Science.gov

Sample records for afterburn energy release

  1. Building an Efficient Model for Afterburn Energy Release

    SciTech Connect

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  2. Numerical models for afterburning of TNT detonation products in air

    NASA Astrophysics Data System (ADS)

    Donahue, L.; Zhang, F.; Ripley, R. C.

    2013-11-01

    Afterburning occurs when fuel-rich explosive detonation products react with oxygen in the surrounding atmosphere. This energy release can further contribute to the air blast, resulting in a more severe explosion hazard particularly in confined scenarios. The primary objective of this study was to investigate the influence of the products equation of state (EOS) on the prediction of the efficiency of trinitrotoluene (TNT) afterburning and the times of arrival of reverberating shock waves in a closed chamber. A new EOS is proposed, denoted the Afterburning (AB) EOS. This EOS employs the JWL EOS in the high pressure regime, transitioning to a Variable-Gamma (VG) EOS at lower pressures. Simulations of three TNT charges suspended in a explosion chamber were performed. When compared to numerical results using existing methods, it was determined that the Afterburning EOS delays the shock arrival times giving better agreement with the experimental measurements in the early to mid time. In the late time, the Afterburning EOS roughly halved the error between the experimental measurements and results obtained using existing methods. Use of the Afterburning EOS for products with the Variable-Gamma EOS for the surrounding air further significantly improved results, both in the transient solution and the quasi-static pressure. This final combination of EOS and mixture model is recommended for future studies involving afterburning explosives, particularly those in partial and full confinement.

  3. Simulating Afterburn with LLNL Hydrocodes

    SciTech Connect

    Daily, L D

    2004-06-11

    Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effort is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.

  4. Countercurrent flow afterburner

    DOEpatents

    Leggett, Ronald L.; Presse, Donald E.; Smith, Carl J.; Teter, Alton R.

    1976-01-01

    Afterburner apparatus for receiving from an incinerator products of combustion and distributing them through a domed distributor in counterflow manner throughout a housing, in opposition to a stream of combustible gas.

  5. Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner

    NASA Astrophysics Data System (ADS)

    Li, QingFeng; Wang, YongJia; Wang, XiaoBao; Shen, CaiWan

    2016-03-01

    A potential version of the UrQMD (UrQMD/M) transport model and a traditional coalescence model are combined to calculate the production of 3He fragments in central Pb+Pb collisions at SPS energies 20-80 GeV/nucleon. It is found that the Lorentz transformation in the afterburner influences visibly the 3He yield and should be considered in calculations. The rapidity distribution of 3He multiplicities (including the concave shape) can be described well with UrQMD/M when it stops during t cut=(100±25) fm/c and the coalescence afterburner with one parameter set of ( R 0, P 0)=(3.8 fm, 0.3 GeV/c) is taken into use afterwards.

  6. Thermodynamic Model of Afterburning in Explosions

    SciTech Connect

    Kuhl, A L; Howard, M; Fried, L

    2003-04-23

    Thermodynamic states encountered during afterburning of explosion products gases in air were analyzed with the Cheetah code. Results are displayed in the form of Le Chatelier diagrams: the locus of states of specific internal energy versus temperature, for six different condensed explosives charges. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f ( T ) suitable for specifying the thermodynamic properties required for gas-dynamic models of afterburning in explosions.

  7. Post-Detonation Energy Release from Tnt-Aluminum Explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Anderson, John; Yoshinaka, Akio

    2007-12-01

    TNT and TNT-aluminum composites were experimentally studied in an air-filled 26 m3 chamber for charge masses ranging from 1.1 to 4 kg. Large aluminum mass fractions (35 to 50%wt.) and particle sizes (36 μm) were combined with TNT in two configurations, whereby the aluminum particles were uniformly mixed in cast TNT or arranged into a shell surrounding a cast TNT cylinder. The results show that improved performance is achieved for the shell configuration versus the mixed version during the early afterburning phase (10-40 ms), while both approach the same quasi-static explosion overpressure (QSP) after a long duration. The QSP ratios with respect to TNT in nitrogen are in good agreement with equilibrium predictions. Thus, the large aluminum mass fraction improves spatial mixing of hot fuels with oxidizing gases in the detonation products and chamber air, resulting in more efficient afterburning energy release.

  8. Advanced techniques in laser-ion acceleration: Conversion efficiency, beam distribution and energy scaling in the Break-Out Afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Yin, Lin; Albright, Brian; Gautier, Donald; Hoerlein, Rainer; Johnson, Randall; Kiefer, Daniel; Letzring, Sam; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Habs, Dietrich; Fernandez, Juan; Hegelich, Manuel

    2011-10-01

    Recently, increasing laser intensities and contrast made acceleration mechanisms such as the radiation pressure acceleration or the Break-Out Afterburner (BOA) accessible. These mechanisms efficiently couple laser energy into all target ion species, making them a competitive alternative to conventional accelerators. We here present experimental data addressing conversion efficiency and ion distribution scaling for both carbon C6+ and protons within the BOA regime and the transit into the TNSA regime. Unique high resolution measurements of angularly resolved carbon C6+ and proton energy spectra for targets ranging from 30nm to 25microns - recorded with a novel ion wide angle spectrometer - are presented and used to derive thickness scaling estimates. While the measured conversion efficiency for C6+ reaches up to ~6%, peak energies of 1GeV and 120MeV have been measured for C6+ and protons, respectively.

  9. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  10. Post-Detonation Energy Release from TNT-Aluminum Explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Anderson, John; Yoshinaka, Akio

    2007-06-01

    Detonation and post-detonation energy release from TNT and TNT-aluminum composite have been experimentally studied in an air-filled chamber, 26 m^3 in volume and 3 m in diameter. While TNT has a high oxygen deficiency, experiments with 1.1 kg to 4 kg charges yield energy releases reaching only 86% of theoretical equilibrium values, possibly due to the non-uniform mixing between the detonation products and air. In order to improve mixing and further increase afterburning energy, large mass fractions of large aluminum particles are combined with TNT. The effect of particle distribution is also investigated in two composite configurations, whereby the aluminum particles are uniformly mixed in cast TNT or arranged in a shell surrounding a TNT cylinder. It is shown that the TNT-aluminum composite outperforms pure TNT, while improved performance is achieved for the shell configuration due to enhanced spatial mixing of hot fuels with oxidizing gases. Comparisons with the equilibrium theory and a liquid-based aluminized composite explosive (with an oxygen deficiency less than that of TNT) are conducted to further explore the mixing and afterburning mechanism.

  11. Turbulent Mixing and Afterburn in Post-Detonation Flow with Dense Particle Clouds

    NASA Astrophysics Data System (ADS)

    Menon, Suresh

    2015-06-01

    Reactive metal particles are used as additives in most explosives to enhance afterburn and augment the impact of the explosive. The afterburn is highly dependent on the particle dispersal and mixing in the post-detonation flow. The post-detonation flow is generally characterized by hydrodynamic instabilities emanating from the interaction of the blast waves with the detonation product gases and the ambient air. Further, influenced by the particles, the flow evolves and develops turbulent structures, which play vital role in determining mixing and combustion. Past studies in the field in open literature are reviewed along with some recent studies conducted using three dimensional numerical simulations of particle dispersal and combustion in the post-detonation flow. Spherical nitromethane charges enveloped by particle shells of varying thickness are considered along with dense loading effects. In dense flows, the particles block the flow of the gases and therefore, the role of the inter-particle interactions on particle dispersal cannot be ignored. Thus, both dense and dilute effects must be modeled simultaneously to simulate the post-detonation flow. A hybrid equation of state is employed to study the evolution of flow from detonation initiation till the late time mixing and afterburn. The particle dispersal pattern in each case is compared with the available experimental results. The burn rate and the energy release in each case is quantified and the effect of total mass of the particles and the particle size is analyzed in detail. Strengths and limitations of the various methods used for such studies as well as the uncertainties in the modeling strategies are also highlighted. Supported by Defense Threat Reduction Agency.

  12. Numerical study of combustion processes in afterburners

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoqing; Zhang, Xiaochun

    1986-01-01

    Mathematical models and numerical methods are presented for computer modeling of aeroengine afterburners. A computer code GEMCHIP is described briefly. The algorithms SIMPLER, for gas flow predictions, and DROPLET, for droplet flow calculations, are incorporated in this code. The block correction technique is adopted to facilitate convergence. The method of handling irregular shapes of combustors and flameholders is described. The predicted results for a low-bypass-ratio turbofan afterburner in the cases of gaseous combustion and multiphase spray combustion are provided and analyzed, and engineering guides for afterburner optimization are presented.

  13. Afterburner for a wood stove

    SciTech Connect

    Dorach, E.H.; Dorsch, H.

    1984-08-21

    An afterburner for a wood stove for use as a retrofit assembly comprises a rectangular housing having openings in the upper and lower surfaces provided with cylindrical collars for cooperation with the flue duct and with the opening in the top of the wood stove respectively. The openings are positioned at the rear of the housing so as to provide a forward section spaced from the openings. A catalytic combuster mounted in a cylindrical support is movable from a position directly above the opening in the bottom surface into the front section by a manually operable handle extending through the front face of the housing. A baffle mounted on the support and arranged at a shallow angle to the horizontal overlies the major part of the combuster so as to direct gases into the front section of the housing for heat exchange contact with the walls thereof.

  14. A method for aircraft afterburner combustion without flameholders

    NASA Astrophysics Data System (ADS)

    Birmaher, Shai

    2009-12-01

    State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact 'prime and trigger' (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. As the fuel travels through the turbine stages, it evaporates, mixes with the bulk flow, and undergoes some chemical reactions without any significant heat release, a process referred to as 'priming'. Downstream of the turbine stages, combustion could take place through autoignition. However, if fuel autoignition does not occur or if autoignition does not produce a combustion zone that is stable and highly efficient, then a low power pilot, or 'trigger', can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This 'partial oxidation' (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process. The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet

  15. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  16. Characterization of Second Harmonic Afterburner Radiation at the LCLS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2010-09-14

    During commissioning of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Laboratory it was shown that saturation lengths much shorter than the installed length of the undulator line can routinely be achieved. This frees undulator segments that can be used to provide enhanced spectral properties and at the same time, test the concept of FEL Afterburners. In December 2009 a project was initiated to convert undulator segments at the down-beam end of the undulator line into Second Harmonic Afterburners (SHAB) to enhance LCLS radiation levels in the 10-20 keV energy range. This is being accomplished by replacement of gap-shims increasing the fixed gaps from 6.8 mm to 9.9 mm, which reduces their K values from 3.50 to 2.25 and makes the segments resonant at the second harmonic of the upstream unmodified undulators. This paper reports experimental results of the commissioning of the SHAB extension to LCLS.

  17. Measurement of Afterburning Effect of Underoxidized Explosives by Underwater Explosion Method

    NASA Astrophysics Data System (ADS)

    Cao, Wei; He, Zhongqi; Chen, Wanghua

    2015-04-01

    The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.

  18. MUSIC with the UrQMD Afterburner

    NASA Astrophysics Data System (ADS)

    Ryu, Sangwook; Jeon, Sangyong; Gale, Charles; Schenke, Björn; Young, Clint

    2013-05-01

    As RHIC is entering the precision measurement era and the LHC is producing a copious amount of new data, the role of 3+1D event-by-event viscous hydrodynamics is more important than ever to understand the bulk data as well as providing the background for hard probes. For more meaningful comparison with the experimental data, it is also important that hydrodynamics be coupled to the hadronic afterburner. In this proceeding we report on preliminary results of coupling MUSIC with UrQMD.

  19. Nuclear energy release from fragmentation

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Souza, S. R.; Tsang, M. B.; Zhang, Feng-Shou

    2016-08-01

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting 230,232Th and 235,238U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for 230,232Th and 235,238U are around 0.7-0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  20. Summary of NACA Research on Afterburners for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Gabriel, David S; Fleming, William A

    1956-01-01

    NACA research on afterburners for turbojet engines during the past 5 years is summarized. Although most of this work has been directed toward the development of specific afterburners for various engines rather than toward the accumulation of systematic data, it has, nevertheless, provided a large fund of experimental data and experience in the field. The references cited present over 1000 afterburner configurations and some 3500 hours of operation. In the treatment of the material of this summary, the principal effort has been to convey to the reader the "know-how" acquired by research engineers in the course of the work rather than to formulate a set of design rules.

  1. After-burning of nitropenta products in a calorimeter

    SciTech Connect

    Kuhl, A L; Neuwald, P; Reichenbach, H

    1999-06-18

    Explored here are the ''after-burning'' effects for explosions of Nitropenta (NP) charges in air. Detonation of the charge transforms the solid explosive ( C HNO 5 8412 , also known as PETN) into gaseous products that are rich in carbon and CO, which subsequently act as a fuel. When these hot ({approximately}3500 K) gases mix with air, rapid combustion (after-burning) takes place. The dynamics of this exothermic process was studied in ''pressure calorimeter'' experiments performed at EMI.

  2. Design considerations for effective control of an afterburner sub-system in a combined heat and power (CHP) fuel cell system (FCS)

    NASA Astrophysics Data System (ADS)

    Colella, Whitney G.

    This article investigates various control strategies for a combined heat and power (CHP) fuel cell system (FCS), with a specific focus on the afterburner sub-system. The afterburner sub-system recovers heat and by-products from the excess fuel and oxidant not consumed within the fuel cell. The overall performance of a CHP FCS depends crucially on the control of the afterburner sub-system because the control of this sub-system (1) determines the extent of thermal energy recovered from the system, between 35 and 55% of fuel energy input; (2) establishes the rate limiting step in the control of the overall CHP FCS because the rate at which the afterburner can combust excess fuel and oxidant safely and raise steam affects the rate at which the fuel cell's electrical power output can change; and (3) impacts upstream mass and energy flows strongly, such as the system's overall water balance and also the raising of steam for the upstream fuel processor and cathode humidification, as this is the point in the system where the CHP FCS becomes closed loop for heat and mass flows. Using an Aspen Plus ® chemical engineering model of the CHP FCS, this article (1) identifies potential challenges in operating the afterburner sub-system, (2) discusses various options for ameliorating those challenges, and (3) recommends viable solutions. The two challenges it discusses in detail are (1) the danger of overheating the afterburner, and (2) the danger of overheating a downstream steam generator. Regarding the first challenge, in the low anode hydrogen utilization (AHU) range (66-85%) specified by some fuel cell manufacturers, the afterburner is in danger of overheating beyond its maximum rated operating point. Regarding the second challenge, also at low anode hydrogen utilizations, the steam generator is in danger of overheating beyond its maximum rated operating point. This article demonstrates that one solution for overcoming these challenges is to dilute the afterburner's stream

  3. Effect of Operating Conditions and Design on Afterburner Performance

    NASA Technical Reports Server (NTRS)

    Fleming, W. A.; Gabriel, D. S.; Lundin, B. T.

    1956-01-01

    Afterburners for turbojet engines have, within the past decade, found increasing application in service aircraft. Practically all engines manufactured today are equipped with some form of afterburner, and its use has increased from what was originally a short-period thrust-augmentation application to an essential feature of the turbojet propulsion system for flight at supersonic speeds. The design of these afterburners has been based on extensive research and development effort in expanded laboratory facilities by both the NACA and the American engine industry. Most of the work of the engine industry, however, has either not been published or is not generally available owing to its proprietary nature. Consequently, the main bulk of research information available for summary and discussion is of NACA origin. However, because industrial afterburner development has closely followed NACA research, the omission is more one of technical detail than method or concept. One principal difficulty encountered in summarizing the work in this field is that sufficient knowledge does not yet exist to rationally or directly integrate the available background of basic combustion principles into combustor design. A further difficulty is that most of the experimental investigations that have been conducted were directed chiefly toward the development of specific afterburners for various engines rather than to the accumulation of systematic data. This work has, nonetheless, provided not only substantial improvements in the performance of afterburners but also a large fund of experimental data and an extensive background of experience in the field. Consequently, it is the purpose of the present chapter to summarize the many, and frequently unrelated, experimental investigations that have been conducted rather than to formulate a set of design rules. In the treatment of this material an effort has been made, however, to convey to the reader the "know how" acquired by research engineers

  4. Relativistic Buneman instability in the laser breakout afterburner

    SciTech Connect

    Albright, B. J.; Yin, L.; Bowers, Kevin J.; Hegelich, B. M.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-09-15

    A new laser-driven ion acceleration mechanism has been identified in particle-in-cell simulations of high-contrast-ratio ultraintense lasers with very thin (10 s of nm) solid targets [Yin et al., Laser and Particle Beams 24, 291 (2006); Yin et al., Phys. Plasmas 13, 072701 (2007)]. After a brief period of target normal sheath acceleration (TNSA), 'enhanced' TNSA follows. In this stage, the laser rapidly heats all the electrons in the target as the target thickness becomes comparable to the skin depth and enhanced acceleration of the ions results. Then, concomitant with the laser penetrating the target, a large accelerating longitudinal electric field is generated that co-moves with the ions. This last phase has been termed the laser 'breakout afterburner' (BOA). Earlier work suggested that the BOA was associated with the Buneman instability that efficiently converts energy from the drift of the electrons into the ions. In this Brief Communication, this conjecture is found to be consistent with particle-in-cell simulation data and the analytic dispersion relation for the relativistic Buneman instability.

  5. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Astrophysics Data System (ADS)

    Leone, D. M.; Turns, S. R.

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  6. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Technical Reports Server (NTRS)

    Leone, D. M.; Turns, S. R.

    1994-01-01

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  7. Quantification of Energy Release in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2003-01-01

    Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 deg ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.

  8. Quantification of Energy Release in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2003-01-01

    Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.

  9. An Afterburner at the ILC: The Collider Viewpoint

    SciTech Connect

    Raubenheimer, Tor O.

    2004-12-07

    The concept of a high-gradient plasma wakefield accelerator is considered as an upgrade path for the International Linear Collider, a future linear collider. Basic parameters are presented based on those developed for the SLC 'Afterburner'. Basic layout considerations are described and the primary concerns related to the collider operation are discussed.

  10. An Afterburner at the ILC: The Collider Viewpoint

    SciTech Connect

    Raubenheimer, T

    2004-09-01

    The concept of a high-gradient plasma wakefield accelerator is considered as an upgrade path for the International Linear Collider, a future linear collider. Basic parameters are presented based on those developed for the SLC ''Afterburner.'' Basic layout considerations are described and the primary concerns related to the collider operation are discussed.

  11. Seismic energy release of the moon

    NASA Technical Reports Server (NTRS)

    Goins, N. R.; Dainty, A. M.; Toksoz, M. N.

    1981-01-01

    Lunar seismicity is investigated by calculating various source parameters for a number of shallow and deep-focus moonquakes. The seismic moment, seismic energy release, annual seismic energy release, stress drop, and body-wave magnitude are determined for the largest shallow moonquakes and for large deep-focus events. It is found that the shallow events dominate the lunar seismic energy release, that tidal dissipation may account for the energy release by the deep-focus events, and that the stress drops for the deep-focus events are comparable to or smaller than the calculated tidal stresses. A comparison of the results with terrestrial data indicates that the seismic characteristics of a planet are controlled more by tectonic style and state than by the relative magnitude of the driving forces.

  12. Altitude Starting Characteristics of an Afterburner with Autoignition and Hot-streak Ignition

    NASA Technical Reports Server (NTRS)

    Renas, P E; Jansen, E T; Harvey, R W , Sr

    1953-01-01

    An investigation was conducted in an altitude test chamber at the NACA Lewis Laboratory to determine the altitude starting characteristics of an afterburner with autoignition and with hot-streak ignition. Transient afterburner ignition data were obtained over a range of altitudes from 30,000 to 50,000 feet at a flight Mach number of 0.60. Afterburner ignition with a torch igniter located axially at approximately the midpoint of the combustion chamber was possible over the entire range, but ignition ignition with a torch igniter located in the transition section 1 5/8 inches upstream of the turbine stators proved unsatisfactory at an altitude of 50,000 feet due to the inability to obtain flame through the turbine. Increasing the afterburner-inlet total pressure at a constant afterburner fuel-air ratio decreased the afterburner ignition time. Hot-streak ignition was possible within 2 seconds after the time required to obtain the preset, normal afterburner fuel pressure, whereas autoignition required 4 to 7 seconds for the range of altitudes investigated. Following the ignition there was a period of oscillatory operation existing in the engine-afterburner before steady-state operation was attained. The time required for steady-state stable operation decreased as afterburner inlet total pressure increased. The duration of oscillations also decreased with hot-streak ignition because the fuel-air mixture was ignited before a large volume of combustible mixture was accumulated in the afterburner.

  13. Thermo-Gas-Dynamic Model of Afterburning in Explosions

    SciTech Connect

    Kuhl, A L; Ferguson, R E; Bell, J B

    2003-07-27

    A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.

  14. Material Release at High-Energy Densities

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Betti, R.; Meyerhofer, D. D.; Shvydky, A.; Solodov, A. A.; Jaanimagi, P. A.; Froula, D. H.

    2013-10-01

    High-energy-density matter releases after an inertial time, creating nonideal plasmas with unique thermodynamic properties. Picosecond-resolution x-ray radiography and flash (100-ps) x-ray penumbral imaging were used to measure the release of metal targets heated by a powerful flux of energetic electrons or protons generated by the OMEGA EP Laser System. The data show target decompression over a nanosecond period after the initial target-heating phase. The measured plasma density profiles and target-release speeds were used to infer the pressure-density release isentropes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Stored energy release behaviour of disordered carbon

    NASA Astrophysics Data System (ADS)

    Dasgupta, K.; Barat, P.; Sarkar, A.; Mukherjee, P.; Sathiyamoorthy, D.

    2007-06-01

    The use of graphite as a moderator in a low temperature thermal nuclear reactor is restricted due to accumulation of energy caused by displacement of atoms by neutrons and high energetic particles. Thermal transients may lead to a release of stored energy that may raise the temperature of the fuel clad above the design limit. Disordered carbon is thought to be an alternative choice for this purpose. Two types of disordered carbon composites, namely, CB (made up of 15 wt. % carbon black dispersed in carbonized phenolic resin) and PAN (made up of 20 vol. % chopped polyacrylonitrile carbon fibre dispersed in carbonized phenolic resin matrix) have been irradiated with 145 MeV Ne6+ ions at three fluence levels of 1.0×1013, 5.0×1013 and 1.5×1014 Ne6+/cm2, respectively. The XRD patterns revealed that both the samples remained disordered even after irradiation. The maximum release of stored energy for CB was 212 J/g and that of PAN was 906 J/g. For CB, the release of stored energy was a first order reaction with activation energy of 2.79 eV and a frequency factor of 3.72×1028 per second. 13% of the defects got annealed by heating up to 700 °C. PAN showed a third-order release rate with activation energy of 1.69 eV and a frequency factor of 1.77×1014 per second. 56% of the total defects got annealed by heating it up to 700 °C. CB seems to be the better choice than PAN as it showed less energy release with a slower rate.

  16. Strain-Energy-Release Rates In Delamination

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1988-01-01

    Q3DG computer program developed to perform quasi-three-dimensional stress analysis of composite laminates containing delaminations. Calculates strain-energy-release rates for long, rectangular composite laminates containing delaminations and subjected to any combination of mechanical, thermal, and hygroscopic loading. Written in FORTRAN V.

  17. Break-out afterburner ion acceleration in the longer laser pulse length regime

    SciTech Connect

    Yin, L.; Albright, B. J.; Shah, R. C.; Palaniyappan, S.; Fernndez, J. C.; Jung, D.; Henig, A.; Bowers, K. J.; Hegelich, B. M.

    2011-06-15

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  18. Break-out afterburner ion acceleration in the longer laser pulse length regime

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Jung, D.; Shah, R. C.; Palaniyappan, S.; Bowers, K. J.; Henig, A.; Fern´ndez, J. C.; Hegelich, B. M.

    2011-06-01

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  19. Noise of high-performance aircraft at afterburner

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.

    2015-09-01

    The noise from a high-performance aircraft at afterburner is investigated. The main objective is to determine whether the dominant noise components are the same or similar to those of a hot supersonic laboratory jet. For this purpose, measured noise data from F-22A Raptors are analyzed. It is found, based on both spectral and directivity data, that there is a new dominant noise component in addition to the usual turbulent mixing noise. The characteristic features of the new noise component are identified. Measured data indicates that the new noise component is observed only when the rate of fuel burn of the engine is increased significantly above that of the intermediate power setting. This suggests that the new noise component is combustion related. The possibility that it is indirect combustion noise generated by the passage of hot spots from the afterburner through the nozzle of the jet is investigated. Because flow and temperature data were not measured in the F-22A engine tests, to provide support to the proposition, numerical simulations of indirect combustion noise generation due to the passing of an entropy wave pulse (a hot spot) through a military-style nozzle are carried out. Sound generation is observed at the front and at the back of the pulse. This creates a fast and a slow acoustic wave as the sound radiates out from the nozzle exit. Quantitative estimates of the principal directions of acoustic radiation due to the emitted fast and slow acoustic waves are made. It is found that there are reasonably good agreements with measured data. To estimate the intensity level (IL) of the radiated indirect combustion noise, a time-periodic entropy wave train of 15 percent temperature fluctuation is used as a model of the hot spots coming out of the afterburner. This yields an IL of 175.5 dB. This is a fairly intense noise source, well capable of causing the radiation of the new jet noise component.

  20. Exhaust emission survey of an F100 afterburning turbofan engine at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E.; Cullom, R. R.

    1981-01-01

    Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.

  1. Study on numerical simulation of flowfield in afterburner for ducted rocket

    NASA Astrophysics Data System (ADS)

    Ding, Xiaoyu; Jin, Xing; Zhang, Peng

    2015-03-01

    Ducted rocket has been widely concerned on account of its high specific impulse, combustion stability and convenient maintenance which mixes the exhaust from a fuel gas generator with air from air inlet, and burns to produce thrust. It is necessary to establish two-dimensional or three-dimensional numerical models based on computational fluid dynamics to study on the flowfield in afterburner which is the key of ducted rocket because of expensive experiments, which is aimed at providing theoretical foundation for ducted rocket's development. In this paper, the gas-phase turbulent combustion process in afterburner with dual inlet three-dimensional mode was simulated numerically by solving Favre-averaged compressible turbulent N-S equations, the renormalization group (RNG) k-ɛ turbulence model was applied to simulate the turbulent flow, and Eddy-Dissipation Model (EDM) was applied to simulate gas combustion. Through simulation, situation analysis of flowfield in afterburner was done, and the influence of mixing combustion on afterburner was studied by taking air inlet angles and air-fuel ratio into account respectively. The results indicate that the distribution of temperature in afterburner is nonuniform, the backflow and axial swirl produced by gas mixing have an important influence on afterburner combustion. As air inlet angle is increased, the intensity of gas mixing is enhanced which is beneficial for afterburner combustion. That increasing air-fuel ratio is able to strength contact of oxygen with fuel gas, so that more fuel gas is consumed in the same location which is more beneficial for afterburner combustion.

  2. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets

    SciTech Connect

    Yin, L.; Albright, B. J.; Hegelich, B. M.; Bowers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-05-15

    A new laser-driven ion acceleration mechanism using ultrathin targets has been identified from particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the ''laser breakout afterburner'' (BOA) when the laser penetrates to the rear of the target where a localized longitudinal electric field is generated with the location of the peak field co-moving with the ions. During this process, a relativistic electron beam is produced by the ponderomotive drive of the laser. This beam is unstable to a relativistic Buneman instability, which rapidly converts the electron energy into ion energy. This mechanism accelerates ions to much higher energies using laser intensities comparable to earlier TNSA experiments. At a laser intensity of 10{sup 21} W/cm{sup 2}, the carbon ions accelerate as a quasimonoenergetic bunch to 100 s of MeV in the early stages of the BOA with conversion efficiency of order a few percent. Both are an order of magnitude higher than those realized from TNSA in recent experiments [Hegelich et al., Nature 441, 439 (2006)]. The laser-plasma interaction then evolves to produce a quasithermal energy distribution with maximum energy of {approx}2 GeV.

  3. Exhaust emission calibration of two J-58 afterburning turbojet engines at simulated high-altitude, supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  4. Relativistic transparency and non-axisymmetry of laser-accelerated ion beams from the Break-Out Afterburner

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Bowers, Kevin J.; Huang, Chengkun; Jung, D.; Fernández, J. C.; Hegelich, B. M.

    2010-11-01

    In the Break-Out Afterburner (BOA) ion acceleration mechanism [1], an ultraintense, ultrahigh contrast laser interacts with a nano-scale, solid-density target, which expands as the electrons under the laser spot heat to relativistic temperatures. When the electron density drops below the relativistic critical density, the target turns transparent and a period of enhanced ion acceleration, called the Break Out Afterburner, ensues. A large (tens of TeV), longitudinal electric field forms that co-moves with the target ions. A defining features of the BOA, as seen in VPIC kinetic plasma simulations and observed in experiments at the LANL Trident laser facility, is that the ion beams form as a pair of lobes with density and energy possessing maxima in the direction orthogonal to the laser polarization. This paper will focus on analytic theory explaining how these lobes form as a consequence of subtle effects of the laser ponderomotive force. [1] Yin et al. Laser and Part. Beams 24, 2, 291 (2006).

  5. Radio Observations of Explosive Energy Releases on the Sun

    NASA Technical Reports Server (NTRS)

    Kundu, Mukul R.; White, S. M.

    2003-01-01

    This chapter is devoted to a discussion of the radio observations of explosive energy releases (normal flares and small-scale energy releases) on the Sun. Radio imaging observations of solar flares and coronal transients and the relationship of radio phenomena with those observed in hard and soft X-rays and underlying physics are discussed.

  6. Energy Information Administration new releases. Volume 1

    SciTech Connect

    1997-04-01

    This publication of the National Energy Information Center contains news items and information sources related primarily to electricity generation. News items reported on in this issue include utility compliance costs for the Clean Air Act, 1995 profits for major energy companies, and competition issues in the electric power and natural gas industries. A summary report on crude oil prices is also presented. Other information provided includes a listing of 1996 publications from the center, electronic information services, and energy data information contacts.

  7. Highlights of the study of energy release in flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Batchelor, D. A.

    1987-01-01

    From February 26 to March 1, 1979, 32 solar flare investigators attended a workshop at Cambridge, MA to define objectives and devise a scientific program for the study of energy release in flares (SERF) during the coming solar maximum. Herein, some major results of the ensuing five-year effort to observe and understand the flare energy release process and its effects (energetic particle production, coronal and chromospheric heating, electromagnetic radiations, and mass motions and ejections) are reviewed. The central issue - what processes store and release the energy liberated in flares - remains unresolved except in the most general terms (e.g., it is generally agreed that the energy is stored in sheared or stressed magnetic fields and released by field annihilation during some MHD instability). Resolving that issue is still one of the most important goals in solar physics, but the advances during the SERF program have brought it closer.

  8. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...

  9. Altitude-Test-Chamber Investigation of Mcdonnell Afterburner on J34 Engine

    NASA Technical Reports Server (NTRS)

    Reller, John O.; Dowman, Harry W.

    1949-01-01

    An altitude-test-chamber investigation was conducted to determine the operational and performance characteristics of a McDonnell afterburner with a fixed-area exhaust nozzle on a J34 engine. At rated engine speed, the altitude limit, as determined by combustion blow-out, occurred as a band of unstable operation of about 6000-foot altitude in width with minimum altitude limits from 31,000 feet at a simulated flight Mach number of 0.40 to about 45,500 feet at a simulated flight Mach number of 1.00. Considerable difficulty was experienced in attempting to establish or maintain balanced-cycle engine operation at altitudes above 36,000 feet. The fuel-air ratio for balanced-cycle operation and lean blowout of the afterburner, the augmented-thrust ratio, the total specific fuel consumption, and the afterburner combustion efficiency for balanced-cycle operation are summarized in a table. Satisfactory afterburner ignition was obtained over a range of flight Mach Numbers from 0.32 to 0.60 at altitudes from 10,000 to 30,000 and engine speeds from 10,000 to 12,500 rpm.

  10. Elastic energy release in great earthquakes and eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2014-05-01

    The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed) elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy) associated with magma chamber rupture and contraction (shrinkage) during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1) the strain energy stored in the volcano/fault zone before rupture, and (2) the external applied load (force, pressure, stress, displacement) on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU) during an eruption is directly proportional to the excess pressure (pe) in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc) of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3), the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago) and largest single (effusive) Colombia River basalt lava flows (15-16 million years ago), both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  11. Regional analysis of earthquake occurrence and seismic energy release

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1980-01-01

    The historic temporal variation in earthquake occurrence and seismic energy release on a regional basis throughtout the world were studied. The regionalization scheme employed divided the world into large areas based either on seismic and tectonic considerations (Flinn-Engdahl Scheme) or geographic (longitude and latitude) criteria. The data set is the wide earthquake catalog of the National Geophysical Solar-Terrestrial Data Center. An apparent relationship exists between the maximum energy released in a limited time within a seismic region and the average or background energy per year averaged over a long time period. In terms of average or peak energy release, the most seismic regions of the world during the 50 to 81 year period ending in 1977 were Japanese, Andean South American, and the Alaska-Aleutian Arc regions. The year to year fluctuations in regional seismic energy release are greater, by orders of magnitude, than the corresponding variations in the world-wide seismic energy release. The b values of seismic regions range from 0.7 to 1.4 where earthquake magnitude is in the range 6.0 to 7.5.

  12. Is energy storage and release part of the substorm process?

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.

    1981-01-01

    Models for magnetospheric substorms were considered. A modified model which includes the growth phase, a time interval prior to the onset of the expansion phase, during which energy was transferred from a solar wind to the magnetosphere and stored for subsequent release, is discussed. Evidence for energy storage in the tail prior to substorm expansion for both isolated and moderate substorm activity is reviewed.

  13. Energy Information Administration New Releases, July--August 1990

    SciTech Connect

    Jacobus, P.; Springer, I.

    1990-09-01

    New Releases'' is Energy Information Administration's news letter, which reports its activities, publications, and machine-readable data files and modeling programs. For each publication or report, an abstract, subscription price, availability, and other bibliographical information are included. It covers crude oil, natural gas, and natural gas liquids reserves, coal, electricity, nuclear fuel, renewable energy and conservation, and petroleum. Order forms are also provided.

  14. Observational Evidence for Small Scale Distributed Energy Release and Acceleration

    NASA Astrophysics Data System (ADS)

    Vilmer, Nicole

    Particle acceleration in solar flares is a challenging issue. Not only, is it necessary to convert a large fraction of the free magnetic energy to supra-thermal particles on relatively short time scales, but it is also required to produce in some flares ultra-relativistic particles on timescales of a few tens of seconds. Several approaches have been considered in the solar physics literature for acceleration models: either the acceleration takes place in large scale features (shocks or current sheets) or it occurs in small scale distributed energy release sites. I shall review here some of the observations which support the scenario of spatially distributed energy release and acceleration sites: existence of narrow-band millisecond bursts in the radio range and spatial distributions of these emissions, distribution of time scales of energy release, statistical properties of flares and HXR pulses, waiting time distributions in flares,. . .

  15. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  16. Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner

    NASA Astrophysics Data System (ADS)

    Li, QingFeng; Wang, YongJia; Wang, XiaoBao; Shen, CaiWan

    2016-02-01

    Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the UrQMD in which mean-field potentials for both pre-formed hadrons and confined baryons are considered, with the help of a traditional coalescence afterburner in which one parameter set for both relative distance R 0 and relative momentum P 0, (3.8 fm, 0.3 GeV/ c), is used. Because of the large cancellation between the expansion in R 0 and the shrinkage in P 0 through the Lorentz transformation, the relativistic effect in clusters has little effect on the rapidity distribution of free (net) protons. Using a Woods-Saxon-like function instead of a pure logarithmic function as seen by FOPI collaboration at SIS energies, one can fit well both the data at SIS energies and the UrQMD calculation results at AGS and SPS energies. Further, it is found that for central Au+Au or Pb+Pb collisions at top SIS, SPS and RHIC energies, the proton fractions in clusters are about 33%, 10%, and 0.7%, respectively.

  17. Strain energy release rate distributions for double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A 24-ply composite double cantilever-beam specimen under mode I (opening) loading has been analyzed by a 3D FEM code that calculated along a straight delamination starter for several different specimen materials. An isotropic specimen was found to have a strain-energy release rate distribution which varied along its delamination front due to the boundary-layer effect and another effect associated with the anticlastic curvature of the bent specimen arms. A 0-deg graphite-reinforced epoxy specimen had a nearly-uniform strain-energy release rate distribution which dropped only near the edge, due to the boundary-layer effect, and a +/- 45-deg graphite/epoxy specimen exhibited a pronounced strain-energy release rate variation across the specimen width.

  18. Fragmentation of water by ion impact: Kinetic energy release spectra

    SciTech Connect

    Rajput, Jyoti; Safvan, C. P.

    2011-11-15

    The fragmentation of isolated water molecules on collision with 450-keV Ar{sup 9+} has been studied using time-of-flight mass spectrometry employing multihit detection. The kinetic energy release spectrum for the dissociation of [H{sub 2}O]{sup 2+ White-Star} into (H{sup White-Star },H{sup +},O{sup +}) fragments has been measured where H{sup White-Star} is a neutral Rydberg hydrogen atom. Ab initio calculations are carried out for the lowest states of [H{sub 2}O]{sup q+} with q=2 and 3 to help interpret the kinetic energy release spectra.

  19. Effects of entrained water and strong turbulence on afterburning within solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Gomberg, R. I.; Wilmoth, R. G.

    1978-01-01

    During the first few seconds of the space shuttle trajectory, the solid rocket boosters will be in the proximity of the launch pad. Because of the launch pad structures and the surface of the earth, the turbulent mixing experienced by the exhaust gases will be greatly increased over that for the free flight situation. In addition, a system will be present, designed to protect the lifting vehicle from launch structure vibrations, which will inject quantities of liquid water into the hot plume. The effects of these two phenomena on the temperatures, chemical composition, and flow field present in the afterburning solid rocket motor exhaust plumes of the space shuttle were studied. Results are included from both a computational model of the afterburning and supporting measurements from Titan 3 exhaust plumes taken at Kennedy Space Center with infrared scanned radiometers.

  20. Method for controlling temperatures in the afterburner and combustion hearths of a multiple hearth furnace

    SciTech Connect

    Lewis, F.M.

    1983-07-05

    The present invention relates to a method for efficiently incinerating waste material, particularly dewatered sludge, in a multiple hearth furnace by controlling the temperature of the individual hearths of the furnace within certain prescribed limits by modulating the amount of combustion air, and controlling the temperature of the afterburner or combustion hearths to within certain prescribed limits by splitting the feed sludge between the first two upper waste material handling hearths.

  1. Integrated pneumatic transporter-incinerator-afterburner subsystem development. [for spacecraft waste disposal

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1974-01-01

    The design and fabrication of a prototype automatic transport system to move wastes to an incinerator onboard a spacecraft are described. The commode and debris collector, subsystems to treat noncondensible gases, oxygen supply to incinerator and afterburner, and removal and ash collection from the incinerator are considered, as well as a zero gravity condenser. In-depth performance testing of a totally integrated incineration system and autoclaving as a waste treatment method are included.

  2. Energy Information Administration (EIA) new releases, January--February 1994

    SciTech Connect

    1994-03-01

    This report is the Jan-Feb 1994 issue of the Energy Information Administration (EIA) New Releases publication. Highlighted articles include: efficiency gains slow growth in U.S. energy demand, dependency on oil imports continues to climb; new EIA report details status of U.S. coal industry; EIA assesses residential vehicle fuel consumption in the U.S.; EIA plans new survey on alternative-fuel vehicles.

  3. Fracture patterns and the energy release rate of phosphorene.

    PubMed

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-03-14

    Phosphorene, also known as monolayer black phosphorus, has been enjoying popularity in electronic devices due to its superior electrical properties. However, it's relatively low Young's modulus, low fracture strength and susceptibility to structural failure have limited its application in mechanical devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is necessary to explore the fracture patterns and energy release rate of phosphorene. In this study, molecular dynamics simulations are performed to investigate phosphorene's fracture mechanism. The results indicate that fracture under uniaxial tension along the armchair direction is attributed to a break in the interlayer bond angles, while failure in the zigzag direction is triggered by the break in both intra-layer angles and bonds. Furthermore, we developed a modified Griffith criterion to analyze the energy release rate of phosphorene and its dependence on the strain rates and orientations of cracks. Simulation results indicate that phosphorene's energy release rate remains almost unchanged in the armchair direction while it fluctuates intensively in the zigzag direction. Additionally, the strain rate was found to play a negligible role in the energy release rate. The geometrical factor α in the Griffith's criterion is almost constant when the crack orientation is smaller than 45 degree, regardless of the crack orientation and loading direction. Overall, these findings provide helpful insights into the mechanical properties and failure behavior of phosphorene.

  4. Magnetic energy release and topology in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Janvier, Miho

    2016-07-01

    The energy released in a wide range of atmospheric events in the Sun is contained in current-carrying magnetic fields that have emerged after traversing the convection zone. Once the magnetic flux reaches the solar atmosphere, it may be further stressed via motions at the photosphere. Magnetic field reconnection is thought to be the mechanism through which the stored magnetic energy is transformed into kinetic energy of accelerated particles, mass flows, and radiative energy along the whole electromagnetic spectrum. Though this mechanism is efficient only at very small spatial scales, it implies a large-scale restructuring of the magnetic field inferred from the analysis of observations, models of the coronal magnetic field and numerical simulations, combined with the computation of the magnetic field topology. The consequences of energy release include phenomena that range from nano-flares and the slow solar wind to powerful flares that may be accompanied by the ejection of large amounts of plasma into the interplanetary medium. We will discuss how the computation and analysis of the magnetic field topology, applied to a wide variety of observed and modeled magnetic configurations, can be used to identify the energy release locations and their physical characteristics.

  5. Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC

    SciTech Connect

    Zhou, M.; Clayton, C.E.; Decyk, V.K.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Tsung, F.S.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; Decker, F.-J.; Iverson, R.; O'Connel, C.; Walz, D.; /SLAC

    2006-01-25

    For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2],[3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.

  6. Measurements and predictions of flyover and static noise of a TF30 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Lasagna, P. L.; Oas, S. C.

    1978-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. A survey was made to measure the exhaust temperature and velocity profiles for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise. Power settings that produced exhausts with inverted velocity profiles appeared to be slightly less noisy than power settings of equal thrust that produced uniform exhaust velocity profiles both in flight and in static testing.

  7. Annual Energy Outlook 2016 Early Release: Summary of Two Cases

    EIA Publications

    2016-01-01

    The U.S. Energy Information Administration provides a long-term outlook for energy supply, demand, and prices in its Annual Energy Outlook (AEO). This outlook is centered on the Reference case, which is not a prediction of what will happen, but rather a modeled projection of what might happen given certain assumptions and methodologies. Today, EIA released an annotated summary of the AEO2016 Reference Case—which includes the Clean Power Plan—and a side case without the Clean Power Plan.

