...

  20. Ultrasonic fingerprinting by phased array transducer

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.

    2016-06-01

    Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.

  1. Ultrasonic Dispersion of Particulate High Density Fuels.

    DTIC Science & Technology

    1981-05-01

    Percent Finer than 0.4 Micron ..... ........... 31 X Pycnometric Determination (Formula A Before and After Ultrasonic Activation...t ueasuretienrts on the slurry could not be made. All of the 32 Table X PYCNOMETRIC DETERMINATION Formula A Before and After Ultrasonic Activation

  2. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic scaler. 872.4850 Section 872.4850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth....

  3. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic scaler. 872.4850 Section 872.4850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth....

  4. 21 CFR 872.4850 - Ultrasonic scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic scaler. 872.4850 Section 872.4850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... calculus deposits from teeth by application of an ultrasonic vibrating scaler tip to the teeth....

  5. Identification of Sintered Irons with Ultrasonic Nonlinearity

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Kawashima, K.; Murase, M.; Hirose, N.

    2003-03-01

    Two kinds of sinters made of reduced and atomized iron powders were identified by nonlinear ultrasonic measurement to detect higher harmonics generated at micro gaps comparable to the incident wave amplitude using PZT contact transducers of 5 MHz and 10 MHz. Furthermore, the advantage of the nonlinear ultrasonic measurement was demonstrated by the attenuation coefficient measurement for same samples.

  6. Theory and application of ultrasonic microstructural characterization

    NASA Astrophysics Data System (ADS)

    Thompson, R. Bruce

    1992-10-01

    Ultrasonic microstructural characterization techniques have been developed for a variety of reasons ranging from process control to life extension. The techniques are based on principles of wave propagation and scattering from inhomogeneities. Applications of ultrasonic techniques include predicting sheet metal formability, controlling microstructure in metal-matrix composites, monitoring diffusion bonding, measuring porosity in castings and composites, and designing microstructures for enhanced inspectability.

  7. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  8. Quantitative ultrasonic guided wave testing of composites

    NASA Astrophysics Data System (ADS)

    Djordjevic, B. Boro

    2013-01-01

    The advanced composite materials mechanical loads are typically optimized in-plane and not in the thickness. Materials anisotropy represents challenges to conventional ultrasonic nondestructive testing methods such as ultrasonic C-scan mapping. A different ultrasonic testing approach is needed to develop ultrasonic tests that can directly characterize anisotropic mechanical properties of the composite material. Development of new guided wave laser ultrasonic sources and new receiving sensors configurations enable in-plane testing of advanced composites far beyond conventional ultrasonic capabilities. This emerging technology explores the capability of the inhomogeneous, anisotropic composite material to propagate ultrasonic guided waves over a range of distances and part configurations. Appropriate customizing of ultrasonic transduction process enables measurements of material properties and an estimate of damage conditions along in-plane sound propagation path. From guided wave acoustic response, one can develop a meaningful estimate of the material anisotropy such as modulus as well as detect and assess fatigue damage, thermal damage and sense mechanical defect conditions. The reported results show in-situ materials directional properties for unidirectional, isotropic, and woven composite plates.

  9. Ultrasonic ranging and data telemetry system

    DOEpatents

    Brashear, Hugh R.; Blair, Michael S.; Phelps, James E.; Bauer, Martin L.; Nowlin, Charles H.

    1990-01-01

    An ultrasonic ranging and data telemetry system determines a surveyor's position and automatically links it with other simultaneously taken survey data. An ultrasonic and radio frequency (rf) transmitter are carried by the surveyor in a backpack. The surveyor's position is determined by calculations that use the measured transmission times of an airborne ultrasonic pulse transmitted from the backpack to two or more prepositioned ultrasonic transceivers. Once a second, rf communications are used both to synchronize the ultrasonic pulse transmission-time measurements and to transmit other simultaneously taken survey data. The rf communications are interpreted by a portable receiver and microcomputer which are brought to the property site. A video display attached to the computer provides real-time visual monitoring of the survey progress and site coverage.

  10. Ultrasonic assessment of oil quality during frying.

    PubMed

    Benedito, Jose; Mulet, Antonio; Velasco, J; Dobarganes, M Carmen

    2002-07-31

    In this paper, changes in ultrasonic properties during thermoxidation of virgin olive oil were studied. Samples of virgin olive oil were heated over different periods of time from 2 to 16 h at 200 degrees C. Oil degradation was characterized by means of physical and chemical changes, i.e., viscosity, color, polar compounds, polymers, and polar fatty acids. Ultrasonic measurements were carried out while the oil sample was cooled from 35 to 25 degrees C. It was found that velocity and attenuation measurements were related to viscosity measurements through a classical equation for viscous liquids. The ultrasonic measurements were also related to the percentages of polar compounds and polymers, which shows the feasibility of using ultrasonic properties to monitor oil quality. Nevertheless, as long as the ultrasonic measurements are temperature dependent, this variable must be controlled in order to obtain repetitive and reliable measurements.

  11. Graphene electrostatic microphone and ultrasonic radio

    PubMed Central

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K.

    2015-01-01

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult. PMID:26150483

  12. Ultrasonic Vocalizations Emitted by Flying Squirrels

    PubMed Central

    Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.

    2013-01-01

    Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728

  13. Graphene electrostatic microphone and ultrasonic radio.

    PubMed

    Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M F; Zettl, Alex K

    2015-07-21

    We present a graphene-based wideband microphone and a related ultrasonic radio that can be used for wireless communication. It is shown that graphene-based acoustic transmitters and receivers have a wide bandwidth, from the audible region (20∼20 kHz) to the ultrasonic region (20 kHz to at least 0.5 MHz). Using the graphene-based components, we demonstrate efficient high-fidelity information transmission using an ultrasonic band centered at 0.3 MHz. The graphene-based microphone is also shown to be capable of directly receiving ultrasound signals generated by bats in the field, and the ultrasonic radio, coupled to electromagnetic (EM) radio, is shown to function as a high-accuracy rangefinder. The ultrasonic radio could serve as a useful addition to wireless communication technology where the propagation of EM waves is difficult.

  14. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  15. Nondestructive evaluation by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters.

  16. Lase Ultrasonic Web Stiffness tester

    SciTech Connect

    Tim Patterson, Ph.D., IPST at Ga Tech

    2009-01-12

    The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.

  17. Passive wireless ultrasonic transducer systems

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2014-02-01

    Inductive coupling and capacitive coupling both offer simple solutions to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such system in the context of non-destructive evaluation (NDE) applications. Firstly, the physical principles and construction of an inductively coupled transducer system (ICTS) and a capacitively coupled transducer system (CCTS) are introduced. Then the development of a transmission line model with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate for both systems is described. The models are validated experimentally. Several applications of CCTS are presented, such CCTS for the underwater and through-composite testing.

  18. AF-GEOSpace Version 2.5: Space Environment Software

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Hall, T.; Roth, C.; Ling, A.; Ginet, G. P.; Madden, D.

    2010-12-01

    AF-GEOSpace is a graphics-intensive software program with space environment models and applications developed by the Space Weather Center of Excellence at AFRL. The software addresses a wide range of physical domains, e.g., solar disturbance propagation, geomagnetic field and radiation belt configurations, auroral particle precipitation, and ionospheric scintillation. AF-GEOSpace has become a platform for developing and prototyping space weather visualization products. The new AF-GEOSpace Version 2.5 (release scheduled for 2010) expands on the content of Version 2.1 by including modules addressing the following new topics: (1) energetic proton maps for the South Atlantic Anomaly (from Ginet et al. [2007]), (2) GPS scintillation outage simulation tools, (3) magnetopause location determination (Shue et al. [1998]), (4) a plasmasphere model (Global Core Plasma Model, 2009 version based on Gallagher et al. [2000]), (5) a standard ionospheric model (International Reference Ionosphere 2007), (6) the CAMMICE/MICS model of inner magnetosphere plasma population (based on Roeder et al. [2005]), (7) magnetic field models (e.g., Tsyganenko and Sitnov [2005]), and (8) loading and displaying externally-produced 3D gridded data sets within AF-GEOSpace. Improvements to existing Version 2.1 capabilities include: (1) a 2005 update to the geomagnetic cutoff rigidity model of Smart and Shea [2003], (2) a 2005 update to the ionospheric scintillation Wide-Band Model (WBMOD) of Secan and Bussey [1994], and (3) improved magnetic field flux mapping options for the existing set of AF-GEOSpace radiation belt models. A basic review of these new AF-GEOSpace capabilities will be provided. To obtain a copy of the software, please contact the first author.

  19. 21 CFR 884.2225 - Obstetric-gynecologic ultrasonic imager.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Obstetric-gynecologic ultrasonic imager. 884.2225... Devices § 884.2225 Obstetric-gynecologic ultrasonic imager. (a) Identification. An obstetric-gynecologic ultrasonic imager is a device designed to transmit and receive ultrasonic energy into and from a...

  20. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant...

  1. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g.,...

  2. 21 CFR 884.2225 - Obstetric-gynecologic ultrasonic imager.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Obstetric-gynecologic ultrasonic imager. 884.2225... Devices § 884.2225 Obstetric-gynecologic ultrasonic imager. (a) Identification. An obstetric-gynecologic ultrasonic imager is a device designed to transmit and receive ultrasonic energy into and from a...

  3. 21 CFR 884.2660 - Fetal ultrasonic monitor and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal ultrasonic monitor and accessories. 884.2660... Devices § 884.2660 Fetal ultrasonic monitor and accessories. (a) Identification. A fetal ultrasonic monitor is a device designed to transmit and receive ultrasonic energy into and from the pregnant...

  4. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g.,...

  5. 21 CFR 884.2960 - Obstetric ultrasonic transducer and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... obstetric ultrasonic transducer is a device used to apply ultrasonic energy to, and to receive ultrasonic energy from, the body in conjunction with an obstetric monitor or imager. The device converts electrical signals into ultrasonic energy, and vice versa, by means of an assembly distinct from an...

  6. The Implementation of Collaborative Learning Using AfL through Giving Feedback Strategy for Improving Students’ Attention to Mathematics Lesson

    NASA Astrophysics Data System (ADS)

    Kurniasih, R.; Sujadi, I.; Pramesti, G.

    2016-02-01

    This research aims to describe the process of implementation collaborative learning with AfL through giving feedback strategy for improving students’ attention to mathematics lesson. Data which is collected in this research are students’ attention towards learning and students’ achievement. The result of this research showed that the learning steps by using collaborative learning with AfL through giving feedback strategy which can improve students’ attention are: 1) pre activity: the teacher delivers the purpose of the learning, successful criteria, apperception, and motivation. 2) main activity: the teacher gives the background of learning activity, explains learning materials at a glance, divides students discuss, the teacher observes and guides students to the problem solving, present their discussion result, gives feedback, the students do AfL problem and the answer is collected and result will be given before next meeting. 3) post activity: the teacher with students concludes the material. Test result, the percentage of students who complete the examination in the second cycle is 77.27%. Based on those results can be concluded that the implementation of collaborative learning using AfL through giving feedback can improve students’ attention towards learning and students’ achievement of XI IPA Students MA Al-Islam Jamsaren Surakarta academic year 2013/2014.

  7. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  8. Phased array ultrasonic approach to turbine blade attachment inspection

    SciTech Connect

    Nottingham, L.D.; Solomon, K.R.; Presson, J.H.

    1994-12-31

    In situations where particular combinations of material susceptibility, stress, steam conditions and steam chemistry come together, certain steam turbine rotors have exhibited stress corrosion cracking (SCC) on the disk side of the blade attachments, where the blades are held to the disk. Cracking has been most prevalent in multiple-hook, fir-tree attachment designs and normally occurs in the corners of the fir-tree hooks. While attempts have been made to perform ultrasonic inspection of the complex fir-tree attachment geometries, results have been mixed. False calls, poor repeatability, a general lack of resolution and lack of a meaningful sizing capability are standing issues. A unique approach to this inspection features a phased array ultrasonic test system that can both focus the ultrasonic beam and steer it to different points within the complex geometry. The focused beam leads directly to significant improvements in detection performance and resolution, as well as the ability to estimate the size of an indication. The ability to steer the beam to different points within the attachment enables comprehensive examination of all critical locations without repeatedly changing and calibrating numerous transducers. Together these features provide more rapid inspections and improved reliability.

  9. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  10. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    NASA Astrophysics Data System (ADS)

    Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian

    2016-12-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).

  11. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.

  12. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N. (Inventor); Johnston, Patrick H. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  13. Digital Image Processing for Noise Reduction in Medical Ultrasonics

    NASA Astrophysics Data System (ADS)

    Loupas, Thanasis

    Available from UMI in association with The British Library. Requires signed TDF. The purpose of this project was to investigate the application of digital image processing techniques as a means of reducing noise in medical ultrasonic imaging. Ultrasonic images suffer primarily from a type of acoustic noise, known as speckle, which is generally regarded as a major source of image quality degradation. The origin of speckle, its statistical properties as well as methods suggested to eliminate this artifact were reviewed. A simple model which can characterize the statistics of speckle on displays was also developed. A large number of digital noise reduction techniques was investigated. These include frame averaging techniques performed by commercially available devices and spatial filters implemented in software. Among the latter, some filters have been proposed in the scientific literature for ultrasonic, laser and microwave speckle or general noise suppression and the rest are original, developed specifically to suppress ultrasonic speckle. Particular emphasis was placed on adaptive techniques which adjust the processing performed at each point according to the local image content. In this way, they manage to suppress speckle with negligible loss of genuine image detail. Apart from preserving the diagnostically significant features of a scan another requirement a technique must satisfy before it is accepted in routine clinical practice is real-time operation. A spatial filter capable of satisfying both these requirements was designed and built in hardware using low-cost and readily available components. The possibility of incorporating all the necessary filter circuitry into a single VLSI chip was also investigated. In order to establish the effectiveness and usefulness of speckle suppression, a representative sample from the techniques examined here was applied to a large number of abdominal scans and their effect on image quality was evaluated. Finally, further

  14. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  15. Dynamics of ultrasonic additive manufacturing.