  8. Simulation of radiation energy release in air showers

    NASA Astrophysics Data System (ADS)

    Glaser, Christian; Erdmann, Martin; Hörandel, Jörg R.; Huege, Tim; Schulz, Johannes

    2016-09-01

    A simulation study of the energy released by extensive air showers in the form of MHz radiation is performed using the CoREAS simulation code. We develop an efficient method to extract this radiation energy from air-shower simulations. We determine the longitudinal profile of the radiation energy release and compare it to the longitudinal profile of the energy deposit by the electromagnetic component of the air shower. We find that the radiation energy corrected for the geometric dependence of the geomagnetic emission scales quadratically with the energy in the electromagnetic component of the air shower with a second-order dependence on the atmospheric density at the position of the maximum shower development Xmax. In a measurement where Xmax is not accessible, this second order dependence can be approximated using the zenith angle of the incoming direction of the air shower with only a minor loss in accuracy. Our method results in an intrinsic uncertainty of 4% in the determination of the energy in the electromagnetic air-shower component, which is well below current experimental uncertainties.

  9. Isomer Research: Energy Release Validation, Production, and Applications

    SciTech Connect

    Becker, J A; Rundberg, B

    2003-04-10

    The goal of this applied nuclear isomer research program is the search for, discovery of, and practical application of a new type of high energy density material (HEDM). Nuclear isomers could yield an energy source with a specific energy as much as a hundred thousand times as great as that of chemical fuels. There would be enormous payoffs to the Department of Energy and to the country as a whole if such energy sources could be identified and applied to a range of civilian and defense applications. Despite the potential payoff, efforts in applied isomer research have been rather limited and sporadic. Basic research on nuclear isomers dates back to their discovery in 1935 with occasional hints to tantalize interest in HEDM. In most cases, these hints were refuted following careful examination by other groups. The isomer research area is rich with possibilities: we prioritized several areas likely to be the most rewarding and fruitful for initial experimental investigation because these areas directly bear on important issues: Can the energy stored in nuclear isomers be released on demand? Is the size of the atomic-nuclear mixing matrix element large enough to be useful? Under what circumstances? Can we initiate quantal collective release of isomeric energy from a Moessbauer crystal?

  10. The Role of Compressibility in Energy Release by Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Birn, J.; Borovosky, J. E.; Hesse, M.

    2012-01-01

    Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background beta (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing beta or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and beta of 5-10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 10(exp 3) to 10(exp 4), leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from approx. 10% of the energy associated with the reconnecting field component, for zero guide field and low beta, to approx. 0.2%-0.4% for large values of the guide field B(sub y0) > 5 or large beta. The results demonstrate the importance of taking into account plasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.

  11. Fracture patterns and the energy release rate of phosphorene

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-03-01

    Phosphorene, also known as monolayer black phosphorus, has been enjoying popularity in electronic devices due to its superior electrical properties. However, it's relatively low Young's modulus, low fracture strength and susceptibility to structural failure have limited its application in mechanical devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is necessary to explore the fracture patterns and energy release rate of phosphorene. In this study, molecular dynamics simulations are performed to investigate phosphorene's fracture mechanism. The results indicate that fracture under uniaxial tension along the armchair direction is attributed to a break in the interlayer bond angles, while failure in the zigzag direction is triggered by the break in both intra-layer angles and bonds. Furthermore, we developed a modified Griffith criterion to analyze the energy release rate of phosphorene and its dependence on the strain rates and orientations of cracks. Simulation results indicate that phosphorene's energy release rate remains almost unchanged in the armchair direction while it fluctuates intensively in the zigzag direction. Additionally, the strain rate was found to play a negligible role in the energy release rate. The geometrical factor α in the Griffith's criterion is almost constant when the crack orientation is smaller than 45 degree, regardless of the crack orientation and loading direction. Overall, these findings provide helpful insights into the mechanical properties and failure behavior of phosphorene.Phosphorene, also known as monolayer black phosphorus, has been enjoying popularity in electronic devices due to its superior electrical properties. However, it's relatively low Young's modulus, low fracture strength and susceptibility to structural failure have limited its application in mechanical devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is

  12. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  13. Thrust and pumping characteristics of cylindrical ejectors using afterburning turbojet gas generator

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Huntley, S. C.

    1969-01-01

    Static tests of cylindrical ejectors having ejector to primary diameter ratios from 1.1 to 1.6 and ejector length to primary nozzle diameter ratios from 0.9 to 2.1 are reported. Power setting of the J85-13 turbojet engine was varied from part power to maximum afterburning. Corrected secondary weight flow ratio was varied from 0.02 to 0.08 over a range of exhaust nozzle pressure ratios from 2.0 to 9.0. Secondary flow temperature rise and pressure drop characteristics through the nacelle secondary flow passage were also obtained.

  14. Net thrust calculation sensitivity of an afterburning turbofan engine to variations in input parameters

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Ray, R. J.; Walton, J. T.

    1985-01-01

    The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.

  15. The observed characteristics of flare energy release. I - Magnetic structure at the energy release site

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Moore, Ronald L.; Hagyard, Mona J.; Hernandez, Ana M.; Rovira, Marta G.

    1988-01-01

    It is shown that flaring activity as seen in X-rays usually encompasses two or more interacting magnetic bipoles within an active region. Soft and hard X-ray spatiotemporal evolution is considered as well as the time dependence of the thermal energy content in different magnetic bipoles participating in the flare, the hardness and impulsivity of the hard X-ray emission, and the relationship between the X-ray behavior and the strength and 'observable shear' of the magnetic field. It is found that the basic structure of a flare usually consists of an initiating closed bipole plus one or more adjacent closed bipoles impacted against it.

  16. RADIO OBSERVATIONS OF WEAK ENERGY RELEASES IN THE SOLAR CORONA

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Beeharry, G. K.; Rajasekara, G. N.

    2010-08-10

    We report observations of weak, circularly polarized, structureless type III bursts from the solar corona in the absence of H{alpha}/X-ray flares and other related activity, during the minimum between the sunspot cycles 23 and 24. The spectral information about the event obtained with the CALLISTO spectrograph at Mauritius revealed that the drift rate of the burst is {approx}-30 MHz s{sup -1} is in the range 50-120 MHz. Two-dimensional imaging observations of the burst at 77 MHz obtained with the Gauribidanur radioheliograph indicate that the emission region was located at a radial distance of {approx}1.5 R{sub sun} in the solar atmosphere. The estimated peak brightness temperature of the burst at 77 MHz is {approx}10{sup 8} K. We derived the average magnetic field at the aforementioned location of the burst using the one-dimensional (east-west) Gauribidanur radio polarimeter at 77 MHz, and the value is {approx}2.5 {+-} 0.2 G. We also estimated the total energy of the non-thermal electrons responsible for the observed burst as {approx}1.1 x 10{sup 24} erg. This is low compared to the energy of the weakest hard X-ray microflares reported in the literature, which is about {approx}10{sup 26} erg. The present result shows that non-thermal energy releases that correspond to the nanoflare category (energy {approx}10{sup 24} erg) are taking place in the solar corona, and the nature of such small-scale energy releases has not yet been explored.

  17. Energy release and transfer in guide field reconnection

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.

    2010-01-01

    Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.

  18. Laboratory generation of free chlorine from HCl under stratospheric afterburning conditions

    SciTech Connect

    Burke, M.L.; Zittel, P.F.

    1998-01-01

    Experiments have been conducted using a low pressure laboratory flame apparatus to examine the chemistry of solid rocket motor (SRM) afterburning relevant for stratospheric altitudes. It was found that a significant fraction of the HCl injected into H{sub 2}-O{sub 2} and H{sub 2}-CO-O{sub 2} flames can be consumed, with observed losses of up to 40%. The extent of conversion of HCl was found to increase with increasing oxygen:fuel (O/F) ratio and decreasing pressure; the loss at a given O/F was also higher for flames with equal flows of H{sub 2} and CO compared to flames with no CO in the fuel. The major product of HCl reaction was found to be Cl{sub 2}, with no other chlorine-contained products observed via mass spectrometry. Distinct Cl{sub 2} B {yields} X emission bands were observed along with very weak CIO A {yields} C bands and a bright, white continuum emission that apparently arose from one or more chlorine-containing compounds. The general findings concerning the magnitude of HCl conversion and the formation of Cl{sub 2} are consistent with published modeling results for SRM stratospheric afterburning. This formation of free chlorine could lead to catalytic destruction of ozone in regions near the path the launch vehicle follows during boost through the stratosphere.

  19. Shear induced controlled energy release in energetic materials

    NASA Astrophysics Data System (ADS)

    Jenkins, Timothy; Ciezak-Jenkins, Jennifer

    2015-06-01

    Shearing of compressed molecular crystals has been shown to introduce both chemical reaction and phase transitions through the modifications of both the inter- and intra-molecular interactions. While most research has involved lower energy mechanochemical techniques, such as ball milling, there is the potential for significant chemistry at higher pressures and shears. Plastic and elastic deformations of crystals can potentially lead to energy release, as has been shown in previous work; however these results are not well understood. Molecular crystals have been investigated in a controlled fashion using a rotational diamond anvil cell (RDAC) with both traditional energetics and non-traditional energetics such as sucrose. The experiments provide results for validation of theory and modeling.

  20. Method of achieving the controlled release of thermonuclear energy

    DOEpatents

    Brueckner, Keith A.

    1986-01-01

    A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

  1. Dynamics of galloping detonations: inert hydrodynamics with pulsed energy release

    NASA Astrophysics Data System (ADS)

    Radulescu, Matei I.; Shepherd, Joseph E.

    2015-11-01

    Previous models for galloping and cellular detonations of Ulyanitski, Vasil'ev and Higgins assume that the unit shock decay or cell can be modeled by Taylor-Sedov blast waves. We revisit this concept for galloping detonations, which we model as purely inert hydrodynamics with periodically pulsed energy deposition. At periodic time intervals, the chemical energy of the non-reacted gas accumulating between the lead shock and the contact surface separating reacted and non reacted gas is released nearly instantaneously. In between these pulses, the gas evolves as an inert medium. The resulting response of the gas to the periodic forcing is a sudden gain in pressure followed by mechanical relaxation accompanied by strong shock waves driven both forward and backwards. It is shown that the decay of the lead shock in-between pulses follows an exponential decay, whose time constant is controlled by the frequency of the energy deposition. More-over, the average speed of the lead shock is found to agree within 2 percent to the ideal Chapman-Jouguet value, while the large scale dynamics of the wave follows closely the ideal wave form of a CJ wave trailed by a Taylor expansion. When friction and heat losses are accounted for, velocity deficits are predicted, consistent with experiment. Work performed while MIR was on sabbatical at Caltech.

  2. On the Periodicity of Energy Release in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Goldvarg, T. B.; Nagovitsyn, Yu. A.; Solov'Ev, A. A.

    2005-06-01

    We investigate the periodic regimes of energy release on the Sun, namely, the recurrence of solar flares in active regions using the Solar Geophysical Data Journal on Hα flares from 1979 until 1981, which corresponds to the maximum of solar cycle 21. We obtained the following series of periods in the manifestation of flare activity bymeans of a correlation periodogram analysis, a self-similarity function, and a wavelet analysis: ˜1, 2, 3 h as well as ˜0.4, 1, 2, 5 days. We suggest a diffusive model for the quasi-periodic transfer of toroidal magnetic fields from under the photosphere to interpret the retrieved sequence of periods in the enhancement of flare activity. We estimated the typical spatial scales of the magnetic field variations in the solar convection zone: ˜17 000 km.

  3. A computer simulation of the afterburning processes occurring within solid rocket motor plumes in the troposphere

    NASA Technical Reports Server (NTRS)

    Gomberg, R. I.; Stewart, R. B.

    1976-01-01

    As part of a continuing study of the environmental effects of solid rocket motor (SRM) operations in the troposphere, a numerical model was used to simulate the afterburning processes occurring in solid rocket motor plumes and to predict the quantities of potentially harmful chemical species which are created. The calculations include the effects of finite-rate chemistry and turbulent mixing. It is found that the amount of NO produced is much less than the amount of HCl present in the plume, that chlorine will appear predominantly in the form of HCl although some molecular chlorine is present, and that combustion is complete as is evident from the predominance of carbon dioxide over carbon monoxide.

  4. The Correlation Analysis of Fire Energy Release and Weather Conditions

    NASA Astrophysics Data System (ADS)

    Shvetsov, E.

    2012-04-01

    Active fire remote sensing conducted using spaceborne systems, such as MODIS radiometer aboard the EOS Terra and Aqua satellites, allows estimation of wildfire thermal energy release. Such measures of fire radiative power (FRP) can provide information on fireline heat release intensity and on the amount and rate of biomass combustion in the large scale. Biomass combustion rate is strongly related to fuel moisture and therefore to weather conditions. The correlation analysis of fire radiative power and weather fire danger was performed for the territory of Siberia. The measurements of FRP were performed using MODIS instrument and weather fire danger indices were calculated using weather stations data. The analysis was performed for several Siberian regions mostly liable to fires. Weather fire danger was characterized by Russian PV-1 and PV-2 fire danger indices and using Canadian Forest Fire Weather Index System. Only large fires having the final size of more than 500 ha were focused in this study. In general it was rather good relationship between the fire danger indices and the measured fire radiative power for the most of the fires. For the weather stations considered the following weather indices had the highest correlation coefficients with measured FRP values: Russian PV-1 index and Canadian DMC, DC and BUI indices. Finally the ability of weather fire danger indices to predict the changes in fire radiative power was tested. A regression model was formulated to characterize the relationship between wildfire radiative power and fire danger indices. It was shown that the relationships have regional specificity and none of these indices can be considered as universal.

  5. Altitude test of several afterburner configurations on a turbofan engine with a hydrogen heater to simulate an elevated turbine discharge temperature

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.; Cullom, R. R.

    1977-01-01

    A performance test of several experimental afterburner configurations was conducted with a mixed-flow turbofan engine in an altitude facility. The simulated flight conditions were for Mach 1.4 at two altitudes, 12,190 and 14,630 meters. Turbine discharge temperatures of 889 and 1056 K were used. A production afterburner was tested for comparison. The research afterburners included partial forced mixers with V-gutter flameholders, a carburetted V-gutter flameholder, and a triple ring V-gutter flameholder with four swirl-can fuel mixers. Fuel injection variations were included. Performance data shown include augmented thrust ratio, thrust specific fuel consumption, combustion efficiency, and total pressure drop across the afterburner.

  6. Preliminary Transient Performance Data for Afterburner Operation of Westinghouse Electronic Power Regulator on XJ34-WE-32 Turbojet Engine in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vasu, George; Schwent, Glennon V.; Ketchum, James R.

    1951-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, an investigation of the Westinghouse XJ34-WE-32 turbojet engine is being conducted in the NACA Lewis altitude wind tunnel to determine the steady-state and transient operating characteristics of the controlled and uncontrolled engine at various altitudes and ram pressure ratios. As part of this program, transient performance data that illustrate the operation of the engine is obtained in the form of oscillographic traces. Similar data for engine operation i n the afterburning range, covering a range of throttle settings from the minimum value giving rated speed (throttle position, 72 degrees) to full afterburning (throttle position, ll0 degrees), is presented herein. These data thus serve to indicate the transient characteristics of the engine when the throttle is advance into, withdrawn from, and moved within the afterburning range in a stepwise manner, as well as the steady-state stability of the engine during afterburning .

  7. Effect of Diffuser Design, Diffuser-exit Velocity Profile and Fuel Distribution on Altitude Performance of Several Afterburner Configurations

    NASA Technical Reports Server (NTRS)

    Conrad, E William; Schultz, Frederick W; Usow, Karl H

    1953-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to improve the altitude performance and operational characteristics of an afterburner primarily by modifying the diffuser-exit velocity profile by changes in diffuser design and by changing the fuel distribution and the flame holder. Twenty configurations, consisting of combinations of six diffuser geometries, six flame-holder types, and twelve fuel systems, were investigated. Data were obtained over a range of afterburner fuel-air ratios at diffuser-inlet total pressures from 2750 to 620 pounds per square foot. Changes in fuel distribution affected the fuel-air ratio at which peak combustion efficiency occurred as well as the efficiency level. Screeching combustion, which was most prevalent at low altitudes and medium-to-high fuel-air ratios, imposed a restriction on the operable range of a number of configurations.

  8. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  9. Triggered instabilities in rocket motors and active combustion control for an incinerator afterburner

    NASA Astrophysics Data System (ADS)

    Wicker, Josef M.

    1999-11-01

    Two branches of research are conducted in this thesis. The first deals with nonlinear combustion response as a mechanism for triggering combustion instabilities in solid rocket motors. A nonlinear wave equation is developed to study a wide class of combustion response functions to second-order in fluctuation amplitude. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be how the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse. Also, dependence of nonlinear stability upon system parameters is considered. The second part of this thesis presents research for a controller to improve the emissions of an incinerator afterburner. The developed controller was experimentally tested at the Naval Air Warfare Center (NAWC), on a 50kW-scale model of an afterburner for Naval shipboard incinerator applications. Acoustic forcing of the combustor's reacting shear layer is used to control the formation of coherent vortical structures, within which favorable fuel-air mixing and efficient combustion can occur. Laser-based measurements of CO emissions are used as the performance indicator for the combustor. The controller algorithm is based on the downhill simplex method and adjusts the shear layer forcing parameters in order to minimize the CO emissions. The downhill simplex method was analyzed with respect to its behavior in the face of time-variation of the plant and noise in the sensor signal, and was modified to account for these difficulties. The control system has experimentally demonstrated the ability (1) to find optimal control action for single- and multi-variable control, (2

  10. Residual thermal and moisture influences on the strain energy release rate analysis of edge delamination

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Raju, I. S.; Garber, D. P.

    1985-01-01

    A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions.

  11. Residual thermal and moisture influences on the strain energy release rate analysis of edge delamination

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Raju, I. S.; Garber, D. P.

    1986-01-01

    A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions.

  12. Black hole monster in a spin releases energy!

    NASA Astrophysics Data System (ADS)

    2001-11-01

    the black hole itself is rotating. According to the team, one model fits the XMM-Newton data well. It corresponds to a theory proposed over 25 years ago by two Cambridge University astronomers. Roger Blandford and Roman Znajek had suggested that rotational energy could escape from a black hole when it is in a strong magnetic field which exerts a braking effect. This theory fits the physical laws of thermodynamics which state that energy released should be absorbed by the surrounding gas. "We have probably seen this electric dynamo effect for the very first time. Energy is being extracted from the black hole's spin and is conveyed into the innermost parts of the accretion disc, making it hotter and brighter in X-rays," says Jörn Wilms. Co-investigator Dr. Christopher Reynolds at the University of Maryland and other American members of the team contributed greatly to the theoretical interpretation of the data. "Never before have we seen energy extracted from black holes. We always see energy going in, not out," says Reynolds, who performed much of the analysis whilst at the University of Colorado. Other scientists involved in this work are James Reeves of Leicester University, United Kingdom, and Silvano Molendi of the Instituto di Fisica Cosmica "G. Occhialini", Milan, Italy. The team's conclusion that a magnetodynamic process is involved is already provoking intense debate. "We recognise that more observations are required to confirm our work," says Jörn Wilms. "But there is no disputing the presence of this exceptionally strong iron line in the spectrum of MCG-6-30-15. It is extremely puzzling and an explanation must be found." One thing is sure: only a couple of years ago, before operations with the European X-ray observatory began, no one would have dared propose such interpretations. Sufficiently detailed spectra of the kind today provided by XMM-Newton were just not available. REFERENCE "XMM-EPIC observation of MCG-6-30-15: Direct evidence for the extraction of

  13. A reusable micromechanical energy storage/quick release system with assembled elastomers

    NASA Astrophysics Data System (ADS)

    Bergbreiter, Sarah; Mahajan, Deepa; Pister, Kristofer S. J.

    2009-05-01

    A reusable, elastomer-based energy storage/quick release system for MEMS has been designed, built and tested. Microrubber bands have been fabricated from silicone using two different methods, laser cut and molded, and assembled into silicon microstructures fabricated in a two-mask silicon-on-insulator (SOI) process. Using silicon hooks and force gauges designed in this process, these microrubber bands have been characterized as to their energy storage potential and efficiency by stretching them with a probe tip. These tests showed recovered energy efficiencies up to 92% at strains over 200% with a maximum stored energy over 19 µJ. In addition, a fully integrated micromechanical energy storage system to both store and release energy has been demonstrated using an electrostatic inchworm motor to stretch the elastomer band and release it. Using the inchworm motor, an estimated 4.9 nJ of energy was stored in the elastomer spring and quickly released.

  14. Three-dimensional dynamics of break-out afterburner ion acceleration using high-contrast short-pulse laser and nano-scale targets

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Jung, D.; Bowers, K. J.; Fernandez, J. C.; Hegelich, B. M.

    2010-11-01

    Ultra-intense laser interaction with solid density carbon targets is examined in 3D VPIC simulations. It is shown that a linearly polarized laser pulse at >10^20 W/cm^2 intensity will turn a solid density, nm-scale target relativistically transparent and begin an epoch of dramatic acceleration of ions. Called the Break-Out-Afterburner (BOA) [L. Yin, et al., Phys. Plasmas 14, 056706 (2007)], this mechanism leads to order-of-magnitude greater ion energy and beam currents. The BOA lasts until the electron density in the expanding target reduces to the non-relativistic critical density. A striking feature of the BOA mechanism is that the ion beam symmetry is broken, with the production of lobes in the direction orthogonal to the laser polarization and propagation directions, along which the highest ion beam energy is observed. These ion beam lobes have been measured on recent Trident experiments. An analytic theory for the production of ion beam lobes has been obtained and has been shown to be in good agreement with simulations. Moreover, other features of the BOA, e.g., the existence of an optimal target thickness for given laser and target density and the propagation of light and heavy ion species at comparable speed have been demonstrated in simulations and experiments.

  15. Magnetic calorimeter with a SQUID for detecting weak radiations and recording the ultralow energy release

    SciTech Connect

    Golovashkin, Aleksander I; Zherikhina, L N; Kuleshova, G V; Tskhovrebov, A M; Izmailov, G N

    2006-12-31

    The scheme of a magnetic calorimeter for recording extremely low energy releases is developed. The calorimeter is activated by the method of adiabatic demagnetisation and its response to the energy release is measured with a superconducting quantum interference device (SQUID). The estimate of the ultimate sensitivity of the calorimeter with the SQUID demonstrates the possibilities of its application for detecting ultralow radiation intensity, recording single X-ray quanta in the proportional regime and other events with ultralow energy releases. The scheme of the calorimeter with the SQUID on matter waves in superfluid {sup 4}He is proposed. (radiation detectors)

  16. A method for calculating strain energy release rate based on beam theory

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Pandey, R. K.

    1993-01-01

    The Timoshenko beam theory was used to model cracked beams and to calculate the total strain energy release rate. The root rotation of the beam segments at the crack tip were estimated based on an approximate 2D elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain energy release rate obtained using beam theory agrees very well with the 2D finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.

  17. A simplified approach to strain energy release rate computations for interlaminar fracture of composites

    NASA Technical Reports Server (NTRS)

    Armanios, Erian A.; Rehfield, Lawrence W.

    1989-01-01

    A simple approach for the strain energy release rate computations based on the finite element method and a singular fitting model is presented. The model uses the stress and displacement distributions at the delamination front. The method is applied to a mixed-mode double cracked-lap-shear composite configuration. The strain energy release rate components predicted by the model are compared with the finite element crack-closure method. The effect of the mesh size on the stress and displacement distribution is isolated. The strain energy release rates predicted by relatively coarse mesh sizes are in good agreement with the finite element crack closure method.

  18. Improved method for calculating strain energy release rate based on beam theory

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Pandey, R. K.

    1994-01-01

    The Timoshenko beam theory was used to model cracked beams and to calculate the total strain-energy release rate. The root rotations of the beam segments at the crack tip were estimated based on an approximate two-dimensional elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain-energy release rate obtained using beam theory agrees very well with the two-dimensional finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.

  19. The effects of compressor seventh-stage bleed air extraction on performance of the F100-PW-220 afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Evans, Alison B.

    1991-01-01

    A study was conducted to determine the effects of seventh-stage compressor bleed on the performance of the F100 afterburning turbofan engine. The effects of bleed on thrust, specific fuel consumption, fan turbine inlet temperature, bleed total pressure, and bleed total temperature were obtained from the engine manufacturer's status deck computer simulation. These effects were determined for power settings of intermediate, partial afterburning, and maximum afterburning for Mach numbers between 0.6 and 2.2 and for altitudes of 30,000, 40,000, and 50,000 ft. It was found that thrust loss and specific fuel consumption increase were approximately linear functions of bleed flow and, based on a percent-thrust change basis, were approximately independent of power setting.

  20. An atomistic methodology of energy release rate for graphene at nanoscale

    SciTech Connect

    Zhang, Zhen; Lee, James D.; Wang, Xianqiao

    2014-03-21

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough.

  1. F-16XL ship #1 and SR-71 in formation flight with afterburner studying the characteristics of sonic

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The single-seat F-16XL NASA 849, with it's afterburner firing, on a flight for the recent sonic boom research program conducted by the Dryden Flight Research Center, Edwards, California., conducted with an SR-71A, NASA 844. During the missions, the F-16XL probed the shockwaves generated by the SR-71, while at lower altitudes sensors on an F-18 and on a YO-3A, and also on the ground, recorded data from the same shockwave. Information from the program, managed by NASA's Langely Research Center, is being used for NASA's High Speed Research program.

  2. Three-Dimensional Dynamics of Breakout Afterburner Ion Acceleration Using High-Contrast Short-Pulse Laser and Nanoscale Targets

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Jung, D.; Fernández, J. C.; Hegelich, B. M.

    2011-07-01

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  3. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets.

    PubMed

    Yin, L; Albright, B J; Bowers, K J; Jung, D; Fernández, J C; Hegelich, B M

    2011-07-22

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  4. Climate Literacy and Energy Awareness Network releases search widget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-11-01

    The Climate Literacy and Energy Awareness Network (CLEAN) has launched a widget that can be embedded in any Web site to search the network's catalog of online resources relating to climate and energy topics for students in grades 6-12 and for general audiences. The catalog includes more than 300 high-quality existing digital resources, including learning activities, videos, visualizations, and short investigations that have been reviewed and annotated for scientific accuracy and pedagogical potential. The widget allows users to search keywords and then access the full catalog record of resources from the search. The CLEAN Web site includes a section on teaching climate and energy topics.

  5. Release of brain amino acids during hyposmolar stress and energy deprivation.

    PubMed

    Haugstad, T S; Langmoen, I A

    1996-04-01

    The release of 10 amino acids from rat hippocampal slices during exposure to hyposmotic stress or energy deprivation was measured by high-performance liquid chromatography. Exposing the slices to hyposmotic stress by lowering extracellular NaCl caused a 10-fold release of taurine (p < 0.01) and over a twofold increase of gamma-aminobutyric acid (GABA) and glutamate (p < 0.01). These changes were reversed by mannitol. Exposure to combined glucose and oxygen deprivation (energy deprivation) caused a 50-fold increase in the release of GABA, a 40-fold increase in glutamate release (p < 0.01), and a twofold to sixfold increase in taurine, aspartate, glycine, asparagine, serine, and alanine release (p < 0.05) but no change in glutamine. Energy deprivation increased the water content by 21%. Mannitol blocked this increase and further enhanced the release of glutamate and aspartate (p < 0.01) but not of GABA. The permissivity of the amino acids was plotted against the pI (pH at isoelectric point) and hydropathy indexes. Energy deprivation increased the permissivity in the following order: acidic > neutral > basic. Among neutral amino acids, permissivity increased with increasing hydrophobicity. These results indicate that the mechanisms of amino acid release are different during cerebral ischemia and hyposmotic stress. PMID:8829565

  6. Energy Released During the H-L Back Transition

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Kolemen, E.; Gohil, P.; McKee, G. R.; Yan, Z.; Schmitz, L.

    2015-11-01

    Prompt energy loss (ΔW) at the H-L transition, as a fraction of total stored energy before the transition, is about 30 % and is insensitive to density in ITER-similar DIII-D plasmas. Occasionally, some ELMs will appear before the transition and reduce total energy, thus reducing ΔW across the following transition. Other results (not in the ITER-similar shape) have shown that ELMs can be triggered in low powered H-modes, prior to H-L transitions, when the plasma is stable to ideal P-B modes (these are not typical type-I ELMs, despite superficial similarities) and E × B shear is strong. These are indeed ELMs occurring in H-mode and not part of a dithering transition. Finally, ELM ΔW is sensitive to edge toroidal rotation and becomes smaller than uncertainty (< 5 kJ) at low rotation (ωtor < 5 krad/s). These results point to a strategy where ΔW for the H-L transition may be reduced by the presence of (not type-I) ELMs before the transition, and ΔW for the ELMs may be reduced by controlling rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  7. A Microelectromechanical High-Density Energy Storage/Rapid Release System

    SciTech Connect

    Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Sam L.

    1999-07-21

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  8. Innovative methodologies and technologies for thermal energy release measurement.

    NASA Astrophysics Data System (ADS)

    Marotta, Enrica; Peluso, Rosario; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Chiodini, Giovanni; Mangiacapra, Annarita; Petrillo, Zaccaria; Sansivero, Fabio; Vilardo, Giuseppe; Marfe, Barbara

    2016-04-01

    Volcanoes exchange heat, gases and other fluids between the interrior of the Earth and its atmosphere influencing processes both at the surface and above it. This work is devoted to improve the knowledge on the parameters that control the anomalies in heat flux and chemical species emissions associated with the diffuse degassing processes of volcanic and hydrothermal zones. We are studying and developing innovative medium range remote sensing technologies to measure the variations through time of heat flux and chemical emissions in order to boost the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The current methodologies used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. Remote sensing of these parameters will allow for measurements faster than already accredited methods therefore it will be both more effective and efficient in case of emergency and it will be used to make quick routine monitoring. We are currently developing a method based on drone-born IR cameras to measure the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. The use of flying drones will allow to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature at distance in the order of hundreds of meters. Further development of remote sensing will be done through the use, on flying drones, of multispectral and/or iperspectral sensors, UV scanners in order to be able to detect the amount of chemical species released in the athmosphere.

  9. Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)

    2006-01-01

    Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.

  10. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  11. Theoretical energy release of thermites, intermetallics, and combustible metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  12. Meteorological Effects of Thermal Energy Releases (METER) Program. Annual progress report, October 1978-September 1979

    SciTech Connect

    Patrinos, A.A.N.; Hoffman, H.W.

    1980-04-01

    The METER (Meteorological Effects of Thermal Energy Releases) Program was organized to develop and verify methods for predicting the maximum amount of energy that can be dissipated to the atmosphere (through cooling towers or cooling ponds) from proposed nuclear energy centers without affecting...the local and regional environment. The initial program scope (mathematical modeling, laboratory and field experimentation, and societal impact assessment) has now narrowed to emphasis on the acquisition of field data of substantial quality and extent.

  13. Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen

    NASA Technical Reports Server (NTRS)

    Schapery, R. A.; Davidson, B. D.

    1988-01-01

    The problem of an orthotropic cantilevered plate subjected to a uniformly distributed end load is solved by the Rayleigh-Ritz energy method. The result is applied to laminated composite, double cantilevered specimens to estimate the effect of crack tip constraint on the transverse curvature, deflection and energy release rate. The solution is also utilized to determined finite width correction factors for fracture energy characterization tests in which neither plane stress nor plane strain conditions apply.

  14. Nuclear data processing for energy release and deposition calculations in the MC21 Monte Carlo code

    SciTech Connect

    Trumbull, T. H.

    2013-07-01

    With the recent emphasis in performing multiphysics calculations using Monte Carlo transport codes such as MC21, the need for accurate estimates of the energy deposition-and the subsequent heating - has increased. However, the availability and quality of data necessary to enable accurate neutron and photon energy deposition calculations can be an issue. A comprehensive method for handling the nuclear data required for energy deposition calculations in MC21 has been developed using the NDEX nuclear data processing system and leveraging the capabilities of NJOY. The method provides a collection of data to the MC21 Monte Carlo code supporting the computation of a wide variety of energy release and deposition tallies while also allowing calculations with different levels of fidelity to be performed. Detailed discussions on the usage of the various components of the energy release data are provided to demonstrate novel methods in borrowing photon production data, correcting for negative energy release quantities, and adjusting Q values when necessary to preserve energy balance. Since energy deposition within a reactor is a result of both neutron and photon interactions with materials, a discussion on the photon energy deposition data processing is also provided. (authors)

  15. Simple formulas for strain-energy release rates with higher order and singular finite elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1986-01-01

    A general finite element procedure for obtaining strain-energy release rates for crack growth in isotropic materials is presented. The procedure is applicable to two-dimensional finite element analyses and uses the virtual crack-closure method. The procedure was applied to non-singular 4-noded (linear), 8-noded (parabolic), and 12-noded (cubic) elements and to quarter-point and cubic singularity elements. Simple formulas for strain-energy release rates were obtained with this procedure for both non-singular and singularity elements. The formulas were evaluated by applying them to two mode I and two mixed mode problems. Comparisons with results from the literature for these problems showed that the formulas give accurate strain-energy release rates.

  16. Calculation of strain-energy release rates with higher order and singular finite elements

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1987-01-01

    A general finite element procedure for obtaining strain-energy release rates for crack growth in isotropic materials is presented. The procedure is applicable to two-dimensional finite element analyses and uses the virtual crack-closure method. The procedure was applied to nonsingular 4-noded (linear), 8-noded (parabolic), and 12-noded (cubic) elements and to quarter-point and cubic singularity elements. Simple formulas for strain-energy release rates were obtained with this procedure for both nonsingular and singularity elements. The formulas were evaluated by applying them to two mode I and two mixed mode problems. Comparisons with results from the literature for these problems showed that the formulas give accurate strain-energy release rates.

  17. Effects of strain energy release rate on delamination in temperature environment

    NASA Astrophysics Data System (ADS)

    Sankarabatla, Venkata Naga Ravitej

    Delamination is the weakest and major failure mode in laminated composites. Extensive efforts on initiation and growth of delamination under mechanical load have been investigated. A little emphasis was made earlier to account for the delamination in laminates under temperature loading. Strain energy release rate, a fracture mechanics parameter has been widely accepted to use for study the characteristics of delamination growth. In order to conduct a quick assessment of delamination growth, a closed form expression is developed to quantify the strain energy release rate of the laminate subjected to temperature environment. A finite element model is also developed to use for validating the analytical expression. A parametric study is also conducted to study the effects of strain energy release rate with percentage of angle ply variation in [02/+/-theta 3/∓theta3/02]s.

  18. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.

    PubMed

    Wang, Jun; Richter, Henning; Howard, Jack B; Levendis, Yiannis A; Carlson, Joel

    2002-02-15

    Laboratory experiments were conducted in a two-stage horizontal muffle furnace in order to monitor emissions from batch combustion of polystyrene (PS) and identify conditions that minimize them. PS is a dominant component of municipal and hospital waste streams. Bench-scale combustion of small samples (0.5 g) of shredded styrofoam cups was conducted in air, using an electrically heated horizontal muffle furnace, kept at Tgas = 1000 degrees C. Upon devolatilization, combustion of the polymer took place in a diffusion flame over the sample. The gaseous combustion products were mixed with additional air in a venturi and were channeled to a secondary muffle furnace (afterburner) kept at Tgas = 900-1100 degrees C; residence time therein varied between 0.6 and 0.8 s. At the exits of the primary and the secondary furnace the emissions of CO, CO2, O2, NOx, particulates as well as volatile and semivolatile hydrocarbons, such as polycyclic aromatic hydrocarbons (PAH), were monitored. Online analyzers, gravimetric techniques, and gas chromatography coupled to mass spectrometry (GC-MS) were used. Experiments were also conducted with a high-temperature barrier filter, placed just before the exit of the primary furnace to prevent the particulates from entering into the secondary furnace. Results demonstrated the beneficial effect of the afterburner in reducing PAH concentrations, including those of mutagenic species such as benzo[a]pyrene. Concentrations of individual PAH exhibited a pronounced after burner temperature dependence, typically ranging from a small decrease at 900 degrees C to a larger degree of consumption at 1100 degrees C. Consumption of PAH was observed to be the dominant feature at 900 degrees C, while significant quantities of benzene and some of its derivatives, captured by means of carbosieve/Carbotrap adsorbents, were formed in the afterburner at a temperature of 1000 degrees C. In the primary furnace, about 30% of the mass of the initial polystyrene was

  19. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration.

    PubMed

    Wang, Jun; Richter, Henning; Howard, Jack B; Levendis, Yiannis A; Carlson, Joel

    2002-02-15

    Laboratory experiments were conducted in a two-stage horizontal muffle furnace in order to monitor emissions from batch combustion of polystyrene (PS) and identify conditions that minimize them. PS is a dominant component of municipal and hospital waste streams. Bench-scale combustion of small samples (0.5 g) of shredded styrofoam cups was conducted in air, using an electrically heated horizontal muffle furnace, kept at Tgas = 1000 degrees C. Upon devolatilization, combustion of the polymer took place in a diffusion flame over the sample. The gaseous combustion products were mixed with additional air in a venturi and were channeled to a secondary muffle furnace (afterburner) kept at Tgas = 900-1100 degrees C; residence time therein varied between 0.6 and 0.8 s. At the exits of the primary and the secondary furnace the emissions of CO, CO2, O2, NOx, particulates as well as volatile and semivolatile hydrocarbons, such as polycyclic aromatic hydrocarbons (PAH), were monitored. Online analyzers, gravimetric techniques, and gas chromatography coupled to mass spectrometry (GC-MS) were used. Experiments were also conducted with a high-temperature barrier filter, placed just before the exit of the primary furnace to prevent the particulates from entering into the secondary furnace. Results demonstrated the beneficial effect of the afterburner in reducing PAH concentrations, including those of mutagenic species such as benzo[a]pyrene. Concentrations of individual PAH exhibited a pronounced after burner temperature dependence, typically ranging from a small decrease at 900 degrees C to a larger degree of consumption at 1100 degrees C. Consumption of PAH was observed to be the dominant feature at 900 degrees C, while significant quantities of benzene and some of its derivatives, captured by means of carbosieve/Carbotrap adsorbents, were formed in the afterburner at a temperature of 1000 degrees C. In the primary furnace, about 30% of the mass of the initial polystyrene was

  20. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    SciTech Connect

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  1. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.

    2015-01-01

    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  2. Energy release and transfer in solar flares: simulations of three-dimensional reconnection

    SciTech Connect

    Birn, Joachim; Fletches, L; Hesse, M; Neukirch, T

    2008-01-01

    Using three-dimensional magnetohydrodynamic (MHD) simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta). The energy conversion process from reconnect ion consists of incoming Poynting flux (from the release of magnetic energy) turned into up-and downgoing Poynting flux, enthalpy flux and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution, particularly in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher and Hudson. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release time scales and and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares.

  3. Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits.

    PubMed

    Postema, K; Hermens, H J; de Vries, J; Koopman, H F; Eisma, W H

    1997-04-01

    The energy storing and releasing behaviour of 2 energy storing feet (ESF) and 2 conventional prosthetic feet (CF) were compared (ESF: Otto Bock Dynamic Pro and Hanger Quantum; CF: Otto Bock Multi Axial and Otto Bock Lager). Ten trans-tibial amputees were selected. The study was designed as a double-blind, randomised trial. For gait analysis a VICON motion analysis system was used with 2 AMTI force platforms. A special measuring device was used for measuring energy storage and release of the foot during a simulated step. The impulses of the anteroposterior component of the ground force showed small, statistically non-significant differences (deceleration phase: 22.7-23.4 Ns; acceleration phase: 17.0-18.4 Ns). The power storage and release phases as well as the net results also showed small differences (maximum difference in net result is 0.03 J kg-1). It was estimated that these differences lead to a maximum saving of 3% of metabolic energy during walking. It was considered unlikely that the subjects would notice this difference. It was concluded that during walking differences in mechanical energy expenditure of this magnitude are probably not of clinical relevance. Ankle power, as an indicator for energy storage and release gave different results to the energy storage and release as measured with the special test device, especially during landing response. In the biomechanical model (based on inverse dynamics) used in the gait analysis the deformation of the material is not taken into consideration and hence this method of gait analysis is probably not suitable for calculation of shock absorption.

  4. ACTIVE MEDIA. LASERS: Two-quantum-induced energy release of isomeric nuclei

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2004-01-01

    The possibility of using some long-lived isomers with a high specific content of the energy of metastable states (~107 J g-1) as a new type of nuclear fuel is analysed. The analysis based on the model of a stimulated two-quantum radiative transition in the field of counterpropagating gamma waves between Bragg mirrors describes pulsed and continuous processes of the energy release of isomers and gives the criteria for their stability.

  5. Does the region of flare-energy release work as a vacuum-cleaner?

    NASA Astrophysics Data System (ADS)

    Solov'ev, A.; Murawski, K.

    2014-03-01

    We aim to explore the unusual flare event which took place in the solar atmosphere on September 22, 2011 and propose its theoretical interpretation. We analyze the process of energy release in the twisted magnetic flux-rope associated with the event, assuming the excitation of anomalous resistivity of turbulent plasma in the rope, and solve numerically nonlinear two-dimensional (2D) magnetohydrodynamic (MHD) equations. The analytical approach to the problem of flare-energy release show that the conditions of excitation of anomalous resistivity can be satisfied in the twisted magnetic flux-rope whose parameters fits well the SDO observational findings. One of the most remarkable properties of the flare phenomenon under the present consideration was the permanent sucking of the coronal/chromospheric gas from the very remote points to the flare filament, i.e. into the low-lying hot region of the flare energy release. This unusual phenomenon has been simulated by numerical methods in terms of ideal MHD. The numerical results reveal that siphon back-flow exhibits characteristic spatial signatures which mimic the observational findings. The flare-energy release region, as a part of strongly twisted magnetic flux-rope, is able to work as a vacuum-cleaner.

  6. Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. II. Energetics and energy partition

    NASA Astrophysics Data System (ADS)

    Warmuth, A.; Mann, G.