    PubMed

    Hehr, Adam; Dapino, Marcelo J

    2017-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state technology for joining similar and dissimilar metal foils near room temperature by scrubbing them together with ultrasonic vibrations under pressure. Structural dynamics of the welding assembly and work piece influence how energy is transferred during the process and ultimately, part quality. To understand the effect of structural dynamics during UAM, a linear time-invariant model is proposed to relate the inputs of shear force and electric current to resultant welder velocity and voltage. Measured frequency response and operating performance of the welder under no load is used to identify model parameters. Using this model and in-situ measurements, shear force and welder efficiency are estimated to be near 2000N and 80% when welding Al 6061-H18 weld foil, respectively. Shear force and welder efficiency have never been estimated before in UAM. The influence of processing conditions, i.e., welder amplitude, normal force, and weld speed, on shear force and welder efficiency are investigated. Welder velocity was found to strongly influence the shear force magnitude and efficiency while normal force and weld speed showed little to no influence. The proposed model is used to describe high frequency harmonic content in the velocity response of the welder during welding operations and coupling of the UAM build with the welder.

  16. The Ultrasonic Microsurgical Anatomical Comparative Study of the CHD Fetuses and Their Clinical Significance

    PubMed Central

    Li, Xiaosong; Xia, Hongmei; Wang, Dan; Zhu, Junke; Ran, Jianhua

    2015-01-01

    The aim of our study was to increase the detection rate of fetal cardiac malformations for congenital heart disease (CHD). The ultrasonic and microanatomical methods were combined to study the CHD cases firstly, which could provide the microsurgical anatomical basis to the prenatal ultrasonic diagnosis which was used in suspected CHD and help the sonographer to improve the quality of fetal cardiac diagnosis. We established the ultrasonic standard section of the 175 complex CHD cases and collected the fetal echocardiography image files. The induced/aborted fetuses were fixed by 4% paraformaldehyde and dissected by the ultrasonic microsurgical anatomy. This research could obtain the fetal cardiac anatomic cross-sectional images which was consistent with the ultrasonic standard section and could clearly show the internal structure of the vascular malformation that optimized the ultrasound examination individually. This method could directly display the variation of the CHD fetal heart clearly and comprehensively help us to understand the complex fetal cardiac malformation from the internal structure of the vascular malformation which was consolidated by the anatomical basis of the fetal heart. This study could improve the integrity and accuracy of the prenatal cardiac ultrasound examination tremendously. PMID:26640788

  17. Design and analysis of ultrasonic actuator in consideration of length reduction for a USDC (ultrasonic/sonic driller/corer)

    NASA Astrophysics Data System (ADS)

    Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2005-05-01

    Sample return and in-situ sampling and analysis is one of the major objectives of future NASA exploration missions. Existing drilling techniques are limited by the need for large axial forces, holding torques, and high power consumption. Lightweight robots and rovers have difficulties accommodating these requirements. To address these key challenges to the NASA objective of planetary in-situ rock sampling and analysis, a drilling technology called ultrasonic/sonic driller/corer (USDC) was developed. The USDC uses a novel driving mechanism, transferring ultrasonic vibration to sonic frequency impacts with the aid of a free-flying mass block (free-mass). The free mass then drives the drill bit. The actuator consists of a stack of piezoelectric disks with a horn that amplifies the induced vibration amplitudes. The standard USDC is a slender device, and some times its length is too long for specific NASA missions. It is of current interest to have novel designs that reduce the length of the device. For this purpose, two novel horn designs were examined analytically. One is the flipped horn, the other is the planar folded horn. The new designs of the horn were analyzed using finite element modeling and the results allow for the determination of the control parameters that can optimize the performance of the ultrasonic horn in terms of the tip displacement and velocity. The results of the modeling are described and discussed in this paper.

  18. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  19. Ultrasonic compaction of granular geological materials.

    PubMed

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    2017-04-01

    It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling. Ultrasonic vibrations are applied, using a resonant 20kHz compactor, to the compaction of loose sand and drill waste cuttings derived from oolitic limestone, clean quartz sandstone, and slate-phyllite. For each material, a higher strain for a given compaction pressure was achieved, with higher sample density compared to that in the case of an absence of ultrasonics. The relationships between the operational parameters of ultrasonic vibration amplitude and true strain rate are explored and shown to be dependent on the physical characteristics of the compacting materials.

  20. Ultrasonic angle beam standard reflector. [ultrasonic nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr. (Inventor)

    1985-01-01

    A method that provides an impression profile in a reference standard material utilized in inspecting critically stressed components with pulsed ultrasound is described. A die stamp having an I letter is used to impress the surface of a reference material. The die stamp is placed against the surface and struck with an inertia imparting member to impress the I in the reference standard material. Upset may appear on the surface as a result of the impression and is removed to form a smooth surface. The stamping and upset removal is repeated until the entire surface area of a depth control platform on the die stamp uniformly contacts the material surface. The I impression profile in the reference standard material is utilized for reflecting pulsed ultrasonic beams for inspection purposes.

  1. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  2. Phase-Insensitive Ultrasonic Testing System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1995-01-01

    Ultrasonic testing system developed for use in revealing hidden disbonds at rough, inaccessible interfaces between layers of material. Includes array of small piezoelectric transducers, receiving outputs electronically processed individually and combined in such way as to make system phase-insensitive, overcoming limitations imposed by phase-sensitivity. Development of present ultrasonic system and phase-insensitive-array technique which based motivated by need to detect disbonds under conditions of bondline inhibitor, liner, and fuel at ends of segments of solid rocket motor of space shuttle. Here, liner-to-fuel bondline very rough with respect to ultrasonic wavelength.

  3. Sabiperones A-F, new diterpenoids from Juniperus sabina.

    PubMed

    Janar, Jenis; Nugroho, Alfarius Eko; Wong, Chin Piow; Hirasawa, Yusuke; Kaneda, Toshio; Shirota, Osamu; Morita, Hiroshi

    2012-01-01

    Six new diterpenoids, sabiperones A-F (1-6) have been isolated from the aerial part of Juniperus sabina. Their structures were elucidated by spectroscopic methods including 2D NMR techniques. Sabiperone F showed moderate cell growth inhibitory activities against five human cancer cell lines.

  4. Action of AF64A on rat brain muscarinic receptors

    SciTech Connect

    Eva, C.; Costa, E.

    1986-03-01

    ICV administration of compound AF64A (ethylcholine mustard aziridium ion) induces a long-term selective cholinergic hypofunction; however, it does not modify the characteristics of muscarinic receptors. In brain muscarinic receptor activation can either stimulate phosphoinositide turnover or inhibit adenylate cyclase. ICV infusion of AF64A (5 nmol/side/2.5 ..mu..l) reduced the hippocampal ACh content 10 or 30 days after the treatment to 75% of the control values. Under these conditions neither in the striatum nor in the frontal cortex ACh levels were decreased. The carbachol dose-dependent stimulation in hippocampal slices differed from that observed in control rats. The carbachol efficacy was increased but its potency was unchanged by AF64A. In contrast, ICV administration of AF64A failed to alter the oxotremorine efficacy or potency in inhibiting the forskolin stimulated adenylate cyclase in rat hippocampal membranes. These results suggest the two transducer systems coupled to muscarinic receptors may be differentially regulatable by cholinergic input.

  5. An Empirical Test of Oklahoma's A-F School Grades

    ERIC Educational Resources Information Center

    Adams, Curt M.; Forsyth, Patrick B.; Ware, Jordan; Mwavita, Mwarumba; Barnes, Laura L.; Khojasteb, Jam

    2016-01-01

    Oklahoma is one of 16 states electing to use an A-F letter grade as an indicator of school quality. On the surface, letter grades are an attractive policy instrument for school improvement; they are seemingly clear, simple, and easy to interpret. Evidence, however, on the use of letter grades as an instrument to rank and improve schools is scant…

  6. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution.

    PubMed

    Yang, Qiang; Xu, Xiao; Lai, Puxiang; Xu, Daxiong; Wang, Lihong V

    2013-11-01

    Focusing light inside highly scattering media is a challenging task in biomedical optical imaging, manipulation, and therapy. A recent invention has overcome this challenge by time reversing ultrasonically encoded diffuse light to an ultrasound-modulated volume inside a turbid medium. In this technique, a photorefractive (PR) crystal or polymer can be used as the phase conjugate mirror for optical time reversal. Accordingly, a relatively long ultrasound burst, whose duration matches the PR response time of the PR material, is usually used to encode the diffuse light. This long burst results in poor focusing resolution along the acoustic axis. In this work, we propose to use two intersecting ultrasound beams, emitted from two ultrasonic transducers at different frequencies, to modulate the diffuse light at the beat frequency within the intersection volume. We show that the time reversal of the light encoded at the beat frequency can converge back to the intersection volume. Experimentally, an acoustic axial resolution of ~1.1 mm was demonstrated inside turbid media, agreeing with theoretical estimation.

  7. Role of LncRNA-AF085935, IL-10 and IL-17 in Rheumatoid Arthritis Patients With Chronic Hepatitis C

    PubMed Central

    Sabry, Dina; Elamir, Azza; Mahmoud, Rania Hosny; Abdelaziz, Ahmed Ali; Fathy, Wael

    2017-01-01

    Background The current study aimed at testing the effect of corticosteroid therapy on serum levels of interleukin-10 (IL-10) and IL-17 as well as lncRNA-AF085935 in patients of rheumatoid arthritis (RA) associated with hepatitis C virus (HCV) and evaluating the usefulness of using these parameters to predict the therapeutic efficacy of steroids in these patients. Methods Thirty healthy control subjects and 65 chronic HCV patients with RA were included in our study. Patients were subjected to clinical examination, abdominal ultrasound, and liver biopsy and received 6-methyl-prednisolone (PDN) 16 mg/day for 48 weeks. Blood samples were collected from all subjects and serum was separated to assess IL-10 and IL-17 by ELISA and HCV RNA and lncRNA-AF085935 by qRT-PCR. Results Our study revealed that there were significant increases in serum levels of IL-10, IL-17 and lncRNA-AF085935 in RA patients associated with HCV compared with healthy control subjects. Also there were significant increases in serum levels of IL-10 and HCV RNA and a significant decrease in serum level of IL-17 in patients after corticosteroid therapy, while lncRNA-AF085935 is not significantly changed. Conclusion LncRNA-AF085935 might be a useful candidate biomarker for the early detection of RA associated with HCV, providing potential new strategies for early screening and therapy of these patients. IL-17 is a non-invasive prognostic marker to predict the efficacy of corticosteroid therapy in RA patients associated with chronic hepatitis C. PMID:28392862

  8. Increased Heart Rate Is Associated With Higher Mortality in Patients With Atrial Fibrillation (AF): Results From the Outcomes Registry for Better Informed Treatment of AF (ORBIT-AF)

    PubMed Central

    Steinberg, Benjamin A; Kim, Sunghee; Thomas, Laine; Fonarow, Gregg C; Gersh, Bernard J; Holmqvist, Fredrik; Hylek, Elaine; Kowey, Peter R; Mahaffey, Kenneth W; Naccarelli, Gerald; Reiffel, James A; Chang, Paul; Peterson, Eric D; Piccini, Jonathan P

    2015-01-01

    Background Most patients with atrial fibrillation (AF) require rate control; however, the optimal target heart rate remains under debate. We aimed to assess rate control and subsequent outcomes among patients with permanent AF. Methods and Results We studied 2812 US outpatients with permanent AF in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation. Resting heart rate was measured longitudinally and used as a time-dependent covariate in multivariable Cox models of all-cause and cause-specific mortality during a median follow-up of 24 months. At baseline, 7.4% (n=207) had resting heart rate <60 beats per minute (bpm), 62% (n=1755) 60 to 79 bpm, 29% (n=817) 80 to 109 bpm, and 1.2% (n=33) ≥110 bpm. Groups did not differ by age, previous cerebrovascular disease, heart failure status, CHA2DS2-VASc scores, renal function, or left ventricular function. There were significant differences in race (P=0.001), sinus node dysfunction (P=0.004), and treatment with calcium-channel blockers (P=0.006) and anticoagulation (P=0.009). In analyses of continuous heart rates, lower heart rate ≤65 bpm was associated with higher all-cause mortality (adjusted hazard ratio [HR], 1.15 per 5-bpm decrease; 95% CI, 1.01 to 1.32; P=0.04). Similarly, increasing heart rate >65 bpm was associated with higher all-cause mortality (adjusted HR, 1.10 per 5-bpm increase; 95% CI, 1.05 to 1.15; P<0.0001). This relationship was consistent across endpoints and in a broader sensitivity analysis of permanent and nonpermanent AF patients. Conclusions Among patients with permanent AF, there is a J-shaped relationship between heart rate and mortality. These data support current guideline recommendations, and clinical trials are warranted to determine optimal rate control. Clinical Trial Registration URL: http://clinicaltrials.gov/. Unique identifier: NCT01165710. PMID:26370445

  9. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites.

    PubMed

    Ning, Fuda; Wang, Hui; Cong, Weilong; Fernando, P K S C

    2017-04-01

    Rotary ultrasonic machining (RUM) has been investigated in machining of brittle, ductile, as well as composite materials. Ultrasonic vibration amplitude, as one of the most important input variables, affects almost all the output variables in RUM. Numerous investigations on measuring ultrasonic vibration amplitude without RUM machining have been reported. In recent years, ultrasonic vibration amplitude measurement with RUM of ductile materials has been investigated. It is found that the ultrasonic vibration amplitude with RUM was different from that without RUM under the same input variables. RUM is primarily used in machining of brittle materials through brittle fracture removal. With this reason, the method for measuring ultrasonic vibration amplitude in RUM of ductile materials is not feasible for measuring that in RUM of brittle materials. However, there are no reported methods for measuring ultrasonic vibration amplitude in RUM of brittle materials. In this study, ultrasonic vibration amplitude in RUM of brittle materials is investigated by establishing a mechanistic amplitude model through cutting force. Pilot experiments are conducted to validate the calculation model. The results show that there are no significant differences between amplitude values calculated by model and those obtained from experimental investigations. The model can provide a relationship between ultrasonic vibration amplitude and input variables, which is a foundation for building models to predict other output variables in RUM.

  10. Comparison of jet and ultrasonic nebulizer pulmonary aerosol deposition during mechanical ventilation.

    PubMed

    Harvey, C J; O'Doherty, M J; Page, C J; Thomas, S H; Nunan, T O; Treacher, D F

    1997-04-01

    Increased delivery of aerosol to a model lung (attached to a mechanical ventilator) has been demonstrated with an ultrasonic nebulizer as compared to a jet nebulizer. This study examined whether the increased aerosol deposition with an ultrasonic nebulizer could also be demonstrated in vivo. Seven patients (6 male and 1 female) were studied during mechanical ventilalion (Siemens Servo 900C, Middlesex, UK) after open heart surgery. Two studies were performed in each patient. In the first study, aerosol was delivered via a Siemens Servo 945 nebulizer system (high setting) driving a System 22 Acorn jet nebulizer (Medic-Aid, Sussex, UK) containing 3 mL (99m)technetium-labelled human serum albumin (99mTc-HSA) (50 microg; activity 74 MBq). In the second study, a DP100 ultrasonic nebulizer (DP Medical, Meylan, France) containing 12 mL 99mTc-HSA (50 microg; activity 185 MBq) was used. Pulmonary deposition was quantified using a gamma camera. The humidification of the circuit and the ventilator settings were kept constant according to the patient's clinical requirements. The total lung aerosol deposition (mean+/-SD), as a percentage of initial nebulizer activity, was greater using the ultrasonic nebulizer than using the jet nebulizer (53+/-1.4 vs 2.3+/-0.9%; p<0.002). The ultrasonic nebulizer was also associated with a reduction in the time required to complete nebulization (9 vs 21 min, respectively) (p<0.0001). Use of the DP100 ultrasonic nebulizer more than doubled lung deposition compared with the System 22 jet nebulizers in mechanically-ventilated patients. Their efficiency, speed of drug delivery, and compatibility with mechanical ventilator circuits make ultrasonic nebulizers potentially attractive for use during mechanical ventilation.

  11. Light-scattering analysis of ultrasonic wave's influence on the RBC agglutination in vitro

    NASA Astrophysics Data System (ADS)

    Doubrovski, Valeri A.; Dvoretski, Costanten N.

    1999-04-01

    Elastic light scattering is one of the most often used optical methods to analyze the cells agglutination reaction - the base of a great number of medical diagnostic test and biomedical investigations. The increase of the resolution of methods and apparatus towards the induced cells aggregation - the foundation of the reaction of agglutination, is quite an actual problem. The solution of this problem increases the reliability of the diagnostic test and gives an opportunity to achieve the diagnostic information in the cases when the traditional approaches do not lead to the diagnostic results. The attempt to increase the resolution of the immune reaction analyzer by means of ultrasonic waves action on the reagent mixture in vitro is taken in this paper. The RBC agglutination reaction which is usually used for the blood group type examination is chosen as an example of an object of the investigation. Different laser optical trains of the devices based on the turbidimetric and nephelometric methods and their combination are analyzed here. The influence of the ultrasonic wave time interval action and of the features of the sample preparation procedure on the resolution towards the agglutination process was investigated in this work. It is shown that the ultrasonic wave action on the reagent mixture leads to a large gain in the resolution of the device towards the RBC agglutination process. The experiments showed that the resolution of the device was enough to register the agglutination process even for the erythrocytes with weak agglutination ability when the reaction was invisible without ultrasonic action. It occurred that the diagnostic test time was more than by an order shortened due to the ultrasonic wave action. The optimal ultrasonic time interval action, the sample preparation technology and experimental technique were defined. The principle of the ultrasonic wave action on the cells agglutination process suggested here can be spread out on the immune

  12. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    SciTech Connect

    Das, S.; Oyola, Y.; Mayes, Richard T.; Janke, Chris J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked with 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.

  13. Extracting uranium from seawater: Promising AF series adsorbents

    SciTech Connect

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; Janke, Christopher James; Kuo, Li-Jung; Gill, Gary; Wood, Jordana; Dai, Sheng

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.

  14. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  15. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings.

  16. Nanocellulose Composite Materials Synthesizes with Ultrasonic Agitation

    NASA Astrophysics Data System (ADS)

    Kidd, Timothy; Folken, Andrew; Fritch, Byron; Bradley, Derek

    We have extended current techniques in forming nanocellulose composite solids, suspensions and aerogels to enhance the breakdown of cellulose into its molecular components. Using only mechanical processing which includes ball milling, using a simple mortar and pestle, and ultrasonic agitation, we are able to create very low concentration uniform nanocellulose suspensions in water, as well as incorporate other materials such as graphite, carbon nanotubes, and magnetic materials. Of interest is that no chemical processing is necessary, nor is the use of nanoparticles, necessary for composite formation. Using both graphite and carbon nanotubes, we are able to achieve conducting nanocellulose solids and aerogels. Standard magnetic powder can also be incorporated to create magnetic solids. The technique also allows for the creation of an extremely fine nanocellulose suspension in water. Using extremely low concentrations, less than 1% cellulose by mass, along with careful control over processing parameters, we are able to achieve highly dilute, yet homogenous nanocellulose suspensions. When air dried, these suspensions have similar hardness and strength properties to those created with more typical starting cellulose concentrations (2-10%). However, when freeze-dried, these dilute suspensions form aerogels with a new morphology with much higher surface area than those with higher starting concentrations. We are currently examining the effect of this higher surface area on the properties of nanocellulose aerogel composites and how it influences the impact of incorporating nanocellulose into other polymer materials.

  17. Ultrasonic Characterization of Glass Beads

    NASA Astrophysics Data System (ADS)

    Lassila, I.; Siiriä, S.; Gates, F. K.; Hæggström, E.

    2008-02-01

    We report on the progress in developing a method for an in-line granule size measurement using ultrasonic through transmission method. The knowledge of granule size is important in the production of pharmaceutical dosage forms where the current optical and rheological methods have limitations such as fouling of the optical windows. The phase velocity of a wave propagated through interstitial air between glass balls of 1, 2 and 10 mm in diameter was 254±5 m/s, 261±3 m/s and 320±9 m/s, respectively. The power spectral density of the received signals showed that high frequencies were attenuated more in case of smaller beads due to increased scattering.

  18. An ultrasonic characterization of ferrofluid.

    PubMed

    Singh, D K; Pandey, D K; Yadav, R R

    2009-12-01

    Nanoparticles of Cr(2)O(3) are prepared through hydrothermal synthesis process using CrO(3)/PVA in aqueous solution using sucrose as a reducing agent. The calcination temperature is taken 300 and 350 degrees C. XRD and SEM of the powdered Cr(2)O(3) particles are done for the characterization. The average particle size is found 30-80 nm. It is found that average particle size increases with calcination temperature. The UV-visible absorption spectra are taken for the study of photo-physical properties of ferrofluids. Ultrasonic velocity and absorption measurements are performed in Cr(2)O(3) ferrofluid using variable path interferometer and pulse-echo techniques, respectively. The achieved results are discussed in correlation with the magnetic and other physical properties of Cr(2)O(3).

  19. Private ultrasonic whispering in moths

    PubMed Central

    Nakano, Ryo; Ishikawa, Yukio; Tatsuki, Sadahiro; Skals, Niels; Surlykke, Annemarie

    2009-01-01

    Sound-producing moths have evolved a range of mechanisms to emit loud conspicuous ultrasounds directed toward mates, competitors and predators. We recently discovered a novel mechanism of sound production, i.e., stridulation of specialized scales on the wing and thorax, in the Asian corn borer moth, Ostrinia furnacalis, the male of which produces ultrasonic courtship songs in close proximity to a female (<2 cm). The signal is very quiet, being exclusively adapted for private communication. A quiet signal is advantageous in that it prevents eavesdropping by competitors and/or predators. We argue that communication via quiet ultrasound, which has not been reported previously, is probably common in moths and other insects. PMID:20835290

  20. Ultrasonic characterization of porosity: theory

    SciTech Connect

    Rose, J.H.

    1984-01-01

    The volume fraction of pores in cast materials is often used as a quality control and product acceptance criterion. In this task-oriented paper, the use of backscattered ultrasound to characterize the volume fraction of pores in A357 cast aluminum is analyzed. Important constraints on possible measurement methods are: (1) single sided access, (2) rapid scan rates, and (3) high sensitivity (i.e., the ability to measure volume fractions on the order of .1%). The structure of this article is as follows. First, general aspects of ultrasonic scattering from porous media are discussed. These general results focus attention on the frequency dependent attentuation which is reviewed next. Then, following a proposal of Gubernatis and Domany (2), a method of determining the volume fraction and pore size is given. This method is then characterized by a figure-of-merit. Finally, the paper is concluded by a summary.

  1. Ultrasonic inspection and deployment apparatus

    DOEpatents

    Michaels, Jennifer E.; Michaels, Thomas E.; Mech, Jr., Stephen J.

    1984-01-01

    An ultrasonic inspection apparatus for the inspection of metal structures, especially installed pipes. The apparatus combines a specimen inspection element, an acoustical velocity sensing element, and a surface profiling element, all in one scanning head. A scanning head bellows contains a volume of oil above the pipe surface, serving as acoustical couplant between the scanning head and the pipe. The scanning head is mounted on a scanning truck which is mobile around a circular track surrounding the pipe. The scanning truck has sufficient motors, gears, and position encoders to allow the scanning head six degrees of motion freedom. A computer system continually monitors acoustical velocity, and uses that parameter to process surface profiling and inspection data. The profiling data is used to automatically control scanning head position and alignment and to define a coordinate system used to identify and interpret inspection data. The apparatus is suitable for highly automated, remote application in hostile environments, particularly high temperature and radiation areas.

  2. A silicon electrostatic ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenichiro; Higuchi, Kohei; Tanigawa, Hiroshi

    1989-11-01

    An electric ultrasonic transducer is developed by using a silicon IC process. Design considerations are first presented to obtain high sensitivity and the desired frequency responses in air. The measured transmitter sensitivity is 19.1 dB (0 dB = 1 microbar/V) at a point 50 cm away from the devices, when the devices are operated at 150 kHz. The receiving sensitivity is 0.47 mV/Pa in the 10-130-kHz range, with bias voltages as low as 30 V. An electronic sector scanning operation is also achieved by time-sequentially driving seven elements arranged in a linear array on the same chip. The results should be helpful in the design of phased-array transducers integrated with electronic scanning circuits.

  3. A novel ultrasonic aerosol generator.

    PubMed

    Davies, A; Hudson, N; Pirie, L

    1995-07-01

    An ultrasonic aerosol generator constructed from a domestic humidifier is described which has been used to produce liquid aerosols for physiological investigations. The instrument was constructed from a Pifco domestic humidifier modified to include an energy guide to direct the oscillations of the transducer through the coupling water, which would normally be aerosolized, onto a small membrane based sample chamber containing the liquid to be aerosolized. The size distribution of the aerosol produced was found to be between 2 and 6 mm, optimum for diffuse intrapulmonary deposition. Up to 4 ml/min of aqueous liquid was used; however the sample chamber could be made small enough to contain economic amounts of expensive material to administer by inhalation. The instrument has proved to be reliable over a period of three years.

  4. Ultrasonic sensing of powder densification

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1992-01-01

    An independent scattering theory has been applied to the interpretation of ultrasonic velocity measurements made on porous metal samples produced either by a cold or a high-temperature compaction process. The results suggest that the pores in both processes are not spherical, an aspect ration of 1:3 fitting best with the data for low (less than 4 percent) pore volume fractions. For the hot compacted powders, the pores are smooth due to active diffusional processes during processing. For these types of voids, the results can be extended to a pore fraction of 10 percent, at which point voids form an interconnected network that violates the model assumptions. The cold pressed samples are not as well predicted by the theory because of poor particle bonding.

  5. Electromagnetic transduction of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Passarelli, Frank; Alers, George; Alers, Ron

    2012-05-01

    Excitation and detection of ultrasonic vibrations without physical contact has proven to be of great commercial value. First used to excite the resonant vibration of bar shaped laboratory specimens in the 1930's, it was Bruce Thompson's contributions in 1973-5 that launched their practical application to a wide range of difficult NDE problems. As a fresh PhD, he championed the use of mathematical models for the electromagnetic transduction process in order to guide the design and construction of practical transducers. His early papers presented both theoretical and experimental results that exposed the wide range of wave types that could be generated along with the environmental conditions that could be overcome. Several laboratories around the world established research programs to apply the electromagnetic transducer (EMAT) to specific NDE problems. This paper will summarize those applications made by the authors.

  6. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  7. Ultrasonic Transducers for Air and Underwater Communication.