    2016-04-01

    Aims: We derive constraints on energy release, transport and conversion processes in solar flares based on a detailed characterization of the physical parameters of both the thermal plasma and the accelerated nonthermal electrons based on X-ray observations. In particular, we address the questions of whether the energy required to heat the thermal plasma can be supplied by nonthermal particles, and how the energetics derived from X-rays compare to the total bolometric radiated energy. Methods: Time series of spectral fits and images for 24 flares ranging from GOES class C3.4 to X17.2 were obtained using RHESSI hard X-ray observations. This has been supplemented by GOES soft X-ray fluxes. In our companion Paper I, we have used this data set to obtain the basic physical parameters for the thermal plasma (using the isothermal approximation) and the injected energetic electrons (assuming the thick-target model). Here, we used this data set to derive the flare energetics, including thermal energy, radiative and conductive energy loss, gravitational and flow energy of the plasma, and kinetic energy of the injected electrons. We studied how the thermal energies compare to the energy in nonthermal electrons, and how the various energetics and energy partition depend on flare importance. Results: All flare energetics show a good to excellent correlation with the peak GOES flux. The gravitational energy of the evaporated plasma and the kinetic energy of plasma flows can be neglected in the discussion of flare energetics. The radiative energy losses are comparable to the maximum thermal energy, while the conductive losses are considerably higher than the maximum thermal energy, especially in weaker flares. The total heating requirement of the hot plasma amounts to ≈50% of the total bolometric energy loss, with the conductive losses as a major contribution. The nonthermal energy input by energetic electrons is not sufficient to account for the total heating requirements of

  7. Measuring the Energy Release of Low Amplitude Impact of High Explosive Events

    NASA Astrophysics Data System (ADS)

    Straight, J. W.; Idar, D. J.; Smith, L.; Osborn, M. A.; Viramontes, L. E.; Chavez, P. J.

    2004-07-01

    Predicting the degree of violence of high explosive (HE) reactions for a given event is desirable for risk assessments and a goal for computational models. Historically, different types of low amplitude impact tests on HE specimens have been performed to determine the critical impact-velocity threshold for high explosive violent reactions (HEVR). Additionally, the energy release relative to a steady-state detonation is also desirable for assessing the potential outcome of an accidental event. Traditionally, blast gauge measurements have been used to measure the overpressure of the HEVR event at a defined distance. This paper summarizes the use of this active technique coupled with a passive technique to derive average energy release curves for Modified Steven tests. A classic ballistic pendulum design was employed with the traditional blast gauge method. Calibration of the ballistic pendulum involved three elements. First, two mechanical measurements were related to the actual peak swing of the pendulum. Second, the general nature of the swing versus energy release curve was estimated. Two different approaches were used to estimate the momenta as a function of HE energy release using the Gurney relationships for an unsymmetrical sandwich. Finally, both techniques were simultaneously benchmarked with PBX 9501 calibration charges. Test results demonstrate the utility of using coupled diagnostic methods for low amplitude insult testing. Each set of data was fit to derive a working curve for the determination of the average energy release for HEVR event based on mass relative to a steady-state detonation. These tests results and working curve derivations are presented.

  8. LOW-FREQUENCY RADIO OBSERVATIONS OF PICOFLARE CATEGORY ENERGY RELEASES IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Ramesh, R.; Sasikumar Raja, K.; Kathiravan, C.; Satya Narayanan, A.

    2013-01-10

    We report low-frequency (80 MHz) radio observations of circularly polarized non-thermal type I radio bursts ({sup n}oise storms{sup )} in the solar corona whose estimated energy is {approx}10{sup 21} erg. These are the weakest energy release events reported to date in the solar atmosphere. The plot of the distribution of the number of bursts (dN) versus their corresponding peak flux density in the range S to S+dS shows a power-law behavior, i.e., dN {proportional_to} S {sup {gamma}} dS. The power-law index {gamma} is in the range -2.2 to -2.7 for the events reported in the present work. The present results provide independent observational evidence for the existence of picoflare category energy releases in the solar atmosphere which are yet to be explored.

  9. Numerical modeling of the energy storage and release in solar flares

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Weng, F. S.

    1993-01-01

    This paper reports on investigation of the photospheric magnetic field-line footpoint motion (usually referred to as shear motion) and magnetic flux emerging from below the surface in relation to energy storage in a solar flare. These causality relationships are demonstrated by using numerical magnetohydrodynamic simulations. From these results, one may conclude that the energy stored in solar flares is in the form of currents. The dynamic process through which these currents reach a critical value is discussed as well as how these currents lead to energy release, such as the explosive events of solar flares.

  10. The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.

    1983-01-01

    Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.

  11. SR-71A on Ramp with Dual Max Afterburner Engines Firing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This night shot shows one of NASA's SR-71 Blackbird research aircraft on the ramp at the Dryden Flight Research Center, Edwards, California, with both engines running in max afterburner. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward

  12. Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

    SciTech Connect

    Massey, Jeffery A; Eaton, Scott J; Wagner, Robert M

    2009-01-01

    Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder. Measured in-cylinder pressure is utilized as a load input to the FE model to provide an initial comparison of the computed and measured surface accelerations. Additionally, the cylindrical cavity resonant modes of the engine geometry are computed and the in-cylinder pressure frequency content is examined to verify this resonant behavior. Experimental correlations between heat release and surface acceleration metrics are then used to identify specific acceleration frequency bands in which characteristics of the combustion heat release process is detected with minimal structural resonant influence. Investigation of a metric capable of indicting combustion phasing is presented. Impact of variations in the combustion energy release process on the surface accelerations is discussed.

  13. Rotary kiln incineration III. An in depth study-kiln exit/afterburner/stack train and kiln exit pattern factor measurements during liquid CCl sub 4 processing

    SciTech Connect

    Cundy, V.A.; Lester, T.W.; Sterling, A.M.; Montestru, A.N.; Morse, J.S.; Leger, C.B.; Acharya, Sumanta )

    1989-07-01

    Temperature and stable species concentration data are presents for various locations within a full-scale rotary kiln incinerator firing natural gas/carbon tetrachloride/air. The data are being collected as part of a cooperative program involving university, industry and government participation. The overall goal of the program is to develop a more sophisticated understanding of and a predictive capability for rotary kiln and afterburner performance as influenced by basic design and operational parameters. Non-uniformities in stable species and temperature exist for this particular kiln, at the kiln exit, under certain operating conditions. Flow perturbations from within the kiln were found to persist into the afterburner, but not into the stack. High destruction and removal efficiencies (DRE's) were achieved under the operating conditions of these tests through adequate secondary combustion processing.

  14. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  15. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  16. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  17. Interlaminar stress and strain energy release rate predictions in composites by singular fitting

    NASA Astrophysics Data System (ADS)

    Armanios, Erian A.

    A singular fitting method is developed in order to predict the interlaminar stress distribution in a quasi-isotropic double cracked-lap-shear configuration made of graphite/epoxy material. The method is based on an improved finite element scheme using the stress predicted by a constant strain element. The oscillatory component of the stress singularity is investigated, and the order of the singularity is estimated from a logarithmic plot of interlaminar shear stress data. The effect of the mesh size on the stress and displacement distributions is isolated. The strain energy release rate components are predicted based on the singular stress distribution and its associated displacement field. The effect of smearing the material properties on the accuracy of the strain energy release rates and interlaminar stresses is investigated. Results are compared with the finite element crack-closure method. A comparison of the stress-intensity factor with an analytical solution is provided.

  18. Variation of strain energy release rate with plate thickness. [fracture mode transition

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Hartranft, R. J.

    1973-01-01

    An analytical model of a through-thickness crack in a statically stretched plate is presented in which the crack front stress state is permitted to vary in the direction of the plate thickness. The amplitude or intensity of this stress field can be made nearly constant over a major portion of the interior crack front which is in a state of plane strain. The average amount of work available for extending a small segment of the crack across the thickness is associated with an energy release rate quantity in a manner similar to the two-dimensional Griffith crack model. The theoretically calculated energy release rate is shown to increase with increasing plate thickness, indicating that available work for crack extension is higher in a thicker plate.

  19. Macrokinetics of the Energy Release in High Explosives Containing Nano-Size Boron Particles

    NASA Astrophysics Data System (ADS)

    Utkin, Alexander; Kanel, Gennady; Bogach, Andrey; Razorenov, Sergey

    1999-06-01

    The detonation of high explosives with the metal additives is accompanied with several exothermic and endothermic processes of the energy release and the mechanical and thermal relaxation. In the paper, results of measurements of the pressure and the particle velocity profiles in shock and detonation waves are presented for a pure coarse-grain and a fine-grain HMX and for the fine-grain HMX + 16.4% boron mixture. For these measurements, the manganin pressure gauges and the laser Doppler velocimeter VISAR were applied. Using computer simulations of the phenomena, the equation of state and macrokinetics of the HE decomposition in the shock and detonation waves have been evaluated. Effects of boron in the energy release process were observed both in the detonation and the shock-wave initiation regimes. In general, the boron gives a negative effect on the detonation parameters. It seems, the initial decomposition rate and the detonation parameters in the mixture are controlled by a heat exchange rather than by a chemical interaction between the HE decomposition products and the boron particles. The additional energy of the boron burn in the detonation products is released at later times ranging from 0.1-0.2 mks to 1-2 mks.

  20. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1988-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  1. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1987-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  2. Energy Release from Impacting Prominence Material Following the 2011 June 7 Eruption

    NASA Technical Reports Server (NTRS)

    Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A.

    2013-01-01

    Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10(exp 26) - 5.8 × 10(exp 27) erg) to the radiative energy (approx. 1.9 × 10(exp 25) - 2.5 × 10(exp 26) erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.

  3. ENERGY RELEASE FROM IMPACTING PROMINENCE MATERIAL FOLLOWING THE 2011 JUNE 7 ERUPTION

    SciTech Connect

    Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A.

    2013-10-10

    Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10{sup 26}-5.8 × 10{sup 27} erg) to the radiative energy (≈1.9 × 10{sup 25}-2.5 × 10{sup 26} erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.

  4. An autonomous drug release system based on chemo-mechanical energy conversion "Organic Engine" for feedback control of blood glucose.

    PubMed

    Kato, Ryodai; Munkhjargal, Munkhbayar; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Mitsubayashi, Kohji

    2010-12-15

    A novel autonomous drug release system was fabricated and tested. The system consists of two integrated units: decompression unit and drug release unit. The decompression unit was fabricated by separating a cylindrical cell into a top cell (gas phase) and a bottom cell (liquid phase) by glucose oxidase (GOD) enzyme immobilized membrane. The enzyme membrane recognizes glucose and converts chemical energy found in glucose to mechanical energy. The linear correlation between glucose concentration and de-pressure slope of the top cell was revealed as applying glucose solution to the bottom cell. Afterward, the drug release unit which utilizes the energy of the decompression unit as a power source was fabricated and evaluated by recording its release actions. The drug release unit was made to release at a constant quantity of drug in the liquid phase. The system was then fabricated by combining the decompression unit and the drug release unit. And it was evaluated in an open loop and in a closed loop by applying a mixture of glucose solution (100 mmol/l) and NADH(+) using glucose dehydrogenase enzyme (GDH) as a glucose reducer. Glucose concentration decreased gradually in the closed loop and, as a consequence, interval time of the GDH release became longer. In other words, an inverse correlation between actuation interval of the system and glucose concentration was shown. As a result, the possibility of feedback control of glucose concentration by the drug release system without external energy was confirmed.

  5. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔGrxn°(TC))/(RTC)+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn(TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  6. Enclosure fire hazard analysis using relative energy release criteria. [burning rate and combustion control

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1978-01-01

    A method for predicting the probable course of fire development in an enclosure is presented. This fire modeling approach uses a graphic plot of five fire development constraints, the relative energy release criteria (RERC), to bound the heat release rates in an enclosure as a function of time. The five RERC are flame spread rate, fuel surface area, ventilation, enclosure volume, and total fuel load. They may be calculated versus time based on the specified or empirical conditions describing the specific enclosure, the fuel type and load, and the ventilation. The calculation of these five criteria, using the common basis of energy release rates versus time, provides a unifying framework for the utilization of available experimental data from all phases of fire development. The plot of these criteria reveals the probable fire development envelope and indicates which fire constraint will be controlling during a criteria time period. Examples of RERC application to fire characterization and control and to hazard analysis are presented along with recommendations for the further development of the concept.

  7. Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

    SciTech Connect

    Vitello, P; Fried, L; Glaesemann, K; Souers, C

    2006-06-20

    We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for species coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.

  8. Shock-induced initiation and energy release behavior of polymer bonded explosive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Cai, Xuanming; Hypervelocity Impact Research Center Team

    2015-06-01

    In this paper, an initially sealed vented test chamber and a test projectile with a recessed hole were designed to complete the experiments. As the initiation takes place on the interior, great amounts of thermo-chemical energy gases were vented through a hole formed by the penetration process. The gas pressure inside the chamber was used to evaluate the energy release behavior of polymer bonded explosive materials. The impact pressure of the projectile was measured by the PVDF sensors. Based on the earlier work that the constitutive equation of polymer bonded explosive materials was established, the impact pressure of the projectile was obtained through the numerical simulation. The experimental results reveal that the impact pressure is significant to the energy release behavior, and in some extent the gas pressure improves with the velocity of the projectile. The impact pressure obtained by the experiments is comparing with which obtained through the numerical simulation, and the results of the comparing is that the value of them are closely relative. The experimental results also indicate that the constitutive equation of polymer bonded explosive materials used in the numerical simulation can correctly describe the mechanical behavior of PBX materials.

  9. Chemical Energy Release in Several Recently Discovered Detonation and Deflagration Flows

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2010-10-01

    Several recent experiments on complex detonation and deflagration flows are analyzed in terms of the chemical energy release required to sustain these flows. The observed double cellular structures in detonating gaseous nitromethane-oxygen and NO2-fuel (H2, CH4, and C2H6) mixtures are explained by the amplification of two distinct pressure wave frequencies by two exothermic reactions, the faster reaction forming vibrationally excited NO* and the slower reaction forming highly vibrationally excited N2**. The establishment of a Chapman-Jouguet (C-J) deflagration behind a weak shock wave, the C-J detonation established after a head-on collision with a shock front, and the C-J detonation conditions established in reactive supersonic flows are quantitatively calculated using the chemical energy release of a H2 + Cl2 mixture. For these three reactive flows, these calculations illustrate that different fractions of the exothermic chemical energy are used to sustain steady-state propagation. C-J detonation calculations on the various initial states using the CHEETAH chemical equilibrium code are shown to be in good agreement with experimental detonation velocity measurements for the head-on collision and supersonic flow detonations.

  10. ENERGY RELEASE AND INITIATION OF A SUNQUAKE IN A C-CLASS FLARE

    SciTech Connect

    Sharykin, I. N.; Kosovichev, A. G.; Zimovets, I. V.

    2015-07-01

    We present an analysis of the C7.0 solar flare from 2013 February 17, revealing a strong helioseismic response (sunquake) caused by a compact impact observed with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) in the low atmosphere. This is the weakest known C-class flare generating a sunquake event. To investigate the possible mechanisms of this event and understand the role of accelerated charged particles and photospheric electric currents, we use data from three space observatories: RHESSI, SDO, and Geostationary Operational Environmental Satellite. We find that the photospheric flare impact does not spatially correspond to the strongest hard X-ray emission source, but both of these events are parts of the same energy release. Our analysis reveals a close association of the flare energy release with a rapid increase in the electric currents and suggests that the sunquake initiation is unlikely to be caused by the impact of high-energy electrons, but may be associated with rapid current dissipation or a localized impulsive Lorentz force in the lower layers of the solar atmosphere.

  11. Residual thermal and moisture influences on the strain energy release rate analysis of local delaminations from matrix cracks

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1991-01-01

    An analysis utilizing laminated plate theory is developed to calculate the strain energy release rate associated with local delaminations originating at off-axis, single ply, matrix cracks in laminates subjected to uniaxial loads. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. Examples are calculated for the strain energy release rate associated with local delaminations originating at 90 degrees and angle-ply (non-90 degrees) matrix ply cracks in glass epoxy and graphite epoxy laminates. The solution developed may be used to assess the relative contribution of mechanical, residual thermal, and moisture stresses on the strain energy release rate for local delamination for a variety of layups and materials.

  12. Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-01-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.

  13. Spatiotemporal organization of energy release events in the quiet solar corona

    SciTech Connect

    Uritsky, Vadim M.; Davila, Joseph M.

    2014-11-01

    Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvénic interactions.

  14. Observational clues to the energy release process in impulsive solar bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1990-01-01

    The nature of the energy release process that produces impulsive bursts of hard X-rays and microwaves during solar flares is discussed, based on new evidence obtained using the method of Crannell et al. (1978). It is shown that the hard X-ray spectral index gamma is negatively correlated with the microwave peak frequency, suggesting a common source for the microwaves and X-rays. The thermal and nonthermal models are compared. It is found that the most straightforward explanations for burst time behavior are shock-wave particle acceleration in the nonthermal model and thermal conduction fronts in the thermal model.

  15. Variation of the energy release rate as a crack approaches and passes through an elastic inclusion

    NASA Technical Reports Server (NTRS)

    Li, Rongshun; Chudnovsky, A.

    1993-01-01

    The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.

  16. New RHESSI Results on Particle Acceleration and Energy Release in Solar Flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    2003-01-01

    The primary scientific objective of NASA RHESSI mission (launched February 2002) is to investigate the physics of particle acceleration and energy release in solar flares, through imaging and spectroscopy of X-ray gamma-ray continuum and gamma-ray lines emitted by accelerated electrons and ions, respectively. Here I summarize the new solar observations, including the first hard X-ray imaging spectroscopy, the first high resolution spectroscopy of solar gamma ray lines, the first imaging of solar gamma ray lines and continuum, and the highest sensitivity hard X-ray observations of microflares and type III solar radio bursts.

  17. A technique for predicting mode I energy release rates using a first-order shear deformable plate theory

    NASA Technical Reports Server (NTRS)

    Davidson, B. D.; Schapery, R. A.

    1990-01-01

    Utilizing a first order shear deformable plate theory, a technique is described for predicting the distribution of the energy release rate along a curved or straight mode I planar crack in the plane of a plate (such as a delamination crack). Accuracy of the technique is assessed by comparing the distributions of energy release rate with those predicted by two- and three-dimensional finite element analyses of double cantilever beam specimens with straight crack fronts.

  18. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    PubMed

    Abrecht, David G; Schwantes, Jon M

    2015-03-01

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  19. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    PubMed

    Abrecht, David G; Schwantes, Jon M

    2015-03-01

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores. PMID:25675358

  20. DEM code-based modeling of energy accumulation and release in structurally heterogeneous rock masses

    NASA Astrophysics Data System (ADS)

    Lavrikov, S. V.; Revuzhenko, A. F.

    2015-10-01

    Based on discrete element method, the authors model loading of a physical specimen to describe its capacity to accumulate and release elastic energy. The specimen is modeled as a packing of particles with viscoelastic coupling and friction. The external elastic boundary of the packing is represented by particles connected by elastic springs. The latter means introduction of an additional special potential of interaction between the boundary particles, that exercises effect even when there is no direct contact between the particles. On the whole, the model specimen represents an element of a medium capable of accumulation of deformation energy in the form of internal stresses. The data of the numerical modeling of the physical specimen compression and the laboratory testing results show good qualitative consistency.

  1. Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1990-01-01

    A tapered composite laminate subjected to tension load was analyzed using the finite-element method. The glass/epoxy laminate has a (+ or - 45)sub 3 group of plies dropped in three distinct steps, each 20 ply-thicknesses apart, thus forming a taper angle of 5.71 degrees. Steep gradients of interlaminar normal and shear stress on a potential delamination interface suggest the existence of stress singularities at the points of material and geometric discontinuities created by the internal plydrops. The delamination was assumed to initiate at the thin end of the taper on a -45/+45 interface and the delamination growth was simulated in both directions, i.e., along the taper and into the thin region. The strain-energy-release rate for a delamination growing into the thin laminate consisted predominantly of mode I (opening) component. For a delamination growing along the tapered region, the strain-energy-release rate was initially all mode I, but the proportion of mode I decreased with increase in delamination size until eventually total G was all mode II. The total G for both delamination tips increased with increase in delamination size, indicating that a delamination initiating at the end of the taper will grow unstably along the taper and into the thin laminate simultaneously.

  2. Mixed-mode strain-energy-release rate effects on edge delamination of composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1983-01-01

    Unnotched graphite/epoxy laminates, designed to delaminate at the edges under static and cyclic tensile loads, were tested and analyzed. The specimen stacking sequences were chosen so that the total strain-energy-release rate, G, for edge delamination was identical for all three layups. However, each layup had different percentages of crack-opening and shear-mode strain-energy-release rates, G sub 1 and G sub 2, respectively. Results with composites made from T300 graphite fibers and 5208 epoxy, a brittle resin, indicated that only G sub 1 contributed to delamination onset under static loading. However, results with composites made from C6000 fibers and H205 epoxy, a tougher resin, indicated that the total F governed the onset of edge delaminations under cyclic loads. In addition, for both materials, the threshold level of G for delamination onset in fatigue was significantly less than the critical G sub c measured in static tests. Futhermore, although the C6000/H205 material had a much higher static G sub c than T300/5208, its fatigue resistance was only slightly better. A series of mixed-mode tests, like the ones in this study, may be needed to evaluate toughened-resin composites developed for highly strained composite structures subjected to cyclic loads.

  3. Application of the relative energy release criteria to enclosure fire testing. [aircraft compartments

    NASA Technical Reports Server (NTRS)

    Roschke, E. J.; Coulbert, C. D.

    1979-01-01

    The five relative energy release criteria (RERC) which are a first step towards formulating a unified concept that can be applied to the development of fires in enclosures, place upper bounds on the rate and amount of energy released during a fire. They are independent, calculated readily, and may be applied generally to any enclosure regardless of size. They are useful in pretest planning and for interpreting experimental data. Data from several specific fire test programs were examined to evaluate the potential use of RERC to provide test planning guidelines. The RERC were compared with experimental data obtained in full-scale enclosures. These results confirm that in general the RERC do identify the proper limiting constraints on enclosure fire development and determine the bounds of the fire development envelope. Plotting actual fire data against the RERC reveals new valid insights into fire behavior and reveals the controlling constraints in fire development. The RERC were calculated and plotted for several descrpitions of full-scale fires in various aircraft compartments.

  4. Possible two-step solar energy release mechanism due to turbulent magnetic reconnection

    SciTech Connect

    Fan Quanlin; Feng Xueshang; Xiang Changqing

    2005-05-15

    In this paper, a possible two-step solar magnetic energy release process attributed to turbulent magnetic reconnection is investigated by magnetohydrodynamic simulation for the purpose of accounting for the closely associated observational features including canceling magnetic features and different kinds of small-scale activities such as ultraviolet explosive events in the lower solar atmosphere. Numerical results based on realistic transition region physical parameters show that magnetic reconnections in a vertical turbulent current sheet consist of two stages, i.e., a first slow Sweet-Parker-like reconnection and a later rapid Petschek-like reconnection, where the latter fast reconnection phase seems a direct consequence of the initial slow reconnection phase when a critical state is reached. The formation of coherent plasmoid of various sizes and their coalescence play a central role in this complex nonlinear evolution. The 'observed' values of the rate of cancellation flux as well as the approaching velocity of magnetic fragments of inverse polarity in present simulation are well consistent with the corresponding measurements in the latest observations. The difference between our turbulent magnetic reconnection two-step energy release model and other schematic two-step models is discussed and then possible application of present outcome to solar explosives is described.

  5. The energy release rate of a pressurized crack in soft elastic materials: effects of surface tension and large deformation.

    PubMed

    Liu, Tianshu; Long, Rong; Hui, Chung-Yuen

    2014-10-21

    In this paper we present a theoretical study on how surface tension affects fracture of soft solids. In classical fracture theory, the resistance to fracture is partly attributed to the energy required to create new surfaces. Thus, the energy released to the crack tip must overcome the surface energy in order to propagate a crack. In soft materials, however, surface tension can cause significant deformation and can reduce the energy release rate for crack propagation by resisting the stretch of crack surfaces. We quantify this effect by studying the inflation of a penny-shaped crack in an infinite elastic body with applied pressure. To avoid numerical difficulty caused by singular fields near the crack tip, we derived an expression for the energy release rate which depends on the applied pressure, the surface tension, the inflated crack volume and the deformed crack area. This expression is evaluated using a newly developed finite element method with surface tension elements. Our calculation shows that, when the elasto-capillary number ω ≡ σ/Ea is sufficiently large, where σ is the isotropic surface tension, E is the small strain Young's modulus and a is the initial crack radius, both the energy release rate and the crack opening displacement of an incompressible neo-Hookean solid are significantly reduced by surface tension. For a sufficiently high elasto-capillary number, the energy release rate can be negative for applied pressure less than a critical amount, suggesting that surface tension can cause crack healing in soft elastic materials.

  6. Metastable anions of dinitrobenzene: Resonances for electron attachment and kinetic energy release

    SciTech Connect

    Mauracher, A.; Denifl, S.; Edtbauer, A.; Hager, M.; Probst, M.; Scheier, P.; Echt, O.; Maerk, T. D.; Field, T. A.; Graupner, K.

    2010-12-28

    Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB{sup -} as well as several fragment anions. DNB{sup -}, (DNB-H){sup -}, (DNB-NO){sup -}, (DNB-2NO){sup -}, and (DNB-NO{sub 2}){sup -} are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H){sup -} features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO){sup -} offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C{sub 5}H{sub 4}O{sup -} with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels.

  7. Gamma Rays, Nuclear Structure and the Search for a Clean Energy Release From Nuclei

    NASA Astrophysics Data System (ADS)

    Carroll, James J.

    2008-03-01

    Gamma rays are emitted when a nucleus makes a transition from one state to another, so that a sequence of gamma rays chronicles the manner in which a nucleus sheds excess internal energy. The detection and analysis of gamma-ray emission therefore allows a determination of the properties of nuclear states and the probabilities for transitions between them. Not only do these transitions provide important physical insight into nuclear structure, they also present some intriguing possibilities. For example, a nucleus with a fortuitous combination of states might permit stimulated emission of an electromagnetic transition just as in atoms or molecules, leading to the development of a gamma-ray laser. Also, some nuclear excited states are known to decay so slowly that they are considered to be metastable: such isomers, a term borrowed from chemistry, can store excess internal energy with lifetimes up to many decades. It is possible that this energy could be harnessed without resorting to fission reactions, with their accompanying production of radioactive by-products. This talk will discuss the present synergy between state-of-the-art research into nuclear structure and ideas related to a controlled energy release from nuclei.

  8. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  9. Evaluation of a simplified gross thrust calculation method for a J85-21 afterburning turbojet engine in an altitude facility

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, J. L.

    1982-01-01

    A simplified gross thrust calculation method was evaluated on its ability to predict the gross thrust of a modified J85-21 engine. The method used tailpipe pressure data and ambient pressure data to predict the gross thrust. The method's algorithm is based on a one-dimensional analysis of the flow in the afterburner and nozzle. The test results showed that the method was notably accurate over the engine operating envelope using the altitude facility measured thrust for comparison. A summary of these results, the simplified gross thrust method and requirements, and the test techniques used are discussed in this paper.

  10. Using Sdo's AIA to Investigate Energy Transport from a Flare's Energy Release Site to the Chromosphere

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Holman, Gordon D.

    2012-01-01

    Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94, 131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightenedsimultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK.Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94,131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functionsavailable through SSWIDL with (2) EUV spectral line data observed in a flare loop

  11. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  12. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  13. Kinetic Energy Release dependence in the Photo Double Ionization of H2

    NASA Astrophysics Data System (ADS)

    Weber, Th.; Miyabe, S.; Belkacem, A.; McCurdy, C. W.; Lenz, U.; Jahnke, T.; Doerner, R.; Williams, J.; Landers, A.

    2012-06-01

    In the Photo Double Ionization (PDI) of hydrogen molecules with photon energies of 150eV we were able to probe the electronic two particle density as a function of the bond length, i.e. the Kinetic Energy Release (KER) of the ions, and the orientation of the molecular axis with respect to the polarization vector of the incoming ligh. We applied the COLTRIMS technique and measured two electrons and two protons in coincidence. We found a shift in the KER for σ and π transitions. While the KER is lower when the molecular axis is aligned parallel to the linear polarization vector (σ-σ), the KER for a perpendicular orientation (σ-π) is clearly higher by a little more than 1eV. Quantum mechanical ab initio calculations are able to quantify the shift in KER and the ratio for the two different transitions (β-parameter) for a broad range of photon energies (75 to 240eV). These results reflect the dependence of the σ and π amplitudes to the bond length. This shows that a simple KER measurement for horizontal and vertical polarization can be used to extract this information; it makes measuring the β-parameter as a function of KER obsolete.

  14. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  15. Explosive initiation practice and its effect on energy release in commercial explosives. Part 2

    SciTech Connect

    Mohanty, B. |; Joyce, D.K.

    1994-12-31

    In a previous paper, it was shown that a lack of clear understanding of the role of initiation mode on detonation characteristics often leads to under-utilization of the explosive system in blasting. This is of particular significance since the very large number of explosive initiation practices currently in use implicitly assumes that the blasting performance of an explosive is largely independent of the exact mode of initiation. This paper deals specifically with bulk-loaded and pneumatically-loaded ANFO under various initiation modes in small diameters. These include initiation by booster and detonating cords of various strengths, and combination of cords and boosters. The nature of energy release and energy partitioning between shock and gas energy have been studied in the underwater test as a function of charge diameter. The paper describes the relative merits of various initiation modes for specific charge geometries and confinement, under end- and side-initiated conditions. Guidelines have also been formulated for use in the field to match initiation practice with blasting requirements.

  16. Effect of slow energy releasing on divergent detonation of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui

    2014-03-01

    There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.

  17. Strain-energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1984-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 1 and mode 2 strain energy release rates G sub 1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth was apparently due to a large value of G sub 2.

  18. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  19. Strain-energy release rate analysis of a laminate with a postbuckled delamination

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.; Shivakumar, K. N.

    1987-01-01

    Delamination growth due to local buckling of a delamination was studied. Delamination growth was assumed to be related to the total strain-energy release rate, G. In order to calculate the distribution of G along the delamination front, a new virtual crack closure technique was developed which is suitable for use with plate analysis. A check of the technique indicated that it is accurate. For square and rectangular delaminations, there is a large variation of G along the delamination front. Hence, self-similar growth is not expected. Whether a delamination grows in the load direction or perpendicular to the load direction was found to depend on the current delamination aspect ratio, the strain level, and the absolute size of the delamination.

  20. Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Finite element method was used to analyze a tapered glass/epoxy composite laminate subjected to a tension load, in order to determine the interlaminar stress distributions the strain-energy release rate for the delamination growth that may occur due to ply drops. In a laminate having a typical configuration of a helicopter hub, the (+/- 45)3 plies were dropped in three distinct steps, each 20-ply thickness apart, with the resulting taper angle of 5.71 deg. Delaminations were assumed to initiate at the bottom of the taper on the -45/+45 interface, and the delamination growth was simulated along the taper and into the thin region. The results of the analysis indicated that a delamination initiating at the end of the taper will grow unstably along the taper and the thin laminate simultaneously.

  1. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  2. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  3. The surface-forming energy release rate based fracture criterion for elastic-plastic crack propagation

    NASA Astrophysics Data System (ADS)

    Xiao, Si; Wang, He-Ling; Liu, Bin; Hwang, Keh-Chih

    2015-11-01

    The J-integral based criterion is widely used in elastic-plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic-plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.

  4. Quantification of colloid retention and release by straining and energy minima in variably saturated porous media.

    PubMed

    Sang, Wenjing; Morales, Verónica L; Zhang, Wei; Stoof, Cathelijne R; Gao, Bin; Schatz, Anna Lottie; Zhang, Yalei; Steenhuis, Tammo S

    2013-08-01

    The prediction of colloid transport in unsaturated porous media in the presence of large energy barrier is hampered by scant information of the proportional retention by straining and attractive interactions at surface energy minima. This study aims to fill this gap by performing saturated and unsaturated column experiments in which colloid pulses were added at various ionic strengths (ISs) from 0.1 to 50 mM. Subsequent flushing with deionized water released colloids held at the secondary minimum. Next, destruction of the column freed colloids held by straining. Colloids not recovered at the end of the experiment were quantified as retained at the primary minimum. Results showed that net colloid retention increased with IS and was independent of saturation degree under identical IS and Darcian velocity. Attachment rates were greater in unsaturated columns, despite an over 3-fold increase in pore water velocity relative to saturated columns, because additional retention at the readily available air-associated interfaces (e.g., the air-water-solid [AWS] interfaces) is highly efficient. Complementary visual data showed heavy retention at the AWS interfaces. Retention by secondary minima ranged between 8% and 46% as IS increased, and was greater for saturated conditions. Straining accounted for an average of 57% of the retained colloids with insignificant differences among the treatments. Finally, retention by primary minima ranged between 14% and 35% with increasing IS, and was greater for unsaturated conditions due to capillary pinning.

  5. Intermittent Flare Energy Release: A Signature of Contracting Magnetic Islands from Reconnection?

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; Karpen, J. T.; DeVore, C.

    2013-12-01

    Many flares show short-lived enhancements of emission that protrude above their smooth underlying emission. These spikes have been observed over a vast energy spectrum, from radio to hard x-rays. In hard X-rays, for example, their duration ranges from 0.2 to 2 s, with the majority occurring during the flare impulsive phase (Cheng 2012). In most cases, this intermittent energy release is situated at the footpoints of flare arcades where ionized particles, previously accelerated to high energies at coronal heights, are decelerated by the dense solar surface. It is not yet understood what mechanisms accelerate ionized particles to the energies required to produce the observed emission spikes. Drake et al. (2006) proposed a kinetic mechanism for accelerating electrons from contracting magnetic islands that form as reconnection proceeds, analogous to the energy gain of a ball bouncing between converging walls. They estimated that multi-island regions of macroscopic dimensions might account for the required acceleration rates in flares, but at this time it is impractical to simulate large-scale systems in kinetic models. On the other hand, our recent high-resolution MHD simulations of a breakout eruptive flare (Karpen et al. 2012) allow us to resolve in detail the generation and evolution of macroscopic magnetic islands in a flare current sheet. Incorporating a rigorous kinetic model into our global simulations is not feasible at present. However, we intend to breach the gap between kinetic and fluid models by characterizing the contractions of islands as they move away from the main reconnection site, to determine their plausibility as candidates for the observed bursts of radiation. With our null-tracking capabilities, we follow the creation and evolution of the X- and O-type (island) nulls that result from spatially and temporally localized reconnection. Different regimes of current-sheet reconnection (slow/fast), island sizes, rates of island coalescence, and rates

  6. The Relationship Between Fire Energy Release and Weather Conditions in Russian Siberia

    NASA Astrophysics Data System (ADS)

    Shvetsov, E.

    2012-12-01

    Active fire remote sensing performed using spaceborne systems, such as MODIS radiometer aboard the Terra and Aqua satellites, provides observations of fire locations, as well as an estimate of the amount of energy released by the fire (Fire Radiative Power). Such measures of fire radiative power (FRP) provide information on fireline heat release intensity and on the amount and rate of biomass combustion in the large scale. Biomass combustion rate is strongly related to fuel moisture and therefore to weather conditions. The correlation analysis of fire radiative power and weather fire danger was performed for the territory of Siberia. The measurements were made during stable anticyclons which lead to severe drought that caused extreme fire behavior. Weather conditions were characterized using weather fire danger indices. The measurements of FRP were performed using MODIS instrument and weather fire danger indices were calculated using weather stations data. The analysis was performed for several Siberian regions mostly liable to fires. Weather fire danger was characterized by Russian fire danger indices and using Canadian Forest Fire Weather Index System. Only large fires having the final size of more than 500 ha were focused in this study. For the most weather stations it was rather good agreement between the fire danger indices and the measured fire radiative power for the most of the fires. For the weather stations considered the following weather indices had the best correlation with measured FRP values: Russian PV-1 index and Canadian DMC, DC and BUI indices. A regression model was formulated to characterize the relationship between wildfire radiative power and fire danger indices.However, it was found that the relationships have regional specificity and none of these indices can be considered as universal.

  7. The energy release rate of a pressurized crack in soft elastic materials: effects of surface tension and large deformation.

    PubMed

    Liu, Tianshu; Long, Rong; Hui, Chung-Yuen

    2014-10-21

    In this paper we present a theoretical study on how surface tension affects fracture of soft solids. In classical fracture theory, the resistance to fracture is partly attributed to the energy required to create new surfaces. Thus, the energy released to the crack tip must overcome the surface energy in order to propagate a crack. In soft materials, however, surface tension can cause significant deformation and can reduce the energy release rate for crack propagation by resisting the stretch of crack surfaces. We quantify this effect by studying the inflation of a penny-shaped crack in an infinite elastic body with applied pressure. To avoid numerical difficulty caused by singular fields near the crack tip, we derived an expression for the energy release rate which depends on the applied pressure, the surface tension, the inflated crack volume and the deformed crack area. This expression is evaluated using a newly developed finite element method with surface tension elements. Our calculation shows that, when the elasto-capillary number ω ≡ σ/Ea is sufficiently large, where σ is the isotropic surface tension, E is the small strain Young's modulus and a is the initial crack radius, both the energy release rate and the crack opening displacement of an incompressible neo-Hookean solid are significantly reduced by surface tension. For a sufficiently high elasto-capillary number, the energy release rate can be negative for applied pressure less than a critical amount, suggesting that surface tension can cause crack healing in soft elastic materials. PMID:25140489

  8. Calcium Carbonate Nanoplate Assemblies with Directed High-Energy Facets: Additive-Free Synthesis, High Drug Loading, and Sustainable Releasing.

    PubMed

    Zhang, Jing; Li, Yu; Xie, Hao; Su, Bao-Lian; Yao, Bin; Yin, Yixia; Li, Shipu; Chen, Fang; Fu, Zhengyi

    2015-07-29

    Developing drug delivery systems (DDSs) with high drug-loading capacity and sustainable releasing is critical for long-term chemotherapeutic efficacy, and it still remains challenging. Herein, vaterite CaCO3 nanoplate assemblies with exposed high-energy {001} facets have been synthesized via a novel, additive-free strategy. The product shows a high doxorubicin-loading capacity (65%); the best of all the CaCO3-based DDSs so far. Also, the product's sustainable releasing performance and its inhibition of the initial burst release, together, endow it with long-term drug efficacy. The work may shed light on exposing directed high-energy facets for rationally designing of a drug delivery system with long-term efficacy.

  9. Energy Dissipation and Release During Coal Failure Under Conventional Triaxial Compression

    NASA Astrophysics Data System (ADS)

    Peng, Ruidong; Ju, Yang; Wang, J. G.; Xie, Heping; Gao, Feng; Mao, Lingtao

    2015-03-01

    Theoretical and experimental studies have revealed that energy dissipation and release play an important role in the deformation and failure of coal rocks. To determine the relationship between energy transformation and coal failure, the mechanical behaviors of coal specimens taken from a 600-m deep mine were investigated by conventional triaxial compression tests using five different confining pressures. Each coal specimen was scanned by microfocus computed tomography before and after testing to examine the crack patterns. Sieve analysis was used to measure the post-failure coal fragments, and a fractal model was developed for describing the size distribution of the fragments. Based on the test results, a damage evolution model of the rigidity degeneration of coal before the peak strength was also developed and used to determine the initial damage and critical damage variables. It was found that the peak strength increased with increasing confining pressure, but the critical damage variable was almost invariant. More new cracks were initiated in the coal specimens when there was no confining pressure or the pressure was too high. The parameters of failure energy ratio β and stress drop coefficient α are further proposed to describe the failure mode of coal under different confining pressures. The test results revealed that β was approximately linearly related to the fractal dimension of the coal fragments and that a higher failure energy ratio corresponded to a larger fractal dimension and more severe failure. The stress drop coefficient α decreased approximately exponentially with increasing confining pressure, and could be used to appropriately describe the evolution of the coal failure mode from brittle to ductile with increasing confining pressure. A large β and small α under a high confining pressure were noticed during the tests, which implied that the failure of the coal was a kind of pseudo-ductile failure. Brittle failure occurred when the confining

  10. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  11. The statistical analysis of energy release in small-scale coronal structures

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  12. Multiple loop activations and continuous energy release in the solar flare of June 15, 1973

    NASA Technical Reports Server (NTRS)

    Widing, K. G.; Dere, K. P.

    1977-01-01

    The spatial and temporal evolution of the high-temperature plasma in the solar flare of June 15, 1973, is studied using XUV spectroheliograms and X-ray filtergrams obtained from Skylab. The analysis focuses on the changing forms and brightness of Fe XXIII 263-A and Fe XXIV 255-A images. Temperatures and emission measures computed for different times during the flare are compared with those derived from Solrad-9 flux data, the electron temperature in the bright compact core of the Fe XXIV image is determined, and a coronal origin is suggested for this bright core. The observational evidence shows that the overall flare event involved a number of different preexisting loops and arches which were activated in succession. The activation and heating are found to have persisted well past the end of the burst phase, implying that the energy release did not end when the impulsive phase was over. The overall development of the flare is summarized on the basis of the observed order of appearance of the loops.

  13. Limits on the thermal energy release from radioactive wastes in a mined geologic repository

    SciTech Connect

    Scott, J.A.

    1983-03-01

    The theraml energy release of nuclear wastes is a major factor in the design of geologic repositories. Thermal limits need to be placed on various aspets of the geologic waste disposal system to avoid or retard the degradation of repository performance because of increased temperatures. The thermal limits in current use today are summarized in this report. These limits are placed in a hierarchial structure of thermal criteria consistent with the failure mechanism they are trying to prevent. The thermal criteria hierarchy is used to evaluate the thermal performance of a sample repository design. The design consists of disassembled BWR spent fuel, aged 10 years, close packed in a carbon steel canister with 15 cm of crushed salt backfill. The medium is bedded salt. The most-restrictive temperature for this design is the spent-fuel centerline temperature limit of 300/sup 0/C. A sensitivity study on the effects of additional cooling prior to disposal on repository thermal limits and design is performed.

  14. Computation of strain energy release rates for skin-stiffener debonds modeled with plate elements

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Raju, I. S.; Davila, C. G.; Sleight, D. W.

    1993-01-01

    An efficient method for predicting the strength of debonded composite skin-stiffener configurations is presented. This method, which is based on fracture mechanics, models the skin and the stiffener with two-dimensional (2D) plate elements instead of three-dimensional (3D) solid elements. The skin and stiffener flange nodes are tied together by two modeling techniques. In one technique, the corresponding flange and skin nodes are required to have identical translational and rotational degrees-of-freedom. In the other technique, the corresponding flange and skin nodes are only required to have identical translational degrees-of-freedom. Strain energy release rate formulas are proposed for both modeling techniques. These formulas are used for skin-stiffener debond cases with and without cylindrical bending deformations. The cylindrical bending results are compared with plane-strain finite element results. Excellent agreement between the two sets of results is obtained when the second technique is used. Thus, from these limited studies, a preferable modeling technique for skin-stiffener debond analysis using plate elements is established.

  15. Analytical Model for Prediction of Reduced Strain Energy Release Rate of Single-Side-Patched Plates

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Lee, W. Y.; McGee, A. S.; Hart, D. C.; Loup, D. C.; Rasmussen, E. A.