    NASA Astrophysics Data System (ADS)

    Koosha, Abdolrahim

    Available from UMI in association with The British Library. The performance of a novel radiator capable of producing ultrasonic waves in air and liquids has been investigated. For commercial transducers when operating in air or liquids, impedance matching is the necessary condition for maximum transfer of energy to the medium (thus no standing waves are involved). However, for this radiator the formation of the mechanical standing waves on it is the key condition for directional radiation of energy into the surrounding environment. Under this condition the radiator exhibits a practical conversion of electrical energy into ultrasound. To further improve the performance of the radiator the wavelength coincidence condition must be satisfied. This condition implies that the wavelength of the bending vibration developed on the blade to be the same as that in the medium to which it is coupled. Consequently, an end-fire radiation pattern is obtained. The theory of this when applied to water and also for a double blade configuration are presented. The main component of the radiator consists of a cantilever blade on which a pair of piezoelectric (PZT) ceramic bars are fixed. These the so called excitation gauges, are fixed on both sides of a thin rectangular metal blade near the clamped end. When wavelength coincidence condition is fulfilled, the radiator transmits ultrasonic wave in a highly directional pattern. The direction of propagation of ultrasound is solely steered by frequency of the applied signal. System imperfections such as inter modal coupling when used underwater are considered. An analytical approach is developed to investigate the performance of the radiator for transmission of digital signals in air as well as in water. This method is used to evaluate the efficiency of the device as a suitable means for communication between divers or a diver and an underwater stationary station. Amplitude modulation of speech signals demonstrated the capabilities of a new

  8. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    PubMed

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  9. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  10. Phased array ultrasonic inspection of Friction Stir Weldments

    NASA Astrophysics Data System (ADS)

    Lamarre, André; Moles, Michael; Lupien, Vincent

    2000-05-01

    Phased array ultrasonic inspection methods have been developed for the rapid inspection of Friction Stir Weldments (FSW) on Delta rocket cryogenic tanks. A comprehensive review was performed to identify NDE methods that are suitable for the detection of defects in this new welding process. The search included a review of traditional and advanced NDE methods that were capable of demonstrating both the sensitivity and inspection rates required for this examination. This paper will discuss the theory behind phased array techniques, fundamentals of several probe designs for FSW configurations, and the advantages of using phased arrays over conventional NDE methods for this applications.

  11. Evaluation of the sustainability and clinical outcome of alternatives for families: A cognitive-behavioral therapy (AF-CBT) in a child protection center

    PubMed Central

    Iselin, Anne-Marie R.; Gully, Kevin J.

    2011-01-01

    This paper examines the sustainability and outcome of Alternatives for Families: A Cognitive-Behavioral Therapy (AF-CBT) as delivered by practitioners in a community-based child protection program who had received training in the model several years earlier. Formerly described as Abuse-Focused CBT, AF-CBT is an evidence-based treatment (EBT) for child physical abuse and family aggression/conflict that was included in the National Child Traumatic Stress Network’s initial EBT dissemination efforts in 2002. Seven practitioners participated in a year-long Learning Collaborative in AF-CBT and in similar training programs for 4 other EBTs. The agency’s routine data collection system was used to document the clinical and adjustment outcomes of 52 families presenting with a physically abused child who received their services between 2 and 5 years after the AF-CBT training had ended. Measures of the use of all 5 EBTs documented their frequency, internal consistency, and intercorrelations. Controlling for the unique content of the other four EBTs, the amount of AF-CBT Abuse-specific content delivered was related to improvements on standardized parent rating scales (i.e., child externalizing behavior, anger, anxiety, social competence) and both parent and clinician ratings of the child’s adjustment at discharge (i.e., child more safe, less scared/sad, more appropriate with peers). The amount of AF-CBT General content was related to a few discharge ratings (better child prognosis, helpfulness to parents). These novel data provide suggestive evidence for the sustainability and clinical benefits of AF-CBT in an existing community clinic serving physically abused children and their families, and are discussed in the context of key developments in the treatment model and dissemination literature. PMID:21354619

  12. Ultrasonic Histotripsy for Tissue Therapy

    NASA Astrophysics Data System (ADS)

    Pahk, K. J.; Dhar, D. K.; Malago, M.; Saffari, N.

    2015-01-01

    Hepatocyte transplantation has been considered and investigated as a promising and alternative method to liver transplantation for treating liver-based metabolic disorder in newborns over the past two decades. Although some clinical trials have been conducted and shown clinical benefits and outcomes, it is difficult to deliver and achieve a desired level of integration and transplantation of hepatocytes in the liver parenchyma. To overcome this problem, this work introduces an alternative method to a portal-infused-hepatocyte cell transplantation. To improve the level of engraftment of transplantable hepatocytes, these are injected directly into cavities generated by ultrasonic histotripsy. Histotripsy is an extracorporeal noninvasive technique which has been recently developed using high intensity focused ultrasound (HIFU) for inducing tissue fractionation with no coagulative necrosis. The exact mechanisms for the tissue fractionation are not well understood yet; but the possible mechanisms are thought to be a combination of nonlinear wave propagation effect, explosive bubble growth and ultrasonic atomization. The main objectives of this work are to demonstrate the feasibility of this new cell therapy and evaluate and distinguish between the different types of cavitation activity for either a thermally or a mechanically induced lesion. In the present work, numerical studies on the bubble dynamics (the Gilmore-Akulichev bubble model coupled with the Khokhlov-Zabolotskaya-Kuznetsov equation) and both ex- and in vivo liver experiments are conducted with histological analysis (haematoxylin and eosin stain). The numerical and the experimental results suggest that (a) the acoustic emissions emitted during the thermal ablation and the histotripsy exposure can be distinguished both numerically and experimentally and (b) the proposed cell therapy may potentially form an effective and safe clinical treatment for replacing and correcting disordered hepatocytes, although the

  13. Application of Ultrasonic Dental Scaler for Diagnosis

    NASA Astrophysics Data System (ADS)

    Maruyama, Yutaka; Takasaki, Masaya; Kutami, Tomonori; Mizuno, Takeshi

    Ultrasonic dental scaler is an instrument to remove dental calculi using ultrasonic vibration of a transducer. The conventional transducer has a hose to provide water to scaling point. The hose causes attenuation of the ultrasonic vibration. This paper describes a new transducer design to avoid the attenuation. Design decision by comparison of two types of transducer designs is reported. Additionally, the ultrasonic transducer is used in resonance condition. The resonance frequency, however, is shifted according to value of input voltage to the transducer and condition of contact with tooth or gum. This paper presents a resonance frequency tracing system to solve the frequency shift. Step responses are specified as evaluation of the system. Application of the system to diagnosis is also discussed. Experiments on measurement of object properties are reported. The results indicate possibility that dental health can be investigated by observing the frequency shift during the scaler operation.

  14. Continuous flow measurements using fixed ultrasonic meters

    USGS Publications Warehouse

    Oltmann, Rick

    1993-01-01

    USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.

  15. Semiconductor measurement technology: Microelectronic ultrasonic bonding

    NASA Technical Reports Server (NTRS)

    Harman, G. G. (Editor)

    1974-01-01

    Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.

  16. Tailoring ultrasonic beams with optoacoustic holography

    NASA Astrophysics Data System (ADS)

    Meyer, Alex; Gspan, Stefan J.; Bernet, Stefan; Ritsch-Marte, Monika

    2003-06-01

    A combination of laser-induced ultrasound generation and ultrasonic holography for spatial control of the generated ultrasonic pulse is presented. Ultrasound is produced by absorption of laser pulses at an absorbing layer in a water tank via the optoacoustic effect. In order to produce a defined ultrasonic frequency in the MHz range, the laser pulses are harmonically time-modulated using an acousto-optic modulator (AOM). Additionally, the laser intensity is spatially controlled. This is realized with a high resolution liquid crystal spatial light modulator (LCD). A computer generated pattern is displayed at the LCD and projected by the expanded laser beam to an absorptive layer in the water tank. As a result, the emitted ultrasonic wave emerges in a predetermined way, which is an acoustical analogue to the effect of a "diffractive optical element" in laser optics. The flexible method of optical ultrasound generation and diffractive steering promises new applications in medical and technical ultrasound diagnostics.

  17. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  18. Ultrasonic propagation in gases at high temperatures

    NASA Technical Reports Server (NTRS)

    Carey, C.; Carnevale, E. H.; Lynworth, L. C.; Uva, S.

    1970-01-01

    Ultrasonic pulse method /1 to 3 MHz/ measures both sound speed and absorption in monatomic and polyatomic gases in a temperature range of 300 to 20000 degrees K at atmospheric pressure. Helium, nitrogen, oxygen, and argon are investigated.

  19. Ultrasonics used to measure residual stress

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Ultrasonic method is used to measure residual stress in metal structures. By using this method, various forms of wave propagation in metals are possible, and more thorough analysis of complex geometric structures may be had.

  20. Ultrasonic measurements of velocity for modulus assessment of a material using a delay line approach

    NASA Astrophysics Data System (ADS)

    Ko, R. T.; Chen, M. Y.; Hoppe, W. C.; Blackshire, J. L.

    2013-01-01

    In an effort to evaluate the modulus of materials at elevated temperatures, an ultrasonic delay line approach was developed. The setup was tested with a known material, an aluminum alloy, using delay lines at ambient temperature to examine the feasibility of this approach. Due to the low frequency used, interference occurred between multiple passes of the ultrasound through the material resulting a lower than expected measured velocity. Incorporation of a transmission coefficient in the model of the experiment corrected the expected timing of the ultrasonic signals, reconciling the model to measurements of velocity.

  1. The Ultrasonic Measurement of Crystallographic Orientation for Imaging Anisotropic Components with 2d Arrays

    NASA Astrophysics Data System (ADS)

    Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.

    2011-06-01

    Single crystal components are used widely in the gas-turbine industry. However, these components are elastically anisotropic which causes difficulties when performing NDE inspections with ultrasound. Recently an ultrasonic algorithm for a 2D array has been corrected to perform the reliable volumetric inspection of single crystals. For the algorithm to be implemented the crystallographic orientation of the components must be known. This paper, therefore, develops and reviews crystallographic orientation methods using 2D ultrasonic arrays. The methods under examination are based on the anisotropic propagation of surface and bulk waves and an image-based orientation method is also considered.

  2. Noncontact atomization of droplets using an aerial ultrasonic source with two vibrating plates

    NASA Astrophysics Data System (ADS)

    Endo, Arisa; Yanagimoto, Miduki; Asami, Takuya; Miura, Hikaru

    2015-07-01

    For use in mass spectrometry, we investigated the noncontact atomization of droplets using a rectangular transverse vibrating plate ultrasonic source. To determine the atomization properties of the ultrasonic source, we examined the sound pressure distribution of the standing wave acoustic field formed and observed the behavior of the atomized particles in the acoustic field. We determined the relationship between sound pressure and the conditions and location where atomization occurs with the variations in droplet surface tension and viscosity using three different compounds: water, ethanol, and glycerin. Furthermore, we clarifies the distribution of particle diameters in atomized water.

  3. Improvement of ultrasonic characteristics in butt-welded joint of austenitic stainless steel using magnetic stirring method

    SciTech Connect

    Tanosaki, M.; Yoshikawa, K.; Arakawa, T.

    1995-08-01

    Magnetic Stirring Method of Tungsten Inert Gas(TIG) Welding are applied to butt-welded joint of austenitic stainless steel. The purpose of this method is to refine the welded structure and to improve the ultrasonic characteristics. In the conventional method of ultrasonic test in austenitic stainless steel weldments, dendritic solidification structure of weldment prevents smooth ultrasonic beam transmission. The tests are performed in three welding conditions; One is conventional TIG welding (without magnetic stirring), the other two are TIG welding using magnetic stirring method. Each test piece is evaluated by observing macro structure of cross section and by several ultrasonic tests examining pulse amplitudes, beam path length and proceeding beam direction. The detectability of artificial notches in weldment is also investigated and compared.

  4. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aspergillus flavus AF36; exemption... FOOD Exemptions From Tolerances § 180.1206 Aspergillus flavus AF36; exemption from the requirement of a... pesticide Aspergillus flavus AF36 in or on cotton, gin byproducts; cotton, hulls; cotton, meal;...

  5. 32 CFR 989.12 - AF Form 813, Request for Environmental Impact Analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false AF Form 813, Request for Environmental Impact... FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.12 AF Form 813, Request for Environmental Impact Analysis. The Air Force uses AF Form 813 to document the need...

  6. 32 CFR 989.12 - AF Form 813, Request for Environmental Impact Analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false AF Form 813, Request for Environmental Impact... FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.12 AF Form 813, Request for Environmental Impact Analysis. The Air Force uses AF Form 813 to document the need...

  7. 32 CFR 989.12 - AF Form 813, Request for Environmental Impact Analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false AF Form 813, Request for Environmental Impact... FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.12 AF Form 813, Request for Environmental Impact Analysis. The Air Force uses AF Form 813 to document the need...

  8. 32 CFR 989.12 - AF Form 813, Request for Environmental Impact Analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false AF Form 813, Request for Environmental Impact... FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.12 AF Form 813, Request for Environmental Impact Analysis. The Air Force uses AF Form 813 to document the need...

  9. 32 CFR 989.12 - AF Form 813, Request for Environmental Impact Analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false AF Form 813, Request for Environmental Impact... FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.12 AF Form 813, Request for Environmental Impact Analysis. The Air Force uses AF Form 813 to document the need...

  10. Imaging composite material using ultrasonic arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Pain, Damien; Wilcox, Paul D.; Drinkwater, Bruce W.

    2012-05-01

    This article describes an experimental procedure for improving the detectability of small defects in composite laminates based on modifications to the total focusing method (TFM) of processing ultrasonic array data to form an image. The TFM is modified to include the directional dependence of ultrasonic velocity. The maximum aperture angle is limited and a Gaussian frequency-domain filter is applied prior to processing. The parameters of maximum aperture angle, filter centre frequency and filter bandwidth are optimized.

  11. Wavelet Transform Signal Processing Applied to Ultrasonics.

    DTIC Science & Technology

    1995-05-01

    THE WAVELET TRANSFORM IS APPLIED TO THE ANALYSIS OF ULTRASONIC WAVES FOR IMPROVED SIGNAL DETECTION AND ANALYSIS OF THE SIGNALS. In instances where...the mother wavelet is well defined, the wavelet transform has relative insensitivity to noise and does not need windowing. Peak detection of...ultrasonic pulses using the wavelet transform is described and results show good detection even when large white noise was added. The use of the wavelet

  12. The design of ultrasonic range finder

    NASA Astrophysics Data System (ADS)

    Na, Yongyi

    2017-03-01

    Electronic rangefinder measurement scope in 0.10˜5.00 m, 1 cm measurement precision, measurement with no direct contact with the object to be tested, able to display measurement results clear and stable. Because ultrasonic directivity is strong, energy consumption is slow, in the medium transmission distance is farther, so ultrasonic often used for distance measurement, such as range finder and level measurement instrument can be done by ultrasound.

  13. Ultrasonic fluid densitometer for process control

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  14. Extrinsic Fabry-Perot ultrasonic detector

    NASA Astrophysics Data System (ADS)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  15. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  16. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Taejon Ch'ungmam; Yan Li.

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figures.

  17. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  18. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  19. Thermography And Ultrasonics Find Flaws In Composites

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Zalameda, Joseph N.; Smith, Barry T.; Winfree, William P.

    1993-01-01

    Flaws first located in infrared imagery, then probed ultrasonically to reveal details. Thermographic and ultrasonic techniques, applied sequentially, constitute basis of developmental method of nondestructive inspection of structures made of lightweight composite materials like carbon-fiber/epoxy-matrix laminates. Method enables rapid detection and evaluation of damage and other flaws in composite structures. Does not require access to both sides of structure to be inspected.

  20. A study on temperature dependence of an ultrasonic motor for cryogenic environment

    NASA Astrophysics Data System (ADS)

    Nakazono, Masahiro; Kanda, Takefumi; Yamaguchi, Daisuke; Suzumori, Koichi; Noguchi, Yuya

    2015-07-01

    In this study, we have examined the temperature dependence of an ultrasonic motor for a cryogenic environment. When we use an ultrasonic motor at low temperatures, thermal stress is induced at the ultrasonic transducer owing to the difference in temperature. Thus, the preload for the transducer needs to be regulated for a cryogenic environment. By finite element method (FEM) analysis, we have simulated the thermal stress at piezoelectric elements of the transducer. We have designed the transducer consisting of a body and a nut made of SUS304, and a bolt made of titanium. We have fabricated and evaluated the transducer at temperatures from 4.5 to 293 K. To evaluate the temperature dependence of the relationship between the preload and the thermal stress, we have measured the clamping torque and admittance. The optimal clamping torque shows a low-temperature dependence from 4.5 to 293 K. We have also evaluated the performance of an ultrasonic motor of the transducer. The ultrasonic motor can be driven at temperatures from 4.5 to 293 K without the regulation of the preload of the transducer.

  1. A simulation model for ultrasonic temperature imaging using change in backscattered energy.

    PubMed

    Trobaugh, Jason W; Arthur, R Martin; Straube, William L; Moros, Eduardo G

    2008-02-01

    Ultrasound backscattered from tissue has previously been shown theoretically and experimentally to change predictably with temperature in the hyperthermia range, i.e., 37 degrees C to 45 degrees C, motivating use of the change in backscattered ultrasonic energy (CBE) for ultrasonic thermometry. Our earlier theoretical model predicts that CBE from an individual scatterer will be monotonic with temperature, with, e.g., positive change for lipid-based scatterers and negative for aqueous-based scatterers. Experimental results have previously confirmed the presence of these positive and negative changes in one-dimensional ultrasonic signals and in two-dimensional images acquired from in vitro bovine, porcine and turkey tissues. In order to investigate CBE for populations of scatterers, we have developed an ultrasonic image simulation model, including temperature dependence for individual scatterers based on predictions from our theoretical model. CBE computed from images simulated for populations of randomly distributed scatterers behaves similarly to experimental results, with monotonic variation for individual pixel measurements and for image regions. Effects on CBE of scatterer type and distribution, size of the image region and signal-to-noise ratio have been examined. This model also provides the basis for future work regarding significant issues relevant to temperature imaging based on ultrasonic CBE such as effects of motion on CBE, limitations of motion-compensation techniques and accuracy of temperature estimation, including tradeoffs between temperature accuracy and available spatial resolution.

  2. Measurement of alkali-silica reaction progression by ultrasonic waves attenuation

    SciTech Connect

    Saint-Pierre, Francois; Rivard, Patrice . E-mail: Patrice.Rivard@Usherbrooke.ca; Ballivy, Gerard

    2007-06-15

    Development of non-destructive methods, developed specifically for assessing the damage induced by alkali-silica reaction (ASR) in concrete structures, is needed in order to carry out a systematic evaluation of the concrete condition. The aim of this study is to monitor the evolution of the ASR-damage in laboratory with concrete samples with ultrasonic pulse velocity and attenuation of ultrasonic waves methods. For this study, results of both methods were compared with expansion and mass variation. One reactive concrete mixture was made with reactive aggregate, and one other mixture, incorporating non-reactive aggregate, was made as a control. Specimens were kept at 38 deg. C in a 1 mol l{sup -1} NaOH solution to accelerate the reaction. Attenuation of transmitted ultrasonic waves appeared to be more appropriate for the evaluation of ASR-damage compared with pulse velocity. The attenuation of accelerated reactive concrete cylinders increased by 90% after 1 year while it increased by 40% for the non-reactive concrete used as a control. Major part of the attenuation increase in the non-reactive concrete is due to liquid absorption. This work suggests that in-situ non-destructive techniques based on ultrasonic wave attenuation, like ultrasonic attenuation tomography, should be developed in order to evaluate the development of ASR in concrete structures. Petrographic examination confirmed that damage to concrete is associated with ASR.

  3. Characteristic model of travelling wave ultrasonic motor.

    PubMed

    Jingzhuo, Shi; Dongmei, You

    2014-02-01

    In general, the design and analysis of ultrasonic motor and motor's control strategy are based on mathematical model. The academic model is widely used in the analysis of traveling wave ultrasonic motor (TWUSM). But the dispersive characteristic of piezoelectric ceramics and other complicated process, such as the friction, make the model's precision not so accurate. On the other hand, identification modeling method, which is built based on the tested data, has obtained increasing application in the study of ultrasonic motor's control technology. Based on the identification model, many control strategies can be designed easily. But the identification model is an approximate model, so if a more accurate model of ultrasonic motor can be obtained, the analysis and design of motor control system will be more effective. Characteristic model is a kind of identification model which can accurately describe the characteristics of TWUSM. Based on the tested data, this paper proposes the modeling method of ultrasonic motor's characteristic model. The paper also makes a comparison of the effectiveness of different identification algorithms. Aiming at the speed control of ultrasonic motor, the influence of the parameter's initial values on the precision of model is discussed. The calculating results indicate the availability of this characteristic model.

  4. Contact mechanics of piezoelectric ultrasonic motors

    NASA Astrophysics Data System (ADS)

    Wallaschek, Jörg

    1998-06-01

    Piezoelectric ultrasonic motors are driven by tangential stresses in the interface between stator and rotor. These stresses are generated by the elliptical motion of the material points of the stator or rotor surface and depend on frictional processes in the contact area. The contact mechanics of piezoelectric ultrasonic motors determines the operational characteristics, like rotational speed and torque or transmitted mechanical power and efficiency. Wear properties and lifetime of piezoelectric ultrasonic motors are also determined by contact mechanics. The goal of the present paper is to summarize the state of the art in the understanding of some fundamental processes governing the contact mechanics of piezoelectric ultrasonic motors. After a short introduction, a survey of publications devoted to the subject will be given. Then, an attempt will be made to classify the mechanical models, which were developed in order to explain the contact mechanics of piezoelectric ultrasonic motors, according to the physical effects which have been taken into account in their derivation. Some results concerning the choice of proper contact materials, wear and lifetime of ultrasonic motors will be addressed in a separate section. Finally a summary and outlook will be given and open questions for future research will be formulated.

  5. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  6. A new ultrasonic stride length measuring system.

    PubMed

    Maki, Hiromichi; Ogawa, Hidekuni; Yonezawa, Yoshiharu; Hahn, Allen W; Caldwell, W Morton

    2012-01-01

    We have developed a new ultrasonic stride length measuring system for analyzing the human gait. An ultrasonic transmitter, a radio transmitter, a pressure sensor and microcontroller are attached to the subject’s heel on the right shoe and in the direction of the left shoe. Two ultrasonic receivers, a radio receiver, a microcontroller and a 1GB SD memory card are installed on the left shoe. Ultrasonic receivers are attached to the toe and heel, in the direction of the right shoe. When the right foot contacts the ground, its heel-mounted ultrasonic and radio transmitters simultaneously transmit to the left shoe. However, radio propagation velocity is far faster than ultrasonic velocity. Therefore, the radio wave acts as a start signal to the radio receiver of the left shoe, indicating the start of ultrasound transmission from the right shoe. Upon receiving the start signal, the microcontroller timer starts to measure each ultrasound propagation time from the right shoe to the left shoe. Distance between right and left shoes is calculated with the time and ultrasound velocity and stored in the SD memory card. Stride length is calculated with a cosine function, by using the obtained distances and the distance between the toe and heel of the left shoe, by a conventional computer. The stride length can then be used for many characterizations of the subject’s gait.

  7. The acousto-ultrasonic approach. [for NDE

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1988-01-01

    The nature and underlying rationale of the acousto-ultrasonic approach is reviewed, needed advanced signal analysis and evaluation methods suggested, and application potentials discussed. Acousto-ultrasonics is an NDE technique combining aspects of acoustic emission methodology with ultrasonic simulation of stress waves. This approach uses analysis of simulated stress waves for detecting and mapping variations of mechanical properties. Unlike most NDE, acousto-ultrasonics is less concerned with flaw detection than with the assessment of the collective effects of various flaws and material anomalies. Acousto-ultrasonics has been applied chiefly to laminated and filament-wound fiber reinforced composites. It has been used to assess the significant strength and toughness reducing effects that can be wrought by combinations of essentially minor flaws and diffuse flaw populations. Acousto-ultrasonics assesses integrated defect states and the resultant variations in properties such as tensile, shear, and flexural strengths and fracture resistance. Matrix cure state, porosity, fiber orientation, fiber volume fraction, fiber-matrix bonding, and interlaminar bond quality are underlying factors.

  8. Ultrasonic techniques for aircraft ice accretion measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Lichtenfelts, Fred

    1990-01-01

    Results of tests to measure ice growth in natural (flight) and artificial (icing wind tunnel) icing conditions are presented. Ice thickness is measured using an ultrasonic pulse-echo technique. Two icing regimes, wet and dry ice growth, are identified and the unique ultrasonic signal characteristics associated with these different types of ice growth are described. Ultrasonic measurements of ice growth on cylinders and airfoils exposed to artificial and natural icing conditions are presented. An accuracy of plus or minus 0.5 mm is achieved for ice thickness measurement using the pulse-echo technique. The performance of two-probe type ice detectors is compared to the surface mounted ultrasonic system. The ultrasonically measured ice accretion rates and ice surface condition (wet or dry) are used to compare the heat transfer characteristics for flight and icing wind tunnel environments. In general the heat transfer coefficient is inferred to be higher in the wind tunnel environment, not likely due to higher freestream turbulence levels. Finally, preliminary results of tests to measure ice growth on airfoil using an array of ultrasonic transducers are described. Ice profiles obtained during flight in natural icing conditions are shown and compared with mechanical and stereo image measurements.

  9. Residual stress determination of rail tread using a laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Feng, Qibo

    2015-05-01

    A non-destructive method for measuring the residual stress on rail tread that uses a laser-generated ultrasonic technique is proposed. The residual stress distribution of different parts on both the new rail and used rail were examined. The surface acoustic waves (SAWs) are excited by a scanning line laser and detected by a laser ultrasonic detection system. A digital correlation method was used for calculating the changes in velocity of SAWs, which reflects the stress distribution. A wavelet de-noising technique and a least square fit were used for signal processing to improve the measurement accuracy. The effects of ultrasonic propagation distance and surface roughness on the determination of residual stress were analyzed and simulated. Results from the study demonstrate that the stress distribution results are accordant with the practical situation, and the laser-generated SAWs technique is a promising tool for the determination of residual stress in the railway inspection and other industrial testing fields.

  10. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  11. Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Naor, Omer; Hertzberg, Yoni; Zemel, Esther; Kimmel, Eitan; Shoham, Shy

    2012-04-01

    Ultrasound waves, widely used as a non-invasive diagnostic modality, were recently shown to stimulate neuronal activity. Functionally meaningful stimulation, as is required in order to form a unified percept, requires the dynamic generation of simultaneous stimulation patterns. In this paper, we examine the general feasibility and properties of an acoustic retinal prosthesis, a new vision restoration strategy that will combine ultrasonic neuro-stimulation and ultrasonic field sculpting technology towards non-invasive artificial stimulation of surviving neurons in a degenerating retina. We explain the conceptual framework for such a device, study its feasibility in an in vivo ultrasonic retinal stimulation study and discuss the associated design considerations and tradeoffs. Finally, we simulate and experimentally validate a new holographic method—the angular spectrum-GSW—for efficient generation of uniform and accurate continuous ultrasound patterns. This method provides a powerful, flexible solution to the problem of projecting complex acoustic images onto structures like the retina.

  12. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections.

    PubMed

    Wang, F J; Zhang, H J; Liang, C M; Tian, Y L; Zhao, X Y; Zhang, D W

    2015-12-01

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  13. Note: Decoupling design for high frequency piezoelectric ultrasonic transducers with their clamping connections

    SciTech Connect

    Wang, F. J. Liang, C. M.; Tian, Y. L.; Zhao, X. Y.; Zhang, D. W.; Zhang, H. J.

    2015-12-15

    This work presents the flexure-mechanism based decoupling design between high frequency piezoelectric ultrasonic transducers and their clamping connections to improve ultrasonic energy transmission efficiency. The ring, prismatic beam, and circular notched hinge based flanges were presented, and the crucial geometric dimensions of the transducers with the flexure decoupling flanges were determined. Finite element analysis (FEA) was carried out to investigate the dynamic characteristics of the transducers. Finally, experiments were conducted to examine and verify the effects of the proposed decoupling flanges. FEA and experimental results show that smaller frequency deviations and larger tip displacement amplitudes have been achieved by using the transducers with the flexure flanges compared with the transducer with a rigid ring-type flange, and thus the ultrasonic transmission efficiency can be improved through the flexure flanges.