    2013-12-01

    A study was undertaken to develop an analytical model that can predict how much reduction in Strain Energy Release Rate (SERR) can be achieved by repairing a cracked plate using a single-side bonded patch. The plate may be subjected to inplane or out-of-plane bending loading. Furthermore, the plate may be flat or curved in a cylindrical shape. The model helps to select patch material (i.e., elastic modulus of the material) and the appropriate patch size in order to reduce the SERR at the crack tip of the patched base plate. In other words, the analytical model can be utilized to select the patch material and patch dimensions required to achieve the desired SERR for a cracked base plate with known modulus, thickness, and crack size. The model is based on axial and bending stresses of the single-side strap joint configuration, which are related to the SERR at the crack tip of a plate with a single-side patch repair. In order to verify the analytical model, finite element analyses were conducted to determine stresses as well as SERR in many different patched plates. The numerical study confirmed the validity of the analytical model in predicting the reduction ratio of SERR resulting from the single-side patch repair.

  16. Afterburner Performance of Circular V-Gutters and a Sector of Parallel V-Gutters for a Range of Inlet Temperatures to 1255 K (1800 F)

    NASA Technical Reports Server (NTRS)

    Brandstetter, J. Robert; Reck, Gregory M.

    1973-01-01

    Combustion tests of two V-gutter types were conducted in a 19.25-in. diameter duct using vitiated air. Fuel spraybars were mounted in line with the V-gutters. Combustor length was set by flame-quench water sprays which were part of a calorimeter for measuring combustion efficiency. Although the levels of performance of the parallel and circular array afterburners were different, the trends with geometry variations were consistent. Therefore, parallel arrays can be used for evaluating V-gutter geometry effects on combustion performance. For both arrays, the highest inlet temperature produced combustion efficiencies near 100 percent. A 5-in. spraybar - to - V-gutter spacing gave higher efficiency and better lean blowout performance than a spacing twice as large. Gutter durability was good.

  17. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame using Ultra-Bright Cr-Doped GdAlO3 Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.

    2013-01-01

    Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.

  18. Diagnosing physical conditions near the flare energy-release sites from observations of solar microwave type III bursts

    NASA Astrophysics Data System (ADS)

    Tan, Bao-Lin; Karlický, Marian; Mészárosová, Hana; Huang, Guang-Li

    2016-05-01

    In the physics of solar flares, it is crucial to diagnose the physical conditions near the flare energy-release sites. However, so far it is unclear how to diagnose these physical conditions. A solar microwave type III burst is believed to be a sensitive signature of primary energy release and electron accelerations in solar flares. This work takes into account the effect of the magnetic field on the plasma density and develops a set of formulas which can be used to estimate the plasma density, temperature, magnetic field near the magnetic reconnection site and particle acceleration region, and the velocity and energy of electron beams. We apply these formulas to three groups of microwave type III pairs in an X-class flare, and obtained some reasonable and interesting results. This method can be applied to other microwave type III bursts to diagnose the physical conditions of source regions, and provide some basic information to understand the intrinsic nature and fundamental processes occurring near the flare energy-release sites.

  19. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo E-mail: kewley@ifa.hawaii.ed E-mail: eberger@cfa.harvard.ed

    2010-12-10

    We compare the redshifts, host galaxy metallicities, and isotropic (E{sub {gamma}},iso) and beaming-corrected (E{sub {gamma}}) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z < 1. From this comparison, we find no statistically significant correlation between host metallicity and redshift, E{sub {gamma}},iso, or E{sub {gamma}}. These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  20. Strain energy release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  1. Strain-energy-release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1987-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  2. Kinetic-energy release distributions of fragment anions from collisions of potassium atoms with D-Ribose and tetrahydrofuran*

    NASA Astrophysics Data System (ADS)

    Rebelo, André; Cunha, Tiago; Mendes, Mónica; da Silva, Filipe Ferreira; García, Gustavo; Limão-Vieira, Paulo

    2016-06-01

    Kinetic-energy release distributions have been obtained from the width and shapes of the time-of-flight (TOF) negative ion mass peaks formed in collisions of fast potassium atoms with D-Ribose (DR) and tetrahydrofuran (THF) molecules. Recent dissociative ion-pair formation experiments yielding anion formation have shown that the dominant fragment from D-Ribose is OH- [D. Almeida, F. Ferreira da Silva, G. García, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013)] whereas in the case of THF is O- [D. Almeida, F. Ferreira da Silva, S. Eden, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 690 (2014)]. The results for DR and THF show an energy distribution profile reminiscent of statistical degradation via vibrational excitation and partly due to direct transformation of the excess energy in translational energy.

  3. Design and characterization of a compact multi-detector gamma spectrometer for studies of triggered energy release from nuclear isomers

    NASA Astrophysics Data System (ADS)

    Ugorowski, Philip; Propri, Ronald J.; Caldwell, Nathan; Lazich, Joseph; Carroll, James J.

    2004-10-01

    Nuclear Isomers are long-lived nuclear excited states, with lifetimes ranging up to decades or longer. Recently, attention has focused on the second isomeric state of 178-Hf (31-year natural half-life). The spontaneous decay takes the form of a cascade of gamma photons, totaling 2.45 MeV of energy per nucleus and corresponding to an energy density of 1.3 GigaJoules/gram. Since the ground state is stable, there is no radioactive residue and the 2.4 MeV therefore represents a ``clean'' release of energy. It has been suggested that isomers like this could be used for applications and that would require some means of causing an energy release upon demand. Thus, experiments have been performed to determine the cross-sections for x-ray induced decay, if it occurs. Positive indications by one group have been plagued by poor statistical accuracy in looking for triggered increases in the numbers of photons that correspond to the natural decay cascades. A refined technique based on calorimetry of gamma cascades has been devised to avoid these problems and a portable multi-detector array has been constructed for this purpose. This talk will discuss the design and characterization of this system.

  4. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    NASA Astrophysics Data System (ADS)

    Gordienko, P. V.; Kotsarev, A. V.; Lizorkin, M. P.

    2014-12-01

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  5. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    SciTech Connect

    Gordienko, P. V. Kotsarev, A. V.; Lizorkin, M. P.

    2014-12-15

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  6. The North Korean nuclear test in 2016 - release of shear energy determined by 3D moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Barth, Andreas

    2016-04-01

    On January 6, 2016 the Democratic People's Republic of Korea (DPRK) carried out an announced nuclear test, which was the fourth after tests conducted in 2006, 2009, and 2013. An important task in discriminating a man-made explosion and a natural tectonic earthquake is the analysis of seismic waveforms. To determine the isotropic and non-isotropic characteristics of the detonation source, I invert long-period seismic data for the full seismic moment tensor to match the observed seismic signals by synthetic waveforms based on a 3D earth model. Here, I show that the inversion of long-period seismic data of the 2016 test reveals a clear explosive (isotropic) component combined with a significant release of shear energy by the double-couple part of the moment tensor. The short- and long-period waveforms of the recent test are very similar to the previous ones. First data show that the energy release of the recent event on long periods greater than 10 s is enlarged by 20-30% compared to the nuclear test in 2013. As shown previously, the double-couple part of the 2009 event was lower by a factor of 0.55 compared to the explosion in 2013, while the isotropic parts of the nuclear tests in 2009 and 2013 were similar (Barth, 2014). However, the recent test again shows a rather small double-couple part, indicating a lower amount of shear-energy radiation than in 2013. This highlights the importance of considering the release of shear energy in understanding near source damaging effects and the containment of nuclear explosions.

  7. Advanced Breeding, Development, and Release of High Biomass Energy Cane Cultivars in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research into alternative energy sources has been on the rise since the 1970s. Novel sources of carbon-neutral energy are currently in high demand, but can pose different challenges in their development. Energy cane is a relatively new generation crop being bred as a source for biofuel feedstock and...

  8. Energy dispersive X-ray microanalysis, fluoride release, and antimicrobial properties of glass ionomer cements indicated for atraumatic restorative treatment

    PubMed Central

    Saxena, Sudhanshu; Tiwari, Sonia

    2016-01-01

    Aim: The aim of this study was to compare constituents of glass powder, fluoride release, and antimicrobial properties of new atraumatic restorative treatment material with zirconia fillers and conventional glass ionomer cement (GIC) type IX. Materials and Methods: Thisin vitro study comparing Zirconomer and Fuji IX was executed in three parts: (1) energy dispersive X-ray microanalysis of glass powders (2) analysis of fluoride release at 1st, 3rd, 7th, 15th, and 30th day, and (3) antimicrobial activity against Streptococcus mutans, Lactobacillus casei, and Candida albicans at 48 hours. Data was analyzed using unpaired t-test and two way analysis of variance followed by least significant difference post hoc test. A P value of < 0.05 was considered statistically significant. Results: Energy dispersive X-ray microanalysis revealed that, in both Zirconomer and Fuji IX glass powders, mean atomic percentage of oxygen was more than 50%. According to the weight percentage, zirconium in Zirconomer and silica in Fuji IX were the second main elements. Calcium, zinc, and zirconium were observed only in Zirconomer. At all the time intervals, statistically significant higher amount of fluoride release was observed with Zirconomer than Fuji IX. At 48 hours, mean ± standard deviation (SD) of zone of inhibition against Streptococcus mutans was 11.14 ± 0.77 mm and 8.51 ± 0.43 mm for Zirconomer and Fuji IX, respectively. Against Lactobacillus casei, it was 14.06 ± 0.71 mm for Zirconomer and 11.70 ± 0.39 mm for Fuji IX. No antifungal activity was observed against Candida albicans by Zirconomer and Fuji IX. Conclusion: Zirconomer had higher antibacterial activity against Streptococcus mutans and Lactobacillus casei, which may be attributed to its composition and higher fluoride release. However, it failed to show antifungal effect againstCandida albicans. PMID:27583226

  9. Volcanic Clast Cooling Model for the Estimation of the Thermal Energy Release from Vulcanian or Strombolian Explosion

    NASA Astrophysics Data System (ADS)

    Cárdenas-Sánchez, E.; De La Cruz-Reyna, S.; Varley, N. R.

    2013-12-01

    Images were obtained at Popocatepetl and Volcán de Colima, Mexico, during periods of high explosivity, wich resulted lava dome destructions during 1998-2002 and 2005-2007 respectively. We have developed a method to estimate the relative thermal energy release for explosions, and the degree of conversion into mechanical energy spent during fragmentation of the ejecta, based on the cooling rate inferred from successive thermal images obtained immediately after each explosion. The cooling rate was measured on selected pixels of the thermal images, and compared with different possible distributions of fragment sizes considering weighted averages of fragments in the pixels. The selected explosions threw significant amounts of hot debris on the volcano flanks. The optimal fitting of fragment distributions reveals the degree of fragmentation of individual explosions, and along with a model for the cooling process, permitted an estimation of the relative thermal energy release for the area covered by the image. Additionally, the results indicate that radiative thermal conductivity plays a significant role for the outer shell of the fragments, suggesting a free mean path of thermal infrared photons that may reach several millimeters or even a few centimeters.

  10. Estimation of the energy release and thermal properties of ejected clasts from explosive eruptions using a thermal imaging camera

    NASA Astrophysics Data System (ADS)

    De la Cruz-Reyna, S.; Cárdenas-Sánchez, E.

    2012-04-01

    Thermal images were obtained at Popocatépetl, central Mexico, during the period of high lava-dome destruction activity between 1998 and 2002. Similarly, thermal cameras have operated at Colima volcano, western Mexico during episodes of similar explosive activity in 2005 and 2007. We have developed a method to estimate the relative thermal energy release among explosions, and the degree of conversion into mechanical energy spent in the fragmentation of the ejecta, based on the cooling rate inferred from successive thermal images obtained immediately after each explosion. The thermal imaging cameras were located at about 11 km from the crater at Popocatépetl, and at about 6 km from the crater at Colima. The selected explosions threw significant amounts of hot debris on the volcano flanks. The cooling rate was then measured on selected pixels of the thermal images, and compared with different possible distributions of fragment sizes considering weighted averages of fragments in the pixels. The optimal fitting of fragment distributions reveals the degree of fragmentation of individual explosions, and along with a model for the cooling process, permitted to estimate the relative thermal energy release on the area covered by the image. Additionally, the results indicate that the radiative thermal conductivity plays a significant role on the outer shell of the fragments, suggesting a free mean path of thermal infrared photons that may reach several millimeters or even a few centimeters.

  11. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  12. Frequency and load ratio effects on critical strain energy release rate Gc thresholds of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.; Zimmerman, richard S.; Odom, Edwin M.

    1987-01-01

    Graphite/epoxy composite laminates of T300/BP907 and AS6/HST-7 were axial-tension fatigue tested. Tests were conducted at 5 and 10 Hz, and at loading ratios of R = 0.1 and R = 0.5. Edge delamination was monitored as a function of number of fatigue cycles by monitoring stiffness reduction during fatigue testing. Delamination was confirmed and documented using dye-enhanced X-ray and optical photography. Critical strain energy release rates were then calculated. The composites delaminated readily, with loading ratio having a significant influence. Frequency effects were negligible.

  13. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  14. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-01

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate.

  15. FEDS user`s guide: Facility energy screening. Release 2.10

    SciTech Connect

    Dirks, J.A.

    1995-01-01

    The Facility Energy Decision Screening (FEDS) Model is under development at Pacific Northwest Laboratory (PNL) for the US DOE Federal Energy Management Program (DOE-FEMP) and the US Army Construction Engineering REsearch Laboratory (USA-CERL). FEDS is a multi-level energy analysis software system designed to provide a comprehensive approach to fuel-neutral, technology-independent, integrated (energy) resource planning and acquisition. The FEDS system includes Level-1, which is a top-down, first-pass energy systems analysis and energy resource acquisition decision software model for buildings and facilities, and the Level-2 software model, which allows specific engineering inputs and provides detailed output. The basic intent of the model is to provide an installation with the information necessary to determine the minimum life-cycle cost (LCC) configuration of the installation`s energy generation and consumption infrastructure. The model has no fuel or technology bias; it simply selects the technologies that will provide an equivalent or superior level of service (e.g., heating, cooling, illumination) at the minimum LCC.

  16. Fundamental Study of Direct Contact Cold Energy Release by Flowing Hot Air through Ice Particles Packed Layer

    NASA Astrophysics Data System (ADS)

    Aoyama, Sigeo; Inaba, Hideo

    This paper has dealt with the direct contact heat exchange characteristics between ice particles (average ice particle diameter : 3.10mm) packed in the rectangular cold energy storage vessel and flowing hot air as a heat transfer medium. The hot air bubbles ascended in the fluidized ice particles layer, and they were cooled down directly by melting ice particles. The temperature efficiency increased as Reynolds number Re increased because the hot air flowing in the layer became active. The dehumidity efficiency increased with an increase in modified Stefan number and Re, since the heat capacity of inlet air and heat transfer coefficient increased. Finally, some empirical correlations for temperature efficiency, dehumidity efficiency and the completion time of cold energy release were derived in terms of various nondimensional parameters.

  17. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    SciTech Connect

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  18. Q3DG: A computer program for strain-energy-release rates for delamination growth in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1986-01-01

    The Q3DG is a computer program developed to perform a quasi-three-dimensional stress analysis for composite laminates which may contain delaminations. The laminates may be subjected to mechanical, thermal, and hygroscopic loads. The program uses the finite element method and models the laminates with eight-noded parabolic isoparametric elements. The program computes the strain-energy-release components and the total strain-energy release in all three modes for delamination growth. A rectangular mesh and data file generator, DATGEN, is included. The DATGEN program can be executed interactively and is user friendly. The documentation includes sections dealing with the Q3D analysis theory, derivation of element stiffness matrices and consistent load vectors for the parabolic element. Several sample problems with the input for Q3DG and output from the program are included. The capabilities of the DATGEN program are illustrated with examples of interactive sessions. A microfiche of all the examples is included. The Q3DG and DATGEN programs have been implemented on CYBER 170 class computers. Q3DG and DATGEN were developed at the Langley Research Center during the early eighties and documented in 1984 to 1985.

  19. Subsonic vortex motion of a gas under conditions of intense energy release in an optical plasmatron

    NASA Astrophysics Data System (ADS)

    Raizer, Iu. P.; Silantev, A. Iu.; Surzhikov, S. T.

    1986-02-01

    The paper presents preliminary results of the numerical modeling of a two-dimensional process in an optical plasmatron, involving a continuous optical discharge in a gas flow. Calculations were carried out for air at atmospheric pressure, an initial power of 6 kW, a laser-beam diameter of 4 cm, and a lens focus of 20 cm. Results indicate that the oncoming flow encounters a vortex in the rear part of the hot region, and flows around it as it would a solid body. The vortex flow removes heat from the hot zone laterally, releases it, and (having been cooled) is sucked back into the discharge, thus intensifying the heat transfer.

  20. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup.

  1. Effects of levomilnacipran extended-release on motivation/energy and functioning in adults with major depressive disorder.

    PubMed

    Thase, Michael E; Gommoll, Carl; Chen, Changzheng; Kramer, Kenneth; Sambunaris, Angelo

    2016-11-01

    The objective of this post-hoc analysis was to investigate the relationship between motivation/energy and functional impairment in patients with major depressive disorder (MDD). Data were taken from a phase 3 trial of levomilnacipran extended-release (ER) in adults with MDD (NCT01034462; N=429) that used the 18-item Motivation and Energy Inventory (MEI) to assess motivation/energy. Two subgroups with lower and higher motivation/energy were defined using baseline MEI total scores (≤28 and >28, respectively). Change from baseline in the Sheehan Disability Scale (SDS) total score was analyzed in the intent-to-treat (ITT) population and both subgroups. Path analyses were carried out in the ITT population and a lower MEI subgroup to assess the direct and indirect effects of levomilnacipran ER on SDS total score change. In the ITT population and the lower MEI subgroup, significant differences were found between levomilnacipran ER and placebo for changes in the SDS total score (-2.6 and -3.9, both P<0.01), but not in the higher MEI subgroup. The indirect effect of levomilnacipran ER on SDS total score improvement, as mediated by MEI total score change, was 79.9% in the lower MEI subgroup and 67.2% in the ITT population. Levomilnacipran ER was previously shown to improve motivation/energy in adults with MDD. The current analysis indicates that improvements in functional impairment were considerably mediated by improvements in motivation/energy, particularly in patients with lower motivation/energy at baseline.

  2. Kinetic Energy Release of the Singly and Doubly Charged Methylene Chloride Molecule: The Role of Fast Dissociation.

    PubMed

    Alcantara, K F; Rocha, A B; Gomes, A H A; Wolff, W; Sigaud, L; Santos, A C F

    2016-09-01

    The center of mass kinetic energy release distribution (KERD) spectra of selected ionic fragments, formed through dissociative single and double photoionization of CH2Cl2 at photon energies around the Cl 2p edge, were extracted from the shape and width of the experimentally obtained time-of-flight (TOF) distributions. The KERD spectra exhibit either smooth profiles or structures, depending on the moiety and photon energy. In general, the heavier the ionic fragments, the lower their average KERDs are. In contrast, the light H(+) fragments are observed with kinetic energies centered around 4.5-5.5 eV, depending on the photon energy. It was observed that the change in the photon energy involves a change in the KERDs, indicating different processes or transitions taking place in the breakup process. In the particular case of double ionization with the ejection of two charged fragments, the KERDs present have characteristics compatible with the Coulombic fragmentation model. Intending to interpret the experimental data, singlet and triplet states at Cl 2p edge of the CH2Cl2 molecule, corresponding to the Cl (2p → 10a1*) and Cl (2p → 4b1*) transitions, were calculated at multiconfigurational self-consistent field (MCSCF) level and multireference configuration interaction (MRCI). These states were selected to form the spin-orbit coupling matrix elements, which after diagonalization result in a spin-orbit manifold. Minimum energy pathways for dissociation of the molecule were additionally calculated aiming to give support to the presence of the ultrafast dissociation mechanism in the molecular breakup. PMID:27523328

  3. Effects of levomilnacipran extended-release on motivation/energy and functioning in adults with major depressive disorder

    PubMed Central

    Gommoll, Carl; Chen, Changzheng; Kramer, Kenneth; Sambunaris, Angelo

    2016-01-01

    The objective of this post-hoc analysis was to investigate the relationship between motivation/energy and functional impairment in patients with major depressive disorder (MDD). Data were taken from a phase 3 trial of levomilnacipran extended-release (ER) in adults with MDD (NCT01034462; N=429) that used the 18-item Motivation and Energy Inventory (MEI) to assess motivation/energy. Two subgroups with lower and higher motivation/energy were defined using baseline MEI total scores (≤28 and >28, respectively). Change from baseline in the Sheehan Disability Scale (SDS) total score was analyzed in the intent-to-treat (ITT) population and both subgroups. Path analyses were carried out in the ITT population and a lower MEI subgroup to assess the direct and indirect effects of levomilnacipran ER on SDS total score change. In the ITT population and the lower MEI subgroup, significant differences were found between levomilnacipran ER and placebo for changes in the SDS total score (−2.6 and −3.9, both P<0.01), but not in the higher MEI subgroup. The indirect effect of levomilnacipran ER on SDS total score improvement, as mediated by MEI total score change, was 79.9% in the lower MEI subgroup and 67.2% in the ITT population. Levomilnacipran ER was previously shown to improve motivation/energy in adults with MDD. The current analysis indicates that improvements in functional impairment were considerably mediated by improvements in motivation/energy, particularly in patients with lower motivation/energy at baseline. PMID:27455513

  4. Photothermal initiation of hybrid organic/inorganic metastable interstitial composites: synergistic effects on the dynamics of energy release.

    PubMed

    Mileham, Melissa L; Park, Chi-Dong; van de Burgt, Lambertus J; Kramer, Michael P; Stiegman, A E

    2008-12-11

    The organic high-energy material pentaerythritol tetranitrate (PETN) was incorporated at low concentrations into Al (100 nm)/Fe(2)O(3) metastable intersitital composites (MIC) to form a hybrid organic/inorganic high-energy material. Studies of the dynamics of energy release were carried out by initiating the reaction photothermally with a single 8 ns pulse of the 1064 nm fundamental of a Nd:YAG laser. The reaction dynamics were measured using time-resolved spectroscopy of the light emitted from the deflagrating material. Two parameters were measured: the time to initiation and the duration of the deflagration. The presence of small amounts of PETN (16 mg/g of MIC) results in a dramatic decrease in the initiation time. This is attributed to a contribution to the temperature of the reacting system from the combustion of the PETN that, at lower loadings, appears to follow an Arrhenius dependence. The presence of PETN was also found to reduce the energy density required for single-pulse photothermal initiation by an order of magnitude, suggesting that hybrid materials such as this may be engineered to optimize their use as an efficient photodetonation medium. PMID:18942803

  5. Photothermal initiation of hybrid organic/inorganic metastable interstitial composites: synergistic effects on the dynamics of energy release.

    PubMed

    Mileham, Melissa L; Park, Chi-Dong; van de Burgt, Lambertus J; Kramer, Michael P; Stiegman, A E

    2008-12-11

    The organic high-energy material pentaerythritol tetranitrate (PETN) was incorporated at low concentrations into Al (100 nm)/Fe(2)O(3) metastable intersitital composites (MIC) to form a hybrid organic/inorganic high-energy material. Studies of the dynamics of energy release were carried out by initiating the reaction photothermally with a single 8 ns pulse of the 1064 nm fundamental of a Nd:YAG laser. The reaction dynamics were measured using time-resolved spectroscopy of the light emitted from the deflagrating material. Two parameters were measured: the time to initiation and the duration of the deflagration. The presence of small amounts of PETN (16 mg/g of MIC) results in a dramatic decrease in the initiation time. This is attributed to a contribution to the temperature of the reacting system from the combustion of the PETN that, at lower loadings, appears to follow an Arrhenius dependence. The presence of PETN was also found to reduce the energy density required for single-pulse photothermal initiation by an order of magnitude, suggesting that hybrid materials such as this may be engineered to optimize their use as an efficient photodetonation medium.

  6. A quantitative study of the energy release in the aftershocks of the Bhuj earthquake, 2001, India, using Lg phase

    NASA Astrophysics Data System (ADS)

    Jayachandran, G.; Abdul Razak, M. M.; Prasad, A. G. V.; Unnikrishnan, E.

    2003-07-01

    The devastating earthquake on 26 January 2001 at Bhuj, India, resulted in large-scale death and destruction of properties of several million US dollars. The moment magnitude of the earthquake was 7.7 and its maximum focal intensity exceeded X in MM scale. The rate of aftershocks of this earthquake, recorded at Gauribidanur seismic array station (GBA), shows a monotonic decay with time superposed with oscillations. For the Indian continent the Lg phase is a prominent arrival at regional distances. The estimate of Lg amplitude is obtained by optimally fitting the Lg wave train to a exponential decay curve. The logarithm of these amplitudes and logarithm of root mean square (rms) value of actual amplitudes of the Lg are calibrated with USGS mb to create a local mbLg magnitude scale. The energy released from these aftershocks is calculated from the rms value of Lg phase. The plot of cumulative energy release with time follows the power law of the form t p, superposed with oscillations. The exponent of the power law, p, is estimated both by a time-window scanning method and by an interpolation method. The value of p is 0.434 for time-window scanning method and 0.432 for the interpolation method. The predominant periods found in the oscillatory part of the cumulative energy, obtained by differencing the observed from the power law fit, are 10.6, 7.9, 5.4, 4.6 and 3.5 h for time-window scanning method. The corresponding periods for interpolation method are 13.4, 11.5, 7.4, 4.2, 3.5, 2.6 and 2.4 h.

  7. Linear response subordination to intermittent energy release in off-equilibrium aging dynamics

    NASA Astrophysics Data System (ADS)

    Christiansen, Simon; Sibani, Paolo

    2008-03-01

    The interpretation of experimental and numerical data describing off-equilibrium aging dynamics crucially depends on the connection between spontaneous and induced fluctuations. The hypothesis that linear response fluctuations are statistically subordinated to irreversible outbursts of energy, so-called quakes, leads to predictions for the average values and the fluctuation spectra of physical observables in reasonable agreement with experimental results (see e.g. Sibani et al 2006 Phys. Rev. B 74 224407). Using simulational data from a simple but representative Ising model with plaquette interactions, direct statistical evidence supporting the subordination hypothesis is presented and discussed in this work. Both energy and magnetic fluctuations are analyzed, with and without an external magnetic field present. In all cases, fluctuation spectra have a Gaussian zero centered component. For large negative values, the energy spectrum additionally features an intermittent tail describing the quakes. In the magnetization spectrum, two intermittent tails are present. These are symmetric around zero for zero-field, but asymmetric in other cases. The field has thus a biasing effect on the spontaneous intermittent magnetic fluctuations. Furthermore, the field has a negligible effect on the energy fluctuation spectra. From the observed strict temporal correlation between quakes and intermittent magnetization fluctuations, it is possible to conclude that the linear response is controlled by the quakes and inherits their temporal statistics. On this basis, the information culled from intermittent linear response data can be analyzed in the same way as spontaneous thermal energy fluctuations. The latter have a central rôle in thermally activated dynamics, but are harder to measure than linear response data.

  8. Model verification of thermal programmed desorption-mass spectrometry for estimation of release energy values for polycyclic aromatic hydrocarbons on mineral sorbents.

    PubMed

    Nicholl, Sara I; Talley, Jeffrey W; Silliman, Stephan

    2004-11-01

    The physical availability of organic compounds in soil and sediment strongly influences their bioavailability and toxicity. Previous work has indicated that physical availability changes throughout the processes of aging and treatment and that it can be linked to the energy required to release the compound from its sorbent matrix, with a higher energy indicating a more tightly bound compound. This study focused on determining release energy values for various mineral geosorbents (glass beads, sand, and kaolin) contaminated with a 16 polycyclic aromatic hydrocarbon (PAH) mixture. The sorbents were analyzed using thermal program desorption/mass spectrometry (TPD/MS) and the release energy values were calculated from the resulting thermograms utilizing a nonlinear fit of the analytical solution to a simplified version of the Polanyi-Wigner equation. This solution method resulted in a series of combinations of values for the pre-exponential factor (v) and release energy (E) that produced desorption rate curves with similar errors when fit to actual data sets. These combinations can be viewed as an error surface, which clearly shows a valley of minimum error values spanning the range of both E and v. This indicates that this method may not provide a unique set of E- and v-values and suggests that the simplified version of the Polanyi-Wigner equation cannot be used to determine release energy based on TPD data alone.

  9. Model verification of thermal programmed desorption-mass spectrometry for estimation of release energy values for polycyclic aromatic hydrocarbons on mineral sorbents.

    PubMed

    Nicholl, Sara I; Talley, Jeffrey W; Silliman, Stephan

    2004-11-01

    The physical availability of organic compounds in soil and sediment strongly influences their bioavailability and toxicity. Previous work has indicated that physical availability changes throughout the processes of aging and treatment and that it can be linked to the energy required to release the compound from its sorbent matrix, with a higher energy indicating a more tightly bound compound. This study focused on determining release energy values for various mineral geosorbents (glass beads, sand, and kaolin) contaminated with a 16 polycyclic aromatic hydrocarbon (PAH) mixture. The sorbents were analyzed using thermal program desorption/mass spectrometry (TPD/MS) and the release energy values were calculated from the resulting thermograms utilizing a nonlinear fit of the analytical solution to a simplified version of the Polanyi-Wigner equation. This solution method resulted in a series of combinations of values for the pre-exponential factor (v) and release energy (E) that produced desorption rate curves with similar errors when fit to actual data sets. These combinations can be viewed as an error surface, which clearly shows a valley of minimum error values spanning the range of both E and v. This indicates that this method may not provide a unique set of E- and v-values and suggests that the simplified version of the Polanyi-Wigner equation cannot be used to determine release energy based on TPD data alone. PMID:15559267

  10. Diffuse volcanic degassing and thermal energy release 2015 surveys from the summit cone of Teide volcano, Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Asensio-Ramos, María; Padilla, Germán; Alonso, Mar; Halliwell, Simon; Sharp, Emerson; Butters, Damaris; Ingman, Dylan; Alexander, Scott; Cook, Jenny; Pérez, Nemesio M.

    2016-04-01

    The summit cone of Teide volcano (Spain) is characterized by the presence of a weak fumarolic system, steamy ground, and high rates of diffuse CO2 degassing all around this area. The temperature of the fumaroles (83° C) corresponds to the boiling point of water at discharge conditions. Water is the major component of these fumarolic emissions, followed by CO2, N2, H2, H2S, HCl, Ar, CH4, He and CO, a composition typical of hydrothermal fluids. Previous diffuse CO2 surveys have shown to be an important tool to detect early warnings of possible impending volcanic unrests at Tenerife Island (Melián et al., 2012; Pérez et al., 2013). In July 2015, a soil and fumarole gas survey was undertaken in order to estimate the diffuse volcanic degassing and thermal energy release from the summit cone of Teide volcano. A diffuse CO2 emission survey was performed selecting 170 observation sites according to the accumulation chamber method. Soil CO2 efflux values range from non-detectable (˜0.5 g m-2d-1) up to 10,672 g m-2d-1, with an average value of 601 g m-2d-1. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Measurement of soil CO2 efflux allowed an estimation of 162 ± 14 t d-1 of deep seated derived CO2. To calculate the steam discharge associated with this volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio equal to 1.19 (range, 0.44-3.42) as a representative value of the H2O/CO2 mass ratios for Teide fumaroles. The resulting estimate of the steam flow associated with the gas flux is equal to 193 t d-1. The condensation of this steam results in a thermal energy release of 5.0×1011J d-1 for Teide volcano or a total heat flow of 6 MWt. The diffuse gas emissions and thermal energy released from the summit of Teide volcano are comparable to those observed at other volcanoes. Sustained surveillance using these methods will be valuable for monitoring the activity of Teide volcano.

  11. Diffuse volcanic degassing and thermal energy release 2015 surveys from the summit cone of Teide volcano, Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Asensio-Ramos, María; Padilla, Germán; Alonso, Mar; Halliwell, Simon; Sharp, Emerson; Butters, Damaris; Ingman, Dylan; Alexander, Scott; Cook, Jenny; Pérez, Nemesio M.

    2016-04-01

    The summit cone of Teide volcano (Spain) is characterized by the presence of a weak fumarolic system, steamy ground, and high rates of diffuse CO2 degassing all around this area. The temperature of the fumaroles (83° C) corresponds to the boiling point of water at discharge conditions. Water is the major component of these fumarolic emissions, followed by CO2, N2, H2, H2S, HCl, Ar, CH4, He and CO, a composition typical of hydrothermal fluids. Previous diffuse CO2 surveys have shown to be an important tool to detect early warnings of possible impending volcanic unrests at Tenerife Island (Melián et al., 2012; Pérez et al., 2013). In July 2015, a soil and fumarole gas survey was undertaken in order to estimate the diffuse volcanic degassing and thermal energy release from the summit cone of Teide volcano. A diffuse CO2 emission survey was performed selecting 170 observation sites according to the accumulation chamber method. Soil CO2 efflux values range from non-detectable (˜0.5 g m‑2d‑1) up to 10,672 g m‑2d‑1, with an average value of 601 g m‑2d‑1. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Measurement of soil CO2 efflux allowed an estimation of 162 ± 14 t d‑1 of deep seated derived CO2. To calculate the steam discharge associated with this volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio equal to 1.19 (range, 0.44-3.42) as a representative value of the H2O/CO2 mass ratios for Teide fumaroles. The resulting estimate of the steam flow associated with the gas flux is equal to 193 t d‑1. The condensation of this steam results in a thermal energy release of 5.0×1011J d‑1 for Teide volcano or a total heat flow of 6 MWt. The diffuse gas emissions and thermal energy released from the summit of Teide volcano are comparable to those observed at other volcanoes. Sustained surveillance using these methods will be valuable for monitoring the activity of Teide volcano.

  12. Small Scale Energy Release and the Acceleration and Transport of Energetic Particles

    NASA Astrophysics Data System (ADS)

    Hudson, Hugh; Vilmer, Nicole

    We report on results presented at the sessions of Working Group~1 at CESRA 2004, which covered the topic area of the title of this paper. The working-group participants are listed in the Appendix, and the topics discussed have been brought together in several general areas of focus. The emphasis on the discussion is from the point of view of radiophysics. We organize the material by presenting new constraints imposed by the recent high-energy and radio observations. We note though that multi-wavelength knowledge is generally vital in understanding all of the phenomena involved. The new constraints include exciting new millimeter-wave discoveries, among others. We then place these observations into the framework of our knowledge of the acceleration and propagation of high-energy particles, and of their radio emission mechanisms. The RHESSI1 results are the most distinctive in this time frame, and they have made possible several new advances.

  13. Energy transport by energetic electrons released during solar flares. II - Current filamentation and plasma heating

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    Two-dimensional electrostatic particle simulations are performed in order to investigate energy transport associated with the propagation of energetic electrons through a flaring flux tube. Results indicate that as the energetic electrons flow outward, a return current of ambient plasma electrons is drawn inward (to maintain quasi-neutrality) which can be spatially separate from the primary current carried by the energetic electrons. Return current electrons are shown to accumulate on either side of the acceleration region of the energetic electrons, and depletions of ambient plasma electrons develop in the return current regions. Plasma ions accelerate across the field lines to produce current closure or charge neutralization, achieving energies comparable to those of the energetic electrons.

  14. Surface Meteorology and Solar Energy (SSE) Data Release 5.1

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].

  15. "2001: A Space Odyssey" Revisited--The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1998-01-01

    The prospects for "24 hour" commuter flights to the Moon, similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale, are examined using two near term, "high leverage" technologies--liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and "lunar-derived" oxygen (LUNOX) production. Ironrich volcanic glass, or "orange soil," discovered during the Apollo 17 mission to Taurus-Littrow, has produced a 4% oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way, LANTR utilizes the large divergent section of its nozzle as an "afterburner" into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging front the engine's choked sonic throat--essentially "scramjet propulsion in reverse." By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that "big engine" performance can be obtained using smaller, more affordable, easier to test NTR engines. The use of high-density LOX in place of low-density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or "in-line" Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an "expendable mode" initially, to maximize delivered surface payload on each mission. The increased

  16. 2001: A Space Odyssey Revisited: The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners. Revised

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley; Dudzinski, Leonard A.

    2003-01-01

    The prospects for 24 hour commuter flights to the Moon, similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale, are examined using two near term, high leverage technologies: liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and lunar-derived oxygen (LUNOX) production. Iron-rich volcanic glass, or orange soil, discovered during the Apollo 17 mission to Taurus-Littrow, has produced a 4 percent oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way. LANTR utilizes the large divergent section of its nozzle as an afterburner into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat, essentially scramjet propulsion in reverse. By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that big engine performance can be obtained using smaller, more affordable, easier to test NTR engines. The use of high-density LOX in place of low density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or in-line Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an expendable mode initially, to maximize delivered surface payload on each mission. The increased payload is

  17. "2001: A Space Odyssey" Revisited: The Feasibility of 24 Hour Commuter Flights to the Moon Using NTR Propulsion with LUNOX Afterburners. Revised

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    2001-01-01

    The prospects for "24 hour" commuter flights to the Moon. similar to that portrayed in 2001: A Space Odyssey but on a more Spartan scale. are examined using two near term. "high leverage" technologies-liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) propulsion and "lunar-derived" oxygen (LUNOX) production. Iron-rich volcanic glass. or "orange soil," discovered during the Apollo 17 mission to Taurus-Littrow. has produced a 4% oxygen yield in recent NASA experiments using hydrogen reduction. LUNOX development and utilization would eliminate the need to transport oxygen supplies from Earth and is expected to dramatically reduce the size, cost and complexity of space transportation systems. The LOX-augmented NTR concept (LANTR) exploits the high performance capability of the conventional liquid hydrogen (LH2)-cooled NTR and the mission leverage provided by LUNOX in a unique way. LANTR utilizes the large divergent section of its nozzle as an "afterburner" into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the engine's choked sonic throat-essentially "scramjet propulsion in reverse." By varying the oxygen-to-hydrogen mixture ratio, the LANTR engine can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. The thrust augmentation feature of LANTR means that "big engine" performance can be obtained using smaller. more affordable. easier to test NTR engines. The use of high-density LOX in place of low-density LH2 also reduces hydrogen mass and tank volume resulting in smaller space vehicles. An implementation strategy and evolutionary lunar mission architecture is outlined which requires only Shuttle C or "in-line" Shuttle-derived launch vehicles, and utilizes conventional NTR-powered lunar transfer vehicles (LTVs), operating in an "expendable mode" initially, to maximize delivered surface payload on each mission. The increased

  18. Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles

    SciTech Connect

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R.

    2014-01-21

    Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustrate that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.

  19. Spatial and temporal characteristics of flare energy release determined from X-ray and radio imaging observations

    NASA Technical Reports Server (NTRS)

    Hernandez, A. M.; Machado, M. E.; Vilmer, N.; Trottet, G.

    1986-01-01

    Using the Hard X-ray Imaging Spectrometer (HXIS) from the Solar Maximum Mission Satellite, the morphological aspects and temporal evolution of three major flares which occurred on June 29, 1980 are studied. One of these events, observed at 10:40 UT, is analyzed in particular detail, including Hard X-ray Burst Spectrometer (HXRBS) data and metric wavelength data from the Nancay radioheliograph. The flares occurred during the interaction of two distinct magnetic structures. There is an early onset phase during which there is a weak level of particle acceleration, perhaps accompanied by strong heating within the magnetic interaction region. The impulsive phase of high power energy release is associated with a major interaction between the two structures and accompanied by strong acceleration and heating.

  20. Energy release in the solar corona from spatially resolved magnetic braids.

    PubMed

    Cirtain, J W; Golub, L; Winebarger, A R; De Pontieu, B; Kobayashi, K; Moore, R L; Walsh, R W; Korreck, K E; Weber, M; McCauley, P; Title, A; Kuzin, S; DeForest, C E

    2013-01-24

    It is now apparent that there are at least two heating mechanisms in the Sun's outer atmosphere, or corona. Wave heating may be the prevalent mechanism in quiet solar periods and may contribute to heating the corona to 1,500,000 K (refs 1-3). The active corona needs additional heating to reach 2,000,000-4,000,000 K; this heat has been theoretically proposed to come from the reconnection and unravelling of magnetic 'braids'. Evidence favouring that process has been inferred, but has not been generally accepted because observations are sparse and, in general, the braided magnetic strands that are thought to have an angular width of about 0.2 arc seconds have not been resolved. Fine-scale braiding has been seen in the chromosphere but not, until now, in the corona. Here we report observations, at a resolution of 0.2 arc seconds, of magnetic braids in a coronal active region that are reconnecting, relaxing and dissipating sufficient energy to heat the structures to about 4,000,000 K. Although our 5-minute observations cannot unambiguously identify the field reconnection and subsequent relaxation as the dominant heating mechanism throughout active regions, the energy available from the observed field relaxation in our example is ample for the observed heating. PMID:23344359

  1. An exoskeleton using controlled energy storage and release to aid ankle propulsion.

    PubMed

    Wiggin, M Bruce; Sawicki, Gregory S; Collins, Steven H

    2011-01-01

    Symmetric ankle propulsion is the cornerstone of efficient human walking. The ankle plantar flexors provide the majority of the mechanical work for the step-to-step transition and much of this work is delivered via elastic recoil from the Achilles' tendon - making it highly efficient. Even though the plantar flexors play a central role in propulsion, body-weight support and swing initiation during walking, very few assistive devices have focused on aiding ankle plantarflexion. Our goal was to develop a portable ankle exoskeleton taking inspiration from the passive elastic mechanisms at play in the human triceps surae-Achilles' tendon complex during walking. The challenge was to use parallel springs to provide ankle joint mechanical assistance during stance phase but allow free ankle rotation during swing phase. To do this we developed a novel `smart-clutch' that can engage and disengage a parallel spring based only on ankle kinematic state. The system is purely passive - containing no motors, electronics or external power supply. This `energy-neutral' ankle exoskeleton could be used to restore symmetry and reduce metabolic energy expenditure of walking in populations with weak ankle plantar flexors (e.g. stroke, spinal cord injury, normal aging).

  2. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  3. The Energy Interaction Model: A promising new methodology for projecting GPHS-RTG cladding failures, release amounts & respirable release fractions for postulated pre-launch, launch, and post-reentry earth impact accidents

    NASA Astrophysics Data System (ADS)

    Coleman, James R.; Sholtis, Joseph A.; McCulloch, William H.