  14. Microbial contamination of ambient air by ultrasonic humidifier and preventive measures.

    PubMed

    Oie, S; Masumoto, N; Hironaga, K; Koshiro, A; Kamiya, A

    1992-01-01

    The microbially contaminated ultrasonic humidifier (UH) causes humidifier fever. The number of airborne viable bacteria was determined when the UH was operating, and other methods to humidify the air of hospital wards were also examined. A UH contaminated with 10(5) bacteria ml(-1), a level common in hospitals, increased the bacterial count in the air from 860 m(-3) to 88,000 m(-3) at a distance of 3 m from the humidifier. Thus UH in hospitals may contaminate the air and be a potential hazard to patients. Contamination was slight when a washable and disinfectable ultrasonic nebulizer was used with disinfection at 24 h intervals. In tracheostomy patients requiring a high degree of air humidification, ultrasonic nebulizers which are readily washed and disinfected are recommended.

  15. Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm Valves

    NASA Technical Reports Server (NTRS)

    Willis, Peter; Hunt, Brian; White,Victor; Grunthaner, Frank

    2008-01-01

    A microfluidic system has been designed to survive spaceflight and to function autonomously on the Martian surface. It manipulates microscopic quantities of liquid water and performs chemical analyses on these samples to assay for the presence of molecules associated with past or present living processes. This technology lies at the core of the Urey Instrument, which is scheduled for inclusion on the Pasteur Payload of the ESA ExoMars rover mission in 2013. Fabrication processes have been developed to make the microfabricated Teflon-AF microfluidic diaphragm pumps capable of surviving extreme temperature excursions before and after exposure to liquid water. Two glass wafers are etched with features and a continuous Teflon membrane is sandwiched between them (see figure). Single valves are constructed using this geometry. The microfabricated devices are then post processed by heating the assembled device while applying pneumatic pressure to force the Teflon diaphragm against the valve seat while it is softened. After cooling the device, the embossed membrane retains this new shape. This solves previous problems with bubble introduction into the fluid flow where deformations of the membrane at the valve seat occurred during device bonding at elevated temperatures (100-150 C). The use of laminated membranes containing commercial Teflon AF 2400 sheet sandwiched between spun Teflon AF 1600 layers performed best, and were less gas permeable than Teflon AF 1600 membranes on their own. Spinning Teflon AF 1600 solution (6 percent in FLOURINERT(Registered TradeMark) FC40 solvent, 3M Company) at 500 rpm for 1.5 seconds, followed by 1,000 rpm for 3 seconds onto Borofloat glass wafers, results in a 10-micron-thick film of extremely smooth Teflon AF. This spinning process is repeated several times on flat, blank, glass wafers in order to gradually build a thick, smooth membrane. After running this process at least five times, the wafer and Teflon coating are heated under vacuum

  16. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.

    PubMed

    Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R

    1994-04-01

    Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing

  17. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  18. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2)

    PubMed Central

    Lian, Wei; Jayapal, Karthik P; Charaniya, Salim; Mehra, Sarika; Glod, Frank; Kyung, Yun-Seung; Sherman, David H; Hu, Wei-Shou

    2008-01-01

    Background A small "sigma-like" protein, AfsS, pleiotropically regulates antibiotic biosynthesis in Streptomyces coelicolor. Overexpression of afsS in S. coelicolor and certain related species causes antibiotic stimulatory effects in the host organism. Although recent studies have uncovered some of the upstream events activating this gene, the mechanisms through which this signal is relayed downstream leading to the eventual induction of antibiotic pathways remain unclear. Results In this study, we employed whole-genome DNA microarrays and quantitative PCRs to examine the transcriptome of an afsS disruption mutant that is completely deficient in the production of actinorhodin, a major S. coelicolor antibiotic. The production of undecylprodigiosin, another prominent antibiotic, was, however, perturbed only marginally in the mutant. Principal component analysis of temporal gene expression profiles identified two major gene classes each exhibiting a distinct coordinate differential expression pattern. Surprisingly, nearly 70% of the >117 differentially expressed genes were conspicuously associated with nutrient starvation response, particularly those of phosphate, nitrogen and sulfate. Furthermore, expression profiles of some transcriptional regulators including at least two sigma factors were perturbed in the mutant. In almost every case, the effect of afsS disruption was not observed until the onset of stationary phase. Conclusion Our data suggests a comprehensive role for S. coelicolor AfsS as a master regulator of both antibiotic synthesis and nutritional stress response, reminiscent of alternative sigma factors found in several bacteria. PMID:18230178

  19. Interaction between Subunits of Heterodimeric Splicing Factor U2AF Is Essential In Vivo

    PubMed Central

    Rudner, David Z.; Kanaar, Roland; Breger, Kevin S.; Rio, Donald C.

    1998-01-01

    The heterodimeric pre-mRNA splicing factor, U2AF (U2 snRNP auxiliary factor), plays a critical role in 3′ splice site selection. Although the U2AF subunits associate in a tight complex, biochemical experiments designed to address the requirement for both subunits in splicing have yielded conflicting results. We have taken a genetic approach to assess the requirement for the Drosophila U2AF heterodimer in vivo. We developed a novel Escherichia coli copurification assay to map the domain on the Drosophila U2AF large subunit (dU2AF50) that interacts with the Drosophila small subunit (dU2AF38). A 28-amino-acid fragment on dU2AF50 that is both necessary and sufficient for interaction with dU2AF38 was identified. Using the copurification assay, we scanned this 28-amino-acid interaction domain for mutations that abrogate heterodimer formation. A collection of these dU2AF50 point mutants was then tested in vivo for genetic complementation of a recessive lethal dU2AF50 allele. A mutation that completely abolished interaction with dU2AF38 was incapable of complementation, whereas dU2AF50 mutations that did not effect heterodimer formation rescued the recessive lethal dU2AF50 allele. Analysis of heterodimer formation in embryo extracts derived from these interaction mutant lines revealed a perfect correlation between the efficiency of subunit association and the ability to complement the dU2AF50 recessive lethal allele. These data indicate that Drosophila U2AF heterodimer formation is essential for viability in vivo, consistent with a requirement for both subunits in splicing in vitro. PMID:9528748

  20. The Role of U2AF1 Mutations in the Pathogenesis of Myelodysplastic Syndromes

    DTIC Science & Technology

    2015-10-01

    to U2AF1(WT). We validated several homologous dysregulated junctions (i.e., across species) in MDS patient bone marrow samples that have mutant ...U2AF1(S34F) versus U2AF1(WT). Together, these results suggest that mutant U2AF1 expression contributes to the altered hematopoiesis and pre-mRNA...whether the U2AF1(S34F) mutation alters hematopoiesis in vivo. We will inducibly express wild-type and S34F mutant (resulting from the most common

  1. Characterization of physically vapor deposited AF2400 thin films

    SciTech Connect

    Chow, R.; Spragge, M.K.; Loomis, G.E.; Rainer, F.; Ward, R.; Thomas, I.M.; Kozlowski, M.R.

    1993-11-01

    Anti-reflective coatings made with Teflon AF2400 had the highest damage thresholds recorded for physical vapor deposited coatings at the Lawrence Livermore National Laboratory damage facility. Physical vapor deposited layers of Teflon AF2400, a perfluorinated amorphous polymer, maintained the bulk optical properties of a high transmittance from 200 nm to 1600 nm, and a low refractive index. In addition, the refractive index can be intentionally reduced by control of two common deposition parameters, deposition rate and substrate temperature. Scanning electron microscopy and nuclear magnetic resonance observations indicated that morphological changes caused the variations in the refractive index rather than compositional changes. The coatings adhered to fused silica and silicon wafers under normal laboratory handling conditions.

  2. Gymnasterkoreaynes A-F, cytotoxic polyacetylenes from Gymnaster koraiensis.

    PubMed

    Jung, Hyun-Ju; Min, Byung-Sun; Park, Jin-Young; Kim, Young-Ho; Lee, Hyeong-Kyu; Bae, Ki-Hwan

    2002-06-01

    Six new polyacetylenes, gymnasterkoreaynes A-F (1-6), were isolated from the roots of Gymnaster koraiensis, together with 2,9,16-heptadecatrien-4,6-diyn-8-ol (7) and 1,9,16-heptadecatriene-4,6-diyn-3,8-diol (8), by bioassay-guided fractionation using the L1210 tumor cell line as a model for cytotoxicity. The structures of compounds 1-6 were established spectroscopically, which included 2D NMR experiments. Gymnasterkoreaynes A-F (1-6) are linear diacetylenes and are structurally related to falcarinol, panaxynol, panaxydiol, and panaxytriol. Of the compounds isolated, gymnasterkoreaynes B (2), C (3), F (6), and 1,9,16-heptadecatrien-4,6-diyn-3,8-diol (8) exhibited significant cytotoxicity against L1210 tumor cells with ED(50) values of 0.12-3.3 microg/mL.

  3. Intracardiac impedance response during acute AF internal cardioversion using novel rectilinear and capacitor-discharge waveforms.

    PubMed

    Rababah, A S; Walsh, S J; Manoharan, G; Walsh, P R; Escalona, O J

    2016-07-01

    Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.

  4. Adiabatic Compression Sensitivity of AF-M315E

    DTIC Science & Technology

    2015-07-01

    the development of green rocket propellants . The Air Force Research Laboratory’s (AFRL) monopropellant, AF-M315E, has been selected for...art rocket fuels and propellants . A known quantity of liquid propellant is placed in a metal U-tube and held isothermally in a preheated mixture of... Propellant Infusion Mission (GPIM) program. As the propulsion system developed by Aerojet- Rocketdyne for this propellant advances in maturity, studies

  5. Installation Restoration Program. Records Search, Newark AFS, Ohio

    DTIC Science & Technology

    1985-04-01

    plants. In this assignment and all that follow, a part of each was spent in conducting health and environment compliance inspections and audits at mili...OH 434&33 EiLO)( 2 bJATEP SYSTE-M, KTTC𔃻EN TAP, ’DATE: 76-P6-16*’.TI- E: 1304.1, APPEA0AfJCE OF SbmPLE CLEAR, TEA;:, 72 I PFE -ULTS OF ANALYS15 C T

  6. Ultrasonic imaging in liquid sodium

    SciTech Connect

    Lubeigt, E.; Mensah, S.; Chaix, J.F.; Rakotonarivo, S.; Gobillot, G.

    2015-07-01

    The fourth generation of nuclear reactor can use liquid sodium as the core coolant. When the reactor is operating, sodium temperatures can reach up to 600 deg. C. During maintenance periods, when the reactor is shut down, the coolant temperature is reduced to 200 deg. C. Because molten sodium is optically opaque, ultrasonic imaging techniques are developed for maintenance activities. Under-sodium imaging aims at i) checking the health of immersed structures. It should also allow ii) to assess component degradation or damage as cracks and shape defects as well as iii) the detection of lost objects. The under-sodium imaging system has to sustain high temperature (up to 300 deg. C) and hostility of the sodium environment. Furthermore, specific constraints such as transducers characteristics or the limited sensor mobility in the reactor vessel have to be considered. This work focuses on developing a methodology for detecting damages such as crack defects with ultrasound devices. Surface-breaking cracks or deep cracks are sought in the weld area, as welds are more subject to defects. Traditional methods enabled us to detect emerging cracks of submillimeter size with sodium-compatible high-temperature transducer. The presented approach relies on making use of prior knowledge about the environment through the implementation of differential imaging and time-reversal techniques. Indeed, this approach allows to detect a change by comparison with a reference measurement and by focusing back to any change in the environment. It is a means of analysis and understanding of the physical phenomena making it possible to design more effective inspection strategies. Difference between the measured signals reveals the acoustic field scattered by a perturbation (a crack for instance), which may occur between periodical measurements. The imaging method relies on the adequate combination of two computed ultrasonic fields, one forward and one adjoint. The adjoint field, which carries the

  7. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such

  8. Genomic functions of U2AF in constitutive and regulated splicing.

    PubMed

    Wu, Tongbin; Fu, Xiang-Dong

    2015-01-01

    The U2AF heterodimer is generally accepted to play a vital role in defining functional 3' splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3' splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3' splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans.

  9. Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF.

    PubMed

    Scarratt, Liam R J; Hoatson, Ben S; Wood, Elliot S; Hawkett, Brian S; Neto, Chiara

    2016-03-01

    We report the fabrication of both single-scale and hierarchical superhydrophobic surfaces, created by exploiting the spontaneous wrinkling of a rigid Teflon AF film on two types of shrinkable plastic substrates. Sub-100 nm to micrometric wrinkles were reproducibly generated by this simple process, with remarkable control over the size and hierarchy. Hierarchical Teflon AF wrinkled surfaces showed extremely high water repellence (contact angle 172°) and very low contact angle hysteresis (2°), resulting in droplets rolling off the surface at tilt angles lower than 5°. The wrinkling process intimately binds the Teflon AF layer with its substrate, making these surfaces mechanically robust, as revealed by macroscale and nanoscale wear tests: hardness values were close to that of commercial optical lenses and aluminum films, resistance to scratch was comparable to commercial hydrophobic coatings, and damage by extensive sonication did not significantly affect water repellence. By this fabrication method the size of the wrinkles can be reproducibly tuned from the nanoscale to the microscale, across the whole surface in one step; the fabrication procedure is extremely rapid, requiring only 2 min of thermal annealing to produce the desired topography, and uses inexpensive materials. The very low roll-off angles achieved in the hierarchical surfaces offer a potentially up-scalable alternative as self-cleaning and drag-reducing coatings.

  10. Advanced ultrasonic inspection system for the ID-inspection of reactor pressure vessels of BWRs

    SciTech Connect

    Fischer, E.; Wuestenberg, H.; Tagliamonte, M.; Dalichow, M.

    1994-12-31

    A newly-developed, modular ultrasonic examination system has been developed by Siemens for the ID inspection of BWR RPV`S. It is based on the phased-array technique with hybrid probes using the latest in manipulator and control equipment technology to allow the often hard-to-access weld areas of older reactor pressure vessels in US BWR plants to be examined within a very short time and with minimal radiation exposure of the examination personnel. New NRC stipulations requiring almost complete ultrasonic examination of all RPV welds can be fully satisfied using this system for the ID inspection of all longitudinal and circumferential welds above the jet pump baffle plate.

  11. Design of variable frequency endoscope ultrasonic digital imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ya-nan; Bai, Bao-ping; Chen, Xiao-dong; Zhao, Qiang; Deng, Hao-ran; Wang, Yi; Yu, Dao-yin

    2013-12-01

    This paper presented a real-time endoscope ultrasonic digital imaging system, which was based on FPGA and applied for gastrointestinal examination. Four modules, scan-line data processing module, coordinate transformation and interpolation algorithm module, cache reading and writing control module and transmitting and receiving control module were included in this FPGA based system. Through adopting different frequency ultrasound probes in a single insertion of endoscope, the system showed a high speed data processing mechanism capable of achieving images with various display effects. A high-precision modified coordinate calibration CORDIC (HMCC-CORDIC) algorithm was employed to realize coordinate transformation and interpolation simultaneously, while the precision and reliability of the algorithm could be greatly improved through utilizing the pipeline structure based on temporal logic. Also, system real-time control by computer could be achieved through operating under the condition of USB2.0 interface. The corresponding experimental validations proved the feasibility and the correctness of the proper data processing mechanism, the HMCC-CORDIC algorithm and the USB real-time control. Finally, the specific experimental sample, a tissue mimicking phantom, was imaged in real-time (25 frames per second) by an endoscope ultrasonic imaging system with image size 1024×1024. The requirements for clinical examination could be well satisfied with the imaging parameters discussed above.

  12. Wild-Type U2AF1 Antagonizes the Splicing Program Characteristic of U2AF1-Mutant Tumors and Is Required for Cell Survival

    PubMed Central

    Fei, Dennis Liang; Motowski, Hayley; Chatrikhi, Rakesh; Gao, Shaojian; Kielkopf, Clara L.; Varmus, Harold

    2016-01-01

    We have asked how the common S34F mutation in the splicing factor U2AF1 regulates alternative splicing in lung cancer, and why wild-type U2AF1 is retained in cancers with this mutation. A human lung epithelial cell line was genetically modified so that U2AF1S34F is expressed from one of the two endogenous U2AF1 loci. By altering levels of mutant or wild-type U2AF1 in this cell line and by analyzing published data on human lung adenocarcinomas, we show that S34F-associated changes in alternative splicing are proportional to the ratio of S34F:wild-type gene products and not to absolute levels of either the mutant or wild-type factor. Preferential recognition of specific 3′ splice sites in S34F-expressing cells is largely explained by differential in vitro RNA-binding affinities of mutant versus wild-type U2AF1 for those same 3′ splice sites. Finally, we show that lung adenocarcinoma cell lines bearing U2AF1 mutations do not require the mutant protein for growth in vitro or in vivo. In contrast, wild-type U2AF1 is required for survival, regardless of whether cells carry the U2AF1S34F allele. Our results provide mechanistic explanations of the magnitude of splicing changes observed in U2AF1-mutant cells and why tumors harboring U2AF1 mutations always retain an expressed copy of the wild-type allele. PMID:27776121

  13. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons

    PubMed Central

    Kralovicova, Jana; Vorechovsky, Igor

    2017-01-01

    The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing. PMID:27566151

  14. Apparatus for the concurrent ultrasonic inspection of partially completed welds

    DOEpatents

    Johnson, John A.

    2000-01-01

    An apparatus for the concurrent nondestructive evaluation of partially completed welds is described and which is used in combination with an automated welder and which includes an ultrasonic signal generator mounted on the welder and which generates an ultrasonic signal which is directed toward one side of the partially completed welds; an ultrasonic signal receiver mounted on the automated welder for detecting ultrasonic signals which are transmitted by the ultrasonic signal generator and which are reflected or diffracted from one side of the partially completed weld or which passes through a given region of the partially completed weld; and an analysis assembly coupled with the ultrasonic signal receiver and which processes the ultrasonic signals received by the ultrasonic signal receiver to identify welding flaws in the partially completed weld.

  15. Researches and applications of the ultrasonic emulsifications and dispersions.

    PubMed

    Quanlu, Li; Yinhong, Zhang; Jing, Wu

    2013-11-01

    This paper defines power ultrasonics and their two important directions: Ultrasonic emulsification and dispersion from a practical point of view, brief reports on recent research results are ultrasonic emulsification to be used for the preparation of composite electrorheological fluid, and ultrasonic dispersion to be used dispersion as a new type cold cloud catalytic agent metaldehyde [CH3CH]4-6 (this is used for artificial rain), etc., and produce good results or gain progress. Then, the principle and applications of power ultrasonics (including magnetostriction type ultrasonic transducer and piezoelectric type ultrasonic transducer) in the emulsification or dispersion, are pointed out. Also, ultrasonic extensive applications in chemistry, materials, and life sciences are briefly introduced.

  16. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  17. CW ultrasonic bolt tensioning monitor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1977-01-01

    A CW ultrasonic device is described for measuring frequency shifts of the peak of a mechanical resonance in a body. One application of the device is measuring the strain in a bolt, and other applications such as measuring the thickness of a body, measuring the depth of a flaw in a body, measuring the elongation of a body, and measuring changes in velocity of sound in a body. The body is connected, by means of a CW transducer, to electrical circuit means including a narrow band RF amplifier to form a closed loop feedback marginal oscillator that frequency locks the device to the peak of a mechanical resonance in the body. When the frequency of this peak changes, because of a physical change in the body, the frequency of the oscillator changes. The device includes an automatic frequency resonant peak tracker that produces a voltage that is related to a change in frequency of the oscillator. This voltage is applied to the RF amplifier to change the center of its frequency band to include the frequency of the peak and is a measure of the frequency shift.

  18. Optimization of Ultrasonic Fabric Cleaning

    SciTech Connect

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  19. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  20. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  1. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison.

    PubMed

    Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J

    2013-02-01

    Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed.

  2. Tickling increases dopamine release in the nucleus accumbens and 50 kHz ultrasonic vocalizations in adolescent rats.

    PubMed

    Hori, Miyo; Shimoju, Rie; Tokunaga, Ryota; Ohkubo, Masato; Miyabe, Shigeki; Ohnishi, Junji; Murakami, Kazuo; Kurosawa, Mieko

    2013-03-27

    Adolescent rats emit 50 kHz ultrasonic vocalizations, a marker of positive emotion, during rough-and-tumble play or on tickling stimulation. The emission of 50 kHz ultrasonic vocalizations in response to tickling is suggested to be mediated by dopamine release in the nucleus accumbens; however, there is no direct evidence supporting this hypothesis. The present study aimed to elucidate whether play behavior (tickling) in adolescent rats can trigger dopamine release in the nucleus accumbens with hedonic 50 kHz ultrasonic vocalizations. The effect of tickling stimulation was compared with light-touch stimulation, as a discernible stimulus. We examined 35-40-day-old rats, which corresponds to the period of midadolescence. Tickling stimulation for 5 min significantly increased dopamine release in the nucleus accumbens (118±7% of the prestimulus control value). Conversely, light-touch stimulation for 5 min did not significantly change dopamine release. In addition, 50 kHz ultrasonic vocalizations were emitted during tickling stimulation but not during light-touch stimulation. Further, tickling-induced 50 kHz ultrasonic vocalizations were significantly blocked by the direct application of SCH23390 (D1 receptor antagonist) and raclopride (D2/D3 receptor antagonist) into the nucleus accumbens. Our study demonstrates that tickling stimulation in adolescent rats increases dopamine release in the nucleus accumbens, leading to the generation of 50 kHz ultrasonic vocalizations.

  3. Ultrasonic wall loss monitoring of rough surfaces

    NASA Astrophysics Data System (ADS)

    Gajdacsi, Attila; Cegla, Frederic

    2015-03-01

    Permanently installed ultrasonic thickness monitoring techniques have been shown to be capable of achieving below 100 nanometre standard deviation repeatability under laboratory conditions, far exceeding that of conventional manual ultrasonic inspection techniques. However, it has also been shown that uneven surface conditions that reflect the ultrasonic waves (internal wall roughness) may limit the accuracy of monitoring in practice. Previous studies have reported the uncertainty of ultrasonic measurements taken on different independent realisations of rough surfaces with the same statistical properties. While this is indicative of potential uncertainties, it is important to recognise that real life defect growth (such as corrosion) does not occur in independent instances, but it manifests itself by small random perturbations of the same under-lying surface. Furthermore, in real life applications the accuracy of trend prediction is often more important than thickness accuracy. This paper therefore introduces a new model for simulating the evolution of gradual backwall morphology changes (as would be encountered due to corrosion processes). This model is used to simulate ultrasonic signals for a large number of changing backwall surfaces. The thickness and thickness trend is then extracted from these signals using a number of common signal processing methods. The mean thickness slope and uncertainty in the extracted slope is then evaluated and compared to the actual values. A new signal processing method is also proposed, which is shown to be an order of magnitude more accurate in estimating wall loss trends than any other evaluated method.

  4. Anti-tumor efficacy of ultrasonic cavitation is potentiated by concurrent delivery of anti-angiogenic drug in colon cancer.

    PubMed

    Zhang, Chao; Huang, Pintong; Zhang, Ying; Chen, Jian; Shentu, Weihui; Sun, Yu; Yang, Zhijian; Chen, Shuyuan

    2014-05-28

    This study investigated the efficacy of concurrent delivery of an anti-angiogenic drug and ultrasonic cavitation therapy in a mouse model of human colon cancer. A biotinylated form of the anti-angiogenic drug Endostar was conjugated to a streptavidin-coated microbubble (MB). Mice bearing subcutaneous tumors (HT29) were divided into 4 groups. Group 1 served as an untreated control. Group 2 served as a cavitation control and received naked microbubbles and sham ultrasonic cavitation (MB+sham cavitation). Group 3 received naked microbubbles and ultrasonic cavitation (MB+cavitation). Group 4 received Endostar loaded microbubbles and ultrasonic cavitation (Endostar-MB+cavitation). Ultrasonic cavitation was performed using a high-power custom built sonicator. Contrast-enhanced ultrasound imaging (CEUS) was used to measure tumor blood flow before and after ultrasonic cavitation. In vivo fluorescence imaging was performed to monitor changes in tumor volume. Immunohistochemistry was performed to assess CD31, VEGFR-2 and alpha-v beta-3 integrin expression within the tumor. Apoptosis of the tumor cells was determined by TUNEL assay, and ultrastructural changes within the tumor were examined by electron microcopy. Ultrasonic cavitation with Endostar-MB demonstrated a significantly greater inhibition of tumor blood flow on day 7 and tumor growth on day 16 compared with naked MB and control groups. The Endostar-MB treated mice showed significantly decreased expression VEGFR-2 and alpha-v beta-3 integrin, and increased apoptosis of tumor cells and degradation of the tumor ultrastructure. Our findings indicated that the anti-vascular and anti-tumor effects of ultrasonic cavitation could be potentiated by simultaneously delivering an anti-angiogenic drug in colon cancer.

  5. Ultrasonic measurement models for imaging with phased arrays

    NASA Astrophysics Data System (ADS)

    Schmerr, Lester W., Jr.; Engle, Brady J.; Sedov, Alexander; Li, Xiongbing

    2014-02-01

    Ultrasonic imaging measurement models (IMMs) are developed that generate images of flaws by inversion of ultrasonic measurement models. These IMMs are generalizations of the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM). A special case when the flaw is small is shown to generalize physical optics far field inverse scattering (POFFIS) images. The ultrasonic IMMs provide a rational basis for generating and understanding the ultrasonic images produced by delay-and-sum imaging methods.

  6. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  7. Separation of metal ions in nitrate solution by ultrasonic atomization.

    PubMed

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-15

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  8. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  9. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    NASA Astrophysics Data System (ADS)

    Brosey, W. D.

    1985-07-01

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  10. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    SciTech Connect

    Brosey, W.D.

    1985-07-16

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  11. 21 CFR 880.6150 - Ultrasonic cleaner for medical instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic cleaner for medical instruments. 880... Personal Use Miscellaneous Devices § 880.6150 Ultrasonic cleaner for medical instruments. (a) Identification. An ultrasonic cleaner for medical instruments is a device intended for cleaning...

  12. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles...

  13. 21 CFR 880.6150 - Ultrasonic cleaner for medical instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic cleaner for medical instruments. 880... Personal Use Miscellaneous Devices § 880.6150 Ultrasonic cleaner for medical instruments. (a) Identification. An ultrasonic cleaner for medical instruments is a device intended for cleaning...

  14. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1994-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Div. of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation; frequency vs. cleaning effectiveness; the two types of transducers; and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  15. Ultrasonic non invasive techniques for microbiological instrumentation

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  16. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  17. Folded Resonant Horns for Power Ultrasonic Applications

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Askins, Stephen; Gradziel, Michael; Bao, Xiaoqi; Chang, Zensheu; Dolgin, Benjamin; Bar-Cohen, Yoseph; Peterson, Tom

    2003-01-01

    Folded horns have been conceived as alternatives to straight horns used as resonators and strain amplifiers in power ultrasonic systems. Such systems are used for cleaning, welding, soldering, cutting, and drilling in a variety of industries. In addition, several previous NASA Tech Briefs articles have described instrumented drilling, coring, and burrowing machines that utilize combinations of sonic and ultrasonic vibrational actuation. The main advantage of a folded horn, relative to a straight horn of the same resonance frequency, is that the folded horn can be made shorter (that is, its greatest linear dimension measured from the outside can be made smaller). Alternatively, for a given length, the resonance frequency can be reduced. Hence, the folded-horn concept affords an additional degree of design freedom for reducing the length of an ultrasonic power system that includes a horn.