    1998-01-01

    Safety analyses and evaluations must be scrutable, defensible, and credible. This is particularly true when nuclear systems are involved, with their attendant potential for releases of radioactive materials (source terms) to the unrestricted environment. Analytical projections of General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) source terms, for safety analyses conducted to date, have relied upon generic data correlations using a single parameter of cladding damage, termed ``distortion.'' However, distortion is not an unequivocal measure of cladding insult, failure, or release. Furthermore, the analytical foundation, applicability, and broad use of distortion are argumentative and, thus, somewhat troublesome. In an attempt to avoid the complications associated with the use of distortion, a new methodology, referred to as the Energy Interaction Model (EIM), has been preliminarily developed. This new methodology is based upon the physical principles of energy and energy exchange during mechanical interactions. Specifically, the EIM considers the energy imparted to GPHS-RTG components (bare fueled clads, GPHS modules, and full GPHS-RTGs) when exposed to mechanical threats (blast/overpressure, shrapnel and fragment impacts, and Earth surface impacts) posed by the full range of potential accidents. Expected forms are developed for equations intended to project cladding failure probabilities, the number of cladding failures expected, release amounts, and the fraction released as respirable particles. The coefficients of the equations developed are then set to fit the GPHS-RTG test data, ensuring good agreement with the experimental database. This assured, fitted agreement with the test database, along with the foundation of the EIM in first principles, provides confidence in the model's projections beyond the available database. In summary, the newly developed EIM methodology is described and discussed. The conclusions reached are that the EIM

  4. Is Spreading Depolarization Characterized by an Abrupt, Massive Release of Gibbs Free Energy from the Human Brain Cortex?

    PubMed Central

    Dreier, Jens P.; Isele, Thomas; Reiffurth, Clemens; Offenhauser, Nikolas; Kirov, Sergei A.; Dahlem, Markus A.; Herreras, Oscar

    2012-01-01

    In the evolution of the cerebral cortex, the sophisticated organization in a steady state far away from thermodynamic equilibrium has produced the side effect of two fundamental pathological network events: ictal epileptic activity and spreading depolarization. Ictal epileptic activity describes the partial disruption, and spreading depolarization describes the near-complete disruption of the physiological double Gibbs–Donnan steady state. The occurrence of ictal epileptic activity in patients has been known for decades. Recently, unequivocal electrophysiological evidence has been found in patients that spreading depolarizations occur abundantly in stroke and brain trauma. The authors propose that the ion changes can be taken to estimate relative changes in Gibbs free energy from state to state. The calculations suggest that in transitions from the physiological state to ictal epileptic activity to spreading depolarization to death, the cortex releases Gibbs free energy in a stepwise fashion. Spreading depolarization thus appears as a twilight state close to death. Consistently, electrocorticographic recordings in the core of focal ischemia or after cardiac arrest display a smooth transition from the initial spreading depolarization component to the later ultraslow negative potential, which is assumed to reflect processes in cellular death. PMID:22829393

  5. FIELD LINES TWISTING IN A NOISY CORONA: IMPLICATIONS FOR ENERGY STORAGE AND RELEASE, AND INITIATION OF SOLAR ERUPTIONS

    SciTech Connect

    Rappazzo, A. F.; Velli, M.; Einaudi, G.

    2013-07-10

    We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

  6. The relationship between critical strain energy release rate and fracture mode in multidirectional carbon-fiber/epoxy laminates

    SciTech Connect

    Trakas, K.; Kortschot, M.T.

    1997-12-31

    It is proposed that the fracture surface of delaminated specimens, and hence the critical strain energy release rate, is dependent on both the mode of fracture and the orientation of the plies on either side of the delamination with respect to the propagation direction. Recent fractographs of Mode 3 delamination surfaces obtained by the authors have reinforced the idea that the properties, G{sub 11c} and G{sub 111c}, are structural rather than material properties for composite laminates. In this study, the relationship between the mode of fracture, the ply orientation, and the apparent interlaminar toughness has been explored. Standard double-cantilever-beam and end-notched flexure tests have been used, as has the newly developed Mode 3 modified split-cantilever beam test. Delaminations between plies of various orientations have been constrained to the desired plane using Teflon inserts running along the entire length of the specimen. As well, scanning electron microscopy (SEM) fractography has been extensively used so that measured energies can be correlated to the surface deformation. While fractographs show that Modes 2 and 3 share common fractographic features, corresponding values of G, do not correlate, and it is shown that the large plastic zone of fractured Mode 2 specimens eliminates any comparison between the two. In contrast, Mode 1 delamination is found to be independent of the orientation of the delaminating plies.

  7. RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Krucker, S.; Hurford, G. J.; Smith, D. M.; Hudson, H. S.; Holman, G. D.; Schwartz, R. A.; Dennis, B. R.; Share, G. H.; Murphy, R. J.; Emslie, A. G.; Johns-Krull, C.; Vilmer, N.

    2003-10-01

    /or propagation of the ions must differ from that of the electrons. Assuming that Coulomb collisions dominate the energetic electron and ion energy losses (thick target), we estimate that a minimum of ~2×1031 ergs is released in accelerated >~20 keV electrons during the rise phase, with ~1031 ergs in ions above 2.5 MeV nucleon-1 and about the same in electrons above 30 keV released in the impulsive phase. Much more energy could be in accelerated particles if their spectra extend to lower energies.

  8. Chemical Energy Release and Radical Formation in Cluster-Induced Sputtering of Diatomic Molecular Targets: A Molecular-Dynamics Model Study

    SciTech Connect

    Anders, Christian; Urbassek, Herbert M.

    2007-07-13

    Using molecular-dynamics simulation, we perform a systematic study of cluster-induced sputtering. Two model systems of diatomic molecular solids are employed, which have identical cohesive energy but differ in their dissociation energy and the possible reaction pathways. Sputtering occurs by the flow of gasified material out of the spike volume into the vacuum above it. Because of the entrainment of radicals and reaction products with the flow, only a minority of this debris is left behind in the target. The excitation of internal molecular degrees of freedom (rotation and vibration) slightly reduces the sputter yield in comparison to the sputtering of an atomic system, while the chemical energy release due to exothermic reactions of radicals formed enhances the yield in proportion to the chemical energy release.

  9. Oestradiol modulates the effects of leptin on energy homeostasis by corticotrophin-releasing factor type 2 receptor.

    PubMed

    Marangon, P B; Silva, L E C M; Rorato, R; Gomiero Alves, P; Antunes-Rodrigues, J; Elias, L L K

    2014-11-01

    In addition to its action in the control of the hypothalamic-pituitary-adrenal axis, corticotrophin-releasing factor (CRF) has been described as an anorexigenic neuropeptide, modulating food intake and energy expenditure. CRF synthesis is influenced by leptin, which would act to increase CRF neurone activation in the paraventricular nucleus (PVN). Gonadal hormones also participate in the regulation of energy homeostasis. The reduction of food intake and body weight gain in ovariectomised (OVX) rats treated with oestradiol is associated with an increase in CRF mRNA expression in the PVN. The present study aimed to investigate the role of CRF as a mediator of leptin responsiveness in the presence of oestradiol. Wistar female rats were bilaterally OVX and divided into three groups: OVX, OVX+E (i.e. treated with oestradiol) and OVX+PF (i.e. OVX pairfed with OVX+E). The rats received daily s.c. injections of either oestradiol cypionate or vehicle for 8 days. To evaluate the role of CRF on the effects of leptin, we performed an i.c.v. leptin injection (10 μg/5 μl) with or without previous i.c.v. treatment with an CRF-R2 antagonist. We observed that oestradiol replacement in OVX rats reduced body weight gain and food intake. The effects of exogenous leptin administration with respect to decreasing food intake and body weight, and increasing uncoupling protein-1 expression in the brown adipose tissue and neuronal activation in the arcuate nucleus, were reversed by previous administration of a CRF-R2 antagonist only in oestradiol-treated OVX rats. These effects appear to be mediated by CRF-2 receptor because the antagonist of this receptor reversed the action of oestradiol on the effects of leptin.

  10. Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements.

    PubMed

    Roessler, Justin G; Townsend, Timothy G; Ferraro, Christopher C

    2015-12-30

    A series of roadway tests strips were paved on-site at a landfill in Florida, U.S. Waste to energy (WTE) bottom ash was used as a partial course aggregate replacement in a hot mix asphalt (HMA) and a Portland cement concrete (PCC) pavement, along with control HMA and PCC sections. This allowed for a comparison of the relative degree of leaching between both materials (HMA and PCC) as well as between the ash-amended and control pavements. Batch and monolithic tank leaching tests were conducted on the pavements. Testing of the PCC samples demonstrated that Mo and Al were elevated above regulatory thresholds for both the control and ash amended samples. Further leach testing demonstrated that the release of Mo was likely from the PCC and not a result of the inclusion of the BA into pavement. Batch leach testing of ash-amended HMA samples revealed Sb as a constituent of potential concern. The results of the monolith leaching test displayed leaching of Sb within the same order of magnitude as the regulatory threshold. Calculation of the leachability index (LI) for Sb found that it would have limited mobility when incorporated in the HMA matrix. PMID:26340550

  11. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc- Mediates Aglycemic Neuronal Cell Death.

    PubMed

    Thorn, Trista L; He, Yan; Jackman, Nicole A; Lobner, Doug; Hewett, James A; Hewett, Sandra J

    2015-01-01

    The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes--either cultured alone or with neurons--to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc(-) mediates aglycemic neuronal cell death.

  12. Use of leaching tests to quantify trace element release from waste to energy bottom ash amended pavements.

    PubMed

    Roessler, Justin G; Townsend, Timothy G; Ferraro, Christopher C

    2015-12-30

    A series of roadway tests strips were paved on-site at a landfill in Florida, U.S. Waste to energy (WTE) bottom ash was used as a partial course aggregate replacement in a hot mix asphalt (HMA) and a Portland cement concrete (PCC) pavement, along with control HMA and PCC sections. This allowed for a comparison of the relative degree of leaching between both materials (HMA and PCC) as well as between the ash-amended and control pavements. Batch and monolithic tank leaching tests were conducted on the pavements. Testing of the PCC samples demonstrated that Mo and Al were elevated above regulatory thresholds for both the control and ash amended samples. Further leach testing demonstrated that the release of Mo was likely from the PCC and not a result of the inclusion of the BA into pavement. Batch leach testing of ash-amended HMA samples revealed Sb as a constituent of potential concern. The results of the monolith leaching test displayed leaching of Sb within the same order of magnitude as the regulatory threshold. Calculation of the leachability index (LI) for Sb found that it would have limited mobility when incorporated in the HMA matrix.

  13. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc− Mediates Aglycemic Neuronal Cell Death

    PubMed Central

    Thorn, Trista L.; He, Yan; Jackman, Nicole A.; Lobner, Doug; Hewett, James A.

    2015-01-01

    The astrocyte cystine/glutamate antiporter (system xc−) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc− expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc− mediates aglycemic neuronal cell death. PMID:26553727

  14. Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV-far-IR) and the low-z energy budget

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Wright, Angus H.; Andrews, Stephen K.; Davies, Luke J.; Kafle, Prajwal R.; Lange, Rebecca; Moffett, Amanda J.; Mannering, Elizabeth; Robotham, Aaron S. G.; Vinsen, Kevin; Alpaslan, Mehmet; Andrae, Ellen; Baldry, Ivan K.; Bauer, Amanda E.; Bamford, Steven P.; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Brown, Michael J. I.; Cluver, Michelle E.; Croom, Scott; Colless, Matthew; Conselice, Christopher J.; da Cunha, Elisabete; De Propris, Roberto; Drinkwater, Michael; Dunne, Loretta; Eales, Steve; Edge, Alastair; Frenk, Carlos; Graham, Alister W.; Grootes, Meiert; Holwerda, Benne W.; Hopkins, Andrew M.; Ibar, Edo; van Kampen, Eelco; Kelvin, Lee S.; Jarrett, Tom; Jones, D. Heath; Lara-Lopez, Maritza A.; Liske, Jochen; Lopez-Sanchez, Angel R.; Loveday, Jon; Maddox, Steve J.; Madore, Barry; Mahajan, Smriti; Meyer, Martin; Norberg, Peder; Penny, Samantha J.; Phillipps, Steven; Popescu, Cristina; Tuffs, Richard J.; Peacock, John A.; Pimbblet, Kevin A.; Prescott, Matthew; Rowlands, Kate; Sansom, Anne E.; Seibert, Mark; Smith, Matthew W. L.; Sutherland, Will J.; Taylor, Edward N.; Valiante, Elisabetta; Vazquez-Mata, J. Antonio; Wang, Lingyu; Wilkins, Stephen M.; Williams, Richard

    2016-02-01

    We present the Galaxy And Mass Assembly (GAMA) Panchromatic Data Release (PDR) constituting over 230 deg2 of imaging with photometry in 21 bands extending from the far-UV to the far-IR. These data complement our spectroscopic campaign of over 300k galaxies, and are compiled from observations with a variety of facilities including: GALaxy Evolution eXplorer, Sloan Digital Sky Survey, Visible and Infrared Telescope for Astronomy (VISTA), Wide-field Infrared Survey Explorer, and Herschel, with the GAMA regions currently being surveyed by VLT Survey Telescope (VST) and scheduled for observations by Australian Square Kilometer Array Pathfinder (ASKAP). These data are processed to a common astrometric solution, from which photometry is derived for ˜221 373 galaxies with r < 19.8 mag. Online tools are provided to access and download data cutouts, or the full mosaics of the GAMA regions in each band. We focus, in particular, on the reduction and analysis of the VISTA VIsta Kilo-degree INfrared Galaxy data, and compare to earlier data sets (i.e. 2MASS and UKIDSS) before combining the data and examining its integrity. Having derived the 21-band photometric catalogue, we proceed to fit the data using the energy balance code MAGPHYS. These measurements are then used to obtain the first fully empirical measurement of the 0.1-500 μm energy output of the Universe. Exploring the cosmic spectral energy distribution across three time-intervals (0.3-1.1, 1.1-1.8, and 1.8-2.4 Gyr), we find that the Universe is currently generating (1.5 ± 0.3) × 1035 h70 W Mpc-3, down from (2.5 ± 0.2) × 1035 h70 W Mpc-3 2.3 Gyr ago. More importantly, we identify significant and smooth evolution in the integrated photon escape fraction at all wavelengths, with the UV escape fraction increasing from 27(18) per cent at z = 0.18 in NUV(FUV) to 34(23) per cent at z = 0.06. The GAMA PDR can be found at: http://gama-psi.icrar.org/.

  15. The {ital Energy Interaction Model}: A promising new methodology for projecting GPHS-RTG cladding failures, release amounts & respirable release fractions for postulated pre-launch, launch, and post-reentry earth impact accidents

    SciTech Connect

    Coleman, J.R.; Sholtis, J.A. Jr.; McCulloch, W.H.

    1998-01-01

    Safety analyses and evaluations must be scrutable, defensible, and credible. This is particularly true when nuclear systems are involved, with their attendant potential for releases of radioactive materials (source terms) to the unrestricted environment. Analytical projections of General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) source terms, for safety analyses conducted to date, have relied upon generic data correlations using a single parameter of cladding damage, termed {open_quotes}distortion.{close_quotes} However, distortion is not an unequivocal measure of cladding insult, failure, or release. Furthermore, the analytical foundation, applicability, and broad use of distortion are argumentative and, thus, somewhat troublesome. In an attempt to avoid the complications associated with the use of distortion, a new methodology, referred to as the {ital Energy Interaction Model (EIM)}, has been preliminarily developed. This new methodology is based upon the physical principles of energy and energy exchange during mechanical interactions. Specifically, the {ital EIM} considers the energy imparted to GPHS-RTG components (bare fueled clads, GPHS modules, and full GPHS-RTGs) when exposed to mechanical threats (blast/overpressure, shrapnel and fragment impacts, and Earth surface impacts) posed by the full range of potential accidents. Expected forms are developed for equations intended to project cladding failure probabilities, the number of cladding failures expected, release amounts, and the fraction released as respirable particles. The coefficients of the equations developed are then set to fit the GPHS-RTG test data, ensuring good agreement with the experimental database. This assured, fitted agreement with the test database, along with the foundation of the {ital EIM} in first principles, provides confidence in the model{close_quote}s projections beyond the available database. In summary, the newly developed {ital EIM} methodology is

  16. Diffuse volcanic gas emission and thermal energy release from the summit crater of Pico do Fogo, Cape Verde

    NASA Astrophysics Data System (ADS)

    Dionis, Samara M.; Melián, Gladys; Rodríguez, Fátima; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, Jose; Padilla, Germán; Sumino, Hirochika; Fernandes, Paulo; Bandomo, Zuleyka; Silva, Sónia; Pereira, José M.; Semedo, Hélio

    2015-02-01

    We report the first detailed study of diffuse emission of carbon dioxide (CO2), hydrogen sulfide (H2S), helium (He), and hydrogen (H2) from the summit crater of Pico do Fogo volcano, Cape Verde. Diffuse CO2, H2S, He, and H2 gas fluxes were measured at 57 sampling sites and ranged up to 12,800, 13, 1, and 6 g m-2 day-1, respectively. Soil temperature measurements at each sampling site were used to evaluate the heat flux. Most of the summit crater shows relatively high CO2 efflux, with highest values close to the fumarolic area, suggesting a structural control of the degassing process. In contrast, H2S effluxes were negligible or very low at the summit crater, except close to the fumarolic area where anomalously high CO2 efflux and soil temperatures were also measured. We estimate total CO2, H2S, He, and H2 diffuse gas fluxes of 219 t day-1, 25, 4, and 33 kg day-1, respectively. Based on a H2O/CO2 mass ratio of 1.52 measured at the fumaroles, we estimate a diffuse steam flux from the summit crater of approximately 330 t day-1. The enthalpy of this steam is equivalent to a heat flux of about 10.3 MW. The diffuse gas emission and thermal energy released from the summit crater of Pico do Fogo volcano are comparable to those observed at other volcanoes. Sustained surveillance of Pico do Fogo using these methods will be valuable for monitoring the activity of one of the most active volcanoes in the Atlantic Ocean.

  17. Determination of differential cross sections and kinetic energy release of co-products from central sliced images in photo-initiated dynamic processes.

    PubMed

    Chen, Kuo-mei; Chen, Yu-wei

    2011-04-01

    For photo-initiated inelastic and reactive collisions, dynamic information can be extracted from central sliced images of state-selected Newton spheres of product species. An analysis framework has been established to determine differential cross sections and the kinetic energy release of co-products from experimental images. When one of the reactants exhibits a high recoil speed in a photo-initiated dynamic process, the present theory can be employed to analyze central sliced images from ion imaging or three-dimensional sliced fluorescence imaging experiments. It is demonstrated that the differential cross section of a scattering process can be determined from the central sliced image by a double Legendre moment analysis, for either a fixed or continuously distributed recoil speeds in the center-of-mass reference frame. Simultaneous equations which lead to the determination of the kinetic energy release of co-products can be established from the second-order Legendre moment of the experimental image, as soon as the differential cross section is extracted. The intensity distribution of the central sliced image, along with its outer and inner ring sizes, provide all the clues to decipher the differential cross section and the kinetic energy release of co-products.

  18. Chemo-responsive shape memory effect in shape memory polyurethane triggered by inductive release of mechanical energy storage undergoing copper (II) chloride migration

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Lu, Chunrui; Huang, Wei Min; Leng, Jinsong

    2015-03-01

    In this study, 10% weight fraction of copper (II) chloride (CuCl2) was embedded into shape memory polyurethane (SMPU) by dissolving it in a solvent mixture of tetrahydrofuran and N,N-dimethyl formamide. It is found that CuCl2 particles migrate; they are released from the polymer in the water-driven shape recovery process of SMPU composites. SMPU composites, after various immersion times in water, were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Experimental results support that hydrogen bonding between polyurethane macromolecules and water molecules is the driving force, resulting from the inductive decrease in the glass transition temperature. Furthermore, the release of the stored mechanical energy in SMPU is demonstrated by means of tracking the migration of CuCl2 particles via x-ray diffraction and scanning electron microscopy tests. This study focuses on the mechanism of release of the stored mechanical energy of a polymer, which is identified as the driving force for the chemo-responsive shape memory effect and inductive decrease in glass transition temperature of SMPU in response to the water.

  19. EIA new releases

    SciTech Connect

    Not Available

    1994-12-01

    This report was prepared by the Energy Information Administration. It contains news releases on items of interest to the petroleum, coal, nuclear, electric and alternate fuels industries ranging from economic outlooks to environmental concerns. There is also a listing of reports by industry and an energy education resource listing containing sources for free or low-cost energy-related educational materials for educators and primary and secondary students.

  20. An array method for detection, location and characterization of multi-scale seismic energy release associated to the deformation processes of active subduction zones

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Bernard, P.; Vilotte, J.; Obara, K.

    2013-12-01

    Detection, location and characterization of the seismic energy release associated to deformation processes in active subduction zones are fundamental for understanding the dynamics of active deformation and the mechanisms of generation and rupturing of large subduction earthquakes. The statistical analysis of this seismic energy release, spanning a wide range of space and time scales, as well as phenomena, (e.g., earthquakes, seismic repeaters, low and very low-frequency earthquakes, tectonic tremors) can provide original insides to the problem. We developed a new methodology exploiting the frequency selective coherence of the wave field at dense seismic arrays and local antennas that leads to stable and reliable detection, blind source separation, and location of distributed non-stationary sources. The methodology consist of: (1) a signal processing scheme yielding a simplified representation of a seismic signal by an adaptive time-frequency characterization of its statistical properties; (2) a fully probabilistic detection and location algorithm based on back projection of stacked local cross-correlations of the simplified signals. This new approach has been developed and tested on the Shikoku region in Japan, which is an exceptional field laboratory, due to its high seismic activity comprising a wide variety of phenomena observed by the dense Hi-net seismic network operated by NIED. We evaluate the capability and potential of the proposed methodology to detect, locate and characterize the energy release associated to possibly overlapping seismic radiation from earthquakes and low-frequency tectonic tremors. As future direction we also discuss an application to the International Maule Aftershock Deployment (IMAD) in Chile.

  1. An array method for detection, location and characterization of multi-scale seismic energy release associated to the deformation processes of active subduction zones

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Bernard, P.; Vilotte, J.; Obara, K.

    2011-12-01

    Detection, location and characterization of the seismic energy release associated to deformation processes in active subduction zones are fundamental for understanding the dynamics of active deformation and the mechanisms of generation and rupturing of large subduction earthquakes. The statistical analysis of this seismic energy release, spanning a wide range of space and time scales, as well as phenomena, (e.g., earthquakes, seismic repeaters, low and very low-frequency earthquakes, tectonic tremors) can provide original insides to the problem. We developed a new methodology exploiting the frequency selective coherence of the wave field at dense seismic arrays and local antennas that leads to stable and reliable detection, blind source separation, and location of distributed non-stationary sources. The methodology consist of: (1) a signal processing scheme yielding a simplified representation of a seismic signal by an adaptive time-frequency characterization of its statistical properties; (2) a fully probabilistic detection and location algorithm based on back projection of stacked local cross-correlations of the simplified signals. This new approach has been developed and tested on the Shikoku region in Japan, which is an exceptional field laboratory, due to its high seismic activity comprising a wide variety of phenomena observed by the dense Hi-net seismic network operated by NIED. We evaluate the capability and potential of the proposed methodology to detect, locate and characterize the energy release associated to possibly overlapping seismic radiation from earthquakes and low-frequency tectonic tremors. As future direction we also discuss an application to the International Maule Aftershock Deployment (IMAD) in Chile.

  2. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method. Contractor resepor, July 1986-October 1988

    SciTech Connect

    Zimmerman, R.S.; Adams, D.F.

    1989-02-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  3. Release of halide ions from the buried active site of the haloalkane dehalogenase LinB revealed by stopped-flow fluorescence analysis and free energy calculations.

    PubMed

    Hladilkova, Jana; Prokop, Zbynek; Chaloupkova, Radka; Damborsky, Jiri; Jungwirth, Pavel

    2013-11-21

    Release of halide ions is an essential step of the catalytic cycle of haloalkane dehalogenases. Here we describe experimentally and computationally the process of release of a halide anion from the buried active site of the haloalkane dehalogenase LinB. Using stopped-flow fluorescence analysis and umbrella sampling free energy calculations, we show that the anion binding is ion-specific and follows the ordering I(-) > Br(-) > Cl(-). We also address the issue of the protonation state of the catalytic His272 residue and its effect on the process of halide release. While deprotonation of His272 increases binding of anions in the access tunnel, we show that the anionic ordering does not change with the switch of the protonation state. We also demonstrate that a sodium cation could relatively easily enter the active site, provided the His272 residue is singly protonated, and replace thus the missing proton. In contrast, Na(+) is strongly repelled from the active site containing the doubly protonated His272 residue. Our study contributes toward understanding of the reaction mechanism of haloalkane dehalogenase enzyme family. Determination of the protonation state of the catalytic histidine throughout the catalytic cycle remains a challenge for future studies.

  4. Toggle release

    NASA Technical Reports Server (NTRS)

    Graves, Thomas Joseph (Inventor); Yang, Robert Alexander (Inventor); Brown, Christopher William (Inventor)

    1988-01-01

    The invention relates to a pyrotechnic actuated release mechanism which is mechanically two fault tolerant for effecting release. It is particularly well suited for releasably connecting structures to be used in the space environment or in other aerospace applications. The device comprises a fastener plate and fastener body, each attachable to either one of a pair of structures to be joined. The fastener plate and the body are fastenable by a toggle supported at one end on the fastener plate and mounted for universal pivotal movement thereon. At its other end, which is received in a central opening in the fastener body and adapted for limited pivotal movement therein, the toggle is restrained by three retractable latching pins. Each pin is individually retractable by combustion of a pyrotechnic charge. While retraction of all three pins releases the toggle, the fastener is mechanically two fault tolerant since the failure of any single or pair of the latch pins to retract results in an asymmetrical loading on the toggle and its pivotal movement to effect a release. An annular bolt is mounted on the fastener plate as a support for the socket mounting of the toggle whereby its selective axial movement provides a means for pre-loading the toggle.

  5. Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus.

    PubMed

    Chen, Peilin; Hover, Christine Van; Lindberg, Daniel; Li, Chien

    2012-01-01

    The vital role of the corticotropin-releasing factor (CRF) peptide family in the brain in coordinating response to stress has been extensively documented. The effects of CRF are mediated by two G-protein-coupled receptors, type 1 and type 2 CRF receptors (CRF(1) and CRF(2)). While the functional role of CRF(1) in hormonal and behavioral adaptation to stress is well-known, the physiological significance of CRF(2) remains to be fully appreciated. Accumulating evidence has indicated that CRF(2) and its selective ligands including urocortin 3 (Ucn 3) are important molecular mediators in regulating energy balance. Ucn 3 is the latest addition of the CRF family of peptides and is highly selective for CRF(2). Recent studies have shown that central Ucn 3 is important in a number of homeostatic functions including suppression of feeding, regulation of blood glucose levels, and thermoregulation, thus reinforcing the functional role of central CRF(2) in metabolic regulation. The brain loci that mediate the central effects of Ucn 3 remain to be fully determined. Anatomical and functional evidence has suggested that the ventromedial hypothalamus (VMH), where CRF(2) is prominently expressed, appears to be instrumental in mediating the effects of Ucn 3 on energy balance, permitting Ucn 3-mediated modulation of feeding and glycemic control. Thus, the Ucn 3-VMH CRF(2) system is an important neural pathway in the regulation of energy homeostasis and potentially plays a critical role in energy adaptation in response to metabolic perturbations and stress to maintain energy balance.

  6. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  7. Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana

    2015-10-01

    Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.

  8. Toggle release

    NASA Technical Reports Server (NTRS)

    Graves, Thomas J. (Inventor); Yang, Robert A. (Inventor); Brown, Christopher W. (Inventor)

    1989-01-01

    A pyrotechnic actuated structural release device 10 which is mechanically two fault tolerant for release. The device 10 comprises a fastener plate 11 and fastener body 12, each attachable to a different one of a pair of structures to be joined. The fastener plate 11 and body 12 are fastenable by a toggle 13 supported at one end on the fastener plate and mounted for universal pivotal movement thereon. At its other end which is received in a central opening in the fastener body 12 and adapted for limited pivotal movement therein the toggle 13 is restrained by three retractable latching pins 61 symmetrically disposed in equiangular spacing about the axis of the toggle 13 and positionable in latching engagement with an end fitting on the toggle. Each pin 61 is individually retractable by combustion of a pyrotechnic charge 77, the expanding gases of which are applied to a pressure receiving face 67 on the latch pin 61 to effect its retraction from the toggle. While retraction of all three pins 62 releases the toggle, the fastener is mechanically two fault tolerant since the failure of any single one or pair of the latch pins to retract results in an asymmetrical loading on the toggle and its pivotal movement to effect a release. An annular bolt 18 is mounted on the fastener plate 11 as a support for the socket mounting 30, 37 of the toggle whereby its selective axial movement provides a means for preloading the toggle.

  9. Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling

    PubMed Central

    Chen, Nai-Tzu; Cheng, Shih-Hsun; Liu, Ching-Ping; Souris, Jeffrey S.; Chen, Chen-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2012-01-01

    Förster resonance energy transfer (FRET) may be regarded as a “smart” technology in the design of fluorescence probes for biological sensing and imaging. Recently, a variety of nanoparticles that include quantum dots, gold nanoparticles, polymer, mesoporous silica nanoparticles and upconversion nanoparticles have been employed to modulate FRET. Researchers have developed a number of “visible” and “activatable” FRET probes sensitive to specific changes in the biological environment that are especially attractive from the biomedical point of view. This article reviews recent progress in bringing these nanoparticle-modulated energy transfer schemes to fruition for applications in biosensing, molecular imaging and drug delivery. PMID:23443121

  10. Impact of Temperature Trends on Short-Term Energy Demand, The (Released in the STEO September 1999)

    EIA Publications

    1999-01-01

    The past few years have witnessed unusually warm weather, as evidenced by both mild winters and hot summers. The analysis shows that the 30-year norms--the basis of weather-related energy demand projections--do not reflect the warming trend or its regional and seasonal patterns.

  11. Measurement of the Total Kinetic Energy Release (TKE) in 232 Th(n,f) with En = 2.59 - 87.31 MeV

    NASA Astrophysics Data System (ADS)

    King, Jonathan; Yanez, Ricardo; Barrett, Jonathan; Loveland, Walter; Tovesson, Fredrik; Fotiades, Nick; Lee, Hye Young

    2015-04-01

    Experimental results for the Total Kinetic Energy Release (TKE) of 232 Th(n,f) with En = 2.59 - 87.31 MeV will be presented. The experiment was performed at the 15R beamline at the Weapons Neutron Research(WNR) facility at LANL-LANSCE. WNR provides a white spectrum of neutrons peaking at 2 MeV and reaching up to 800 MeV, with neutron energies being deduced from measurements of the neutron time of flight (TOF). A thin-backed 232 ThF4 target of 2 cm diameter with a thorium areal density of 178.9 μg/cm2 was placed between two arrays of Hammamatsu PIN diodes (active area 4 cm2 each). The beam was collimated to 1 cm diameter. The target was placed 45 degrees off of the beam axis, with the detectors at 60 degrees and 120 degrees from the beam axis. Over 25,000 fission fragment coincidence events were recorded, allowing for sixteen energy bins between 2.59 and 87.31 MeV. We believe that this will be the most comprehensive published measurement of the TKE for 232 Th(n,f) with En = 2.59 - 87.31 MeV. This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the USDoE under Grant DE-FG06-97ER41026. This work has benefited from the use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the USDoE under DOE Contract No. DE-AC52-06NA25396.

  12. Energy release of the 2013 M(w) 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity.

    PubMed

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Koper, Keith D

    2013-09-20

    Earth's deepest earthquakes occur in subducting oceanic lithosphere, where temperatures are lower than in ambient mantle. On 24 May 2013, a magnitude 8.3 earthquake ruptured a 180-kilometer-long fault within the subducting Pacific plate about 609 kilometers below the Sea of Okhotsk. Global seismic P wave recordings indicate a radiated seismic energy of ~1.5 × 10(17) joules. A rupture velocity of ~4.0 to 4.5 kilometers/second is determined by back-projection of short-period P waves, and the fault width is constrained to give static stress drop estimates (~12 to 15 megapascals) compatible with theoretical radiation efficiency for crack models. A nearby aftershock had a stress drop one to two orders of magnitude higher, indicating large stress heterogeneity in the deep slab, and plausibly within the rupture process of the great event. PMID:24052306

  13. Energy release of the 2013 M(w) 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity.

    PubMed

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Koper, Keith D

    2013-09-20

    Earth's deepest earthquakes occur in subducting oceanic lithosphere, where temperatures are lower than in ambient mantle. On 24 May 2013, a magnitude 8.3 earthquake ruptured a 180-kilometer-long fault within the subducting Pacific plate about 609 kilometers below the Sea of Okhotsk. Global seismic P wave recordings indicate a radiated seismic energy of ~1.5 × 10(17) joules. A rupture velocity of ~4.0 to 4.5 kilometers/second is determined by back-projection of short-period P waves, and the fault width is constrained to give static stress drop estimates (~12 to 15 megapascals) compatible with theoretical radiation efficiency for crack models. A nearby aftershock had a stress drop one to two orders of magnitude higher, indicating large stress heterogeneity in the deep slab, and plausibly within the rupture process of the great event.

  14. Supplemental Release Limits for the Directed Reuse of Lead in Shielding Products by the Department of Energy

    SciTech Connect

    Coleman, R.L.

    2001-08-22

    The DOE National Center of Excellence for Metals Recycle (NMR) proposes to define and implement a complex-wide directed reuse strategy for surplus radiologically impacted lead (Pb) as part of the U.S. Department of Energy's commitment to the safe and cost-effective recycle or reuse of excess materials and equipment across the DOE complex. NMR will, under this proposal, act on behalf of the DOE Office of Environmental Management, Office of Technical Program Integration (specifically EM-22), as the Department's clearinghouse for DOE surplus lead and lead products by developing and maintaining a cost-effective commercially-based contaminated lead recycle program. It is NMR's intention, through this directed reuse strategy, to mitigate the adverse environmental and economic consequences of managing surplus lead as a waste within the complex. This approach would promote the safe and cost-effective reuse of DOE's scrap and surplus lead in support of the Department's goals of resource utilization, energy conservation, pollution prevention and waste minimization. This report discusses recommendations for supplemental radiological limits for the directed reuse of contaminated lead and lead products by the DOE within the nuclear industry. The limits were selected--with slight modification--from the recently published American National Standards Institute and Health Physics Society standard N13.12 titled Surface and Volume Radioactivity Standards for Clearance (ANSI/HPS 1999) and are being submitted for formal approval by the DOE. Health and measurement implications from the adoption and use of the limits for directed reuse scenarios are discussed within this report.

  15. Ischemia/reperfusion impairs mitochondrial energy conservation and triggers O2.- release as a byproduct of respiration.

    PubMed

    Nohl, H; Koltover, V; Stolze, K

    1993-01-01

    The aim of the present study was to elucidate the role of mitochondria in the development of heart failure following ischemia/reperfusion. Although mitochondria were increasingly assumed to be responsible for the establishment of an oxidative stress situation the lack of suitable methods to prove it required new concepts for an evaluation of the validity of this hypothesis. The principal idea was to expose isolated mitochondria to metabolic conditions which are developed during ischemia/reperfusion in the cell (anoxia, lactogenesis) and study how they respond. Heart mitochondria treated in that way responded with an incomplete collapse of the transmembraneous proton gradient, thereby impairing respiration-linked ATP generation. The membrane effect affected also the proper control of e- transfer through redox-cycling ubisemiquinone. Electrons were found to leak at this site from its normal pathway to O2 suggesting that ubisemiquinone becomes an active O2.- generator. It was concluded from these observations that mitochondria are likely to play a pathogenetic role in the reperfusion injury of the heart both, by an impairment of energy conservation and their transition to a potent O2.(-)-radical generator. Furthermore, there is considerable evidence that the exogenous NADH-dehydrogenase of heart mitochondria is mainly responsible for functional changes of these organelles during ischemia/reperfusion. PMID:8319923

  16. The Sloan Digital Sky Survey Quasar Lens Search. III Constraints on Dark Energy From The Third Data Release Quasar Lens Catalog

    SciTech Connect

    Oguri, M; Inada, N; Strauss, M A; Kochanek, C S; Richards, G T; Schneider, D P; Becker, R H; Fukugita, M; Gregg, M D; Hall, P B; Hennawi, J F; Johnston, D E; Kayo, I; Keeton, C R; Pindor, B; Shin, M; Turner, E; White, R L; York, D G; Anderson, S F; Bahcall, N A; Brunner, R J; Burles, S; Castander, F J; Chiu, K; Clocchiatti, A; Einsenstein, D; Frieman, J; Kawano, Y; Lupton, R; Morokuma, T; Rix, H; Scranton, R; Sheldon, E S

    2007-09-12

    We present cosmological results from the statistics of lensed quasars in the Sloan Digital Sky Survey (SDSS) Quasar Lens Search. By taking proper account of the selection function, we compute the expected number of quasars lensed by early-type galaxies and their image separation distribution assuming a flat universe, which is then compared with 7 lenses found in the SDSS Data Release 3 to derive constraints on dark energy under strictly controlled criteria. For a cosmological constant model (w = -1) we obtain {Omega}{sub {Lambda}} = 0.74{sub -0.15}{sup +0.11}(stat.){sub -0.06}{sup +0.13}(syst.). Allowing w to be a free parameter we find {Omega}{sub M} = 0.26{sub -0.06}{sup +0.07}(stat.){sub -0.05}{sup +0.03}(syst.) and w = -1.1 {+-} 0.6(stat.){sub -0.5}{sup +0.3}(syst.) when combined with the constraint from the measurement of baryon acoustic oscillations in the SDSS luminous red galaxy sample. Our results are in good agreement with earlier lensing constraints obtained using radio lenses, and provide additional confirmation of the presence of dark energy consistent with a cosmological constant, derived independently of type Ia supernovae.

  17. The energy-release rate and “self-force” of dynamically expanding spherical and plane inclusion boundaries with dilatational eigenstrain

    NASA Astrophysics Data System (ADS)

    Markenscoff, Xanthippi; Ni, Luqun

    2010-01-01

    In the context of the linear theory of elasticity with eigenstrains, the radiated field including inertia effects of a spherical inclusion with dilatational eigenstrain radially expanding is obtained on the basis of the dynamic Green's function, and one of the half-space inclusion boundary (with dilatational eigenstrain) moving from rest in general subsonic motion is obtained by a limiting process from the spherically expanding inclusion as the radius tends to infinity while the eigenstrain remains constrained, and this is the minimum energy solution. The global energy-release rate required to move the plane inclusion boundary and to create an incremental region of eigenstrain is defined analogously to the one for moving cracks and dislocations and represents the mechanical rate of work needed to be provide for the expansion of the inclusion. The calculated value, which is the "self-force" of the expanding inclusion, has a static component plus a dynamic one depending only on the current value of the velocity, while in the case of the spherical boundary, there is an additional contribution accounting for the jump in the strain at the farthest part at the back of the inclusion having the time to reach the front boundary, thus making the dynamic "self-force" history dependent.

  18. Kinetic energy release in thermal ion--molecule reactions: The Nb sup 2+ --(benzene) single charge--transfer reaction

    SciTech Connect

    Gord, J.R.; Freiser, B.S. ); Buckner, S.W. )

    1991-03-15

    We have adapted the techniques originally developed to measure ion kinetic energies in ion cyclotron resonance (ICR) spectrometry to study the single charge--transfer reaction of Nb{sup 2+} with benzene under thermal conditions in a Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS). The partitioning of reaction exothermicity among the internal and translational modes available is consistent with a long-distance electron-transfer mechanism, in which the reactants approach on an ion-induced dipole attractive potential and cross to a repulsive potential at a critical separation of {similar to}7.5 A when electron transfer occurs. The reaction exothermicity, 5.08 eV, is partitioned to translation of Nb{sup +} , 0.81{plus minus}0.25 eV, translation of C{sub 6} H{sub 6}{sup +}, 1.22{plus minus}0.25 eV, and internal excitation of C{sub 6} H{sub 6}{sup +} to produce the la{sub 2{ital u}} electronic state, which is {similar to}3 eV above the ground state of the ion. We have also studied the kinetics of the reaction of Nb{sup 2+} with benzene and determined the rate constant, {ital k} = 1.4{times}10{sup {minus}9} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, and the efficiency, 0.60, of the process. These also support the proposed charge--transfer mechanism. In addition to the charge--transfer pathway, which accounts for 95% of the reaction products, Nb{sup 2+} is observed to dehydrogenate benzene to form Nb{sup 2+} (benzyne). This process implies {ital D}(Nb{sup 2+} --benzyne){ge}79 kcal/mol.

  19. Pre-flare Activity and Magnetic Reconnection during the Evolutionary Stages of Energy Release in a Solar Eruptive Flare

    NASA Astrophysics Data System (ADS)

    Joshi, Bhuwan; Veronig, Astrid M.; Lee, Jeongwoo; Bong, Su-Chan; Tiwari, Sanjiv Kumar; Cho, Kyung-Suk

    2011-12-01

    In this paper, we present a multi-wavelength analysis of an eruptive white-light M3.2 flare that occurred in active region NOAA 10486 on 2003 November 1. The excellent set of high-resolution observations made by RHESSI and the TRACE provides clear evidence of significant pre-flare activities for ~9 minutes in the form of an initiation phase observed at EUV/UV wavelengths followed by an X-ray precursor phase. During the initiation phase, we observed localized brightenings in the highly sheared core region close to the filament and interactions among short EUV loops overlying the filament, which led to the opening of magnetic field lines. The X-ray precursor phase is manifested in RHESSI measurements below ~30 keV and coincided with the beginning of flux emergence at the flaring location along with early signatures of the eruption. The RHESSI observations reveal that both plasma heating and electron acceleration occurred during the precursor phase. The main flare is consistent with the standard flare model. However, after the impulsive phase, an intense hard X-ray (HXR) looptop source was observed without significant footpoint emission. More intriguingly, for a brief period, the looptop source exhibited strong HXR emission with energies up to ~50-100 keV and significant non-thermal characteristics. The present study indicates a causal relation between the activities in the pre-flare and the main flare. We also conclude that pre-flare activities, occurring in the form of subtle magnetic reorganization along with localized magnetic reconnection, played a crucial role in destabilizing the active region filament, leading to a solar eruptive flare and associated large-scale phenomena.

  20. 10 CFR 850.31 - Release criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Release criteria. 850.31 Section 850.31 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.31 Release criteria. (a) The responsible employer must clean beryllium-contaminated equipment and other items to...

  1. 10 CFR 850.31 - Release criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Release criteria. 850.31 Section 850.31 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.31 Release criteria. (a) The responsible employer must clean beryllium-contaminated equipment and other items to...

  2. 10 CFR 850.31 - Release criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Release criteria. 850.31 Section 850.31 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.31 Release... the equipment or item and its future use and the nature of the beryllium contamination. (c)...

  3. 10 CFR 850.31 - Release criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Release criteria. 850.31 Section 850.31 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.31 Release... the equipment or item and its future use and the nature of the beryllium contamination. (c)...

  4. 10 CFR 850.31 - Release criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Release criteria. 850.31 Section 850.31 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.31 Release... the equipment or item and its future use and the nature of the beryllium contamination. (c)...

  5. Impulsive energy release and non-thermal emission in a confined M4.0 flare triggered by rapidly evolving magnetic structures

    SciTech Connect

    Kushwaha, Upendra; Joshi, Bhuwan; Mathew, S. K.; Cho, Kyung-Suk; Veronig, Astrid

    2014-08-10

    We present observations of a confined M4.0 flare from NOAA 11302 on 2011 September 26. Observations at high temporal, spatial, and spectral resolution from the Solar Dynamics Observatory, Reuven Ramaty High Energy Solar Spectroscopic Imager, and Nobeyama Radioheliograph observations enabled us to explore the possible triggering and energy release processes of this flare despite its very impulsive behavior and compact morphology. The flare light curves exhibit an abrupt rise of non-thermal emission with co-temporal hard X-ray (HXR) and microwave (MW) bursts that peaked instantly without any precursor emission. This stage was associated with HXR emission up to 200 keV that followed a power law with photon spectral index (γ) ∼ 3. Another non-thermal peak, observed 32 s later, was more pronounced in the MW flux than the HXR profiles. Dual peaked structures in the MW and HXR light curves suggest a two-step magnetic reconnection process. Extreme ultraviolet (EUV) images exhibit a sequential evolution of the inner and outer core regions of magnetic loop systems while the overlying loop configuration remained unaltered. Combined observations in HXR, (E)UV, and Hα provide support for flare models involving the interaction of coronal loops. The magnetograms obtained by the Helioseismic and Magnetic Imager reveal emergence of magnetic flux that began ∼five hr before the flare. However, the more crucial changes in the photospheric magnetic flux occurred about one minute prior to the flare onset with opposite polarity magnetic transients appearing at the early flare location within the inner core region. The spectral, temporal, and spatial properties of magnetic transients suggest that the sudden changes in the small-scale magnetic field have likely triggered the flare by destabilizing the highly sheared pre-flare magnetic configuration.

  6. Supplemental Release Limits for the Directed Reuse of Steel in Road Barriers and Lead in Shielding Products by the Department of Energy

    SciTech Connect

    Coleman, RL

    2006-04-07

    The DOE National Center of Excellence for Metals Recycle (NMR) proposes to define and implement a complex-wide directed reuse strategy for surplus radiologically impacted lead (Pb) and steel as part of the U.S. Department of Energy's commitment to the safe and cost-effective recycle or reuse of excess materials and equipment across the DOE complex. NMR will, under this proposal, act on behalf of the DOE Office of Environmental Management, Office of Technical Program Integration (specifically EM-22), as the Department's clearinghouse for DOE surplus lead, steel and products created from these materials by developing and maintaining a cost-effective commercially-based contaminated lead and steel recycle program. It is NMR's intention, through this directed reuse strategy, to mitigate the adverse environmental and economic consequences of managing surplus lead and steel as a waste within the complex. This approach promotes the safe and cost-effective reuse of scrap metals in support of the Department's goals of resource utilization, energy conservation, pollution prevention and waste minimization. This report discusses recommendations for supplemental radiological release limits for the directed reuse of contaminated lead and steel by the DOE within the nuclear industry. The limits were originally selected from the American National Standards Institute and Health Physics Society standard N13.12 titled ''Surface and Volume Radioactivity Standards for Clearance'' (Health Physics Society, 1999) but were subsequently modified as a result of application-specific issues. Both the health and measurement implications from the adoption and use of the limits for directed reuse scenarios are discussed within this report.

  7. Strain energy release rates of composite interlaminar end-notch and mixed-mode fracture: A sublaminate/ply level analysis and a computer code

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Chamis, C. C.

    1987-01-01

    A computer code is presented for the sublaminate/ply level analysis of composite structures. This code is useful for obtaining stresses in regions affected by delaminations, transverse cracks, and discontinuities related to inherent fabrication anomalies, geometric configurations, and loading conditions. Particular attention is focussed on those layers or groups of layers (sublaminates) which are immediately affected by the inherent flaws. These layers are analyzed as homogeneous bodies in equilibrium and in isolation from the rest of the laminate. The theoretical model used to analyze the individual layers allows the relevant stresses and displacements near discontinuities to be represented in the form of pure exponential-decay-type functions which are selected to eliminate the exponential-precision-related difficulties in sublaminate/ply level analysis. Thus, sublaminate analysis can be conducted without any restriction on the maximum number of layers, delaminations, transverse cracks, or other types of discontinuities. In conjunction with the strain energy release rate (SERR) concept and composite micromechanics, this computational procedure is used to model select cases of end-notch and mixed-mode fracture specimens. The computed stresses are in good agreement with those from a three-dimensional finite element analysis. Also, SERRs compare well with limited available experimental data.

  8. Atmospheric Release Advisory Capability

    SciTech Connect

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

  9. Comparison of the effect of an H(3)-inverse agonist on energy intake and hypothalamic histamine release in normal mice and leptin resistant mice with high fat diet-induced obesity.

    PubMed

    Ishizuka, Tomoko; Hatano, Kouta; Murotani, Tomotaka; Yamatodani, Atsushi

    2008-04-01

    Leptin is a key signal linking peripheral adiposity levels to the regulation of energy homeostasis in the brain. The injection of leptin decreases body weight and food intake in lean rodents; however, in a rodent model of high fat diet-induced obesity (DIO), the exogenous leptin cannot improve adiposity. This ineffectiveness is known as leptin resistance, and the factors downstream of leptin signaling have received attention as viable targets in the treatment of obesity. We previously reported that the histaminergic system is one of the targets of leptin. In the present study, the effect of an H(3)-receptor inverse agonist on hypothalamic histamine release and energy intake was investigated in normal and DIO mice. Leptin (1.3 mg/kg, i.p.) significantly increased hypothalamic histamine release and reduced 12 h-energy intake in normal mice, but had no such effects in DIO mice. In contrast, clobenpropit (5 mg/kg, i.p.), an H(3)-inverse agonist, elicited a significant increase in histamine release in both types of mice. Clobenpropit did not reduce 12 h-energy intake; however, it decreased 3 h-energy intake in both types of mice. These results suggest that lack of the activation of the histaminergic system partly contributes to obesity in DIO mice and direct activation of the histaminergic system circumvents leptin resistance.

  10. Mini Fission-Fusion-Fission Explosions (Mini-Nukes). A Third Way Towards the Controlled Release of Nuclear Energy by Fission and Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2004-06-01

    Chemically ignited nuclear microexplosions with a fissile core, a DT reflector and U238 (Th232) pusher, offer a promising alternative to magnetic and inertial confinement fusion, not only burning DT, but in addition U238 (or Th232), and not depending on a large expensive laser of electric pulse power supply. The prize to be paid is a gram size amount of fissile material for each microexplosion, but which can be recovered by breeding in U238. In such a "mini-nuke" the chemical high explosive implodes a spherical metallic shell onto a smaller shell, with the smaller shell upon impact becoming the source of intense black body radiation which vaporizes the ablator of a spherical U238 (Th232) pusher, with the pusher accelerated to a velocity of ˜200 km/s, sufficient to ignite the DT gas placed in between the pusher and fissile core, resulting in a fast fusion neutron supported fission reaction in the core and pusher. Estimates indicate that a few kg of high explosives are sufficient to ignite such a "mini-nuke", with a gain of ˜103, releasing an energy equivalent to a few tons of TNT, still manageable for the microexplosion to be confined in a reactor vessel. A further reduction in the critical mass is possible by replacing the high explosive with fast moving solid projectiles. For light gas gun driven projectiles with a velocity of ˜ 10 km/s, the critical mass is estimated to be 0.25 g, and for magnetically accelerated 25 km/s projectiles it is as small as ˜ 0.05 g. With the much larger implosion velocities, reached by laser- or particle beam bombardment of the outer shell, the critical mass can still be much smaller with the fissile core serving as a fast ignitor. Increasing the implosion velocity decreases the overall radius of the fission-fusion assembly in inverse proportion to this velocity, for the 10 km/s light gas gun driven projectiles from 10 cm to 5 cm, for the 25 km/s magnetically projectiles down to 2 cm, and still more for higher implosion velocities.

  11. Reusable Release Mechanism

    NASA Technical Reports Server (NTRS)

    Bunker, J. W.; Ritchie, R. S.

    1984-01-01

    Slider release mechanism reusable. Bears heavy loads while latched, yet gives smooth release motion. Release effected by explosively driving perpendicular slider out of engagement with load-bearing shank. Device has potential industrial applications such as emergency release of lifting cables from helicopters, cranes and hoists.

  12. Intensity of activation and timing of deactivation modulate elastic energy storage and release in a pennate muscle and account for gait-specific initiation of limb protraction in the horse.

    PubMed

    Lichtwark, Glen A; Watson, Johanna C; Mavrommatis, Sophia; Wilson, Alan M

    2009-08-01

    The equine biceps brachii (biceps) initiates rapid limb protraction through a catapult mechanism. Elastic strain energy is slowly stored in an internal tendon and is then rapidly released to protract the forelimb. The muscle fibres are short, have little scope for length change and can therefore only shorten slowly compared with the speed at which the whole muscle must shorten, which makes them poor candidates for driving rapid limb protraction. We suggest that the muscle fibres in the biceps act to modulate the elastic energy output of the muscle-tendon unit (MTU) to meet the demands of locomotion under different conditions. We hypothesise that more elastic strain energy is stored and released from the biceps MTU during higher speed locomotion to accommodate the increase in energy required to protract the limb and that this can be achieved by varying the length change and activation conditions of the muscle. We examined the work performed by the biceps during trot and canter using an inverse dynamics analysis (IDA). We then used excised biceps muscles to determine how much work could be performed by the muscle in active and passive stretch-shorten cycles. A muscle model was developed to investigate the influence of changes in activation parameters on energy storage and energy return from the biceps MTU. Increased biceps MTU length change and increased work performed by the biceps MTU were found at canter compared with at trot. More work was performed by the ex vivo biceps MTU following activation of the muscle and by increasing muscle length change. However, the ratio of active to passive work diminished with increasing length change. The muscle model demonstrated that duration and timing of activation during stretch-shorten cycles could modulate the elastic energy storage and return from the biceps. We conclude that the equine biceps MTU acts as a tuneable spring and the contractile component functions to modulate the energy required for rapid forelimb

  13. Radioactive materials released from nuclear power plants

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  14. EIA new releases, July--August, 1995

    SciTech Connect

    1995-10-02

    This publication identifies energy related publications of the Energy Information Administration of the US Department of Energy. The topics and articles in this issue include data on residential energy use available on diskettes and Internet, natural gas price predictions, coal deliveries to electric utilities, growth in the US uranium industry, microfiche products, features and press releases, EIA`s electronic publishing system, new reports, machine-readable files, how to order EIA publications and energy data information contacts.

  15. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels

  16. Gas release and conductivity modification studies

    NASA Technical Reports Server (NTRS)

    Linson, L. M.; Baxter, D. C.

    1979-01-01

    The behavior of gas clouds produced by releases from orbital velocity in either a point release or venting mode is described by the modification of snowplow equations valid in an intermediate altitude regime. Quantitative estimates are produced for the time dependence of the radius of the cloud, the average internal energy, the translational velocity, and the distance traveled. The dependence of these quantities on the assumed density profile, the internal energy of the gas, and the ratio of specific heats is examined. The new feature is the inclusion of the effect of the large orbital velocity. The resulting gas cloud models are used to calculate the characteristics of the field line integrated Pedersen conductivity enhancements that would be produced by the release of barium thermite at orbital velocity in either the point release or venting modes as a function of release altitude and chemical payload weight.

  17. Release Data Package for Hanford Site Assessments

    SciTech Connect

    Riley, Robert G.; Lopresti, Charles A.; Engel, David W.

    2006-07-01

    Beginning in fiscal year (FY) 2003, the U.S. Department of Energy (DOE) Richland Operations Office initiated activities, including the development of data packages, to support a Hanford assessment. This report describes the data compiled in FY 2003 through 2005 to support the Release Module of the System Assessment Capability (SAC) for the updated composite analysis. This work was completed as part of the Characterization of Systems Project, part of the Remediation and Closure Science Project, the Hanford Assessments Project, and the Characterization of Systems Project managed by Pacific Northwest National Laboratory. Related characterization activities and data packages for the vadose zone and groundwater are being developed under the remediation Decision Support Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. The Release Module applies release models to waste inventory data from the Inventory Module and accounts for site remediation activities as a function of time. The resulting releases to the vadose zone, expressed as time profiles of annual rates, become source terms for the Vadose Zone Module. Radioactive decay is accounted for in all inputs and outputs of the Release Module. The Release Module is implemented as the VADER (Vadose zone Environmental Release) computer code. Key components of the Release Module are numerical models (i.e., liquid, soil-debris, cement, saltcake, and reactor block) that simulate contaminant release from the different waste source types found at the Hanford Site. The Release Module also handles remediation transfers to onsite and offsite repositories.

  18. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  19. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    SciTech Connect

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  20. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  1. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial.

    PubMed

    Bottin, Jeanne H; Swann, Jonathan R; Cropp, Eleanor; Chambers, Edward S; Ford, Heather E; Ghatei, Mohammed A; Frost, Gary S

    2016-07-01

    Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food.

  2. Numerical simulation of long-duration blast wave evolution in confined facilities

    NASA Astrophysics Data System (ADS)

    Togashi, F.; Baum, J. D.; Mestreau, E.; Löhner, R.; Sunshine, D.

    2010-10-01

    The objective of this research effort was to investigate the quasi-steady flow field produced by explosives in confined facilities. In this effort we modeled tests in which a high explosive (HE) cylindrical charge was hung in the center of a room and detonated. The HEs used for the tests were C-4 and AFX 757. While C-4 is just slightly under-oxidized and is typically modeled as an ideal explosive, AFX 757 includes a significant percentage of aluminum particles, so long-time afterburning and energy release must be considered. The Lawrence Livermore National Laboratory (LLNL)-produced thermo-chemical equilibrium algorithm, “Cheetah”, was used to estimate the remaining burnable detonation products. From these remaining species, the afterburning energy was computed and added to the flow field. Computations of the detonation and afterburn of two HEs in the confined multi-room facility were performed. The results demonstrate excellent agreement with available experimental data in terms of blast wave time of arrival, peak shock amplitude, reverberation, and total impulse (and hence, total energy release, via either the detonation or afterburn processes.

  3. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction.

    PubMed

    Christien, F; Telling, M T F; Knight, K S; Le Gall, R

    2015-05-01

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  4. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction

    SciTech Connect

    Christien, F. Le Gall, R.; Telling, M. T. F.; Knight, K. S.

    2015-05-15

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  5. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Christien, F.; Telling, M. T. F.; Knight, K. S.; Le Gall, R.

    2015-05-01

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  6. Large scientific releases

    SciTech Connect

    Pongratz, M.B.

    1981-01-01

    The motivation for active experiments in space is considered, taking into account the use of active techniques to obtain a better understanding of the natural space environment, the utilization of the advantages of space as a laboratory to study fundamental plasma physics, and the employment of active techniques to determine the magnitude, degree, and consequences of artificial modification of the space environment. It is pointed out that mass-injection experiments in space plasmas began about twenty years ago with the Project Firefly releases. Attention is given to mass-release techniques and diagnostics, operational aspects of mass release active experiments, the active observation of mass release experiments, active perturbation mass release experiments, simulating an artificial modification of the space environment, and active experiments to study fundamental plasma physics.

  7. Radioactive materials released from nuclear power plants

    SciTech Connect

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  8. Radioactive materials released from nuclear power plants

    SciTech Connect

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  9. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect

    Penney, T R; Althof, J A

    1985-06-01

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  10. Effects of growth hormone-releasing hormone treatment on milk production and plasma hormones and metabolites in lactating Japanese Black cows under negative energy balance.

    PubMed

    Shingu, H; Hodate, K; Kushibiki, S; Touno, E; Oshibe, A; Ueda, Y; Shinoda, M; Ohashi, S

    2009-04-01

    The current study was performed to clarify the effects of GHRH treatment on milk production and plasma hormones and metabolites in lactating Japanese Black cows (a beef breed) under negative energy balance (EB). Ten multiparous lactating beef cows were offered a normal-energy diet daily (110% of ME requirements for maintenance and lactation) until 5 d in milk (DIM) to standardize the cows before dietary treatment. From 6 DIM to the final days (63 DIM) of the experiment, the cows were allotted to experimental dietary treatments: 5 cows were offered a diet formulated for 130% [high-energy diet (HED)] and the remaining 5 cows were offered a diet formulated for 80% [low-energy diet (LED)] of ME requirements for maintenance and lactation. In addition, all cows received daily subcutaneous injections of 3 mg of bovine GHRH from 36 to 56 DIM (GHRH treatment period). Differences in BW of HED- and LED-fed cows at 63 DIM were +28.4 and -7.2 kg compared with BW at 6 DIM, and HED- and LED-fed cows were under positive EB (+23.7 MJ/d) and negative EB (-11.6 MJ/d) throughout the experiment period. Treatment with GHRH increased (P<0.01) the average daily milk yield to 6.2 kg in HED-fed cows compared with a milk yield of 5.3 kg for 7 d before the GHRH treatment period (pretreatment period); LED-fed cows had no increase in milk production from GHRH treatment. Plasma GH, IGF-1, insulin, and glucose concentrations increased (P<0.05) after GHRH treatment in both HED- and LED-fed cows; GHRH treatment also induced an increase (P<0.05) in the net area under the curve of plasma insulin after glucose challenge in both HED- and LED-fed cows. Plasma urea N concentrations were decreased (P<0.05) by GHRH treatment in HED-fed cows, but not in LED-fed cows. Plasma NEFA concentration was unaffected by GHRH treatment in both HED- and LED-fed cows. We conclude that GHRH treatment of lactating Japanese Black cows stimulates endogenous GH and subsequent IGF-1 secretion and might induce an increase in

  11. The Issue of Calculating the Final Temperature of the Products of Rapid Exothermic Chemical Reactions with Significant Energy Release in a Closed Volume

    NASA Astrophysics Data System (ADS)

    Lazarev, V.; Geidmanis, D.

    2016-02-01

    The theoretical problem solved in this article is the calculation of thermodynamic parameters such as final temperature, distribution of the liquid and dry saturated vapour phases of the substance that are considered to be in thermodynamic equilibrium, and pressure of the system of several reaction products after adding to the system a certain amount of heat or the thermal effect released during rapid exothermic reaction in a closed volume that occurs so fast that it can be considered to be adiabatic, and when the volume of liquid reagents is several orders of magnitude less than the volume of the reactor. The general multi-substance problem is reduced to a theoretical problem for one substance of calculation thermodynamic parameters of system after adding a certain amount of heat that gives theoretically rigorous isochoric calculation. In this article, we substantiate our view that isochoric pass of calculation is more robust compared to seemingly more natural isobaric pass of calculation, if the later involves quite not trivial calculation of the adiabatic compression of a two-phase system (liquid - dry saturated vapour) that can pass itself into another kind of state (liquid - wet saturated vapour), which requires, apparently, more complex descriptions compared with isochoric calculation because the specific heat capacity of wet saturated vapour can be negative. The solved theoretical problem relates to a practical problem that has been a driver for our research as part of a design of the reactor of the titanium reduction from magnesium and titanium tetrachloride supplied into atmosphere of the reactor at high temperatures when both reagents are in gaseous state. The reaction is known to be exothermic with a high thermal effect, and estimate of the final temperature and pressure of the products of reaction, for instance, designing the reactor allows eliminating the possibility of the reaction products to penetrate backwards into supply tracts of the reagents

  12. Contamination surveys for release of material

    SciTech Connect

    Durham, J.S.; Johnson, M.L.; Gardner, D.L.

    1994-05-01

    This report describes, and presents the technical basis for, a methodology for performing instrument surveys to release material from radiological control, including release to controlled areas and release from radiological control. The methodology is based on a fast scan survey, a large-area wipe survey, and a series of statistical, fixed measurements. The methodology meets the requirements of the US Department of Energy Radiological Control Manual (RadCon Manual) (DOE 1994) and DOE Order 5400.5 (DOE 1990) for release of material in less time than is required by a conventional scan survey. Implementation of the proposed methodology with a confidence interval of 67% will meet the material release requirements. The material evaluation process will allow material that has not been exposed to contamination to be released from radiological control without a survey. For potential radioactive contaminants that are not reserved in DOE Order 5400.5, the methodology will allow material to be released from radiological control. For other radionuclides, with the exception of some difficult-to-detect radionuclides, material may be released for controlled use. Compared with current techniques, the proposed methodology will reduce the amount of time required to perform surveys.

  13. Triton-{sup 3}He relative and differential flows as probes of the nuclear symmetry energy at supra-saturation densities

    SciTech Connect

    Yong Gaochan; Li Baoan; Chen Liewen; Zhang Xunchao

    2009-10-15

    Using a transport model coupled with a phase-space coalescence afterburner, we study the triton-{sup 3}He (t-{sup 3}He) ratio with both relative and differential transverse flows in semicentral {sup 132}Sn+{sup 124}Sn reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t-{sup 3}He pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t-{sup 3}He relative and differential flows than the {pi}{sup -}/{pi}{sup +} ratio in the same reaction. The t-{sup 3}He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.

  14. Nucleotide release by airway epithelia.

    PubMed

    Lazarowski, Eduardo R; Sesma, Juliana I; Seminario, Lucia; Esther, Charles R; Kreda, Silvia M

    2011-01-01

    The purinergic events regulating the airways' innate defenses are initiated by the release of purines from the epithelium, which occurs constitutively and is enhanced by chemical or mechanical stimulation. While the external triggers have been reviewed exhaustively, this chapter focuses on current knowledge of the receptors and signaling cascades mediating nucleotide release. The list of secreted purines now includes ATP, ADP, AMP and nucleotide sugars, and involves at least three distinct mechanisms reflecting the complexity of airway epithelia. First, the constitutive mechanism involves ATP translocation to the ER/Golgi complex as energy source for protein folding, and fusion of Golgi-derived vesicles with the plasma membrane. Second, goblet cells package ATP with mucins into granules, which are discharged in response to P2Y(2)R activation and Ca(2+)-dependent signaling pathways. Finally, non-mucous cells support a regulated mechanism of ATP release involving protease activated receptor (PAR)-elicited G(12/13) activation, leading to the RhoGEF-mediated exchange of GDP for GTP on RhoA, and cytoskeleton rearrangement. Together, these pathways provide fine tuning of epithelial responses regulated by purinergic signaling events. PMID:21560042

  15. Nanoparticle release from dental composites.

    PubMed

    Van Landuyt, K L; Hellack, B; Van Meerbeek, B; Peumans, M; Hoet, P; Wiemann, M; Kuhlbusch, T A J; Asbach, C

    2014-01-01

    Dental composites typically contain high amounts (up to 60 vol.%) of nanosized filler particles. There is a current concern that dental personnel (and patients) may inhale nanosized dust particles (<100 nm) during abrasive procedures to shape, finish or remove restorations but, so far, whether airborne nanoparticles are released has never been investigated. In this study, composite dust was analyzed in real work conditions. Exposure measurements of dust in a dental clinic revealed high peak concentrations of nanoparticles in the breathing zone of both dentist and patient, especially during aesthetic treatments or treatments of worn teeth with composite build-ups. Further laboratory assessment confirmed that all tested composites released very high concentrations of airborne particles in the nanorange (>10(6)cm(-3)). The median diameter of airborne composite dust varied between 38 and 70 nm. Electron microscopic and energy dispersive X-ray analysis confirmed that the airborne particles originated from the composite, and revealed that the dust particles consisted of filler particles or resin or both. Though composite dust exhibited no significant oxidative reactivity, more toxicological research is needed. To conclude, on manipulation with the bur, dental composites release high concentrations of nanoparticles that may enter deeply into the lungs.

  16. Rad-Release

    ScienceCinema

    None

    2016-07-12

    The R&D 100 Award winning Rad-Release Chemical Decontamination Technology is a highly effective (up to 99% removal rate), affordable, patented chemical-foam-clay decontamination process tailored to specific radiological and metal contaminants, which is applicable to a wide variety of substrates. For more information about this project, visit http://www.inl.gov/rd100/2011/rad-release/

  17. Rad-Release

    SciTech Connect

    2011-01-01

    The R&D 100 Award winning Rad-Release Chemical Decontamination Technology is a highly effective (up to 99% removal rate), affordable, patented chemical-foam-clay decontamination process tailored to specific radiological and metal contaminants, which is applicable to a wide variety of substrates. For more information about this project, visit http://www.inl.gov/rd100/2011/rad-release/

  18. Advanced release technologies program

    NASA Technical Reports Server (NTRS)

    Purdy, Bill

    1994-01-01

    The objective of the ARTS program was to develop lighter and less expensive spacecraft ordnance and release systems that answer to the requirements of a wide variety of spacecraft applications. These improvements were to be evaluated at the spacecraft system level, as it was determined that there were substantial system-level costs associated with the present ordnance and release subsystems. New, better devices were to be developed, then flight qualified, then integrated into a flight experiment in order to prove the reliability required for their subsequent use on high-reliability spacecraft. The secondary goal of the program was to quantify the system-level benefits of these new subsystems based upon the development program results. Three non-explosive release mechanisms and one laser-diode-based ordnance system were qualified under the program. The release devices being developed were required to release high preloads because it is easier to scale down a release mechanism than to scale it up. The laser initiator developed was required to be a direct replacement for NASA Standard Initiators, since these are the most common initiator in use presently. The program began in October, 1991, with completion of the flight experiment scheduled for February, 1994. This paper provides an overview of the ARTS program, discusses the benefits of using the ARTS components, introduces the new components, compares them with conventional systems and each other, and provides recommendations on how best to implement them.

  19. Hydrogeologic Controls on Episodic H2 Release from Precambrian Fractured Rocks-Energy for Deep Subsurface Life on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Voglesonger, K.; Lin, L.-H.; Lacrampe-Couloume, G.; Telling, J.; Abrajano, T. A.; Onstott, T. C.; Pratt, L. M.

    2007-12-01

    Dissolved H2 concentrations up to the mM range and H2 levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H2 concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H2 ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The δ 2H isotope signatures of H2 gas from Canada, Finland, and South Africa are consistent with a range of H2-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H2 levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered δ 18O and δ 2H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H2 and support a microbial community of H2-utilizing sulfate reducers and methanogens.

  20. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.

    PubMed

    Sherwood Lollar, B; Voglesonger, K; Lin, L-H; Lacrampe-Couloume, G; Telling, J; Abrajano, T A; Onstott, T C; Pratt, L M

    2007-12-01

    Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.

  1. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.

    PubMed

    Sherwood Lollar, B; Voglesonger, K; Lin, L-H; Lacrampe-Couloume, G; Telling, J; Abrajano, T A; Onstott, T C; Pratt, L M

    2007-12-01

    Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens. PMID:18163873

  2. Fluid operated quick release mechanism

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1972-01-01

    Gas operated release mechanism releases load by fluid pressure to provide positive action quick release. Method can be used with large loads and is useful in repetitive cycling functions where shear pins and similar devices would be cumbersome.

  3. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  4. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1986-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie close to the Hugoniot. Calcite 3 to 2 transition, upon release was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90 percent devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  5. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and natural…

  6. Displacement of large-scale open solar magnetic fields from the zone of active longitudes and the heliospheric storm of November 3-10, 2004: 2. "Explosion" of singularity and dynamics of sunspot formation and energy release

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.

    2010-12-01

    A more detailed scenario of one stage (August-November 2004) of the quasibiennial MHD process "Origination ... and dissipation of the four-sector structure of the solar magnetic field" during the decline phase of cycle 23 has been constructed. It has been indicated that the following working hypothesis on the propagation of an MHD disturbance westward (in the direction of solar rotation) and eastward (toward the zone of active longitudes) with the displacement of the large-scale open solar magnetic field (LOSMF) from this zone can be constructed based on LOSMF model representations and data on sunspot formation, flares, active filaments, and coronal ejections as well as on the estimated contribution of sporadic energy release to the flare luminosity and kinetic energy of ejections: (1) The "explosion" of the LOSMF singularity and the formation in the explosion zone of an anemone active region (AR), which produced the satellite sunspot formation that continued west and east of the "anemone," represented a powerful and energy-intensive source of MHD processes at this stage. (2) This resulted in the origination of two "governing" large-scale MHD processes, which regulated various usual manifestations of solar activity: the fast LOSMF along the neutral line in the solar atmosphere, strongly affecting the zone of active longitudes, and the slow LOSMF in the outer layers of the convection zone. The fronts of these processes were identified by powerful (about 1031 erg) coronal ejections. (3) The collision of a wave reflected from the zone of active longitudes with the eastern front of the hydromagnetic impulse of the convection zone resulted in an increase in LOSMF magnetic fluxes, origination of an active sector boundary in the zone of active longitudes, shear-convergent motions, and generation and destabilization of the flare-productive AR 10696 responsible for the heliospheric storm of November 3-10, 2004.

  7. Altitude release mechanism

    DOEpatents

    Kulhanek, Frank C.

    1977-01-01

    An altitude release mechanism for releasing a radiosonde or other measuring instrument from a balloon carrying it up into the atmosphere includes a bottle partially filled with water, a tube sealed into the bottle having one end submerged in the water in the bottle and the free end extending above the top of the bottle and a strip of water-disintegrable paper held within the free end of the tube linking the balloon to the remainder of the package. As the balloon ascends, the lowered atmospheric air pressure causes the air in the bottle to expand, forcing the water in the bottle up the tubing to wet and disintegrate the paper, releasing the package from the balloon.

  8. Controlled-release microchips.

    PubMed

    Sharma, Sadhana; Nijdam, A Jasper; Sinha, Piyush M; Walczak, Robbie J; Liu, Xuewu; Cheng, Mark M-C; Ferrari, Mauro

    2006-05-01

    Efficient drug delivery remains an important challenge in medicine: continuous release of therapeutic agents over extended time periods in accordance with a predetermined temporal profile; local delivery at a constant rate to the tumour microenvironment to overcome much of the systemic toxicity and to improve antitumour efficacy; improved ease of administration, and increasing patient compliance required are some of the unmet needs of the present drug delivery technology. Microfabrication technology has enabled the development of novel controlled-release microchips with capabilities not present in the current treatment modalities. In this review, the current status and future prospects of different types of controlled-release microchips are summarised and analysed with reference to microneedle-based microchips, as well as providing an in-depth focus on microreservoir-based and nanoporous microchips.

  9. Benzene release. status report

    SciTech Connect

    Dworjanyn, L.O.; Rappe, K.G.; Gauglitz, P.A.

    1997-11-04

    Scoping benzene release measurements were conducted on 4 wt percent KTPB `DEMO` formulation slurry using a round, flat bottomed 100-mL flask containing 75 mL slurry. The slurry was agitated with a magnetic stirrer bar to keep the surface refreshed without creating a vortex. Benzene release measurements were made by purging the vapor space at a constant rate and analyzing for benzene by gas chromatography with automatic data acquisition. Some of the data have been rounded or simplified in view of the scoping nature of this study.

  10. EIA new releases, November--December 1995

    SciTech Connect

    1996-02-09

    Thus publication contains information compiled by the Energy information administration (EIA) on the following topics: heating fuel supplies; alternative fuel vehicles; natural gas production; clean air laws and coal transportation; EIA`s world Wide Web Site; EIA`s CD-ROM; Press Releases; Microfiched products; electronic publishing; new reports; machine-readable files; how to order EIA publications; and Energy Data Information Contracts.

  11. DSCOVR Public Release Statement

    Atmospheric Science Data Center

    2016-08-04

    ... Book .    NOAA will release data from the space weather instruments on July 27 th . The data, as well as space weather forecasts with a 30-45 minute lead-time will be available via the Space ...

  12. Release of OLe peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OLe is a high oleic Spanish-type peanut that has excellent yield and enhanced Sclerotinia blight and pod rot resistance when compared to other high oleic Spanish cultivars. The purpose for releasing OLe is to provide peanut producers with a true Spanish peanut that is high oleic and has enhanced yi...

  13. Releasable Asbestos Field Sampler

    EPA Science Inventory

    Asbestos aerosolization (or releasability) is the potential for fibrous asbestos structures that are present in a material or on a solid surface to become airborne when the source is disturbed by human activities or natural forces. In turn, the magnitude of the airborne concentra...

  14. DSCOVR Public Release Statement

    Atmospheric Science Data Center

    2016-09-26

    ... Data and Information Wednesday, July 20, 2016 The Deep Space Climate Observatory (DSCOVR) is a NOAA/NASA mission located near the ... Format Control Book. NOAA will release data from the space weather instruments on July 27th. The data, as well as space weather ...

  15. Release the Prisoners Game

    ERIC Educational Resources Information Center

    Van Hecke, Tanja

    2011-01-01

    This article presents the mathematical approach of the optimal strategy to win the "Release the prisoners" game and the integration of this analysis in a math class. Outline lesson plans at three different levels are given, where simulations are suggested as well as theoretical findings about the probability distribution function and its mean…

  16. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  17. Release Fraction Evaluation

    SciTech Connect

    Bamberger, Judith A.; Glissmeyer, John A.

    2004-01-01

    This document presents results of experiments conducted to measure release fractions during certain tank retrieval processes. The tests were performed in a 1/4 scale model of a waste storage tank. The retrieval processes simulated were: (1) Discharging liquid or slurry from the mouth of a vertically oriented two-in. Schedule 40 pipe. The discharging material was in free-fall from the mouth of the pipe near the top of the tank into a liquid or slurry pool at the bottom of the tank. (2) The jet from a 9/16-in.-diameter nozzle transferring liquid or slurry waste from one side of the tank to the other. The discharging liquid was aimed at the opposite side of the tank from the nozzle and either impacted the tank wall or fell into a liquid or slurry pool in the bottom of the tank. (3) A high pressure fan jet of liquid striking a steel plate or simulated waste from a stand-off distance of a few inches. For each process, a water-soluble fluorescent dye was added to the liquid fraction as a tracer. Kaolin clay was used to represent the solids. The tank was covered and there was no forced ventilation in the tank during the tests. Six air samples were collected during each test. The air samples were collected at fixed positions in the tank. The air sample filters were dried and weighed to determine the solids collection. The fluorescent dye was then leached from each filter and quantified with a fluorometer to determine the collection of liquid. Samples of the slurry and liquid simulants were also collected to determine the quantities of simulant used in each test. To calculate the release fraction, the quantity collected on each air sample was adjusted for the fraction of the tank volume sampled and divided by the quantity of material exposed in the simulation. The method was not as sensitive for the solids content as it was for the liquid content, but in those instances where a solids release fraction was determined, it was in relatively good agreement with that of the

  18. Radioactive materials released from nuclear power plants. Annual report 1978

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1981-03-01

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  19. Releasable locking mechanisms

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq (Inventor); Wingate, Robert J. (Inventor)

    2005-01-01

    In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.

  20. Releasable Locking Mechanisms

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq (Inventor); Wingate, Robert J. (Inventor)

    2005-01-01

    In the aerospace field spacecraft components are held together by separation systems until a specific time when they must be separated or deployed. Customarily a threaded joining bolt engages one of the components to be joined, and a threaded nut is placed on that bolt against the other component so they can be drawn together by a releasable locking assembly. The releasable locking assembly herein includes a plunger having one end coupled to one end of a plunger bolt. The other end is flanged to abut and compress a coil spring when the plunger is advanced toward the interface plane between the two components. When the plunger is so advanced toward the interface plane, the end of the plunger bolt can be connected to the joining bolt. Thus during retraction the joining bolt is drawn to one side of the interface plane by the force of the expanding spring.

  1. Slow-release fertilizer

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Golden, D. C. (Inventor)

    1992-01-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  2. Slow-release fertilizer

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  3. Cryogenic hydrogen release research.

    SciTech Connect

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  4. Clinton releases oceans report

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    U.S. President Bill Clinton is trying to beat the clock on the January 20 close of his administration by maintaining a flurry of activity on resource and conservation issues.During a December 4 speech in Washington, D.C., he released a broad-ranging report by the Presidents Panel on Ocean Exploration, entitled “Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration.”

  5. Slow-release fertilizer

    NASA Astrophysics Data System (ADS)

    Ming, Douglas W.; Golden, D. C.

    1992-10-01

    A synthetic apatite containing agronutrients and a method for making the apatite are disclosed. The apatite comprises crystalline calcium phosphate having agronutrients dispersed in the crystalline structure. The agronutrients can comprise potassium, magnesium, sulfur, iron, manganese, molybdenum, chlorine, boron, copper and zinc in amounts suited for plant growth. The apatite can optionally comprise a carbonate and/or silicon solubility control agent. The agronutrients are released slowly as the apatite dissolves.

  6. Preload release mechanism

    NASA Technical Reports Server (NTRS)

    Generoli, Robert M. (Inventor); Young, Harry J. (Inventor)

    1995-01-01

    This invention relates to a preload release mechanism comprising a preload spring assembly adapted to apply a preload to a first connector member which is mounted on a support structure and adapted for connection with a second connector member on an object. The assembly comprises telescoped bushings and a preload spring. A tubular shaft extends through the spring assembly and openings in the first connector member and support structure, on which it is clamped. A plunger rod in the shaft is provided with a tip end and a recess in the rod near the other end thereof. A retainer precludes passage of the rod through the shaft in one direction and an end cap closes the bore of the shaft at the other end and provides a shoulder which extends radially of the shaft. A plunger return spring biases the plunger rod against the plunger retainer with the plunger tip protruding from the shaft and a spring assembly return spring engages at its ends the shoulder of the end cap and one end of the spring assembly. Detents received in lateral openings in the tubular shaft are held captive by the plunger rod and one end of the spring assembly to lock the spring assembly on the tubular shaft and apply a preload to the first connector member. Upon completion of the connection, detents and spring assembly are released by plunger contact with the object to be connected, thereby releasing the preload while the connection is maintained.

  7. Contact: Releasing the news

    NASA Astrophysics Data System (ADS)

    Pinotti, Roberto

    The problem of mass behavior after man's future contacts with other intelligences in the universe is not only a challenge for social scientists and political leaders all over the world, but also a cultural time bomb as well. In fact, since the impact of CETI (Contact with Extraterrestrial Intelligence) on human civilization, with its different cultures, might cause a serious socio-anthropological shock, a common and predetermined worldwide strategy is necessary in releasing the news after the contact, in order to keep possible manifestations of fear, panic and hysteria under control. An analysis of past studies in this field and of parallel historical situations as analogs suggests a definite "authority crisis" in the public as a direct consequence of an unexpected release of the news, involving a devastating "chain reaction" process (from both the psychological and sociological viewpoints) of anomie and maybe the collapse of today's society. The only way to prevent all this is to prepare the world's public opinion concerning contact before releasing the news, and to develop a long-term strategy through the combined efforts of scientists, political leaders, intelligence agencies and the mass media, in order to create the cultural conditions in which a confrontation with ETI won't affect mankind in a traumatic way. Definite roles and tasks in this multi-level model are suggested.

  8. Triggered Release from Polymer Capsules

    SciTech Connect

    Esser-Kahn, Aaron P.; Odom, Susan A.; Sottos, Nancy R.; White, Scott R.; Moore, Jeffrey S.

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  9. Environmental releases for calendar year 1994

    SciTech Connect

    Gleckler, B.P.

    1995-07-01

    This report fulfills the annual environmental release reporting requirements of US Department of Energy (DOE) Orders. This report provides supplemental information to the Hanford Site Environmental Report. The Hanford Site Environmental Report provides an update on the environmental status of the entire Hanford Site. The sitewide annual report summarizes the degree of compliance of the Hanford Site with applicable environmental regulations and informs the public about the impact of Hanford operations on the surrounding environment. Like the Hanford Site Environmental Report, this annual report presents a summary of the environmental releases from facilities managed by the Westinghouse Hanford Company (WHC) and monitored by Bechtel Hanford, Incorporated (BHI). In addition to the summary data, this report also includes detailed data on air emissions, liquid effluents, and hazardous substances released to the environment during calendar year 1994 from these facilities.

  10. Potential release scenarios for carbon nanotubes used in composites.

    PubMed

    Nowack, Bernd; David, Raymond M; Fissan, Heinz; Morris, Howard; Shatkin, Jo Anne; Stintz, Michael; Zepp, Richard; Brouwer, Derk

    2013-09-01

    exposure. A possibility for significant release also exists during recycling operations when the polymers containing CNTs are handled together with other polymers and mainly occupational users would be exposed. It can be concluded that in general, significant release of CNTs from products and articles is unlikely except in manufacturing and subsequent processing, tires, recycling, and potentially in textiles. However except for high energy machining processes, most likely the resulting exposure for these scenarios will be low and to a non-pristine form of CNTs. Actual exposure studies, which quantify the amount of material released should be conducted to provide further evidence for this conclusion.

  11. Potential release scenarios for carbon nanotubes used in composites.

    PubMed

    Nowack, Bernd; David, Raymond M; Fissan, Heinz; Morris, Howard; Shatkin, Jo Anne; Stintz, Michael; Zepp, Richard; Brouwer, Derk

    2013-09-01

    exposure. A possibility for significant release also exists during recycling operations when the polymers containing CNTs are handled together with other polymers and mainly occupational users would be exposed. It can be concluded that in general, significant release of CNTs from products and articles is unlikely except in manufacturing and subsequent processing, tires, recycling, and potentially in textiles. However except for high energy machining processes, most likely the resulting exposure for these scenarios will be low and to a non-pristine form of CNTs. Actual exposure studies, which quantify the amount of material released should be conducted to provide further evidence for this conclusion. PMID:23708563

  12. Sustained-release, extended-release, and other time-release formulations in neuropsychiatry.

    PubMed

    Andrade, Chittaranjan

    2015-08-01

    Pills and capsules may release their contents within minutes of ingestion; these are immediate-release formulations. Pills and capsules may also release their contents after a time lag, or a little at a time, or in some other predetermined way; these are time-release formulations. Many drugs in psychiatry have been time-release formulated to reduce their local adverse effects in the gastrointestinal tract, to reduce adverse effects associated with peak blood levels, or to artificially extend their half-life. Time-release formulations are associated with the added advantages of convenience of dosing, improved compliance, and less fluctuation in blood levels across the course of the day. A disadvantage of time-release formulations is that they may be incompletely absorbed; this is a serious issue in patients with acute or chronic intestinal hurry disorders, such as gastroenteritis or irritable bowel syndrome. Time-release formulations may also be more expensive than immediate-release formulations.

  13. Fragmentation of multiply charged hydrocarbon molecules C{sub n}H{sup q+} (n{<=} 4, q{<=} 9) produced in high-velocity collisions: Branching ratios and kinetic energy release of the H{sup +} fragment

    SciTech Connect

    Beroff, K.; Pino, T.; Carpentier, Y.; Van-Oanh, N. T.; Chabot, M.; Tuna, T.; Martinet, G.; Le Padellec, A.; Lavergne, L.