  18. Method of noncontacting ultrasonic process monitoring

    DOEpatents

    Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.

    1992-01-01

    A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.

  19. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Astrophysics Data System (ADS)

    Becker, Joann F.

    1995-03-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  20. Anechoic chamber qualification at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Jenny, Trevor; Anderson, Brian

    2010-10-01

    Qualifying an anechoic chamber for frequencies that extend into the ultrasonic range is necessary for research work involving airborne ultrasonic sound. For example, an anechoic chamber allows for measurements of the direct sound radiated by an object without reflections from walls. The ANSI S12.55/ISO 3745 standard which covers anechoic chamber qualification does not extend into the ultrasonic frequency range, nor have others discussed this frequency range in the literature. An increasing number of technologies are employing ultrasound; hence the need to develop facilities to conduct basic research studies on airborne ultrasound. This presentation will discuss the challenges associated with chamber qualification and present the results for qualification of a chamber at Brigham Young University. [This work has been funded by the Los Alamos National Laboratory

  1. Ultrasonic Welding of Wires and Cables

    NASA Astrophysics Data System (ADS)

    Heinz, Stefan; Wagner, Guntram; Eifler, Dietmar

    2012-03-01

    In the automobile industry, ultrasonic metal welding is an established method. At the Institute of Materials Science and Engineering (WKK) at the University of Kaiserslautern, Germany, systematic investigations of the weldability of Al-wires and flat flexible copper cables were carried out. In the case of Al-wires, joints with cross-sectional area of up to 80 mm2 and tensile shear load of about 3500 N were finally realized. Furthermore, methods to reduce unintentional adherence between the sonotrode coupling face and the Al-wires were developed. To realize FFC joints, ultrasonic spot welding systems and ultrasonic torsion welding systems were used. A central purpose of these investigations is the development of a system to enable welding through the insulation of the FFC without weakening the base material.

  2. Signal processor for processing ultrasonic receiver signals

    DOEpatents

    Fasching, George E.

    1980-01-01

    A signal processor is provided which uses an analog integrating circuit in conjunction with a set of digital counters controlled by a precision clock for sampling timing to provide an improved presentation of an ultrasonic transmitter/receiver signal. The signal is sampled relative to the transmitter trigger signal timing at precise times, the selected number of samples are integrated and the integrated samples are transferred and held for recording on a strip chart recorder or converted to digital form for storage. By integrating multiple samples taken at precisely the same time with respect to the trigger for the ultrasonic transmitter, random noise, which is contained in the ultrasonic receiver signal, is reduced relative to the desired useful signal.

  3. Novel Applications of Power Ultrasonic Spray

    NASA Astrophysics Data System (ADS)

    Quan, Ke-Ming

    Atomization is a process where a liquid is dispersed into droplets in a gas. Ultrasonic atomization was discovered in the 1920s (Loomis and Woods, 1927). Since then, atomization has seen diversified applications in devices such as drug nebulizers, room humidifiers, and air refreshers, as well as in industrial processes such as combustion, prilling, and web coating. In contrast to conventional liquid atomizers, ultrasound atomizers generally handle lower flow rates, and atomization of the liquid is achieved not by pressure, but by the vibration of ultrasonic waves (Morgan, 1993). This latter feature decouples the requirement of orifice geometry and pressure from the flow rate, allowing the flow to be controlled independently. Typically, ultrasonic atomizers excel in accurately processing low flow rates and slurry without clogging issues.

  4. Ultrasonically-assisted Polymer Molding: An Evaluation

    NASA Astrophysics Data System (ADS)

    Moles, Matthew; Roy, Anish; Silberschmidt, Vadim

    Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.

  5. Ultrasonic frequency selection for aqueous fine cleaning

    NASA Technical Reports Server (NTRS)

    Becker, Joann F.

    1995-01-01

    A study was conducted to evaluate ultrasonic cleaning systems for precision cleaning effectiveness for oxygen service hardware. This evaluation was specific for Rocketdyne Division of Rockwell Aerospace alloys and machining soils. Machining lubricants and hydraulic fluid were applied as soils to standardized complex test specimens designed to simulate typical hardware. The study consisted of tests which included 20, 25, 30, 40, 50, and 65 kHz ultrasonic cleaning systems. Two size categories of cleaning systems were evaluated, 3- to 10-gal laboratory size tanks and 35- to 320-gal industrial size tanks. The system properties of cavitation, frequency vs. cleaning effectiveness, the two types of transducers, and the power level of the system vs. size of the cleaning tank were investigated. The data obtained from this study was used to select the ultrasonic tanks for the aqueous fine clean facility installed at Rocketdyne.

  6. Laboratory ultrasonic generator. [characteristics of ultrasonic sound generator for experimental and industrial applications

    NASA Technical Reports Server (NTRS)

    Tudose, C.; Dobrescu, F.

    1974-01-01

    The characteristics of an ultrasonic generator with magnetostrictive amplifiers are described. The generator was designed to supply an output power of about 400 watts at a consumption of about 1 kilowatt. The generator produces sound waves in the frequency range of 18 to 30 KHz. The circuit design is described and examples of the construction are illustrated. The generator is used to study different industrial processes such as the effect of ultrasonic radiation of the emulsification of liquids, the dispersion of solids, and ultrasonic filtration.

  7. [Low frequency electro-stimulation and ultrasonic therapy (author's transl)].

    PubMed

    Bernau, A; Kruppa, G

    1981-02-01

    In a prospective study 1200 sequences of low frequency electrostimulation and ultrasonic therapy have been examined. The basics of the type of currents applied, the therapy scheme and the indication routine are presented. These parameters were kept constant in the course of the 2 years' study. For the treatment 8 different apparatuses were available. The actual current shapes of the generators were measured, the influence of constant-current and constant-voltage output circuits were tested and were discussed in relation to the electrode types.--Advantages and disadvantages of disposable-type, sponge-type, lead-type and vacuum-type electrodes are reported. Treatments were carried out with the current types DF and CP of the diadynamic currents alone, as combined therapy together with ultrasound, as mere ultrasound treatment, as ultrastimulation current, as iontophoresis and galvanic current. The results are compared with comparable examinations by other authors and they are discussed with respect to different influencing factors.

  8. Evaluation of Ultrasonic and Thermal Nondestructive Evaluation for the Characterization of Aging Degradation in Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.

    2010-01-01

    This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.

  9. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  10. Ultrasonic Ranging System With Increased Resolution

    NASA Technical Reports Server (NTRS)

    Meyer, William E.; Johnson, William G.

    1987-01-01

    Master-oscillator frequency increased. Ultrasonic range-measuring system with 0.1-in. resolution provides continuous digital display of four distance readings, each updated four times per second. Four rangefinder modules in system are modified versions of rangefinder used for automatic focusing in commercial series of cameras. Ultrasonic pulses emitted by system innocuous to both people and equipment. Provides economical solutions to such distance-measurement problems as posed by boats approaching docks, truck backing toward loading platform, runway-clearance readout for tail of airplane with high angle attack, or burglar alarm.

  11. Ultrasonic technique for characterizing skin burns

    DOEpatents

    Goans, Ronald E.; Cantrell, Jr., John H.; Meyers, F. Bradford; Stambaugh, Harry D.

    1978-01-01

    This invention, a method for ultrasonically determining the depth of a skin burn, is based on the finding that the acoustical impedance of burned tissue differs sufficiently from that of live tissue to permit ultrasonic detection of the interface between the burn and the underlying unburned tissue. The method is simple, rapid, and accurate. As compared with conventional practice, it provides the important advantage of permitting much earlier determination of whether a burn is of the first, second, or third degree. In the case of severe burns, the usual two - to three-week delay before surgery may be reduced to about 3 days or less.

  12. Computerized certification of digital ultrasonic instrumentation

    NASA Astrophysics Data System (ADS)

    Moyer, M. W.

    1987-09-01

    A computerized inspection system is being set up at the Oak Ridge Y-12 Plant to enable certification of the Krautkramer Branson ultrasonic instrumentation used extensively in Y-12 production operations. The system takes the data required to certify the linearity and frequency response of the receiver and to certify the correct operation of the pulsers, gates, and computer interface. A subset of the program will be able to verify correct instrumentation in the field by using the actual computer and instrumentation being used for production ultrasonic weld inspections. The system can reduce the certification time from approximately one week to less than an hour.

  13. Characterization methods for ultrasonic test systems

    SciTech Connect

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented.

  14. Ultrasonic Device Would Open Pipe Bombs

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael S.; Adams, Marc A.; Zwissler, James G.

    1991-01-01

    Piezoelectric ultrasonic transducer, energized by frequency generator and power supply, vibrates shell of pipe bomb while hardly disturbing explosive inner material. Frequency-control circuitry senses resonance in shell and holds generator at that frequency to induce fatigue cracking in threads of end cap. In addition to disarming bombs, ultrasonically induced fatigue may have other applications. In manufacturing, replaces some machining and cutting operations. In repair of equipment, cleanly and quickly disassembles corroded parts. In demolition of buildings used to dismember steel framework safely and controllably.

  15. Magnetic and ultrasonic investigations on magnetite nanofluids.

    PubMed

    Nabeel Rashin, M; Hemalatha, J

    2012-12-01

    Magnetite nanofluids of various concentrations have been prepared through co-precipitation method. The structural and magnetic properties of the magnetic nanofluids have been analyzed which respectively revealed their face centered cubic crystal structure and super paramagnetic behavior. Ultrasonic investigations have been made for the nanofluids at different temperatures and magnetic fields. Open- and close-packed water structure is considered to explain the temperature effects. The inter particle interactions of surface modified nanomagnetite particle and the cluster formation are realized through the variations in ultrasonic parameters.

  16. Droplets merging through wireless ultrasonic actuation.

    PubMed

    Nayak, Praveen Priyaranjan; Kar, Durga Prasanna; Bhuyan, Satyanarayan

    2016-01-01

    A new technique of droplets merging through wireless ultrasonic actuation has been proposed and experimentally investigated in this work. The proposed method is based on the principle of resonant inductive coupling and piezoelectric resonance. When a mechanical vibration is excited in a piezoelectric plate, the ultrasonic vibration transmitted to the droplets placed on its surface and induces merging. It has been observed that the merging rate of water droplets depends on the operating frequency, mechanical vibration of piezoelectric plate, separation distance between the droplets, and volume of droplets. The investigated technique of droplets merging through piezoelectric actuation is quite useful for microfluidics, chemical and biomedical engineering applications.

  17. Embedded spacecraft thermal control using ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Clements, Jared W.

    Research has been completed in order to rapidly manufacture spacecraft thermal control technologies embedded in spacecraft structural panels using ultrasonic consolidation. This rapid manufacturing process enables custom thermal control designs in the time frame necessary for responsive space. Successfully embedded components include temperature sensors, heaters, wire harnessing, pre-manufactured heat pipes, and custom integral heat pipes. High conductivity inserts and custom integral pulsating heat pipes were unsuccessfully attempted. This research shows the viability of rapid manufacturing of spacecraft structures with embedded thermal control using ultrasonic consolidation.

  18. AFS dynamics in a short-lived active region

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.; Battiato, V.; Contarino, L.; Romano, P.; Spadaro, D.; Vlahos, L.

    2005-11-01

    In the framework of the study on active region emergence, we report the results obtained from the analysis of the short-lived (7 days) active region NOAA 10407. The data used were acquired during an observational campaign carried out with the THEMIS telescope in IPM mode in July 2003, coordinated with other ground- and space-based instruments (INAF-OACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). We determined the morphological and magnetic evolution of NOAA 10407, as well as the velocity fields associated with its magnetic structures. Within the limits imposed by the spatial and temporal resolution of the images analyzed, the first evidence of the active region formation is initially observed in the transition region and lower corona, and later on (i.e. after about 7 h) in the inner layers, as found in a previous analysis concerning a long-lived, recurrent active region. The results also indicate that the AFS formed in the active region shows typical upward motion at the AFS's tops and downward motion at the footpoints. The velocity values relevant to the upward motions decrease over the evolution of the region, similarly to the case of the recurrent active region, while we notice an increasing trend in the downflow velocity during the early phases of the time interval analyzed by THEMIS. On the other hand, the AFS preceding legs show a higher downflow than the following ones, a result in contrast with that found in the long-lived active region. The chromospheric area overhanging the sunspot umbra shows an upward motion of ˜ 2 km s-1, while that above the pores shows a downward motion of ~4 km s-1.

  19. Studies on Laser Generated Ultrasonic Waves in Inconel Super Alloy

    SciTech Connect

    Pramila, T.; Shukla, Anita; Raghuram, V.

    2010-05-28

    This paper deals with the generation, characterization and analysis of ultrasonic waves generated in a thick stepped sample of inconel super alloy using Laser Based Ultrasonic Technique. Nd-YAG pulsed laser is used for ultrasonic generation while He-Ne laser is used for heterodyne detection. Ultrasonic signals are analyzed using Fourier and wavelet transforms. Here the identification and estimation of velocity of pressure waves is presented. The mechanism of pressure wave generation is discussed in brief. Laser ultrasonics studies of inconel are being reported for the first time.

  20. Consideration of Design Parameters of Ultrasonic Transducer for Fruit

    NASA Astrophysics Data System (ADS)

    Kim, K. B.; Kim, M. S.; Lee, S. D.; Choi, M. Y.

    2005-04-01

    This study was conducted to develop the ultrasonic transducers for non-destructive contact measurement of fruits. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the impedance between piezoelectric material and fruit, various materials were evaluated. And to control the bandwidth of ultrasonic wave of the transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the transducer was designed and fabricated considering curvature of fruit. Finally, the ultrasonic transducer having 100 kHz of central frequency were fabricated and tested.