    2011-09-15

    Fragmentation branching ratios for channels involving H{sup +} emission and associated kinetic energy release of the H{sup +} fragment [KER(H{sup +})] have been measured for multicharged C{sub n}H{sup q+} molecules produced in high velocity (3.6 a.u.) collisions between C{sub n}H{sup +} projectiles and helium atoms. For CH{sup q+} (q{<=} 4) molecules, measured KER(H{sup +}) were found well below predictions of the simple point charge Coulomb model (PCCM) for all q values. Multireference configuration interaction (MRCI) calculations for ground as well as electronic excited states were performed which allowed a perfect interpretation of the CH{sup q+} experimental results for low charges (q = 2-3) as well as for the highest charge (q = 4). In this last case we could show, on the basis of ionization cross sections calculations and experimental measurements performed on the same systems at slightly higher velocity (4.5 a.u.), the prominent role played by inner-shell ionization followed by Auger relaxation and could extract the lifetime of this Auger relaxation giving rise to the best agreement between the experiment and the calculations. For dissociation of C{sub 2}H{sup q+} and C{sub 3}H{sup q+} with the highest charges (q{>=} 5), inner-shell ionization contributed in a prominent way to the ion production. In these two cases it was shown that measured KER(H{sup +}) were in good agreement with PCCM predictions when those were corrected for Auger relaxation with the same Auger lifetime value as in CH{sup 3+}.

  14. Effect of different growth hormone-releasing factors on the concentrations of growth hormone, insulin and metabolites in the plasma of sheep maintained in positive and negative energy balance.

    PubMed

    Hart, I C; Chadwick, P M; Coert, A; James, S; Simmonds, A D

    1985-04-01

    Three experiments were conducted to compare the ability of different preparations of growth hormone-releasing factor (GRF) to stimulate GH secretion in sheep maintained in positive and negative energy balance. In experiment 1 five sheep were injected (i.v.) with three preparations of human pancreatic GRF (hpGRF-44, hpGRF-40, hpGRF-29-NH2) and one preparation of rat hypothalamic GRF (rhGRF-29-NH2) all at 98.0 pmol/kg, or control vehicle, in a Latin square design when the animals either had free access to food or were fed half their maintenance requirements. Analysis of plasma samples, obtained before and for 150 min after injection, revealed that the reduced food intake resulted in the expected changes in body weight and circulating GH, insulin, glucose, urea and non-esterified fatty acids. The maximum post-injection concentrations of GH did not differ between either the two levels of feeding or the four GRF preparations but the mean post-injection concentration of GH was significantly higher for all GRF treatments on the restricted ration (P less than 0.001). The mean post-injection response to rhGRF-29-NH2 was less than that obtained with hpGRF-44 for sheep with food available ad libitum (P less than 0.05) and was clearly more persistent for all GRF treatments in animals fed the reduced diet (P less than 0.001). In experiment 2 the same five sheep were injected i.v. with rhGRF-29-NH2 (98.0 pmol/kg) when they had free access to food and after food had been withdrawn for 3 days.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2859343

  15. 16. EAST ELEVATION OF FLOAT HOUSE AND FISH WATER RELEASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EAST ELEVATION OF FLOAT HOUSE AND FISH WATER RELEASE OUTLET. PART OF ENERGY DISSIPATING BAFFLE PIER SYSTEM IS VISIBLE AT LEFT. - Pit 4 Diversion Dam, Pit River west of State Highway 89, Big Bend, Shasta County, CA

  16. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  17. Riola release report

    SciTech Connect

    Woodward, E.C.

    1983-08-04

    Eleven hours after execution of the Riola Event (at 0826 PDT on 25 September 1980) in hole U2eq of the Nevada Test Site (NTS), a release of radioactivity began. When the seepage stopped at about noon the following day, up to some 3200 Ci of activity had been dispersed by light variable winds. On 26 September, examination of the geophone records showed six hours of low-level, but fairly continuous, activity before the release. Electrical measurements indicated that most cables were still intact to a depth below the stemming platform. A survey of the ground zero area showed that the seepage came through cracks between the surface conductor and the pad, through cracks in the pad, and through a crack adjacent to the pad around the mousehole (a small hole adjacent to the emplacement hole). To preclude undue radiation exposure or injury from a surprise subsidence, safety measures were instituted. Tritium seepage was suffucient to postpone site activities until a box and pipeline were emplaced to contain and remove the gas. Radiation release modeling and calculations were generally consistent with observations. Plug-hole interaction calculations showed that the alluvium near the bottom of the plug may have been overstressed and that improvements in the design of the plug-medium interface can be made. Experimental studies verified that the surface appearance of the plug core was caused by erosion, but, assuming a normal strength for the plug material, that erosion alone could not account for the disappearance of such a large portion of the stemming platform. Samples from downhole plug experiments show that the plug may have been considerably weaker than had been indicted by quality assurance (QA) samples. 19 references, 32 figures, 10 tables.

  18. Birth control - slow release methods

    MedlinePlus

    ... ovaries from releasing an egg. Releasing egg during menstrual cycle is called ovulation. They do this by changing ... implants are likely to get pregnant. Your regular menstrual cycles should return within 3 to 4 weeks after ...

  19. A controlled-release microchip.

    PubMed

    Santini, J T; Cima, M J; Langer, R

    1999-01-28

    Much previous work in methods of achieving complex drug-release patterns has focused on pulsatile release from polymeric materials in response to specific stimuli, such as electric or magnetic fields, exposure to ultrasound, light or enzymes, and changes in pH or temperature. An alternative method for achieving pulsatile release involves using microfabrication technology to develop active devices that incorporate micrometre-scale pumps, valves and flow channels to deliver liquid solutions. Here we report a solid-state silicon microchip that can provide controlled release of single or multiple chemical substances on demand. The release mechanism is based on the electrochemical dissolution of thin anode membranes covering microreservoirs filled with chemicals in solid, liquid or gel form. We have conducted proof-of-principle release studies with a prototype microchip using gold and saline solution as a model electrode material and release medium, and we have demonstrated controlled, pulsatile release of chemical substances with this device.

  20. Hydrogen release behavior.

    SciTech Connect

    LaChance, Jeffrey L.; Dedrick, Daniel E.; Keller, Jay O.; Evans, Gregory Herbert; Houf, William G.; Winters, William Stanley, Jr.; Ruggles, A.; Zhang, J.

    2010-04-01

    The summary of this presentation is: (1) Barrier walls are used to reduce setbacks by factor of 2; (2) We found no ignition-timing vs. over-pressure sensitivities for jet flow obstructed by barrier walls; (3) Cryogenic vapor cloud model indicates hazard length scales exceed the room-temperature release; validation experiments are required to confirm; (4) Light-up maps developed for lean limit ignition; flammability factor model provides good indication of ignition probability; and (5) Auto-ignition is enhanced by blunt-body obstructions - increases gas temperature and promotes fuel/air mixing.

  1. Arthroscopic Posteromedial Capsular Release.

    PubMed

    Dean, Chase S; Chahla, Jorge; Mikula, Jacob D; Mitchell, Justin J; LaPrade, Robert F

    2016-06-01

    Post-traumatic or postsurgical flexion contractures of the knee can significantly limit function and lead to gait abnormalities. In this setting, interventions to regain full extension may include bracing, physical therapy, and open or arthroscopic surgery. Open surgical approaches to restore full motion often demand extensive recovery and promote further adhesions and loss of motion, which has led to the advent of arthroscopic techniques to address these pathologies. We present a safe, effective, and reproducible arthroscopic technique for posteromedial capsular release to address knee flexion contractures. PMID:27656368

  2. Mechanism of oligonucleotide release from cationic liposomes.

    PubMed Central

    Zelphati, O; Szoka, F C

    1996-01-01

    We propose a mechanism for oligonucleotide (ODN) release from cationic lipid complexes in cells that accounts for various observations on cationic lipid-nucleic acid-cell interactions. Fluorescent confocal microscopy of cells treated with rhodamine-labeled cationic liposome/ fluorescein-labeled ODN (F-ODN) complexes show the F-ODN separates from the lipid after internalization and enters the nucleus leaving the fluorescent lipid in cytoplasmic structures. ODN displacement from the complex was studied by fluorescent resonance energy transfer. Anionic liposome compositions (e.g., phosphatidylserine) that mimic the cytoplasmic facing monolayer of the cell membrane released ODN from the complex at about a 1:1 (-/+) charge ratio. Release was independent of ionic strength and pH. Physical separation of the F-ODN from monovalent and multivalent cationic lipids was confirmed by gel electrophoresis. Fluid but not solid phase anionic liposomes are required, whereas the physical state of the cationic lipids does not effect the release. Water soluble molecules with a high negative linear charge density, dextran sulfate, or heparin also release ODN. However, ATP, spermidine, spermine, tRNA, DNA, polyglutamic acid, polylysine, bovine serum albumin, or histone did not release ODN, even at 100-fold charge excess (-/+). Based upon these results, we propose that the complex, after internalization by endocytosis, induces flip-flop of anionic lipids from the cytoplasmic facing monolayer. Anionic lipids laterally diffuse into the complex and form a charged neutralized ion-pair with the cationic lipids. This leads to displacement of the ODN from the cationic lipid and its release into the cytoplasm. Images Fig. 1 Fig. 3 PMID:8876163

  3. Hemichannel-mediated release of lactate

    PubMed Central

    Karagiannis, Anastassios; Sylantyev, Sergiy; Hadjihambi, Anna; Hosford, Patrick S; Kasparov, Sergey

    2015-01-01

    In the central nervous system lactate contributes to the extracellular pool of readily available energy substrates and may also function as a signaling molecule which mediates communication between glial cells and neurons. Monocarboxylate transporters are believed to provide the main pathway for lactate transport across the membranes. Here we tested the hypothesis that lactate could also be released via opening of pannexin and/or functional connexin hemichannels. In acute slices prepared from the brainstem, hippocampus, hypothalamus and cortex of adult rats, enzymatic amperometric biosensors detected significant tonic lactate release inhibited by compounds, which block pannexin/connexin hemichannels and facilitated by lowering extracellular [Ca2+] or increased PCO2. Enhanced lactate release triggered by hypoxia was reduced by ∼50% by either connexin or monocarboxylate transporter blockers. Stimulation of Schaffer collateral fibers triggered lactate release in CA1 area of the hippocampus, which was facilitated in conditions of low extracellular [Ca2+], markedly reduced by blockade of connexin hemichannels and abolished by lactate dehydrogenase inhibitor oxamate. These results indicate that lactate transport across the membranes may occur via mechanisms other than monocarboxylate transporters. In the central nervous system, hemichannels may function as a conduit of lactate release, and this mechanism is recruited during hypoxia and periods of enhanced neuronal activity. PMID:26661210

  4. Helium release from radioisotope heat sources

    SciTech Connect

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  5. Source of released carbon fibers

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1979-01-01

    The potential for the release of carbon fibers from aircraft crashes/fires is addressed. Simulation of the conditions of aircraft crash fires in order to predict the quantities and forms of fibrous materials which might be released from civilian aircraft crashes/fires is considered. Figures are presented which describe some typical fiber release test activities together with some very preliminary results of those activities. The state of the art of carbon fiber release is summarized as well as some of the uncertainties concerning accidental fiber release.

  6. Draft Wetlands Rule Released

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-04-01

    The U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers released on 28 March a draft of a new rule to guide compensatory mitigation for when wetlands are unavoidably lost due to development. However, whether the rule is successful in preventing a net loss in wetlands will depend largely on its implementation, according to two wetlands scientists who evaluated the issue for the U.S. National Research Council (NRC) in 2001. Under the federal Clean Water Act, developers who seek to build on wetlands must compensate for any wetlands loss if they are unable to avoid or minimize the loss. Such compensation is covered under the newly proposed compensatory mitigation rule. Benjamin Grumbles, EPA assistant administrator for water, called the rule an ``innovative new standard that will accelerate the pace of wetlands conservation and restoration.''

  7. Quick release engine cylinder

    DOEpatents

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  8. Attentional priming releases crowding.

    PubMed

    Kristjánsson, Arni; Heimisson, Pétur Rúnar; Róbertsson, Gunnar Freyr; Whitney, David

    2013-10-01

    Views of natural scenes unfold over time, and objects of interest that were present a moment ago tend to remain present. While visual crowding places a fundamental limit on object recognition in cluttered scenes, most studies of crowding have suffered from the limitation that they typically involved static scenes. The role of temporal continuity in crowding has therefore been unaddressed. We investigated intertrial effects upon crowding in visual scenes, showing that crowding is considerably diminished when objects remain constant on consecutive visual search trials. Repetition of both the target and distractors decreases the critical distance for crowding from flankers. More generally, our results show how object continuity through between-trial priming releases objects that would otherwise be unidentifiable due to crowding. Crowding, although it is a significant bottleneck on object recognition, can be mitigated by statistically likely temporal continuity of the objects. Crowding therefore depends not only on what is momentarily present, but also on what was previously attended.

  9. QUICK RELEASABLE DRIVE

    DOEpatents

    Dickson, J.J.

    1958-07-01

    A quick releasable mechanical drive system suitable for use in a nuclear reactor is described. A small reversible motor positions a control rod by means of a worm and gear speed reducer, a magnetic torque clutch, and a bell crank. As the control rod is raised to the operating position, a heavy coil spring is compressed. In the event of an emergency indicated by either a''scram'' signal or a power failure, the current to the magnetic clutch is cut off, thereby freeing the coil spring and the bell crank positioner from the motor and speed reduction gearing. The coil spring will immediately act upon the bell crank to cause the insertion of the control rod. This arrangement will allow the slow, accurate positioning of the control rod during reactor operation, while providing an independent force to rapidly insert the rod in the event of an emergency.

  10. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  11. Controlled release formulations of acephate: water and soil release kinetics.

    PubMed

    Nisar, Keyath; Kumar, Jitendra; Shakil, Najam A; Walia, Suresh; Parmar, Balraj S

    2009-08-01

    Controlled release formulations of insecticide acephate (O,S-dimethyl acetylphosphoramidothioate) have been prepared using commercially available polyvinyl chloride, carboxy methyl cellulose and carboxy methyl cellulose with kaolinite. Kinetics of acephate release in soil and water from the different formulations was studied in comparison with the commercially available formulation 75 DF. Release from the commercial formulation was faster than the new controlled pesticide release (CR) formulations. Addition of clay in the carboxy methyl cellulose matrix reduced the rate of release. The diffusion exponent (n value) of acephate in water and soil ranged from 0.462 to 0.875 and 0.420 to 0.547 respectively in the tested formulations. The release was diffusion controlled with a half release time (T(1/2)) of 2.97 to 52.41 days in water and 2.98 to 76.38 days in soil from different matrices. The maximum release of acephate in water and soil from controlled released formulations occurred between 6.33 to 36.34 and 12.49 to 29.09 days respectively. The results suggest that depending upon the polymer matrix used, the application rate of acephate can be optimized to achieve insect control at the desired level and period. PMID:20183059

  12. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  13. 10 CFR 61.41 - Protection of the general population from releases of radioactivity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactivity. 61.41 Section 61.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR... from releases of radioactivity. Concentrations of radioactive material which may be released to the... maintain releases of radioactivity in effluents to the general environment as low as is...

  14. 10 CFR 61.41 - Protection of the general population from releases of radioactivity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactivity. 61.41 Section 61.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR... from releases of radioactivity. Concentrations of radioactive material which may be released to the... maintain releases of radioactivity in effluents to the general environment as low as is...

  15. 10 CFR 61.41 - Protection of the general population from releases of radioactivity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactivity. 61.41 Section 61.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR... from releases of radioactivity. Concentrations of radioactive material which may be released to the... maintain releases of radioactivity in effluents to the general environment as low as is...

  16. 10 CFR 61.41 - Protection of the general population from releases of radioactivity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactivity. 61.41 Section 61.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR... from releases of radioactivity. Concentrations of radioactive material which may be released to the... maintain releases of radioactivity in effluents to the general environment as low as is...

  17. 10 CFR 61.41 - Protection of the general population from releases of radioactivity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radioactivity. 61.41 Section 61.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR... from releases of radioactivity. Concentrations of radioactive material which may be released to the... maintain releases of radioactivity in effluents to the general environment as low as is...

  18. 76 FR 59392 - Notice of Intent To Grant Exclusive Patent License; Enhanced Energy Group, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    .... Patent No. 7,926,275: Closed Brayton Cycle Direct Contact Reactor/ Storage Tank With Chemical Scrubber...,951,339: Closed Brayton Cycle Direct Contact Reactor/Storage Tank With O 2 Afterburner.//U.S....

  19. Controlled Release Applications of Organometals.

    ERIC Educational Resources Information Center

    Thayer, John S.

    1981-01-01

    Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)

  20. MERCURY RELEASE FROM DISTURBED ANOXIC SOILS

    SciTech Connect

    Jaroslav Solc; Bethany A. Bolles

    2001-07-16

    The primary objectives of experiments conducted at the Energy & Environmental Research Center (EERC) were to provide information on the secondary release of mercury from contaminated anoxic sediments to an aqueous environment after disturbance/change of in situ physical conditions and to evaluate its migration and partitioning under controlled conditions, including implications of these processes for treatment of contaminated soils. Experimental work included (1) characterization of the mercury-contaminated sediment; (2) field bench-scale dredging simulation; (3) laboratory column study to evaluate a longer-term response to sediment disturbance; (4) mercury volatilization from sediment during controlled drying; (5) resaturation experiments to evaluate the potential for secondary release of residual mercury after disturbance, transport, drying, and resaturation, which simulate a typical scenario during soil excavation and transport to waste disposal facilities; and (6) mercury speciation and potential for methylation during column incubation experiments.

  1. The ALICE Software Release Validation cluster

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  2. Analysis of Peptidoglycan Fragment Release.

    PubMed

    Schaub, Ryan E; Lenz, Jonathan D; Dillard, Joseph P

    2016-01-01

    Most bacteria break down a significant portion of their cell wall peptidoglycan during each round of growth and cell division. This process generates peptidoglycan fragments of various sizes that can either be imported back into the cytoplasm for recycling or released from the cell. Released fragments have been shown to act as microbe-associated molecular patterns for the initiation of immune responses, as triggers for the initiation of mutualistic host-microbe relationships, and as signals for cell-cell communication in bacteria. Characterizing these released peptidoglycan fragments can, therefore, be considered an important step in understanding how microbes communicate with other organisms in their environments. In this chapter, we describe methods for labeling cell wall peptidoglycan, calculating the rate at which peptidoglycan is turned over, and collecting released peptidoglycan to determine the abundance and species of released fragments. Methods are described for both the separation of peptidoglycan fragments by size-exclusion chromatography and further detailed analysis by HPLC.

  3. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  4. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  5. Kepler Data Release 4 Notes

    NASA Technical Reports Server (NTRS)

    Van Cleve, Jeffrey (Editor); Jenkins, Jon; Caldwell, Doug; Allen, Christopher L.; Batalha, Natalie; Bryson, Stephen T.; Chandrasekaran, Hema; Clarke, Bruce D.; Cote, Miles T.; Dotson, Jessie L.; Gilliland, Ron; Girouard, Forrest; Haas, Michael R.; Hall, Jennifer; Ibrahim, Khadeejah; Klaus, Todd; Kolodziejczak, Jeff; Li, Jie; McCauliff, Sean D.; Middour, Christopher K.; Pletcher, David L.; Quintana, Elisa V.; Tenenbaum, Peter G.; Twicken, Joe; Uddin, Akm Kamal

    2010-01-01

    The Data Analysis Working Group have released long and short cadence materials, including FFIs and Dropped Targets for the Public. The Kepler Science Office considers Data Release 4 to provide "browse quality" data. These notes have been prepared to give Kepler users of the Multimission Archive at STScl (MAST) a summary of how the data were collected and prepared, and how well the data processing pipeline is functioning on flight data. They will be updated for each release of data to the public archive and placed on MAST along with other Kepler documentation, at http://archive.stsci.edu/kepler/documents.html. Data release 3 is meant to give users the opportunity to examine the data for possibly interesting science and to involve the users in improving the pipeline for future data releases. To perform the latter service, users are encouraged to notice and document artifacts, either in the raw or processed data, and report them to the Science Office.

  6. SR-71 Takeoff with Afterburner Showing Shock Diamonds in Exhaust

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Shock waves stream from the exhaust nozzles of the two engines of NASA's SR-71B as it leaves the runway on a 1992 flight from the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. The twin-cockpit 'B' model is one of three SR-71s initially loaned to NASA from the Air Force for use in a high-speed, high-altitude research program. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.

  7. Energy.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This document describes a course designed to acquaint students with the many societal and technological problems facing the United States and the world due to the increasing demand for energy. The course begins with a writing assignment that involves readings on the environmental philosophy of Native Americans and the Chernobyl catastrophe.…

  8. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  9. Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)

    EIA Publications

    2002-01-01

    Beginning with the December 2002 issue of the Energy Information Administration's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item totals for natural

  10. Radioactive materials released from nuclear power plants. Annual report, 1980

    SciTech Connect

    Tichler, J.; Benkovitz, C.

    1983-01-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  11. Radioactive materials released from nuclear power plants: Annual report, 1985

    SciTech Connect

    Tichler, J.; Norden, K.; Congemi, J.

    1988-01-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  12. Radioactive materials released from nuclear power plants: Annual report, 1984

    SciTech Connect

    Tichler, J.; Norden, K.; Congemi, J.

    1987-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  13. Transient pipe flow derived by periodic heat release

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Zun; Celik, Ismail

    The heat release resulting from chemical reactions in a combustor/tail pipe system usually induces an instability in the gas flow. This instability may lead to a stable periodic motion under certain combinations of combustion heat release and combustor geometry. This paper reports a numerical study of the unsteady (periodic) gas flow which is driven by a periodic heat release prescribed empirically. The one-dimensional transient equations of motion and energy are derived by integration from the more general two-dimensional equations. The combustion heat release is added to the energy equation as a source term. These equations are solved using the explicit, predictor-corrector method of MacCormack. Some predictions are compared with measurements. The effects of the wall friction, heat transfer, and the amplitude and frequency of combustion heat release on the velocity and pressure waves are investigated. The results indicate that pulsation amplitude is a strong function of the heat release rate and it shows a maximum near an equivalence ratio value of one, where the heat release is near its maximum; this is in conformity with the experimental data. A method for calculating the natural operation frequency of pulse combustor is suggested.

  14. Protocols for implementing DOE authorized release of radioactive scrap metals.

    PubMed

    Chen, S Y; Arnish, J; Kamboj, S; Nieves, L A

    1999-11-01

    A process to implement the U.S. Department of Energy's (DOE) policy for authorized release of radioactive materials from DOE facilities is provided in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material, published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. A computerized management tool--P2Pro(RSM)--has been developed to aid in carrying out the release process for radioactive metals. It contains protocols for the authorized release process and relevant information to facilitate the evaluation of scrap metals for reuse and recycle. The P2Pro(RSM) protocols provide DOE and its contractors with an effective, user-friendly tool for managing authorized release activities P2Pro(RSM) is designed to be used in the Windows environment. The protocols incorporate a relational database coupled with a graphic-user interface to guide the user through the appropriate steps so authorized release limits can be developed. With the information provided in the database, an as-low-as-reasonably-achievable (ALARA) optimization process can be easily set up and run for up to 10 alternatives for disposition of radioactive scrap metals. The results of the ALARA optimization process can be printed in a series of reports and submitted as part of the application for the authorized release of the radioactive scrap metals.

  15. Toxics Release Inventory indicates big increases in releases

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Nearly 4 billion pounds of tracked toxic chemicals were released into the environment throughout the United States during 2010, according to an analysis by the U.S. Environmental Protection Agency (EPA) of the Toxics Release Inventory (TRI), the agency announced on 5 January. This is a 16% increase above 2009. The agency said the increase is mainly due to changes in the metal-mining sector, where differences in the chemical composition of ore being mined can result in significant changes in the amount of toxic chemicals. The chemical and primary metals industries were other sectors with increases in toxic releases in 2010, the latest year for which data collection is complete. EPA also noted that although releases in 2010 were higher than during the previous 2 years, they were lower than in 2007 and in prior years.

  16. Analysis of the June 5, 1989, UF{sub 6} release test

    SciTech Connect

    Bloom, S.G.; Just, R.A.

    1993-02-01

    A series of controlled uranium hexafluoride (UF{sub 6}) release tests was conducted at a French government test site near Bordeaux, France. The results of the first release test are documented in report by R. A. Just (Just, 1986). The first UF{sub 6} release test was designated as a qualification test. The primary objective of this test was to provide the information required to obtain approval for a series of UF{sub 6} release tests. A second release test was conducted on April 10, 1987. During the second release, 146.2 kg of UF{sub 6} vapor was released over a time interval of 30 min 5 s from a 3.15-m-high, 0.05-m-diam pipe. Information collected during the second release test included meteorological data, measurements of uranium and fluorine concentrations, particle size distribution information, deposition data, and visual data (photographs and a videotape). A third release test was conducted on June 5, 1989, during which 73.1 kg of UF{sub 6} vapor was released over an interval of 15 min. The information collected was similar to the second release and also included temperature measurements within the plume close to the release point. Data from this third release test were provided to the US Department of Energy (DOE) and Martin Marietta Energy Systems, Inc. The analysis of these data is the subject of this report.

  17. Analysis of the June 5, 1989, UF[sub 6] release test

    SciTech Connect

    Bloom, S.G.; Just, R.A. )

    1993-02-01

    A series of controlled uranium hexafluoride (UF[sub 6]) release tests was conducted at a French government test site near Bordeaux, France. The results of the first release test are documented in report by R. A. Just (Just, 1986). The first UF[sub 6] release test was designated as a qualification test. The primary objective of this test was to provide the information required to obtain approval for a series of UF[sub 6] release tests. A second release test was conducted on April 10, 1987. During the second release, 146.2 kg of UF[sub 6] vapor was released over a time interval of 30 min 5 s from a 3.15-m-high, 0.05-m-diam pipe. Information collected during the second release test included meteorological data, measurements of uranium and fluorine concentrations, particle size distribution information, deposition data, and visual data (photographs and a videotape). A third release test was conducted on June 5, 1989, during which 73.1 kg of UF[sub 6] vapor was released over an interval of 15 min. The information collected was similar to the second release and also included temperature measurements within the plume close to the release point. Data from this third release test were provided to the US Department of Energy (DOE) and Martin Marietta Energy Systems, Inc. The analysis of these data is the subject of this report.

  18. Commercial SNF Accident Release Fractions

    SciTech Connect

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  19. Controlled release liquid dosage formulation

    DOEpatents

    Benton, Ben F.; Gardner, David L.

    1989-01-01

    A liquid dual coated dosage formulation sustained release pharmaceutic having substantial shelf life prior to ingestion is disclosed. A dual coating is applied over controlled release cores to form dosage forms and the coatings comprise fats melting at less than approximately 101.degree. F. overcoated with cellulose acetate phthalate or zein. The dual coated dosage forms are dispersed in a sugar based acidic liquid carrier such as high fructose corn syrup and display a shelf life of up to approximately at least 45 days while still retaining their release profiles following ingestion. Cellulose acetate phthalate coated dosage form cores can in addition be dispersed in aqueous liquids of pH <5.

  20. Estimating emissions from accidental releases

    SciTech Connect

    Wolf, D.B.

    1996-12-31

    The Clean Air Amendments (CAAA) of 1990 have an objective sources of air emissions through programs such as Title III, which is aimed at reducing hazardous air pollutant emissions. However, under Section 112(r) of the CAAA of 1990, the U.S. Environmental Protection Agency (EPA) has also developed requirements for owners and operators of facilities regulated for hazardous substances to implement accidental release prevention programs for non-continuous emissions. Provisions of 112(r) include programs for release prevention, emergency planning and risk management. This paper examines methodologies available to regulated facilities for estimating accidental release emissions and determining off-site impacts.

  1. Proposed Release Guides to Protect Aquatic Biota

    SciTech Connect

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  2. SELF-RELEASING GRAPPLING DEVICE

    DOEpatents

    Hoover, D.A. Sr.

    1963-11-01

    >A self-releasing grappling device that lifts by virtue of engagement between clamping jaws and the undercut lower side of a conical head of a lifting lug attached to the object to be lifted and employs a releasing sleeve on the lug to free the jaws from the lug is presented. When the jaws are to be released, they are dropped over the releasing sleeve, which is located well below lug head. When the jaws are lifted, they engage a conical surface on the sleeve and lift it up to the head of the lifting lug. In this position of the sleeve, the lower side of the lug head is covered by the sleeve and so cannot be engaged by the jaws, which move past before clearing the sleeve. (AEC)

  3. Best practices for code release

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce

    2016-01-01

    In this talk, I want to describe what I think are the best practices for releasing code and having it adopted by end users. Make sure your code is licensed, so users will know how the software can be used and modified, and place your code in a public repository that (and make sure that you follow institutional policies in doing this). Yet licensing and releasing code are not enough: the code must be organized and documented so users can understand what it does, what its limitations are, and how to build and use it. I will describe what I think are best practices in developing the content to support release, including tutorials, design documents, specifications of interfaces and so on. Much of what I have learned on based on ten years of experience in supporting releases of the Montage Image Mosaic Engine.

  4. Tyrosine - Effects on catecholamine release

    NASA Technical Reports Server (NTRS)

    Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.

    1988-01-01

    Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.

  5. Kinetics of hydrogen release from lunar soil

    NASA Astrophysics Data System (ADS)

    Bustin, Roberta

    1990-10-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  6. Protocols for Authorized Release of Concrete

    SciTech Connect

    Smith, Agatha Marie; Meservey, Richard Harlan; Chen, S.Y.; Powell, James Edward; PArker, F.

    2000-06-01

    Much of the clean or slightly contaminated concrete from Decontamination and Decommissioning (D&D) activities could be re-used. Currently, there is no standardized approach, or protocol, for managing the disposition of such materials. Namely, all potential disposition options for concrete, including authorized release for re-use, are generally not fully evaluated in D&D projects, so large quantities have been unduly disposed of as low-level radioactive waste. As a result, costs of D&D have become prohibitively high, hindering expedient cleanup of surplus facilities. The ability to evaluate and implement the option of authorized release of concrete from demolition would result in significant cost savings, while maintaining protection of environmental health and safety, across the Department of Energy (DOE) complex. The Idaho National Engineering and Environmental Laboratory (INEEL), Argonne National Laboratory East (ANL-E), and Vanderbilt University have teamed to develop a protocol for the authorized release of concrete, based on the existing DOE guidance of Order 5400.5, that applies across the DOE complex. The protocol will provide a streamlined method for assessing risks and costs, and reaching optimal disposal options, including re-use of the concrete within the DOE system.

  7. Kinetics of hydrogen release from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  8. 19 CFR 142.41 - Line Release.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Line Release. 142.41 Section 142.41 Customs Duties... (CONTINUED) ENTRY PROCESS Line Release § 142.41 Line Release. Line Release is an automated system designed to... importers of merchandise which CBP deems to be repetitive and high volume. Line Release may be used only...

  9. 19 CFR 142.41 - Line Release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Line Release. 142.41 Section 142.41 Customs Duties... (CONTINUED) ENTRY PROCESS Line Release § 142.41 Line Release. Line Release is an automated system designed to... importers of merchandise which Customs deems to be repetitive and high volume. Line Release may be used...

  10. Storing and transporting energy

    DOEpatents

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  11. Optimization of release from magnetically controlled polymeric drug release devices.

    PubMed

    Edelman, E R; Langer, R

    1993-07-01

    Release rates from drug:polymer matrices embedded with small magnets increase in the presence of oscillating magnetic fields. Previous studies of these systems have defined those parameters that determine the extent of the increase in release, and implied that not only was the force generated within the matrix an important determinant of the extent of modulation but also that the greater the amount of matrix actually displaced, the greater the observed modulation. We investigated this possibility in the magnetic system and developed a model taking into account the intersection of the volume of a cylindrical polymer-drug magnet embedded matrix with an imaginary sphere representing the upper limit of matrix deformation by the magnet. The intersection correlated in a linear fashion with the increase in release (slope = 1.16 +/- 0.26, R = 0.864, P = 0.003, s.e.e. = 1.38). Magnet orientation alone was insufficient to explain the data. It appears that a modulated system is optimized when the modulating force overlaps precisely with the maximum amount of matrix drug that can be released. If the size of the matrix, position of the magnet, force generated on the matrix by the magnet, viscoelastic properties of the matrix, etc. are not matched then modulation is inefficient. These results should provide further insight into and a means of optimization for externally regulated controlled release systems.

  12. Added release time in diffusion/dissolution coupled release.

    PubMed

    Nuxoll, Eric

    2015-10-15

    While increasingly sophisticated models have been developed to more accurately predict dispersed solute release from complex systems, distillation of their results into quantitative trends has been difficult. Here, the numerically calculated release profiles of coupled diffusion/dissolution systems are quantified by their cumulative release time (CRT) and compared against corresponding diffusion-controlled limits. The increase in CRT due to a finite dissolution rate was found to vary inversely with the second Damköhler number across several orders of magnitude, and also vary linearly with the amount of solid drug loaded in the system. The analytical nature of the relationship provides new physical insights into the system and appears to be indifferent to the form of the secondary rate-limiting step. This work provides a simple analytical expression with which one can not only predict the mean release time for a given set of parameter values, but understand precisely how each parameter value will affect it. The simplicity of the correlation and the lack of apparent limits to its validity also suggest the existence of an analytical pathway for its derivation, which may yield additional insights into the effect of secondary rate processes on controlled release. PMID:26276252

  13. Added release time in diffusion/dissolution coupled release.

    PubMed

    Nuxoll, Eric

    2015-10-15

    While increasingly sophisticated models have been developed to more accurately predict dispersed solute release from complex systems, distillation of their results into quantitative trends has been difficult. Here, the numerically calculated release profiles of coupled diffusion/dissolution systems are quantified by their cumulative release time (CRT) and compared against corresponding diffusion-controlled limits. The increase in CRT due to a finite dissolution rate was found to vary inversely with the second Damköhler number across several orders of magnitude, and also vary linearly with the amount of solid drug loaded in the system. The analytical nature of the relationship provides new physical insights into the system and appears to be indifferent to the form of the secondary rate-limiting step. This work provides a simple analytical expression with which one can not only predict the mean release time for a given set of parameter values, but understand precisely how each parameter value will affect it. The simplicity of the correlation and the lack of apparent limits to its validity also suggest the existence of an analytical pathway for its derivation, which may yield additional insights into the effect of secondary rate processes on controlled release.

  14. [Drug release system controlled by near infrared light].

    PubMed

    Niidome, Takuro

    2013-01-01

    Gold nanorods have absorption bands in the near-infrared region; in this spectral range, light penetrates deeply into tissues. The absorbed light energy is converted into heat by gold nanorods. This is the so-called photothermal effect. Gold nanorods are therefore expected to act not only as thermal converters for photothermal therapy, but also as controllers for drug-release systems responding to irradiation with near-infrared light. To achieve a controlled-release system that could be triggered by light irradiation, the gold nanorods were modified with double-stranded DNA (dsDNA). When the dsDNA-modified gold nanorods were irradiated with near-infrared light, single-stranded DNA (ssDNA) was released from the gold nanorods because of the photothermal effect. The release of ssDNA was also observed in tumors grown on mice after near-infrared light irradiation. We also proposed a different controlled-release system responding to near-infrared light. Gold nanorods were modified with polyethylene glycol (PEG) through Diels-Alder cycloadducts. When the gold nanorods were irradiated with near-infrared light, the PEG chains were released from the gold nanorods because of the retro Diels-Alder reaction induced by the photothermal effect. Such controlled-release systems triggered by near-infrared light irradiation will be expanded for gold nanorod drug delivery system applications.

  15. The Release Behavior of Diamond Shocked to 15 Mbar

    NASA Astrophysics Data System (ADS)

    Gregor, M. C.; McCoy, C. A.; Polsin, D. N.; Boehly, T. R.; Meyerhofer, D. D.; Fratanduono, D. E.; Celliers, P. M.

    2014-10-01

    Ultrananocrystalline diamond (UNCD) is used as an ablator material for inertial confinement fusion experiments at the National Ignition Facility. Both the Hugoniot and the release behavior of the UNCD ablators are needed to accurately model the implosion process. The OMEGA laser was used to perform experiments in which two types of high-density carbon released into sample materials with known Hugoniots (quartz, 200 mg/cm3 SiO2 foam, liquid deuterium, and polystyrene). We present preliminary results of the release behavior of both UNCD and single-crystal diamond in the 5- to 15-Mbar regime. Models for the release isentropes of UNCD and single-crystal diamond will be developed using a Mie-Grüneisen equation of state. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. A bill to amend the Energy Policy and Conservation Act to modify the conditions for the release of products from the Northeast Home Heating Oil Reserve Account, and for other purposes.

    THOMAS, 111th Congress

    Sen. Snowe, Olympia J. [R-ME

    2009-01-21

    05/12/2009 Committee on Energy and Natural Resources. Hearings held. Hearings printed: S.Hrg. 111-67. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. 26 CFR 301.6343-1 - Requirement to release levy and notice of release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions in paragraph (b) of this section (conditions requiring release) exist. The director must make a determination whether any of the conditions requiring release exist if a taxpayer submits a request for release... release exists. (b) Conditions requiring release. The director must release the levy upon all or a part...

  18. Deep Sludge Gas Release Event Analytical Evaluation

    SciTech Connect

    Sams, Terry L.

    2013-08-15

    report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.

  19. Sand release apparatus and method

    SciTech Connect

    Hall, L.D.

    1991-05-28

    This patent describes a sand release apparatus for enabling the release of a pump. It comprises first and second telescoped tubular sleeves; a first restricting means; sleeve located drain opening means and means for enabling controlled separation of the pump from the apparatus at a specified joint. This patent also describes a method for releasing a pump determined to be sand locked. It comprises applying an upward force on the sucker rod string to break a shear pin restricting relative axial extension of telescoped sleeve members connected in the well below the pump; extending the telescoped sleeve members to expose drain openings to permit sand to flow away from the annular space; and disconnecting from the tubing string below the pump to pull the pump free of the sand locked condition.

  20. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  1. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  2. Payload holddown and release mechanism

    NASA Technical Reports Server (NTRS)

    Chaput, Dale; Visconti, Mark; Edwards, Michael; Moran, Tom

    1994-01-01

    A payload holddown and release mechanism, designated the Model 1172, was designed and built at G&H Technology during the winter of 1992/1993. The mechanism is able to restrain and release a 45-pound payload with minimal tipoff. The payload is held in place by a stainless steel band and released using electrically triggered non-explosive actuators. These actuators provide reliable operation with negligible shock and no special handling requirements. The performance of the mechanism was demonstrated in two flight tests. Data showed pitch and yaw tipoff rates of less than 0.07 radian (4 degree) per second. The Model 1172 design is an efficient replacement for conventional payload deployment devices, especially where low transmitted shock is required.

  3. Metering Best Practices, A Guide to Achieving Utility Resource Efficiency, Release 2.0

    SciTech Connect

    Sullivan, Greg; Hunt, W. D.; Pugh, Ray; Sandusky, William F.; Koehler, Theresa M.; Boyd, Brian K.

    2011-08-31

    This release is an update and expansion of the information provided in Release 1.0 of the Metering Best Practice Guide that was issued in October 2007. This release, as was the previous release, was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to facilitate the Federal Government's implementation of sound cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Each of these activities is directly related to achieving requirements set forth in the Energy Policy Acts of 1992 and 2005, the Energy Independence and Security Act (EISA) of 2007, and the goals that have been established in Executive Orders 13423 and 13514 - and also those practices that are inherent in sound management of Federal financial and personnel resources.

  4. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  5. Hydrocarbon release investigations in Missouri

    SciTech Connect

    Fels, J.B.

    1996-09-01

    Hydrocarbon releases are among the most common environmental problems in Missouri, as well as across the country. Old, unprotected underground storage tanks and buried piping from the tanks to pumps are notorious sources of petroleum contamination at LUST (leaking underground storage tank) sites. Missouri has an estimated 5000 LUST sites across the state with the majority being simple spills into clay-rich soils or into a shallow perched water system. However, in the southern half of the state, where residual soils and karst bedrock are not conducive to trapping such releases, significant groundwater supplies are at risk. This article discusses the process used to identify the source of contamination.

  6. Bioinspired, releasable quorum sensing modulators.

    PubMed

    Gomes, José; Grunau, Alexander; Lawrence, Adrien K; Eberl, Leo; Gademann, Karl

    2013-01-01

    We demonstrate the synthesis and immobilization of natural product hybrids featuring an acyl-homoserine lactone and a nitrodopamine onto biocompatible TiO(2) surfaces through an operationally simple dip-and-rinse procedure. The resulting immobilized hybrids were shown to be powerful quorum sensing (QS) activators in Pseudomonas strains acting by slow release from the surface. PMID:23169441

  7. 2014 Pee Dee germplasm releases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PD 05035, PD 05041, PD 05064, PD 05069, PD 05070, PD 05071, PD 06001, and PD 06078 are noncommercial breeding lines of cotton jointly released by the Agricultural Research Service, United States Department of Agriculture, Clemson University Experiment Station, and Cotton Incorporated in 2014. These ...

  8. Photodegradable Polyesters for Triggered Release

    PubMed Central

    Lv, Cong; Wang, Zhen; Wang, Peng; Tang, Xinjing

    2012-01-01

    Photodegradable polyesters were synthesized with a photolabile monomer 2-nitrophenylethylene glycol and dioyl chlorides with different lengths. These polymers can be assembled to form polymeric particles with encapsulation of target substances. Light activation can degrade these particles and release payloads in both aqueous solutions and RAW 264.7 cells. PMID:23208376

  9. 7 CFR 550.29 - Press releases.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Press releases. 550.29 Section 550.29 Agriculture... Program Management § 550.29 Press releases. Press releases or other forms of public notification will be... opportunity to review, in advance, all written press releases and any other written information to be...

  10. 7 CFR 550.29 - Press releases.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Press releases. 550.29 Section 550.29 Agriculture... Program Management § 550.29 Press releases. Press releases or other forms of public notification will be... opportunity to review, in advance, all written press releases and any other written information to be...

  11. 7 CFR 550.29 - Press releases.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Press releases. 550.29 Section 550.29 Agriculture... Program Management § 550.29 Press releases. Press releases or other forms of public notification will be... opportunity to review, in advance, all written press releases and any other written information to be...

  12. 7 CFR 550.29 - Press releases.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Press releases. 550.29 Section 550.29 Agriculture... Program Management § 550.29 Press releases. Press releases or other forms of public notification will be... opportunity to review, in advance, all written press releases and any other written information to be...

  13. 7 CFR 550.29 - Press releases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Press releases. 550.29 Section 550.29 Agriculture... Program Management § 550.29 Press releases. Press releases or other forms of public notification will be... opportunity to review, in advance, all written press releases and any other written information to be...

  14. Index to NASA News Releases 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This issue of the index to NASA News Releases contains a listing of news releases distributed by the Office of Public Affairs, NASA Headquarters, during 1995. The index is arranged in six sections: Subject index, Personal name index, News release number index, Accession number index, Speeches, and News releases.

  15. Kepler Data Release 3 Notes

    NASA Technical Reports Server (NTRS)

    Cleve, Jeffrey E.

    2010-01-01

    This describes the collection of data and the processing done on it so when researchers around the world get the Kepler data sets (which are a set of pixels from the telescope of a particular target (star, galaxy or whatever) over a 3 month period) they can adjust their algorithms fro things that were done (like subtracting all of one particular wavelength for example). This is used to calibrate their own algorithms so that they know what it is they are starting with. It is posted so that whoever is accessing the publicly available data (not all of it is made public) can understand it .. (most of the Kepler data is under restriction for 1 - 4 years and is not available, but the handbook is for everyone (public and restricted) The Data Analysis Working Group have released long and short cadence materials, including FFls and Dropped Targets for the Public. The Kepler Science Office considers Data Release 3 to provide "browse quality" data. These notes have been prepared to give Kepler users of the Multimission Archive at STScl (MAST) a summary of how the data were collected and prepared, and how well the data processing pipeline is functioning on flight data. They will be updated for each release of data to the public archive and placed on MAST along with other Kepler documentation, at http:// archive.stsci.edu/kepler/documents.html .Data release 3 is meant to give users the opportunity to examine the data for possibly interesting science and to involve the users in improving the pipeline for future data releases. To perform the latter service, users are encouraged to notice and document artifacts, either in the raw or processed data, and report them to the Science Office.

  16. Initial decomposition mechanism for the energy release from electronically excited energetic materials: FOX-7 (1,1-diamino-2,2-dinitroethene, C{sub 2}H{sub 4}N{sub 4}O{sub 4})

    SciTech Connect

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R.

    2014-02-21

    Decomposition of the energetic material FOX-7 (1,1-diamino-2,2-dinitroethylene, C{sub 2}H{sub 4}N{sub 4}O{sub 4}) is investigated both theoretically and experimentally. The NO molecule is observed as an initial decomposition product subsequent to electronic excitation. The observed NO product is rotationally cold (<35 K) and vibrationally hot (2800 K). The initial decomposition mechanism is explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 2} FOX-7 can radiationlessly relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersections and undergo a nitro-nitrite isomerization to generate NO product on the S{sub 0} state. The theoretically predicted mechanism is consistent with the experimental results. As FOX-7 decomposes on the ground electronic state, thus, the vibrational energy of the NO product from FOX-7 is high. The observed rotational energy distribution for NO is consistent with the final transition state structure on the S{sub 0} state. Ground state FOX-7 decomposition agrees with previous work: the nitro-nitrite isomerization has the lowest average energy barrier, the C–NH{sub 2} bond cleavage is unlikely under the given excitation conditions, and HONO formation on the ground state surface is energy accessible but not the main process.

  17. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2013-01-01 2013-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  18. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2014-01-01 2014-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  19. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2010-01-01 2010-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  20. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2011-01-01 2011-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  1. 10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing... 10 Energy 1 2012-01-01 2012-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is...

  2. Characteristics of renin release from isolated superfused glomeruli in vitro.

    PubMed Central

    Blendstrup, K; Leyssac, P P; Poulsen, K; Skinner, S L

    1975-01-01

    1. A method is described for studying renin release from superfused rat glomeruli following their rapid isolation by a magnetic iron-oxide technique. 2. Microscopically selected glomeruli were free of tubular components. Some possessed vascular pole protrusions of up to 20 mum, unrelated to renin content. 3. Renin content of 102 batches, each of 400 glomeruli, was 1.34 plus or minus 0.08 times 10-4 Goldblatt hog units per 100 glomeruli (plus or minus S.E. of mean). Different osmolarities (305, 355 and 400 m-osmole/1.), sodium concentrations (110 and 135 mM) and buffer compositions of the preparation solution did not alter this value. Renin content per glomerulus in intact kidney was 100-fold higher. 4. At 30 degrees C the contained juxtaglomerular cells released renin at consistent but decreasing rates over 4-6 hr. Initial release rate in 110 mM sodium, 305 m-osmole/1. solutions were 0.86 plus or minus 0.068 times 10-6 units per 100 glomeruli per 30 min (plus or minus S.E. of mean, n = 42) or 0.546 plus or minus 0.046 percent of content per 30 min. In 135 mM sodium, 305 m-osmole/1. solutions, release was 2.4-fold higher (P less than 0.001) and remained elevated for at least 3 hr. When related to renin content per glomerulus resting release rate in vitro was higher by at most one order of magnitude than calculated in vivo values. 5. Release was augmented by gentle physical agitation of the glomeruli. 6. Release rate was inversely ralated to temperature. On reducing temperature from 30 degrees C, release increased 2.6-fold at 20 degrees C and 6.7-fold at 10 degrees C (P less than 0.001, n = 11). The response was reversible. 7. 3 mM sodium cyanide plus 3 mM sodium iodoacetate caused a variable release of renin associated with depletion of content within 4 hr. The response was progressive and reached a peak after 60 min. 8. Sensitivity of renin release to temperature and metabolic blockade indicates that energy is required for retention of renin by the cell. This

  3. Environmental releases for calendar year 1997

    SciTech Connect

    Gleckler, B.P.

    1998-08-25

    This report fulfills the annual environmental release reporting requirements of US Department of Energy (DOE) Order 5400.1. This report provides supplemental information to the Hanford Site Environmental Report (PNNL-11795). The Hanford Site Environmental Report provides an update on the environmental status of the Hanford Site. The sitewide annual report summarizes the degree of compliance with applicable environmental regulations and informs the public concerning the impact of Hanford Site operations on the surrounding environment. Like the Hanford Site Environmental Report, this annual report presents a summary of the environmental releases from facilities and activities managed by the Fluor Daniel Hanford, Incorporated (FDH), and Bechtel Hanford, Incorporated (BHI). In addition to the summary data, this report also includes detailed data on air emissions, liquid effluents, and hazardous substances released to the environment during calendar year 1997. Comprehensive data summaries of air emissions and liquid effluents in 1997 are displayed in Tables ES-1 through ES-5. These tables represent the following: Table ES-1--Radionuclide air emissions data (detailed data on emissions are presented in Section 2.0); Table ES-2--Data on radioactive liquid effluents discharged to the soil (detailed data are presented in Section 3.0); Table ES-3--Radionuclides discharged to the Columbia River (detailed data are presented in Section 3.0); Table ES-4--Nonradioactive air emissions data (detailed data are presented in Section 2.0); Table ES-5--Total Volumes and Flow Rates of 200/600 Area Radioactive Liquid Effluents (detailed data are presented in Section 3.0).

  4. Measurements of the time constant for steady ionization in shaped-charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.

    1993-01-01

    Quantitative measurements of three solar illuminated shaped-charge barium releases injected at small angles to the magnetic field were made using a calibrated color television camera. Two of the releases were from 1989. The third release, a reanalysis of an event included in Hallinan's 1988 study of three 1986 releases, was included to provide continuity between the two studies. Time constants for ionization, measured during the first 25 s of each release, were found to vary considerably. The two 1989 time constants differed substantially, and both were significantly less than any of the 1986 time constants. On the basis of this variability, we conclude that the two 1989 releases showed evidence of continuous nonsolar ionization. One release showed nonsolar ionization which could not he attributed to Alfven's critical ionization velocity process, which requires a component of velocity perpendicular to the magnetic field providing a perpendicular energy greater than the ionization potential.

  5. High-resolution threshold photoelectron-photoion coincidence experiments performed on beamline 9.0.2.2: Kinetic energy release study of the process SF{sub 6} + hv {yields} SF{sub 5}{sup +} F + e{sup -}

    SciTech Connect

    Evans, M.; Ng, C.Y.; Hsu, C.W.; Heimann, P.

    1997-04-01

    Vacuum ultraviolet (VUV) photoionization mass spectrometry has been used extensively to determine the energetics of neutral radicals and radical cations, as well as to study the dynamics of the dissociative photoionization process. Very often these measurements are concerned with determining the appearance energy (AE) for a dissociative ionization process, as well as determining the heats of formation of the species involved. One such photoionization mass spectrometric technique employed on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source is the threshold photoelectron-photoion coincidence (TPEPICO) method. TPEPICO involves measuring the time-of-flight (TOF) mass spectrum of a given cation in coincidence with threshold photoelectrons at a known photoionization energy.

  6. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  7. Organic chemistry. Strain-release amination.

    PubMed

    Gianatassio, Ryan; Lopchuk, Justin M; Wang, Jie; Pan, Chung-Mao; Malins, Lara R; Prieto, Liher; Brandt, Thomas A; Collins, Michael R; Gallego, Gary M; Sach, Neal W; Spangler, Jillian E; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S

    2016-01-15

    To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C-C and C-N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain-release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation.

  8. Neutron-absorber release device

    DOEpatents

    VAN Erp, Jan B.; Kimont, Edward L.

    1976-01-01

    A resettable device is provided for supporting an object, sensing when an environment reaches a critical temperature and releasing the object when the critical temperature is reached. It includes a flexible container having a material inside with a melting point at the critical temperature. The object's weight is supported by the solid material which gives rigidity to the container until the critical temperature is reached at which point the material in the container melts. The flexible container with the now fluid material inside has insufficient strength to support the object which is thereby released. Biasing means forces the container back to its original shape so that when the temperature falls below the melting temperature the material again solidifies, and the object may again be supported by the device.

  9. Neural control of renin release.

    PubMed

    Stella, A; Golin, R; Zanchetti, A

    1989-02-01

    Among the major mechanisms controlling the renal release of renin, renal nerves are known to exert a direct stimulating action on juxtaglomerular cells that is mediated by beta-adrenoceptors. Activation of the renal nerves also exerts an important permissive role in order to amplify and possibly accelerate responses to stimuli affecting the vascular and macula densa mechanisms. Reduction of renal perfusion pressure, intravenous infusion of furosemide, and captopril administration cause a greater increase in renin release from innervated kidneys than from denervated kidneys. A complex interaction between neural and non-neural mechanisms in the control of renin secretion is suggested. Efferent renal nerve activity controlling the renin secretion rate is mainly under the inhibitory influence of vagal afferent fibers originating from the cardiopulmonary region. Recent experiments have demonstrated that a similar reflex tonic inhibition of renin secretion is also exerted by renal afferent fibers.

  10. 14 CFR 125.373 - Original flight release or amendment of flight release.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Original flight release or amendment of flight release. 125.373 Section 125.373 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Flight Release Rules § 125.373 Original flight release or amendment of flight release. (a) A...

  11. Ultrasound-Assisted Endoscopic Carpal Tunnel Release.

    PubMed

    Ohuchi, Hiroshi; Hattori, Soichi; Shinga, Kotaro; Ichikawa, Ken; Yamada, Shin

    2016-06-01

    Various surgical procedures for carpal tunnel syndrome exist, such as open release, ultrasound-guided percutaneous release, and endoscopic release. Postoperative pain, scarring, and slow recovery to normal function are reported complications of open release. Damage to vessels and the median nerve and its branches underlying the transverse carpal ligament is a reported complication of ultrasound-guided percutaneous release. Damage to the superficial palmar arch and incomplete release are reported complications of endoscopic release. By performing endoscopic carpal tunnel release with ultrasound assistance, we could visualize neurovascular structures directly with the endoscope and also indirectly with ultrasound to minimize complications. We could also evaluate the morphologic changes of the median nerve dynamically before and after the release. We discuss the technique for this procedure and outline pearls and pitfalls for success. PMID:27656366

  12. 10 CFR 20.2003 - Disposal by release into sanitary sewerage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Disposal by release into sanitary sewerage. 20.2003... Disposal § 20.2003 Disposal by release into sanitary sewerage. (a) A licensee may discharge licensed material into sanitary sewerage if each of the following conditions is satisfied: (1) The material...

  13. Prion protein facilitates synaptic vesicle release by enhancing release probability.

    PubMed

    Robinson, Susan W; Nugent, Marie L; Dinsdale, David; Steinert, Joern R

    2014-09-01

    The cellular prion protein (PrP(C)) has been implicated in several neurodegenerative diseases as a result of protein misfolding. In humans, prion disease occurs typically with a sporadic origin where uncharacterized mechanisms induce spontaneous PrP(C) misfolding leading to neurotoxic PrP-scrapie formation (PrP(SC)). The consequences of misfolded PrP(C) signalling are well characterized but little is known about the physiological roles of PrP(C) and its involvement in disease. Here we investigated wild-type PrP(C) signalling in synaptic function as well as the effects of a disease-relevant mutation within PrP(C) (proline-to-leucine mutation at codon 101). Expression of wild-type PrP(C) at the Drosophila neuromuscular junction leads to enhanced synaptic responses as detected in larger miniature synaptic currents which are caused by enlarged presynaptic vesicles. The expression of the mutated PrP(C) leads to reduction of both parameters compared with wild-type PrP(C). Wild-type PrP(C) enhances synaptic release probability and quantal content but reduces the size of the ready-releasable vesicle pool. Partially, these changes are not detectable following expression of the mutant PrP(C). A behavioural test revealed that expression of either protein caused an increase in locomotor activities consistent with enhanced synaptic release and stronger muscle contractions. Both proteins were sensitive to proteinase digestion. These data uncover new functions of wild-type PrP(C) at the synapse with a disease-relevant mutation in PrP(C) leading to diminished functional phenotypes. Thus, our data present essential new information possibly related to prion pathogenesis in which a functional synaptic role of PrP(C) is compromised due to its advanced conversion into PrP(SC) thereby creating a lack-of-function scenario.

  14. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  15. The destiny of Ca(2+) released by mitochondria.

    PubMed

    Takeuchi, Ayako; Kim, Bongju; Matsuoka, Satoshi

    2015-01-01

    Mitochondrial Ca(2+) is known to regulate diverse cellular functions, for example energy production and cell death, by modulating mitochondrial dehydrogenases, inducing production of reactive oxygen species, and opening mitochondrial permeability transition pores. In addition to the action of Ca(2+) within mitochondria, Ca(2+) released from mitochondria is also important in a variety of cellular functions. In the last 5 years, the molecules responsible for mitochondrial Ca(2+) dynamics have been identified: a mitochondrial Ca(2+) uniporter (MCU), a mitochondrial Na(+)-Ca(2+) exchanger (NCLX), and a candidate for a mitochondrial H(+)-Ca(2+) exchanger (Letm1). In this review, we focus on the mitochondrial Ca(2+) release system, and discuss its physiological and pathophysiological significance. Accumulating evidence suggests that the mitochondrial Ca(2+) release system is not only crucial in maintaining mitochondrial Ca(2+) homeostasis but also participates in the Ca(2+) crosstalk between mitochondria and the plasma membrane and between mitochondria and the endoplasmic/sarcoplasmic reticulum.

  16. Chemical form of tritium released from solid breeder materials

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masabumi; Kinjyo, Tomohiro; Nishida, Yoshiteru

    2004-02-01

    The fraction of HTO in total tritium was measured at release of the bred tritium to the purge gas with hydrogen using the thermal release after irradiation method, where neutron irradiation was performed at the Japan Research Reactor-3 (JRR-3) in Japan Atomic Energy Research Institute (JAERI) or the Kyoto University Research Reactor (KUR reactor) in Kyoto University. It is experimentally confirmed in this study that not a small portion of bred tritium is released to the blanket purge gas in the form of HTO from ceramic breeder materials even when hydrogen is added to the purge gas. Observation in this study implies that it is necessary to have a bred tritium recovery system useful for both HT and HTO form tritium. The water formation properties from Li 2TiO 3 bed placed in the hydrogen atmosphere were also discussed in this study.

  17. Synapsins differentially control dopamine and serotonin release.

    PubMed

    Kile, Brian M; Guillot, Thomas S; Venton, B Jill; Wetsel, William C; Augustine, George J; Wightman, R Mark

    2010-07-21

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knock-out (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  18. 10 CFR 1045.44 - Classification review prior to public release.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Classification review prior to public release. 1045.44 Section 1045.44 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data §...

  19. Gastrin-releasing peptide stimulates glycoconjugate release from feline trachea

    SciTech Connect

    Lundgren, J.D.; Baraniuk, J.N.; Ostrowski, N.L.; Kaliner, M.A.; Shelhamer, J.H. )

    1990-02-01

    The effect of gastrin-releasing peptide (GRP) on respiratory glycoconjugate (RGC) secretion was investigated in a feline tracheal organ culture model. RGC secretion was stimulated by GRP in a dose-dependent fashion at concentrations from 10(-8) to 10(-5) M (range 15-38% increase above control) with a peak effect within 0.5-1 h of incubation. GRP-(14-27), the receptor binding portion of GRP, and the related molecule, bombesin, also stimulated RGC secretion by approximately 20% above control. Acetyl-GRP-(20-27) stimulated RGC release by 10%, whereas GRP-(1-16) was inactive. Autoradiographic studies with 125I-GRP revealed that specific binding was restricted to the submucosal glands and the surface epithelium. A specific radioimmunoassay showed the content of GRP in feline trachea after extraction with ethanol-acetic acid to be 156 +/- 91 fmol/g wet wt. Indirect immunohistochemistry indicated that ganglion cells located just outside the cartilage contained GRP-immunoreactive materials. GRP is a novel mucus secretagogue that may participate in regulating airway mucosal gland secretion.

  20. Preparation of hybrid materials for controlled drug release.

    PubMed

    Milczewska, Kasylda; Voelkel, Adam; Zwolińska, Joanna; Jędro, Dorota

    2016-01-01

    Authors obtained hybrid organic-inorganic materials applied in sustained drug delivery. The materials are ibuprofen as a model drug, hydroxyapatite and three different polymers as supports. Influence of the type of employed polymer, an inorganic carrier, on the properties and drug release profiles was estimated. Flory-Huggins interaction parameters, the dispersive component of surface free energy and acid-base characteristic of the surface were used to assess the behavior of the composites in terms of drug release. The experiments were carried out with the use of inverse gas chromatography (IGC), Fourier transform infrared (FTIR) and ultraviolet (UV) techniques. FTIR and ATR-FTIR spectra were collected. The values of [Formula: see text] parameter obtained for all investigated materials (excluding poly(L-lactide) (PLA2)) indicate low or medium activity. The strongest interactions (the lowest values of the Flory-Huggins [Formula: see text] parameter) are observed for PLA2 composition, while the weakest interactions for systems with polyethylene glycol (PEG). Finally, drug release profiles are shown. For materials prepared with Eudragit® (EUD) and PLA, the release of drug was much smaller, which corresponds to lower values of Flory-Huggins parameter. The executed experiments allowed the estimation of the properties of prepared composites. Prepared materials present properties required in sustained drug release and may be successfully applied as drug delivery systems. PMID:26559181

  1. Mechanistic analysis of double-shell tank gas release

    SciTech Connect

    Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

    1991-12-01

    Pacific Northwest Laboratory (PNL) is studying possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at Hanford. This study is being conducted for Westinghouse Hanford Company (WHC), a contractor for the US Department of Energy (DOE). This interim report discusses the work done through November 1990. Safe management of the wastes at Hanford depends on an understanding of the chemical and physical mechanisms that take place in the waste tanks. An example of the need to understand these mechanisms is tank 101-SY. The waste in this tank is generating and periodically releasing potentially flammable gases into the tank vent system according to observations of the tank. How these gases are generated and become trapped, the causes of periodic release, and the mechanism of the release are not known in detail. In order to develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood.

  2. On Streamer-Blowout CMEs That Aren't Really CMEs: How the Corona Makes Slow Flux Rope-Like ICMEs Without an Explosive Release of Free Magnetic Energy

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Masson, S.; Li, Y.; DeVore, C. R.; Luhmann, J. G.; Antiochos, S. K.

    2015-12-01

    We present a 3D numerical MHD simulation of the 2008 Jun 2 gradual streamer blowout CME that had virtually no identifiable low coronal signatures. We energize the field by simple footpoint shearing along the source region's polarity inversion line and model the background solar wind structure using an ~2MK isothermal wind and a low-order potential field source surface representation of the CR2070 synoptic magnetogram. Our results show that the CME "initiation" is obtained by slowly disrupting the quasi-steady-state configuration of the helmet streamer, resulting in the standard eruptive flare picture that ejects the sheared/twisted fields -- very slowly and on a relatively large scale -- with virtually no decrease in the global magnetic energy. We obtain a relatively slow CME eruption of order the background solar wind speed (Vcme ~ 300 km/s by 15 Rs). We argue that these very slow, expansion-driven "eruptions" are merely the natural and gradual response of the large-scale corona to the accumulation of global-scale stress (e.g. differential rotation). We present comparisons of the CME propagation through the corona (≤15Rs) in synthetic white-light images derived from the simulation density structure with multi-spacecraft coronagraph data from STEREO/SECCHI and SOHO/LASCO. We show a favorable comparison between the simulation's ICME flux rope structure with the in situ STEREO observations.

  3. 46 CFR 108.457 - Pressure release.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Pressure release. 108.457 Section 108.457 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.457 Pressure release... have a means for releasing pressure that accumulates within the space if CO2 is discharged into...

  4. 46 CFR 108.457 - Pressure release.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Pressure release. 108.457 Section 108.457 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.457 Pressure release... have a means for releasing pressure that accumulates within the space if CO2 is discharged into...

  5. 46 CFR 108.457 - Pressure release.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Pressure release. 108.457 Section 108.457 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.457 Pressure release... have a means for releasing pressure that accumulates within the space if CO2 is discharged into...

  6. 46 CFR 108.457 - Pressure release.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure release. 108.457 Section 108.457 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.457 Pressure release... have a means for releasing pressure that accumulates within the space if CO2 is discharged into...

  7. 46 CFR 108.457 - Pressure release.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Pressure release. 108.457 Section 108.457 Shipping COAST... Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.457 Pressure release... have a means for releasing pressure that accumulates within the space if CO2 is discharged into...

  8. 28 CFR 2.33 - Release plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT OF PRISONERS, YOUTH OFFENDERS... of parole is conditioned upon the approval of release plans by the Regional Commissioner. In general... reasonable plan for payment shall, where feasible, be included in the parole release plan....

  9. 28 CFR 2.33 - Release plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Release plans. 2.33 Section 2.33 Judicial..., AND JUVENILE DELINQUENTS United States Code Prisoners and Parolees § 2.33 Release plans. (a) A grant of parole is conditioned upon the approval of release plans by the Regional Commissioner. In...

  10. 28 CFR 2.33 - Release plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Release plans. 2.33 Section 2.33 Judicial..., AND JUVENILE DELINQUENTS United States Code Prisoners and Parolees § 2.33 Release plans. (a) A grant of parole is conditioned upon the approval of release plans by the Regional Commissioner. In...

  11. 40 CFR 302.8 - Continuous releases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR part 355, which require initial telephone and written notifications of continuous releases to be... schools, hospitals, retirement communities, or wetlands). (iv) For each hazardous substance release...) The environmental medium(a) affected by the release: (1) If surface water, the name of the...

  12. CHANGING RELEASE CRITERIA FROM PAST TO PRESENT

    SciTech Connect

    Graf, A.; Valencia, L.

    2003-02-27

    Beginning with the decommissioning of nuclear power plants the release, criteria for radioactive materials has gained importance significantly. After decommissioning and dismantling, most of the residues need not be treated as radioactive waste, since they contain only small amounts of radioactivity. The Karlsruhe Research Center already dismantled two research reactors completely (the Karlstein Super Heated Steam Reactor and the Niederaichbach Nuclear Power Plant), while several additional decommissioning projects are currently in progress. About 70 % of the total waste mass within each project can be released from the area of atomic regulations and licenses. At the Niederaichbach and Karlstein sites the release procedures and the release criteria were determined in the decommissioning license, where issues such as controlling and release values were fixed. Additionally, each step of the release process has to be coordinated with the regulator. Today the general release criteria are contained in the atomic act. Depending on the nature of the material to be released (e.g. building structures or metallic waste), and depending on the further use of the material, such as unrestricted reuse or waste disposal, release values for each nuclide are established. To prepare the release of materials, a release plan including the release measurement results is sent to the regulator, who has to officially approve the concept.

  13. 40 CFR 302.8 - Continuous releases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR part 355, which require initial telephone and written notifications of continuous releases to be... release data, engineering estimates, knowledge of operating procedures, or best professional judgment to... requirements of this section, the person in charge may rely on recent release data, engineering estimates,...

  14. Individualized optimal release angles in discus throwing.

    PubMed

    Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing

    2010-02-10

    The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques.

  15. 28 CFR 2.33 - Release plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Release plans. 2.33 Section 2.33 Judicial Administration DEPARTMENT OF JUSTICE PAROLE, RELEASE, SUPERVISION AND RECOMMITMENT OF PRISONERS, YOUTH OFFENDERS, AND JUVENILE DELINQUENTS United States Code Prisoners and Parolees § 2.33 Release plans. (a) A...

  16. Fully redundant mechanical release actuator

    NASA Technical Reports Server (NTRS)

    Lucy, Melvin H. (Inventor)

    1987-01-01

    A system is described for performing a mechanical release function exhibiting low shock. This system includes two pyrotechnic detents fixed mounted in opposing axial alignment within a cylindrical housing having two mechanical bellows. Two mechanical bellow assemblies, each having one end hermetically bonded to the housing and the other to the respective actuator pin extending from either end of the housing, ensure that all outgassing and contamination from the operation of the pyrotechnic devices will be contained within the housing and bellows. The pin on one end of the assembly is fixed mounted and supported, via a bolt or ball-and-socket joint so that when the charge corresponding to that pin ignites, the entire assembly will exhibit rectilinear movement, including the opposing pin providing the unlatching motion. The release detent pin is supported by a linear bearing and when its corresponding pyrotechnic charge ignites the pin is retracted within the housing producing the same unlatching motion without movement of the entire assembly, thus providing complete mechanical, electrical and pyrotechnic redundancy for the unlatching pin.

  17. ATP release through pannexon channels.

    PubMed

    Dahl, Gerhard

    2015-07-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed 'pannexon'. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  18. Diffusion rates for elevated releases

    SciTech Connect

    Ramsdell, J.V.

    1983-11-01

    A search of the literature related to diffusion from elevated sources has determined that an adequate data base exists for use in developing parameterizations for estimating diffusion rates for material released from free standing stacks at nuclear power plants. A review of published data analyses indicates that a new parameterization of horizontal diffusion rates specifically for elevated releases is not likely to significantly change the magnitudes of horizontal diffusion coefficients on the average. However, the uncertainties associated with horizontal diffusion coefficient estimates under any given set of atmospheric conditions could be reduced by a new parameterization. Similarly, a new parameterization of vertical diffusion rates would be unlikely to significantly alter the magnitudes of diffusion coefficients for unstable atmospheric conditons. However, for neutral and stable atmospheric conditions, a new parameterization of vertical diffusion rates might increase vertical diffusion coefficients significantly. The increase would move ground-level time-integrated concentration maxima closer to the plant and would increase the maxima. 55 references, 2 figures, 4 tables.

  19. Nitric oxide releasing acetaminophen (nitroacetaminophen).

    PubMed

    Moore, P K; Marshall, M

    2003-05-01

    The nitric oxide releasing derivative of acetaminophen (nitroacetaminophen) exhibits potent anti-inflammatory and anti-nociceptive activity in a variety of animal models. On a mol for mol basis nitroacetaminophen is some 3-20 times more potent than acetaminophen. Nitroacetaminophen exhibits little or no hepatotoxicity following administration in rat or mouse and indeed protects against the hepatotoxic activity of acetaminophen. Nitroacetaminophen does not affect blood pressure or heart rate of anaesthetised rats but has similar potency to acetaminophen as an anti-pyretic agent. The enhanced anti-inflammatory and anti-nociceptive activity of nitroacetaminophen and the reduced hepatotoxicity in these animal models is likely to be secondary to the slow release of nitric oxide from the molecule. As yet the precise molecular mechanism(s) underlying these actions of nitroacetaminophen are not clear. Evidence for inhibition of cytokine-directed formation of pro-inflammatory molecule production (e.g. COX-2, iNOS) by an effect on the NF-kappaB transduction system and/or nitrosylation (and thence inhibition) of caspase enzyme activity has been reported. Data described in this review indicate that the profile of pharmacological activity of nitroacetaminophen and acetaminophen are markedly different. The possibility that nitroacetaminophen could be an attractive alternative to acetaminophen in the clinic is discussed. PMID:12846444

  20. Foamy Virus Budding and Release

    PubMed Central

    Hütter, Sylvia; Zurnic, Irena; Lindemann, Dirk

    2013-01-01

    Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems. PMID:23575110

  1. Energy and costs scoping study for plasma pyrolysis thermal processing system

    SciTech Connect

    Sherick, K.E.; Findley, J.E.

    1992-01-01

    The purpose of this study was to provide information in support of an investigation of thermal technologies as possible treatment process for buried wastes at the INEL. Material and energy balances and a cost estimate were generated for a representative plasma torch-based thermal waste treatment system operating in a pyrolysis mode. Two waste streams were selected which are representative of INEL buried wastes, large in volume, and difficult to treat by other technologies. These streams were a solidified nitrate sludge waste stream and a waste/soil mix of other buried waste components. The treatment scheme selected includes a main plasma chamber operating under pyrolyzing conditions; a plasma afterburner to provide additional residence time at high temperature to ensure complete destruction of hazardous organics; an off-gas treatment system; and a incinerator and stack to oxidize carbon monoxide to carbon dioxide and vent the clean, oxidized gases to atmosphere. The material balances generated provide materials flow and equipment duty information of sufficient accuracy to generate initial rough-order-of-magnitude (ROM) system capital and operating cost estimates for a representative plasma thermal processing system.

  2. Controlled Drug Release from Pharmaceutical Nanocarriers

    PubMed Central

    Lee, Jinhyun Hannah; Yeo, Yoon

    2014-01-01

    Nanocarriers providing spatiotemporal control of drug release contribute to reducing toxicity and improving therapeutic efficacy of a drug. On the other hand, nanocarriers face unique challenges in controlling drug release kinetics, due to the large surface area per volume ratio and the short diffusion distance. To develop nanocarriers with desirable release kinetics for target applications, it is important to understand the mechanisms by which a carrier retains and releases a drug, the effects of composition and morphology of the carrier on the drug release kinetics, and current techniques for preparation and modification of nanocarriers. This review provides an overview of drug release mechanisms and various nanocarriers with a specific emphasis on approaches to control the drug release kinetics. PMID:25684779

  3. A rapid technique for prediction of nutrient release from controlled release fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient release from soluble granular fertilizers can be modified by polymer coating to extend the total duration nutrient release up to 3 to 9 months and rate of release to match the nutrient requirement of the plant during the growing period. Hence these products are termed as “Controlled Release...

  4. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  5. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  6. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  7. Screw-released roller brake

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1999-01-01

    A screw-released roller brake including an input drive assembly, an output drive assembly, a plurality of locking sprags, a mechanical tripper nut for unlocking the sprags, and a casing therefor. The sprags consist of three dimensional (3-D) sprag members having pairs of contact surface regions which engage respective pairs of contact surface regions included in angular grooves or slots formed in the casing and the output drive assembly. The sprags operate to lock the output drive assembly to the casing to prevent rotation thereof in an idle mode of operation. In a drive mode of operation, the tripper is either self actuated or motor driven and is translated linearly up and down against a spline and at the limit of its travel rotates the sprags which unlock while coupling the input drive assembly to the output drive assembly so as to impart a turning motion thereto in either a clockwise or counterclockwise direction.

  8. CRRES: The combined release and radiation effects satellite program directory

    NASA Technical Reports Server (NTRS)

    Layman, Laura D.; Miller, George P.

    1992-01-01

    As a result of natural processes, plasma clouds are often injected into the magnetosphere. These chemical releases can be used to study many aspects of such injections. When a dense plasma is injected into the inner magnetosphere, it is expected to take up the motion of the ambient plasma. However, it has been observed in previous releases at moderate altitudes that the cloud preserved its momentum for some time following the release and that parts of the cloud peeled off from the main cloud presumable due to the action of an instability. As one moves outward into the magnetosphere, the mirror force becomes less dominant and the initial conditions following a release are dominated by the formation of a diamagnetic cavity since the initial plasma pressure from the injected Ba ions is greater than the magnetic field energy density. A previous high-altitude release (31,300 km) showed this to be the case initially, but at later times there was evidence for acceleration of the Ba plasma to velocities corresponding to 60,000 K. This effect is not explained. This series of experiments is therefore designed to inject plasma clouds into the magnetosphere under widely varying conditions of magnetic field strength and ambient plasma density. In this way the coupling of injected clouds to the ambient plasma and magnetic field, the formation of striations due to instabilities, and possible heating and acceleration of the injected Ba plasma can be studied over a wide range of magnetosphere parameters. Adding to the scientific yield will be the availability of measurements for the DOD/SPACERAD instruments which can monitor plasma parameters, electric and magnetic fields, and waves before, during and after the releases.

  9. Drug release kinetic analysis and prediction of release data via polymer molecular weight in sustained release diltiazem matrices.

    PubMed

    Adibkia, K; Ghanbarzadeh, S; Mohammadi, G; Khiavi, H Z; Sabzevari, A; Barzegar-Jalali, M

    2014-03-01

    This study was conducted to investigate the effects of HPMC (K4M and K100M) as well as tragacanth on the drug release rate of diltiazem (DLTZ) from matrix tablets prepared by direct compression method.Mechanism of drug transport through the matrices was studied by fitting the release data to the 10 kinetic models. 3 model independent parameters; i. e., mean dissolution time (MDT), mean release rate (MRR) and release rate efficacy (RE) as well as 5 time point approaches were established to compare the dissolution profiles. To find correlation between fraction of drug released and polymer's molecular weight, dissolution data were fitted into two proposed equations.All polymers could sustain drug release up to 10 h. The release data were fitted best to Peppas and Higuchi square root kinetic models considering squared correlation coefficient and mean percent error (MPE). RE and MRR were decreased when polymer to drug ratio was increased. Conversely, t60% was increased with raising polymer /drug ratio. The fractions of drug released from the formulations prepared with tragacanth were more than those formulated using the same amount of HPMC K4M and HPMC K100M.Preparation of DLTZ matrices applying HPMCK4M, HPMC K100M and tragacanth could effectively extend the drug release. PMID:23986307

  10. Wind Turbine Development: Press release

    SciTech Connect

    Not Available

    1994-05-09

    The US Department of Energy (DOE) has announced a new partnership with Zond Systems, Inc., of Tehachapi, California. The partnership is the firs to be announced under DOE`s new Value-Engineered Turbine (VET) project. The VET project is expected to lower the cost of manufacturing wind turbines and give the US wind industry a competitive boost.

  11. Helium release during shale deformation: Experimental validation

    NASA Astrophysics Data System (ADS)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  12. Environmental releases for calendar year 1996

    SciTech Connect

    Greager, E.M.

    1997-07-31

    This report presents data on radioactive and nonradioactive materials released into the environment during calendar year 1996 from facilities and activities managed by the Fluor Daniel Hanford, Incorporated (formerly the Westinghouse Hanford Company) and Bechtel Hanford, Incorporated. Fluor Daniel Hanford, Incorporated provides effluent monitoring services for Bechtel Hanford, Incorporated, which includes release reporting. Both summary and detailed presentations of the environmental releases are provided. When appropriate, comparisons to data from previous years are made.

  13. Environmental releases for calendar year 1995

    SciTech Connect

    Diediker, L.P., Westinghouse Hanford

    1996-07-30

    This report presents data on radioactive and nonradioactive materials released into the environment during calendar year 1995 from facilities managed by the Westinghouse Hanford Company (WHC) and monitored by Bechtel Hanford, Incorporated (BHI). WHC provides effluent monitoring services for BHI, which includes release reporting. Both summary and detailed presentations of the environmental releases are provided. When appropriate,comparisons to data from previous years are made.

  14. A Comparison of Three Algorithms for Orion Drogue Parachute Release

    NASA Technical Reports Server (NTRS)

    Matz, Daniel A.; Braun, Robert D.

    2015-01-01

    The Orion Multi-Purpose Crew Vehicle is susceptible to ipping apex forward between drogue parachute release and main parachute in ation. A smart drogue release algorithm is required to select a drogue release condition that will not result in an apex forward main parachute deployment. The baseline algorithm is simple and elegant, but does not perform as well as desired in drogue failure cases. A simple modi cation to the baseline algorithm can improve performance, but can also sometimes fail to identify a good release condition. A new algorithm employing simpli ed rotational dynamics and a numeric predictor to minimize a rotational energy metric is proposed. A Monte Carlo analysis of a drogue failure scenario is used to compare the performance of the algorithms. The numeric predictor prevents more of the cases from ipping apex forward, and also results in an improvement in the capsule attitude at main bag extraction. The sensitivity of the numeric predictor to aerodynamic dispersions, errors in the navigated state, and execution rate is investigated, showing little degradation in performance.

  15. Pluronic/gelatin composites for controlled release of actives.

    PubMed

    Tatini, Duccio; Tempesti, Paolo; Ridi, Francesca; Fratini, Emiliano; Bonini, Massimo; Baglioni, Piero

    2015-11-01

    This paper describes the preparation and the release properties of composite materials based on Pluronic F127 and gelatin hydrogels, which could be of interest in the field of enteral nutrition or drug administration. The composites were prepared by exploiting the opposite responsivity to temperature of a 20% w/w Pluronic F127 aqueous solution (critical gelation temperature around 23 °C) and gelatin (gel-sol temperature transition around 30 °C). Pluronic domains dispersed within a gelatin matrix were obtained by injecting cold Pluronic F127 solutions inside hot gelatin solutions, while homogenizing either with a magnetic stirrer or a high-energy mechanical disperser. Calorimetry indicates that the composites retain the individual gelling properties of Pluronic and gelatin. Different releasing properties were obtained as a function of the preparation protocol, the temperature and the pH. The release profiles have been studied by a Weibull analysis that clearly points out the dominating role of gelatin at 25 °C. At 37 °C the release accounts for a combined effect from both Pluronic F127 and gelatin, showing a more sustained profile with respect to gelatin hydrogels. This behavior, together with the ability of Pluronic F127 to upload both hydrophilic and hydrophobic drugs and flavors, makes these innovative composite materials very good candidates as FDA-approved carriers for enteral administration.

  16. Quick-release medical tape

    PubMed Central

    Laulicht, Bryan; Langer, Robert; Karp, Jeffrey M.

    2012-01-01

    Medical tape that provides secure fixation of life-sustaining and -monitoring devices with quick, easy, damage-free removal represents a longstanding unmet medical need in neonatal care. During removal of current medical tapes, crack propagation occurs at the adhesive–skin interface, which is also the interface responsible for device fixation. By designing quick-release medical tape to undergo crack propagation between the backing and adhesive layers, we decouple removal and device fixation, enabling dual functionality. We created an ordered adhesive/antiadhesive composite intermediary layer between the medical tape backing and adhesive for which we achieve tunable peel removal force, while maintaining high shear adhesion to secure medical devices. We elucidate the relationship between the spatial ordering of adhesive and antiadhesive regions to create a fully tunable system that achieves strong device fixation and quick, easy, damage-free device removal. We also described ways of neutralizing the residual adhesive on the skin and have observed that thick continuous films of adhesive are easier to remove than the thin islands associated with residual adhesive left by current medical tapes. PMID:23112196

  17. Levetiracetam inhibits oligomeric Aβ-induced glutamate release from human astrocytes.

    PubMed

    Sanz-Blasco, Sara; Piña-Crespo, Juan C; Zhang, Xiaofei; McKercher, Scott R; Lipton, Stuart A

    2016-06-15

    A recently identified mechanism for oligomeric Aβ-induced glutamate release from astrocytes involves intracellular Ca elevation, potentially by Ca-dependent vesicular release. Evidence suggests that levetiracetam (LEV; Keppra), an antiepileptic drug, can improve cognitive performance in both humans with mild cognitive impairment and animal models of Alzheimer disease. Because LEV acts by modulating neurotransmitter release from neurons by interaction with synaptic vesicles, we tested the effect of LEV on Aβ-induced astrocytic release of glutamate. We used a fluorescence resonance energy transfer-based glutamate sensor (termed SuperGluSnFR), whose structure is based on the ligand-binding site of glutamate receptors, to monitor glutamate release from primary cultures of human astrocytes exposed to oligomeric amyloid-β peptide 1-42 (Aβ42). We found that LEV (10 µM) inhibited oligomeric Aβ-induced astrocytic glutamate release. In addition, we show that this Aβ-induced glutamate release from astrocytes is sensitive to tetanus neurotoxin, an inhibitor of the vesicle release machinery. Taken together, our evidence suggests that LEV inhibits Aβ-induced vesicular glutamate release from astrocytes and thus may underlie, at least in part, the ability of LEV to reduce hyperexcitability in Alzheimer disease. PMID:27183239

  18. Somatodendritic dopamine release: recent mechanistic insights

    PubMed Central

    Rice, Margaret E.; Patel, Jyoti C.

    2015-01-01

    Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764

  19. Controlled release of thyrotropin releasing hormone from microspheres: evaluation of release profiles and pharmacokinetics after subcutaneous administration.

    PubMed

    Heya, T; Mikura, Y; Nagai, A; Miura, Y; Futo, T; Tomida, Y; Shimizu, H; Toguchi, H

    1994-06-01

    The drug-release kinetics of thyrotropin releasing hormone (TRH) containing copoly(dl-lactic/glycolic acid) (PLGA) microspheres were evaluated both in vitro and in vivo. The drug was encapsulated in PLGA using an in-water drying method through a water in oil in water emulsion. The drug release from the PLGA microspheres in vitro correlated well with that in vivo, and pseudo-zero-order release kinetics were observed. The pharmacokinetics of TRH following administration of this controlled-release parenteral dosage form have been also examined in rats. Following a transient increase in the plasma level due to an initial burst, steady-state plasma levels were observed. The duration of drug release estimated from the plasma level was comparable with the results in the in vitro and in vivo release studies. The steady-state plasma levels correlated well with the levels predicted from the pharmacokinetic parameters following a single subcutaneous or intravenous injection of TRH solution. The results of this study confirm the previously reported in vivo sustained release of TRH achieved with this drug-delivery system. PMID:9120809

  20. Pressure Systems Energy Release Protection (Gas Pressurized Systems)

    NASA Technical Reports Server (NTRS)

    Brown, S. J. (Editor)

    1986-01-01

    A survey of studies into hazards associated with closed or pressurized system rupture and preliminary guidelines for the performance design of primary, secondary, and protective receptors of these hazards are provided. The hazards discussed in the survey are: blast, fragments, ground motion, heat radiation, biological, and chemical. Performance guidelines for receptors are limited to pressurized systems that contain inert gas. The performance guidelines for protection against the remaining unaddressed degenerative hazards are to be covered in another study.